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FOREWORD 

This report constitutes the first phase of a study to define the flight 
performance and stability characteristics of air-launched, curved-finned rockets. This 
work was performed under AIRTASK A3203200/009B/3F32-323-201. 

This report was reviewed by Dr. T. A. Clare, Head, Flight Dynamics Group and 
R. D. Cuddy, Head, Aeroballistics Division. 

Released by: 

RALPH A. NIEMANN 
Head, Warfare Analysis Department 
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ABSTRACT 

Mapie-Synge theory is used to establish the analytical form of the aerodynamic 
forces and moments acting on a four-finned, curved-finned vehicle. The linearized 
equations of motion are solved, and the effects of the curved-finned aerodynamics 
on the stability of motion are investigated. It is shown that small and moderate 
values of yawing moment due tö angle-of-attack, characteristic of curved-finned 
configurations, can have significant effects on both transient and steady-state 
stability. 
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I.     INTRODUCTION 

The use of curved fins as missile stabilizers has increased significantly in recent 
years. This is due in large part to the inherent suitability of such configurations for 
tube-launched ordnance (minimal volume used for fin storage). Curved-finned missiles, 
due to their "non-mirror symmetry" properties, can have aerodynamic characteristics 
considerably different from the familiar cruciform-finned configurations. This is 
evidenced by the "zero fin cant" roll moment produced by curved fins; this has 
been extensively studied1 •2'3 and found to be strongly dependent on Mach number 
and angle-of-attack, as well as on fin geometry. 

The Naval Weapons Laboratory is conducting a program to define the flight 
performance characteristics of curved-finned vehicles for present and future flight 
conditions characteristic of air-launched, tactical rockets. It is the purpose of this 
report to document the initial phase of this effort: examination of the effects of 
the non-mirror symmetry of curved fins on the linear pitching and yawing motion 
of finned missiles. Theoretical expressions for the linear aerodynamic force and 
moment systems for a curved-finned body are presented, and the equations of 
motion with these aerodynamics are solved. The effects of the non-mirror symmetry 
terms on the stability of motion are investigated, and it is shown that small values 
of the yawing moment due to angle-of-attack can lead to reduced dynamic stability 
or dynamic instability. Numerical verification of these results is presented. 



II.    ANALYSIS 

A.    General Equations of Motion 

This analysis is concerned with the transverse angular motion of rolling 
four-finned, curved-finned missiles. A sketch of a typical curved-finned rocket 
configuration is shown in Figure 1. For such a configuration, it is convenient to 
write the equations of motion in an aeroballistic axi? system4 which pitches and 
yaws with the body but does not roll (Figure 2). For this axis system, the 
equations of motion may be written as 

F = mV + ns X V 

M = I«nB+ns X (!•«„) 

(I) 

where 

V = n. = 

F = M = 

Taking the transverse components of Equations (I) and neglecting gravity gives 
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By defining the complex quantities 5 and u as 

Equations (2) can be written as 

5- iw = (Y + iZ)/mV 

C- iPC = (M riN)/l 

(2) 

v + iw       _ 
S =  —-— ;    w ■ q + ir (3) 

(41 

where 

P = plx/l 

and it is assumed that ti % V (implying small angles of attack and sideslip). 

B.    Solution for Linear Aerodynamics 

Equations (4) can be solved analytically only if the aerodynamic forces 
and moments can be expressed as functions of the variables 5 and 05. The solutions 
to these equations have been extensively studied for aerodynamics typical of 
non-finned and cruciform-finned missiles.4-5 The non-mirror symmetry of curvcil tins. 



however, allows additional terms to be included in the aerodynamic expressions. It is 
primarily the effect of these terms on the solution to Equations (4) which will be 
investigated in this report. 

