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FOREWORD

This report constitutes the first phase of a study to define the flight
performance and stability characteristics of air-launched, curved-finned rockets. This
work was performed under AIRTASK A3203200/009B/3F32-323-201.

This report was reviewed by Dr. T. A. Clare, Head, Flight Dynamics Group and
R. D. Cuddy, Head, Aeroballistics Division.

Released by:
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RALPH A. NIEMANN
Head, Warfare Analysis Department
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ABSTRACT

Maple-Synge theory is used to establish the analytical form of the aerodynamic
forces and moments acting on a four-finned, curved-finned vehicle. The linearized
equations of motion are solved, and the effects of the curved-finned aerodynamics
on the stability of motion are investigated. It is shown that small and modecrate
values of yawing moment due tO angle-of-attack, characteristic of curved-finned
configurations, can have significant effects on both transient and steady-state

stability.
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I. INTRODUCTION

The use of curved fins as missile stabilizers has increased significantly in recent
years. This is due in large part to the inherent suitability of such configurations for
tube-launched ordnance (minimal volume used for fin storage). Curved-finned missiles.
due to their “‘non-mirror symmetry” properties, can have aerodynamic characteristics
considerably different from the familiar cruciform-finned configurations. This is
evidenced by the “zero fin cant” roll moment produced by curved fins; this has
been extensively studied':2-3 and found to be strongly dependent on Mach number
and angle-of-attack, as well as on fin geometry.

The Naval Weapons Laboratory is conducting a program to define the flight
performance characteristics of curved-finned vehicles for present and future flight
conditions characteristic of air-launched,. tactical rockets. It is the purpose of this
report to document the initial phase of this effort: examination of the effects of
the non-mirror symmetry of curved fins on the linear pitching and yawing motion
of finned missiles. Theoretical expressions for the linear aerodynam. force and
moment systems for a curved-finned body are presented. and the equations of
motion with these aerodynamics are solved. The effects of the non-mirror symmetry
terms on the stability of motion are investigated. and it is shown that small valucs
of the yawing moment due to angle-of-attack can lead to reduced dynamic stability
or dynamic instability. Numerical verification of these results is presented.



Il. ANALYSIS
A. Genenl Equations of Motion

This analysis is concerned with the transverse angular motion of rolling
four-finned, curved-finned missiles. A sketch of a typical curved-finned rocket
configuration is shown in Figure 1. For such a configuration, it is convenient to
write the equations of motion in an aeroballistic axis system! which pitches and
yaws with the body but does not roll (Figure 2). For this axis system, the
equations of motion may be written as
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where

Lo Ix+ . {L,
F=LY+ M= 1M
Z+§: N
=10 1 0
0 0 1

Taking the transverse components of Equations (1) and neglecting gravity gives
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By defining the complex quantities & and & as

@ =q+ir 3)
Equations (2) can be written as

&- i@ = (Y +iZ)/mV
(4)
G-iPT = M -iNVI

where
P=pl/l
and it is assumed that u = V (implying small angles of attack and sideslip).
B. Solution for Linear Aerodynamics
Equations (4) can be solved analytically only if the aerodynamic forces
and moments can be exprossed as functions of the variables & and @. The solutions

to these equations have bheen extensively studied for aerodynamics typical of
non-finned and cruciform-finned missiles.*-* The non-mirror symmetry of curved !ins.



however, allows additional terms to be included in the aerodynamic expressions. It is
primarily the effect of these terms on the solution to Equations (4) which will be
investigated in this report.

