AD-771 067

DETONATION TUBE CONDITIONS FOR SIMU-LATING: RP-1/LOX AND VARIOUS AMINE/ N₂O₄ ROCKET ENGINE PLUMES

J. Leng, et al

Grumman Aerospace Corporation

Prepared for:

Defense Advanced Research Projects Agency

November 1973

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

Security Classification	AD 711 067
DOCL	UMENT CONTROL DATA - R & D
(Security classification of title, body of abstra	act and indexing annotation must be entered when the overall report is classified)
(Corporate author)	Imalessification
Grumman Aerospace Corporation	2b. GROUP
	N/A
EPC-T TITLE	the conditions for Similating RP-1/LOX and
Verious Ar	n tube conditions for similating M-1/ Low and
Validus At	
DESCRIPTIVE NOTES (Type of report and inclusive	detee)
Research Memorandum	
AUTHOR(5) (First name, middle initial, last name)	
J. Leng and M. W. Slack	
EPORT DATE	76. TOTAL NO. OF PAGES 75. NO. OF REFS
November 1973	20 7
CONTRACT DE GRANT NO.	SE, ORIGINATOR'S REPORT NUMBER(S)
PROJECT NO.	RM 581
N/A	
	9b. OTHER REPORT NO(5) (Any other numbers that may be assigne this report)
•	None
DISTRIBUTION STATEMENT	
ABSTRACT	6/
This menoration decomposts	the running conditions necessary to similate
RP-1/LOX and various Amine/N	0, rocket engine plumes using the Grumman
Detonation Tube Facility to F	eproduce the chemical and thermodynamic state
properties of the rocket engine	ne combustion chamber. Absolute measurements
of shortwave infrared (SWIR)	a Defense Advanced Research Projects Agency (DARPA)
The propellant combinations b	being investigated are UDMH/N_OL, A-50/N_OL,
$RF-1/LOX$, and H_0/O_0	24 27
ΣĘ	5 m
	Dependenced by:
4	NEORMATION SERVICE
n I	
	U S Department of Commerce Springfield VA 22151
D FORM 1473	U 5 Department of Commerce Springfield VA 22151
D. FORM.,1473	US Department of Commerce Springfield VA 22151 Unclassified Security Classification
D FORM 1473	US Department of Commerce Springfield VA 22151 unclassified Security Classification

Grumman Research Department Memorandum RM-581

黄菜

DETONATION TUBE CONDITIONS FOR SIMULATING RP-1/LOX AND VARIOUS $AMINE/N_2O_4$ ROCKET ENGINE PLUMES[†]

by

J. Leng

Fluid Dynamics

and

M. W. Slack

Aerophysics

November 1973

DDC DEC²⁷ 1973 DEC²⁷ 1973 E

[†]This investigation was partially supported by the Defense Advanced Research Project Agency under Contract No. DAAHO#72-C-0728, "Measurement of IR and VUV Radiation Emitted by Simulated Rocket Exhaust Plumes"

Vite The state of the in participation (Approved by: Charle E

Charles E. Mack, Jr. Director of Research

ia

ABSTRACT

- 1

This memorandum documents the running conditions necessary to simulate RP-1/LOX and various Amine/N₂O₄ rocket engine plumes using the Grumman Detonation Tube Facility to reproduce the chemical and thermodynamic state properties of the rocket engine combustion chamber. Absolute measurements of shortwave infrared (SWIR) radiation from a variety of plumes are being obtained under contract to the Defense Advanced Research Projects Agency (DARPA). The propellant combinations being investigated are UDMH/N₂O₄, A-50/N₂O₄, RP-1/LOX, and H₂/O₂.

ii

TABLE OF CONTENTS

*****:

T

Ţ

T

Ţ

J

I

ľ

ľ

ľ

ľ

ľ

l

Item	Page
Introduction	1
Detonation Tube Test Conditions	2
Discussion	3
References	5

LIST OF TABLES

. .

. .

.

. .

-

. .

. .

-

.

ų

. .

. .

. .

Table		Page
1	Theoretical Equilibrium Chemical and State Combustion Chamber Properties for Several Propellant Combinations	6
2	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an RP-1/LOX Rocket Engine Plume at O/F = 2.70	7
3	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating a UDMH/N ₂ O ₄ Rocket Engine Plume at O/F = 2.70	8
4	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating a UDMH/N ₂ O ₄ Rocket Engine Plume at O/F = 2.35	10
5	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating a UDMH/N ₂ O ₄ Rocket Engine Plume at O/F = 2.00	12
6	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an $A-50/N_2O_4$ Rocket Engine Plume at $O/F = 2.30$	14
7	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an A-50/N ₂ O ₄ Rocket Engine Plume at $O/F = 2.00 \dots$	15
8	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an $A-50/N_2O_4$ Rocket Engine Plume at $O/F = 2.00$ and Chamber Pressure = 1000. psia	16
9	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an A-50/N ₂ O ₄ Rocket Engine Plume at $O/F = 1.70$	17
10	Comparison of Equilibrium Exit Plane Properties ($A_e/A_* = 40$.) between Ideal Engine and Ideal Detonation Tube for Slightly Imperfect Simulation of A-50/N ₂ O ₄ Mixtures	19

LIST OF SYMBOLS

a	speed	of	sound

A area

T

1

I

T

I

I

I

I

H enthalpy

LM NASA/Grumman Lunar Module

mw molecular weight

M Mach number

O/F oxidizer to fuel weight ratio

psia pounds per square inch absolute

P pressure

T temperature

U velocity

γ ratio of specific heats

ρ density

Subscripts

1	undetonated gas in driven tube
2	driven tube gas behind incident detonation wave after reaction is completed
5	stagnation conditions behind reflected detonation wave
с	rocket engine simulated chamber condition (usually = shock tube region 5)
Ŀ	refers to detonation wave
e	nozzle exit plane
R	refers to reflected shock wave
*	sonic condition