Maple and Synge6 have presented a method for determining the effects of 
body symmetry on the functional relationships between the aerodynamic forces and 
moments and the state of motion of the body. Appendix B presents a summary of 
the application of Maple-Synge theory to a four-tinned, curved-finned body. The 
resulting linearized equations for the aerodynamics are 

Y + IZ = {V0 + iZ0**'< + [*. - iYa +p(Zpa - iYpa)]5 
(5) 

+ (Yq-Zq)ÜJ + (Z(i + iY.)ä 

M + IN = (M0 + iN0)eiP' + [-iMa + Na + p(Npa - iMpa)]« 
(6) 

+ (Mq+iNq)u + (-iM<i+N<i)ä 

The ä derivatives, which are not accounted for by classical Maple-Synge Theory, 
have been included in the above equations. In addition, constant, body-fixed forces 
(Y0. Z0) and moments (M0. N0) have been included to account for small 
asymmetries or control deflections. Table 1 presents a summary of the linearized 
icrodynamic derivatives for missiles with and without mirror symmetry. 

Referring to Table 1. it is seen that the non-mirror symmetry of curved 
fins allows aerodynamic cross-coupling terms (Na, N , N^. etc.) as well as "in-plane 
Magnus" derivatives (Z , M ». The yawing moment due to angle-of-attuck for 
curved-finned configurations. N0|, is very similar to the "induced side moment"5 •R 

for cruciform-finned missiles. The primary difference is that Na is (for linear theory) 
independent of roll orientation (orientation of the fins to the angle-of-attack plane), 
while the induced side moment is a non-linear effect highly dependent on roll 
orientation. As will be seen later, however, the effect of N on the motion is 
similar to that due to an induced side moment at constant roll orientation. 

In general, the dynamic and lag force terms in Equations (5) will have 
little effect on the motion. Neglecting these terms and also neglecting the 
asymmetry forces (Y0. Z0), Equations (4). (5), and (6) become 
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5-iöj = (z;-iY;)5 (?) 

SJ- iPSJ = (M0 + iN^e'P« + [-iAa + Na + p(Apa - iApa)]ä 

+ (Mq+iNq)ü; + (-iMa+Na)5 

where 

( )' = ( )/mV ; (A) = ( )/I 

(8) 

Equations (7) and (8) ca;. be combined to yield 

ff+Ca^ia^S + C^+ibj)ä = i{M0 + iNo)^?' (9) 

where 

A A - (,0) 

b, =-Ma-pMpa+PY; 

b: = -N  -pN+PZ' l a      '    pot a 

and where the force derivatives in Equation (7) were considered constant (implying 
constant Mach number and dynamic pressure). In addition, products of stability 
derivatives were neglected in Equations (10). For constant coefficients, Equation (9) 
can be solved directly to give 

5 = K,^"' +K2e
iuj't +K3eiP, (II) 

Ki.2 = K.^M« 

jF   =     ,      j^Ltigüj     ^ (12) 
3 „2 p2 +p(ar+ 13^ + ^ + 1^ 



X, 2 + ico, 2 = Vi -ar - ia, ±    ^ar
2 - if - 4br + i(2arai - 4^)] 

Therefore, it is seen that the solution to the linear equations of motion 
for the curved-finned vehicle takes the form of the familiar tricyclic solution for 
cruciform fins, with the modal frequencies, (Cü, 2) damping rates (X, j) and steady 
state solution (K^) modified due to the curved-finned aerodynamic terms. 

C.     Effects of Curved Fins on Stability 

Equation (II), alung with Equations (10) and (12), describes the transverse 
angular motion for a curved-finned body with arbitrary aerodynamics. Of primary 
interest, however, are the effects of curved-finned aerodynamics on both the stability 
of transient motion and the steady-state amplitude of motion due to asymmetries. 
In order to investigate these effects, it is advantageous to simplify several of the 
above equations. 

The transient stability characteristics are determined by the modal 
frequencies and damping rates given by the last of Equations (12). This can be 
rewritten as 

X, 2 + ico, 2  = 1/2 [-ar - iaj ± ^£2 + F2J (13) 

where 

E2 = i2(4br+a1
2- a2) 

F2 = i(2arai- 4^) 

The radical in Equation (I3> can be expanded in a binomial series as 

F4 1  y i       jvt 
VE2 + F2  = E + r T • • • (14) 

2E     8E3 

Then, using Equations (10) and (14) and neglecting second and higher 
order terms in the stability derivatives, the frequencies and damping factors may be 
written as 