Maple and Synge® have presented a method for determining the effects of
body symmetry on the functional relationships between the aerodynamic forces and
moments and the state of motion of the body. Appendix B presents a summary of
the application of Maple-Synge theory to a four-finned, curved-finned body. The
resulting linearized equations for the acrodynamics are

Y+iZ = (Yo + izo)e,‘l" + [Za - iYa + P(Zpa - tia)] o
(5)
+(Yq - Zq)BHZ& +iY, )a

M+iN = (M, +iN, et + [—iMa +N, +pIN__ - iMpa)]E
(6)
+ (Mq + INq w+ (‘iM& + Na)&

The a derivatives, which are not accounted for by classical Maple-Synge Theory,
have been included in the above equations. In addition, constant, body-fixed forces
Yy, Z,) and moments (M. Ng) have been included to account for small
asymmetries or control deflecctions. Table | presents a summary of the linearized
aerodynamic derivatives for missiles with and without mirror symmetry.

Referring to Table 1, it is seen that the non-mirror symmetry of curved
fins allows aerodynamic cross-coupling terms (N_, Nq. N,. etc) as well as “in-plane
Magnus™ derivatives (Zpa. M_ ). The yawing moment duc to angle-of-attack for

] pa ’ . . . . . 1]
curved-finned configurations, N_, is very similar to the “induced side moment™s:8

for cruciform-finned missiles. T;e primary difference is that N_ is (for linear theory)
independent of roll orientation (orientation of the fins to the angle-of-attack plane),
while the induced side moment is a non-linear effect highly dependent on roll
orientation. As will be seen later, however, the effect of N, on the motion is

similar to that due to an induced side moment at constant roll orientation.

In general, the dynamic and lag force terms in Equations (5) will have
httle  effect on the motion. Neglecting these terms and also neglecting  the
asymmetry forces (Y. Z;), Equations (4), (5), and (6) become
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&- i@ = (Z, - iY,)a Q)

. - . A
G- iPw = (M, +iNy)elet + [—iﬁa +N +pN , - iﬁpa)]&

R e] f B (8)
+(Mq +1Nq)w +(-iM, +N )&
where
[ A
() =()mv ; ()=
Equations (7) and (8) ca: be combined to yield
= J A A
a+(a, +ia)a+ (b, +ib)a@ = i(M, +iNj)e'P! ©)
where
A
& = 'ﬂq'M&' Z,
a=-R-N+v-P
(10)
A A -
b =-M - pMpa +PY,
A A =
b, = -N,-pN,, + PZ!

and where the force derivatives in Equation (7) were considered constant (implying
constant Mach number and dynamic pressure). In addition, products of stability
derivatives were neglected in Equations (10). For constant coefficients, Equation (9)
can be solved directly to give

& = Kleiwl +K2eiw,t +K3eipt an

el

2 Ay,
12 = Ky et

~N
) i(M, +iR,)
3 p?+p(a, +ia) +b +ib,

Fall



7\|.2 + iml’2 = ‘/z[-ur = it Ja:? - aiz - 4b, +i(2a,a|i - 4bi)]

Therefore, it is seen that the solution to the linear equations of motion
for the curved-finned vehicle takes the form of the familiar tricyclic solution for
cruciform  fins, _with the modal frequencies, (w) ,) damping rates (7\1'2) and steady
state solution (K,) modified due to the curved-finned aerodynamic terms.

C. Effects of Curved Fins on Stability

Equation (11), along with Equations (10) and (12), describes the transverse
angular motion for a curved-finned body with arbitrary acrodynamics. Of primary
interest. however, are the effects of curved-finned acrodynamics on both the stability
of transicnt motion and the steady-state amplitude of motion due to asymmetrics.
In order to investigate these cffects, it is advantageous to simplify several of the
above equations.

The transient  stability characteristics are determined by the modal
frequencies and damping rates given by the last of Equations (12). This can be
rewritten as

7\|_2 +iw|‘2 = ‘/z[—ar— ia; VE2 +F2] (13)

where

E2 = i2(4b, +a? - a2)

F2 = i(2a,a; - 4b))

The radical in Equation (12) can be expanded in a binomial series as

7 F2
H2+F2=E+_-—'T cas (|4)

2E  8F}

Then, using Equations (10) and (14) and negiecting second and higher
order terms in the stability derivatives, the frequencies and damping factors may be
written as