ν

Propellant Terminology

A-50 50% blend by weight of hydrazine and UL	50	50% blend	by weight	of hydrazine	and UDM
--	----	-----------	-----------	--------------	---------

- LOX liquid oxygen
- RP-1 kerosene-type rocket fuel
- UDMH unsymmetrical dimethyl hydrazine

INTRODUCTION

The Rocket Plume Simulation Facility of the Grumman Research Department employs a detonation tube to reproduce the chemical and state properties of a rocket combustion chamber (Ref. 1). High temperature, high pressure species generated in this manner expand through contoured nozzles into a large chamber, evacuated to simulate a specific altitude. The facility was originally used to simulate the Grumman Lunar Module ascent, descent, and RCS engine plumes (Refs. 1-3), and then for a NASA Space Shuttle proposal investigation (Ref. 4) and a NASA-funded simulation of high pressure hydrogen/oxygen rocket engine plumes (Ref. 5).

Absolute measurements of SWIR radiation (2 to 5 microns) from a variety of plumes are currently being conducted in the Rocket Plume Simulation Facility, under contract to the Defense Advanced Research Projects Agency (Ref. 6). The propellant combinations under investigation include UDMH/N₂O₄, A-50/N₂O₄, RP-1/LOX, and H_2/O_2 . Only A-50/N₂O₄ (0/F = 2.0) and H_2/O_2 plumes had previously been simulated, and therefore computations of the detonation tube conditions for the other propellant combinations were required.

This memorandum documents the detonation tube running conditions necessary to simulate an RP-1/LOX plume and various $Amine/N_2O_4$ plumes. Note that the detonation tube technique simulates a somewhat ideal combustion chamber since it is devoid of O/F gradients resulting from imperfect mixing or film cooling.

DETONATION TUBE TEST CONDITIONS

Actual rocket engine combustion chamber properties for the RP-1/LOX and $Amine/N_2O_4$ propellant combinations that we simulated are listed in Table 1. The corresponding detonation tube test conditions were computed, following the procedure given in Ref. 1, and are presented in Tables 2 through 9. The computer program of Ref. 7 was used for all these calculations. For several of the propellant combinations, two different initial gas mixtures were determined, both of which would produce the same required combustion chamber properties (compare Tables 3a and 3b, 4a and 4b, 5a and 5b, and 9a and 9b). In all cases except one (Table 8) the chamber pressures to be simulated were chosen to be 200. psia.

DISCUSSION

The theoretical accuracy of the simulated combustion chamber properties can be assessed by comparing Table 1 with Tables 2 through 9. Exact simulation was achieved for the RP-1/LOX and $UDMH/N_2O_4$ propellant combinations and also for A-50/N_2O_4 at an O/F ratio of 1.7.

For O/F ratios of 2.0 and 2.3, however, the $A-50/N_2O_4$ simulation (Tables 6 through 8) was imperfect because of thermodynamic constraints (Ref. 1). This resulted in theoretical temperatures between 2 and 5 percent higher than the actual engine theoretical combustion chamber temperatures and also in minor perturbation in the gaseous species concentrations. The nonidealities will be transmitted to the exit plane of a test nozzle, and we therefore compared the equilibrium exit plane properties produced by an engine with those produced by the detonation tube. The results of this comparison are presented in Table 10 and show that the differences in the mole fractions of the major chemical species (H_2O, CO_2, N_2) are negligible and the equilibrium exit plane static temperatures agree to within 5 percent or better. The close agreement between equilibrium static temperature for an ideal engine and the detonation tube simulation is shown in Fig. 1 where both temperatures are displayed against nozzle area ratio for the case of $A-50/N_2O_4$ at an O/F = 2.0. For the three cases where simulation was imperfect, the difference from the ideal rocket combustion chamber can either be neglected or corrected for in the reduction of experimental data. Alternatively, these three cases may be treated as unique, independent combustion chamber conditions in an investigation to determine the dependence of plume observables upon temperature, species concentration, etc.

3

I

In summary, the combustion chamber conditions for RP-1/LOX and a variety of $Amine/N_2O_4$ propellant combinations may be simulated with the detonation tube. The simulation is either precise or sufficiently close to the actual rocket combustion chamber conditions for the differences to be negligible or easily corrected for.

REFERENCES

- Leng, J., Oman, R., and Hopkins, H., "A Detonation Tube Technique for Simulating Rocket Plumes in a Space Environment," Grumman Research Department Report RE-286J, May 1967; also published in Journal of Spacecraft and Rockets, Vol. 5, No. 10, pp. 1148-1154, October 1968.
- Leng, J., "Detonation Tube Conditions for Simulating the LM Ascent Engine Plume and the N.A.A. Service Module RCS Engine Plumes," Grumman Research Department Note RN-234, July 1967.
- Leng, J., "Detonation Tube Conditions for Simulating a 1/20 Scale LM Descent Engine Plume at Full, 1/2, 1/4, and 1/10 Throttle," Grumman Research Department Note RN-243, March 1968.
- Leng, J., Osonitsch, C., and Konopka, W., "Experimental Study of Plume Impingement Heating from Orbiter Main Engines," Grumman Alternate Space Shuttle Concepts Study Report 552-1200RD-31, May 1971.
- 5. Hopkins, H., Konopka, W., Leng, J., and Oman, R., "Simulation Experiments Using Hydrogen/Oxygen Gas Mixtures in a High-Pressure Detonation Tube," Grumman Research Department Report RE-456, May 1973; also published as NASA-MSC-05836.
- "Measurement of Infrared Radiation Emitted by Simulated Rocket Exhaust Plumes," Defense Advanced Research Project Agency, Contract No. DAAHO-72-C-0728.
- Gordon, S. and McBride, B., "Computer Program for the Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA SP-273, Lewis Research Center, Cleveland, Ohio, 1971.