± Jp2 + 2FfN   +Ä.+Y' -  -A   )-4ti] ' \  q a a       |        pay aj 

(15) 

5i[(ftq+Md)(I±r) + Z;(I?r)] ± ^ 

(16) 

Na 

[i"^p(fi,+fi-v:-^P>)-4öJs 

where 

r = v^ 
(17) 

P2 + 2P(N   + N- - Y; ) 

4Ma+4F(^Pa-Y;) 

The steady-state, or trim, angle of attack is given by the second of 
Equations (12) and is seen to be a function of spin rate. It is convenient to write 
the trim angle as5 

=   K^Ai  (l8) 
(i(p- w,)- X, ]|i(p- a;,)- X,) 

The effects of spin rate on the steady-state trim angle can be investigated 
by introducing the trim amplification factor, f, defined as 

f=   -J^- (19) 

The zero-spin trim angle is 

_ =   -i(M0+iN0) 
3P=" M+iS a a 

10 



' 

Therefore, by using Equations (18) and (20), the trim amplil'ication factor is 

|((p-(*;,)(?-w1)l: MX, X2)
2+^(p-w2)

2+X5(p-w, )2j 

The transient and steady-state stability characteristics of curved-finned 
bodies may thij be investigated by the use of Equations (15), (16), and (21). These 
characteristics will be quantitatively discussed in the following section. 

II 



III.   DISCUSSION OF RESULTS 

A.    Transient Stability 

Tho requirement for static stability is 

P2 + 2P(fi   +N-+Y' -   — Mn   )-4M    >0 (22) 1 a a        i pa a \ •—» 

Hquation (i 6) indicates ihe possibility of" static instabilities occuring in curved-finned 
missiles with a negative restoring moment (e.g.. MQ < 0). The static stability 
requtrenetit is shown graphically in Figure 3, where 

P 

A = 

I  A A A I     A 

From the figuR, it is seen that gyroscopic instabilities arc not possible for 
magnitudes of p or A less than I. For most finned rockets, the static margin is 
large (Ma < 0) and lx/l < I. Thus the magnitude of p will usually be much less 
than I. Furthermore, although the magnitudes of the curved-finned aerodynamic 
derivatives are not generally known at this ♦ime, it is expected that they will be 
small compared to the restoring moment. The magnitude of A should therefore also 
be much less than 1. Hxcept for cases of small static margin, then, the 
curved-finned effects un Ihe gyroscopic stability should be small. 

In light of the above discussion, the curved-finned terms in the 
denominator of the last term of Equation (16) will be neglected, so that 

X, ,  = Vi [(foq + M. )(l ± T) + Z;( I + T)] ± 
x 

(23) 

IF - 4fo   I* 
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Th« requirements for dynamic stability are 

xI(2 <0 

For typical  spin  rates of finned bodies, T can  bo neglected with respect to I, and 
the requirement for dynamic stability becomes 

A 
N. 

1     H   Ml    f   -^*- <   - (M, +M„ +Z',) q a u (24) 

Using the set of parameters shown in Table 2, which are typical of 
air-launched rocket configurations (with NP(> taken ;.; zero for convenience), the 
magnitude of Na required to introduce dynamic instability (assuming zero spin rate) 
was computed and found to be approximately 89? Ma. The variation of the damping 
factors with Na   for tnese data are shown in Figure 4. 

Spin rates up to 3C0 rad/sec were also investigated, but were found to 
have little effect on the damping factors or the magnitude of Na leading to 
instability. For non-zero Magnus (Npa), however, the damping factors and critical 
magnitude of NQ  could vary significantly with spin rate. 

B.    Steady-State Motion 

The steady-state amplitude of motio" is depencient on spin rate, and the 
familiar resonance condition for finned bodies occurs when p = w, ^ from 
Equation (21), the magnification factor at this condition is 

Mü + fi: 
\? +(p- w2)

2 (25) 

Equation (25) indicates the sensitivity of the resonance magnification factor 
to changes in the nutation damping factor, X,. Therefore, depending on its 
magnitude, the term Na can lead to a significant alteration of the resonance 
amplification factor, as seen in Figure 5. These results were also computed using the 
parameters in Table 2. 

