AD-768 220

PROCESS ENGINEERING DESIGN FOR MANUFACTURE OF GUANIDINE NITRATE

HERCULES, INC.

PREPARED FOR Picatinny Arsenal

. . . .

August 1973

DISTRIBUTED BY:

. . .

National Technical Information Service U.S. DEPARTMENT OF COMMERCE HERCULES INCORPORATED KENVIL, NEW JERSEY

AD

y. I - Mai

PROCESS ENGINEERING DESIGN FOR MANUFACTURE OF GUANIDINE NITRATE

Final Report

APPENDICES FOR VOLUME I

(Unclassified - Department of the Army)

N. W. Steele J. A. Doyle M. G. Whippen

August 1973

Prepared for

DEPARTMENT OF THE ARMY PICATINNY ARSENAL Dover, New Jersey 07901

Contract DAAA21-71-C-0193

HERCULES INCORPORATED Wilmington, Delaware 19801

Reproduced From Best Available Copy

1

Distribution of this document is unlimited

NATIONAL TECHNICAL INFORMATION SERVICE

768220

PROCESS ENGINEERING DESIGN FOR MANUFACTURE OF GUANIDINE NITRATE

ىرى بىر بېرىنىيە بىرىمەن يېرومىد قاتلاركى بار بىرىمەن بىرىمە

And the state of the second

.

Final Report

APPENDICES FOR VOLUME I

N. W. Steele J. A. Doyle M. G. Whippen

HERCULES INCORPORATED KENVIL, NEW JERSEY

The findings in this report are not to be construed as an official Department of the Army position.

TABLE OF CONTENTS

<u>Page</u>

.

 $\phi_{1,1}=\phi_{1,2}\phi_{1,2,2}\phi_{1$

「「「「「」」」、「」」、「」」、「」、「」、「」、」、」、」、」、

APPENDIX	I	PHASE I INFORMATION (LA ECONOMIC AND TECHNOLOGY	BORATORY, ENGINEERING, STUDIES)	I-1
		Appendix I-1. Packed E Appendix I-2. List of Bed Reac	ed Model Program (Continuous Packed tor Model)	I-1 I-17
		Appendix I-3. Continuo Appendix I-4. Listing	us Stirred Tank Model of Program (Continuous Tauk Reactor Model)	I-27 I-34
		Appendix I-5. Cost Stu Appendix I-6. Mathemat	dies ical Reactor Printouts	1-40 1-57
APPENDIX	ĬL	PHASE III, PART 1 (GUAN OPERATIONS) - FIGURES A	IDINE NITRATE PILOT PLANT ND TABLES	II-1
APPENDIX	III	PHASE 111, PART 2 (RESO PROBLEM) - TABLES	LUTION OF CATALYST POISONING	III-l
APPENDIX	IV	HAZARD EVALUATION AND R GUANIDINE NITRATE (Repr	ISK CONTROL FOR KENVIL int of Summary Report)	IV-1
APPENDIX	v	LITERATURE SEARCH - REL GUANIDINE NITRATE FROM	ATED TO PRODUCTION OF UREA	V-1

Preceding page blank

<u>Lii</u>

APPENDIX I - PHASE I

LABORATORY, ENGINEERING, ECONOMIC AND TECHNOLOGY STUDIES

Ľ

and here and

and the second second

1

Appendix I	-1	Packed Bed Model
Appendix I	- 2	Listing of Program (Continuous Packed Bed Reactor Model)
Appendix I	- 3	Continuous Stirred Tank Model
Appendix I	- 4	Listing of Program (Continuous Stirred Tank Reactor Model
Appendix I	- 5	Cost Studies
Appendix I	-6	Mathematical Reactor Printouts

APPENDIX 1-1

PACKED BED REACTOR MODEL

In this section, a detailed description of the packed bed reactor model is given. The method of numerical solution of the ordinary and partial differential equations is also treated.

Model Development

The model for the packed bed reactor is based upon material and energy balances for the system. By considering an annular ring of differential size, the following ordinary and partial differential equations for the concentrations and temperature at every point in the reactor may be written:

(1) $\frac{lN_{iin}}{L_{ii}} = \frac{1}{l} \left[\frac{l}{l_{iin}} + \frac{l}{l_{iin}} + \frac{l}{l_{iin}} - \frac{l}{l_{iin}} \right]$

(2) the - I Right Mar and

(2) dillar = 1 RAN Port - dani di 7

(4) $\frac{dL}{dz} = Rai provinci$

(Gas actually 2 NHz (5) der = 3 · Ren · A. + CO2 & not AC; Rig = 3 King) (6) $K_E \left(\frac{\partial^2 T}{\partial x^2} + \frac{1}{x} \frac{\partial T}{\partial x} \right) - \frac{1}{x} \frac{\partial T}{\partial x} - \frac{1}{x} \frac{$ = HR: Ran PB where Rov = Nu: NAN · Ken l (?) Ru = - Min · MAN · Ken & - Fu/RTime · (F) RAN = - RGN (7) $\phi = C_1 \cdot L' + C_4 G'$:/**)** $(11) \quad \dot{\mathcal{U}} = C_{1} \cdot \frac{dL'}{dL'} + C_{4} \frac{dG'}{dZ}$ 621 Nov + Nov + Now = / (5) TAVE = 27. 5 T(x) - 1 dr

1-2

The definition of the variables used in these equations can be found in the List of Symbols included at the end of this section.

第六世の第一世界を決める大学を いいないのないのないない

Equations (1), (2), and (3) are the material balances for guanidine nitrate, urea, and ammonium nitrate and describe the variation in mole fraction for each component in the axial direction. The mole fractions have been assumed uniform in the radial direction. This is a reasonable assumption in packed bed operations since the catalyst particles contribute to a lateral movement of fluid leading to mixing in the radial direction. In addition, the time associated with convective transport of material in the axial direction will far outweigh any contribution due to radial concentration gradients. The first term on the right-hand-side of Equations (1), (2), and (5) accounts for the production or removal of material by chemical reaction. The rate expressions used here and defined by Equations (7), (8), and (9) are those obtained through the analysis of the kinetic experiments of this project as presented in last month's report. The second term in the material balance equations accounts for the effect of the change in melt volume due to chemical reaction on the variation in mole fraction with axial position. Equation (4) is obtained by summing Equations (1), (2), and (3) and recalling that Equation (12) also applies. Equation (5) describes the rate of production of gas as a function or and publicion and assumes that the gas is generated only by those reactions that

produce guanidine nitrate, and that an insignificant amount of gas is generated by side reactions. This is in keeping with the experimental results of this project in which no gas other than that going to ammonium carbamate was detected.

and particular and a second

Equation (6) is the energy balance for the packed bed reactor and describes both the radial and axial variation in temperature. Axial and radial temperature profiles are important, since the reaction rates are a strong function of temperature. The yields, conversions, and concentration profiles will be directly affected. In addition, the maximum allowable radial temperature difference will determine the maximum diameter of the packed bed reactor.

The first term in Equation (6) accounts for the energy transfer in the radial direction by conduction. All resistances to heat transfer in the radial direction inside the bed are included in the effective thermal conductivity, K_E. These resistances include thermal resistance at the wall, thermal resistance of the particles and of the contact area between the particles, thermal resistance of the liquid and gas between particles, the thermal resistance from the particles to the liquid, thermal resistance from the liquid surrounding the particles to the bulk of the gas, and the thermal resistance of both liquid and gas at rest and in motion. In a system such as the guanidine nitrate system, in which gas is generated continuously along the length of the reactor, the effective thermal

conductivity will vary with axial position. A correlation due to Weekman and Myers (Ref. 4) is used to predict the effective thermal conductivity at each axial position and is discussed below.

The second term in the energy balance, $\frac{1}{2}$ $(\frac{1}{2}\sqrt{2})$ Z, accounts for the thermal energy transported by flow in the axial direction. An expression for \oint is given in Equation (10) as a function of the specific heats of the liquid and gas and the molar flow rates per unit cross-section for the liquid and gas. The third term of Equation (6) describes the contribution to the temperature change due to the change in volume of the melt and gas because of chemical reaction. For this term, the datum temperature was selected for convenience as the feed temperature. An expression for ψ is given in Equation (11).

The final term of the energy balance is the heat generated by chemical reaction. The heat of reaction and the rate are assumed to be those associated with the guanidum nitrate reaction.

To evaluate the reaction rate expressions for use in the material balance equation, the average radial temperature at each axial position was calculated by Equation (13).

1.5

The set of boundary conditions necessary for the solution of these equations is:

at
$$Z = 0$$

 $x_{GN} = x_{GN}^{f}$
 $x_{U} = x_{U}^{f}$
 $x_{AN} = x_{AN}^{f}$
 $L = L^{f}$
 $G = G^{O} = 0$
 $T(r) = T^{f}$ for all

where superscript f refers to feed conditions.

r

2. at
$$r = 0$$

and the second second second second second

1.

1

$$\frac{\partial \mathbf{T}}{\partial \mathbf{r}} = 0$$
 for all Z

3. $a_1 = r = r_T$

$$2.77 \mathbf{r}_{\mathrm{T}} \mathbf{k}_{\mathrm{E}} \frac{\partial \mathbf{T}}{\partial \mathbf{r}} = -U(\mathbf{T}_{\mathrm{W}} - \mathbf{T}_{\mathrm{I}}) 277 \mathbf{r}_{\mathrm{III}}$$

for all Z

The presence of the flowing gas phase in the guanidine nitrate system greatly increases the effective thermal conductivity in the packed bed reactor when compared to the effective thermal conductivity that would be expected from the liquid phase alone. The primary effect of the gas is to increase the velocity of the liquid phase. Weekman and Myers (Ref. 4) have proposed and tested the following correlation for predicting the effective thermal conductivity of a packed bed with concurrent gas-liquid flow:

$$\frac{K_{\rm E}}{k_1} = \frac{7.03}{k_1} + 0.000285 (N_{\rm RE})_1 (N_{\rm PR})_1$$

where (N_{RE}) is the Reynolds number based on the actual cross-section area available for flow:

$$(N_{\text{RE}})_{1} = D_{t} L''_{1 \in \mathbb{R}_{L}}$$

 R_L is the fraction of the void volume occupied by the liquid. This definition of Reynolds number follows directly from the liquid mass velocity based on the actual area available for flow of the liquid:

$$L_{ACT} = L^{"}$$

 $\in R_{L}$

Weekman and Myers have tested this correlation for various size spherical packings ranging from 0.149" to 0.255" diameter and over a wide range of

gas and liquid flow rates. They found that this single correlation satisfactorily predicted the thermal behavior of the packed bed. They observed that the amount of heat transferred did not appear to be a function of the tube to particle diameter ratio when this ratio was varied from 11.8 to 20.0. The Reynolds number was therefore based upon the tube diameter. For the Houdry silica beads used in this project, the tube-to-diameter ratio for a 4" column would be approximately 16, which is within the range tested in Ref. 4.

To complete the model, R_L , the fraction of void volume occupied by the liquid must be predicted at all axial positions. This can be done by utilizing the correlation proposed by Larkins et al. (Ref. 3). In this work, they were able to relate the two-phase friction loss for flow of a liquid and gas through a packed bed to the single phase losses and the fraction of the cross-section occupied by the liquid. For a variety of packings and with gas-liquid systems having a wide range of fluid properties, the following equation was found to apply:

 $\log_{10} R_{\rm L} = -0.774 + 0.525 (\log_{10} \chi) - 0.109 (\log_{10} f)^2$

where

The terms S_1 and S_q are the friction losses for the single phase flows of the liquid and cas. These can be predicted by the Ergun equation

(Ref. 1) for pressure drops in packed beds:

Se = MREL (~ + 10) By

Numerical Solution

The mathematical model equations were solved on an EMR 6130 digital computer. The ordinary differential equations, Equations (1) throuch (5), were integrated by utilizing a fourth-order Runge-Kutta routine (Ref. 2). The energy equation however is a partial differential equation and a finite difference method must be used. A Crank-Nicholson 6-point implicit form (Ref. 2) was utilized in generating the solution to the distributed parameter system. This technique was selected over

the singular explicit methods because of its increased accuracy and because of its property of guaranteeing numerically stable solutions.

The step sizes and mode identifications are defined in Figure A-1. In using the Crank-Nicholson method, the temperature derivatives are defined as follows:

New and Share

$$\frac{\partial T}{\partial r} = \frac{1}{4k} \left[\left(\overline{t_{n+1}}_{s=r_1} - \overline{t_{n-1}}_{s+1} \right) + \left(\overline{t_{n+1}}_{s} - \overline{t_{n-1}}_{s} \right) \right]$$

$$\frac{J^2 T}{J^2} = \frac{1}{2k^2} \left[\left(T_{n+1,s+1} - 2 T_{n,s+1} + T_{n-1,s+1} \right) \right]$$

$$+ \overline{T_{nri}}_{s} - c^{2} \overline{T_{n}}_{s} + \overline{T_{n-i}}_{s} \Big]$$

$$= \pm \left(\overline{T_{n}}_{s+i} + \overline{T_{n-i}}\right)$$

When these difference equations are substituted into Equation (6) and the boundary conditions at $\mathbf{Y} = 0$ and $\mathbf{Y} = \mathbf{Y}_{T}$ included, a set of tridiagonal linear equations is obtained of the form:

1-10

P.C. Contraction

Figure A-1. Description of Nomenclature for Grank-Nicholson Numerical Integration Method

(n. In+1, s.1 + Bn Tn, s+1 + An-1 Tn-1, s+1 = i)m $C_{n} = \frac{K_{E}}{2h^{2}} + \frac{K_{E}}{4h}$ $B_n = -\frac{K_r}{k^2} - \frac{\Delta}{k} - \frac{1}{2}$ $D_{n} = -T_{n+1}, 5 \left\{ \frac{K_{0}}{2l^{2}} + \frac{K_{0}}{4k_{1}} \right\}^{2} - T_{n}, 5 \left\{ \frac{-k_{0}}{l^{2}} + \frac{C}{2} - \frac{C}{4} \right\}^{2}.$ - Tri-1, 5 {Ko - Ko 2 + Ho Ran Po - 4. To for m= 2, N-1 an ($B_{i} = -\frac{2k_{e}}{l^{2}} - \frac{4}{k} - \frac{4}{2}$ $C_1 = \frac{2K_2}{I_2}$ $D_{i} = -T_{Z_{i}} s \left\{ \frac{2k}{T_{z}} - T_{i,s} \right\} - \frac{1}{T_{z}} + \frac{1}{T_{z}} - \frac{1}{T_{z}} + \frac{1}$

+ He REN PE - 4T.

A(NN-1) = Ke

 $\hat{D}(MN) = -T_{N,S} \left\{ \begin{array}{c} -K_{S} + \phi & -i \\ T_{S} & -K_{S} \\ T_{S} & T_{S} \end{array} \right\} = -T_{N-1,S} \left\{ \begin{array}{c} K_{S} \\ K_{S} \\ T_{S} \end{array} \right\}$

+ AR Kanpa - 4.T. - X.T. KE + KE ?

where

V= 2lilin / sim

This tridiagonal matrix set of equations is solved at each axial position by the Thomas (Ref. 2) algorithm.

SYMBOLS FOR

PACKED BED REACTOR MODEL

	А	=	cross-sectional area of the reactor, inches 2
	CG	=	specific heat of the gas, calories/(mole)-($^{\circ}$ K)
	C_{L}	Ξ	specific heat of the melt, calories/(mole)-(^{O}K)
	Dt	=	tube diameter, inches
	Dp	=	diameter of catalyst particle, inches
d d	(•) Z	=	first derivative in the axial direction
	E _i	=	activation energy for component i.
	G	=	molar flow rate of gas, moles/minute
	G ʻ	=	molar flow rate of gas based on the empty tube area,
			$moles/(inch)^2 - minute.$
	Η _R	=	heat of reaction; taken here as the heat of reaction for
			guanidine nitrate production, calories/mole
	К _Е	t	overall effective thermal conductivity, calories/(min)-
			(in)-(⁰ K)
	k _i	н	specific rate constant for the formation of component i,
			moles/(gram of catalyst) - (minute)
	L	н	molar flow rate of melt, moles/minute
	Ľ	п	molar flow rate of melt based on the empty tube area,
			$moles/(inch)^2$ - minute

I-14

and a second by the second second by the second second second second second second second second second second

	N _{PR}	=	Prandtl number
	N _{RE}	=	Reynolds number
	R _i	=	rate of formation of component i, moles/(gram of
			catalyst) - (minute)
	R_L	=	fraction of the void volume occupied by the melt.
	r	Ħ	radial position, inches
	r _{Im}	=	log mean radius = ($r_{OD} - r_{T}$)/ln (r_{OD} / r_{T})
	rod		outside radius of tube, inches
	۳ _T	=	radius of the reactor tube, inches
	Т	=	temperature, ^O K
	T ₁	=	reference temperature; taken here as the feed
			temperature, ^o K.
	Tavg	=	area weighted average radial temperature, $^{ m O}$ K
	Тj	=	jacket temperature , ^O K
	Ψw	=	wall temperature, ^O K
	U	=	overall heat transfer coefficient at wall calories/
			(in ²) - (min) - (^o C)
	x _i	=	mole fraction of component i.
	Z	÷	axial position, inches
	ϵ	=	fraction void space in the bed
	\sim	=	density
/	0 B	11	bulk packing density of catalyst, grams/cu.in.
r	<i>L</i> ₁		viscosity of the liquid
2	(•)		first partial derivative in the a direction
9	$\overset{a}{arphi}$	÷.	change in melt and gas volume due to chemical reaction =cal/min(in ³)(⁰ K)

HUNDER AND DESCRIPTION OF THE PARTY OF THE P

「「「「「「「「」」」」

REFERENCES

- 1. Ergun, S., Chem. Eng. Prog., 48, 89-94 (1952)
- 2. Lapidus, L., <u>Digital Computation for Chemical Engineers</u>, McGraw-Hill Book Company, Inc., 1962.
- Larkins, R. P., White, R. R., and D. W. Jeffrey, <u>AIChe Journ.</u>, 7, 231 (1961).
- 4. Weekman, V. W. and J. E. Myers, AIChE Journ., 11, 13 (1965).
- 5. Terman, G. L., et al., Agr. and Food Chem. 12, 151 (1964)
- 6. Hauck, R. D., and Stephenson, H. F., Agr. and Food Chem. 12, 147 (1964)
- Mechalas, B. J., et al., "A Study of Nitrification and Denitrification", Program #17010DRD, Contract #14-12-498, July, 1970. U. S. Govt. Printing Office.
- Spasskaya, R. I., and Kazarnovskii, S. N., <u>Zh. Prikl. Khim.</u>, <u>35</u>, 1842 (1962), and 34, 3079 (1961).

Appendix I-2. LISTING OF PROGRAM

North States

.

CONTINUOUS PACKED BED REACTOR MODEL

С	PACKED FED PEACTOR MODEL
	REAL MOLOAS, MULLIN
	DIMENSION CONFERT(500)
	DIMENSION AL do ADORL ADORL ADOANUME ADOADENT AD
	DIMENSION AN (6.4) FUNC(D) YY(D)
	DIMENSION YOU FLAT 61. YOLD (FL
	PIMERSION CATUST WHICH
	PIMENSIDE WERACLED
	DIMENSION YWOIGS
	BIMENEINN ODDINT (AD)
	- COMMON SPECIES FOR DU FON DU RUIR UNTER ANTA ANTA ANA ANTA ANA ANTA ANA ANTA ANA AN
	TO THE ONE OF TO MOTOR CONFERENCE TO ACTIVE TO THE AREAD TAREAD TO TO PID
	NY TANANA ANA ANA ANA ANA ANA ANA ANA ANA
	tintation nutation
~	
1,	NEAD IN THE STORE-KUTTA "DODER" SOO THE CHEFTCLENTS.
	no (n) Tanata a
	Ϋ́ΕΑΝ (Τρομήν) («ΝΕΝ(()»)»)) Γρομλή (ΕΓΛο τ.
1.0.0	ruktar (origi)
1.0.1	
1.1	ALTRONUMBER SALAN ALTRONUMENTE SALAN AND AND AND AND AND AND AND AND AND A
103	non sector (μ. 1997). - Γενικα αναλαγματικά τη τη τη χαριατική τη τη του
1.0.1	
	- SEMER () () () () () () () () () (
102	n na service de la calendar de la ca
10.2	
L	
	PEAD (5.2) (COMENT/I) INTO A
2	PORMAT (DRAA)
•	READ (5.6) H.MINT. HIDP TIME
6	FORMAT (F20 10.2110, F20 10)
	READ (ELT) AL
	PEAD (NAS) (Y((1)))
3	FORMAT (4F20-19)
	9549 (9,2000) (CAT(1), 1=1-5) - RULK-VOLO-DOADT
2000	FORMAT (5A5.3F10.5)
	READ (4,2001) PLAN, PATURAL HZAUS
2001	POPMAT (AFIO_5)
	4780 (4,2010) FEFUSI FST FORMER 1

```
2010 FORMAT (4F20,10)
     -M(3)=M(, P
     > +(A) = 60.0
     ***(5)$122mi
     ドチビリッキナに(ト)
     YO(])#YO(1)#453.6/(YO(3)#2*(3)#YO(4)#2*(3)#YO(1)#2*(*)#2*(*))
     Ya(1)=YA(1)/60.0
     490±Y0(3)+Y0(1)
     -10=Y0(4)+Y0(1)
     - イイロモメロ(ア) + X0(1)
     19=YP(5)
     TOTAL =0.0
     FO 7010 1=3.5
2010 TOTAL STOTAL + YO(T) + MM(T)
     00 2011 1=3,5
7011 YKD(1)=YD(1)=WM(1)/TOTAL
     101 BAS#62.1+(TEMP+273.0)/16.4
     nul 110#3.92
     APFA=#1+DIAM++2/A_0
     xPITE (6,31) (COMENT(1),1=1,NC)
    FORMAT (1H1.(24.2044))
 31
     - IRTTE (18,2011) (CAT(1), (#1,5), BULK, VOID
1 IVOID FRACTION =1, F5.3)
    SHITE (18,2012) HIAM
2012 FORMAT (1Y, THOF HIAMPITEN #PEA, 2, T. COPERTY
     TEMP=V0(6) - 273_0
     WRITE (18,2010) TEMP
* ? TTE (14, 3010) TE,00
SOON FORMAT (18, LIAUKET TEOPERATORE = ".FN.1, " C.1./I...
      INVERALL HEAT TRANSFER COFFEIGIENE #154.2.1 COL./SU.LH.mole...C.
    1
   ント
    TE=TE + 273.0
     ****E (18.2003)
2008 FORMAT(///EX, TRISTANCE!, 38, FMDLAR FLUE HATES!, 08,
      I M 11 F
               FRACTIC STARXATCONVERSED HT, SYATHE STARXA
   1
      TINFERATORETARX, THOREST,
   2
       - みずずすめの目形なメンチントでにす。ちがずすないいのとしつがす。ちがずすいいもやす。ひょうかいいないまたもともす。
   3
      2x, 1, H READ/1, XC, 11, GN/1, KK, 18EK, C, 17
      ት ለእ<sub>ም</sub> የመደደ ግን <sub>ም</sub> ፖለም የመለፍት ምና እም የተዋ እግጅ የምት የእም የስተት ለግሥ የምት የምት የምት እንም
   ٤.
      • • • •
            REALTER
    PERFORM THE CALCULATIONS USING THE LITING CONTINUE.
    Ph 5 Fatar
•;
    Y(1)=Y)(1)
    30 76 1#1, 11
    1-1(1)=+(6)
7 -
    T92(1)#T?1(1)
    110141#0
    で つ !! 又 案 作 。 ()
    YIFENELS
    TEMPE TEMP - PTS. 11
    SRTYF ([K,2017]) TIME,( Y(T),TALAE,C14V,YIE) ,IE P
```

2000 FORMAT(359.3.24.5(1X.F9.4).7X.F7.1) ITAPF = 0 3081 = N075 ITAPESTADE + 1 ARTTE (KO) TINE. (TR2(J), J=1, NO, NOLL) 81#1.6 RELIDENT JOTTE (KII) HE PEETS n REGIN THE INTEGRATION. TCOUNTED NO IS CTOTAL = I . MTIDE na 91 J=1.6 91 VOLD(J)=Y(J) CALL RUNGE (APROCATAMEPHARSE(INLATING)) PKEH CALL RADIAL (YOLD, Y, NE, TRI, THR, PK, RL, SELLD, N) TIMESTINE + H IF (ITOTAL FOR HTOP) GO TO LOLD IFUITOTAL .12. 5) GD TO 1010 100001#100001 + 1 EFCIENDER, NE, MENTE GO TO 53 TODANTAN 1010 CONTINUE CONV = (OO = Y(4) + Y(1)) YOOYIELUm(Y(5) + Y(1) + GNO)/(GC + Y(1)+Y(1)) TEMP= Y(A) = 273_0 ARITE (11,2014) TIME, (Y(1), THES), (NV, YTELS, TEAR ITAPE STAPE + 1 PRITE (KII) TEMEL (TR2(J), J#L, NA, DREL) ARTTE (KID) REPETS 5000 FORMAT (11, 1162 #1, (10612, 4)) A3 CONTINUE nn sn falav С IF (DARS(Y(1)) . LT. 1.00+KG . A * 1. \mathbf{r} GY TO HI 1 r ORTTE CAPREE A t FORMAT (////* 1 ************** 2//2X, MAGNITHER OF YOUS AMMRHAGHES THE LIMIT OF THE MACHINE. 1// 31........... С. R0 TO 42 1. 11 - E MP T T N -- E 15 CONTINUE + PITE (18,2015) FFF DW. (YAU(1), 1# 5,5) 2015 FORMATC/18, THELT FEED RATE # ".FA. 2. LO. / HA. 1/ IX, FEED WETCHT FRACTIONS . AMADULIN STRATE #FF7.4. 1 /JARX, HUREA . # F7. 4/25x, HOHAMIDICK . MITHATE # FF7. 4) 2 PRODERV, 0+Y(1)+(Y(3)++*(4)++*(4)++Y(5)+*(5)++*(5))/455.6 TOTHOLD 00 2035 1*%,5 *FRALET)#YEF)* -> (T) 2135 TOTATOT + WEARDER) PD 2040 1=3.5

```
2040 FERAC(T)REFEAU(T)/TOT
      WRITE (IN, 2036) PEPDA ("FEAD(T) . (#5,5)
 CORK FORMAT (19,1PFOBLCT WATE #1F7,5,1 18,745,1/18,795,000013 GEBORT FRA
     ITIONS - AMMO JUM MITEATE #187.4/418, 1988 - #187.1/
       - 28X, GHANIDINE NITEATE #187.43
     ン
      FINTED REARINE KATINE
      WRITE(18,2016) MCAT
 HYTMF WARF ANTINF/(YO(1)+SCILLED)
      ARTTELLESPOITS PTIME
2017 FIRMATELY, NONTRAL RESTREICE TINE #1, F7, 2, 1 PIGHEST)
      ARTELLIS POLE MOLIGAR POLE IN
C
2015 FORMATELX, MOLAR VOLUME OF GAS #1F9,2,1 CU.It./3, MOLE1/18, MOLAR
     IVALUME OF LIGHTA =1,F6,2,1 CH, IN,/6-MALET)
      12175(18,2019) H
2010 FORMATCIX, LINTEGRATION STEP SIZE #1, EN, 21
     WRITE(18,2020) FREDE FERNSEFECUSEU
2420 FRAMATCIX, "RATE CONSTANT FOR 64 - 1/54, TERE WEART FACTOR #1812, 4/5%
    1. FACTIVATION ENERGY # FFI2. 4/1x. FRATE CONSTANT FOR ORFA DECAMPOSITI
     1081/58# "FREDURNCY FAUTOR #1E12,475%,1007TVATTON ENFROY #1612,4)
     PH#R1/5,0
     Pii 74 J=1.6
 11
    - WERINT (JI=PH=FI DAT (J=1)
     ~~~**TF (1M,7K)(RPPTNT(J),T=1,6)
 2% FORMET
                   (THE,//EX, THISTANCE!, 28x, TRADIAL
                                                       TEMPERATURE
                                                                      - ----
    1111531/44, 6(3x, 18 =187, 3,2x)/)
     RENIND KH
     -0 77 TELATAPE
     HEAD ENDS TIME, (TR2(T), TEL, N, NEFL)
     NEAD (+9) RE_FEED
     SAVE(1=1)=TIME
     SAVE (2+11=R)
     SAVE (3.1)=RELTO
     NO 79 FELONNOMPEL
     TH2(1)=TH2(1) = 273.0
 19
 17
     WRITE (EN, TH) TIME, (TEZ(J), INI, SOUTHER)
     FORMAT (F9.3.+ (F12.3.+Y))
 1 H
     HWETE INHORN
     ΕΠΡΗΧΥ (1ΗΤ, ΓΚΥ, ΤΤΤΗΕΙ, ΙΝΧ, ΙΡΕΙ, ΙΝΧ, ΙΟΕΙ ΤΟΙΛΟ
 114
     PO ON TELATARE
     -PITE ((H.97) (SAVE(J.1),J#1.3)
 UA
     FORMAT (SE20.4)
 1,7
 42
     CONTINET
```

Fin

1-20

6 AT .

t-li

REFREEDED FOR REPORT (A, PARA), FIME . AND FOR AND r ********************** ſ` THIS RUNPORTION INTERPATES A SET OF MENT A POINTERPACE TIME POINTING r OVER ONE STEP BY A TRAERALIZED EXPLICIT OF GERRITLY OF OURE. C THE RENGEWRETTE COFFEETENTS NOST REPRESENCE AND A WORKER TO PR rFOR EVALUATION THE SYMPEM FOLATIONS. 0 TO CHAPBER SHOPED AF FEM LEFT TN THE PROCESS FOR S. \cap $\hat{}$. • A SE & DITCHE PERMISION NEWSTON OF THIS PUBLICADE FOR EACH AND EACH AND A PERMIT. r^{2} CAR'S. 1 HADLEETE REAL+R (A=+,0+7) \hat{r} !FITETREAK A (Northon (C) of (C) of (C) oAK (Control of FITETS, FYES) r Γ^{*} ON FREEATHRE ۰, THE WHYREP OF FUNCTION FLAUNATIONS IN 1995 CALENCETER FUNCTION Γ A = APHAY OF DIMENSION X ť A # VECTOR DE DIMENSION ". CT & VECTOR DE DIMENSION DE n T # NICHER OF SYSTEM FOUNTIONS IN ALL DESCITES n Y - VERTOR OF MARYSTON & OF MEPRUBE T VALIANES. r " = INTEORATED STEP SIZE. 1 YIME # INDEPENDENT VARIABLE. n r 《F》书书表:17F前,书记的HFF▲KHTT名,从记忆中写开始下入下上,后日 \boldsymbol{r} ~ 5(5 p 2) C(1) | ((**)**) . . ٠ . . r(2) | A(2,1) ℓ^* 4(20) • • ٠ . ٠ ٠ . 1.... e* ٠ ~ 1 • . . • ٠ t' A. E. M. 🖕 👘 E. . . . • _____ 1 + (+) + (2), r • [**] s and the design of K 🕿 H 🝝 Palty (), a Park 🖕 V () a start (), as to v 1.1 Abil # All + siter (**) n ċ. \sim CALCHEATE THE + 15, 아이 1 [일프]교카 17 2 11×1.+7 1.)104.000.0 JE (15 . FO. 1) SO TY 2 1 F F # 1 P = 1 1 1 1 1 GHE **≈1,1** EE

18.08 (19.00) (19.00) (19.00) (19.00) (19.00)

1-22

I.

