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Ii1. A&)STRACT

The motivation for this thesis originates i-a research currently be.ing conducted
at: the USAF Armament Laboratory, Eglin AFB, Florida. These studies concern the per-
formance of an F4-E aircraft in air-to-air combat; the weapon system considered is
an infra-red, heat-seeking missile. The studies fall into two categories-:

(a) Defindition of those regions in the vicinity of a target aircraft whIch the

attacker must Iseietrate in order to attain a probability of killing his opponentI

Wb Definition of optimal strategies for the attacker to intercept and penetrate

the high probability of kill (PK) regions.

In all cases, the target aircraft is considered as passive and unaware of attack.

This paper makes the logical extension to 0te above research, and attempts to
develop a method by which the capability of the attacker tray be defined against an
intelligent and evasive target. The primary objective, is to obtaini regions for both
pItrcraft which define or enclose those points in the game state space fror whic:h 6:1e

tacker can always penetrate to a given probability of krill. These revioais are callic
"11capture" regions; the converse, for the target, are "escape" regions.

The air-to-air comibat encounter is considered as a free time, zero sum, nperfect.
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13. ABSTRACT (Continued)

information differential game. The participants' dynamics are modelled upon an F4
type aircraft, the game state space is defined, and the PK regions modelled mathematicall.
An original extension to classical differential game theory is then made by which it is
shown that partitions of the game space into escape and capture regions can b, made
for the simple planar game models. These regions are separated by a boundary whic: will
be called a "PK barrier." Obviously, the extent of the region from which the attacker
can "capture" a given PK value is a measure of his capability against the evasive,
fully-informed target.

The theoretical development is applied to two planar game models. Numerical methods
are used to generate optimal trajectories by backward integration from admissable
terminal conditions for the game. These trajectories are analvzed, and partitions, or
PK barriers, are shown to exist. Examples of the escape and capture regions are shown,
within the limits of the graphical techniques currently available.

Two major conclusions are made. From the analytic viewpoint, the methods developed
show that partitions of the game space are possible for this class of game. Refinement
of these methods would realize the potential of this form of analysis in defining the
capability of an attacking aircraft in a variety of air combat situations. In the prac-
tical sense, it is shown that the particular weapon system modelled here has severe
limitations when employed against an intelligent enemy. Although the analysis was
restricted to two-dimensional maneuver for both aircraft, it is felt that generalization

the methods to three dimensions would reinforce the two-dimensional conclusions.
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Preface

This work is the outcome of my efforts to analyze the capability of

a fighter aircraft equipped with a heat-seeking, air-to-air missile in

pursuit of an intelligent and evasive target aizzraft. Based upon classical

differential game theory, an original method of analysis is developed by

which escape and capture regions for each aircraft may be defined. The

capability of the pursuing aircraft can then be measured by the extent of

the regions from which it can achieve a specified probability of killing

the target at missile launch. The analysis2 and its aDplication to planar

game models, represents the initial steps toward complete definition of

escape and capture regions for this class of differential games.

The thesis received its original inspiration from studies being con-

ducted at the United States Air Force Armament Laboratory, Eglin AFB,

Florida. These studies were basically concerned with the capability o•f

an F4-E .n air-to-air combat agatnst a passive target aircraft, and this

work makes the logical extension.

In concluding the paper, I would like to mention the debts I incurred

iuring its development. My advisor, Professor Gerald M. Anderson of the

Air Force Institute of Technology contributed much in originality and

advice. My thanks also go to the staff of the Missile Systems and Analvsis

Division of the USAF Armament Laboratory at Eglin, with whom I had the

pleasure of working for some eleven weeks during uhe crucial phases of

the research.
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Abstract

The motivation for this thesis originates in research currently

being conducted at the USAF Armament Laboratory, Ejlin AFB, Florida.

These studies concern the performance of an F4-E aircraft in air-to-air

combat; the weapon system considered is an infra-red, heat-seeking

miesile. The studies fall into two categories:

(a) Definition of those regions in the viciwn , of a target air-

era-. which the attacker must penetrate in order vc. attain a probability

of killing his opponent greater than zero.

(b) Definition of optimal strategies for the attacker to inter-

Vt cept and penetrate the high probability of kill (PK) regions.

In all cases, the target aircraft is considered as passive and unaware

of attack.

0' This paper makes the logical extension to the above research, and

attempts to develop a method by which the capability of the attacker may

be define2 against an intelligent and evasive target. The primary objec-

tive is to obtain regions for both aircraft which define or enclose those

points in the game state space from which the attacker can always pene-

trate to a given probability of kill. These regions are called "capture"

regions; the converse, for the target, are "escape" regions.

The air-to-air combat encounter is considered as a free time, zero

sum, perfect information differential game. The participants' dynamics

are modelled upýfa an F4 type aircraft, the game state space is defined,

and the PK regions modelled mathematically. Ax original extension to

classicAl differential game theory I& Lthen ,made b-, wh.ich it: in shcvn

that partitions of tlv wame 'pace into escape and ccnture regions can

be made for the sitele planar Fame models. These rapions are separated

v1.
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by a boundary which will be called a "PK barrier." Obviously, the ex-

tent of the region from which the attacker can "capture" a given PK

t value is a measure of his capability against the evasive, fully-informed

target.

The theoretical development is applied to two planar game models.

Numerical methods are used to generate optimal trajectories by backward

,S: integration from admissable teirminal conditions for the game. These

trajectories are analyzed, and partitions, or PK barriers, are shown to

exist. Examples of the escape and capture regions are shown, within the

limits of the graphical techniques currently available.

Two major conclusions are made. From the analytic viewp•oint, the

methods developed show that partitions of the game space are possible

for this class of game. Refincment of these methods would realize the

..- potential of this form of analysi3 in defining the capability of an

attacking aircraft in a variety of air combat situations. In the prac-

tical sense, it is showni that the particular weapon system modelled here

has severe limitations when employed against an intelligent enemy. Al-

though the analysis was restricted to two-dimensional maneuver for both

I aircraft, it is felt that generalization of the methods to three dimen-

sions would reinforce the two-dimensional conclusions.

v

vil
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I. Introductioa

The two aircraft pursuit-evasion problem has received a great deal

of attention froL, researchers in recent years. The basic objective of

the research has been to find analytical or numerical means of evaluating

the effectivoness of one aircraft in competition with another. Manyim different situations arise dependent chiefly upon the relative capabili-

ties of pursuer and evader, and the types of airborne weapons employed.

Much of Lhe previous effort han been directed towards obtaining

optimal strategies for pursuer and evader. These strategies arise

directly from solutions to a given problem using differential game theory.

Open, (and, in some cases closed) loop control laws can be obtained which

q- define optimal play for each aircraft. However, this approach makes the

assumptiou that the pursuer is initially in a position to force termina-

tion. Alternatively, optimal strategies can be obtained for an aircraft

attacking a passive target. The major failing in this case is that the

resulting strategies are non-optimal against a target which deviates from

its specified trajectory.

This thesis approaches the pursuit-evasion game in what is believed

to be an original manner. The prohlem is considered as an extension of

the Isaacs "game of kind" (Ref (3)). Termination of the game is defined

when the. pursuk7.g aircraft reaches a specified value (payoff) at the

terminal time (tf) and is boresilhted on the evader. If the putsuer can

attain a higher payoff than that specifled and maintain borcsipht, cap-

ture is said to occur. If the evader prevents the pursuer reachlng the

spc:.ificd termin-al conditi .a! . -ecape in n•aid to occur. Us ,' this

extended concept from differential panie theory, the Intent of this thcsis

is to develop a method of 1I, atitioning the ga mne nt;ite space into escatne
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and capture regions. Definition of such regions for a given aircraft/

weapon system could have a significant impact on tactics and design.