14 
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TABLE 2 

AERODYNAMIC COEFFICIENTS, MASS AND FLOW 
PARAMETERS USED FOR NUMERICAL SIMULATIONS 

CM     = -68.32 rad'1 CMq +CMa = "1500.0 rad ' 
C2a  = -Q.19 rad-' CNpa = 0 

d =  .4167 ft S = .13635 ft2 

lx   = .07 si-ft2 I = 23.01 si-ft2 

p = .001756 sl/ft3 V = 2500 ft/sec 
m = 2.92 slugs 

17 



C.    Numerical Simulation 

Kquatiom (2) were numerically integnti-d using the parameters in Table 2 
and compared lo results using Hquation (II) for several combinations of" spin rate 
and N In all cases, excellent agreement between the two solutions was obtained; 
Figure 6 shows the comparison tor one set of conditions which gave a precession 
instability. Iqua'ions (15) and (16) were found to give good results for the modal 
frequencies and damping tactors, respectively. 

Equation {14) indicated that IN /Ml < .08 was necessary for stability for 
the parameters in Table 2 and zero spin rale. Figure 7 shows a precession instability 
for N /|M I = .10. For N = -.05IM I. the motion is dynamically stable 
(Figure 8). 

Figure 4 siio^vs that any non-zero alue of NQ causes unequal damping 
rates (X's) of the nutation and precession arms. This gives rise to the circular 
motion illustrated in Figures 7 and 8 for both stable and in.stable cases, 
respectively. As mentioned earlier, this type of motion is also characteristic of 
cruciform-finned missiles at constant roll orientation (implying roll rate equal to the 
coning frequency) when acted on by an induced side moment. 

The instability associated with an induced side moment - commonly known 
as "Catastrophic Yaw" - can occur only for sustained spin rates at or near the 
nutation frequency. As shown earlier, however, sufficient magnitudes of Na can lead 
to instabilities for curved-finned configurations at zero roll rate. It is interesting to 
note that a similar type of instability circular motion with near zero spin - was 
observed in flights of tangent-finned rocke's,9 which have the same symmetry 
properties as curved-finned vehicles. This instability was postulated to have been 
caused by a non-linear damping moment. The statrc side moment derivative, Na 

discussed in this report (or its higher order non-linearities) is an alternate 
explanation for these observed motions. 

Figures l). It), and 11 show the complex motion at resonance fjr a zero 
spin trim amplitude of 1° and values of N of 0 and ±5T M , respectively. The 
amplitude of the steady-state motion is seen to agree well with that predicted by 
Equation (21) and shown in  Figure 5. 
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IV.   CONCLUSIONS AND FUTURE PLANS 

Maple-Syngc theory was used to determine the analytical form of the 
aerodynamic forces and moments acting on a four-finned, curved-finned missile. The 
resulting linear equations of motion were solved for constant spin raU- ami 
aerodynamics, and stability criteria were derived. The analysis showed that; 

1) Except for cases of small static margin, the modal frequencies are relatively 
insensitive to aerodynamics peculiar to curved fins and can be considered 
the same as for cruciform-finned missiles. 

2) The modal damping factors can be seriously affected by the side moment 
derivative, Na. It was shown that, for zero Magnus moments, small values 
of this parameter can lead to dynamic instabilities. When Magnus 
contributions are considered, both the magnitude and sign of Na are 
important to the dynamic stability characteristics. 

3) The magnitude of the trim amplification factor at spin rates near resonance 
is dependent on both magnitude and sign of N . 

Numerical simulations verified these results. 

The analysis presented herein will be extended to include the effects of variable 
spin rate and aerodynamic non-linearities on the motion of curved-finned missiles, 
particularly those associated with the roll characteristics of curved fins. In addition, 
six-degree-of-freedom calculations will be performed on typical rocket shapes to 
ascertain the effects of curved-finned aerodynamics coupled with variable spin rate 
over trajectories typical of present and future Navy tactical applications. 

25 
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List of Symbols 

d Reference Length 

F External Force 

g Gravitational Acceleration 

I Transverse Moment of Inertia 

lx Axial Moment of Inertia 

K Amplitude of Angular Motion 

L Moment component along x 

M Moment component along y 

m Mass 

M External Moment about C. G. 