COMBUSTION CHAMBER PROPERTIES FOR SEVERAL PROPELLANT COMBINATIONS THEORETICAL EQUILIBRIUM CHEMICAL AND STATE TABLE 1

0.32848 0.02729 0.00419 0.09118 0.36419 0.00540 0.02269 0.00001 0.00327 0.03877 0.00001 0.11451 0.00001 0.00001 +76.9 5679. 1.1439 21.090 1.7 200. 0.00449 0.01140 0.01308 0.06254 0.39789 0.33788 0.03623 0.06896 0.05620 0.00002 0.00003 0.00001 0.01122 0.00001 1.1428 22.570 +64.1 6064. 1000 2.0 A-50/N204 0.04242 0.01595 0.37689 0.06983 0.01115 0.33288 0.00736 0.05139 0.02012 0.00002 0.00001 0.07194 0.00001 0.00001 1.1331 22.239 +64.1 5764. 2.0 200. 0.01648 0.04475 0.37475 0.05043 0.05530 0.06146 0.01556 0.00003 0.33505 0.01057 0.03556 0.00001 0.00001 +53.7 5740. 1.1308 23.159 2.3 200. Propellants Mole Fractions (all gaseous) 0.26919 0.01804 0.00147 26020.0 0.02363 0.30193 0.00280 0.18367 0.00003 0.00177 0.14651 +36.8 5627. 1.1569 21.154 2.0 200. t UDMH/N204 0.27885 0.00836 0.07119 0.09106 0.32472 0.00763 0.00584 0.15181 0.02496 0.00002 0.03551 0.00001 0.00001 0.00001 +27.6 1.1370 22.451 2.35 5819. 200. 0.08848 0.04795 0.32814 0.02286 0.12273 0.02147 0.00003 0.05956 0.01307 0.01036 0.00002 0.00001 0.00001 0.28531 1.1299 23.484 +20.2 5861. 2.7 200. RP-1/LOX 0.07845 0.03365 1.1269 0.02192 -175.8 23.287 0.30304 0.04059 0.00005 0.00004 0.30276 0.07201 0.14747 6226. 200. 2.7 (cal) Press. (psia) Properties 0/F (ratio/ Chamber Wt Enthalpy Temp (°R) H₂0 Wt HCO HO₂ H₂ C02 ON HU 8 HO H N2 6 Z 0 mole.

TABLE 2CHEMICAL AND STATE PROPERTIES IN THEREFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN
RP-1/LOX ROCKET ENGINE PLUME AT O/F = 2.70

I

I

T

T

T

T

.....

-

1

1

I

T

I

I

-

.

Γ	P ₁ (psia)	T ₁ (°R)	$H_1(\frac{cal}{gm})$	$\rho_1(\frac{slugs}{ft^3})$	γ1	^{mw} 1	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$			
	3.57	536.6	-820.6	0.000525	1.3358	27.311	6771.8	1142.0			
E			Mole Fractions (all gaseous)								
Regi	0 ₂ 0.36	635	H ₂ 0.2	4124 (2 ₂ H ₄ 0.13	597	co ₂ 0.25644				
	P ₂ (psia)	T ₂ (°R)	${\rm H_2} \left(\frac{{\rm cal}}{{\rm gm}} \right)$	$\rho_2\left(\frac{\text{slugs}}{\text{ft}^3}\right)$	^γ 2	^{mw} 2	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$			
6	80.8	5753.	-459.6	0.000973	1.1204	23.984	3117.4	3654.5			
g	Mole Fractions (all gaseous)										
2g10	HCO 0.00	002	CO 0.2	9069	co ₂ 0.17	333	н 0.0	3206			
2	OH 0. 05	614	HO ₂ 0.0	0002	H ₂ 0.07	392	H ₂ 0 0.33262				
					0 0.014	468	0 ₂ 0.02652				
Γ	P ₅ (psia)	T ₅ (°R)	$H_5(\frac{cal}{gm})$	$I_5\left(\frac{cal}{gm}\right) \rho_5\left(\frac{slugs}{ft^3}\right)$		^{mw} 5	$U_{R}\left(\frac{ft}{sec}\right)$	$a_5(\frac{ft}{sec})$			
	200.	6226.	-175.4	0.002164	1.1269	23.287	2546.8	386 9.4			
0			Mole F	ractions (a	11 gaseous	3)					
T on	HCO 0.00	005	CO 0.3	0304	co ₂ 0.147	747	н 0.0	4059			
Reg	он 0.07	201	HO2 0.0	0005 1	H ₂ 0.078	345	H ₂ O 0.30276				
			H ₂ O ₂ 0.00	0001	0. 021	92	0,03365				

TABLE 3a CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING A UDMH/N₂O₄ ROCKET ENGINE PLUME AT O/F = 2.70