1. YEARS #A(14,10 M,)*AK(1,,101)} * AUTES

AREACTERS + OLDER

FUALDATE THE SYSTEM FULLATIONS. C, XXETTME + CITHIAH CALL SYST (XX. YY.FUNC. L) Ċ 20 5 1 = 1 • N 3 AN (IN, FRIDAN + FRINC(10)) 4 CONTINUE. C CALEBRATE THE PRODUCT OF THE KIS AND ATS. C 110 5 1 ##1#N DOTPRHEO.O 10 6 T*=1.M DULBSTAR (INFER) + R(IA) + DULBER 6 5 Y(TN)=Y(153 + HOTPRD С WETHRE F ALT

1-23

1.00

REPARTERE FAREAF (YAXX),如果TETELAFKAFF,任于TEA HEAL MOLDAS, MOLLES 914ENSTON YEA), «MERI, AA(MII, PREME), DECONTERENTER (MI), 1611, 1614, 162(51) DENENSTON XXX(6) HO, PME, CHA, TO, MALIAR, DPANT, REAR 2, 15 1 つつ アニオエモルトゼ 7 Telfj)=T92(1) FRAIN FAUATED S MISEEVISE1+2.51+5.6 1150mV1501+2.54+0.5 RHORE25.07(HOLHASe(6.4) 「「「」」のほど(よ)も(と(ろ)もいい(ろ)もと(り)もとい(オ)もど(う)」となってい REASOV(2)+26. 11/AREA 28130="PARTeSPT:26(V181+(1_0+V03E)) っているちゃりわるやずゃちっからとしが手ちらゃ(りょいみかひまっ)) アドチチキのおんをも まいもしない ひんとも いとてなものだし ちんりのいのちゃしてんしゅもの 的第三 化光磷偏偏石化光光光清清色 网络大家小鼠等大家居民成为了中国的白色中的美国人名米尔 主义地长于20 长月中国长生立工作的人 1. 14 (FELGAS . FE. 1. 0F-05) 50 10 20 CHIESORT(DELLIOZDELGAS) AFTERT.FF.SC.00 GD TO 5 71 51 = 1.0 1.0 10 -5-11==.7/1+0.525+11-0910(041)+0.107+(11-14)(1-1))++0 51 #101 () ##61 + 1 35 FT261 P r- 4" F H ~ A ' デキト すいまいすんじゅんとすいえ (v キらと * Mint - * * と) CONPET_0 さつり ビニソト ちしきゅう ネタン OOANHE RUPAAN HE KEO OF FTEK=/.113+2.HSF=94+6FET+92-336(E+1223) ドチドドビデビドドロは。1 5ドルドルトミッシュション・ション・ト TETREA - COUNTER SYSTEM といいまち ひとびおゆとえらく mとりへんくとうう -1-1 # SH- 1 + Y (1) + Y (i) F T # PTI # FFIF K トンキす。ひゃんひりゃたりにゃ \$941#(D)1 #¥(1)+D95#¥(2))/=+A PREMEMENE AFEAD ARAF? 公司完全科学会的经常行行任于中华的主要工作的 PARRIZELOATE (S-1) TaNNul 11 16 1#2.11 うちいきかいゃもし ひとししょうう 「「「「」」**」」**」「「「」」」、「」」」」」」」」」」」」」」」」」」 こ にもてり エードチャ ペノロ・・シーロットノント ーロストノノ 。 ・ べんしきゅうりゅどをだんとして。りゃかいりゃくりゃとどどやとしり。 いきわいもうりょう C=PC(1)

 $(1-\delta_{1})^{-1} = (1-\delta_{1})^{-1} \delta_{1} + \delta_{2} \delta_{1} + (1-\delta_{1})^{-1} \delta_{2} \delta_{2} \delta_{2} + (1-\delta_{2})^{-1} \delta_{2} \delta_{2} \delta_{2} + (1-\delta_{2})^{-1} \delta_{2} \delta_{2} \delta_{2} \delta_{2} + (1-\delta_{2})^{-1} \delta_{2} \delta_{2} \delta_{2} \delta_{2} + (1-\delta_{2})^{-1} \delta_{2} \delta_{2} \delta_{2} \delta_{2} \delta_{2} + (1-\delta_{2})^{-1} \delta_{2} \delta_{2}$

```
REAEFEN/(PHax2)+PHT/PKaPST/2.0
   A=AA(J=t)
10 DD(J)==YQ1(J+))+C=TQ1(J)+H=TQ1(J=1)+A+K45
   RR(1)==2.0+FFFF/PH++2-PH1/PK==951/2.0
   OD(1)#2.0*EFFK/PH##2
   0=00(+)
   HE-2.0+EFFK/PH++2+PH1/PK-H51/2.0
   194(1)==TR1(2)+C=TR1(1)+C+R45
   RADEPH+FLOAT( TN=1)
   RENM=(P2=R1)/ALOG(R0/P1)
   TERM=2.0+PH+HS+RINM/(EFFK+WAD)
   BR(NN) #=FFFK/PH++2=PH1/PK=PS1/2.0=2.0+TFH++(FFFK/(2.0+PH++2)
  1+FFFK/(4.0+PH+RAD))
   AA (NUm1) NEFEK/PH++2
   DTI(NN)=TR1(ND)+(=FFFK/PH++2+PH1/PK=PST/2...)
  2-2. N*TERN*TC*(FFEK/(2. N*PH**2) + FEEK/(4. N*PH*RAD))
   CALL TRIDAG(AA, BR, CC, DB, NO)
   DO 11 Tal, NN
11 TR2(J)=00(J)
   SIMEN_B.
  00 15 1=2, NN
  T&V=(TRP(J)+TRP()=1))/2.0
  RAN1=PH+FLOAT(J=2)
  RAN2=PH=FLOAT(J=F)
15 SHM#SHM+TAV#FT+(RAD2++2+4AH+++2)
  XXX(6)=SUN/(PI@RAN2++2)
  RETIRN
  FNN
```

N.C. SALAN

12.00

ŧ.

9

and the second

and the second

and the second

NAME AND DESCRIPTION OF

of the set of the set

APPENDIX 1-3

CONTINUOUS STIRRED TANK MODEL

A detailed description of the continuous stirred tank model is presented in this section. The method of solution of the discrete difference equations is also given.

Model Development

Consider the series of stirred tanks depicted in Figure B-1. The material balances for guanidine nitrate, urea, and ammonium nitrate can be written for the nth tank:

The notation is defined at the end of this section. Notice that both sides of each equation have been divided by the molar feed rate to the first vessel, F^{0} , so that the factors $F^{(n)}$, $F^{(n-1)}$, and $W_{C}^{(n)}$ are all expressed on the same basis of one mole/minute of feed to the first reactor. The rate expressions are given by:

FIGURE B-1

CASCADE OF N STIFRED TANKS

Wc-groms of catalyst in reaction.

By summing Equations (1), (2), and (3), the following equation relating the flow rates results:

Equations (1) through (7) are solved simultaneously for each tank in sequence.

Numerical Solution

If Equations (5) and (7) are substituted into Equation (2), the following cubic equation results:

 $()(\chi_{21}^{(m)})^{3} - (\chi_{21}^{(m)})^{2} - M\chi_{21}^{(m)} + M\chi_{21}^{(m-1)} = 0$

where

M= F- (m) - K- (JAN

Jen = La e = In/RTH

All terms with superscript (n-1) are known and those terms with superscript (n) are unknown. Therefore, before Equation (8) can be solved for $x_u^{(n)}$, an Equation for $x_{AN}^{(n)}$ must be provided in order that M can be specified. By substituting Equations (6) and (4) into Equation (3), the following quadratic expression results:

(1) (Kin) 2 (1 Non + P Non =)

he kar 1/2 + Fm-1 We les (12) 2 N=

Equations (8) and (9) are simultaneous functions of the unknown
$$x_{AN}^{(n)}$$

and $x_{u}^{(n)}$. These equations for the nth reactor were solved by the
following iterative algorithm:

- 1. Assume a value for x_{AN}^n . A convenient first assumption is $x_{AN}^n = x_{AN}^{(n-1)}$
- 2. Solve the cubic equation, Equation (8), for $x_{u}^{(n)}$
- 3. Using this value for $x_u^{(n)}$, solve the quadratic equation, Equation (9), for $x_{AN}^{(n)}$

where
(n) 4. Check whether this value of x_{AN} is equal to that assumed in step 1. If it is, the solution for x_{AN} and (n) x_{U} for the nth reactor is complete. If not, repeat this procedure from step 2 using this newly generated value of $x_{AN}^{(n)}$.

Using this procedure, no convergence difficulties were encountered for any of the cases treated. A listing of the computer program for solving the stirred tank model is included in Appendix 1-4.

SYMBOLS

FOR

JTIRRED TANK REACTOR MODEL

E _i	=	activation energy for component i.
F(n)	=	molar flow rate of stream (n) per mole/minute of feed
° k _i		specific rate constant for the formation of component
		i, moles/(gram of catalyst)-(minute)
(n) Rj	a a	Late of formation of component i in reactor (n); moles/(gram of catalyst)~(minute)
w _c (n)	×	weight of catalyst in reactor (n)
(n) ×i	11	mole fraction of component i in stream (n).

1-33

APPENDIX I-4. LISTING OF PROGRAM

CONTINUOUS STIRRED TANK REACTOR MODEL

1	PONTINGUES STIPPED TANK HEADT IS PONTED TO A CO
	PETENSION COMPTIONS, CARENDATE POSTAL DICT, CALL DAY (STANDARD)
	14+0(5),****(5),****************************
	POTE 10#0.75
	PETENVALS
	FF AD CONTAINS
	$\partial F \Delta D (O + S) / W C \Delta F / T Y = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
	PEADIOLIS CONTRACTORIS AND A DECARDON NET AND A DECARD AND A DECARD AND A DECARD AND A DECARD A DECA
	$= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \right] = \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \right]$
	PERMINA PERMINA AND PERMINAL
995	FF 4 B(Qa 3a)(11)本49/4) (X 4(F)a T # La 3) a F F E
1	F 12MAT (6110)
2	FUSHAT120A4)
۲	FORMAT(4F20,10)
2010	100MAT(5A4.3110.5)
2010	FID MAT(AF2) - 100
	10 5 T#T#NTA1+9
r .	べのし (丁) # # ビカエ(T) # ク。(コノ(いい) # # 1 アビション)
	`` (ţ) ±^((_)
	/ ({2) = 60 = 0
	Set(3)=122.7
	TOTAL HOLD
	17 6 1×1.05
•	$T_{i} = A_{i} = \frac{1}{2} \left(T_{i} + \frac{1}{2} \right) \left(T_{i} + \frac{1}{2} \right) \left(T_{i} + \frac{1}{2} \right)$
	······································
,	Y 5 1 (J) # Y () (]) # # (() / T () T ()
	EFF Devel FED A CLARK CLARK CLARK
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
4.1	A NEW AND A DECEMBER OF A NEW AND A NEW AND A NEW AND A DECEMBER OF A NEW AND A DECEMBER AND A DECEMBER AND A D
• •	e e e en e
	n ne ne zna verske kalan ne zna ne
* * [1	
I	
•() • • • •	$\frac{1}{2} \frac{1}{2} \frac{1}$
1	F. AND PRODUCT FLOW CATES FOR ONLY SAFETY SECTOR STREET IN THE SECTOR STREET IN THE SECTOR
	CLEEN SATE TO THE FLOST BEACHERS
h	¥E F# (({})#x)(!)
	17 \$17 Materials
	マクタチョルシタナ(火)・ノ。オメノ(2010) べゃ(ノンド。201
	HOLGAL #VOLEK) #7 AH
	PTTELEN, SAULEN, MOATLE, VOLE, TE ARLE, ES (K), VEE 25
5040	FIRMAT (///IX, PREACTORI, 12, 52, 10 ATALY ST AT
1	19, 4.1 (A) _ 1/15X, 17EMPERATORE #1.EV. 1.1
<u>(</u>)	THOMENAL VOLDMAN AT TO ATT THE FACTOR AND AND AND
	2171(18,5011) (3.00(1), (3.0(1), (3.0(1), 1.1), (3.0))
1. Y 1. P	ENGMATELON, FIFET FEET OATE STEP, ALLER ALERA FEETAL
1	The floor floor the astrony to sent the state of the sector sec

I-34

*

٦.

• 9

1.00

.

N. N. MAR

Total Control of

```
252X, CHANENICH HITRATE =147.4)
     x P T T E (1 E_{0} + 0 B P) = x O (A)_{x} (x P (1)_{y} T = 1_{0} S)
SOND FORMATE/IOX, HEFTY FEED WATE STEP, 4, 1 STORSYST SHEET, 134
    ITMOLE FRACTIONS!/SX, PANNONING NITHATE = F7. 1/0-X, THREA = F7. 1/
    2578, IGHANITHINE NITRATE = IF7.4)
     SPGN = FREQGN + FXP(-FGN/(TFMP(K)+273+0))
     SOUMFREQUEREXP( =FU/(TENP(K)+273.0))
     100001117#0
     X-1=1.1
     XAM=YO(1)
  53 ICONNT#ICON 17+1
     A=1_0
     5 m = 1_0
     C = = X \cup \{ c \} \setminus \{ d \in V \setminus \{ K \} = d \in V \cup \{ X \} \}
     D==C+x0(2)
     CALL ( BIC(ADADOCDDDXXDXTE(2) JIYPEDNYEAL)
     ∆<u>⇒</u>0__0
     REGEAT(K)#SPH#YTE(2)##2
     C = - \Theta C A T (K) + S P G M + Y T F (2) - X P (1)
     P=¥O(A) +XO(()
     CALL CHETC(*, B, C, B, XX, XTE(1), TIPE, HICEAL)
     IF (ABS((XTF(1)-XAM)/XAM).ST.1.0E-05) 30 10 51
     IF(ADS((XTF(2)-XU)/XU),GT,1,0E-05) G + E0 51
     57 70 52
  51 XH=XTF(2)
     XAN =XYF(1)
     TECTCOUNT_LT_501 GO TO 53
     WOTTE (18, FA) XII, XTE (21, YAN, XTE(1)
  R4 FORMAT(///!]TERATION IS LOT CONVENDE STAFT?.1)
     CALL EXET
  52 XYF(4)=XO(4)=+CAT(K)+SPH+XTF(1)+XTF(2)++2
     x = (1, 0) + (1) + (x + (1)) + (x + (1) + x + (1) + x + (1) + x + (2))
     CONV=(XTF(2)+XTF(4)-XFFFF(2)+XFFFF(4))/(XFFFF(2)+XFFFP(4))
     CONV = CONV
     YIFth=(XTF(3)+XTF(A)-XFFF()(3)+XFFF((1))/
         (XTF(2) * XTF(A) - YFFED(2) * XFFED(4))
    1
     ∀1£1[1|≈→X]{1[1]
     GASES HAS(AT(K)+SPAN+XTE(1)+XTE(2)
     TOTAL MO.O.
     80 9 1-1.3
   Q TOTAL = TOTAL + XTF(1) + W (1)
     00 10 1=1.3
  10 XWTF(I)#XTF(I)#WM(!)/TOTAL
     XWTF(4)=XTF(4)+(60_0/453_6)+101AL
     WRITE(18,5003)XWTE(4),(XWTE(7),1=),3)
5003 FORMAT(/10%, PRODUCT FEOW PATE #1F7, 4, 1 PB./HP. 1.14%,
    ITWEIGHT FRACTIONS! 253x, LANCOLING WITHATE = 167,4215x, 10REA #167,42
    2824, FRUANTEILNE WITRATE = "FP2.4)
     weite(18,5004) XTF(4),(XTF(1),1=1,3)
SODA FORMATIZIDE, PRODUCT FLOW PATE #187, 1, 1 SOLFSZUTELETE, 118,
    11MOLE EPARTIONS//CAX, LANMONTHM NITHATE #127, 4/608, 100FA #127.4/
    252X, TOMANTHINE NITRATE = "F7. ")
      VRITE(18,5005) 345
```

1-35

```
SOOS FORMATCION, POAS FLOW HATE == F7.4, * MOLES/MEDIFE)
     ·2017年(1835/1166)(1824。4月81日)
ちののん だいやきょうすくいかますうざんし べいかいたんちもいう エナドス・ダメリー リーボン りんちく んちぶつ とうえんだしドー うんちゅ
    E FERTZINX, CIAE VITER STEZ, A, COLES STANDED DEED FE TERT)
     HATTEERSPORT FRENG SEGMERERINEEN
2020 FORMATCION, FARTE CONSTANT FOR GNI/15/, TERE OFFICY FACTOR #1812,4/
115x5340314431100 FORMEY #1612,4/10X,1 APP DO STANT FOR OWEA OFFICIPE
    25111001/15x, TEREPONER DY FAUTOR #TE12, 4215x, 1401144510 + FURMAY #1.
    3 F12.41
     in it lated
     メンロ(す) #8 27だ(す)
 11 + (11)=YTF(1)
     SPITE (18,01) (COMPRIES (1), THE PC)
  SO CONTINUE
     GO TO HER
 999 CALL FX1T
     END
```

RURRAUTINE DURTDIA-H.D.B.A.Y.X.F.AL. ITYPESNREAL) SHENTTON OF CHATC AND DHARRATEC F. STIDNS. C DIMENSION MX(3), TROUND(3) CHRRT(ARG)=SIGN(ARS(ARG)++(1.0/3.6).44G) nn 5nn 1=1=3 500 TROUND(1)=) 1F(A)200.110.200 110 TE(R)140.120.140 120 TE(C)130,999,130 130 X==0/1 XX(1)=X ITYPE=1 69 TO 100 140 P=+C/(8+P) 3243/5 化单位单位中心 FF101160-150-150 150 YESTAN (ARS(2) + SURT(P),P) YENQIX XX(1)=xXX(2)=Y ITYPE=> 90 TO 100 IAN YESHRT(-D) YX(1)=P.P XX(2)=P ¥¥(\$)#¥ ITYPE=3 03 10 100 200 [F(0)300.210.500 210 X500.0 11 (1) 530 550 530 220 12=0.4 41##H/V R0 TO 430 230 Pawer/(1+1) 0 a = C / A P=P+P+** 10(0)250+210+240 240 Y)#P+R PFT(P) X3#6+6=X1 RO TO 550 250 YESTHT (-----) 60 10 850 300 P=8/(3.0+A) 1 m (/ (3. (4 A) REIIA AL PHARO+P+P RETABLEPHA + P+1.5+ (P+1-4) HAMMANAL PHANAL PHANAL PHANAL TANKE IA IF (GAMMA GT . 1 .F -5) GO TO 340 IF (GAMMA, GT. -1. F-5) GO TO 320 TIN SOTASONTLAGANMAS

I-37

Ç.

```
PHIMATON2(307, PETA)/S.O
     3=2.9*>(RT(=ALPHA)
     11=0+0-05(PHJ)-0
    THP1=2.0+3.1416/3.0
    14P12=2,3*[HP1
    1220+C 15(PH]+14PE)-P
    X *=D + C · · S ( PH [ + 1 HP | 2 ) = P
    Ph TO 330
 328 CHEE == SOPT(=41 PHA)
    X1=-01042-01145-0
    メクエレリットート
    Y3=¥2
 330 VX(1)=×1
    ¥¥(2)#¥2
    そそ(ろ)まそう
    ITYPH=1
    to To tea
KAN SOTESOST(RAMMA)
    FEILIPPT(RETAASOT)
    F=CHRRT(RETA=SUT)
    Y 4=F+F=P
    13=11,1,+(F+F)=P
    Y=0_865+(F+F)
350 XX(1)=X3
    YY(2)=0
    **(*)**
    17451=1
    AD TO THE
NON CONTRACT
    WE THEN
  1 FORMATEAF 20,01
  5 FORMAT(22X, 3F11.5, 10X, 1ETHEAR FORATION)
  A FORMOTELLY, SELL, S. THO REAL HOUSELL
  7 FORMATELLX+3FEE+5+11X+2FEE+5+1+
  N FORMATIZETS.51
  Q F 30MAT(7811, Mat +1)
19
   108MA7 (101)
OTH FORMAY (25X1+ TOPICATES R2 IS REAL PART AND US IS INAULOARY PART OF
   I COMPLEX PAIR ///)
TOU CONTINUE
    IF (ITYPE . ED. I . OR. ITYPE . FU. SI NOFAL #1
    IFTTYPE , EG.S) NRFAL #0
    TELITYPE "DD. 2) NREALE2
    IF (ETYPE ,FIL d) NRFAIMS
    10 501 1=1, NREAL
501 HIXXIIN .GF. 0.0 .AND. XXII) .LF. 1.05 FX 000 (1)#1
    ICOUNT#0
   93 202 101 102 4L
502 H (160 00(1) .FO. 1) 1000 TET(0001 + )
   HOR FORMAT (//, two POUT RETARES D AND [1]
```

```
I-38
```

1991年1月1日1月1日(1947年)1943年1月1日(1945年1日)(1945年1月1日)(1945年1月1日)(1945年1月1日)(1945年1月1日)(1945年1月1日)(1945年1月1日)(1945年1

CALL EXIT 503 50 TO (601,602,603),TOOUNT 604 DO 505 1±4,99FAL IF (1690501(1),00F, 1) 50 TO 505 XREAL#XX(1) 505 CONTINUE RETURN 602 WRITE (18,506) (XX(1),I=1,3) 506 FORMAT (77,1TWO REAL RODIS RETUREN 0 AND 11,3E12,4) CALL FXIT 603 WRITE (18,507) (XX(1),1=1,3) 507 FORMAT (77,1TWREF REAL RODIS RETWEEN 0 AND 11,3E12,4) CALL EXIT

END. EDF

I-39

APPENDIX I-5. CO	ST STUDIES
------------------	------------

0393 GRODY - GOANII (NOR 20+101	NINE ALLOYE	Basis: Con AN/ U Y AN	ic Case t. Process; U/Cat. = 2/2, ld. = 80%; U Yld. = 100%;	l hr. read /1.7 Conv. = 6 AN Conv.	54.5% = 32%
	*은 가라 다()	TION COATS			
HLANT CAPACITY 8	30•0 va 1477a		й ж	en a star fift set. He tot	Gov't
-	UNITS.	SULF NO	NE SI HAY	CHARGH	Acctg
INCESTMENT (MM \$)			5-40		6 4 2
OFFSITE AND ALLOCA	ATED AUX.		1.00		2 20
TG7AL (MM 5)			1.612	1 !	7.62
PUTCESSING COST (CS	PNTSZLP)				
DEPERDIATION		10.00 - 205	يكتونها المتحار	(1)	-
(4) (1) (4) (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		5•0 PC1	1	(1)	.24
OPEDATING LABOR	16.00 258	8600.0 57-0	· - · · · · · · · · · · · · · · · · · ·	0115	.17
CHEVICAL CONTROL	4.400 历星次	10000.0 1/20	S = g ≤	700	.05
CubachIdIn%	4•00 MEN	13000.0 ±7%	5-Y- +90	<u>¬∽,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.05
FLHCTRICITY	•20 ABHZLB	1.0 CV1Z	★ 5 • • • • • • • • • • • • • • • • • •	⇒ >1	.20
STRAK	A+DO LR ZER	75+9 Oviz	al East (CE	124	.30
SATER SATER	10.00 GAUZLE	1月•月 17日7/	 в14€ 	1. C. S	.10
TOTAL (CENTS/L	•01 GALZEH 3)	7 • 0 ⊂ C ∧ 1 Z	•10 •10	··· 31	$\frac{.10}{1.22}$
HAW MOTFRIAL COST C	CENTSZLP)	<i>i i</i>			4 02
	1.4.3900 LP7LA	21.0404-13) Č	4.93
ACMONITE NITRALE	•55500 L3760	• • • • • •		* .	1.04
TOTAL CONNECTO	•001100 123700 •001100	1	• 1 *		.15
LOTAL CORNES/LA	• •		•••		0.72
HANT CUFRHEAD (CFN	NL2NTED		• 1		.18
DUTAL MILL COST (CF	NTSZLHO FX HY-	bB(00BC1 Creef	3 ° ° − 3 1		8.12
-M-PRODUCT CREDIT C	CENTSZLAD				
AMAUNIDA CARBAMAIR	60000 LAZER	● () ()	17. •00		.000
TUTAL COFNERLE	• >		🖕 (1) 1		.00
TUPAL MILL COST (CF	ATSTIND LAC HY-	PROTOCT CONT	F		8.12
				Fringe	1.69
			Pric	e 0% Return	9.81¢/1b
* 10 YEAR PLANT L 15 PCT INDIPECT	IFF, FXISTING S	IТь			
** PERCENT CHANGE	NEEDED TO AFFECT	a shilosy she a	CENCENTAGE I	501-41S	
		o je je do se v	N CALC RATIO.	<u>, , , , , , , , , , , , , , , , , , , </u>	
(1) 50% is maintenance	e material				

 PLASE 1 x PM S
 4
 7.6 and

 OUTE ALLOS
 4
 5
 5

 AD SI ST Cross
 4
 1.2 and

 PHICE FOR 20 END ST FILE
 1.4 and FREESZICE

 PHICE FOR 20 END ST FILE
 1.4 and FREESZICE

 PHICE FOR 30 FOE FREESS
 1.4 and FREESZICE

1-40

COST STUDY - GUANIDINE NIFRATE CASE NO.102

Basis: Cont. Process; 1 hr. reaction AN/U/Cat. = 2/2/1.7 U Yld. = 80%; U Conv. = 64.5% AN Yld. = 100%; AN Conv. = 32%