N Moment Component along z 

p Angular velocity component along x 

Q Dynamic pressure = VipV2 

q Angular velocity component along y 

r Angular velocity component along z 

S Reference Area 

u Velocity component along x 

v Velocity component along y 

V Velocity of C. G. 

w Velocity component along z 

A-l 



List of Symbols (Continued) 

X Aerodynamic force component along x 

x Longitudinal body axis 

Y Aerodynamic force component along y 

y Transverse body (aeroballistic) axis 

Z Aerodynamic force component along z 

z Transverse body (aeroballistic) axis 

w 
a Angle of attack = — 

v 
ß Angle of Sideslip = — 

X Angular motion damping factor 

p Atmospheric Density 

a) Frequency of Angular Motion 

SI Angular Velocity about C. G. 

Subscripts 

B Body 
u Axis System 

Component along x 
Component along y 
Component along z 
Initial or constant vftlue 
Nutation arm of tricyclic motion 
Precession arm of tricyclic motion 
Trim arm of tricyclic motion 



Superscripts 

(  ) Complex Quantity 
C) Vector 
(  ) Tensor 
() d( )/dt 

(  ) Vector Quantity 
(  ) Tensor Quantity 
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Aerodynamic Derivatives 

Ma  = QSdCMa = Static Moment Derivative 

QSd2 

M„  =   ———Cw„  = Damping Moment Derivative q 2V        ^ to 

QSd2 

M^  = ^MQ 
= ^ Moment Derivative 

* QSd2 

^pa =     -iv   ^Mpa = **In"P'ane Magnus" Moment Derivative 

*N<y  = QSdrNa = Static Side Moment Derivative 

♦ QSd2 

Nn =     — ■  CM „  = Dynamic Side Moment Derivative 
1 2V       ° 

* QSd2 

ö  =     IM  ^Nä = ^a8 ^'^e foment Derivative 

QSd2 

^PQ  
= CN      = Magnus Moment Derivative 

*Ya  = QSCYa = Static Side Force Derivative 

* QSd 
Yn  

=   "rrrCv„  = Dynamic Side Force Derivative 
" 2V       ' 

QSd 
2V  '^ 

Y-   =   —rrCv.   = Lag Side Force Derivative 
<* IV «ZV 

QSd 
Y„    =   —rCv»    = Magnus Force Derivative 

pa 2V      YPa 

Zn = QSC7/v = Normal Force Derivative 

QSd 
Z„  =    C'      = Damping Force Derivative 

H        2V      ^ 

•Indicates Tcrmj Peculiar to Curved Fins 
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Aerodynamic Derivatives (Continued) 

QSd 

2V Z^ =  -T7rcza = Lag Force Derivative 

*Z     =   ~—C,      =    "In-Plane Magnus" Force Derivative 
po 2V    Zpa 

'indicates Temu Peculiar to Curved Fins 
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Mapk-Synge Analysis of Four-Finned, 
Curved-Finned Missile 

The   basic   assumption   of   Maple-Syngc   theory    is    that,   for   constant   fluid 
properties,  the  aerodynamic   forces and moments can be expressed as Taylor Series 
expansions in the instantaneous linear and angular velocity components of the body 
Under  this  assumption,  then,  the effects of the body's symmetry characteristics on 
these expansions can be ascertained. 

By  virtue  of this assumption, the aerodynamic force  and  moment components 
along body-fixed axes (see Figure B-l) may be written as 

X = 2:Xabcdefu«vbwcp'Vrf 

Y = 2:Yabl.dcfu«vbwVqerf 

Z = 2:Zibedefu»vbwVqV 
(B-l) 

L = 2:Labcdefu
avbwcpVrf 

M = 2Mabcdefu»vbwcpVrf 

N = ^N^^^u-v^^p-qV 

where 

is     2 
abedef 

Consider now a  new set of body axes, x'yV, obtained by a 90° rotation 
about x (Figure B-2). For this set of axes, the aerodynamic forces and moments are 