	P ₁ (ps	ia)	T ₁ (°R)	$H_1\left(\frac{cal}{gm}\right)$	P1($\frac{slugs}{ft^3}$	γ ₁		$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$	
n D	4.54 536.6 -571.2 0.000574 1.3719 23.435 6500.3 1249.3									1249.3	
egic				Mole	Frac	tions	(all ga	seous)			
6	02	0.	24546	H ₂ 0.25	251	N ₂ 0	.29125	co ₂ 0	.12626	CH ₄ 0.08452	
	P ₂ (ps	ia)	T ₂ (°R)	$H_2(\frac{cal}{gm})$	$p_2(\frac{s}{2})$	$\frac{\log s}{ft^3}$	^γ 2	^{mw} 2	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$	
	81.56 5378.4		-240.7	0.001055		1.1261	24.072	2963.9	3535.8		
© uo		Mole Fractions (all gaseous)									
egie	нсо	0.	00001	CO (0.10	943	co ₂	0.10707	н	0.01448	
10%	OH	0.	03391	HO ₂	0.00	001	н ₂	0.05094	H ₂ O	0.35788	
		0.0	00849	²		492			<u> </u>	0.01091	
	P ₅ (ps:	ia)	T ₅ (°R)	${\tt H_5}\left({{{\rm cal}}\over{{\rm gm}}} ight)$	۹ 5 (-	$\frac{slugs}{ft^3}$	^γ 5	[™] 5	$U_{R}(\frac{ft}{sec})$	$a_{5}(\frac{ft}{sec})$	
	200.		5860.8	+20.2	0.0	002314	1.1299	23.484	2484.3	3743.5	
0				Mole H	raci	tions (all gas	seous)			
ion	HCO	0.0	00002	CO (.12	273	co ₂ (0.08848	H	0.02147	
Re	он	0.0	04795	но ₂ С	0.000	003	H ₂	0.05956	H ₂ O	0.32814	
	NO	0.0	01307	N ₂	.28	531	0 (J.01036	02	0.02286	
	NH	0.0	10001	N U		101	^{NO} 2	0.00001			

TABLE 35 CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING A $UDMH/N_2O_4$ ROCKET ENGINE PLUME AT O/F = 2.70

	P ₁ (p	osia)	T ₁ (°R)	$H_1\left(\frac{cal}{gm}\right)$	$\rho_1 \left(\frac{\text{slugs}}{\text{ft}^3}\right)$)	^{mw} 1	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$	
9 U	4.2	1	536.6	-574.3	0.00057	1 1.3262	25.190	6510.7	1185.0	
egic				Mole	Fractions	(all ga	seous)			
	0 ₂ 0.02569			H ₂ 0.43	н ₂ 0.43469 СН ₄ 0.00		0922 CO ₂ 0.217		N ₂ O 0.31306	
	$P_2(psia)T_2(^{\circ}R)$			$H_2(\frac{cal}{gm})$	$p_2\left(\frac{slugs}{ft^3}\right)$	^γ 2	^{mw} 2	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$	
	81.26 5374.8		-242.2	0.00105	2 1.1261	24.076	2976.2	3534.5		
© uc		Mole Fractions (all gaseous)								
egic	нсо	HCO 0.00001			0.10934	co ₂	0.10720	н	0.01443	
~	OH 0.03382			но ₂	$HO_2 0.00001$		0.05088	H ₂ O	0.35807	
_	NO	0.	00846	^N 2	0.29498	0	0.00592	02	0.01687	
	Р ₅ (р	sia)	T ₅ (°R)	$H_5(\frac{cal}{gm})$	$\rho_5\left(\frac{\text{slugs}}{\text{ft}^3}\right)$	γ ₅	™ 5	$U_{R}\left(\frac{ft}{sec}\right)$	$a_{5}\left(\frac{ft}{sec}\right)$	
	200	.0	5860.8	+20.2	0.002312	1.1299	23.484	2484.3	3743.5	
0				Mole I	Fractions	(all ga	seous)			
s ion	HCO	0.	00002	CO (0.12273	co ₂	0.08848	н	0.02147	
Re	OH	0.0	04795	но ₂ (0.00003	н ₂	0.05956	H ₂ O	0.32814	
	NO	0.0	01307	N ₂	0.28531	0	0.01036	02	0.02286	
	NH	0.0	10001	N C	100001	2	0.00001			

1 Ţ + * -78 T -. . . ÷. ÷. 1 1 1 I I

TABLE 4a CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING A UDMH/N $_2O_4$ ROCKET ENGINE PLUME AT O/F = 2.35

T

-

....

- - -

- -

- - -

	P ₁ (ps	ia)	T ₁ (°R)	$H_1\left(\frac{cal}{gm}\right)$	P1($\frac{slugs}{ft^3}$	γ ₁	^{mw} 1	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$	
n 🖸	4.48		536.6	- 581.5	0.	000560	1.3699	23.215	6604.2	1254.6	
egic		Mole Fractions (all gaseous)									
CZ.	0 ₂	0.	23090	H ₂ 0.24618 N ₂ 0.292		.29230	co ₂ 0	. 12309	сн ₄ 0.10753		
	$P_2(psia)T_2(^{\circ}R)$		T ₂ (°R)	$H_2\left(\frac{cal}{gm}\right)$	^o 2(<u>s</u>	$\frac{\log s}{ft^3}$	^γ 2	^{mw} 2	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$	
	81.64 5283.		-241.0	0.001025		1.1406	22.956	2992.6	3611.6		
© uo		Mole Fractions (all gaseous)									
egi	HCO 0.00001			co ().14	390	co ₂	0.08413	H	0.01586	
R	OH	0.	02097	но ₂	-		H ₂	0.08517	H ₂ O	0.35249	
	NO	0.	00385	N2 ().28	/11	0	0.00242	02	0.00407	
	P ₅ (psi	a)	τ ₅ (°R)	${\tt H_5}\left({{{\rm cal}\over{{\rm gm}}}} ight)$	۹ ₅ (-	slugs ft ³)	^γ 5	™ 5	$U_{R}\left(\frac{ft}{sec}\right)$	$a_{5}\left(\frac{ft}{sec}\right)$	
	200.0		5819.	+27.6	0.0	002223	1.1370	22.451	2562.5	3826.8	
୭				Mole F	raci	tions (all gas	seous)			
ion	HCO	0.0	00002	CO 0	.15	181	co ₂	0.07119	H	0.02496	
Ree	ОН	0.0	03551	но ₂ 0	.00	001	H ₂	0.09106	H ₂ O	0.32472	
	NO	0.0	00763	N ₂ 0	.27	885	0 (J.00584	02	0.00836	
	NH	υ.(10001	N U	. 000						