A W, 5 =‘/z[P+ﬁq+ﬁ&+Y;z

(15)
A ; =l
tJE’+2F(Nq+Qa-+Y°- KQN)-WQ]
A a 1 ﬂﬂq l+n)+Z2' (1 %7) i-N—P-“-r+
P2 ,z(q JJUtn+ 2, Iy =
(16)
- Na
X
where
]
[
, ]
]_ =
S
(N

P2+ 2PN, + N, - Y')
S -
A 1 |
aM, +4F(—f§1,a - :5

The steady-state, or trim, angle of attack is given by the second of
Equations (12) and is scen to be a function of spin rate. It is convenient to write
the trim angle as®

. 'A
- l(ﬂﬂ"’lNQ) (18)
Yo dlitp- w ) - N Hilp - wy) - A,

The effects of spin rate on the steady-state trim angle can be investigated
by introducing the trim amplification factor. f, defined as

i (19)

The zero-spin trim angle is

A A
- » ‘I(Mo""lNo)

3p=() +i
a a



Therefore, by using Equations (18) and (20), the trim amplification factor is

A
2 2 %
L —
[(p- @ )p- w1+ AN, +23p- w,)? + M (p- w, )
The transient and steady-state stability characteristics of curved-finned
bodies may thu; be investigated by the use of Equations (15), (16), and (21). These
characteristics will be quantitatively discussed in the following section.



lIll. DISCUSSION OF RESULTS
A. Transient Stability

The requirement for static stability is

2 A

P4l N 4y - S yaft >0 22
= 3 a a ~ pa)— a (22)

Equation (16) indicates ihe possibility of static instabilities occuring in curved-finned
missiles with a negative restoring moment (e.g.. M < 0). The static stability
requirerient is shown graphically in Figure 3, where

. P
= A

A ] I A
R

From the figur., it is scen that gyroscopic instabilities arc not possible for
magnitudes of Pp or A less than 1. For most finned rockets, the static margin is
large (M, € 0) and 1 /I € 1. Thus the magnitude of § will usually be much less
than 1. Furthermore, although the magnitudes of the curved-finned acrodynamic
derivatives are not generally known at this time, it is expected that they will be
small compared to the restoring moment. The magnitude of A should therefore also
be much less than i. Except for cases of small static margin, then, the
curved-finned effects oviv the gyroscopic stability should be small.

A=

In light of the above discussion, the curved-finned terms in  the
denominator of the last term of Equation (16) will be neglected, so that

A N
A, = ‘/z[(siq+M&)(l tr)+2:‘(|¢r)] + —lﬂ’—r

1t
X

: .
P2 aM_ "

a
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The requirements for dynamic stability are

For typical spin rates of finned bodies, 7 can be neglected with respect to 1, and
the requirement for dynamic stability becomes

A
N N,.7 A A
+ R < -M +M +Z) 24
7——'_4mu~1;,-+ » (M, + M, +Z]) (24)

Using the set of parameters shown in Table 2. which are typical of
air-launched rocket configurations (with NP“ taken (3 zero for convenience), the
magnitude of N_ required to introduce dynamic instability (assuming zero spin rate)
was computed and tound to be approximately 8% M_ . The variation of the damping
factors with N for these data are shown in Figure 4.

Spin rates up to 3(0 rad/sec were also investigated, but were found to
have little effect on the damping factors or the magnitude of N leading to
instability. For non-zero Magnus (N, ). however, the damping faciors and critical
magnitude of N could vary significantly with spin rate.

B. Steady-State Motion
The steady-state amplitude of motion is depenuent on spin rate, and the

familiar resonance condition for finned bodies occurs when p = w,. from
Equation (21), the magnification factor at this condition is

A
2 2 -l'/z
+ Ma+ﬁg

|
f = —
P, A )\§+(p'w2)2J

(25)

Equation (25) irdicates the sensitivity of the resonance magnification factor
to changes in the nutation damping factor, A,. Therefore. depending on its
magnitude, the term N_ can lead to a significant alteration of the resonance
amplification factor, as seen in Figure 5. These results were also computed using the

parameters in Table 2.