····

*PRODUCTION COSTS

وبالجج والأراجح تحتج وتبد

HANT CAPACITY	20•0 MM 1	BAAK			**0	FNSITIVI	TY Gov't
		UNITS	si	ATEZUNIE	LIKFLY	CHANGE	Acctg
INVESTMENT (MM \$)							
BATTERY LIMIT					2•78		2.78
OFFSITE AND ALLO	CATED AUX	•			•90		.90
TOTAL (MM \$)					3•68	10	3.68
PROCESSING COST (CENTSZEHO						
DEPRECIATION			10+0	PCT INVST	1.84		-
MM AND RL			5•0	PCT INVST	.956	.)	.46
OPEPATING LABOR	18.00	MEN	8600.0	SZMAN-Y₽	• 52	126	.52
CHFMICAL CONTROL	4.00	MFN	10000•0	ZNVVN-A 4	• 20	325	.20
SUPERVISION	4.00	MEN	$12000 \bullet 0$	210007-A5	•24	270	.24
ELECTRICITY	• 50	RAHADB	1•0	CNTZKIH	(اد.•	406	. 20
STEAM	4.00	LA 1LA	75•0	CZUNS FB	•30	270	.30
WATER	10+00	GAL/L9	1 9 • 0	CATZMONE	•10	811	.10
FIFL	•01	GAL/LR	7•0	CATZ MAL	•10	773	.10
TUTAL (CENTS/L	JH)				4.49		2,12
MATERIAL COST	CENTS/L	3)					
TIPEA	1.83200	LBZLR	4	OD CATVLE	4.93	16	4.93
AMMONIUM NITRATE	•65600	LBZLA	; د: ا	50 CATZLA	1.64	48	1.64
CATALYST	•00100	LB/LB	150.	ON CATZER	•15	530	.15
TOTAL CCENTS/L	.3)				6.72		6.72
HANT OVERHEAD COE	NTS/LR)				• 45		.45
TOTAL MILL COST (C	ENTS/Ly)	EX BY-	РНОБЛСТ (HEFT IS	11+58		9.29
N-PRODUCT CREDIT	CENESZLO	>					
AMMONIUM CARBAMAT	F •60000	LBZLB	•	())) (Cy)/P.P.	• Ĥ Ĥ		.00
TOTAL (CENTS/L	B)				• -1+1		.00
JUTAL MILL COST (C	ENTSZLAD	INC HY-	BRODUCT C	REPLIC	11+58		9.29
						fringe	2.02
					Datas		<u></u>
* 10 YEAR PLANT 15 PCT INFIREC	LIFE, EXI T	STING S	ITF		Frice	e 0% ketur	n 11.319/10
	•						
** PFECENT CHANGE	NFFDFD T	O AFFFC	T RE185.C	NY O DESCR	NTACE DI	• I ⊗ #St	
(1)							
11/50% is maintenance	e material	HF F	DRX CALC	LALLEN			
		PLANT	INCERT	5 11.7			
		(CLIPP	ALL (41	5 +1 5			
		WORKI	NG CAP	• 4 m	4		
		tor o	P ASSETS	\$ 4+1 ea			
	PRICE	FUR D	PCT NEL-14	N 19.6 C	6 VI (ZI. W		
	PHICF	FUR 20	PCT DELIN	· · · · · · · · ·	R 9 PS VLR		
	$E \simeq 1.0 \ m$	FOR 30	PCT PFTU	2 · · · · · ()	EXTSILE	I	-41

WW- NO. 210

able study - GHANIDIAR ALTERATE Basis: Cont. Process; 2 hr. reaction AN/U/Cat. = 2/2/1.7U Yld. = 87%; U Conv. = 88% Yld. on AN = 100%

MP 01001108 00519

CAPACITY CAPACITY	49•0 XX LHXXH		÷* 54 (en sittate f	Coult
	5x115	$(0,1) \in X \to (1,1)$	51 ·····	449, 4 11 - 12 - 13 11 - 12 - 13	Acctg
INVESTIGAT COM \$)					
BOTTERY LIGIT			· • > /		4.84
OFFSITE AND ALLC	CATED APX.		1.404		1.00
TUTAL (MM \$)			· · • ₩ 11	11	5.84
AUCESSING COST C	CENTSZLHD				
DEPRECIATION		10.0 PCI LV451	1.40,	• •	-
MM AND RL		5.0 PCT IN SE	• 190	1)	.37
OPERATING LABOR	12.00 MEN	8600·0 ±/+4×+Y+	• 2 G	0115	.26
CHEVICAL CONTROL	ZI • O O = • H ^A	10000•0 SNAV-4×	•19	··· · · · }	.10
CUDEDAI 2102	4•00 KEN	10000.0 */*/***	•1.9	1.20	.12
FLECTRICITY	•20 ReH/LP	1.0 CN 174	زيري 🔸	375	.20
STEAM	4.00 L3 ZL3	75•0 CNTZH SH	• (4)3	017	.30
10 T H H	10.09 GALZLA	10.0 CATZERAL	•10	651	.10
Tatia Tatia	•01 GAL/LH	7.9 CATZ GAL	•10	$r \sim c_1$.10
19TAL (CENTSZ	LB)		• • * /		1.55
WAR MATEPIAL COST	(CFNTS/LR)				
CONTROL OF A	1.13000 LAZER	4.(A) Co(7).	1 • 5 3	14	4. 53 ·
ALLUNITH NITRATE	•65600 L3ZE3	○•50 (0×+Zu)	1.54	, 4 - 2	1.64
CATALYST	•00200 LBZLB	150.00 CALZES	• [4/4	010	.30
TOTAL (CENTS/			• 1 1		6.47
HANT OVERHEAD (C)	ENTSZLAD		•		. 28
TUPAL WILL CUST C	CENTSZED) HX HY	-PROMON CREATE	$1 \cdots \bullet 1 \cdots$		8.30
- PPUDUCI CHEDIT	CHAIRZERD				
ABOUNTER CARRAMA	IF	• (1) (1) (1 / / / / / / / / / / / / / / / / / /	■ 23 - 4		.00
TOTAL COPATSZI	_H)		• 1 N		.00
WIAL MILL COST CO	TENTSZEN) ENC HY	-bearing to the tea	1.1.1.2		8.30
				Fringe	<u>1.78</u>
- 10 YEAR PLANT	LIRF, FYISILWES	41 L.M.	Price	0% return	10.08¢/lb
	an a				
ны мезисель Сногое	· · · · · · · · · · · · · · · · · · ·	2.1 Strengthere in the second seco		1	

(1) 50% is maintenance material

TRATES CALCHERT LESS

	$\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$			1 1	SN • Brittingstatu ● Still States		
				:	• 6 6. • 6	•. •	
89108 99108 80188	Fler Fler Fler) 20 30	est I Personale Poto I	t.		1 1 • • 1 5 • • 1 7 •	(1) (3) [7]. Contin zi , o Continzi, o

CASE NO.220

OUST STUDY - GUANIDINE NITRATE Basis: Cont. Process; 3 hr. reaction AN/U/Cat. = 2/2/1.7U Yld. = 88%; U Conv. = 98% Yld. on AN = 100%

*PRODUCTION CUSTS

FLANT CAPACITY	40.0 MM LHZYR		11 k 4	FASITIVI	TY
				PCT	Gov't
	UNITS	HALFZONIT	LIKFLY	CHANGE	Acctg
INVESTMENT (MM \$)					
BATTERY LIMIT			5+61		5.61
OFFSITE AND ALLO	DATED ANY.		1.00		1.00
TOTAL (MM \$)			6.61	10	6.61
PROCESSING COST (ENTS/LR)				
DEPRECIATION		10.0 PCT IV/ST	1.65		-
MM AND RL		5.0 PCT INUSE	• 83		.42
OPERATING LABOR	12.00 MEN	8600.0 ±/24M-74	• 26	227	.26
CHEMICAL CONTROL	4.00 MEN	10000•0 \$ZMAN-YS	•10	585	.10
SUPERVISION	4.00 MFN	12000-0 \$7408-YH	•12	187	.12
ELECTRICITY	• 30 REHARB	1.0 Calza n	•29	365	.20
STEAM	4.00 LB /LB	75.0 CATZA LB	• 30	244	.30
WATER	10.00 GAL/LB	10.0 CIVIZE DE	+10	731	.10
FUEL	•01 GAL/LB	YOU CATZ GAL	• 1 0	596	.10
TOTAL CENTS/L	.8)		3.66		6.56
HAW MATERIAL COST	C DENTS/LB)				
UREA	1.11800 LB/LB	4.00 CATZE	4.14	16	4.47
AMMONIUM NITRATE	•65600 LB/LB	9.50 CNTZER	1.64	21/1	1.64
CATALYST	•00300 LHZEH	159+90 CATZER	• 45	159	.45
TOTAL (CENTS/L	.8)		6.56		6.56
PLANT OVERHEAD (CE	NTS/LB)		• 31		.31
TOTAL MILL COST CO	ENTSILAD EX BY	-PRODUCT CARDITS	10.53		8.47
HY-PRODUCT CREDIT	(CENES/LB)				
AMMONIUM CARBAMAI	E .60000 LRZLR	•日本 じや ノロセ	• 1) ()		.00
TOTAL (CENTS/L	.B)		• (1.)		.00
TUTAL MILL COST (C	ENTSILY) INC BY	-DBOENCL CHEELLE	10.53		8.47
			Price	Fringe	$\frac{1.87}{10.34}$
10 YEAP PLANT 15 PCT INDIRFO	LIFE, EXISTING . T	STIE		0,0 101011	
** PERCENT CHANGE	NEEDED TO AFEF	CL BELIER HA S FEACE	WIAGE P	UINTS	

(1) 50% is maintenance material.

REPRINE CALCULATIONS

	PLAN	I INVEST	i	$F \bullet C = S(S)$	
	CONT	ALL'	'n	• * * · · · · ·	
	MORK]	LNG CAU	4	• / •.•.	
	10 1 (OP ASSESS	i	F • 18 (3.2)	
2 (1 CF	FOR 0	bUL TELL	V	The A CHAICYLE	
HICE.	FL 20	PCT OF PL	$\epsilon = \sum_{i=1}^{n}$	Frank Charty Date	
いしじ	FIN2 30	NOT SHIP		キラ・コービド ふてやメレント	I-43

COST STUDY - GUANIDINE NITRATE Basis: Cont. Process; 1 hr. reaction (ASF N0.301

1 🖕

1. A. A. A.

AN/U/Cat. = 2/2/1.7 U Yld. = 80%; U Conv. = 64.5% Aqueous Workup

and the second state of the second states and the second states and the second states and the second states and

*PHODUCTION COSTS

H.ANT CAPACITY	40.0 28 64778		●新代賞(AF()) 1967年	Gov't
	UNLTS	RATEZONT	alen av devela	Accta
INVESTMENT (MM \$)	· - · ·			•
BAITERY LIMIT			2.5	3.69
OFFSITE AND ALLO	CATED AUX.		• - 7 F F	.90
TUTAL (MM \$)			11 II	4.59
POCESSING COST C	CENTS/LB)			
DEPRECIATION		10.0 PCT ISPAN	1.15	-
XX AND RL		5.0 PC1 10/81	• , (1)	.29
OPFRATING LABOR	10.00 MEN	8600.0 ±Z245-59	• • • • • • • • •	.21
CHEMICAL CONTROL	4.00 改五8	10000.0 EZAAN-YA	• 1 - 3 - 21 25	;10
SUPERVISION	4.00 MEN	19900•0 57 00-477	• 1 3	.12
FLECTRICITY	•10 RHZLI	R I. I. CATZA H	•10 SPR	.10
STEAN	5.00 LB /L-	3 75+0 CXIZE HA	• " IRA</td <td>.37</td>	.37
1A11-3	8.00 GAL/LT	3 10.0 CVTZ+101	• 18 KS1	.08
	•01 GAL/LF	3 7.9 CALZ BAR	• 1 (1) // ///	.10
TOTAL CCENTS/			a a 🍦 s ca s	1.37
HAS SHEEMALAL COST	(CRNTS/LB)			
$11.3 \mathrm{EV}$	1.23200 LOVLE	3 A+09 C× ZEP	11. (14) 👔 👔 👔	4.93
AFADALUX NITRATE	•65600 LAVLE	2. 0.50 CATZE	1• 14 31	1.64
CATALYST	•00100 LAZE	R 150+00 USEZLH	•1 · (6/1)	.15
IUTAL CENTSZ	LH)		C • 13	6.72
FLANT OUFRHFAD (C)	ENTSZLAD		• • • •	. 24
WTAL MILL COST (CENTS/LB) +> HY	-bbcancl Cotting	$(2 \bullet 11)$	8.33
X-PRUDUCT CREDIT	(CENTS/LE)			
OWACVIDW CUBBOWA.	TE •60000 LH/LH	• (9) CARA		.00
TUTAL COENTS/	_ B)		• ' !	.00
TOTAL MILL COST (СЕМТРИСНО ТИС НУ	-bsond ci (benie	··// Fringe	8.33 1.73
ور و در ایوندهاند وسو مادس		/ · 9 · · · · · ·	Price 0% return	10.06¢/lb
- 10 YEAR PLANT 15 PCT 1401PE0	CIFF, FYISTING	1.1.1.1		
** PEPCENT CHANGE	E NEEDEL TO AFEE	OL ARDINA RA SORDAR	STA 14 181 181	
(1)				
``50% is maintenanc	e material	READEN COTON POIL	• · · ·	
		PLANT INVENT	•	
		CORP ALLOC +	• 1	
		116 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

PSICE EQR. 0 PCT 055 (v) 11. CF 0576. PSICE FOR 20 PCT 0510 11.00 CF 20. PPICE FOR 30 PCE (57700 10.00 CF 20.00

CORP ALLUC - E

TUT UP ASSET . . .

. • • 1 • * * *, *

a de la company

COST STUDY - GUANIDINE NITRATE CASE NO.501

Basis: Cont. Process; 1 hr. reaction AN/U/Cat. = 2/2/1.7 U Yld. = 80%; U Conv. = 64.5% Agitating reactor; melt workup

 A second sec second sec

*PRODUCTION CUSTS

FLANT CAPACITY	40.0 MM LB/YR		4 4 C	ENSITIVI	TY Coult
	UNITS	RATHZINIT	LIKFLY	CHANGE	Accta
INVESTMENT (MM \$)	· · · · · ·				
BATTERY LIMIT			3•00		3.00
UFFSITE AND ALLOC	ATED AUX.		1.00		1.00
TOTAL (MM \$)			4.00	11	4.00
ROCESSING COST (C	ENTS/LB)				
DEPRECIATION		10.0 PCT INV54	1.00.	- •	
MM AND BL		5.0 PCT INPST	• 50 (1)	.25
OPERATING LABOR	12+00 MEN	8600.0 \$70AV-YF	• 26	143	.26
CHEMICAL CONTROL	4.00 MEN	10000•0 \$Z@AN-YR	•10	370	.10
SUPERVISION	4.00 MEN	12000+0 \$ZEAN-YE	•12	308	.12
FLECTRICITY	•23 KWHZLB	1.0 CATZROH	• 23	201	.23
STEAM	4.00 LB /LB	75.0 COTZE LB	• 30	154	.30
WATER	10.00 GAL/LB	10.0 CNTZADAL	•10	462	.10
FOEL	+01 GALZLB	7.0 COTZ DAL	•10	440	.10
TOTAL (CENIS/L	B)		2•71		1.46
AW MATERIAL COST	(CENTS/LB)				
UREA	1.23200 LB/LB	4.00 CN1/LH	4.93	9	4.93
AMMONIUM NITRATE	+65600 LB/LB	2.•50 CNTZL↔	1.64	58	1.64
CATALYST	•00100 LB/LB	150+00 CNT/L34	•15	302	.15
TOTAL (CENTS/L	B)		6.78		6.72
HANT OVERHEAD (CF	NTSZLAD		• 23		
TUTAL MILL COST (C	ENTSZLYD FX BY-	PRODUCT CREDITS	9.66		8.41
NY-PRODUCT CREDIT	(CENTS/LB)				
AMMONIUM CARBAMAT	E .60000 LB/LB	•00 CMTZLE	• 00		.00
TOTAL CCENTS/L	8)		• (+()		.00
TUTAL MILL COST CC	ENTSZLAD INC BY-	PRODUCT CPEDI (S	9.55		8.41
			1	Fringe	1.74
a 10 YEAR PLANT	LIFE, WEISTING :	ITE	Price ()% return	10.15¢/lb
15 PCT INDIREC	T		N 0 A (2.1 - 1)	01.537.0	
** PERCENT CHANGE	NEEDFD TO AFFFC	$(\mathbf{L} \mid \mathbf{B} \mid \mathbf{b} \mid 1 \mid \mathbf{b} \mid \mathbf{M} \mid (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{n}$ by \mathbf{b}	an tan tan ta	UTN15	
(1)	_				
50% is maintena	ince material	RETURN CALCULATIO	NS		
	¥	PLANT INJEST & A	•0 .5d		
	(CORP ALLOC 5	+ 1 (*/i*)		
	: •	VURKING CAP 5	•6 81		
	1	TUT OP ASSETS 5 4	•7 8.ú		
	PRICE FU	S O PCT RELOWN 1	1.4 CHOT	SZLB	
	PHICE FU	C20 PCT HEADER 1	4.1 01001	CVI.H	
	PRICE FOR	V 30 PCT EFFE	5.5 CENT	d NTB I	-45

INSE NO+610

WET STUDY - GUANIDINE MITLORE Basis: Cont. Process; 1 hr. reaction AN/U = 0.75; aqueous workup U Yld. = 71%; U Conv. = 66.5%

SPRUDUCTICN CUSTS MARIN CLEITATA HAAT CAPACITY 40.0 ON LEVYE Gov't POL UN 1 1 5 PATHZELLE SLEWEY CHANGE Accta INVESTMENT (MM 5) 3.57 HATTERY LIKIT 4.67 OFFSITE AND ALLOCATED ANX. • 🥬 () -.90 4.47 TUIAL (MM S) 11 4.47 HRUCESSING COST (CENTS/LB) DEPRECIATION 10.0 PUT IN PER 1 + 1 ? . 📿 (1) . 28 5.9 PCT 1.3 31 MALAND RL • 21 .21 UPERATING LABOR 10.00 0.00 *600•0 <u>\$</u>7%0**? 1 11 4.00 KEV • 1 11 CHEMICAL CONTROL 10000.0 4780 - 55 011 .10 37.3 CODESNIGION . 1.07 MEN 12009.0 年7+八年十分。 .10 .12 FLECTPICITY •10 RUHZLB 1.9 00175 5 • 1 3 514 .10 75.0 CHEZE LA STEAS 5.00 LA YEA . . / 1 - 7 .37 $\mathbb{L} \simeq T = \mathbb{O}$ 8.00 602/64 10.00 00 87 1900 • 1. N .08 7.0 0.11 305 i (j)FUEL +D1 GALZER • 1.11 10 TUTAL (CENTS/LB) 1.11 1.36 HAR COTFRIAL CUST (CENTS/LB) G. Star 1.38600 LH/LA 5.54 4.10 C. 171 . . . 9 ANNUMITE NEIGALE •65600 LH/L9 つきゅうけいじょうえん う 1 . 1. 1. < 1 1.64 .15 UNTALYST •00100 LHZLH 150.000000 • 1 3 11.1.1. TULAL (CENTSZER) 1. 7.33 .23 HLANT UVERHEAD (CENTS/LA) a 1 N TUTAL KILL COST (CENTS/LB) FY BY-PROFUCT CORPL'S $(\underline{\mathbf{y}}_{i}) \in [\underline{\mathbf{y}}_{i}] \times [\underline{\mathbf{y}}_{i}]$ 8.92 W-PRODUCT CREDIT (CENTS/LK) AGTENIER CARBAGATE . . 60000 LOVED .00 • 110 C 1 / / . . • A. 6 .00 TOTAL (CENTS/LR) • +) TOINE MILL COST (CENTS/LS) LOS PREPAREDUCT CONDICS 1 1 . A. 8.92 Fringe 1.86 Price 0% return 10.78¢/lb 10 YFAR PLANT LIFF. FYIGLING SLIP 11 15 PCT INDIKECT PERCENT CHANGE NEEDED FO AREFCI OFICEN MY CONFIDENCES INCLUSION 14. (1) 50% is maintenance material 1. 1. 1. 1. Concernant la se 44.2 A A 1 1 1 * 1

> Profile House 1 . St. 197 POLOS NO 20 - 1 · · · · /: •• . DETUR FUE 30 1 The state of the states

110

WST STUDY - GUANIDINF NITRATE Basis: Cont. Process; 1 hr. reaction CASE NO.620

6-0-

 $A_N/U = 0.56$; aqueous workup U Yld. = 62.5%; U Conv. = 68%

	*PRUD	DCTION COSTS			
HLANT CAPACITY	40.0 No. L3778		***	SHWSLIVI	i Y Coult
	UNITS	BATEZUNUT	LIKELY	PCT	Accta
INVESTMENT (MM 5)				COHODE.	ACCLY
BATTERY LIMIT			3 • 60		3 60
TOTAL (MN C)	CATED AFX.		•20		.90
TOTAL CHE \$1			71.50	11	4.50
PROCESSING COST (CENTS ZERO				
DEFRECIATION		10-0 PC" INCO			
NM AND RL			1.10	(1)	-
UPFPATING LABOR	10.00 MEN	8590.0 FZ-08-70	•	134	.28
CHEMICAL CONTROL	4.00 KEN	10000.0 57.0 -7	• • •	194	. 21
SUPFRUISION	4.00 MEN	12000-0 87.00-90	• 1 12	344	.10
"LECTRICITY	•10 KOHZL:	1.0 0.378 4	•1()	500	.12
STEAD.	5. 11 LR /L.	7500 Barr	• 3 /	1	37
ATER	8.00 GAL/L)	10.0 UN PZ:0004	• 98	653	.37
r (FL,	•01 GAL/L	2	• 1 11	11918	.10-
TOTAL CCENTSZL	-9)		>•72		1.36
AN SATERIAL COST	CENTCZ.ON				
DREA	1.57600 10/0				
AMMONIUM NITRATE	•65600 LBZL		6+39	н	6.30
CATALYST	+00100 LB/LB		1.64	31	1.64
TUTAL (CENTS/L	99) 199	1 30 + 00 C (VX] X F .	• 1 5	321	.15
			· · · · · · · · · · ·		8.03
PLANT OVERHEAD (CF	NTSZLAD		· 24		24
WTAL MILL COST (C	ENTSZLED EX BY	-BRODACL GEEDLE.	11-11	-	9.69
W-DDODUCT CORDIN					0,00
AMMONIUM CARRANT	CUENTSZER)				
TOTAL CONTEXT	e. •voond Phale	• 0.0 · C* · · / 1 .4	• () ()		.00
WTAL MILL COST (C	FAITCZELA INC DV		•40		.00
	THAT INTO ALL	- For Chine C. F. Constant F. C.	11.11		9.69
				Fringe	1.99
* 10 YEAR PLANT I	LIFE, MAISTING	TTF	Price	0% return	11.68¢/15
15 PCT INDIREC	T				
** PFECENT CHANGE	NEEDED TO AFFE	OT RETINCA BY B. C.C.	STATE DO	INTS .	
$\langle 1 \rangle$					
(1750% is maintena	ance material	RETURN DELCARETED			
	ា	A STREET STATES IN			
	5° L	NO AUTOMIST CONTRACTOR	15.04 		
	1. () () ()	2 (x = 13 k x k x (x) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	.*. *i		
	τG	$\mathbf{T} = \mathbf{O} \mathbf{P} = \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{W} \mathbf{T} \mathbf{C} = \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} T$	· • ·		
	• • •	· · · · · · · · · · · · · · · · · · ·			

DV THE	$\mathbf{K}(\mathbf{t})^{\mathrm{T}}$	11 6417	$r_{\rm eff} F = 1 - r_{\rm eff}$	A second states of the second	
$r \in 1$ (14)	je ∕ e	$20 \rightarrow \pm \pm$	a Sergeran	1	
0 · · 1 · · · F	5 () · · ·	30 PT	ί τ _{η τ}	A de Constant de la desta	۲.,

1-47

MAE NO.630

CARLENDER SERVICE A PARTIE OF MARKED A CONTRACT

WST STUDY - GUANIDINE NITRATE Basis: Cont. Process; 1 hr. reaction AN/U = 0.5; aqueous workup U Yld. = 59%; J Conv. = 68.5%