B-l 



NOTE 
x(u,p.X.L) IS 

POSITIVE INTO 
PAPER 

2(wfr,Z.N) 

FIGURE B-1 

Axis System and Vector Components 
For Maple-Synge Analysis 
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NOTE 
x'C U'.P'XL* )   IS 

POSITIVE    INTO 
PAPER 

(w'.r'Z'.N') 

yV.q'.Y'.M') 

FIGURE B-2 

Rotated Axis System end Vector Components 
For Maple-Synge Analysis 
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x' = 2:x;bedefuVVVVr" 

Y' = 2;Y;bcdefuVbwWr'f 

Z' = 2Z;bcdefu'»v"'w"=p"«q'«r'f 

(B-2) 

M' = SM;bcdefu'VbwVVr'f 

N' = 2N'abcdefu'»v"'w'Cp"'q^r'f 

Since the body possesses 4-fold rotational symmetry, the body remains unchanged 
with respect to the two axis systems. Therefore, since the coefficients in the Taylor 
series expansions are functions only of the body geometry, they must be the same 
for the two systems. Or 

Aabcdef        Aabcdef 

;      ! (B-3) 

^abedef  =  ^abedef 

If the same state of motion  is considered, th2 force and moment  system  must be 
the same for the two axis systems, and 

u' = u v' = w w' = -v 

p' = p q' = r r' = -q 
(B4) 

X' = X Y' = Z Z' = -Y 
(B-5) 

L' = L M' = N N' = -M 

By   use   of  Equations  (B-3),   (B-4),   and  (B-5),  Equations (B-I)  and  (B-2)   can  be 
combined: 
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(B-()) 

^abcdef^^PV^   =  2:(-l)C + ,XabcdefUaWbVcpdqerf 

2Yabcdefu
avbwtpdqcr,  = S(-)c+f+,Zabcdcfu^bv'-pdqfre 

2:ZabcdefuavbwCPdqe'-'  = 2(-l)c+,Yabc.dcl.uawVpdqfre 

^kbcdef^v'^P^^'  = 2(-l)t + 1Labi;defu
awbvtpdqfre 

2Mab£<lefu
avbwcpdqerf = I(-ITr+1Nabcdet.u

a
wVpdqfre 

£NabcdefUavbwCPd(^C^,   =   £(-l)e+lMabcdel"
aWbVtpdq,r'; 

The second and thinl of the above equations can be rewritten as 

2Y
abcdefuavbwCPVrl = 2(-l)b+c+1Zacbd(.cu

avbwtpdqcrf 

2Zacbdfeu
awbvcpdq,r': = 2(-l)t+fYabcdefu

awbvcpdq,re 

Since   the  exponents are   the same on  both sides of these equations, each  term in 
the summations must be equal. Therefore, 

Y = (- nb*c+lZ 'abcdel        l    " Scbdfc 

(B-7) 

^acbdfe        l    "       'abcdef 

and the above equations can be satisfied for non-zero coefficients only if 

b + c + e + f=2n+l      (n = 0,1,2,-") (B-8) 

Therefore,  the  4-fold rotational symmetry of the body requires that  the force 
coefficients along the two transverse axes be related by Equation (B-7) and that the 
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(A;)onents of the expansions satisfy Equation (B-8). When the same procedure is 
applied to the last two of Equations (B-6), a similar result is obtained for the 
transverse moments. For a 4-fold rotationally symmetric body, then 

Y = (- nb + e+l 7 
a b c d e f        v      ' a c b d c f 

Nabcdef   =   ^ l)C + fMabcdef (B-9) 

zahcdct = Mabcdet = 0  for   b + c + e+f = 2n     (n = 0,1,2,—) 

Since   curved   finned   missiles  possess   no other   symmetry   characteristics   (viz. 
irror   symmetry),   Equations (B-9)  contain   all restrictions to the aerodynamics due 

to  body   symmetry.   Using these equations the linear force and moment expansions 
cun be written as 

in 

Y + iZ = [Za - iYtt + p(Zpa - iYpa)15 + (Yq +iZq)ä; 

M + iN = l-iMa+Na+p(N     -iM    )la + (M   +iN )äJ 
(B-10) 
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