The payoff, or value, of the game is defined in terms of the pur-

suer's probability of kill (PK) if a missile fs launched at tf. Contours

of constant PK are modelled, and the pursuer then attempts to reach as

high a value of PK as possible (with boresight) before firing.

Two constant altitude models of the pursuit-evasion gamne are

developed, in the first w" ;hich both aircraft are constrained to con-

stant velocity; the second model permits variable velocity dependent

upon thrust and drag forces. Chapter II introduces the game models,

while Chapter III presents the theoretical aspects of differential game

theory employed in the solution approach. Chapter IV thendevelops a

method of specifying the admissible end points for the free time differ-

ential game.

Having specified a set of admissible end points, numerical backward

integration is used to obtain optimal trajectories. Chapter V presents

the solutions for the constant velocity model, and discusses the means

by which partitions of the game space can be made. Some aspects of the

variable velocity model are considered in Chapter VI, and Chapter VII

presents a general discussion of the results and their possible implica-

tions. Conclusions and recommendations are contained in Chapter V1II.

It is felt that this research makes several contributions to the

study of differential games and pursuit-evasion problems. As far as is

known, no previous attempts have been made to define escape and capture

regions for this class of game. Thus, the solution method employed has

some interesting elements of originality. Secondly, successful defnnl-

tion of escape and capture regions allows a unique rrethod of comparlnr

2



Sthe capabilities of different aircraft, -r of different weapon systems.

Although the approach needs much refinement, it has gre&t potential in

the design and tactical application of airborne weapon systems.

I,

T.

a3
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II, Statement of the rroblem

Ori,$ns of the Problem

The problem considered here owes its origin to studies in propress

at the USAF Armament Laboratory. These studies concern the performance

of an F4 rype aircraft, equipped with a short-range missile, when employed

against a passive target aircraft. Two major areas are considered. First-

ly, thlw definition if those regions in the vicinity of the target where

the attacker's probability of kill (PK) is greater than zero. Secondly,

the investigation of optimal strategies for the attacker which permit him

to penetrate the PK regions.

The question naturally arises as to the attacker's capability when

S7>the target assumes an intelligent, and hence evasive, role. This is

the problem addressed by this thesis.

Thesis Objectives

The primary objective is to develop a method by which the state space

for a two aircraft pursuit-evasion game may be partitioned into escape and

IR capture regions. A capture region is defined as that region containing

all starting points for the game from which the pursuer can exceed a

specified PK(tf) with boresight. An escape region is the converse. The

boundary which separates these regions will be defined as a "PK barrier."

The secondary objective is to consider the dependence (f those re-

gions on the various parameters of the game, and what impact deftnitien

of the regions Elay have on tactics and design.

C--,e Scnnario

The game scenaric has the followinrg esserntinl In.predients:

(a) The dynamiics of both aircraft are hbaed upon the F4 with varfahhl

4
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individual characteristics.

(b) The pursuer is equipped with a short-range, heat-seeking, air-

to-air missile. The pursuer must be boresighted on the evader before

firing the missile in order to permit seeker lock-on.

(c) Regions where the pursuer has a PK > 0 are defined, which the

pursuer attempts to penetrate before firing.

(d) Maneuvering is limitkd to the horizontal plane.

It is recognized that the restriction at (d) above limits direct

practical application. Hovever, assuming planar maneuvers reduces the

dimensions of the game space, and hence of the solution trajectories,

which in turn allows a more simple approach. So great is the problem of

dimension, that the further restriction of constant velocity is also im-

posed in the initial analysis.

Aircraft Model

The following assumptions are made in respect of the aircraft models:

(a) A flat earth with constant graviLaLional acceleration.

((b) The aircraft are point masses.

(c) Thrust is a linear function of velocity, and is tangent to the

aircraft flight path.

(d) Aircraft weight is constant.

(e) Aircraft load factor (n) is governed by

n < 5 (2-1)

(f) The load factor for lift limited flight Is a linear function

of velocity.

(a• Th Adsrag polAr c,½n hb rrereted os

CD - CDO + kI CL2 + k2 CL4 (2-2)
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The aircraft model is presented in detail in Appendix A.

Target Set Model

The target set is defined as that region in the vicinity of the

target aircraft where the attacker's PK is greater than zero. The model

used in this approach is shown in Figure I overleaf. The target set is

modeled as elliptical contours of constant PN. The point 5000 ft directly

to the rear of the evader has a PK of 1.0. The zero PK contour is an

ellipse of semi-minor axis (a) 3000 ft and semi-major axis (b) 6000 ft

centered at the PK - 1.0 point. Thus, for example, the concentric

ellipse with a - 2000 ft and b * 4000 ft represents a PK of 5/9.

State EguPetions of Motion

The dynamic equations are written in a non-rotating frame fixed on

the evader, as shown in Figure 2 (Page 8). The state vector Is

x, A Pursuer's position in %,-direction

x2 & Pursuer's position in x 2 -direction

x3 A Pursuer's heading

X4 A Evader's heading

X5 A Pursuer's velocity

x6 A Evader's velocity

Ujling the aircraft model developed in Appendix A, the state etua-

tions of motion may then be written

i1 x 5 cos x 3 - x6cs x4

x2 - x5 sin x3 - x6sin x4
(2-3)

x3 -
X5

4 6u
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Sx5 -A 1 +xA2 x 5  x5

ý6 ~ ~ 12 p U

16 -, A1 + A2x 6 + A3x 6 + L4 (U. 2 + 1) +AK (Up + )
2 x62

where Up and ue are the pursuer's r-i.I evader's controls respectively.

If the aircraft velocities a!:e constant the Eq (2-3) becomes

xl" VpCOS x3- Veeos X4

2- V sin x3 Vesin x4

-Sup (2-4)

VP

gue
14~

yeV

where Vp and Ve are the pursuer and evader velocities respectively.

i; Target Set ETiuation

In the selected frame of motion, the target set eauation is

(5000 + x1 cos x4 + x 2 sin x 4 )2

o a2
(2-5)

(-xl sin 4 + %2 cOs x4)2
P Kl~a2

where e 3000 ft. The constant "K' defines the eccentricity of the

* elliptical contours. In all cases considered, K is set to a value of 2.0.

Eore-sight Conditlon

The bore-sigbt condition (y) is plhced on the pursuer to enable

acquisition of the target by the missile seeker prior to firing. Math-

ematically stated it is

9
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X Wtf)) - tan x - (2-6)

SuMnarv of the Problem 'Formulation

The variable velocity model is formulated with a six--dimensional

state vector; the constant velocity model. with a four-dimensional state

vector. Mathematically, the number of states could be reduced by one

in each case, since a relative heading variable could replace individual

pursuer and evader headings. However, there are mathematical advantages

in solution with the equations in their stated form.

"The models have the following major restrictions:

(a) Constraint to motion in a plane is unrealistic, since violent

out-of-plane maneuvers can be expected in real air combat.,

(b) The dynamics of the variable velocity model are valid only

for Mach No < 0.9.

The restrictions ceetainly limit the practical reality of the re-

sults, but a simple model of reduced dimension offers, at least initially,,

a better opportunity of developing a solution method. Even in the

A cases considered capture/escape regions are 3-dimensional for the con-

stant velocity model, and 5-dimensional for variable velocity. These

dimensions cause severe practical difficulties in comprehension and

prese;itation.