*PRODUCTION COSIS

UNITS DATES DATES DATES DATES DATES DATES CLARGE Acctg INVESTMENT (M6 \$) BATTERY LIMIT $\cdot \cdot 57$ 3.57 DEFRITE AND ALLOCATED AUX. $\cdot 56$.90 TOTAL (M0 \$) $\cdot 56$.90 DEPRECIATION 10.00 PG1 ISVS: $\cdot 56$ DEPRECIATION 10.00 PG1 ISVS: $\cdot 56$ MM AND RL 5.0 PGT ISVS: $\cdot 56$ OPESATING LABOF 10.00 MEN 8600.00 SZ400-Y $\cdot 11$ 2.8 OPESATING LABOF 10.00 MEN 8600.00 SZ400-Y $\cdot 11$ 2.8 OPESATING LABOF 10.00 MEN 8600.00 SZ400-Y $\cdot 11$ 2.8 OH-MICAL CONTROL 4.00 MEN 10000.0 SZ400-Y $\cdot 11$ 2.6 12 OH-MICAL CONTROL 4.00 MEN 10000.0 SZ400-Y $\cdot 12$ 2.6 12 OH-MICAL CONTROL 4.00 MEN 10000.0 SZ400-Y $\cdot 13$ 3.7 STEAS 5.00 CALP $7.5.00$ CMIZE L $\cdot 1.7$ 10 7.7 OTAL (CENTSZLB) $\cdot 01$ 1.7
INVERSIMENT (MM \$) $BATTERY LIMIT$ SOT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
OFFGITE AND ALLOCATED AUX. TOTAL (MM \$) $\cdot 90$ -90 TOTAL (MM \$) $10.00 \ PGT \ I \ SUS(1)$ $11.00 \ A.47$ PROCESSING COST (CENTS/LB) $10.00 \ PGT \ I \ SUS(1)$ $1.10 \ A.47$ DEPRECIATION $10.00 \ PGT \ I \ SUS(1)$ $1.10 \ A.47$ SM AND PL $5.0 \ PCF \ I \ SUS(1)$ $5.6 \ (I)$ 28 OPECATING LABOF $10.00 \ SEN$ $8600.00 \ SUS(200-Y)^2$ $-11 \ I \ 40$ 21 CH-SIGAL CONTROL $4.00 \ SEN$ $10000.0 \ SUS(20-Y)^2$ $-11 \ I \ 40$ 21 CH-SIGAL CONTROL $4.000 \ SEN$ $10000.0 \ SUS(20-Y)^2$ $-11 \ I \ 40$ 21 CH-SIGAL CONTROL $4.00 \ SEN$ $10000.0 \ SUS(20-Y)^2$ $-10 \ I \ 20.7 \ A$ 12 SUPERVISION $4.000 \ SEN$ $10000.0 \ SUS(20-Y)^2$ $-10 \ I \ 20.7 \ A$ 12 SUPERVISION $4.000 \ SUS(20-Y)^2$ $-10 \ SUS(20-Y)^2$ $10 \ SUS(20-Y)^2$ 10 SUPERVISION $4.000 \ CMTZA \ I$ $1.0 \ SUS(20-Y)^2$ $10 \ $
TOTAL (MM \$) 2.47 1) 4.47 PROCESSING COST (CENTS/LR) 10.0 $pc1$ 1.575 1.19 7 MAND RL 5.0 $pc1$ 1.995 5.6 1.19 28 OPECATING LABOF 10.00 8600.0 5.490972 1.1 1.94 21 OPECATING LABOF 10.00 8600.0 5.490972 1.1 1.94 21 CH+#ICAL CONTROL 4.00 5.0 10000.0 5.2490972 1.1 1.94 21 CH+#ICAL CONTROL 4.00 5.00 $5.00.0$ 5.2490972 1.1 2.67 1.12 TUPERUISION $4.000.578.4$ 10000.0 5.2490972 $1.1226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.226.7$ $1.10.7$ $1.00.7$ $1.00.7$ $1.00.7$ $1.00.7$ $1.00.7$ $1.00.7$ $1.00.7$
PROCESSING COST (CENTS/LR) $10 \cdot 0$ $PC1$ 1.575 1.10° 7° MM AND RL 5.0 PCT 1.995 5.6 1.49 28 OPECATING LABOE $10 \cdot 00$ $8EN$ $8600 \cdot 0$ $5.260 - 79^{\circ}$ $(1 - 1.99)^{\circ}$ 28 OPECATING LABOE $10 \cdot 00$ $8EN$ $8600 \cdot 0$ $5.260 - 79^{\circ}$ $(1 - 1.99)^{\circ}$ 28 OPECATING LABOE $10 \cdot 00$ $8EN$ $10000 \cdot 0$ $5.260 - 79^{\circ}$ $(1 - 1.99)^{\circ}$ 21 CH+SICAL CONTROL 4.00 $8600 \cdot 0$ $5.2602 - 79^{\circ}$ $11 - 360^{\circ}$ 12 TOPENVISION 4.00 8.2649° $11 - 360^{\circ}$ 12 61° 12 SUPENVISION $4.00 - 650^{\circ}$ 10° 5.00° 10° 10° 5.77° 10° STFA9 $5.00 - 10^{\circ}$ 10° 10° 10° 10° 5.7° 10° </td
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
MX AND RL $5 \cdot 0$ PCF LARS (1) 28 OPECATING LABOE $10 \cdot 00$ MEN $8600 \cdot 0$ MARCH (1) $41 + 0$ 21 OH-MICAL CONTROL $4 \cdot 00$ MEN $10000 \cdot 0$ MARCH (1) 417 10 SUPERVISION $4 \cdot 00$ MEN $10000 \cdot 0$ MARCH (1) 417 10 SUPERVISION $4 \cdot 00$ MEN $10000 \cdot 0$ MARCH (1) 417 10 SUPERVISION $4 \cdot 00$ MEN $10000 \cdot 0$ MARCH (1) 417 10 SUPERVISION $4 \cdot 00$ MEN $10000 \cdot 0$ MARCH (1) 417 10 SUPERVISION $4 \cdot 00$ MEN $10000 \cdot 0$ MARCH (1) 100 5760 100 STRAM $5 \cdot 00$ LR MEN 100 CNTZA (2) 10 577 10 STRAM $5 \cdot 00$ LR MEN $10 \cdot 0$ CNTZA (2) 100 577 10 STRAM $5 \cdot 00$ LR MEN $10 \cdot 0$ CNTZA (2) 100 577 10 STRAM $5 \cdot 00$ CNTZA (2) $10 \cdot 0$ CNTZA (2) 100 100 100 STRAM $5 \cdot 00$ 100 CNTZA (2) 100 100 100 100
UPECATING LABOR 10.00 MEN $3600 \cdot 0 \le 240 \cdots 29$.41 1.44 .21 CH-MICAL CONTROL $4.00 \ MEN$ $10000 \cdot 0 \le 240 \cdots 29$.15 417 .10 SUPERVISION $4.00 \ MEN$ $10000 \cdot 0 \le 240 \cdots 29$.15 417 .10 SUPERVISION $4.00 \ MEN$ $10000 \cdot 0 \le 240 \cdots 29$.15 417 .10 SUPERVISION $4.00 \ MEN$ $10000 \cdot 0 \le 240 \cdots 29$.13 267 .12 FLECTRICITY .10 \ EMPLUS $10000 \cdot 0 \le 240 \cdots 29$.13 567 .12 STRAD .10 \ EMPLUS $1000 \cdot 0 \le 240 \cdots 29$.14 567 .12 STRAD .10 \ EMPLUS $100 \ EMPLUS$ $100 \ EMPLUS$.10 .12 STRAD .10 \ EMPLUS $100 \ EMPLUS$ $100 \ EMPLUS$.10 .10 STRAD .01 \ EMPLUS .01 \ EMPLUS $100 \ EMPLUS$.10 .10 STRAD .01 \ EMPLUS .01 \ EMPLUS .01 \ EMPLUS .10 .10 STRAD .01 \ EMPLUS .01 \ EMPLUS .10 \ EMPLUS .10 .10 <t< td=""></t<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
FLECTRICITY $\cdot 10$ KPHZLB $1 \cdot 0$ CNTZA P $\cdot 10$ 5 · 0 10 STRAM $5 \cdot 00$ LB ZEP $75 \cdot 0$ CNTZA P $\cdot 10$ 5 · 0 37 PATES $8 \cdot 00$ COLZ P $75 \cdot 0$ CNTZA P $\cdot 07$ 139 37 PATES $8 \cdot 00$ COLZ P $10 \cdot 0$ CNTZA P $\cdot 07$ 139 37 PATES $8 \cdot 00$ COLZ P $10 \cdot 0$ CNTZA P $\cdot 07$ 139 37 PATES $8 \cdot 00$ COLZ P $10 \cdot 0$ CNTZA P $\cdot 07$ 139 37 PATES $8 \cdot 00$ COLZ P $10 \cdot 0$ CNTZA P $\cdot 07$ 139 37 PATES $01 = 10$ $7 \cdot 0^{-2}$ 30E $10 \cdot 0^{-2}$ 30E $10 \cdot 0.7$ 10 PATESZER $01 = 10^{-2}$ $7 \cdot 0^{-2}$ 30E 10^{-2} 507 10^{-2} 10^{-2} PATESZER $1 \cdot 66800$ LBZLP $2 \cdot 0^{-2}$ CNTZEP $1 \cdot 5^{-2}$ 24 1.64 CATALYST -00100 LBZLP $2 \cdot 0^{-2}$ CNTZEP $1 \cdot 5^{-2}$ 24 1.64 CATALYST -00100 LBZLP $150 \cdot 0^{-2}$ CNTZEP 155^{-2} 201 15 TOTAL (CENTSZLB) -0010^{-2} CNTZEP 150^{-2} 201 15 8
STFAM $5 \cdot 00$ LB ZED $75 \cdot 0$ CM ZE LC 577 130 37 MATES $8 \cdot 00$ MEZER $10 \cdot 0$ CMTZERGE 577 130 556 08 FUEL 01 E ED 77 CMTZERGE 577 100 577 100 5777 100 TOTAL (CENTSZER) 01 E ED 7777 100 5777 100 5777 100 MARGATERIAL COST (CENTEZER) 55600 LBZER $4 \cdot 00$ CMZER 5777 100 5777 100 MARGATERIAL COST (CENTEZER) 55600 LBZER $4 \cdot 00$ CMZER 57777 100 $5777777777777777777777777777777777777$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
POPE •01 POPE 7. COMMENDE •02 •07 •10 FOTAL (CENTSZER) •01 FOTAL (CENTSZER) •01 FOTAL (CENTSZER) •01 •10 •77 •10 OA GATERIAL COST (CENTSZER) •066800 L3ZLG •000 Comment •10 •10 •10 OA GATERIAL COST (CENTSZER) •066800 L3ZLG •000 Comment •10 •10 •10 OA GATERIAL COST (CENTSZER) •0100 L3ZLG •000 Comment •10 </td
TOTAL (CENTS/LB) 1.77 1.36 GA GATERIAL COST (CENTE/LB) 4.00 CS/LC (CS/LC (CS/LB)) 6.67 GASO HUM NITROTE 65600 LB/LB 0.60 CS/LC (CS/LC (CS/LB)) 1.64 COTALYST 00100 LB/LB 150.00 CS/LC (CS/LC (CS/LB)) 1.5 TOTAL (CENTS/LB) 9.40 8.46
GA GATERIAL COST (CENTERLE) 165F0 1.668800 L37L8 GASO FILM NITROTE .65600 L37L9 COTALYST .00100 L37L5 TUTAL (CENTS7LB) .00100 L37L5
1.66800 L3/L4 4.00 C.21.0 C.77 8 6.67 0.200100 NITROTE .65500 L3/LP 0.00 C.71.0 1.77 0.1 1.64 COTALYST .00100 L3/L4 150.01 C.17L .15 201 .15 TOTAL (CENTS/L3) .00100 L3/L4 .15 8.46
AAROJIMO NITRATE .65500 LBZLP 0.50 CVTZL2 1.62 0.1 1.64 COTALYST .00100 LBZLS 150.01 CVTZL2 .15 201 .15 TUTAL (CENTSZES)
COTALYST
TOTAL (CENTS/LB) 8.46
\mathbf{A}_{i}
$\frac{12.5}{10.05}$
Y+P (UPICT CREDIT (CEPTSZLA)
ACAUSING CAPRAMATE +ADDED LEVES + OF CONTRACTS - OU
TOTAL (CENTS/LB) .00
NTAL WILL COST (CENTSZER) INC RY-PRODUCT COMPANY 11.07 10.05
Fringe 2.03
Price 0% return 12.08¢/lb
19 19 1949 PHIST PHIST PHILE PARTY PARTY 199 2119
A CERTRAR PHANCE WEEDED TO AFFICE VETURE RY PERCENCED AND A MEDICA A CERTRAR PHANCE WEEDED TO AFFICE VETURE RY PERCENCED AND A MEDICA

(1) 50% is maintenance material Deputy councils

PLAND INSET	,	•			
CORP SULOC			1	•	
NUCRING CAN		•	,		
an price production	•				

045E NO . 540

QUST STUDY - GUANIDIAL ALIMATE Basis: Cont. Process; 1 hr. reaction AN/U = 2; aqueous workup U Yld. = 99%; U Conv. = 55.5%

*PRODUCTION CESTS

HANT COPACITY	UD-U DE FRAKE		અને જેવાં હ	SWSI119	ΓIΥ
				PUT	Govt
	08118	~ 0.12 No. (L.L.	LINLY	CHANGE	Accty
LANDER LINE (MM E)					
GERGIER AND ALLOS			5•16		5.16
CHESTIE AND ALLOUA	ATED VIIX●		[•(J·)		1.00
TUTAL CMM 5)			6.16	1)	6.16
PUCESSING COST CCF	ENTSZUR)				
DEPRECIATION		10.00 (1) 1 20	1.57		
MM AND RL		5.0 TO 1 191		1)	30
OPERATING LABOR	10.00 YEV		1	364	.00
CHEMICAL CONTROL		1000.0 47.00	• 1()	5 A.A	. 41
SHPERUISTON		10000-0 17.00-0	• 1 •)	3 C. 21	.10
FLECTDICITY			• 1 *	1.51	.12
STRAM			• 20	< / ()	.20
			• / 5	151	.45
4183 4 21 CA	THEFT ATT	$\mathbf{U}(1 \bullet t) = (1 \bullet t) \mathbf{V}_{2} + (1 \bullet t) \mathbf{V}_{2}$	• 1 ()	681	.10
	• 1107 - 1314 L Z L K		• 1 /1	1.1.6	. 14
TOTAL COENTERES			4.1.4		1.71
MATERIAL CUST C	CENTSZLAD				
TREED	·99500 LAZIN		2. 18	1 7	3.98
AMMONIUM NITRATE	•65600 LAZE		1	41	1 64
CATALYST	•00200 Levi		- 24	4 4	1.04
TUTAL (CENTS/LS)		5		5.92
HANT OVERHEAD CCEN	1921.30		- 1136		20
PITAL MILL CUST CCE	VLUNTH) EX HA-	PROPRET CONDES) • 8 Zi		7.91
					,
-AL-RHODHOL CHEDI! (CENTEZIAN)				
- AMMUNITUM CARBANATE	· COLDAR LANKLA	• (1.) (J., 1.)	• - 1 - 5		.00
TOTAL CCENTSZEB)		• (1))		.00
INTAL MILL COST (CF	ALCAT3D 196 88-	RECORDER SPEED 1.	2.84		7.91
			F	ringe	1.76
		T 15 0	Price 0%	return	9.67¢/1b
- IU IFAR PLANI L	IPPS PAINTING Y	1 1 1-			0.014/12
TO PUT INDIFFUT	SEPPEN TO APPEC	en and herein and a state of a	TACL D	TATE	
PERCENT CHAINTE	WEELFEL IO HEELU		. . <i>1 1 1 1 1 1</i> 1 1	A • Y B = -	
(1) EON is maintonan	no matorial				
50% is maintenan		FLARA COPCED ALLS			
	PLA		• .		
	C12	$P(\Delta L) = 0$			
	1111	ALG CAR I .			
	1.01				
		• • • •			
	re Lube B (O PULL FRANCE TIME	- CENELZI	.;··	
	POLICE FOR 21	0 201 47104 15+7	CENTRA		
	-9-ICE FO 30	D F(1 - F - 17+7	C. C.H. 1574		-49

CDST STUDY - GUANIDINE NITHATE Basis: Cont. Process; 1 hr. reaction CASE NU.650

AN/U = 1.5; aqueous workup U Yld. = 92.5%; U Conv. = 60%

and a set of the second s

*PRODUCTION COSTS

بريامه والتها

HLANT CAPACITY	403.•0 Mar 1.3779		新花	16 91 E FI J	l l'r
				' 1	Govt
「小口になる」 ひんたい ひょうい ゆう	14A 1 1 S		FT 27		Accty
					1 20
- OFFSITE AND ALLOC	ATED ARY.		• •		4.20
TOTAL (MM \$)			5 a 11		<u> </u>
					5.21
PROCESSING COST (C)	ENTSZLAD				
DEPRECIATION		10.•0 POT 10000E	1.50.	- 、	
MM AND RL		5.0 POT INDEE	• e - C	1)	.33
OPERATING LABOR	10-00 EEN	8600+1 ±2000-95	• 12.1	>17	.21
CHEMICAL CONTROL	4.00 MEN	10000+0 11000-70	• 14	21 A	.10
SUPERVISION	4.00 凶刑的	18000+0 ±780-+YE	• 1 •	27.9	.12
FLECTRICITY	•15 KJH/LH	1.0 CVTZK H	•15	しょう	.15
STEAM	5.00 E8 /L9	75.9 CNTZ- 13	• 37	155	.37
从在 了日轻	9+00 GALZEB	10・0 CMFN・GAL	• () y	5 1.50	.09
PHPL,	•02 GOLVEB	1+9 (1947) - 1000	• 1 •	11 417	.12
TUTAL (CENTSZL)	۲)		·•1·>		1.49
AN : JAMERIAL COST ((CENTSZLP)				
TERA	1.06499 1.872.3	4.01 C Z.	1. J. S. S. S.	1 0	4 26
ANNUMITY NITRATE	.55500 LA/LA	9. 30 C . EZE	1.61		1 64
CATALYST	.00120 LBZLA	150.01 0 22	• 1 **	217	18
TUTAL COMMISZL:	3)		6.000		ñ.08
HANT OUERHEAD (CEN	(TSZED)				. 26
TUTAL WILL CUST (C)	FNTSZLH) FZ HY-	PRUDECT CREATES	1.45		7 83
					1.05
M-PRUDUCT CREDIT (CENTSZEND				
ARLONIDA CARBAMATE	• • • • • • • • • • • • • • • • • • •	• (18) (1 × 1 × 1)	• 210		.00
TOTAL COFNIEZLE	3)		• • 1 1		.00
TUTOE MILL COST COF	FUTSZUBD INC HY-	PREDICT CERETIC	•		7.83
			F	ringe	1.65
			Price 0%	return	9.48 c/1
* 10 YEAR PLANE L 15 PCT INDIRECT	IFE, FRIGTING S. S	ITE			J. 10 Y/ 1
SE OFFICENT CHANGE	NEEDED THE AREEC	P = i (1) ≥ i (i i i i i i i i i i i i i i i i i	A T AND A	1 *.	

(1) $_{50\%}$ is maintenance material

READS CUTCOUVIICAS

$P = \Delta \omega_{1} + 1 e^{-i \Delta \omega_{1}}$ $C = 1 + \Delta \omega_{1} e^{-i \omega_{1}}$	se norente en entre en entre en entre e Entre entre
$\frac{(1+i)\sqrt{1-i}}{1+i} = \frac{1}{1+i} \left(\frac{1+i}{1+i}\right) \left(\frac{1+i}{1+i$	1 • • • • • • • • • • • • • • • • • • •
PRICE FRAME ALL STREET	
PELCE FOR 30 and a second	$1 = \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{6}} +$

1-50

(WST STUDY - GUANIE CASE NO+810	DINE GITBATE Ba	Basic Case sis: Cont. Proces AN/U/Cat. = U Yld. = 808	ss 2/2/1.7 5 U Conv	7. = 64.5%
	*b3000id	$\begin{array}{c} AN \ Yld. = 10 \\ By-Prc \end{array}$	0% AN Cor od. Credit =	lv. = 32% 1¢∕lb.
FLANT CAPACITY 4	10+0 MM LBXY9		ISZARS## Dq	TIVITY 7 Gov't
	UNITS	A CALER FR	LISELY CHA	NGF Acctg
INVESTMENT (MM 5)				
BATTERY LIMIT			4.00	4.22
TOTAL (MM S)	TTED AVEX.		5.92 1	1 5.22
PROCESSING COST CCE	INTS/LA)			
DEPRECIATION		10+0 PU1 1577	1.30	-
MM AND RL		5.0 PCT REMOT	•65 (1)	.33
OPERATING LABCR	12•00 MEN	8600•0 \$Z@\\\-\Y4	•26 18	2 .26
CHEMICAL CONTROL	4.00 MEN	10000•0 ± /240 - 476	•10 46	9.10
SUPERVISION	4.00 MEN	12000+0 5×+4×=r	•12 39	1.12
ELECTRICITY	•30 K2HXTB	$1 \cdot 9 C \setminus 1 \land \cdots$	• 20 8.7	3.20
STEAM	4.00 LP /LB	75.0 0.007	•30 19	5 .30
WATER	IU.UN GALZER		•11) 5K	6 .10
TOTAL CCENTSZLB	•01 GALZEA	Y ● OF BUSSEZ = BOSE	- • <u>1</u> 0, 55 3•14	1.51
DOD MATERIAL COST ((TARSZER)			
UPFA	1.23200 1.271.5	2. 111 CALX	4.73 1:	4.9 3
AMONIUM NITRATE	•65600 LB/LB	······································	1.64 3	5 1.64
CATALYST	.00100 LH/LH	150 · MO C = FZL -	•15 38	3.15
TOTAL (CENTS/LB	>		6.95	6.72
PLANT OUPRHEAD COEN	TSZEND		• 27	. 27
TOTAL HILL COST (CE	NTSZERO EX RY-1	seobach complex	10.10	8.50
PY-PRODUCT CREDIT (CENTS/LH)			
- ARMÚNIUR - CARBAMA FE	•69000 LBZLD	1. (0) CALE	• (·)	.60
TOTAL (CENTALB)		• 40	.60
TOTAL MILL COST (CF	ALANDA ING HA-P	MODUCT CONSTRUCT	9 · 59	7.90
			Fringe	1.68
* 10 YEAR PLANT L	IFF. FRISIING SI	т. н .	Price 0% re	etum 9.58¢/lb
* PEPCENT CHANGE	NEEDED TO AFFECT	GETTING CONTRACTOR	WTAGE PUINT	'n
(1) 50% is maintenance	material o	FTURY CALCULOS INST		
	A 10	NT TAULET 4 GLO	$V_1[\mathbf{v}]$	
	COD	PALLOC +	·*· •	
	900- 000-	KING CAP J +6		
	т от	OF ASSETS 4 6.0	ð. 17)	
	PRICE FCR	0 PC1 (F779 11+	CHANES ZEA	
	PHICE FOR 2	O PCT RELTEN	A OF STRATA	¥ 61
	PRICE FOR 3	O POI (FIL) - 10.	OF OTHER PARTY	T=>T

1. A System of American System (States) and States and Sta States and Stat

in the second second

and a second second

WST STUDY - GUANI (ASE NO-820	DINE NITRATE Basi	.s: Cont. Proces AN/U/Cat. = U Yld. = 80% AN Yld. = 10	s 2/2/1.7 U Conv. = 0% AN Conv.	= 64.5% = 32%
	*PRODUCTI	UN COSTS	dit = $2c/1b$.	
LANT CAPACITY	40+0 ∞∞ L¤ZY⊬		※★りお次公(主日の おやりて	Gov't
	TNIT'S	RAIEZINIE	GETELY CHANGS	Auctg
RATTERY LIMIT			1. . 00	4.22
UFFSITE AND ALLOC FOTAL (114 \$)	ATED AUX.		9.•(0() ∞•(94) = €1	<u>1.06</u> 5.22
PROCESSING COST (C)	FWTSZLB)			
DEPRECIATION		19.0 POT 1.87) • 900 /2)	-
OPERATING LADOR	10 60 800	5.0 PCT 18.79	• 6 5 (1)	.33
CHEATEAL CONTROL		8609•0 \$2\\\ - }\ 0000•0 \$2\\ - }\	• 26 12 L	10
SUPERVISION	4.00 MAN 1	2000+0 \$Z-2 #355	•1:1 (444)	.10
FLECTRICITY	•20 AVH/LB	1.0 CN1Z1	• PD - P-9-2	.20
STEAR	4.00 LB /LB	75.0 CHIYA LA	• 20 1.25	.30
WA THUS	10.00 GAL/LB	10.0 COPZE046	• • 10 Sea	.10
FIRE	•01 GALZLB	7•9 CECZ CAL	• 10	.10
TOTAL (CENTS/L)	3)		12 • 1 24	1.51
PA / MATERIAL COST (CENTSZLPY			
11-9A	1.03200 LANDA	1.00 0.41ZD	#•93 13	4.93
AMMONIUM NITRATE	•65600 LB/LB	2.50 11 TZU	1.64 35	1.64
CATALYST	•00100 LOVES	150.00 0.171.	•15 3E1	.15
TOTAL (CENTSAL)	3)		5.7°	5.72
ALANT OUERHEAD COEN	T'S ZURY		. () '	. 27
REAL MILL CUST CCF	CATOZLOD BE ISTAPIO	UDUCT CARAGE	1 - • 1 · ·	8.50
M-FRUDHCT CREDIT (CENTSZLAD			1 20
TANDAL CARBAMATE	••••••••••••••••••••••••••••••••••••••			2.20
TOTAL COENTSPLE	NTSZIRY INC RY-RDD	DUCT POLICE	1 • 191 87 - 1879	$-\frac{1}{7}$
IN ALL MILL COST (CF	10102 102 100 101 - FUC		Frinco	1.30
			ringe	1.00
* 10 YEAR PLANT L	IFE, EXISTING SIT	ŀ.	Price 0% return	n 8.88¢/1b
15 PCT INDIRECT	NEEDED TO AFFECT (ETURA MY MORE AND	arren (Gister	
(1) 50% is maintenance	material	117.541×10.11	1942 - B T (1947)	
		D j∧ ∿tra post		
		COLUMN STREET	•	
		11 11 1 1 1 1 1	r	
		PUT to Para an	a 🖕 sa 🕞 a sa	
	.31 1 (1)	in the state of the	4	
	1794 1 (24 5797 1 (24	S 8 99 - S 990 a - S 14. S 16 31 20 - SSS - S - S	1 m − 1 m −	
¥-52	100 T C F	$= \frac{30}{100}$ Prime	transformation (1) 1 state − 1 state −	Set 1 - S
▲ = √ ●	• •	• • • • •	4 1 4 1 4 4	e da co

.

COST STUDY - GUANIDINE NITRATE Basis: CASE NC+830

AN/U/Cat. = 2/2/1.7	
0 YId. = 80% $0 Conv. = 64.5%$	ŝ
AN Y1d. = 100% AN Conv. = 32%	
By-Prod. Credit = 3 ¢/lb.	

*PRODUCTION CEATS

HANT CAPACITY	40.0 MM LAZYR		\$ \$ \$	ENSITIV.	LTY Govt
	UNITS	RATHERT	LINELY	CHANGE	Accta
LAVESTMENT (MM &)					
BATTERY LIMIT			ル・つつ		4.22
OFFSITE AND ALLO	DATED AUX.		1.110		1.00
TOTAL (MM 5)			2.38	11	5.22
HRUCESSING COST (CENTS/LB)				
DEPRECIATION		10.0 POT INJSE	1.30,	• •	-
MM AND RL		5.0 PCT 1.20T	•65	.)	.33
OPERATING LABOR	12•00 MEN	8600•0 \$Zmax=7~	• 26	181	.26
CHEMICAL CONTROL	4.00 MFN	10000•0 SZRAV-YR	•10	466	. 10
SUPERVISION	4•00 逆形的	12000•0 BXXAR-77	•12	388	.12
ELECTRICITY	•30 KAHNTB	1.0 CATZA H	•20	291	.20
STFAN	A.OO LB ZLB	75.9 CNTZA LH	• 30	194	.30
JATER	10.00 GAL/LB	19.9 COTZ3556	• 10	582	.10
FUEL	•UI GAL/LH	7.9 CR1Z GAL	•10	554	10
TOTAL COENTS/L	-3)		3+14		1.51
HAW MATERIAL COST	(CENTSZUB)				
HREA	1.23200 LB/LB	4.00 CATZER	4.93	12	4.93
AMMONING NITRATE	•65600 LB/LD	2.50 COTZER	1.64	35	1.64
CATALYST	•00100 LB/LB	150・90 じマヤメレス	•15	380	.15
TUTAL (CENTS/L	.13)		6•7月		6.72
HANT OVERHEAD (CF	ENTSZLED		•27		. 27
TUTAL MILL COST (C	FNTS/LB) EX BY-	PRUDUCI CARDINS	10.12		8.50
H-PRODUCT CREDIT	CCENTSZLHO		• • • • • •		1 00
AMMONITA CA BAMAI	18. •600000 2057205 -	$3 \bullet 10$ $C \land 1 Z V \in$	1 • 80		1.80
TOTAL COENTSZE	253 2010 - 25 10 No 7 N.M 1 (N.C 1		1 • 8 + 9		<u>1.80-</u>
TOTAL MILL CUSI CO	ENISZERY INC RY-	BRODUCT CREDITS	8.•333	_ .	6.70
				Fringe	1,48
* 10 YEAR PLANT	LIFE, EXISTING ST	1 T E	Price 09	% return	8.18¢/lb
15 PCT INDIREC		en an en en anna a sao tra construction a sub-station de la seconda en a seconda en a seconda en a seconda en a	n an a cham - mh		
PERCENT CHANGE	NEEDED IN GERED.	L MARINER FRA STATE	e el di≀in ind	1.015	
(1) 50%is maintenan	ce material dEn	NHW CALCHLATICAS			
	DEAM	P # \\`!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			
	r koniv (P (odd)	rationen tradición. ATENEN	. N		
	MUMAL IN CONTRACT		.at.		
	1UT (•*• 		
			i .		,
	PHICE FOR 0	PCT RELEVAN	- trate zra		
	PHICE FUE 20	PCI PETERS 15.2	CEDDONN D		1
	PRICH FOR 30	PCT VERTHAN INSTAL	CENTSZER		1-53

(201 STUDY - GUAN) (ASS A0・910	IDINE NI FATE	Basis:	Basic Case Cont. Proc AN/U/Cat. U Yld. = 8	ess = 2/2/1. 0% U (7 Conv. = 64	1.5%
	ж (), ()	puditow c	AN Yld. = Daga	100% AN Urea = 20	Conv. = 3 \$/1b.	328
HAME CAPACITY	40.0 2× 114744			51. m. C	STATISTI	Y Govt
INUESTRENT (MM 5)	HNIT	ſ	H944X0 (11	$\{(1), (0), (1), (1), (1), (1), (1), (1), (1), (1$	ON-ANGH	Acctg
DATTERY LIMIT OFFRITE AND ALLOC TOTAL (MM \$)	ATED AUX.			1 • 30 - 1 • 30 - 5 • 22	1)	4.22 <u>1.00</u> 5.22
PROCESSING COST (C DEPRECIATION	ENTSZLAD	10	• 9 - PC1 - I × 955	1. (3.)	1)	-
OPFRATING LAROF CHFFICAL CONTROL	12.00 MEN 4.00 MEN	50 8600 10000	 (1) ENKU - A. (3) ENKU - A. (4) PULL FC (2) 	• • • • • • • • • • • • • • • • • • •	117	.33 .26 .10
ELFCTHICITY STRAM	A・00 近日 - 20 KWHZ - 20 KWHZ - 20 KWHZ - 20 KWHZ	12900 L9 10 L8 75	●① 玉Z+ A+	• 1 * * • * ? f ! • * ? ()		.12 .20 .30
TOPAL COENTS/L	•01 GALZ		on di Azzaran Di GAZZA (GI	• • 1 • 1 } • 2 } • 2 }	n ($\begin{array}{r} .10 \\ \underline{.10} \\ 1.51 \end{array}$
·Δ · ΔTEPIAL COST ····································	(CENTSZLP) 1.93200 LBZ		D . 1. 71.		* 4 ,	2.46
CATALYSI TOTAL (CENTS/L	•00100 LBZI 33	_3 15	(0 • 0)) - C + ₄ ∠ U+	•1% #••35	373	<u>.15</u> 4.25
FLANT OVERHEAD (CF IVIAL FILL COSI (C	NTSZLA) Entszlaj fix f	чү-раорист	CORFDITI	• 21	-	.27 6.03
Y-PRODUCT CREDIT AVENNIUM CARBAMAT TOTAL (CENTS/L	(CENTSZLE) E +60000 L971 8)	.13	• A 1 (1/L	● ³ - 1 ● - 1 + 3		.00
HOTAL MILL COST (C	ENLGN r b) i/o f	s A- 6500000.	r Ganktie	I.c.c I	Fringe	6.03 1.34
 IO YEAP PLANT I 15 PCT INDIREC ** PERCENT CHANGE 	LIFE, FXISTING T NEEDED TO OFF	SINE SECE PEIDS	, y sey an an	FUCE		/.3/\//10
(1) 50% is maintenance	e material		REFERENCED OF	adout an Ethor	۲	
		1 C		د ب ^ر د	۰ ۵	

WANNESS P

14404

Section of the sectio

	C (20	and Abla Trees	90) 1745 -		• () - ₍₂ .) • () - ₂ .)
	11	H the co	- , s	•	
NATION NATION	6 (). F11.1	20 ec	ala di s		
poyle#	FG	30	(* ·		

· · ·

Am. - 448

1-54

QUEF STUDY - GUANIDINE NITHALE - GASE NO. 920

Source of the

Basis:	Cont. Process
	AN/U/Cat. = 2/2/1.7
	U Yld. = 80% U Conv. = 64.5%
	AN Yld. = 100% AN Conv. = 32%
	Urea = 3 ¢/lb.