TABLE 4b CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING A UDMH/N₂O₄ ROCKET ENGINE PLUME AT O/F = 2.35

I

T

T

T

12.00

ania Mil

1

1

T

I

-

	P ₁ (p	sia)	T, (°R)	$H_1\left(\frac{cal}{am}\right)$	$\rho_1(\frac{s}{s})$	lugs	γ ₁	ามพา	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sac})$	
				r.gm /		ft	• •		Disec	1\Sec/	
E G	4.1	5	536.6	- 584.6	0.0	00558	1.3243	24.961	6614.4	1189.6	
legio		•	*	Mole	Fract	ions ((all ga	seous)			
œ.	°2	0.	00918	H ₂ 0.42	858	сн ₄ 0.	03367	co ₂ 0	.21429	N ₂ 0 0.31428	
	P ₂ (p	sia)	T ₂ (°R)	$H_2(\frac{cal}{gm})$	$P_2\left(\frac{sl}{f}\right)$	$\left(\frac{ugs}{t^3}\right)$	^Ŷ 2	^{mw} 2	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$	
	81.34 5279.4		-243.5	0.001022		1.1407	22.959	3004.3	3610.6		
on (2)		Mole Fractions (all gaseous)									
sig	HCO	0.	00001	CO (0.143	86	co ₂	0.08421	н	0.01580	
Re	он	0.	02088	HO2	-		H ₂	0.08514	H ₂ 0	0.35265	
	NO	0.	00383	N ₂	0.287	16	0 (0.00240	02	0.00405	
	P ₅ (p	sia)	T ₅ (°R)	$\mathbf{H_{5}}(\frac{\mathtt{cal}}{\mathtt{gm}})$	ρ ₅ (^s	$\frac{\log s}{ft^3}$	^γ 5	^{mw} 5	$U_{R}(\frac{ft}{sec})$	$a_{5}(\frac{ft}{sec})$	
	200.	0	5819.	+27.6	0.0	02223	1.1370	22.451	2562.5	3826.8	
୭				Mole I	Fract	ions (all gas	seous)			
ion	HCO	0.0	00002	CO (0.151	81	co ₂ (0.07119	н	0.02496	
Reg	он	0.	03551	но ₂ (0.000	01	н ₂ (0.09106	н ₂ 0	0.32472	
	NO	0.	00763	N ₂	0.278	85	0 0	0.00584	°2	0.00836	
	NH	0.0	00001	N (0.000	01					

TABLE 5a CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING A UDMH/N $_2O_4$ ROCKET ENGINE PLUME AT O/F = 2.00

	P ₁ (ps	sia)	T ₁ (°R)	$H_1\left(\frac{cal}{gm}\right)$	$\rho_1 \left(\frac{\text{slugs}}{\text{ft}^3}\right)$) 71		$U_{D}(\frac{ft}{sec})$	$a_1\left(\frac{ft}{sec}\right)$		
D u	4.57	2	536.6	-572.7	0.00056	8 1.3674	23.100	6631.1	1256.5		
egic	Mole Fractions (all gaseous)										
64	02	0.	22122	H ₂ 0.22	703 N ₂	0.29550	co ₂ 0	.11352	CH ₄ 0.14273		
	^P 2 ^{(ps}	ia)	T ₂ (°R)	$H_2(\frac{cal}{gm})$	$P_2\left(\frac{s \log s}{ft^3}\right)$	^γ 2	™2	$U_2\left(\frac{ft}{sec}\right)$	$a_2(\frac{ft}{sec})$		
	82.02 4971.6		4971.6	-234.8	0.00102	4 1.1778	21.484	2951.2	3680.4		
on (2)		Mole Fractions (all gaseous)									
egic	HCO 0.00001			co (0.18083	co ₂	0.05747	н	0.01163		
ď.	ОН	0.	00681	но ₂	-	н ₂	0.14909	H ₂ O	0.31831		
	NO	0.	00080	N ₂ (0.27441	0	0.00034	02	0.00029		
	P ₅ (ps	ia)	T ₅ (°R)	$H_5(\frac{cal}{gm})$	$ \rho_5\left(\frac{\text{slugs}}{\text{ft}^3}\right) $) ⁷ 5	^{mw} 5	$U_{R}\left(\frac{ft}{sec}\right)$	$a_{5}\left(\frac{ft}{sec}\right)$		
	200.	200.0 5626.		+36.9	0.002156	5 1.1569	21.154	2671.8	3910.4		
0				Mole E	ractions	(all gas	seous)				
Lon	HCO	0.0	00003	CO (.18367	co ₂	0.05095	н	0.02363		
Reg	он	0.0	01804	но ₂	-	н ₂	0.14651	H ₂ O	0.30193		
	NO	0.0	00280	N ₂ 0	.26919	0	0.00177	0 ₂	0.00147		