14
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FIGURE 5

Effect of N, On Amplitude of Trim
(Parameters In Table 2)



TABLE 2

AERODYNAMIC COEFFICIENTS, MASS AND FLOW
PARAMETERS USED FOOR NUMERICAL SIMULATIONS

Cy, = -68.32 rad™! Cugq *Cmq = ~1500.0 rad”!
Cp, = -9:19 rad”! Npa = 0
d = 4167 ft S = .13635 ft?
1. = .07 sl-ft? I = 23.01 sI-ft?
V = 2500 ft/sec

X
p = .001756 sl/ft?
m = 2.92 slugs

17



C. Numerical Simulation

Equations (2) were numerically integrated using the parameters in Table 2
and compared to results using Equation (11} for several combinations of spin rate
and N_-In all cases, eveellent agreement between the two solutions was obtained ;
Frgure 6 stows the comparison for one set of conditions which gave a precession
instability. Equations (15) and (16) were found to give good results for the modal
frequencies and damping tactors. respectively,

Fquation (24) indicat~d that [N /M | < .08 was necessary for stability for
the parameters in Table 2 and zero spin rate. Figure 7 shows a precession instability
for N /M | = .10. For N = -.05M_[ the motion is dynamically stable
(Figure ¥).

Figure 4 shows that any non-zero alue of N, causes unequal damping
rates (A's) of the nutation and precession arms. This gives rise to the circular
motion illustruted in Figures 7 and 8 for both stable and uustable cases,
respectively. As mentioned earlier, this type of motion is also characteristic of
cruciform-finned mnsiles at constant roll orientation (implying roll rate equal to the
coning frequency) when acted on by an induced side moment.

The instability associated with an induced side moment - commonly known
as ‘“‘Catastrophic Yaw™ - can occur only for sustained spin rates at or near the
nutation frequency. As shown carlier. however, sufficient magnitudes of N, can lead
to instabilitics for curnved-finned configurations at zero roll rate. It is interesting to
note that a similar type of instability - circular motion with near zero spin — was
observed in flights of tangent-finned rockets.® which have the same symmetry
properties as curved-finned  vehicles. This instability was postulated to have been
caused by a non-lincar damping moment. The static sidle moment derivative, N_
discussed in this report (or its higher order non-linearities) is an alternate
explanation tor these observed miotions.

Figures 9. 10, and 11 show the complex motion at resonance for a zero
spin trim amplitude of 1° and values of N, of 0 and 5% M_. rcspectively. The
amplitude of the steady-state motion is seen to agree well with that predicted by
Equation (21) and shown in Figure 5.

18
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IV. CONCLUSIONS AND FUTURE PLANS

Maple-Synge theory was used to determine the analytical form of the
acrodynamic forces and moments acting on a four-tinned, curved-finned missile. The

resulting

linear equations of motion were solved for constant spin rate and

aerodynamics, and stability criteria were derived. The analysis showed that:

1)

3)

Except for cases of small static margin, the modal frequencies are relatively
insensitive to aerodynamics peculiar to curved fins and can be considered
the same as for cruciform-finned missiles.

The modal damping factors can be seriously affected by the side moment
derivative, N_. It was shown that, for zero Magnus moments, small values
of this parameter can lead to dynamic instabilities. When Magnus
contributions are considered, both the magnitude and sign of N_ arc
important to the dynamic stability characteristics.

The magnitude of the trim amplification factor at spin rates near resonance
is dependent on both magnitude and sign of N, .

Numerical simulations verified these results.

The analysis presented herein will be extended to include the effects of variable
spin rate and aerodynamic non-linearities on the motion of curved-finned missiles.
particularly those associated with the roll characteristics of curved fins. In addition,
six-degree-of-freedom calculations will be performed on typical rocket shapes to
ascertain the effects of curved-finned aerodynamics coupled with variable spin rate
over trajectories typical of present and future Mavy tactical applications.