*PRODUCTION CUSTS

PLANT CAPACITY	40.0 MM LAZYP		**	FNSITIVI	ΤY
				PCI	Govt
	(HALTS	5 PATEZ FIT	1.INFLY	CHANGE	Acctg
INVESTMENT (MM \$)					•
BATTERY LIMIT			4.92		4.22
OFFSITE AND ALLOC	ATED AFX.		1:00		1.00
TUTAL (MM S)			5.00	11	5.22
FROCESSING COST (C	ENTS/LB)				
DEPRECIATION		10.0 PCT IVES	1 • 30		-
MM AND RL		5.0 PCT INCR	•65	(1)	.33
OPERATING LABOR	12.00 MEN	8600•0 ±754v-Y+	•26	180	.26
CHEMICAL CONTROL	4.00 MEN	10000+0 \$Z*A~+Y+	•10	464	. 10
SUPERVISION	4.00 MEN	12000.0 57.000-42	•12	387	.12
FLECTRICITY	•20 K.H/L	$\mathbf{B} = 1 \cdot 0 \cdot \mathbf{C} \sqrt{2} \mathbf{V} \sqrt{2} \mathbf{n}$	• 30	290	20
STEAM	4.00 LB /L	A 75.0 COLLO LA	• 30	193	.30
MATER	10.00 GAL/L	B 10.0 CATZACAL	•10	580	.10
FOEL	•01 GAL/L	8 7.0 CMPZ Gui	•10	559	10
TOTAL (CENTS/L	B)		3.14		1.51
HAN MATERIAL COST	(CENTS/LB)				
UREA	1.23200 LB/L	B 3.00 CATZES	3.70	15	5.70
ANMONIUM NITRATE	•65600 LB/L	3 9•50 CATZER	1.64	35	1.64
CATALYST	+00100 LB/L	B 150.00 CTT/L4	•15	379	15
TUTAL CCENTS/L	B)		5+49		5.49
FLANT OVERHEAD (CE	NTS/LB>		• 07		. 27
TOTAL MILL COST (C	ENTSZLB) FX B	A-bb0Ducl Correction	4.49		7.27
HY-PRODUCT CREDIT	(CENTS/LB)				
AMMONIDM CARBAMAT	E •60000 LB/L	B •90 0%EZE (•ពិប្		.00
TOTAL (CENTS/L	8)		• 0.0		.00
TUTAL MILL COST (C	ENTSZLB) INC B	Y-PRODUCT CONTING	X • K4		7.27
				Fringe	1.61
* 10 YEAR PLANT 15 PCT INDIREC	LIFE, FXISTING T	SITE	Pric	ce 0% retur	n 8.88¢/lb

6H2 PERCENT CHANGE NEEDED TO AFFECT RETURN BY THERE FACE POINTS

(1) 50% is maintenance material OCTURN CALCULATIONS

	P C	LAN	1 I.v.	210 ° 1	л. С	
	14) 14)	0.05	136 (10 P	Ŧ	• "~
	11	(r† -)	u	ንግዝዋና		No. 🕖 Suff
FRICE	FC-	0	perc	F [1]		11.5 CENTONIC
$P \mapsto I \subset \mathbb{N}$	$F \geq r_{\rm c}$	20	904	2 - 112		11 . 1 11 . J. R. / 1. 34
poles	Vi i	30	: 11 . 7	1.1.1.1.1.1.1		1 STATE THE SPECIAL ST

CUST STUDY - GUANIDI CASE NO•710	INE WITHOUT	Basis:	Cont. Proce AN/U/Cat. = Aqueous wor U Yld. = 80	ss; 1 hr 2/2/1.7 kup, 3-s %; U Conv	. reactio tage agit v. = 64.5	n . reactor %
	*bisG	DUCTION (20515			-
HANT CAPACITY 40	0.00 MM L3748			***	FVSIFIUI	IY Covit
	74 N: 1 (1	ς	RATEZENIA	LINELY	гот Снахен	Acctg
INUFSTMENT (MM \$)				> 4 >		0.40
UFFSITE AND ALLOCAT TOTAL (MM \$)	ED AUX.			• 20 3 • 39	11	<u>.90</u> 3.30
PROCESSING CUST CCEN	ITS/LA)					
DEPEFCIATION		1 ()•0 PCT 1870"	• 45,	• •	-
SE AND RL		(5•0 PCI 1.133.	• 10	1)	.21
OPERATING LABOR	10・00 送用的	*60i)•1) \$Z3A+Yi	• • • 1	1.48	.21
CHEWICAL CONTROL	4.00 MEN	1000()•0 \$Ze.^∞=¥+	•19	319	.10
SUPPRVISION	ル・0 前 - 四日の	15090)•0 4/XAX+Y×	•] >	266	.12
FLECTRICITY	•13 KWHZ	LH 1	I•0 CRIZSIA	• 1 3	2.1	.13
STFAM	5.00 63 /		5•0 CN (78, 128)	• • • /	116	.37
WATER	8.00 GALZ	LH I()•0 CV(ZNHAL)	• 1) 24		.08
TUTAL (CENTS/LB)	•)[h4447	Lats		• 1 0 • 201		$\frac{.10}{1.32}$.
AN MATERIAL COST (C FREA ASSOMIDE NITRATE CATALYST TOTAL (CENTSZLA)	FNTSZLA) 1+23200 LAZ +65600 LAZ +00100 LAZ	եթ եռ է։։ ۱	20+00 -0×€Z6 * - 2+59 -0 -⊥Z5 * -59+39 -0 * Z25 *	(*176)*64 * 15 (* 1 5	9 201 7 C - }	4.93 1.64 <u>.15</u> 6.72
HLAAT OVERHEAD (CENT Hofal Mill Cost (CEN	SALB) TSALB) FX	(i 4- 5)(i(11(1) (такті), т	• * * * 2		<u>.20</u> 8.24
M-PRODUCT CREDIT CC	FUIS/L+)					
ASSONTHE CARBAMATE	.KOODO 1.87	lu sa	•03 (C. 24)	• 111		.00
TUTAL (CENTSZER)				• * F		.00
WIAL WILL COST (CEN	TSZED INC	14 - Dar (11 - 11 (С. (* кназт <u>)</u> с	r ● ⁴ · 3	Fringe	8.24
* 10 YFAR PLANT LI	PF= FXISTIN	R S116		Price	0% return	9.92¢/lb
PERCENT CHANGE N	РЕПАР IV АР	F#C1 (0+1)	Here (CV - Company)	an an an an an an	1	
(1) 50% is maintenance	e material		56 19952 - CVT (C (1947) + 1 C S		
			101 05 977 F) 2032172 996 0129 9016 1 0126 97 17 F64	· · · · · · · · · · · · · · · · · · ·	11 • • • • • • •	
1-56		84108 8. 94108 8. 94108 8.	4 () 4() (20 p()) 4() 1 30 p() (+)			1. 4 • • •

and the second second

RUANININE NITRATE PUNJEFT APPE) Packen hen tunular reartum

APPENDIX 1-6. MATHEMATICAL REACTOR PRINTOUTS

and the second second

HOUDRY READS

RULK DENSITY = 7.37 GPAMA/FUL, IN. VRIN FRACTION = .437 TJAE DIAMETER = .2.40 INCHES FEED TEMPERATURE = 199.0 C. Jacket Temperature = 195.0 C. Jacket Temperature = 195.0 C.

3311N W 29°CL TITAL CATALYST AFTONT - 1111.37 CHAMS TEAPFRATURE 4.44 54.5 44.4 184 °. 1 X X - L х.**л.** х. 184.5 141.00 89.J 5.HR 1.68 4.4.7 1 ° 1 ° 1 NFG. C. 9.00 144.7 つ * アイ * 191. x • x x вн., 84.4 9.1.5 r." -+ -1.13 1.121 2.1 41191. HIMINAL RESIDENCE TIME -4. IL NFAC FREQUENCY FACTON # TFLY 1 4 GN/ + 2 + 2 * 3463 P/92. 4144 (. U U II * 2955 2005 2905 7405. 3.4.4.5 5252 1.512.4 **1033** .55.32 ~1~1· 4753 . 34 54 404.) .2070 POR4 1115. - 105-4114 . 4185 PATE CONSTAUT FOR GR CONVERSION 4.U FFR .74.54 .0530 -215-. 1442 . 5158 0000 4435. 1514. 104 0176 .0.344 21.20 0.81.0 4319 4754 5835 4434 41.44 1115 6141 71.24 1516 .2758 .5422 7115 GUANIPINE 14.53 01122 5125 3260 H/41 1.421. 01.15 31 Velly 0440 6949 1440. 0612 0440 .1552 2801. ~~~~ ~~~~ 5474 וההח 1001. 1235 11.10 8120 2112 2040 A 14 10 57 FRAFIINES 4000 1014. . 14014 A JULI .1440 1755 6111. 4440 4520 1 25 V 1745 4120 3450 5 - 5 - 5 68.98 1 101 47.50 4554 4442 4401 45.05. 5172 244.7 11/6 2124 いたい 1000 1110 2006 . . . FEEN METGHT FARTIONS = AUTOLIC - TUDIT There is the start 11.15 B a live • • ا ا و ۱ NULHUN .V 111. 1322 ARE5 . 51.37 C L X P .14 1214 1115 1745 4741 nly, *5-5-5 X U 's 112411 4739 .1715. . 4922 \$ 208. **0* 100% 1.212 1-1-...... 5467 27:215 אבּנַד דּדָדָה אאדב ש אַיחה וויי/ייט. MALAH FLOH RATES · · · · 585 47.4 , n k s - 11-. 125 1.44 . 1 4 1 400. ۰I د ----1114 .157 .17. 000 100 10 210 190. **7**F3 100 .41. 717 40LES/MINITE 249 255 300 1.7.1 114 100 28: 780 272 269 412 buy. 17.1 1990 322 100 275 245 ÷. 404 402 340 307 141 MELT 000 -47 500 48 000 2,000 7.500 10.00 22.590 25.000 12,500 15,000 37,500 40,000 17.500 77.50 70.100 .000 500 -105 DISTANCE 1005 2.500 15.000 000.04 42.500 44,000 I JOHES

I-57

ľ

PATE CONSTAUT FOR HEEA NETAPOSITION

ACTIVATION FNERGYR=

4U 44591*

.14801

ACTIVATION FOFUCYA

ERFORENCY FACTOR =

* V 4.711

H

Ame a pire is a full

Panning wate = 1,147 10./44. Panning mejant føåntnoon = 2'

pl topac.

BUANTDINE NITRATE PROJECT PACKED BED TUBULAR REACTOR

OVERALL MEAT TRANSFER CREFFICIENT = 1.0% CAL./SO.IN.-MIN.-C. 7.37 6PAMS/CU. IN. FEED TEMPERATURE = 190.0 C. Jacket temperature = 195.0 C. 2.00 INCHES VOID FRACTION = .437 BULK DENSITY . TSEE DIAMETER -HOUPRY BEADS

AF.SI MINUTES TITAL CATALYST MEIGHT = 1111.37 GRAMS TFMPERATUHE R9.3 η**FG. C.** 84**.**5 44.9 88.4 0,00 1.941 84.1 84.2 184.1 1.84 .2 185.2 188.3 N. 6 5 1.44.5 1 84.6 184.4 יא^בי 184.0 1.84.7 8.º68 88.4 189.1 1.281 19.A **F** . J E N MINAL RESIDENCE TIME = 1. U KEAC Y1ELD M. GN/ PHDC. 0000. 2865 4115. .2454 .2472 28/9 .2884 -292-.2952 .3015 .3049 A18.5 \$ 68.2. 59.62. 3252 7485. .3505 .3512 .125. .3264 2345 54.52 .3464 NULSE JANUU "." PEAC/ HaU FFP 00800 ·210-.nAln 0000 0344 0425 2155 2472 2754 0645. 344.5 4086 4310 1510 4545 1915 .534n 0251 1172 1847 .3052 3325 4754 1955 53.40 **BUIDINE** .0559 .1020 0812 41 TKATF 0540 0554 .0583 0410 .1235 CUV1. .067A 0480 0043 .1152 1451. 1607 192.5 0597 0745 1001 -15.22 .1482 .1758 1833 1008 FPACTIONS 470R 4686 NPFA 4730 4520 4323 8 P 4 3 4032 3452 4664 4622 1218 4225 4129 3936 1845 3450 3 377 7215. .745 3258 3200 UNUN 3167 3114 2031 FEED WEIGHT FRACTIONS = ANNNI H VITUATE = MULE MIIINUHuV 47.54 .4730 4761 4754 5.014 TPATE 4745 4753 512H 4802 . 4834 4865. ARGA .4922 4044 407.1 4007 50.54 505× 4104 100% 1115 5117 5137 5144 1145 MELT FEFD RATE . R. AA LA./WR MOLAP FLOW RATES 545 ¥'00" 600 P20. 140-151. . 191 144 400 د ا د 10 .078 102125 .136 .147 - # ¥ L 001 1055 201 191 112 221 100. 40LE3/HINUTE 758 1002. .820 .917 .799 746 722 690 127 . A24 ***** 3 **\$** 785 122. 734 680 570 545 .831 551 644 6.36 . 62a 154 \$15 HELT .000 1.500 2.000 2.500 7.500 10.000 12.500 17.500 .500 5.000 DISTANCE 000 20,000 22.500 25°000 27.500 50,000 52,500 35.0nn 57.500 10.000 12.500 45,000 17.500 100.61 INCHES

1-+2. \$139 N "ITWATE

GULANIN VE

H

.

RATE CONSTANT FOR UREA DECOMPOSITION

ACTIVATION ENERGY

FREQUENCY FACTAR =

RATE CONSTANT FOR GN

HUBS. 5197° P004.

.

16 F A

FUANTER'S NETRATE ...

6.735 LD./wp.

PROPUCT RATE =

311 34591.

1.11111.

.1480r 05

ACTIVATION ENERGYR= FREDIFINCY FACTOR =

pl thuuc"

2 u (i 4 • PROPHET WEIGHT FRACTIONS - AMMUNIN WITPATE ABOII

SUANJDINE NITRATE PROJECT PACKED BFD TURULAR REACTOR

14 M 1

HOUDRY BEADS

د ،

JULK BENSITY = 7.37 GRAMS/FU. IN. Voto Fraction = .437 1jbe diameter = 2.00 inches Feen Templeringe = 199.0 c. Jacket Temperature = 195.0 c.

OVERALL MEAT TRANSFER CREFFICIEVE = 1.04 CAL /50.14.-414.-C.

DISTANCT	HOLAR FLT	D# 84755	3 104	FRACT	i Gus	CONVERSION	YIFLD	1540564 8116 F
I NOKES	HULES/	A [NIT F	MIE NUME *	1 3011	ULANTI INE	4.U REAC/		
	HELT	575	LITHATE		NITRATE	M.II FER	4. IL HEAC	
000	5 E P .	UUU *	ຍນປູ	5005°	0000	0000	0000	1 201
503°	.428	104	5022	4050	.0026		2711	
1.000	. 424	446.	5042°	4907	1600.	0356	6616	
1.500	420	-1	5062	4462	. n075	0535	-2738	
2,000	41 2	210*	50A1	4419	uale.	.0634	1975-	188.0
2,500	4 i f	¥10.	. 1100	4776	1124	.0856	2763	189.0
000 2	800°	525.	**13.	. 4568	A44.	1530	2824	197.6
7 500	569.	C#0.	527n	4741	. 1360	2265	.2886	187.6
10.000	.370	• 45 P	5547 • 5547	4155	audu.	2892	2949	147.8
12.500	.357	, nr a	5417	0110	.0454	.3474	2105	187.4
15.000		1 N I I		3745	, 0773	4012	5082	1 9 4 1
17,500		200°	#804 *		1150.	1504	.3151	184.5
20,000		P (3 6 *	5 1. R 7	0885.	F501°	6951	5005.	- 88 -
22.500	. 315	÷11.	5×2×	.3160	C141.	0836.	.3244	188.7
25.000	100 ·	エ ヘッ・	1445.	A102.	1481.	5759	. 5.366	1.94.0
27,500	058.	- 1 X -	1 X 3 2 *	2404	.1711	1012		1 44 2
30.400	.293	.144.	cu25*	0 6 4 C	. 1453	. Fd! 4	.3514	A. UK1
32,500	.287		1125.	PARC.	•1805		.15.8/	189.5
35,000	- 282	. 1 6 5	5713 ·	2 534	0751.	64949	. 3561	0 041
37,505		- 1 2 -		Iucc.	uto?"	.7178	. 57.54	1-061
40°000	275	C N I .	, 5644	F705	8622.	.7394	Judy.	190 . 3
42,500	۳. ۲.	144	. 4444	1355	-45.4	7574	.3874	191, 5
45, 000	245.	491°	* * * * *		0444	1734	3946	1 4 10 - 2
47,560	- 2 4 2 -	50C°	へをよく。	1743	\$ T 4 2 *	TRAD	4014	2 2 2 1
10u ¥7	.241	101.	1643.	1724	• 2630	1191.	4028	190.
HELT PFFD	RATE = 4.	hm/*4] 00*			717	1474: 444	NFIGHT - 1	LI LT CRAMS
FEEN WEIGN	AT FRETTO		MISS NTRATE	.1/5" =		INAL PESIDEN		40.05 MINUTES
			118 F 4	1644° a	PATI	F CONSTANT F	20 20	•
			TAPTIM JUIN	ibue" =	6	FREDUENCY FI	- acrow	LI 11171.
Panner Pl	115 a 3. 02	25 1 4. 140.				ACTIVATION	FNFACYD=	16646 95
Pannuct M	SENT FRACT	Suult	IMM STITLE AND STATE	ATF #	5146 2411	F CONSTANT FI	TO HESA DE	PULLING TINN
			162	0FA H	Urll	E PEDHENCY E	ACTOR =	e1 100000.
		8	ANTINE STRU	115 e .	4474	ACTIVETION 4	WFDRYR	. thadr 115.
							,	

10

1-59

BUANEDINE NITRATE PROJECT PACKED RED TURULAR REACTON

BULK DENSITY = 7.37 6PAHS/CH. IN. 342455 TEMPERATURE + 195.n r. VOID FRACTION - 457 TUBE DIAMETER - 2.00 INCHES FEED TEMPERATURE - 190.0 C. HOUCHY BEADS

OVERALL REAT TRANSFER CREFEICIF'T = 1.08 CH. /SG.JV.-MJV.-C.

MOLAR FLOW PATES

59.37 MIMITES 3111.57 RAAMS •! +! I 1 1 ? • TEMPERATURE 184.4 8. P. B. 1 RH . F 1 8.4 ... d 1 R J . 6 167.5 8.781 187.9 188.0 186.1 6.481 H 8 H 0*081 49.2 88 A 147.6 187.7 188°I 5 4°04 | 11FG. C. 11° - 17 1 8 H . 7 1.28 **10.** 1.84.6 NOMINAL REGIDENCE TIME -TOTAL CATALYST NFIGHT = FREQUENCY FACTOR = 4. II PEAC PATE CONSTANT FOR GN VIELD H. GN/ 2706 .2865 5000 3264 . 7 7 5 . 0000. .2716 2725 .27.34 3314 2742 .2784 2824 2007 .2993 SUR? 3124 3174 3222 3355 3115 3465 5145. 3565 3n37 NOLSE SANCS ".IL REAC! 4"11 FEL .0127 .0440 .3285 5510 0000 0530 1530 2046 2479 2432 3658 40122 4346 PYSE 3235 5259 2005 0240 .0356 56113 5210 66.55 111 50.05 ちちょう BULL INTINE .1054 .1252 WITRAIE 0000 1017 15. R. .1152 .1550 0157 0083 0440 .n955 1:57 0034 0051 0163 0.525 0411 .0445 0.773 . 1451 1776 0.244 1351. 690 FRACTIONS 4786 4004 \$124. ₹ 3ता। . 3479 .3749 210y . 430**8**. 4706 4293 \$155 3745 . Sn77 #10.2ª 4477 ABAR 11-5. .3220 2744 25.25 5000 100.1 4430 49.37 4558 2440 2514 3581 7451 FEED MEIGHE FRACTIONS = & MONING SUITORTE & HOLF 6205 MILINDHAT 5520 *I TPATF 5215 5042 5055 5969 5130 1815 5263 520F 5347 1394 n£¥ 3 1884 4144 5.6.6.9 5572 1943 5.7 Q V 5710 5441 1005 5.547 4730 MELT FEED GATE . 4.00 [H. /40] toa. 120 345 с С С 01.3 . **63**0 144 020 1.32 157 1 1 2 199 20% 210 000 100 007 410 057 18.4 よいの .146 855 ° 320 2.14 401,ES/HINUTE . 535 554 520 513 540 A32 624 612 282 56.5 542 597 47A. 459 444 447 440 454. £ 1. P. **₩**29 544 497 4.8.7 2 **5** 4 HELT 15,300 27, 530 50, 000 000.1 1.500 DISTANCE INCAES 000 .000 2,500 500 00000 2.500 000* 1,560 20,000 22,500 000 \$2 32,500 37 , 50n **45,**006 35,000 100.01 12.500 47.500 100.85 000

RATE CONSTANT FOR UREA BEENMPOSITION

ACTIVATION ENFRGYRS

•14555 A5

14495 05

ACTIVATION ENFRGYR=

FREDIENCY FACTOR =

0241. 1244. 50500

> R 8

11.5 1

THATE PERMIT

A STATES PICKAR

ENALISTIC STRUCT =

PENNICT RATE . 4.719 14.7.0.

PROPUCT HEIGHT FRANTTOUS

PI Shuuc*

EUANIDINE NITRATE PRIJETT Påcked bed tubular reactor

4

.

0

i.

MOUDRY BEADS

BULK DEMBITY = 7.37 GRAMS/FU. IN. VOID FRACTIOM = .437 TUBE DIAMETER = .2.0n inches Fred Temperature = 190.0 C. Jacket temperature = 195.0 C. Overall meat tramsfer chffficient = 1.0a Cal./SD.IN.-MIN.=C.

NOMINAL RESIDENCE TIME = 44.52 MINUTES TOTAL CATALYST WFIGHT # 1111.57 GRAMS TEMPERATUME 1.181 19.1 R. 5 185.6 157.5 188.11 140.5 90.00 189.6 189.5 157.7 188,4 A7.6 R7.X 8 × • 4 DEG. C. BH . 4 187.7 R7.5 91.4 н. 8.8 1. 21 84.7 x x . -30.0 184.4 .1 11171. H. I PEAC ソフェレロ H. GN/ FREQUENCY FACTOR = 2725 0000 2704 2731 2885. 1100 2940 2982 3082 3115 5222 1965. 2711 2718 276.5 1512 3291 .37.57 2794 2824 2855 3015 3044 3330 PATE CONSTANT FOR GN 3186 CONVERSION H.U REACI HU FER 5195. 9600 0356 1232 0642. 0220 2255 3148 4012 5.59.0 0000 0134 0855 1530 1934 25.84 2682 1115 5574 0452 3474 3749 4755 4741 4954 SHANIDINE VITRATE 1003 1600 0000 0.125 **ND 3** £9990 0124 0193 .0244 .0.30A 1.350 0433 49A .0565 16.54 5 u/u . . 7713 0.045 100. 1.990 1054 11.5A C . . . 1302 1257 • 5594 FRACTIONS . 1.P.F. 00003 \$125 A 3911 4976 6965 4420 4155 3545 3444 3340 5010 4 4 8 4 4776 4472 4554 4361 4258 5918 1447 3744 1643 1754 3150 3054 3950 4952 4 41 N 7 4465 ALL PUT ALTONE . 11-FA # = JINLI - ILINTRY FEED weight Fractinus a sunning the sign of NOL F MILNOWER 5032 130% 5952 5 | R K 5230 5270 5.38.5 5.62M 1104 5922 100 5145 5.547 5417 1403 116. 2534 1547 5545 VITOATS 5000 5942 5 4 5 0 55FA 2045 5 5 6 K PELT FEED RATE . A. A. IN IN IN PENDUCT RATE . 6.525 14.140. PROBUCT AFIGHT FRACTIONS -HOLAR FLOW RATES 5 V U 545 169 : 72 F. P. C. с U ... 100 ີຍ 1.1 15.8 . 072 111134 * * * 230 707 4 i c 100 .00 100-192. 401. 150 401ES/HINUTE 860 4 **6** 6 .780 739 726 680 644. 650 530 543 632 . 423 . 422 495. 548 346 .827 795 756 214 252 196 811 752 HELT DISTANCE INCHES 20,000 22,500 25,000 27,500 30,910 32,500 37,500 37,500 43,500 43,000 47,500 - 20000 090.01 000.86 500 000* 000 12,500 15,000 17.500 10,009

I-bl

JA89F 85

FREGUENCY FACTOR = ACTIVATION ENERGYR

> .75n5 .24n1

105 A

GUANTINE "ITWATE

. . .

by thruc.

APPENDIX II

And the state of the second second

PHASE III, PART 1

GUANIDINE NITRAVE PILOT PLANT OPERATIONS

11.

Figure 11-2. Mich Pressure Steam Boilers

•

. . .

Fight I'-a - Une Ammenian Mitrate Feed System

n. A. W. .

-A-

.

11-5

0

Startin Fristiner and Evaptrator Hold Tanks |-| + | + | | + |

Fluce 11-4 - Manidine Witrate Crystallizer and Basket Centrifuge

5 K - 1

Figure II-10 Guanidine Ditrate Drying System

of the substance Fill Chapter to Filler Food Recrete

TABLE II-1

Contraction of

REACTOR PERFORMANCE (Operating Conditions and Calculated Results)

Run No. 1 (6/8/72 → 6/29/72)

Date	6 /B	6/13	6/14	6/15	6/15	6 /11	1 C/ 3							
Sample No. Calculations Eased On	Ū	5	;	į			17/0	17/6	9/21	6/21	6/21	6/21	6/22	6 /22
	7,	7 n	10	21	5 2	S I	SI	S 2	S3	54	SS	S6	S	\$2
	0020	2020	0440	1520	2200	00 70	0010	0070	0080	1 200				1
<u>किंद क</u>									0000		1091	2015	0115	0660
Reactor Stram Pressure, psig	110	163	160	160	192	190	051							
Effective Ho. of Tubes	7	ŝ	6	~		c		061/071	()61	200	200	190	225	225
t ". Feed Product			•	4	t	7	(* 1)	1-3	Ē	7	i-2	2	1-2	1-2
	16.9	41.5/ 25.6	39.8/ 29.3	28.7/ 20.6	28.2/ 14.3	56.17 40.0	43.4/	42.6/	43.1/	36.7/	39.3/	34.8/	45.2/	16.44
Z AM, Feed/Product	61.47	20.2	10 65	17 55						(*77	0.12	24 .3	24.5	54.9
	909	8.5	53.8	57.6	52.8	35.6	50.2/ 41.6	50.1/	52.7/ 46.2	50.1/	55.6/	57.3/	48.8/	79.87
I CK. Feed Product	8.07	-		10.11					1 0		7.60	60.5	50.5	51.5
	22.0	13.9	1.11	14.5	1/.71	3.2/	5.5/	3.5/	4.8/	4.2/	2.41	10.9	5.87	10 6
				•		12.9	1.48	27.8	24.6	22.1	14.9	13.7	20.0	14.9 14.9
	2 5 1 1	Trace	c	7°C	1.3	9.25	0.19	0.62	0.41	0.29	0,15	01.0	ç	
Feed Rate, 1h hr	ر ج	6	Ċ ć	ر م	2. 52		06	ō	00			61.0		42.0
Calculations									C.	05	i k	06	60	06
	а 	35°			1.43	ر: ¹ د د	0.67	ر . 882	0.916	1.19	1.05			ļ
	, (1	812 * * 5	-		ر 19	ر ت ې.	CL 7. U	0.76B			, , ,		10.0	10.1
Constrained by	811	526ITU	0.014	510-5	0.17KB	190 0				() .		777.11	0.182	0.155
i Inselubles A.OR. u.	: : :					100.0	152.0	0.116	0.173	9.152	0.111	0.0605	0.0913	0.0836
		,	٠	1:223	185.0	0 ,0189	200-0	0.045 (.022	0.0173	0.0122	0.0275	0.026	0.0218
A HAR ELEMENT AND A HAR AND A H	1-	6.9	C	ు రోట	8.9	ŝ	21.4	10.5	15.5	13.7	10.0	5.45	B.2	ć.7
		•												
210M	ű.	edine t	The active	- B2(A-			Feeding	Reactors	R200	Afte	an Oriei)
										יייני		Ces In K.		Failed

II-12

.

and the second strange and all the

2

ikte		÷.22	25 19 14	6 /23	6/23	6/27	6 127	6127	8613	06/ 7					
Sample No. Calculations Based Da	5	.0	\$ 3	\$2	53	S	52	5		07/0	87/9	6 / 28	6/29	6/29	6 / 29
Tim		1 1 1	0210				r 1	2	10	25	s3	S4	SI	S 2	S 3
					05 20	6.	06°00	0800	0200	0200	1100	1400	0200	0090	1050
Reactor Steam Pressure, psig	Ĩ,	č,	2 4 7												
Effective St. of Toker			•	1	. 67	141	0.67	200	U6 I	195	061	761	190	190	190
	4. 9. 1.	ans T	· •	*	ŗ	.,	61	И. Р.	•3		ę	ŝ	2.5	7	
	•	24 - 24 24 - 24 24 - 24	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000 - 4 1900 - 4 1910 - 4 191	24 .57 18,9	28.2 (22.9	26.7/ 22.9	25.6/ 19.6	32.0/	- / 2 51	28.5/	32.7/	33.2/	34.61	33.2/
i All. Fred Froduct	,		il.	+ 3, J '	,1.1	58.67	15-09	61 6/) ¢ L \$		Q. 01	1.21	20.7	21. ^b	25.2
		r-1 2	· •	1.	÷14	4.12	6.8	60.8	6-67	.' 	61.0/ 61.5	55.5/ 64.3	57.9/ 60.8	57.5/ 59.2	62.3/ 63 7
	۶.			i j ŭ	9 1 2	10.5 16.9	10.37	12.6	6.6/	/	16.4	6.7/	4.6/	3.47	1.4/
1 Institutions, Pt Curt				j. 35	7.26	, , ;	, ,		0.10	5.12	21.5	18.9	17.0	16,3	9.1
Persi Rase, Th Ba	à	ð	i t			•		16.0	0.89	0.63	0.79	0.58	0.55	0.69	0.32
Calculatores			•		a-	2.	2.	25	0 6	Св	80	81)	125	50	180
AN LONGE Fator	,			, , ,		5	-								
						í •			- X	N/A	1.61	1.27	1.31	1.24	14.1
		•.		1	 	•	6.0	3.161	0.53	,	154.0	0.195	0.306	0.338	0.293
		•				•		0.5665	9.23.	•	0.133	3.08	0.0875	0.1055	0.0695
		•		*	617,1	сж. С. 4 С. 4 К. 1	А. П. Т.	П.4.	0° 0271		0°05	0.056	0.0478	0.0562	1.427
		۲. ۱	s.		21.2	С.	1.1-	1.10	1.12	ı	12.0	6. 4	12.2	5.3	12.5
)				
ā.	84.5 ×	t avera		202 112	501	Trind A	• • • •		`:						

II-13

Tried All Fractors; Problems With Flow Enstribution, Boilers

water a start of the second second second

Figure II-12. Productivity Vs Time - First Catalyst 8 m

11-14

Figure II-13. Productivity/Hr Vs. Time - First Catalyst Run

II = 1.5

Post in the reaction of the system of the system of the system of

hippene il-la. Productiv ty Vs. Time - Second Catalyst Run

Li ki

Figure II-15. Productivity/Hr Vs Fime - Second Catalyst Run

11-17

1. C. B.

1

TABLE II-2

and the state of the second

С.