TABLE 5bCHEMICAL AND STATE PROPERTIES IN THEREFLECTEDDETONATION SHOCK TUBE FOR SIMULATING AUDMH/N204ROCKET ENGINE PLUNE AT O/F = 2.00

-

199-194 199-195

4.8

1.1

**

11 11

-

T

I

I

	P ₁ (ps:	ia)	T ₁ (°R)	$H_1\left(\frac{cal}{gm}\right)$	ρ ₁ ($\frac{slugs}{ft^3}$	γ ₁	^{nw} 1	$U_{\rm D}({{\rm ft}\over{\rm sec}})$	$a_1(\frac{ft}{sec})$			
E	4.23		536.6	-575.7	0.	000565	1.3225	24.829	6640.6	1191.9			
egic		Mole Fractions (all gaseous)											
~	сн ₄	0.	07193	H ₂ 0.40	0698 N ₂ 0.0050		.00500	500 CO ₂ 0.20		N ₂ 0 0.31260			
	P2 ^{(psi}	P ₂ (psia)T ₂ ($H_2\left(\frac{cal}{gm}\right)$	$P_2\left(\frac{s \log s}{ft^3}\right)$		^γ 2	^{mw} 2	$U_2\left(\frac{ft}{sec}\right)$	$a_2\left(\frac{ft}{sec}\right)$			
	81.68	81.68 4968.		-236.3	0.001021		1.1779	21.485	2961.5	3679.1			
0 uo		Mole Fractions (all gaseous)											
egic	нсо	HCO 0.00001		ĊO	CO 0.18081		co ₂ 0.05751		н	0.01156			
~	он	ОН 0.00676		но ₂	-		H ₂	0.14912	H ₂ O	0.31838			
	NO	NO 0.00080		N ₂ 0.27444		444	0 0.00033		02	0.00029			
	P ₅ (psi	.a)	T ₅ (°R)	$H_5(\frac{cal}{gm})$	۹ 5 ($\frac{slugs}{ft^3}$	⁷ 5	^{mw} 5	$U_{R}(\frac{ft}{sec})$	$a_{5}(\frac{ft}{sec})$			
	200.0		5626.8	+36.7	0.0	002153	1.1569	21.154	2671.8	3910.4			
0				Mole I	Fract	tions	(all gas	seous)	1				
ion	HCO	0.0	00003	CO (0.18	367	co ₂	0.05095	н	0.02363			
Reg	он	0.0	01804	но ₂	-		H ₂	0.14651	н ₂ 0	0.30193			
	NO	0.0	00280	N ₂	0.269	919	0 (0.00177	°2	0.00147			

TABLE 6 CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN A-50/N $_2O_4$ ROCKET ENGINE PLUME AT O/F = 2.30

Γ	P ₁ (psia)	T ₁ (°R)	$H_1(\frac{cal}{gm})$	$\rho_1(\frac{slugs}{ft^3})$	γ ₁	^{mw} 1	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$				
	5.25	536.6	-474.2 0.000571		1.3854	20.196	6523.9	1352.6				
E			Mole F	ractions (a	(all gaseous)							
Regi	0 ₂ 0.20	9413	H ₂ 0.3	946 5	N ₂ 0.29	939	co ₂ 0.10183					
	P ₂ (psia)	T ₂ (°R)	$H_2(\frac{cal}{gm})$	$\rho_2(\frac{slugs}{ft^3})$	γ ₂	^{mw} 2	$u_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$				
6	82.14	5337.0	-142.5	0.001046	1.1271	23.529	2959.5	3564.3				
g	Mole Fractions (all gaseous)											
sile	HCO -		CO 0.04	4757	co₂ 0.0 7	106	н 0.01149					
2	OH 0. 04	010	HO2 0.00	0002 1	H ₂ 0.03	721	H ₂ O 0.3	9675				
	NO 0.01	245	N ₂ 0.34	4257	0.007	765	° ₂ 0.0	3311				
	P ₅ (psia) T ₅ (°R)		$H_{5}\left(\frac{cal}{gm}\right) \rho_{5}\left(\frac{slugs}{ft^{3}}\right)$		γ ₅	^{mw} 5	$U_{R}(\frac{ft}{sec})$	$a_5(\frac{ft}{sec})$				
	200.0 5821.		+120.0	0.002278	1.1308	22.973	2515.6	3773.3				
0)									
Ion	HCO 0.00	001	co 0. 0	5834 0	.0.057	48	H 0.01827					
Reg	он 0. 054	466	HO2 0.00	0004 H	1 ₂ 0.048	355	H ₂ O 0.36385					
	NO 0.01	755	N ₂ 0.3	3175	0.012	35	0 ₂ 0. 03711					
·			N 0.00	0001 I	10, 0.000	001						

TABLE 7 CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN A- $50/N_2O_4$ ROCKET ENGINE PLUME AT O/F = 2.00

are.

...

. .

. .

.

. .