10



GAAIC/73-4

III. Differential Game Theory

The problem treated in this thesis is fcrmulated as a free time,

zero-sum, perfect information differential game, and the first require-

ment is to estabfih unique solutions for the game. The solution trajec-

tories obtained must then be analyzed to determine whether the game state

space, C, is partitioned into escape and capture regions. The purpose

of this chapter is to define this class of games mathematically and to

summarize those elements of differential game theory which are subseauently

employed. The basis for this theory is contained in references (1), (2)

and (3).

Class of Came
N

V The objective of the differential game is to find

min max J - • (x(tf)) (3-)
U V

subject to the dynamic constraints

x- f(x,u,vt) x(to) Xo (3-2)

and the algebraic terminal constraint

X(x(tf)) = o (3-3)

where x is the n-dimensional state -ector, u is the pursuer's control

and v is the evader's control. u and v may be subject to constraints.

The aim is to find the controls u* and v* such that

J(u*,v) < J(u*,v*) C J(u,v*) (3-4)

If the pair (u*,v*) can be found, they constitute a saAdle point solution

of the game and J(u*,v*) is called the value of the game.

11
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Necessary Conditions for a Solution

The existence of a solution is dependent upon the fact that

mn max J(u,v) = max min J(u,v) (3-5)
u v v u

A necessary condition for a saddle point solution is that the

Hamiltonian (H) defined as

H(x,X;u,v,t) f xTr (3-6)

must be minimized over the admissable set of u and maximized over the

admissable set of v such that

H* min max H max min H (3-7)
u v V U

X is the n-dimensional costate vector and

A_ -(3-8)

subject to the transversality conditions

!(tf) *x(tf) + Vxx(tf) (3-9)

H(tf) - *t(tf) + VXt(tf) (3-10)

where v is an arbitrary constant multiplier.

Further, if t does not appear explicitly in Eq (3-6) then H is con-

stant. An Important outcome of this condition is that H, * and X are not

functions of t in the problem considered and condition (3-10) may then

be written

H(t) - H(cf) - (3-11)

Eq (3-7) implies that the maximization and minimization of H comnute,

which is not true in general. It Is true, however, if H is separable

into two functions, oue of waich Is independent of v, the other independent

of u. For the problems considered in this thesis, f and hence H is

12
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separable. This insures that the minimizing u and maximizing v provide

a saddle point in II at each point of the optimal path.

Singular Controls

When the controls u and v appear linearly in Eq (3-6), then the

possibility of solution arcs with singular controls exists. In the case

of the constant velocity model, this situation arises and singular arcs

occur. The necessary and junction conditions for such arcs are discussed

in Appendix B.

Games of Kind

Isaacs (Ref (3)) introduces the concepts of the "game of kind" and

the "game of degree." In the game of kind, the primary concern is whether

or not termination (as defined for the game) occurs. This contrasts with

the game of degree where termination is assumed to occur, and the player's

objectives are to hasten or delay termination, or to mini•ax a continucus

payoff. The differential game is ccnsldered here in the context of a game

of kind, the object being to determine whether termination occurs from a

given set of starting conditions.

The Barrier Concept. A game of kind in the game space C is assumed,

with a terminal surface X specified. P attempts to penetrate X, while

E attempts to prevent penetration. There are three possible outcomes

(a) P penetrates X (capture)

(b) P does not penetrate X (escape)

(c) P just reaches X, but does not penetrate.

The "neutral" outcome at (c) is that of significance, since the

trajectory resulting In (c) is, in a sense, the only one on which the

strategies of P and E are decisive. That Is, non-ontimnal play by F will

13
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result in P penetrating X, while non-optimal play by P will result in EVs

escape.

The assumption now made Is that C contains starting points which

result in either capture or escape. Generali:-, these points will fall

into regions which are separated by a surface consisting of those starting

points for which the outcome is neutral. This surface is a "barrier",

an example of which may be seeh in the "Homicidal Chauffeur Game" analyzed

by Isaacs (Ref (3)). The barriers give vital information on the relative

capabilities of P and E, and, if they are shown to enclose entirely some

portion of G, then the space is automatically divided into escape and

capture regions.

Construction of the Barrier. This section summarizes Isaacs' work

in Ref (3). The termination of the problem is assumed at tf. A neutral

outcome demands that, while P's path touches X, it does not penetrate.

Physically, this is equivalent to P having a zero rate of penetration at

tf, or that the component of P's velocity normal to X is zero. Math-

ematically this can be written

x4(tf)_(tf) - 0 (3-12)

If a Lagrange multiplier a is defined such that

HD J; . rf (3-13)

and
cl(tf) xx(tf) (3-14)

then Eq (3-12) can be written

HB(tf) - 0 (3-15)

where HB is defined as the "Barrier Hamiltonian.7;

A point on x where Eq (3-15) is satisfied is called the "Boundary

14
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of the Useable Part" (EUP), aince it separates those portions of X where

P has a positive rate of penetration (the Useable Part) and a negative

rate of penetration (Non-useable Part).

There is an obvious equivalence between £-s (3-6) and (3-13). In

fact, in the absence of J, they are identical. Thus, a backward integra-

tion of Eqs (3-2) and (3-8) subject to solution of Eq (3-15) and the

necessary conditions yields the clasvical Isaaes barrier.

The Dispersal Surface

The concept of the dispersal surface (DS) (Ref (3)) is one which

has an important bearing on the analysis of a differential game solution.

Generally, there are two aspects to the given game solution. One is

solution "in the wujall" where, assuming x(tf) and X(tf) are known,

backward integration w!l yield a solution trajectory. However, there

exist singular surfacet.s in the G-space which delineate regions of differ-

ant behavior of the dynamic equa':ions. imcertaining these surfaces is

termed the solution "in the large." The implication of the existence

of singular surfaces is that solittions "in the small" may be invalidated

because of the presence of these surfacos.

A differential. game is assu'.nied, where optimal trajectories have

been obtained k.w. acwald integration of the dvnamic equations. Suppose

also that the paths obtAined 'all into 2 classes and that paths from

each class intcrsect as suggested by Figure 3. If, at the point of

intursection, the states are identical, and the values (payoffs) for

each path are equal, then the Intersection is a point on a DS. The locus

Points or. the DS may also be considered as confronting E witii a

dilemma in choice of strategy, either chocz: -esulting Art an equal value

15
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at termination. The importance of the DS is that it provides a method of

terminating trajectories, and in a given problem may well provide the key

to partitioning G.

The Solution Method

The major observation from the preceding sections arises from the

comparison of Eqs (3-6) and (3-13). The multipliers X and a are not

equivalent since _a(tf) contains no influencing term in 0x as does X(tf)

in Eq (3-9). Thus, In effect, an entirely new problem is posed. Not

only does P have to maneuver so as to attain boresight, but has also to

penetrate a region where he has a PK > 0.

The terminal conditions obtained are not analogous to the EUP, which

is principally dependent on a zero rate of penetration of a specified

terminal surface. The terminal states in the present game are a combina-

tion of both the ability of P to reach C, and to satisfy the boresightr; condition. These two constraints together render the classical approach

inapplicable. Hence barrier trajectories of the type developed by Isaacs

do not exist for this problem, and the development of PK barriers must

then be accomplished by analysis of the solution trajectories.

The approach is based on the foregoing observations on classical

theory. A particular PK contour is specified as the terminal objective,

and an admissable set of terminal conditions determined. Optimal paths

can then be generated by backward integration, and analyzed to obtain the

PK barriers.

It is interesting to note that a BU" in the Tsaacs sense would exist

for this problem if the boresight condition (E,- (3-3)) above were con-

aidered. This classical flUP Is discussed briefly in Chapter IV.

1'
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IV. Determination of Adms:able Terminal Conditions

One method approaching the solution of the pursuit-evasion problem

defined in this thesis is to use a backward integration technique. This

implies complete specification of an admissable terminal point for the

game. The purpose of thin chapter is to develop a method whereby adviissable

terminal conditions may be specified.