REACTOR PERFORMANCE (Operating Conditions and Calculated Results)

Run No. 2 (7/19/72 - 8/1/72)

لمعراد

Courses State Same Read

 J_{in} , \dots M_{in}

124

Citer-

8

Date C	. * ***	.). 1-	3	6 4 1 -	120	1720	7 22 -	/23	7/23	7 / 23	7 /24	7 / Z4	7 /24		7/25
Cample N. C. Is ulars one Base of the		23		s 1	s;	53	թəա	S	s 3	S 5	s 1	52	53		SI
Å		и 1 1 1	n Vin Vin	set te,		÷ -	ut: 130	·300	1530	2330	07.30	0530	1300		0130
) 1 B							().ç	
1993年,1993年月11日,「Andrew States - 1993年1999	×.		¢	cet /	- 140	(161 -	.сто. •сто:	011	011	115	110	160	110	81) :	154
Estrutation No f Tubes	ж	u.	x	æ	x	ag.	sət sət	œ	භ	ц	œ	80	æ	gieq	æ
· · · Freed Fraction 2	,	64 		47.5. 29.3	35.27	30 • 0 • 1 • 1 • 1	tevinit 1 moote	19.5	34.9/ 19.6	33,3/ 23,4	-/ 32.7	-/ 27.2	27.4/ 24.6	051 0	ı
ે તેએ, કેમ્બલ કેમ્ડ્રાઇલ દ			80	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	1. s 1. s	, 6 , 7 , 7 , 7	io bota e tota	8.47 53.7	56.8/ 63.3	59.0/ 60.5	-/ 61.2	-/ 61.0	60.4/ 61.6	a ərus	ï
a . K. Sted Product	6.5 37 9	3.2		9-1-6 30-6	u m	5.5	eau pui badses	3.0/ 14.6	6.1/ 15.2	4.1/ 13.4	-/ 3.2	-/ 8.5	6.2/ 13.9	sərq m	ı
na series de la s		د ب بار با		1	•	5 . 28	ne an Ref	9.08	0.30	0.16	,	Trace	⁵ 07	fojz	,
the strategy of the	, F		₹ - •**		5 - 1 6 - 1 8	175.	tr de Otra	100	(01	00	100	100	100	pos	100
							adula ar Es							tes	
Athenia Marti	Ξ.		0		62 27 4 4 80 5	0.73	лот. 1 рэ.	1.30	1.13	: . 33	ı	ı	1.65	- 00	1.34
Grad Art (Contraction Contraction	5 -		на 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	5173 B	у т. г	£6:°C	ля эл 11 - ли 11 - ли	.251	0.121	0.311	1	•	0.548	uz -	,
္ အေႏိုင္း ခ်ိဳးျဖင့္ မႊိုင္	144	2	£	1.1%E	0.223	1£91.1	;xi: ∩t_1i	606.	0,0513	0 0788	٠	•	0.0575	77/	ı
Test 212 to 100 m.	292	1 *	9 700° u	°. 635	41-1-U	1,0285	e dn; sd yz	.0073	2,044	110.0		ı	0.006	L	ŧ
Pract Press, strategy and the Br	с. Фа 21	• • •	44 14 15 1 21 4	÷.	22.5	[*];	19612 1-57	U ⁻ 6	5.1	6.	ł	ı	5.8		
7 年 4 次 8 月 7 月 4 月 4 次 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		* * * * * * *		1			•	-							

N 773-5 :

Start July 17, New Catalyst; First Data 7/19, Flow to All Reactors

An it has a distance and the second second

Date	7 25	7125	2012	7	/26	7/26	7/26	3611		, r					
Sample No. Calculations Based Co	52	ŝ	i,		[5]	\$2	23		97/1	1-11	12/1	7/27	7/27	1211	7 /28
Z Linec	J. su	1200	1.1 6.1	2	ſ		1	t O	•	Si	S2	\$3	54	SS	,
2 a l a					- 	0530	0350	1300	1600	0130	6	0830	1230	2000	1030
Reserve Stram Processes, prik	•	.*.	, ,	ພາ			52 F								ալ
Effective H., of Jubes	ч.	30	чL	1 5 A 5			R	(c]		185	185	185	 	195	69J2
11、11、11、11、11、11、11、11、11、11、11、11、11、	с. Б.	28.B.	16.05	ata ç			•	,		æ	æ	œ	æ	æ	' 52
- AV. Fred/Product		7.91	21.7	277 1840 1840		24.2	ı	28.5/ 17.8		,	31.4/ 18.7	31.4/ 29.8	¢	1	/yx • 32/
	4: 		30. 	- 11 - 11 - 11	1.1.1	5.71	ı	56.97 61.5	81×c		58.3/	58.3/	,	ı	/91 S
a Ge. FrediProduct		1.2	1	איפ 15 21 יי ב-רט	- 	20.8 10.8	۰	6.9/	1 ²⁸¹	:	60.0 4.1/	57.9 8.3/			8/51 u 01 oj
ិ និភេទទីបត់ទំនាំ ក្ រស្នុ	÷.	6 6	:•32	1 41 -1 -1 1 41	ć			5.1	oŋ d		18.2	16.4			Fron Bte
والمحافظ والمحافظ المحافظ والمحافظ والمحا	•••). 		uci I (14	• · ·		ı		94085		0,40	0.25	•	ŗ	oit Thee
Cartes at . and				- Fiste Fiste		- 		100	914	100	100	100	100	100	ea ea Fibe
AN LON DO REF.	5 14 8 9 4			in A Pa	1		,	¢ t	up o p						i avai ssar:
化合物 医子宫内的 计算法 化过去			1	r PPV	۰. بر		•		s pə	•	1.40	1.40		,	nn1 May qu
. Charles Freed. He		542 514 8 9	,	. v	1.09 V.	. Gal.	,	560.1	dungg		. 357	0.287	,	1	าลหะ เมื่อ
Instantion (CC) is	. ۱				1251		,)	•	E, S	0.070	1	,	40 b Бөб
flant Productivity, 15 hr			×	10	с 		ı	3. j			.030 (0.035 7.0	× 1		l je I je

an an Shiki kuk palugu a shika karu na mumuki shiki

11-20

Date

.

.

.

	7.28	7 /28	7 '26	7/29	62: 1	7/23	2/30	1/30	1/30	1/30	7/31	16/1	7/31	1 <i>€/i</i>	8/1
Sample N., Calculations based (m	vi Vi	S.2	£S	S 1	52	S3		S 1	S 2	c s	\$1	S2	S3	S4	
Ĩ.i.Bk	્ર ગ	1130	5000	00 A	1200	2000	07 4	07 30	1200	2130	06 30	1200	1630	2030	1500
Casto)[]]B								
Reductor Steam Pressure, psix	۶ 	160	191	190	190	06I	, 1 1∕	158	190	061	190	195	195	190	
Ettercture B . «E Tubes	પ્ર	æ	u.	හ	80	œ	' 41 ()	æ	80	œ	ø	ø	æ	æ	sa
t V. Fred Eridact	ı	ı	30.9 :4.3	31.47 20.8	29.5/ 22.1	•	ევი ე კ	•	28.9/ 23.6	ı	22.8/ 17.4	٠	·	28.4/ 23.1	əduT 8
2 AN, Fred Product	ı	ı	4.1.2	56.17 60	58 . 97	•		ı	59.4 / 58.6	ı	62.0/ 60.3	,	·	58.57 60.6	joş u
L. CN. Fred. Privation	,	ı	₹. 1.51	8.8/	11.0/	•	<u>е</u> 71 эт Э <u>г</u> 71 эт	ł	8.8/ 17.5	ı	9.7/ 17.6	ï	ı	4°0/ 1°6	ίζυοτή
ិ និគគសំពង់។ 💡 🥐 សំពុះ។	ï	ł		A.53	0.65	•	н рал праз	ł	0.50	١	C.2	ŀ	,	•	; dwn
Fred Rate, Th Br	с Г • •	2 7. • •	1.11	د. د	5	12	ખાપક ા ⁺⊴	125	125	50	- 30	50	180	180	Ja o J
Caliniations							લાઓ ત અમન								ı əld
AN C. Krimkator		,	tan tan ta		¶5.*1	ı	badg badg	,	1.54	•	2.04	•		1.51	lan'i
CONTRACT NOT MALE BASE		٠	1 4 5 4 5	61' U	0.192	ı	lតរទ ទងពរ	•	n.222	ı	0.553	•	,	0.210	* шч
Contraction and the		ł	*	•			irtn	•	0°026	ı	0.07		,	0.026	md a
its it is terminated at		•	دي يو ر		5.7.7	•	ыр	ı	0.192	ı	0.026	,	ï	•	u ys
Flant Productivity, 15 Aur	•	٠	۴. ۴	5.3	3.2	•		÷	2.62	•	3.5	ŀ		5.6	
NOTES:													6 8 8 8		

- 24. - 1.4歳。

Figure 11-17. Computer Prediction

11-22

Figure 11-18. Computer Prediction

TABLE II-3

SAMPLE CALCULATIONS FOR DETERMINING REACTOR YIELD AND FRODUCTIVITY

I Step by Step

Basis: Moles Nitrate are consumed.

 $2 \text{ U} + 1 \text{ AN} = 1 \text{ GN} + 2 \text{ NH}_3 + 1 \text{ CO}_2$

(For every mole of AN consumed, one mole of guanidine nitrate is formed.)

Data: Reactor Steam Pressure = 225 psig

Feed Rate = 90 lb/hr

Analyses

		Feed			Produc	et
	a%o	Lbs. @	Moles**	0* 70	Lbs.*	Moles **
Urea	25.8	25.8	, 430	16.9	16.9	.282
Ammonium Nitrate	63.3	63.3	.791	62.4	62.4	.780
Guanidine Nitrate	7.4	7.4	.0606	18.4	18, 4	. 151
Insolubles	-			0.38	0.38	.003

* - Arbitrarily based on 100 lbs. of total material

- Calculated moles based on arbitrary 100 lbs. material

Cotal Moles of Nitrate in Feed/100 lbs. Feed - Moles AN + Moles GN = 0.8516

Total Moles of Nitrate in Product/100 lbs. Product = 0.931

$$\frac{\text{Moles of Urea in Feed}}{100 \text{ (bs. Feed}} = \left(\frac{\text{Moles Urea}}{\text{Moles Nitrate}}\right) = \left(\frac{\text{Moles Urea}}{\text{Moles Nitrate}}\right) = \frac{100 \text{ (bs. Feed}}{100 \text{ (bs. Feed}} = \frac{100 \text{ (bs. Feed}}{100 \text{ (bs. Product})} = \frac{430}{.8516} = .505$$

$$\frac{\text{Moles Urea in Product}}{100 \text{ (bs. Product})} = \frac{100 \text{ (bs. Product}}{100 \text{ (bs. Product})} = \frac{.282}{.931} = .303$$

11-1-5

Similarily:

$$\left(\frac{GN_{M}}{N}\right)_{\text{feed}} = \frac{.0606}{.8516} = 0.0712$$
 $\left(\frac{GN_{M}}{N}\right)_{\text{Product}} = \frac{.151}{.931} = 0.162$

$$\left(\frac{AM}{N}\right)_{\text{feed}} = 0 \qquad \left(\frac{AM}{N}\right)_{\text{Product}} = \frac{.003}{.931} = 0.0032$$

During the Reaction, then -

$$\Delta \left(\frac{U_{M}}{N}\right) = \left(\frac{U_{M}}{N}\right)_{\text{Feed}} - \left(\frac{U_{M}}{N}\right)_{\text{Product}} = 0.505 - 0.303 = 0.202$$
$$\Delta \left(\frac{GN_{M}}{N}\right) = \left(\frac{GN_{M}}{N}\right)_{\text{Feed}} - \left(\frac{GN_{M}}{N}\right)_{\text{Product}} = 0.0712 - 0.162 = -0.091$$

Or a loss of 0.202 moles urea per nitrate mole and a gain of 0.091 moles GN per nitrate mole.

Feed Mole Ratio
$$\left(\frac{AN_{M}}{U_{M}}\right)$$
 Feed = 0.791/0/430 = 1.84

Yield

Basis:
$$2 \text{ U} + 1 \text{ AN} = 1 \text{ GN} + 2 \text{ NH}_3 + 1 \text{ CO}_2$$

or 2 moles U consumed per mole of GN made.

Yield = Moles GN made
Moles U consumed/2 x 100
=
$$\frac{GN_M}{U_M}$$
 x 200 = $\frac{GN_M}{\frac{N}{M}}$ x 200
 $\frac{GN_M}{\frac{N}{M}}$ x 200

Yield =
$$\frac{0.091}{0.202}$$
 x 200 = 89.9%

Productivity

Productivity/lb. Feed = lbs. GN Made/lb. Feed

$$= \underbrace{\left(\frac{\text{Moles GN Made}}{\text{Moles Total Nitrate}}\right) \times \underbrace{\text{Moles Nitrate in Feed x M. W.}}_{100 \text{ lbs. Feed}} \text{ GN}$$

11-25

Productivity/lb. Feed = $\frac{L \, GN_{M}}{N} \propto \frac{N_{Feed}}{100} \approx 1.22 = 0.091 \times 0.8516 \times 1.22$

Productivity/lb. Feed = Lbs. GN Made/Lb. Feed = 0.0945

Plant Productivity

Plant Productivity = Lbs. GN Made/Hour

 $= \frac{\text{Lbs. GN Made}}{\text{Lb. Feed}} \times \text{Lbs. Feed / Hr.}$

 $= 0.0945 \times 90$ lbs./hr.

Insolubles Formation

Insolubles Productivity = $\Delta AM \ge \frac{N_{Feed}}{100 \text{ lbs}}$, Feed $\ge M.W.$ X Feed Rate = 0.0032 $\ge 0.8516 \ge 1.28 \ge 90 \text{ lb/hr}$ = 0.314 lbs/hr.

Productivity Insolubles/Guanidine Nitrate = 0.314/8.5 = 0.037

a construction of the second

Xi total weight weight fraction Nij moles 7:5 2 = liquid output 1 = feed ċ 3 4 2 ١ GN AN U INSOLUBLES CUMPOUND 122 60 UNKNOWN Mw 80

II. Alternative Calculation Procedure

Nomenclature

1.
$$Y_{ij} = X_{j} \times ij / M_{w_{j}}$$

2. $Y_{ii} + Y_{i2} = \begin{bmatrix} \frac{\chi_{1i}}{M_{w_{i}}} + \frac{\chi_{12}}{M_{w_{2}}} \end{bmatrix} X_{1} = \begin{bmatrix} \frac{\chi_{21}}{M_{w_{1}}} + \frac{\chi_{22}}{M_{w_{2}}} \end{bmatrix} X_{2} = Y_{1} + Y_{22}$
3. $X_{i} = \beta \times 2$
(1) $Y_{ij} + \chi_{ij} \times M_{w_{2}} = M_{w_{2}} \times M_{w_{2}} = X_{ij} + Y_{22}$

Where:
$$\beta = \frac{\chi_{11} + \chi_{12}}{\chi_{21} + \chi_{12}} \frac{M_{W_1}}{M_{W_2}} = \frac{\chi_{11} + 1.525}{\chi_{22}} \frac{\chi_{12}}{\chi_{21}}$$

$$\frac{Y_{ield} = -\frac{200(\chi_{11} - \chi_{21}\beta)}{(\chi_{13} - \chi_{23}\beta)} = -\frac{98.36(\chi_{11} - \chi_{21}\beta)}{\chi_{13} - \chi_{23}\beta}$$

GN PRODUCTIVITY PATE = (x1, - X2, B) X,

INSOLUBLE FORMATION RATE = $\chi_{24} \beta \dot{\chi}_{1}$ ($\chi_{14} = 0$) INSOLUBLE PRODUCT RATIO = $-\frac{\chi_{14}}{\chi_{11}/\beta + \chi_{21}}$ ($\chi_{14} = 0$)

II-27

Sample Calculations (using data from prior method)

1.
$$\beta = \frac{\chi_{11} + 1.525 \chi_{12}}{\chi_{11} + 1.525 \chi_{12}} = \frac{.074 + 1.525(.633)}{.184 + 1.525(.624)} = .9152$$

2.
$$Y = -9P.32(x_{11}-x_{21}B) = -98.36(.074-.184(.9152)) = 89.9\%$$

 $Y_{13} - X_{13}B = -258 - .169(.9152)$

3. GN PRODUCTIVITY PRATE =
$$(\chi_1 - \chi_2, \beta) \dot{\chi}_1$$

From (2), $(\chi_{11} - \chi_{21}, \beta) = .09 + H$
. GN = .09 + 4 (90) = 0.5 $^{L65}/HR$

4. INSOLUBLE FORMATION RATE = X24 BX,=.0038(.9152)(90) =.313 LBS

5. RATIO =
$$-\frac{\chi_{24}}{\chi_{11}/\beta + \chi_{21}} = \frac{-.0038}{.074/.9152 - .184} = .0369$$

APPENDIX III

A LANK

.

•

PHASE III, PART 2

RESOLUTION OF CATALYST POISONING PROBLEM

						ker.					1 44 1.10			i i	1	1		Balance	Final						
Satistes		21	1	r Sj		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	•	NI NI		1250 A. L.	- Tanas			CHINK STREET	1.1.5	e. T	Reactor Mair (gas	Tules (Poles C	Ca Yield (T)	נ נסחע. (2)	Hules Carbonate/ Holes Ca	18 18 18 18 18 18 18 18 18 18 18 18 18 1
		%	à c	d e e	i i	ن <u>ب</u>	5	1. E 1. Z		ut: u' · · · · ·	. ; ;	• Z • 1	-32		:		· · ·	· • Ē		:	- 	, 9, 8 70, 1	- 57.8 67.3		0.564
			Å . • •			ત્ર કેટ કે કે કે		2		4 				•		$r \to \frac{1}{N}$:- غ	· · · .				2.18 2.18		76.5	11.0° 011.0° 011.0°
	°.≁ ‡	с	×.	 	11 a. a. ≢				-			9 		· · · · ·	• • • •	· •	• • • •	··· <u>]</u>	1	4 1 2 1		n	9 6 1	0.04 	677°a
TR Tr	2 4 4 Q 2	ž ·	¥	€ € 2			•			1 a. 				*. • • • • • • •		a a dije	, . .	· · · ·	* • • •	• • • •				· · · · ·	
	1	5. 1917 - 1	5	7	4. 8. 9.	4 9 9			· · · ·		- 11 - 1 1 - 1 - 2 1 - 11	· · ·	 	••••		••;	1.1.1	· · ·	233.2	- 0.3276 0.4721	0.2112 0.250	128	, 0.185	, 0, 1 ,	0.10
	47 4 4 4	A	<u>e</u> - E	÷ ;.		ວັສ ອ 	· 2 ·	<u>,</u>	، م		·			1 1 1	•	a z sta	9 	4 <u>-</u> 4 - 4	661	. 752	0.6186	7 'X 9	0.486 - 6´.1	11.11 1.28	0.312 0.507
Beck Lot 1 Beck Lot 1 Be Serbush 1 Mee	11. 1 2		- <u>-</u>	ć.				n C Alaman Alaman				11. 41.	4.7 		• } -	e je s	2	÷.	• • •		- - 0.182	• • •	• • •	۔ 1.0 ⁽²⁾	- - 0.145
			4			ન કું જું જું	1.	r.		. • :	121			•	1	 .	0 - 4	4 - 4 ³ 4 - 4	· · · · · · · · · · · · · · · · · · ·	1.175 1.679 1.955	7.058 0.058 0.0990 0.0990	, 108 12 77	, 52.5 65.6	· · · 1	0.565 0.321 6.557
Allowing Market Top	44	-		•	, a			л Х.,	17 *		ана 1912 — 1 1914 — 1		10-1		n n N - n n		* • • • • • • •	а • т <u>•</u>	1.4	- Silka 	0. 1490 0. 15 %	. 92 1. 92	31.6	- 1.05	145 0.360
(Bard Brock)	21					in in		• *			M.				:		r site	,		223€ С. 9669	1, 1288 0, 1288	55. 8	1.12		0.241 0.345

TABLE III-1

President and a second

DETAILED DATA FOR HOUDRY BEAD ACTIVITY AND SORBEAD[®] STIRRED BATCH EX DERIMENTS

III~1

alla poirs barbl.

.

TABLE III-2

. See See as

×.

DETAILED DATA FOR GRACE 59 SILICA GEL

100

		•			-	الويد ز.			Anna	CIC-L Real			Ĭ	ghts out	(86)		ł		Pinel					i i	
A Sector	2	2			1			31	5 BI	Claure	19713 1			ing far	tion- ete Maa	1	L L	lance 1 Loss) M	Beartor elt (EB)	Wies F 1 teacted	Arles CA	Cield (2)	у Сару. (1)	Carbonare/	83 81
5 4 6 6 7 5 5 5 4 5 6 7 5 5	0-25	U X	1	6		÷			•																
10.111	Ŗ					ł	1.1	,	1 1 1 1	с.,	- :/	-			•	•		1			•	,	,	,	•
								•				-				•				1.480	0.4514	61.0	£.9.J	•	0, 160
	2				,	đ					a ser a s		•		•			,		1.953	0.1095	72.7	65.1	•	0.346
			è			U							•		•					•	,	•		,	:
	#	1	Ļ					441 . UV .		A put 1 :	Added to t		. 5115.4	ALL PLANE	ed in the	Reactors									
							•				•		•			•			,	. 792	1.554	82.1	63.2		1 25
	,					•		•		4.) 1						,			,	, F	0,8				
	11 -						ł	ţ,	F.)	7. 		ć		: •		2 540	2.8	بر بر	5.003	1-8	2.2.1			973 0	
																	-						••••		5
5 · · · · · · · · · · · · · · · · · · ·		ţ				•							•		•	1			,		,	,			,
								•		1 .	-1	2	•			1			,	,	,				
	Ë .						9		121 412	ľ						'		,		1.576	0.3764	1 1 7	, ,	• •	. A 776
	i.					U.	.:	a ,	• • 23.5	1.1		.*			•	•				6	C. 6 37	69.4	10.2	•	0.507
			į																						
FIERS STATE - AND	;	:	E.					1. N. 1. N. 1.		E and A	Addre, JO N	F. C. Samerak		•	1					,	,	,			,
	£, ;			-		•		,•			5	•			·	'				162.5	9.549	1.64	40.5		113 0
											•	•				•				ŧ,	616.0	52	ş	,	
	۰.									ж.	*. 			10 - 11 11	1.55 B.	5 C B	6.5	0.66	662.3	67.5	1.063	57.0	62.2	1.63	1.6.0
1. 4. J	ş.	j.	÷		. 56	, ,																			
	£					, e c	•				1.0	•			•	•				,		•	,	•	
Terri Carrier	,						Ę.	ž		X 4									•	22.5	18.0.6	2.5	37.8	•	0.046
							. ^ . . : ·							:			-				0.735	1.12	58.8	•	0.586
										•		•	ì	:		÷			6.184	1.53	1.6%	37.1	58.8	2.2	0.521
9 8 8 5 5		÷			5.				•		,														
Suppres Se	;					4	•	4	1.		2	ŗ										1 0	• ;	•	
	,							,		4					•					,					9-375
	;					•					•				•	,								•	775-0
									rin art.		÷	, j	•		а. т	1. 6 1.	 	2.3	526.9	52.7.7		4.75	9.12	2	
Get A PLA LA		*			0	,																			
Ares and Megens	5								•						•	•				,	•	,	,	•	
3													•		•	•				2.25	010	, x	37.5	,	0.327
	•									, ,		•				'				9.16		53	52.9		0.623
	• • •							•				•			•	•					: -623	76.5	69.2		01.10
										:		•				÷.			61°.A	4. 1	2.5	8e1	8.77	0°.929	1.60
		÷,	7		:	,																			
						.*				•											-	, .	• •		. 3
						•			014 - L				,									4 8 - 1 - 1			
	•					•	4.1			•. ,		,						,			-	2.02	2		2
									•	4. 8			į			10		-			1.1.62	1.51	3 7/	×1 1	3,8

III-2

TABLE III-3

LABORATORY BEAKER TESTS

Run #1 - X2121-36-1

Procedure - Added 10-15 grams dry \pm silica get (Grade grade 59) to 275 grams of molten AN/U at 300%. (2/1 AN/U mole ratic)

- Hand stirred for ten minutes
- Allowed catalyst to settle
- Poured off melt
- Spread wet silica gel on paper towel.
- * (Dried at 165°F overnight)

Observations -

- Bubbling on first contact presumably due to venting of entrained air.
- Wet silica gel on paper towel was very soft. It fractured with the slightest touch.
- Estimated attrition was $5-10^{of}$.

Run #2 - X2121 - 37 - 1

Procedure - Same as X2121-36-1 except melt contained 5% liquid water.

Observations - Same as Run #1 but with a higher percentage of attrition (10-20%).

Run #3 - X2121-37-2

•

- **Procedure** Dropped dry silica gel (Grace grade 59) into boiling water (2129F).
 - Stirred for ten minutes
 - Allowed catalyst to settle
 - Poured off water
 - Spread wet silica gel on paper towel.

Observations -

- Bubbling on first contact presumably due to venting of entrained air.
- Wet silica gel was softer than the dry silica gel but much harder than recovered catalyst from Runs #1 and #2.
- Estimated attrition was less (5%) than in the two previous runs.

III-3

Run #4 - X2121-38-1

<u>Procedure</u> - Dropped dry Houdry beads into a melt of AN/U as in Run #1.

Observations -

- Houdry beads floated on top of the melt for about five minutes before sinking. After sinking, the beads continued to release vented air for an additional 5-10 ininutes.
- Recovered beads appeared to be harder than the original beads. There was no apparent catalyst attrition.

Run #5 - X2121-39-1

Procedure - Same as Run #1 but using preheated silica gel (350-400°F)

Observations - Same conclusions as noted for Run #3.