-40

1

I

I

I

$\left[\right]$	P ₁ (psia)	T ₁ (°R)	$H_1\left(\frac{cal}{gm}\right)$	$\rho_1(\frac{slugs}{ft^3})$	γ ₁	^{mw} 1	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$						
	5.30	536.6	-521.63 0. 000557		1.3847	19.529	6617.0	1374.9						
D uo	Mole Fractions (all gaseous)													
Regi	0 ₂ 0.17	2468	H ₂ 0.4	1977	0.29	723	co ₂ 0.10832							
	P ₂ (psia)	T ₂ (°R)	$H_2(\frac{cal}{gm})$	$\rho_2(\frac{\text{slugs}}{\text{ft}^3})$	^γ 2	^{mw} 2	$u_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$						
	82.23 5297.4		-180.9	0.001018	1.1312	22.697	2994.6	3622.1						
g	Mole Fractions (all gaseous)													
ste	HCO -		CO 0.0	6431 C	0,06	158	H 0.01357							
Re	OH 0. 02	96 3	HO2 0.0	0001 H	2 0.05	983	H ₂ 0 0.40642							
	NO 0.00	713	N ₂ 0.3	4187 C	0.004	416	0 ₂ 0.0	1149						
	P ₅ (psia) T ₅ (°R)		$H_5(\frac{cal}{gm})$	$ \rho_5\left(\frac{\text{slugs}}{\text{ft}^3}\right) $	^γ 5	^{mw} 5	$U_{R}(\frac{ft}{sec})$	$a_{5}(\frac{ft}{sec})$						
	200.0 5794.		+89.0	0.002208	1.1330	22.175	2562.5	3835.3						
ତ			Mole F	cactions (al	1 gaseous	3)								
ton	HCO 0.00	001	CO 0. 0	7275 C	0.050)24	H 0.02125							
Reg	OH 0. 04	397	HO2 0.00	D002 Н	2 0. 071	20	н ₂ 0 0.3	7280						
	NO 0. 01	155	N ₂ 0.33	3170 0	0.007	789	0 ₂ 0.0	1658						
•	NH 0.00	001	N 0.00	0001 N	0, 0.000	001								

TABLE 8 CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN $A-50/N_2O_4$ ROCKET ENGINE PLUME AT O/F = 2.00AND CHAMBER PRESSURE = 1000. PSIA

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$P_1(psia) T_1(^{\circ}R)$		$H_1\left(\frac{cal}{gm}\right) \left[\rho_1\left(\frac{slugs}{ft}\right) \right]$		γ ₁	^{mw} 1	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		25.60	536.6	-521.63 0.002693		1.3847	19.529	6751.5	1374.9				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dug	Mole Fractions (all gaseous)											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Regi	0 ₂ 0,17	468	H ₂ 0.4	1977 1	N ₂ 0.29	723	co ₂ 0.1	L0832				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		P ₂ (psia)	T ₂ (°R)	${\rm H_2} \left(\frac{{\rm cal}}{{\rm gm}} \right)$	$\rho_2(\frac{slugs}{ft^3})$	γ ₂	^{mw} 2	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	411.01 5554.8		-168.0 0.004905		1.1418 22.932		3043.9	3707.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ē	Mole Fractions (all gaseous)											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B10	HCO 0.00	001	co 0.0	6182 0	0, 0.06	537	н 0.00893					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Re	OH 0.024	498	HO, 0.0	0001 H	1, 0.054	420	H ₀ 0 0.4	2175				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		NO 0.00	703	N ₂ 0.3	4550 0	0.002	251	0 ² 0.0	0788				
1000. 6136. +113.0 0.010568 1.1424 22.458 2636.7 3938.6 Mole Fractions (all gaseous) Mole Fractions (all gaseous) HCO 0.00002 CO 0.07067 CO2 0.05386 H 0.01471 HO 0.03935 HO2 0.00003 H2 0.06515 H20 0.39048 0 NO 0.01218 N2 0.33568 N 0.00001 NO2 0.01254		P ₅ (psia)	T ₅ (°R)	$H_5(\frac{cal}{gm})$	$ \rho_5\left(\frac{\text{slugs}}{\text{ft}^3}\right) $	⁷⁴ 5	^{mw} 5	$U_{R}(\frac{ft}{sec})$	$a_5(\frac{ft}{sec})$				
Mole Fractions (all gaseous) Mole Fra		1000.	6136.	+113.0	0.010568	1.1424	22.458	2636.7	3938.6				
HCO 0.00002 CO 0.07067 CO2 0.05386 H 0.01471 HCO 0.03935 HO2 0.00003 H2 0.06515 H20 0.39048 NO 0.01218 N2 0.33568 O 0.00525 O2 0.01254 NH 0.00001 N 0.00001 NO2 0.00001 NO2	Mole Fractions (all gaseous)												
0H 0.03935 HO2 0.00003 H2 0.06515 H20 0.39048 NO 0.01218 N2 0.33568 0 0.00525 02 0.01254 NH 0.00001 N 0.00001 NO2 0.00001 0.00001	U	HCO 0.000	002	co 0.0	7067 0	0, 0.053	386	н 0.0	1471				
NO 0.01218 N2 0.33568 0 0.00525 02 0.01254 NH 0.00001 N 0.00001 NO2 0.00001 0.00001	ee	OH 0. 039	935	но, 0.00	0003 н	0.065	515	H_O 0.3	9048				
NH 0.00001 N 0.00001 NO, 0.00001	64	NO 0.012	218	N, 0.3	3568 0	0.005	525	0, 0.0	1254				
		NH 0.000	001	N 0.00	0001 N	0.000	001	2					

TABLE 9a CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN A-50/N₂O₄ ROCKET ENGINE PLUME AT O/F = 1.70