Mathematical Formulation

Constant Velocity Model. Based upon the game model, rresented in

Chapter II. the dynamic equations are

V VpCOs x3  VCOs x4

2 * Vpisln x3 Vesin xb

(4-1)
i3 U-

i4 - U- e
Ve

0

(4-2)

A3  Vp(X Isin x 3  x 2Cons x3)

A4 a Ve(-Xlsin xt, + X2 cos W4)

The terminal boresight constraint is

X[(.(tf)] -(tan x3 - t- ) f * (4 )

The objective function is

J I - PK(tf) (4-4)

18
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where

PK 1 (4-5)
S2  4a2

so that
•2

, ~tf)]- - + (4-6)
a2 462 tf

where

p - 5000 +'xicos x4 + x2 sin x4  (4-7)

q - -risin x 4 + x2 cos x4  (4-8)

and 'a' is the semiminor axis of "I given PK contour such that

a2PK" - (4-9)

3(106)

The evader's heading, x4(tf) can arbitrarily be specified as zero,

since only relative heading is of importance. Then, applyikng condition

(3-9)

(tf,) 3__2 (xl + 5000) + vx2 (4-10)
a2 Xl2

x2 V

2a2 X1

v sec 2 x3

(3x, + 20,000) x2

2a2

and hence
2 x

H(t f) 2. [ - (xI + 5000) + v ,-2 (Vpcos x3 - Ve) +

ir 2 -V xy .4-~nx -- 4.~ w 2 -~ p+(

2a 2  xI VP

(3x, + 20,000) tueI
2az 'e 'f
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Now, condition (3-11) requires that H(tf) 0 O, so that setting Eq (4-11)

equal to zero will yield a set of admissable end points for given V., Ves

V, A, u and ue. V and V may be arbit-arily specified, as may a, which

defines the PL contour of interest. The controls up(tf) and Ue(tf) are

selected as those which minimize and maximize H respectively. x2 and x3

are eliminated from Eq (4-11) by using Eqs (4-3) and (4-5). Eq (4-11)

is now reduced to a function of x, and v. Parameterizing in v, the

equation may be solved numerically to yield the condition li(tf) - 0 and

specify A(tf) and X(tf) for a given value- of PK and v.

Variable Velocity Model. It is interesting to note that the end

points determined in the preceding sectioa are also those for the variable

velocity game model. Since 4 and X are independent of VP apd V1, 15 (tf)

and A6 (tf) are zero. Thus equation (4-10) is independent of the equations

defining VP and Ve and its solution yields valid end points for both

game models.

The Classical BUP

A classical BUP in the Isaacs sense can be shown to exist by ccnsld-

ering only the boresight condition In Eq (4-3). Applying conditions

(3-13) through (3-15) yields

X2 XCos x3  x x - X5sin x + iY ec 2x ,,,gur 0 (4-12)25 3 2 6 1 5 3 ± -x5

Eliminating x3 from (4-12) using Eq (4-3) gives
xsx6

X12 + x22 - x2 ( ) - 0 (4-13)gup

It can be seen that Eq (4-13) is the eqdation of a circular BUP

centered on the x2-axis, and which is dependent upcn u., the pursuer's

control (or avallabie rate of turn). TlhysicAly, tha circle enclosce

____ ____ ___ ___ I'-
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those points in the state space where the pursuer cannot hold boresight

on E because of his turn rate limitation.

This SUP does not have any great practical significance in the prob-

lem considered, since the PK regions are not intersected by the regions

defined by Eq (4-13) for the game situations considered in this paper.

The chief reason for making the foregoing observations is to provide the

contrast between the classical'analysis and the solution method developed

here.

The Terminal Conditions

A typical set of solutions satisfying the terminal conditions are

showln in figures 4 and 5 overleaf for V of 850 ft/sec and Ve of 780

ft/sec. Each value of v affords one end point for any given value of

PK" Hence, each value of v results in a locus of end points which is

symmetrical about the xl-axis. Only the solutions for the positive values

of x2 are shown. Several observations can now be made about the ad-

missable end points and their effects on solution trajectories.

End Point Envelope. Figures 4 and 5 show that the solutlon end

points are contained in an "envelope" bounded by the locus of end points

for v - 0. This is typical of the solutions for any values of VP and Ve

at the terminal time, provided V1P > Ve. Numerically, however, Eq (4-lI)

in certain tases gives rise to end points not contained in the v m 0

envelope. These end points are considered Invalid, since it is readily

shown that P, having once attained boresight, can hold boresight with

increasing PK until thL v - 0 locus is reached. In essence, the dynamic

equations are integrated forward in time. E's control is optimal and P's

:outrol. is that required to hold boresfght on E; the PK is shown to in-

crease until the v - 0 locus is reached. The spurious end points are

21
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discarded on the basis of this reasoning,

Evader Control (u.). The evader's control at the final time is

influenced by X4(tf). Considering only the half plane for x2 > 0, the

value of ue*(tf) is that which maximizes H(tg4. Now, from Eq (4-10)

X4(tf) (3xI + 20,000) -2 (4-14)
2a

and the term in It containing ue is

4(tf)x4(tf)- (3x,, + 20,000) H2-- - ue (4-15)
2a2  Ve

Thus

ue*(tf) Uera),Sgn(X4(tf)) (4-16)

Pursuer Control (up). By similar reasoning ta, the previous sub-

section, it can be shown that

up*(tf) - UpmaxSgn(A3(tf)) (4-17)

Thus up*(tf) is entirely dependent on the sign of v.

_summa

The solution iethod developed in this chapter permits the specifi-

cation of terminal conditions for any given set of problem parameters.

Numerical backward integration techniques may now be used to obtain op-

timal t*.ajectorlec frc(' any of the given toryiiinn] conditions.

2".
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Ii•
V. Analysis of the Constant Velocity Model

The admissable sets of terminal conditions for the pursuit-evasion

game can now be specified using the method developed in Chapter IV. The

purpose of this chapter is to consider the generation of PK barriers for

the constant velocity nodel by analyzing optimal trajectories obtained

by backward integration.

Mathematical Statement

The state equations of motion are

'ls VpeoS x3 - Veeos X4

-13 V _
S3Sp

i4 " e-
Ve

The costate differential equations are

ii 0

X2 :0 : C(5-2)

i3 - Vp(-lsin x3 -2e~s x3)

Sh4 e Ve-Xs'n X4 + 12cos x4)

The objective function is

2 2J(tf) E:-- + -- t(53a2  4a 2  tf

where p and q are defined by Eqs (4-7) and (4-8), and the terminal

constraint at tf Is

tan x3 0 (5-4)

Al
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The tranaversality conditions then yield X(tf) jrind H(tf) as defined by

Eqs (4-10) and (4-11). The controls which minimize and maximize H are,,

respectively

-UaS Sn (X 3) (5-5)

ue* uemax Sgn(A4 ) (5-6)

The end point for a given set 9f parameters is determined, and backward

integration of Eqs (5-1) and (5-2) then yields an optimal trajectory.

Singular Arcs. Application of the necessary conditions summarized

in Appendix B give the following set of equations which must be satisfied

if a singular are is to exist for the pursuer!

ý1 . o , (5-7)

+ X - 0 (5-8)

Xlsln x 3 - A2os x3 - 0 (5-9)

"A_ (5-10)
tan x

The optimal control on the singular arc is

up* - 0 (5-11)

Control Seauences. The controls yielded by Eqs (5-5) and (5-6) are

physically equivalent to P and E flying maximum rate turns. Where singu-

lar arcs exist, Eq (5-11) indicates that P flies a straight, level "dash."