N .
1
1-1
74
H
ы
L.
æ
AB

FOUR-INCH-DIAMETER REACTOR SUMMARY

he Reactor (R+200 ---1-1-12

2. Houdry Macroporous Silica bearls

-, Hercures' Donorta Reagent Grade AN, Ohn U

Theo. Feel Cale, Basis 0, 431 0, 213 0, 495 9, 236 0, 236 Hu an 101 0.073 0.852 0.231 1.683 0.067 0.213 8**.** 3 **4. 4** 68. 1 28. 2 I 1 1-30-73 4:30 P.M. 0.909 0.498 0.455 0.900 27. 3 72. 7 -Then 13 35 Actual Feed Cale, husis F + C - J I tual 35 Cale. Basis Thro. Feed litak tor Melt 0.185 0.490 98.0 0.205 0.378 68.5 23.7 0**。1**94 1**.**050 7.6 0.126 0.856 0.120 0.185 7.2 , 1:00 P.M. 27.3 Theo. 0,455 0,909 0.209 u.498 -1-30-73 35 , Actual Food 9.5 Preed Actual 35 t Rector drained and high Car Lees The Leed tained on reactor jacket. Buncher Feed stopped 1:00 AM -12:00 Noon due to plant steam failure (melters, steam pressure main-Ne.t 1-30-73 1:00 A.M. 8.5 feed line, etc.) Venal Pheo. N. 104 1 1 1 Course Harris Liver, Seed 0,352 0,212 0,575 0,575 0,235 Ream of the 8. 5 65**.** 5 26, 9 0**.** 220 1. 036 0.212 0.141 0.816 0, 136 1117 7.1 • ı • 10:30 F.N. 4. Recycle - None 0.018 0.514 0.514 0.479 0.479 0.499 - 0.020 0**. 45**5 0. 909 1-29-73 27.3 Care, Bass. Actual Food 30 9 0.345 0.191 0.540 102.0 1 + 1 - 1 0.437 0 0.896 0 in that 26.271.7 2.20.56.4 30 0.338 0.150 0.550 119.0 0.266 .e. ... 0, 102 1, 034 0, 160 0.165 0.842 0.186 1.0.0. 6.2 а. З. ł 1 0, 455 0, 455 •)• 0.0 •(• 1-29-73 7:30 P. M. 0.403 27. s 72. f **+**10 −0**.** , 30 aix Bar ۰. ۱ 0.371 0.158 0.425 85. 0 0. 172 0.474 0.866 0.025 0.891 0.531 0.028 5. 16 1.6 30 Liprobined Linc Giral iere Bater CONTRACT STATES
 CONTRACT STATES ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓ Print the state <u>/</u> . n. VV CNm 7 1.11 III-5 2 i. A !

(a)

111-6

Basis: 1. One Reactor (R-200 2. Heudry Macroporous Silica Brads 3. Hereules Unonra Reamm Grade AN Offic

		Reactor	6,0 65,0 29,4	0.0100 0.100 0.241 1.059 0.228 0.228	Calc. Basis Theo. Feed 0.406 0.228 0.561 112.2 0.253	යා ඤ්
	1-31-73 7:30 A.M. 28	Feed Actual Theo. 35 35	26.7 27.3 69.7 72.7 2.4 -	0. 45 0. 455 0. 872 0. 909 0. 013 - 0. 891 0. 909 0. 499 0. 498 0. 021 -	Calc. Basis Actual Feed 0.407 0.207 0.509 101,8 0.225	5°2
		Reactor Mett	5.4 70.2 24.8	0.090 0.877 0.203 1.030 0.683 0.683	ale. Basis 11hec. Feed 0. 188 0. 453 90, 6 90, 6	7.3
	1-31-73 4:30 A. M. 25	Feed Actual Theo. 35 35	- 27.3	0.455 0.909 0.909 0.498	Cale. Basis C Actual Feed	
		Reactor Melt	65.6 65.6 -	0.078 0.872 0.214 1.086 0.072 0.197	ale. Bas is hro. Feed 0, 426 0, 426 0, 452 92, 4 92, 4 0, 218	7. 6
Urade AN, Olin I	1-31-73 1:30 A. M. 22	Feed <u>Actual Theo.</u> 35 35	- 27.3	0,455 0,909 0,909 0,909 0,498 0,498	Cale, Busis C Áctual Freed T	
nora Keagent ne		Reactor Meh	70.1 24.8	0.098 0.878 0.878 1.081 0.096 0.188	Cate, Basis 17hto, Ford 0, 402 0, 188 0, 466 93, 2 0, 208	7.26
 Hercules 100 Hecycle - No 	1-30-73 10:30 P.	Feed Actual Laco. 35 35	27.3	0.455 0.909 0.909 0.498 -	Calc. Basis Actual Food	
		Reactor Melt	4.4 69.7 26.9	0.073 0.872 0.220 1.092 0.067 0.202	 (aic. Basis Theo. Feed 0. 431 0. 470 0. 470 0. 223 	8°-2
	1-30-73 7:30 P. N 16	Feed etual #heo. 35 35	22.0 27.3 75.2 72.7 3.4 -	.367 0.455 940 0.909 028 - 928 0.909 968 0.909 379 0.498	ale, Basis eruui Ferd . 312 . 555 11.0 . 204	
	1. Late 2. Three 3. Llapsed Feed Time (hrs)	4. Rate (the, hr.) J. Starkster (*)	L L L L L L L L L L L L L L L L L L L	e. th. . AM . GM . GM . CM 	 J. J. N. J. J. N. J. J. N. J. J. N. M. (J. N) J. J. N. M. (J. N) J. President M. (M. GMA), 1000 [0] J. President M. (M. GMA), 1000 [0] 	T. Press tion (a), (N.B.). (Press favily N Food Batel

(q)

(Continued)
7-111
FABLE

31301

Une Reactor (R-200
 Houdey Macroportous Silica No ads
 Hercules' Donora Reagent Grade AN, Olin U

	leactor Melt	5,0 69.3 27.1 .05	0.083 0.866 0.222 1.028 1.028 0.204	alc. Basis 7:00. Feed 0.204 0.204 96.8 0.226	ي. م
i-31-73 11:00 P.M. 43.5	Feed P Actual Theo. 25 35	24.7 27.3 71.3 72.7 3.4 - 0.8	0.412 0.455 0.891 0.909 0.028 - 0.919 0.905 0.455 0.498 0.455 0.498	Cate, Basis C Actual Feed 7 0, 169 0, 169 0, 189 0, 189 0, 189	4. 7
	Reactor	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,092 0,092 0,223 1,076 0,085 0,085	11c, Basts bro. Ferd 0, 413 0, 212 0, 514 102, 8 0, 235	ບ ອ
1-31-73 7:00 P.M. 39.5	Freed Ketual Theo. 28 28	227.3	0,455 0,909 0,909 0,909 0,498	Calc. Basis C Acreal Feed <u>1</u>	
· · · · · · · · · · · · · · · · · · ·	Reactor Melt	4.8 65.5 30.8	0.080 0.819 0.252 1.071 0.071 0.236	Ic. Basis co. Pred 0.428 0.236 0.551 110.2 0.262	ထ ဖ
1-31-73 4:00 P.M. 36.5	Actual Theo. 25 25	- 27.3 72.7	0,455 0,909 0,009 0,498	Actual Freed The Actual Freed The	
	Reactor Mel:	5.0 61.4 32.7	0. 083 0. 767 0. 268 1. 035 0. 080 0. 258	(ad. bast <u>1760. Veed</u> 0. 418 0. 253 0. 253 123. 4 0. 286	С г
1-31-73 1:00 P. N 33, 5	Actual Theo. 28 28	- 27.3 72.7 -	0,455 0,902 0,902 0,408 0,408	Cale, Tasts Metal Food	
	Reactor	5. 1 63. 7 32. 0	0.085 0.797 0.262 1.059 0.248 0.248	17140-1714 0.415 0.248 0.548 0.548 17.6	ຕ ຕ ຢ່.
1-31-73 10:00 A.M 30.5	Actual Phys. 34 34	28,6 27,3 67,0 72,3 3,3 - 72,7 0,8	0.477 0.455 0.840 0.909 0.027 - 0.876 0.909 0.876 0.909 0.845 0.498 0.545 0.498	Color, Basis Actual Lord 0,462 0,217 0,217 0,470 0,232	ت ۱-
. but . i.e. . lassertieral Ende (brs)	, bare die m Seite die m	e Hyer	AND AND C.NIII		III
	1 1-31-73 1-31-73 1-31-73 1-31-73 1-31-73 1-31-73 1 10:00 A.M. 1:00 P.M. 4:00 P.M. 7:00 P.M. 11:00 P.M. 1 30.5 33.5 36.5 39.5 43.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

÷. .

(c)

· ·

したちのあたいあた

· 37 · · ·

T A MORE A

I-7

(P)

(Continued)	
111-4	
TABLE	

e Reactor (R-20)	314.0	 Hasis

00 ous Silica Ikads ammut Grade AN, Olin U

	t
	C,
	- <u>*</u>
•	
	ς.
	- 2
•	
	- 1
	- 2
	- C.
	۰.
	\sim
	-
	- 53
	۰÷
۱.	6
	~ ~
	- 2
	يد
	-
	-
٠	-
	-
	٤.
	-
	ш
	~

	-
τ.	- 1
2	- 1
~	
-	
	<u>۱</u>
٩.	
۰.	
	- 2
-	
-	
- i -	- 2
•	- 5
	- 6
	``
^	- 6
	~
•	
~	
-	۰.
•	1
	- 5
L.	- 6
5	- 2
	- 5
	- 0
	~
	-
1	
۰.	-
· ·	- 2
- ÷	-
-	- 2
	- 7
٩.	٠.
5	- 2
2	
	-
-	-
•	
2	

۰.	•
:	τ
,	С.
	-
•	1.
5	-
2	-
•	- 2
	۰Ľ,
•	C
	۵.
ί.	~
	4
	- 53
2	- 5
l,	ç
)	- 12
	- Ç
2	\simeq
ι.	
	-
	17
	್ಟ
٠.	~
•	- 2
	- 14
5	5
5	- 24
	÷
•	-
	~

	-70
2	ē
•	5
\$	-
1	ā
1	2
	ਰ
	že
5	
:	5
Ĺ	ō
)	ğ
	×
í	~
•	-
	10
٠,	ž
	3
5	54
)	ు
•	17
•	.
•	~

•	
•	
	<u> </u>
5	-
ς.	-
2	- 2
	- 7
Ā.	- 27
•	- C
•	-C
•	- 6
	~
2	4
٥.	
	0
Ξ.	- 7
£.,	- 7
L.	- C
2	10
	ē
	~~
	-
1	
	-
•	10
1	-
	-
	·
٢.	٤.
5	- 7
2	ш
-	_
2	~

		•		
~	Hercules'	l'Xonora	Reagunt	5
÷	Recycle -	None		

2-1-73 2-2-73 16:30 P.M. 1:30 A.M. 51 54	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2 -1- 73 1:30 P. M. 4.8	Ford Reactor Actual Ihro. Melt 27 27 27 36.9 42.9 4.8 59.2 57.1 65.4 30 - 31.8 1.1 - 31.8 1.1 - 31.8 0.615 0.7115 0.980 0.740 0.7115 0.261 0.765 - 0.261 0.765 - 0.261 0.765 0.715 0.261 0.765 0.715 0.261 0.765 0.715 0.261 0.033 - 0.242	Cale, Rasis Cale, Rasis Actual Feed Theo, Ivec 0.731 0,926 0.233 0,926 0.286 0,242 0.195 52,2 0.195 0,228 5.3 6,2 5.3 6,2	
2-1-73 1:00 A. M. 45, 5	Artual Fheo. Reactor System down 1:00 AM 2-1-73 until 5:00 PM 2-1-73 due to plant steam shortage. On startup, changed from 2/1 to 1/1 (N/U) ratio.	Cole, Basts Cole, Basts Vitual Ford - Theo, Ford	feed analysis
L. Hure L. Trea L. Dapere eed Luie (hrs)	 Kark are likely Andyse (1) Andyse (2) B AN B AN C N C Nn <li< td=""><td></td><td>Used 10:30 P. M., 2/1/73</td></li<>		Used 10:30 P. M., 2/1/73

建筑在自己的的关系,就是我们的现在是我们的是我们的这些事实,我们就是不是我们的是我的问题。如果我们不必要是我们的

-

III-8

.

والمستغنية المتعالية والمستعد والمستعدة والمستعد

Hasis:

Che Reactor (R-200
 Houdry Macroporous Silica Brads
 Houdry Macroporous Silica Brade AN, Olin U

Grade
Reagent
Donora
Hercules'
ŗ,

			4. Recycle - N	one						
1. Ente	2-2-73	•	2-2-73		2-2-73		2-2-73		2-2-73	
. I the fred the Ars)	60 A. P		10:30 A.	.ж.	1:30 P. 66		7:30 P. M		10:30 F.	м.
A. Kata (10° hr.) J. Kata (10° hr.)	Actual Free	Reactor Medi	Feed Actual Th-o. 30 30	Reactor Melt 29	Peed Actual Theo. 30 30	Reactor Melt 27	Feed Actual Theo. 30 30	Reactor Melt 27	Feed Actual Theo. 27.5 27.5	Reactor Melt 21
e T AV G Hyb Boolubic	- 1.1 2.7.1 5.7.1	6.8 44.1 51.2 - 350	- 42.9 57.1 -	9.3 44.5 	- 42.9 57.1	45.0 45.0	40.0 42.9 55.3 57.1 2.4 - 1.5	14, 4 45, 9 39, 5	40.0 42.9 55.4 57.1 4.7 -	9.6 44.6 46.4
n tra 1. Men 1. Men 1. Men 1. Men 1. Men 1. Men	0.715 0.715 0.715 1.000 1.000	0.113 0.552 0.972 0.113 0.116 0.116 0.116	0.715 0.715 0.715 1.000	0. 155 0. 556 0. 375 0. 375 0. 166 0. 166 0. 402	0.711 	5 0.165 5 0.562 5 0.357 5 0.919 0 0.179 0.389	U.667 0.715 0.691 0.715 0.020 0.715 0.711 0.715 0.938 1.000 0.028 -	0.574 0.574 0.8324 0.898 0.898 0.361	0.667 0.715 0.693 0.715 0.039 0.715 0.732 0.715 0.910 1.000 0.653 -	0,160 0,558 0,380 0,938 0,171 0,405
	Cale, Basis Actual Ecol	Cult, Basis Thu, Lud 0, 884 0, 432 0, 432 0, 485 0, 485 0, 377	(alc. Basis Actual Feed	Culc. Basis <u>11.00. Feed</u> 0. 834 0. 402 0. 483 96. 6 0. 351	Cale, Basis Actual Feed	Cale, Basis Theo, Feed 0, 821 0, 389 0, 473 94, 6 0, 338	Cale. Basis C Actual Feed 0.649 0.333 0.333 0.333 0.289 0.289	Theo. Freed 0.711 0.361 0.361 0.361 0.309 0.309	Calc. Basis Actual Feed 0.739 0.352 0.476 0.476 6.314	Calc. Easis <u>Treo. Feed</u> 0.403 0.487 9.7.4 0.352
				10 . 5		10.2	β.	ຕ ວັ	ເ. ຜ	*
III-9										

and the state of t

1.46

(e)

~
-0
- A1
÷
-
=
- H
-
_
~
~
C 3
. .
\sim
—
-
-
[1]
-
- H
iπ.
- C
the second se

Rasis:

the Reactor (R-200
 Houdry Macroporeus Silica Bads
 Hercules' Donora Reagent Grade AN, Olin U

	М.	Reactor Mel· 18	10. 7 43. 9 - 55	0. 178 0. 549 0. 365 0. 914 0. 195 0. 400	Cale. Basis <u>Theo. Freed</u> 0. 600 0. 460 0. 357 0. 348 0. 348 9. 2
4. Recicle + None	2-3-73 10:30 P.1 99	Fred At rual Three. 26. 5 26. 5	- 42.9 57.1	0.715 0.715 0.715 1.000	iut. Basis setual Feed
		Reactor 11-4: 19	10. 1 44. 9 15. 5	0, 168 0, 561 0, 373 0, 134 0, 139 0, 399	0.0320 0.3200 0.3200 0
	2-3-73 4:30 P.M. 93	Feed Actual Theo. 27.5 27.5	41.4 42.9 54.8 57.1 4.0 - 1 4	0.590 0.715 0.685 0.715 0.015 - 0.715 0.715 0.715 0.986 1.000 0.021 -	Calc. Basis Artinal Ford 0. 806 0. 455 0. 455 0. 455 0. 455 0. 455 0. 455 0. 455 0. 455 0. 455 0. 456 0. 456 0. 456 0. 456 0. 456
		Reactor Met: 18	45.9 45.6	0.148 0.571 0.374 0.374 0.156 0.396	60. Basis 0. 394 0. 396 0. 370 0. 340 0. 340 0. 340 0. 340 0. 340 0. 340
	2-3-73 10:30 A. M. 87	Prevd Actual Thre. 26.5 26.5	39.6 42.9 56.3 57.1 2.7 -	0.060 0.715 0.704 0.715 0.022 - 0.726 0.715 0.726 0.715 0.030 -	Cale, Back, Ca Armur Ferd 0, 462 0, 462 0, 452 2, 5 5, 5 5, 5
		heactor Mel: 18	9.8 40.9 48.7	0.163 0.163 0.511 0.511 0.172 0.172	10. C 10. C
	2-3-73 7:30 A.M. 84	Fred Actual Theo. 28, 5 28, 5		0.715 0.715 0.715 1.000	A the Part of the
		Reactor Melt 17	11.3 44.1 43.7	0.180 0.551 0.358 0.208 0.208	4 7
	2-3-73 4:30 A.M. 81	28.5 28.5		0.715 0.715 1.000	
	l, lkrt 2. faar 5. lagerd reed Troe (hrs)	ا، میں ایک کئی۔ عارف میں ایک کئی۔	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. 15 2. 17 2. 17 2. 10 1. 1 2. 10 1. 10 1	

•

III-10

(£)

9

. :

(Continued)
111-4
TABLE

in the second second second second

.

A CONTRACTOR OF A CONTRACT OF A CONTRACT

Ľ

in Sala

(g)

Such the west of the se

Basis: 1 One Reactor (R-200 2. Houding Macroporous Silica Buads

N, Olin U

2
Grade H
Pr-rgent
Donoia
Hercules '
:

		lleactor Melt FARILY ED 4-73	Theo. Feed
		Run VOLUN TERMINAT 2:30 P.M. 2-	Cale. Basis Actual Fee I
		Reactor VP-ft 21 8.6 46.4 44.9 - - 0.143 0.580 0.580 0.580 0.580 0.368 0.388 0.388	0.01 0.02 0.03 0.03 0.45
	2-4-73 2.30 P. M. 115	Feed Actual Theo. 26 26 42.9 57.1 - - - - - - - - - - - - - - - - - - -	Cate, Basis <u>Actual Foed</u> T
		Reactor Victi 24 7.7 46.0 46.9 46.9 0.490 0.490 0.128 0.575 0.384 0.959 0.134 0.959 0.134	de. Basis 0. 866 0. 460 0. 40 00 000 0
	-4-73 .0:30 A.M. 11	H red 1 Theo. 27 27 1 57, 1 57, 1 57, 1 68 0.715 18 0.715 19 0.715 10 1.000	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		27 27 27 27 27 29.5 57.4 4.8 557.4 2.5 1.2 2.7 1.2 2.0 0.0 75 0.0 75 0.0 57 0.0 5 0.0 57 0.0 57 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0 0.0 5 0 0.0 5 0.0 0 0.0 5 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0 0.0 5 0 0 0 0	「 」 111日 111
4. Recycle + None	<u>.</u>	Reactor Melt 16 7.5 47.4 47.4 47.4 45.0 - 125 0, 125 0, 592 0, 368 0, 368 0, 383 0, 383 0, 383	(4.0, Basis) 0, 810 0, 410 0, 410 0, 304 0, 304 0, 304 0, 304 0, 304 0, 304 0, 100 0, 100
	2-4-73 7:30 A. N 108	Fred 104 1100 17 18 10 17 18 17 18 17 18 17 17 18 19 10	5.51 5.51 5.51 5.51 5.51 5.51
		14 14 14 14 14 14 14 14 14 14	<u>ुर्ध्वेवव्यु</u> चे व राष्ट्रम हे.स
	2-4-73 1:30 A. M. 102	Actum 1100 25 25 25 42.9 57.1 0.715 0.715 0.715 1.000	
	alere Lores Source Breed Dreve (hreat		III-11
ļ			

and the second second

0807

н 1...

APPENDIX IV

HAZA

Automati

5.00

and the second second

EVALUATION AND RISK CONTROL FOR KENVIL GUANIDINE NITRATE

(Reprint of Summary Report)
2

This is a final summary report on the work completed during Phases I through III of the Hazards Evaluation and Risk Control on the Kenvil pilot plant for the production of guanidine nitrate via the Boatwright-McKay-Roberts (BMR) process.

Objectives

Phase I

1. Assure safety of bench scale operations.

2. Secure basic sensitivity data (initiation, transition, propagation) for pilot plant design, for engineering analysis and pilot plant Fault Tree Analysis.

3. Construct preliminary Logic Model (Fault Tree) of the pilot plant.

4. Coordinate safety data with engineering design.

Phase II

1. Perform a preliminary engineering analysis on equipment chosen for pilot plant operation with regard to potential hazards and safety margin.

2. Determine transition capability of the reactor mixture in a 4 inch by 12 foot reaction tube.

3. Refine logic model for simulation.

Phase III

1. Final engineering analysis of selected pilot plant equipment.

2. Perform a risk analysis of the pilot plant operation and conduct trade-off design modifications should an unacceptable risk be encountered.

Summary and Conclusions

Data from sensitivity tests indicate that materials in the pilot plant process are relatively insensitive to impact, friction, ESD and thermal stimuli.

It has been determined that no material in the pilot plant equipment will transit from burning to explosion. In other words, the pilot plant system is not capable of acting as an explosive shock donor to process materials.

Two materials (reaction mixture and guanidine nitrate) will propagate an explosive reaction if sufficiently boostered. The critical diameter for each is less than one inch. Other materials in the pilot plant will not sustain an explosive reaction in the one inch interconnecting pipelines.

A detailed engineering analysis of selected pilot plant equipment for possible nazards and safety margins has shown no hazards for normal operating conditions. Abnormal occurrences; such as, metal/metal contact between impellers and pump caces or mix blades and tanks would cause initiation. However, transition data show that only a fire would result.

Computer simulation of the logic model (Fault Tree) yielded 152 potential initiation modes, 21 of which were considered to be critical or most probable of occurring. The simulation was performed over 800 hours of operation with no maintenance or repair and resulted in a <u>probability of initiation</u> of 4.5 x 10^{-3} or a corresponding probability of no initiation of 0.9953. This is an acceptable risk (initiation only) since the losses due to initiation during operation of the pilot plant would be minimal when compared to the cost of reducing the probability of initiation by (1) scheduled maintenance, (2) replacement of designated equipment on a regular basis, or (3) redesign of equipment. However, if the presently designed pilot plant were to be scaled up to a production plant operating over a span of years where any downtime or interruption of the process would have a significant effect on the safety, cost and productivity of the facility, a recommendation for scheduled maintenance, repair or redesign might be warranted.

DISCUSSION

Material Sensitivity

Initiation testing of materials was completed during Phases I and II of this contract. These tests consisted of subjecting in-process materials to impact, friction and ESD (electrostatic discharge) sticuli and obtaining threshold initiation level is iIL's) for each material. Results of the tests are summarized in Table 1. An inspection of Table I shows that the materials in the BMR process and selected combinations are relatively insensitive. Many of the samples tested could not be initiated at the limits of the standard test machines and are so indicated when a greater than or equal sign (5) precedes a data point. For impact, the failure to initiate a sample by dropping a 2 kg weight from a height of 120 cm (over a known impact area) is the limit of the impact machine. The energy input is calibrated periodically.

(1) Level above which initiation can occur as a result of 20 consecutive failures at that level.

3

A friction TIL value was obtained for AN/GN/U = 45/40/15, all others exceeded the limits of the test. The maximum pressures tested at a given velocity (1 inch slide distance) are in Table I.

4

The TIL values for ESD ranged from 0.075 to 1.26 joules, a spread of only two test levels, and are considered to be high. They are above the energy region that could be available from a human being (0.013 joules max).

In all sensitivity testing, the Model 300 Lira Analyzer was used to determine if initiation occurred. The Lira is a precision instrument that analyzes selected components of a gas mixture to determine their presence and concentration. The Lira analyzes a sample gas by comparing its infrared absorption characteristics with the constant infrared absorption characteristics of a known gas. The Model 300 is modified to operate as a detector of the decomposition gases CO, CO_2 , NO_2 and NO. Therefore, initiation does not necessarily mean that a flash fire or smoke (visual indication) will result, but rather that some decomposition occurs which produces gaseous products detected by the Lira. This is a much more critical definition of initiation.

Results of the Differential Scanning Calorimeter tests are shown in Table II. Relatively high temperatures (266 to 295°C) had to be reached before any exothermic reaction occurred.

All samples (except the pure ingredients) subjected to the various initiation sources were stoichiometric mixtures (balanced to CO_2 , H_2O , N_2) that represent the "worst case" conditions that could occur in the process.

Transition Testing

Transition tests were performed to determine the effect of initiation on the ability of a material to transit from flame initiation to an explosive reaction in terms of material height under specific environmental conditions.

Critical height (transition) test results are shown in Table III. Tests on the reactor mixture were performed at both ABL and Kenvil. Initial tests were run in containers smaller than pilot plant reactor tubes with the intent of extrapolating data to determine if the reactors would transit to an explosion if the material was initiated. However, no reaction occurred in a 1" x 48" container. Therefore, a 2" x 12' test was performed at the Kenvil Plant in which no explosive reaction occurred. Since material height required for explosion to occur increases as the diameter increases, it was concluded from the Kenvil tests that an explosive reaction would not occur in the 4" x 12' pilot plant reactors if initiation occurred.

Transition tests were also performed on guanidime nitrate and no explosive reaction occur in a 1" x 24" container. Again after considering pilot plant eq in t dimensions, it was concluded that no transition hazard exist pilot plant equipment handling guanidime nitrate.

Propagation Tasts

Propagation tests determine the explosive propagation characteristics of a material in terms of a since erial diameter when subjected to a shock stimuli. Results of these sts are shown in Table III. The results show that guanidine nitrate and e material in the reactors will propagate an explosive reaction, since in of their critical diameters are less than one inch. However, it me e remembered that the transition tests demonstrated that these mater: under the pilot plant conditions, would not transit to an explosion. In other words, the pilot plant process materials are not capable of supplying a shock stimuls for propagation to occur.

Propagation tests performed on other samples show that no propagation will occur in the one inch piping used in the pilot plant.

Dust Explosibility

Dust explosibility tests were performed in an effort to determine the minimum concentration and minimum energy required to initiate guanidine nitrate in a dusty atmosphere. The guanidine nitrate was screened to < 53 micron and two different sources of initiation were used. Initially a continuous sparking electrode was attempted, however, no initiation of a GN/air dust cloud could be obtained. The test was rerun using fibrous nitrocellulose as an ignition source which is a more violent source of initiation than the sparking electrodes. In both cases, the guanidine nitrate dust/air mixture could not be initiated at the standard test limits of the machine (4.1 oz/ft^3) .

A possible explanation of this unexpected result can be obtained by an interpretation of the DSC data and applying it to a dust cloud ignition sequence. In order for a dust cloud to ignite and sustain ignition, dust particle(s) must be raised to their ignition temperature and the heat released by their ignition must be sufficient to ignite adjacent particles and thus result in a sustained reaction. From the DSC trace, 3N melts in the range of 210 to 220°C while absorbing 30-35 cal/grm. An exotherm occurs in the range of 285-316°C liberating 90-120 cal/grm. (By comparison, RDX and nitroglycerin burn and liberate about 1200-1500 cal/grm at first exotherm). The amount of heat released is enough to raise the temperature an additional 100°C or to approximately 385 to 435°C. GN dust cloud ignition temperature ranges from 390°C (ABL data) to B00°C.⁽⁷⁾ Therefore, it could be reasoned the ignition of GN dust particles does not result in the liberation of enough heat to ignite adjacent dust particles to sustain ignition in the dust cloud.

IV-4

5

Based on the inability to ignite or sustain ignition of a GN dust cloud up to the concentration limits of test apparatus (4.1 oz/ft^3), it was concluded that no dust explosion hazard existed.

Shipping and Storage Classification Testing

Testing in accordance with TB-700-2 was conducted on guanidine nitrate by ABL. The data from these tests are shown on Table IV. The government has used a combination of these data and its own in-house data to tentatively classify guanidine nitrate (less than 25% water wet) as Class 7 for storage and as an oxidizing agent for shipping.

Hazard Evaluations

私田市市がたた。北京、宇宙市村市市市市上 昭和女子市市市市市市市市市

The engineering analysis performed on selected equipment was performed from equipment drawings, specification and maximum operating parameters furnished by Kenvil and the Research Center. Since no on-site measurements (i.e., forces, pressures, and velocities) were made, tensile strengths or yield points of materials involved (1-3) were used to obtain safety margins. In general, the safety margins found on equipment are representative of "worst case" condition, so the analysis would be conservative from a safety point of view.