	P ₁ (ps:	ia)	T ₁ (°R)	$H_1(\frac{cal}{gm})$	ρι($\frac{slugs}{ft^3}$	γ ₁		$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$		
() u	5.44		536.6	- 542.2	0.	000555	1.3840	18.947	6679.7	1395.6		
legic	Mole Fractions (all gaseous)											
	0 ₂	0,15185			H ₂ 0.43386 N ₂ 0.297		29752 CO ₂ 0.10745		.10745	сн ₄ 0.00932		
	P ₂ (psia)T ₂ (°R)		T ₂ (°R)	$H_2(\frac{cal}{gm})$	$\left(\frac{al}{m}\right) \circ_2\left(\frac{slugs}{ft^3}\right)$		^γ 2	™2	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$		
	82.6		5106.6	-198.1	0.0	001004	1.1554	21.491	2986.1	3693.6		
D no		Mole Fractions (all gaseous)										
egic	HCO 0.00001			CO 0.08713		co ₂	0.04530	н	0.01291			
R	ОН 0.01357			HO2		н ₂	0.10924	H ₂ O	0.39078			
	NO 0.00221		N ₂ 0.33637		637	0 0.00101		0 ₂	0.00147			
	P ₅ (psi	.a)	T ₅ (°R)	${\rm H_5}(\frac{\rm cal}{\rm gm})$	۹ ₅ (=	$\frac{slugs}{ft^3}$	^γ 5	[™] 5	$U_{R}(\frac{ft}{sec})$	$a_{5}\left(\frac{ft}{sec}\right)$		
	200.0		5679.	+76.9	0.0	002132	1.1439	21.090	26 56 . 2	3912.7		
9				Mole F	ract	ions (all gas	seous)				
ion	HCO	0.0	00001	CO 0	.091	118	co ₂ (0.03877	н	0.02269		
Reg	OH	0.0	02729	но ₂ 0	.000	001	н ₂ (0.11451	H ₂ O	0.36419		
	NO	0.0	00540	N ₂ 0	. 328	348	0 (0.00327	02	0.00419		
	NH	0.(00001	N O	.000	001						

---4-... ------1 1 I I I

.....

TABLE 9b CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN A-50/N₂O₄ ROCKET ENGINE PLUME AT O/F = 1.70

	P ₁ (ps	ia)	T ₁ (°R)	$H_1\left(\frac{cal}{gm}\right)$	P1($\frac{slugs}{ft^3}$	γ ₁	mw ₁	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$		
E L	5.39)	536.6	- 542.6	0.	000554	1.3778	19.110	6681.3	1386.7		
egic		Mole Fractions (all gaseous)										
8	⁰ 2	0 ₂ 0.12576			H ₂ 0.45639 N ₂ 0.26407		co ₂ 0.11777		N ₂ O 0.03601			
	P ₂ (psia)T ₂ (°R)		$H_2(\frac{cal}{gm})$	$\rho_2\left(\frac{\text{slugs}}{\text{ft}^3}\right) \qquad \gamma_2$		^{mw} 2	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$				
	82.48 5106.6		-198.3	0.001003		1.1554	21.491	2987.4	3693.6			
© u		Mole Fractions (all gaseous)										
egic	HCO 0.00001		CO 0.08713		co ₂ 0.04531		H	0.01290				
~	он	0.	01355	HO2	-		H ₂	0.10924	H ₂ O	0.39080		
	NO	0.	00220	N2 (1.33	638	0	0.00101	02	0.00147		
	P ₅ (ps)	ia)	T ₅ (°R)	${\rm H_5}(\frac{\rm cal}{\rm gm})$	۹ 5 (-	slugs ft ³)	γ ₅	[™] 5	$U_{R}\left(\frac{ft}{sec}\right)$	$a_{5}\left(\frac{ft}{sec}\right)$		
	200.0		5679.	+76.9	0.	002132	1.1439	21.090	2656.2	3912.7		
0				Mole E	raci	tions (all gas	seous)				
ion	HCO	0.0	00001	CO (.09	118	co ₂ (0.03877	H	0.02269		
Reg	OH	0.0	02729	но ₂ с	.000	001	н ₂ (0.11451	H ₂ O	0.36419		
	NO	0.0	00540	N ₂ C	0.32848		0 (0.00327	02	0.00419		
	NH	0.(00001	N C	.000	001						

TABLE 1.0 COMPARISON OF EQUILIBRIUM EXIT PLANE PROPERTIES $(A_e/A_{\star} = 40.)$ BETWEEN IDEAL ENGINE AND IDEAL DETONATION TUBE FOR SLIGHTLY IMPERFECT SIMULATION OF A-50/N₂O₄ MIXTURES[†]

0/F	2	2.0	2	2.0	2.3		
P _c (psia)	200.		10	000.	200.		
	Engine	Det Tube	Engine	Det Tube	Engine	Det Tube	
Т _e (°К)	1369.	1397.	1333.	1383.	1597.	1681.	
P _e (psia)	0.4395	0.4439	2.0918	2.1286	0.4998	0.5130	
a _e (ft/sec)	2535.4	2559.7	2503.0	2547.6	2634.8	2691.9	
mole. wt	23.663	23.663	23.663	23.663	25.154	25.145	
γe	1.2420	1.2409	1.2435	1.2415	1.2222	1.2118	
Me	4.114	4.097	4.195	4.167	3.906	3.870	
	М	ole. Fract	ions (all	gaseous)	•		
со	0.02720	0.02303	0.02606	0.02761	9.00014	0.00040	
co ₂	0.10404	0.10321	0.10518	0.10363	0.12669	0.12639	
н ₂	0.05811	0.05728	0.05925	0.05770	0.00019	0.00047	
н ₂ 0	0.45051	0.45134	0.44937	0.45092	0.49114	0.49051	
NO	-	-	-	-	0.00028	0.00040	
N ₂	0.36014	0.36014	0.36014	0.36014	0.37275	0.37255	
0	-	-	-	-	0.00001	0.00002	
он	-	-	-	-	0.00040	0.00073	
0 ₂	-	-	-	-	0.00840	0.00853	

See Tables 6 through 8.

I

1

I

T

T

1

-

acaso (11)

1

T

1