These control sequences are typical for the case where the controls appear

linearly in the state equations, since no contInuous monotomic changes

in control can occur. This Is a direct result of applying the necessary

conditions for a minimay, solution.

TroJec t or.Aa _i

There is no known precedent which would iudicatz a standard procedure

26
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for determining partition trajectories. Thus, initially, a number of

trajectories were obtained by numerical backward integration and their

characteristics analyzed. These trajectories are considered in a coordinate

frame relative ro the evader which is centered at the PK 1 1 point and

rotates with the evader. The transformation to the p-q coordinate frame

is accomplished by applying Eqs (4-7) and (4-8).

In the subsequent analysis, the game parameters are

Vp 850 ft/sec

Ve - 780 ft/sec

a - 2000 ft

v variable

Thus P's objective is to reach a region where PK t 5/9 with'bore-stght,

and E attempts to prevent this termination. Computation of a possible

end point is equivalent to assumging termination, and backward integra-

tion then yields the paths and strategies which would result in the given

ending for a free time differential game.

Figure 6 (Page 27) shows a typical trajectory depicted in the p-q

frame. P's heading at various points is shown by the arrows. The first

consideration concerns the juxtaposition of P and E at the point labelled

"A". Assume that the game were to commence at this point, and consider

p's velocity in relation to the velocity of C (Vc) as shown in Figure 7

overleaf.

It is heuristically obvious that E's best strategy at this point

would be a turn to the right, thus moving C away from P. Vc is a combina-

tion of V and the angular velocity due to E's turn rate (x4). The velocity

is greater than Vp, and hence E could prevent P from reaching C and

terminating at the specified end point, The deduction made from this

2L
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VC RESULTANT VELOCITY
\ F 'C' C 900

ANGULAR
VELOCITYOF 'C'ý- 1150 \.t ",

OF''JO:7 TERMINAL\\ SURFACE 'C'

"V 780

VELOCITIES IN F T/SEC

P-URSUER AT POINT 'A' OF FIG. 6

Figure 7. Comparison of V. and V.

reasoning is that, at some point, the trajectory in Figure 6 has crossed

a singular surface; specifically, a dispersal surface. This invalidates

a portion of the trajectory. The questio, which then arises is how to

Identify and locate the dispersal surface.

The Dispersal Surface. From Chapter I11, the major renuirements for

a dispersal. surface are:

(G4 Intersection of paths of different classes.

(b) At intersection, the ztates must be identical.

(c) The payoff at termination is the same for each path.

Reconsidcring Figure 6, it can be observed that for each end point

on tle positive q half-frame, there is a "mirror image" end point in the

negative half-plane. Thus the end points are syv'metLical about the p-axds,

29
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as are the resulting optimal trajectories. A direct outcome of this ob-

servation is that symmetrical trajectories intersect on the p-axis. Hence

the requirements at (a) and (c) are fulfilled, the payoff for the present

example being a PK of 5/9 at tf.

Considering requirement (b), it is seen that, at the intersection of

symmetrical trajectories, the positional states p and q are equal for

coincidence. However, the relative heading state (x 3 -x 4 ) is not the same

for both trajectories. Although the magnitudes are equal, the directions

are not. lu only one case can coincidence of all three states be obtained

for symmetrical trajectories and that occurs for x 3-x 4 (i.e., co-heading)

at intersection on the p-axis. If two such symmetrical trajectories can

½o be found, then at least one point on the dispersal surface can be identified.

The trajectory analysis reveals that the end Points defined for v<0

result in trajectories that contain a switch of UP from +UpMax to -Upmax-

This is a dirýZt consequence of X3 passing through zero at some point in

the trajectory. Further study shows that for some value of u<0 the

conditions -iven by Eas (5-8) through (5-10) are satisfied, and hence that

a singular arc exists. In all the cases studied, this singular arc provides

a means of obtaining the previously discussed point on the dispersal surface.

Singular Arc Trajectories. The satisfaction of the necessary cond.-

tions for a singular arc essentially devolves into a one parameter search

over the values of v<0. Only one value of v results in the satisfaction

of the junction conditions for a singular arc for a given value of VP,

Ve and PK(tf). Once the conditions (5-7) through (5-10) are reached, P's

control is switched to the optimal. value of zero (Eq (5-11)). Backward

integration continues, and optimality of the resulting paths Is maintained.

A further characteristic of the singular arc is that ut may be

30
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switched arbitrarily to +Upmay at any time on the arc while retaining

optimality. The major importance of the singular arc is that it resLits

in an infinite number of trajectories. By judicious manipulation of the

time at which P's control is switched, once ot. the singular arc, a trajec-

tory can be obtained which intersects the p axis in such a way that the

relative heading (x 3 -x 4 ) is zero at the point of intersection. By the

previous reasoning, this point is on a dispersal surface, and the trajec-

tories which produce it can be terminated at the point of intersection.

Partitions of the Came Space

The foregoing section discussed the ronstruction of optimal trajec-

tories and the presence of a dispersal surface. A method was also devel-

oped whereby at least one point on this surface may be defined. Two

factors now require consideration:

(a) Whether the game space is in any way partitioned.

(b) If partition is shown to exist, how it can be diagrammaticallv

represented.

The Existence ., Partitions. Observation of the behavior of many

optimal trajectories for -3.0 < v < 0.4 indicates that the point (DS)

identified as being on the dispersal surface bounds the values of p at

which all other trajectories intersect the p-axis. The t'zpical case is

illustrated in Figure 8 overleaf by several example trajectories. From a

heuristic standpoint, the above observation nakes sense, since the point

ADS (Fig 8) includes the most advantageous heading for P on the negative

p-axis. 'Hence, it could be concluded treat, from a starting point at which

xi-x4 - 0. P can achieve a P,(tf) - 5/9 from the least advantaneous point

on the negative p-axis, i.e., the point furthest from C. The question Is

whether this bound can bc established mathematically.

31



cqq

E-4

C,4)

cr ..
C)2

W

322

............



GA/MC/73-4

The Definition of Partion. A linear perturbation analysis is devel-

oped in Appendix C which is used to show that .DS includes the least value

that p can assume for termination at P11(r.f) - 5/9. Effectively, the

costate values X(t) can be regarded as influence coefficients on the payot!

function T, where

J - (x) + VX(x) (5-12)

itf

If 'zDS is defined as the starting point for the game at time t to, then

it can be shown that

A. _M XT(to)wo
• • T (t_)Ax(to) (.5-13)

Thus the effect of small perturbations Ax(to) on J can be investigated

for 1DS by considering the sign of AJ. Further, assuming bore-sight at

tf, X(x(tf)) - 0 and thus

. - *(x(tf)) (5-14)

Since 1 - -PK (from Eq (4-4)), it follows that a positive AJ represents

a reduction in PK(tf).

Table 1 below shows the approzimate values of X(to) for the two

trajectories which intersect to give the point .DS.

Table I

Values of IDS(to) at -!DS

Trajectory I Trajectory 2

(q(tf) > 0) (q(tf) < 0)

X (t -. 00046 -. 00046

X (t ) +.00044 +.400044

"3(to) +.00001 -. 0000i

Three observations iyiv be made about the behavior of LJ due to arbitrary

33
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(a) Negative Ax1 always result in a reduction in PK(tf) for constant

x, and x3 . Thus, by definition, E escapes.

(b) Positive Ax1 always results in an Increase In PK(tf), I.e.,

P captures.

(W Either + Ax2, or + Ax3 result in a reduction in PK(tf) Eor the

two trajectories, thus relieving E of his dilemma over choice of strategy

at to, and enabling escape.