25
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List of Symbols

Reference Length

External Foree

Gravitational Acceleration

Transverse Moment of Inertia

Axial Moment of Inertia

Amplitude of Angular Motion
Moment component along x
Moment component along y

Mass

External Moment about C. G.
Moment Component along z
Angular velocity component along x
Dynamic pressure = Y%pV?

Angular velocity component along y
Angular velocity component along z
Reference Area

Velocity component along x
Velocity component along y
Velocity of C. G.

Velocity component along z

A-l



Subscripts

— o — o~ — —— —

List of Symbols (Continued)

Aerodynamic force component along x
Longitudinal body axis
Aerodynamic force component along y
Transverse body (aeroballistic) axis
Ac¢rodynamic force component along z
Transverse body (aeroballistic) axis

w
Angle of attack = =

\

- . v

Angle of Sideslip = V
Angular motion damping factor
Atmospheric Density
Frequency of Angular Motion

Angular Velocity about C. G.

Body

Axis System

Component along x

Cuinponent along y

Component along z

Initial or constant valuc

Nutation arm of tricyclic motion
Precession arm of tricyclic motion
Trim arm of tricyclic motion



Superscripts

() Complex Quantity
(;) Vector Quantity
() Tensor Quantity
) d( )/dt
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Aerodynamic Derivatives

Ma = QSdCMa = Static Moment Derivative

Sd?
M e sz CMq = Damping Moment Derivative
_oQsd -
M, = 2_VCM5 = Lag Moment Derivative
» - Q_Sd_zc - ul Pl M, [T s
Mpa = Sv CMpa = n-Plane Magnus” Moment Derivative
*N, = QSdCy, = Static Side Moment Derivative
Sd?
.Nq = Q?'—V-CNq = Dynamic Side Moment Derivative
. = QSd? _ : -
A= WCN & = Lag Side Moment Derivative
N = QSdzC =M M t Derivati
pa = oy CNpa * agnus Moment Derivative
'Y, = QSCy, = Static Side Force Derivative
e, _ QSd_. e -
Yq = 2_VCY g = Dynamic Side Force Derivative
* _ Qsd _ . .
Y, = WCY&; = Lag Side Force Derivative
_ Qsd _ N~
Ypa = 5v Cvpe = Magnus Force Derivative
Zq = QSC,, = Normal Force Derivative
QSd . . -
Zq = —.‘Z—V—(’Zq = Damping Force Derivative

*Indicates Terms Peculiar to Curved Fins
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Aerodynamic Derivatives (Continued)

Sd
ZL = %VCZ& = Lag Force Derivative
* _ Qsd s " T
Z,, = Bl Crpa = In-Plane Magnus” Force Derivative

*Indicates Terms Peculiar to Curved Fins



Maple-Synge Analysis of Four-Finned,
Curved-Finned Missile

The basic wssumption of Maple-Synge theory is that, for constant fluid
properties, the aerodynamic forces and moments can be cxpressed as Taylor Series
expansions in the instantaneous linear and angular velocity coniponents of the body.
Under this assumption, then, the effects of the body's symmetry characteristics on
these expansions can be ascertained.

By virtue of this assumption, the acrodynamic force and moment components
along body-fixed axcs (see Figure B-1) may be written as
X = .’.3Xabcd“u‘v"w‘p“q"rr

Y= EYab‘,d”u‘v"w"pdq’rf

N
!