The conclusion made is that the point xnS is one bound for the starting

points on the p-axis from which a PK(tf) - 5/9 can be achieved. As such,

V _D, provides a partition of the game space.

Obviously, the starting points discussed above are also bounded at

some point on the positive p-axis. Physical argument indicates that this

point is the point on the axis where PK - 5/9 and P is bcresighted on E.

This point is labelled ?S, in Figure 8. It is readily deduced from the

dynamics of the game that P cannot capture from a point nearer to E on

the p-axis than X-pB

The overall conclusion made is that, at least for starting points

on the p-axis, the game space can be partitioned into sets of points which

represent escape and capture regions.

Partition Diagrams

The optimal trajectories developed for the constant velocity model

are 3-dimensional, the variables being the two 1,osition coordinates and

the relative heading. This raises the problem of presentation. Two

methods appear to be available:

(a) Projection of the trajectories on to one plane of the space.

(b) Parameterization of one of the variables.

3.4
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Both of the possibilities offer advantages. Using one variable as a

parameter allows the neutral starting points to be represented as a two

dimensional curve enclosing the capture sp7ce. Projection permits the

capture space to 'e diagrammed as bounds on two of the variables. Both
methods are consi.dered.

The Parameter Nethod. Partition of the values of p has been shown

for those starting points on the axis co-linear with V (the p-axis).

Effectively, this represents a parameterization in q for q-0. Charac-

teristically, each optimal trajectory obtained for the game intersects

the p-axis (q-0) at particular values of p and (x 3 -x 4 ). The perturbation

analysis previously developed can be used to show that the relative

heading at intersection is critical, and thus represents a boLnd on the

pursuer's heading for termination at PK(tf) 5/9. For q-0, the game

space can thus be divided into escape and capture regions as shown in

Figure 9 overleaf.

The Prolejtion Method. The obvious plane on which to protect the

capture region is the p-q plane, since this represents a simple physical

interpretation. To fully define the capture/escape regions, the pro-

jections would enclose all the positions (p,q) from which P could attain

capture given that his heading was sufficiently advantageous. The bound

on the region would be those points where P had the most advantageous

heading and could achieve a maximum PK(tf) of 5/9.

The methods developed here do not include a simple way of obtaining

a complete par'tition of the game space. Each value of relative heading

requires consideration and the bound on position nust be established for

ea'i%. So far, it appears that this can only be achieved by a i o,, atu

tedious analysis of the optimal trajectories obtained from all advissable
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end points.

However, It seems from the results obtained that a reasonable

approximation can be made. Analysis of the available trajectories re-

veals that the singular arc trajectory "encloses" (in the positional

sense) all other trajectories except those resulting from a switch in

up on the singular arc itself. An approximate partition made on this

basis is shown in Figure 10. The escape region could be considered as

the positions from which P cannot capture regardless of heading. It

should be remarked that this partition is not mathematically Justified,

but represents the author's interpretation of the optimal trajectories

studied.

Suma~ry.

This chapter contains the major part of the analysis of the problem

of defining the escape and capture regions for the pursuit-evasion game

studied. The analysis was achieved by a largely experimental means, that

is, by physical examination of the optimal trajectories generated.

Mathematical deduction enabled specific definition in some cases, but in

general no compact analytical method could be develoned. However, there

appears to be sufficient evidence to suggest that the game space for this

class of game can be partitioned into escape and capture regions.
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VI. Anal ysis of the Variable Velocity Model

Chapter V dealt with the major part of the analysis done on the

pursuit-evaston problem treated in the thesis. A certain amount of

effort was expended on the variable velocity model, and the purpose of

this chapter is to show the formulation and discuss the solutions obtained.

Mathematical Statement

The state and costate differential equations are

H 11 " x5 cos x3 - x6 cos x4

-2 x 5 sin x3 - x 6 sin x4

.. a

;4 U a
X6

2¾A A5  )

5 A I + A2X5 + A3'52 +-4 (1P2 + 6+ 6 + 1p
X5 X5

i6 A AI + A 2 X6 + A3X'ý2 + ýA4 'Ue2 + 1) + AS-•- (u e2 + 1)2

X62 x66

Al- 0

A3 a x5 (XIsin X3 - x2cos Xc3 )

A4 a x6 (-AIsin x4 + Xt2cos N4) (6-2)

A -X Cos x3 - A2sin x3 + X3 U u 5 [A2 + 2A3x5
A4 ~5 (, 26

(.,251) - :_A (..2 +1)21

x5 x53
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X6 XlCoS x4 + X2 sin x4 + A4 R ue- X6[A2 + 2a 3 x 6

- ,4- (I-e2 + 1) - 6A e2 + 1)2J63 x7

When the optimal controls are intevior to the control constraints, then

for the minimax value of H It is necessary that:

0 and H 0 (6-3)
Sue

Application of these conditions gives the two equations:

3  A4 x5
4  X3 g x5

5S+ ( + 1)u,0(-4.

2A5 X5 4A5

, 3 A4x64 14 9 X6 5

ue + + 1) Xe 0 (6-5)
2A 6 4A5

Examination of the coefficients of Eqs (6-4) and (6-5) shows that the

equations have one real root. Numerical solution yields up and ue.

The minimax value of H may be verified by the sufficient conditions:

H* > 0 and P* <0 (6-6)

0pUp Ue Ue

If the optimal controls are on the respective constratnt boundaries,

then the minimax of H is obtained by the direct application of Eq (3-7).

Trajectory Analysis

To enable comparison with the constant velocity results the same end

point conditions were used, i.e.,

X4 (tf) - 0

xs(tf) - 850 ft/sec

X6 (tf) -780 ft/sec

v variable

40



GA/MC/73-4

A number of optimal trajectories were obtained and subjected to a

sirailar analysis to that used in the constant velocity model. The

trajectories obtained behaved in very much the same manner as for the

previous model. However, the same conclusions are difficult to draw

because of the introduction of variable x 5 and x 6 (Vp and Ve) which adds

two dimensions to the solution trajectories. These are now 5-dimensional,

as would be the resulting captUre/escape regions of the game space.

The problem introduced by the added dimensions proved insuperable.

When the analysis was commenced, it was hoped that the aircraft velocities

on the solution trajectories would remain largely constant. This did not

prove to be the case, and no acceptable method could be found of handling

the added dimensions diagrammatically. Powever, some generpl conclusions

can be made.

Dispersal Surfaces. The existence of a dispersal surface for the

variable velocity model can be demonstrated by similar reasoning to that

employed previously in Chapter V. It also appears from observation of

the solution trajectories that the point on the dispersal surface on the

p-axis provides a bound on starting points on this axis. However, even

when q is set to zero in this way, the starting points from intersections

on the p-axis are 4-dimensional, and conseouently difficult to represent

by diagrams.

Capture/Escarc Regions. The tralectory which yields the point

(?!DS) on the dispersal surface also appears to play an important role in

defining escape and capture regions. in the projection on the p-q plane,

the trajectory yielding xDS appears to "enclose" most of the trajectories

which have the r.ýquired ending. It does xiot, as such, constitote a

mathematirql partition of the game space, but it does provide an Indication
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I
of the size and shape of the projection of the partition. This in turn

gives an indication of the capability of the pursuer to.achieve capture.

Figure 11 overleaf shows the trajectory which results in 2ýDS for the present

case. As before, the position coordinates xI ind x2 are transformed to

thz p-q frame by using Eqs (4-7) and (4-8).

•- ~Summiar

SThe results achieved for the variable velocity model do not enable

the definition of escape and capture regions for this model. However,

some contributions are made. The presence of the dispersal surface is

demonstrated, and the trajectories obtained give an indication of the

I pursuer's capability against a maneuvering opponent.
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VII. Discussion of Results

The purpose of this chapter Is to discuss the results obtained,

and to consider some of the possible implications of the methods developed

in the thesis. Also considered is the extent to which tbh thesiz objec--

tives were achieved.

Thesis Objectives

The thesis objectives were threefold:

(a) To develop a method of defining escape and capture regions for

a two aircraft pursuit-evasion game.

(b) To consider the dependence of these regions on the variables
A

i• in the problem.

(c) To consider the impact that definition of the regions might

have on tactics and design.

The second two objectives are, of course, dependent on the first; these

are discussed subsequently.

It is felt that the primary obJective has only partially been

attained. Partition of the game space into escape and capture regions

was achieved in only certain cases for the most sImple model. However,

the methods developed appear to offer possibilities to future researchers,

and represent at least the initial steps toward complete solution of the

problem.

Analysis Methods

The methods used here to analyze solution trajectories are largely

empirical. That is. many trajectories were penerated and conclusions

made from their physical behavior. It does not seen that any concise

analytical method exists which would reduce this physical effort. A
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second major problem, previously mentioned, concerns the dimensions

of the game space and the solution trajectories. The inability of

conventional graphical techniques to handle surfaces of 4 or more dimen-

sions handicaps the analysis of solutions. Removal of this restraint

would also ease the difficulties encountered in presentation of the

solutions.

The most basic ingredient'of the methods used was to specify the

sets of admissable end points for the differential game. While this re-

sults in many trajectories which may be tedious rý analyze, it avoids

the necessity of solving a two point boundary value problem (TPBVP). The

TPBVP in a differential game can be extremely difficult to solve be-

cause of the iterative nature of solution methods. Also, the solution

HI provides information about only one trajectory, some portions of which

may be non-optimal due to the presence of singular surfaces in the game

space. In contrast, provided admissable end points can be specified,

backward integration is a very speedy and simple method of obtaining many

solution trajectories. This type of approach may well have applications

in other fields of optimal control and differential games.

Variation of Came Parameters

Some effort was made to evaluate the dependence of the partitions

of the space on the game parameters, but insufficient analysis was

achieved to enable specific conclusions to be made. The most significant

parameter is considered to be the distance that the PK region is from E.

¶ At maximum load factor of 5, E's turn rate is about 0.2 rads/sec, which

means that the PK - 1.0 point has an angular velocity of 1000 ft/sec.

This single factor contributes greatly to E's ability to escape. Reducing

Ve causes E to be lift-limited in flight (Appendix A); at the velocity

r:
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used in illustration (780 ft/see) E's turn rate is still about 0.18 rads/

Ssaec.

Some experiment was made in two areas for the c.onstant velocity

model:

(a) Increasing P's velocity advantage over E

(b) Arbitrarily reducing E's turning capability (uemax).

Both these variations produced results analogous to the case analyzed

in Chapter V with the expected increase in the sizes of the capture regions.

However, beyond a certain reduction in uea, the behavior of the solu-

tions changed. The envelope of admissable end points reduces in size,

and no singular arc trajectories can be found. In addition, those

trajectories examined did not appear to enclose the capture, space in the

same manner as before. The value of uem at which most investigation

was done was equivalent to a maximum load factor of 2.5.

Insufficient investigation was achieved to allow specific conclusions,

but the following obiervations are made:

(a) It is probable that solution trajectories are non-unique; that

is, two or more trajectories have the same end point. The analysis of

numerical solutions is then invalid.

(b) Consideration of solutions for low values of PK (e.g., PK = 5/9)

may be misleading when E's turning capability is drastically reduced.

This is because P may be able to excede the selected PK(tf) easily from

a great variety of "advantageous" positions. Solutions with a low value

of PK(tf) may then only have significance if they arise from initial

conditions at which P is at a dis.zdvantage relative to E.

Tactical and DesisnmT=icatlons

As previously stated, the simplicity of the aircraft models used In
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the thesis limit the conclusions that may be drawn about real air

. •combat situations. However, there are inferences which are considered

to have some validity.

The most obvious conclusion is that the capture regions are ex-

tremely small for two-dimensional maneuver. The single most important

factor contributing to this is the angular velocity which the PK, regions

move as a result of the evader*s turn rate. In reality, however, the

situation is not quite as adverse as it appears, since current analysis

shows that the pursuer dnes in fact have some opportunity for a "side-

shot." That is, in turning, the evader opens up a PK region on the

inside of the turn. This was not modeled for thin investigation, and

represents an area where further fruitful research might be- accomplished.

Also it is difficult to logically extend the results of this in-

vestigation to three dimensions. One observation is that the results ob-

tained here are valid for motion in any plane in the absence of gravity.

An inference from this is that it Is difficult to see how the pursuer's

capability could be improved in three-dimensional maneuver. Specific

results in this area are once agAin subject to a great deal more re-

search.

From the tactical view point, it is felt that there is sufficient

evidence from this research to indicate severe limitations on the use of

this particular airborne missile system. While its performance against

an unsuspecting target may be adequate, evasive maneuvers on the part of

the evader cause a great reduction in the pursuer's capability.

In the design field, the approach presented here is felt to have

considerable potential. This putential lies not only in evaluating the

capability of a given system, but also in the comar~ion of different
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weapons systems. Realization of the potential is dependent upon several

factors. A refinement of the general approach developed is necessary,

amd the obstacle of graphically displaying multi-dimensional surfaces

must be overcome. Of the two, the latter presents the greatest problem,

and solution would greatly benefit future research.

i ~summary_

In general, the research presented here has met with limited success

in relation to the overall objectives. However, several original solu-

tion methods are employed, and the development potential offers many

opportunities for future research.
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VIII. Conclusions and Recommendations

Conclusions

A two aircraft pursuit-evasion game has been posed as a free time,

zero sum, perfect information differential game. A method of determining

admissable end points to the game was developed, permitting the use of

numerical backward integration techniques to produce optimal trajectories.

Two aircraft models were used, in both of which motion was restricted

to level flight at constant altitude. The simpler model had the addition-

al restraint that both aircraft move with constant velocity. Examination

of the optimal trajectoriei obtained yielded a partition of the game

space into escape and capture regions under certain conditions for the

simple miodel. Complete partition of the game space was not achieved for

either model, but the existence of partition is shown, and a general

approximation made -within the limits of the graphical techniques available.

From the practical standpoint, it can be concluded that a weapon

Ssystem with characteristics similar tothose considered in the preoset
case may have severe limitations when faced with intelligent opposition.

Although the constraints imposed in this analysis are unrealistic in some

senses, there is sufficient evidence to make the preceding conclusion.

In terms of evaluating the capability of air-to-air weapon systems,

the methods developed here are considered to have significant potential;

this potential is dependent upon further refinement of the techniques

employed.

Recommendsations

The methods developed in this thesis represnt the first steps

towards an analytical solution to the problem of defining escape and

4
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capture regions for aerial pursklit-evaaion games. The greatest hurdle

• encountered was the gcaphical limitations on presentation. In the

event that further research is attempted, the following areas are

recommended:

(a) Refinement and generalization of the analysis of optimal.

trajectories generated by backward integration.

(b) Determination of graphical methods for demonstrating aulti-

dimensional surfaces and trajectories.
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Appendix A

Development of the Aircraft Model

Pu~rpose

The pur-puse of this appendix is to show the development of the

aircraft dynamic model used in the thesis. The model is generalized

to 3 dimensions and then specialized to the final planar model used.