- 2Zabcdet‘uavb chdqcrf
(B-1)

L= Z?Lwcd“u"vbwcp"q‘rr

M = ZM.bcdet_uavbwcquerf

4
|

" zNabcdefuavhwcpdqerr

where

Z =1L Ny
abcdef

Consider now a new set of body axes, x'y'z’, obtained by a 90° rotation
about x (Figure B-2). For this set of axes, the aerodynamic forces and moments are



NOTE :
x (u,p,X,L) IS
POSITIVE INTO
PAPER

(v,q.Y,M)

z(w,r,Z,N)

FIGURE B-1

Axis System and Vector Components
For Maple — Syngs Analysis
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NOTE :
x(u',p\X\L') 18
POSITIVE INTO
PAPER

(wir'\Z'N)
z

y.( v .l q'v Y.o M')

FIGURE B-2

Rotated Axis System and Vector Components
For Maple — Synge Analysis
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' _ ' ra, v tc.'d te !f
X = ZX peaes¥ 'V Wpiqger

= ' s, 1c.'d te !f
Y z:Yabcdefu vwiprqrr

ZI = EZ;bcder'aV'b w'cpldq'erlf

(B-2)
L' = ZL), g u?vPwepdq'ert
M' = IM], . uvPwepdq'er

N' - ENladeefurav'bwrcp'dqperlf

Since the body possesses 4-fold rotational symmetry, the body remains unchanged
with respect to the two axis systems. Therefore, since the coefficients in the Taylor
series expansions are functions only of the body geometry, they must be the same
for the two systems. Or

x;bgdef = xabc.def
) ) (B-3)

=N

1}
Nabcdef abcdef

If the samec state of motion is considered, tks force and moment system must be
the same for the two axis systems, and

u =u vV = W W = -V

(B4)
p'=p qQ =T r'=-q
X' =X Y =2 Z' =-Y

(B-5)
L'=1L M =N N' = -M

By use of Equations (B-3), (B-4), and (B-5), Equations (B-1) and (B-2) can be
combined:



z:xabcdefuavbchdqefr = Z:("l)Nfxabcdefuavacpdqefr
2:Yabcdefuavbwcpclqcrr = z(")““lZabcdcfuawacpdqu'e

uawbvcpd qfre

z:Zuhcdet‘uavb""cpdqerr z(—”“f\’abcdcf

(B-0)

aybyCad el = _pyetf PP YU O
Zhopeger*VWIPIQTT = ZED T L g WIVIPTATT

abocd el - w1yt aldbrrendifl o
IM, eV Wpietr = Z(-1) Nopeger®w'vepia'r

ayb ,Cnd 400 = el acb.oc.d fe
}:Nabcdefuv wpqr = Z(-1) Mabcdcfuva qr

The second and third of the above equations can be rewritten as

b d.e.f

EYal:»cdefunvbWcpdqcrr = z:(_])lwc+lZacde‘cua"’ wcp qr

auybycnd le = _1yct+f anbocd fe
EZ, pqreVWVPIQT = ZCEDTTY e WOVEPSQT

Since the exponents are the same on both sides of these equations, each term in
the summations must be equal. Therefore,

= b+c+1
Yabcdel‘ =D Zacbdfe
(B-7)
- +
Zacbdfe = (-1 Yabcdef
and the above equations can be satisfied for non-zero coefficients only if
b+tc+e+f=2n+1 (n=0,12,°*) (B-8)

Therefore, the 4-fold rotational symmetry of the body requires that the force
coefficients along the two transverse axes be related by Equation (B-7) and that the
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exponents of the cxpansions satisfy Equation (B-8). When the same procedure is
apphed  to the last two of Equations (B-6), a similar result is obtained for the
transverse moments. For a 4-fold rotationally symmetric body, then

= (_t)bte+l
Yabcdcf -D Zacbdcf

Nybeder = l)c”Mabcdef (B-9)

M =0 for b+cte+f =2n (n=0,12,"°)

Zabcdcf = abedef

Since curved finned missiles possess no other symmetry characteristics (viz.
mirror symmetry), Equations (B-9) contain all restrictions to the aerodynamics duc
to body symmetry. Using these equations the linear force and moment expansions
can be written as

Y+iZ = (Z, - iY, + PZ,, - Y, )&+ (Y, +iZ)@
(B-10)
M+iN = [-iM, + N, +p(N, - M )a+ (M, +iN )@