Aircraft Dynamics

The model is based upon empirical data for the F4-E published in

Reference (4). For each of 3 altitudes analytic functions are developed

for thrust (T) and lift limit. The coefficient of drag (CD) is related

analytically to lift coefficient (CL) for subsonic flight with validity

up to a Mach No (M) of 0.9.

Thrust (T). Both aircraft are assumed to be using full after-

burner thrust during combat. Figure 12 overleaf shows the variation

of thrust with velocity and altitude. A linear approximation to the

curves over the velocity range of interest yields

T - a + bh + cV (A-I)

where

a - 22,346.7 lb

b - 0.7018 lb/ft

c - 18.141 lb/ft/sec

For a constant altitude of 20,000 ft. the relation becomes

T - 831.0.7 + 18.141V (A-2)

Lift Limit. The maximum lift that can be developed for a given

velocity is
1 V2SL - P-V SCLmax (A-3)
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and load factor (n) is defined as

n.-L (A-4)
W

hence the maximum load factor attainable is

nmax CLmax

2 W

For flight regimes where n is not limited by Eq (A-5), the maximum

value of n is taken as 5. This represents a realistic limit imposed by

a pilot's capability to withstand sustained acceleration forces. LiftI. limited load factor is phr:tted against velocity in Figure 14 (Page 56)

with altitude as a parameter. A linear fit gives

n - 0.16 + (0.01422 - .000304h) (V - 250) (A-6)

For planar flight at 20,000 ft

aa 01.875 + .00814V (A-7)

Dra_ Coefficient. CD is graphed in Figure 13 (Page 54) as a

* function of CL. A quartic curve fit is made, giving

CD -CDO + k1 CL2 + k2CL4  (A-8)

where -DO 0.0185

k - 0.1007

Sk2 0.3261

E-1ESations of Motion

Figure 15 (Page 57) shows dlagramaticallv the variables used to

describe the aircraft states in 3 dimensions- The equations of motion

may be writttan

x - VcosycosE)

yr Vcosysine
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S- Vsiny

SLsin4• (A-9)
oWVcosy

V W

V , • (T - D)

Constant altitude flight requires that
4

Lcos4 - W (A-10)

and hence

.n -. (A-l)SW coso

thus

sin=: + :(nI2:;)1/2 (A-12)

If the control, u, is defined by

U + (n2-i)1/2 (A-13)

then for constant altitude flight, Eq (A-9) can be written

x - VcosO

-y VsinO (A-14)

V

V - •- (T - D)
W

The limits on u such that

Umn <u <. u x (A-15)

are imposed by the lirAts on load factor n.

The drag is given by

)D P- V2S(D + 2 + k C 4) (A-.A1)

&a U
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and

.. 
CL , L ___(A- 

i 7)

S~thus2

hD A3 V 2 +A 4 (u2+1) A5(u 2+1) 2
D -- + A + V ( A -1 8 )

v2  v 6

where A (A-19)
2kW

A4 - 2kW 
(A-20)

pS

2k2W 
4

A5 "kW (A-21)

From Eq (A-2), thrust can be written

T w A1 + A2 V (A-22)

Using Eqs (A-lb and (A-22), equations of motion become

x - Vcose

y- VsinO

* gu
v

A4 (u 2+1) A5 (u 2+1) 2

V A1 + A2V + A3 V2 + + (A-23)v2 v6

For constant velocit. flight V - 0.
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Appendix B

The Necessary and Junction Conditions

for Singular Arcs

0 ?r~se

The purpose of this appendix is to summarize the necessary and

Junction conditions for singular arcs in the optimal solutions to a

differential game where the players' controls appear linearly in the

Hamiltonian. The summary is based upon the derivation developed In

*3 Ref (1).

Problem Formulation

The state equations are

; _af(x,u,v) (B-i)

and f is linear in u and v. The Hamiltonian (H) is

H H X.Tf (B-2)

where x is the n-dimensional state! vector, and X the n-dimensional co-

state vector, subject to

X - (B-3)

The terminal values x(tf) and X(tf) are assumed specified.

A payoff function J. is specified and the objective of the game is

to find u* and v* for the saddle point solution

min max J (u*, v*) - max min J (u*, v*) (B-4)
u v v u

over the time internal [ro, tf]. The controls u and v are subject to

the constraints

)ui I,,I j vj (B-5)
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Necessary Conditions

For a saddle point solution in J, a saddle point in H is necessary

such that

min max H - max min H (B-6)
U V V U

If switching functions SQ and S are defined such that

F SM(x4) (B-7)

).~~S LvX,-.) ,,,•_t•(B-8)

then the saddle point controls ace given by

if Su < 0
• ) (B-9)

u -Umin if S > 0

v-v 3 a if Sv>0

v -vmn if Sv < 0

i ar Solutions

Due to the linearity in u and v, the Hamiltonian may be written

H-A j(x)+Su u+Sv v (B-1l)

Assume that Su - 0, so that H becomes independeat of u; thus minimization

of H with respect to u is not possible.

Necessary and Junction Conditions. It can be shown that along a

singular arc, in general

Su(_X,) u( (x.,) 0 (B-12)

where ,;uccessive differentiation yelds a funerion, which is explicit in u

(2q)
S (x,X,u) - 0 (B-14)
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Eq (B-14) ray be solved to yield the minimizing u* on the singular arc,

K.) and Eqs (B-13) must hold across the junctions between singular and non-

singular arcs.

One further necessary condition is that

3 (2q)
L 8 su 2 ] 0 (B-iS)au

where q is odd.
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Appendix C

Development of Influence Functions

for a Differential Came

Purpose

The purpose of this appendix is to show how the costates (X(t)) can

be used as influence functions to determine the effect of small perturba-

tions (Ax(t)) on an optimal trajectory for a class of differential games.

Mathemat icalI Development

A differential game is assumed with augmented objective f~xnction

J = 4(x(tf)) + Vx(x(tf)) (C-i)

subject to the differential constraints

.(XS UM (C-2)

where the controls, u and v arc bounded by

umn u umax (C-3) ,

V <V<V (C-4m)

The Hamiltonian, Ii to formed such that

H-A f (C-5)

whence, application of the necessary conditions for optimality yields

S, _f T X (C-6)

with the end conditions

(tf) , 3 (C-7)

making a first order expansion of Eqs (C-2) and (C-6) at some time, t

Ax_- Ax f Au + f 6v (C-e)
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T
f - (C-9)

Combining Eqs (f-8) and (C-9)

..T + jT &x XT(fr Ax) + XTf Au + XZf Av (C-10)

•,' -(,XTf )AX

X ll• + +X IVA

On an optimal trajectory, the necessary conditions following must be

satisfied if u and v are unconstrained

(c-l.
•. , -u - 0 , Hv = 0 (C - 11 )

Hence from Eq (C-5)

fu, 0.o -f o (C-12)

If u and v are on the constraint boundaries then

A- 0 AV 0 (C-13)

Using Eqs (C-12) and (C-13) in Eq (C-10), then
T•_ A.• + i•T Ax, . o (C-14)

and hence

o f (WTx + JTx)dt - I d- (XTAx)]dr- 0 (C-15)•'to to d

-X _ -1 Q =x) 0 (C-16)

:. ( x ~ ) f ( T ) t o

_Xa) _X - X) (C-17)

Now, from Eq (C-i)

L. &,, (.T A")(CIR
"x -'It tf

Thus, combining Eqs (C-7) and (C.-18)

W Q Ax)I (C-19)
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"The implication of Eqs (C-17) and (C-19) is thac

A T- (X _ ((C-20)

Thus, it can be shown that the contates at to ('(td) are influence

coefficients on XJ at tf, allowing the determination of the effects of

some Ax(t on the objective function, 3.

r
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