In the process where equipment handles a water slurry, the analysis was based on water-free material response data, since testing was not done with water slurries. The use of water-free material values would render conservative results, since the water would most likely act as an extinguisher for any initiation. This type of an analysis, using water-free sensitivity data, would apply to start-up or shut-down modes of operation or a process "upset condition" in which a sufficient amount of water would not be present.

Some of the items in the process were not analyzed. The densitometer and evaporator had no mechanical or moving parts. The pump in the cooling system of the crystallizer was not analyzed since it will pump water containing only a small amount of ammonium nitrate (0.1% of AN). Finally, the level controllers were not analyzed, since they had low velocity movement (~ 0.06 ft/sec).

A hazards evaluation was performed on pumps, mixers, reactors, valves, centrifuges, a crystallizer and a dryer in which in-process potentials and material response data (expressed in similar engineering terms) were compared to obtain quantitative safety margins for normal and abnormal conditions. As an example, a 3450 rpm centrifugal pump with a carbon/ceramic mechanical seal was selected to pump material to the crystallizer. The velocity of the rotating seal parts was calculated to be 16.9 ft/sec with a normal pressure of 30 psi (manufacturer's specification) and an abnormal pressure of \sim 8000 psi (yield point of carbon). Figure 1 shows a triction profile of the material being pumped (less water). By a straight line extrapolation, no

6

December 19, 1972

positive safety margin is realized at 16.9 ft/sec. The straight line extrapolation is conservative since friction profile curves take an asymptotic form. To obtain a positive safety factor, a data point at 17 ft/sec would have to be obtained or the pump speed reduced by reducing the rpm rating. Since testine above 10 ft/sec would result in damage to the friction machine, it was recommended that a pump with a reduced rpm be used. Such a change did not adversely affect the pilot plant operation and a 1750 rpm centrifugal pump with a teflon pack gland was selected. The in-process potential for the pump was 24 psi (normal) to \sim 5,000 psi (abnormal) at a velocity of 8.6 ft/sec. By referring to Figure 1, material response at 8.6 ft/sec is \sim 43,000 psi. By comparing the in-process potential to the material response data safety margins of 8.6 to 1797 are realized.

7

A similar analysis has been completed on designated pilot plant equipment. A detailed discussion with summary tables of all engineering analysis has been previously reported. (4-6) In general, all normal and some abnormal operations have adequate safety margins. Abnormal occurrences such as impellers or mix blades breaking and hitting metal parts would cause initiation (no safety margin), but as discussed in the risk analysis of this report, such events have probabilities 5 x 10^{-4} to 5 x 10^{-5} of occurring over the time of pilot plant operation.

Logic Model (Fault Tree)

The logic model is a concise and orderly description of various combinations of events that can lead to a predefined "undesized" event. The logic model is presented in a diagram or blueprint form and results in an engineering capability to identify and evaluate the overall effect of component failure, controls or human actions on the system.

To understand and follow the logic model, a basic knowledge of the symbols used is required. A list of the symbols used and their meaning is illustrated in Table V. The use of transfer symbols (triangles) deserves some comment since they are used in two ways: (1) for transferring a section of the model that has been previously developed under identical circumstances from another section, and (2) transfer similar <u>logic</u> from one piece of equipment that applied to another piece of equipment. Use of transfers in this second method means that only the <u>logic</u> or events are the same, but probabilities of the events may be different since it is a different piece of equipment handling different materials.

The uses of transfer symbols may be best explained by using an example for each of the ways they are employed. On page A-4 of the logic model, an event for possible friction initiation "Impeller hits tank wall" is developed. Under this event a transfer symbol 20 is shown. On the same page for possible impact initiation, the same event in the same tank "Impeller hits tank wall" is shown. Since the event was already developed, it is transferred by use of the symbol 20 .

December 19, 1972

On page A-8, another event "Impeller hits tank wall" is shown. The logic to develop this event is the same as that on page A-4, but applies to a different mixer. Therefore, a transfer $\sqrt{20}$ is used to show such a transfer. Table VI lists all transfer used and their origination point in the logic model.

Risk Analysis for Guanidine Nitrate Pilot Plant

The logic model constructed in support of this analysis yielded a total of 152 potential failure modes. Of these, only 21 of the modes were considered to be significant or critical. These failure modes would result in, at most, initiation and not transition to explosion.

These failure modes and their respective probabilities of occurrence are given in Table VII. The basic failure modes are impeller, shaft, and/ or alignment. As noted, the probabilities of failure are not the same throughout Table VII. These differences arise from a careful engineering analysis of the potential failure modes and the utilization of known failure rates. Also, the probability is calculated such that 800 hours of continuous operation have been assumed.

The probability of initiation then becomes the product of the probability of failure, times the proportion of operating time the failure rate applies, times the material response probability. For example, the impeller, shaft and shaft packing for the Goulds Pump (mixing system) had a combined failure rate of seven per million operating hours $(7 \cdot 10^{-6})$. Thus, after 800 hours, the probability of failure becomes $7 \cdot 10^{-6}$ times 800 or $5.6 \cdot 10^{-4}$ as given in Table VII. Multiplying this probability of 5.6.10-4 times the proportion of operating time it applies, times material response probability gives an overall probability of initiation, or $5.6 \cdot 10^{-4}$ times 1.0 times 0.98 or 5.6.10⁻⁴ as given in the last column of Table VII. The other probabilities of Table VII were derived in a like manner. Thus, Table VII gives the probability of initiation for each failure mode plus the overall probability for the pilot plant, which is 4.6×10^{-3} . It must be emphasized that this probability assumed 800 hours at continuous operation without repairs or maintenance. Any such action within the 800 hours would tend to reduce this probability to a much smaller quantity.

It has been shown that no transition is possible for guanidine nitrate material. Thus, the maximum expected losses to be experienced are those related to a localized initiation.

The question immediately arises, are there cost advantages to having a preventative maintenance program to reduce the potential of initiation? The answer to the posed question lies in a trade-off study between the cost of such a program versus the expected loss should initiation occur.

IV-7

8

December 19, 1972

Expected Loss

As indicated, if initiation occurs, it remains local as no transition to an explosion is possible. Thus, the expected loss becomes the product of the probability of initiation times the sum of the following cost:

9

- (1) Pump or equipment replacement cost.
- (2) Labor necessary to replace the pump, and clean-up from the deluge system.
- (3) Production losses while the equipment is being replaced.

For the pilot plant, a liberal estimate of total cost to be incurred, if initiation arises, is \$5,000. This times the probability of initiation anywhere in the pilot plant gives an expected loss of $5 \cdot 10^3 \times 4.6 \cdot 10^{-3}$ or approximately \$25. It must be pointed out however, that if initiation were to occur, then the minimum loss (\$5,000) would be experienced. The "expected loss concept" is a well recognized means at normalizing cost data in a risk analysis study.

With the minimal expected loss of \$25, any preventative maintenance cost would far exceed the estimated loss. Thus, the answer to the question, is there a cost advantage to a preventative maintenance program is obviously, no. Therefore, over the operating interval of 800 hours, no preventative maintenance program is recommended or warranted. Again, this conclusion arises, primarily, from the lack of potential for transition.

E.J. Krupkoj

M. L. Jones

EJK:MLJ:mis Attach.

TABLE I

BARA AND

SUMMARY OF SENSITIVITY DATA (BMR PROCESS)

			Threshold Initiat:	ion Level**	
Sample (7 by wt.)	Temperature	Impact (ft-lbs/in ²)	Friction (psi/ft/sec)	ESD (Joules)	Materials
AN/U 1/1	Ambient	:	≥ 69,000/8		Steel/Steel
AN/U 2/1	Ambient	;	≥ 69,000/8		Steel/Steel
AN/U	Ambient	z 59.7	≥ 67,000/8	0.5	Steel/Steel
AN/U 4/1	135°C	84 x 10 ³ *	≥ 39,090/8		Steel/Steel.
AN/GN/U 45/40/15	60 ⁿ C	> 77.6	45,614/8 35,185/10		Steel/Steel Steel/Steel
AN/GN/U 67/24/9	130°C		≥ 58,870/10		Steel/Steel
GN - Pure	Ambient	z 59.7	≥122,400/8	1.26	Steel/Steel
GN - Technical Grade	Ambient	31.6	>105,800/8	0.075	Steel/Steel

* ft-lbs/sec ** Level above which initiation can occur as a result of 20 consecutive failures at that level. **

TA BLE	11
--------	----

10.01.01.039

DIFFERENTIAL SCANNING CALORIMETER (DSC) TEST RESULTS

AN/U 1/1

B . 1
Endotherm at 240°C

AN/U/Sil Gel 2/2/1.7

Heating Rate Exotherm Began Peak Value 20 266°C 280°C 40 276°C 290°C 80 295°C 320°C

GN

Heating Rate (°C/win)	Exotherm Began	Peak Value
5 10 20	285°C 292°C	307°C 316°C

TABLE III

EXPLOSIVE CHARACTERISTICS OF MATERIALS

Sample	Dust Explosibility	Critical Height	Critical Diameter
GN	≥ 4.1 oz/ft ³	≥ 24" for a l" diameter pipe	< 1" ¹ " dia - 2980 m/sec 2½" dia - 3980 m/sec
Reactor Mixture (200°C)		≥ 48" for _{a l} "(l) diameter pipe	< 1"
Reactor Mixture (200°C)		≥ 12' for a 2"(2) diameter pipe	
34/38/28 GN/AN/U at 60°C			> 1"
AN/U at 100°C 4/1			> 1"
Propagat	ion Test for GN in a Tr	ay (6" deep x 12" wi	de x 24" long)

14.44

l" Booster - no propagation 2" Booster - propagation - 2900 m/sec

(1) Performed at ABL(2) Performed at Kenvil Flant

TABLE IV

HAZARD CLASSIFICATION TESTS FOR GUANIDINE NITRATE BY TB 700-2 CRITERIA

Test

Result

Detonation Test (No. 8 Blasting Cap) No deformation of pressure plate or cylinder

Burning reaction only

Ignition and Unconfined Burning Test

Thermal Stability Test

Card Gap Test

Impact Sensitivity Test

No color or visible change in 48 hours at 75°C

Failure at zero cards

No ignition at 47.3 inches (120 cm)

TABLE V

TABLE V (CONTINUED)

. .

Track Stream

ł

"Or Gate" defines the situation whereby the output event will exist if one or more of the input events exist.

Inhibit gates describe a casual relationship between one fault and another. The input event directly produces the output event if the indicated condition is satisfied.

The triangles are used as transfer symbols. A line from the apex of the triangle indicates a "transfer in" and a line from the side denotes a "transfer out."

Similarity transfer to to denotes the transfer of logic only from another part of the tree.

Transfer	Origination (page)	Transfer	Origination (page)
14	A-2	4F	A-10
18	A-2	4 G	A-9
10	A-2	54	A-11
10	A-2	· • 5C	A-11
24	A-4	50	A-11
28	A-4	58	A-11
20	A-4	55	A-12
2D	A-5	6A	A-13
2F	A-5	68	A-14
2 G	A-5	60	A-15
2H	A-3	6D	A-15
2J	A-3	6E	A-13
21	A-3	6F	A-15
2L	A-3	7A	A-16
2M	A-3	7 B	A-16
3A	A-6	70	A-17
3B	A-7	7D	A-17
3C	A-7	7E	A-18
3D	A-6	7 F	A-18
3E	A-6	7G	A-17
3F	A-7	7H	A-18
3н	A-7	8A	A-20
3J	A-7	8B	A-20
3К	A-7	8C	A-20
4A	A-9	8D	A-20
4B	A-8	9A	A-19
4C	A-10	9B	A-19
4D	A-10	90	A-19
4E	A-10		

Ċ,

•

TABLE VI

ORIGINATION POINT FOR TRANSFER SYMBOLS IN THE LOGIC MODEL

TABLE VII. PROBABILITIES OF FAILURE SUMMARY FOR CRITICAL FAILURE MODES

16	Item	Fat]	Type of	Failure	Proportion of Time Failure	Material Regnance	
Mtve			hazard	Probability ⁽¹⁾	Applies ⁽²⁾	Probability	erooapility of Initiation
(W)	ding System)	Impeller, Shaft	Impact Friction	5.6 x 10 ⁻⁵ 5.6 x 10 ⁻⁵	1.0	0.98	5.5 x 10-5
(HF)	lds Pump ding System)	Impeller, Shaft, or Shaft Packing	Impact Friction	5.6 × 10-4 5.6 × 10-4	1.0	0.98	5.5 x 10 ⁻⁴
Goul (Rev	ds Fump ution System)	Impeller, Shaft or Shaft Packing	Impact Friction	5.6 × 10-4 5.6 × 10-4	1.0	0.98 0.98 0.09	5.5 x 10 ⁻⁴ 5.5 x 10 ⁻⁴
MI×L JAgu	r sous (Juench)	Impeller or Shaft	Impact Friction	5.6 x 10 ⁻⁵ 5.6 x 10 ⁻⁵	1.0	0.98 0.98 0.00	5.5 × 10 ⁻⁵
Coul (Aqu	ds Pump rous Quench)	Impeller, Shaft or Shaft Packing	Impact Friction	5.6 × 10 ⁻⁴ 5.6 × 10 ⁻⁴	1.0	0.98 0.98 0.98	5.5 x 10 ⁻⁰ 5.5 x 10 ⁻⁴
Mixe (Cry	r stallfzer System)	Impeller or Shaft	Impact Friction	5.6 x 10 ⁻⁵ 5.6 x 10 ⁻⁵	0.5	0.98	2.7 × 10 ⁻⁵
Goul (Cry	ds Pump stalilzer System)	Impeller, Shaft or Shuft Packing	Impact Friction	5.6 × 10-4 5.6 × 10-4	0.5	0.98	2.7 x 10 ⁻⁴
Crys (Crys	taliizer System) stallizer System)	Impeller, Shaft, Bearings or Improper Alignment	Impact Friction	1.9 × 10-4 1.9 × 10 ⁻⁴	0.5	0.98 0.98 0.98	2.7 x 10 ⁻⁴ 9.3 x 10 ⁻⁵ 9.3 x 10 ⁻⁵
Goalt (Cent	ls Pump Tiluge System)	Impeller Shaft or Sh.ft Packing	Impact Friction	5.6 × 10 ⁻⁴ 5.6 × 10 ⁻⁴	0.125 0.125	0.98	6.8 x 10-5
bryer Gaild		Paudle, Shaft or Shaft Bearings	Impact	1.3 × 10 ⁻⁴	1.0	0.7	6-8 × 10 ⁻⁵
(Evap	s tump oratio n)	Impeller, Shaft or Shaft Packing	Impact Friction	5.6 x 10-4 5.6 x 10-4	0.1 0.1	0.98 0.98	5.5 x 10 ⁻⁵ 5.5 x 10 ⁻⁵
$\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \mathbb{P}_{2}$	allure rate times 80 appendion of hours o	00 hours. out of 800 the equipmen	ب در 1 1 کی	(System) Probab (Syste	ility of Initiat m) Reliability	1on	46.4 x 10 ⁻⁴ 0.99536

out of 800 the equipment will be operating.

Figure 1. Friction Profile (Pressure vs. Velocity)

A-1

A-3

.

A-5

A~8

à.

IV-32

A-18

. .

A-19

APPENDIX V

14.11 (C. 1997)

- 1

D

.

THE DECKEL PROVE

1 N N N N

LITERATURE SEARCH - RELATED TO PRODUCTION OF GUANIDINE NITRATE FROM UREA

APPENDIX V

LITERATURE SEARCH

RELATED TO PRODUCTION OF GUANIDINE NITRATE FROM UREA

by John T. Hays Hercules Research Center

Introduction

Work in progress at Hercules Kenvil Plant and the Research Center on production of guanidine nitrate from urea led to a request for a literature search on this general subject. The objectives of this search were: to make certain that recent literature on the basic process has been covered, and to develop information relative to production of by-products and their possible effects on catalyst performance. Chemical Abstracts was thoroughly checked from 1956 through October 16, 1972 and in some areas from 1947. The information is divided into four general categories: (1) Production of guanidine nitrate from urea. (2) Reactions of urea at temperatures from 100°C. to 200°C. This subject is of interest in connection with formation of by-products in the urea-ammonium nitrate feed, which is held at about 110°C. for extended periods, and in connection with formacion of by-products under the reaction conditions for production of guanidine nitrate. (3) Formation of melamine from urea. This subject is of interest because it has been an active area of research in recent years and because it represents an extension of the type of catalytic reaction involved in production of guanidine nitrate. (4) Silica-phosphate reactions. This subject is of interest because of the indications from Hercules work that the diammonium phosphate used commercially to stabilize prilled ammonium nitrate decreases the activity of the silica gel catalyst used in production of guanidine nitrate from urea.

Table of Contents

1.1.1

		Page
I.	Guanidine Nitrate from Urea	3
	A. Reaction Characteristics B. Reaction Mechanism	3 4
II.	Reactions of Urea	6
	 A. Hydrolysis B. Cyanic Acid and Cyanates C. Biuret and Triuret D. Cyanuric Acid E. Ammelide and Ammeline F. NH₄NO₃-Urea Systems G Boric Acid Systems 	6 7 8 9 9 10
III.	Formation of Melamine from Urea	10
IV.	Silica Gel-Phosphate Reactions	11
v.	Summary and Conclusions	12

an also reaction a sub-

I. Guanidine Nitrate from Urea

Little information was located in this search which was not already available to those working on the Hercules study of preparation of guanidine nitrate from urea. Nevertheless it seems worthwhile to consider the available information to get an understanding of the factors affecting the reaction.

One of the best sources of information is a report forwarded to us through the British Embassy and Picatinny Arsenal written by F. Armstrong and R. T. M. Fraser¹. This report not only gives new experimental work but also gives a list of 40 references.

A. Reaction Characteristics

Guanidine nitrate is formed from urea and ammonium nitrate by an unusual reaction:

 $2NH_2CONH_2 + NH_4NO_3 \rightarrow NH_2C(=NH)NH_2 \cdot HNO_3 + 2NH_3 + CO_2$

The reaction occurs over a specific temperature range given as 175-225°C.², with 190-200°C. preferred³, and as 160-200°C. with 180°C. giving best yields but at less than maximum rates⁴. Similar information is given by Russian workers⁵. A catalyst is required, with silica gel being preferred, although broad classes of related silica or oxide catalysts are also claimed³⁻⁵. Small scale batch reactions indicate an optimum ratio for urea:ammonium nitrate:silica gel of 1:1:1³ or 2:2:1¹.

The importance of the catalyst is seen when it is realized that uncatalyzed thermal decomposition of urea gives biuret and triuret at $120-160^{\circ}C.^{6-9}, ^{13}$. At higher temperatures, up to 200° , cyanuric acid is formed in increasing quantities $^{10-12}, ^{14}$. Heating biuret and triuret in the presence of anmonium nitrate but with no catalyst gave cyanuric acid 15 . With silica gel, ammonium nitrate, and urea at 195°C., the main product reported was guanidine nitrate along with 5-12% ammelide and some melamine 15 . Biuret and triuret are also converted to guanidine nitrate on heating with silica gel and ammonium nitrate $^{3}, ^{15}$. There are thus two types of urea decomposition controlled by temperature and the presence of catalyst:

<u>Thermal</u> which gives mainly cyanuric acid at temperatures of $160-200^{\circ}$. Biuret is the main product at lower temperatures (120-160°), but its formation is reversible^{16,17}. Ammelide and ammeline are formed in the thermal reaction but at much higher temperatures (>250°C.)^{19,20}.

<u>Catalytic</u>, with silica gel and ammonium nitrate, at 180-200°C., gives mainly guanidine nitrate with small amounts of the triazine by-products, cyanuric acid, ammelide, ammeline, and melamine. Intermediate biuret and triuret are largely broken down under these conditions. The action of the silica gel catalyst has thus led to formation of guanidine nitrate and small amounts of triazine byproducts at temperatures which give cyanuric acid as the main product in the straight thermal reaction.

B. Reaction Mechanism

The first step in the thermal decomposition of urea is generally considered to he²¹:

$NH_2CONH_2 \rightarrow HNCO + NH_3$

This is more than a hypothetical picture of the reaction, as proved by isolation of the HNCO product²¹⁻²⁴, direct conversion of urea to alkali cyanates²⁵⁻²⁷, and trimerization of HNCO from urea to cyanuric acid¹⁰⁻¹². Formation of HNCO allows ready formation of the products of the thermal decomposition of urea, i.e., formation of biuret and triuret by reaction of HNCO with urea and with biuret and trimerization of HNCO.

The products of the catalytic reaction require some other mechanism. One attractive scheme is dehydration of view to form cyanamide⁵, ¹⁷, ¹⁸, known to form guanidine derivatives readily:

NH₂CONH₂ → NH₂CN + H₂O

Interaction of NH₂CN and HNCO would give ammelide and ammeline^{17, 18}, and cyanamide is also known to give melamine³.

Differential thermal analysis (DTA) data were interpreted to show the presence of cyanamide in urea pyrolysis products²⁸, but more recent pyrolysis work has led to the conclusion that cyanamide is not a primary product of urea pyrolysis²⁹. Infrared work has also led to the conclusion that formation of cyanamide is improbable³⁰. Mackay³ has stated that dehydration of urea does not occur, on the basis that carbon dioxide would have no effect if dehydration were the key reaction in formation of guanidine nitrate from urea and ammonium nitrate. Actually, he found that it was important to avoid CO₂ build-up, which led him to postulate a splitting off of CO₂. Schmidt³¹, considering the analogous formation of melamine from urea, formulates it as a disproportionation of HNCO into CO₂ and carbodiimide, $C(=NH_2)_2$:

NH2CONE2 - HNCO + NH3

2HNCO \rightarrow (HN=C=NH) + CO₂

This would fit the observed effect of CO₂ and the unstable intermediate would give melamine on trimerization.

Schmidt³' formulates the reaction in the fashion:

Reaction of the complex with NH4NO3 could then give guanidine nitrate.

Si $C=NH + NH_4NO_3 \rightarrow -Si$ $+ (NH_2)_2C=NHHNO_3$

The formation of guanidine nitrate would thus depend on reaction of ammonium nitrate with a catalyst complex. Molecular size of the ammonium salt reactant might be important in reaction with a complex with a specific steric arrangement. Kazarnovskii and Spasskaya⁵ state that NH4Cl and NH4Br also form guanidine salts in this reaction but that ammonium phosphates, sulfate, carbonate, tungstate, vanadate, and salts of organic acids do not form guanidine salts in the presence of silica gel without excess pressure. The type of catalyst complex postulated could allow rationalization of this observation. The Boatright-Mackay patent² claims ammonium salts broadly, however.

It was also reported⁵ that where best yields of quanidine were obtained with a 1:1:1 ratio of urea:NH4NO3:silica gel, decrease of silica gel to less than 0.8 led to formation of cyanuric acid along with guanidine salt. Thus it seems necessary to provide sufficient active catalyst sites to complex the HNCO in order to avoid the "thermal" trimerization to cyanuric acid. Blocking of active -OH groups by esterification completely deactivated the catalyst¹. Formation of -OR groups on silica gel by this method has been reported in detail³². Decreasing the ammonium nitrate to stoichiometric proportions also decreases yield⁵ as might be expected on the assumption that dissociation of the catalyst-HNCO complex must be avoided.

Experiments¹ with ¹⁵NH4NO3 and (NH2) $_2C=^{16}O$ showed considerable ¹⁵N in the ammonium carbamate recovered but less ¹⁶O than would be expected if all the CO₂ were derived from urea. The $^{1.5}N$ result suggests that the reaction: NH₃ + $^{1.5}NH_4NO_3 \rightarrow ^{1.5}NH_3$ + NH4NO₃ occurs, presumably through catalyst interactions. The loss of $^{1.8}O$ suggests exchange of surface oxygens of the catalyst through $HNC^{18}O$ in the manner postulated for the disproportionation to CO₂.

Although the specific mechanism accepted may not be critical, it is apparent that production of guanidine nitrate from urea-ammonium nitrate depends on the specific function of the catalyst to direct the reaction of the initial decomposition products of urea toward formation of quanidine nitrate and to avoid the thermal conversion of these intermediates to triazines.

Additional references on this subject were noted 3^{3+37} .

II. Reactions of Urea

The reactions of usea have been discussed in the first section as they pertain directly to the preparation of guanidine nitrate. Specific reactions will be discussed in more detail here in relation to by-product formation.

A. Hydrolysis

Hydrolysis of urea is the most important reaction of urea in the presence of water at elevated temperatures:

$$NH_2CONH_2 + H_2O \rightarrow CO_2 + 2NH_3$$

This reaction will generally be superimposed on other urea reactions if water is present. Thus the formation of guanidine nitrate:

 $NH_2CONH_2 + NH_4NO_3 \rightarrow (NH_2) C=NH \cdot HNO_3 + H_2O$

becomes:

$$2NH_2CONH_2 + NH_4NO_3 \rightarrow (NH_2)_2C=NH_1HNO_3 + CO_2 + 2NH_3$$

Hydrolysis is more rapid than biuret formation at 80°C.³⁸ and this is also undoubtedly true at the somewhat higher temperatures⁸ (ca. 110°C.) at which the urea-ammonium nitrate feed is stored in current Hercules work on production of guanidine nitrate from urea. The hydrolysis reaction causes yield loss but reactions to form urea condensation products could cause product contamination.

General references to urea hydrolysis are listed 39-44.

B. Cyanic Acid and Cyanates

The dissociation of urea into cyanic acid and ammonia has been discussed as the first step in reactions of urea at elevated temperatures. This section will discuss references more specific to cyanic acid and cyanates.

The structure HN=C=O in straight line arrangement was indicated by Raman spectra⁴⁵. Existence of HOCN has also been shown⁴⁹. Hydrolysis of HNCO and NCO⁻ to give NH4⁺ and CO₂ and NH₃ and HCO₃⁻, respectively, has been studied^{46,47}

Conversion of urea to alkal metal cyanates has been cited earlier^{25-27,48} as has isolation of HNCO^{21-24} . Initial formation of HNCC from urea and subsequent reaction to produce biuret and triazine products will be involved in discussions of these materials in subsequent sections.

C. Biuret and Triuret

Formation of biuret from aqueous urea solutions on heating was shown⁵⁰ but this reaction was accompanied by hydrolysis.

The rate of formation of biuret from urea increases with increasing temperature up to 170°C.⁷,³⁸. A maximum was reached initially at 200°C. after which a decrease in amount of biuret occurred⁵¹. At 170°C. biuret was reported to begin to decompose to urea and cyanic acid⁵². The decrease in biuret was observed at 180 and 193°C.⁵³ and biuret formation was reported to be reversible above the melting point, 193°C.¹⁶,¹⁷

An important reference summarizes the changes which occur in the thermal decomposition of urea³⁰. Infrared spectra showed that a new band appeared at 2170 cm⁻¹ at the melting point of urea; it disappeared at 160° and then reappeared at 180°C., the temperature at which biuret begins to decompose. This band disappeared at higher temperatures and reappeared at the melting point of triuret. This band was assigned to cyanate ion thus deduced to be present at the melting points of urea, biuret, and triuret. Formation of the cyanate ion (or HNCO) was confirmed by amination of biuret and triuret in an autoclave at 190°C. to give urea as the sole product. HNCO was found in the gas phase over melts of all three substances. The authors suggest the following course of the reaction:

> $NH_2CONH_2 + NCO^- \rightarrow NH_2C-NH-C=NH$ $G \downarrow O NH_2CONHCONH_2$

Triuret is postulated to form similarly.

Pyrolysis of triuret yielded only 15-20% of urea. It was suggested that the energetically more favorable ring closure to cyanuric acid occurs instead of complete reversal of the condensation.

triuret cyanuric acid

The reaction of guanidine with bluret to form ammelide was postulated, supported by increased ammelide yield on addition of guanidine.

1-5

Triuret is formed on pyrolysis of urea in thin films^{13,56} but more readily in the presence of acid catalysts^{17,54,55}.

Thus any biuret and triuret formed in the guanidine nitrate process could be converted back to urea and cyanic acid; the work cited suggests the additional possibilities of conversion of biuret to ammelide and of triuret to cyanuric acid. If appreciable amounts of biuret or triuret build up in the Hercules ureaammonium nitrate feed, there would be a possibility of yield loss by formation of ammelide or cyanuric acid. However at the temperature of 110°C., build-up of more than a few percent of biuret is unlikely⁸. Appreciable triuret would not be expected.

Processes of preparation of biuret from urea are described in a number of references^{8,9,57-62}. Suppression of biuret formation in urea on storage by the use of NH4 molybdate or NH4H2PO4 as additives has been reported⁶³. Biuret has been eliminated from urea by ammonolysis^{64,65}. Urea increases the solubility of biuret in the system water-urea-biuret⁶⁶. Biuret forms a borate with H3BO3⁶⁷. Use of biuret as a fertilizer for turfgrass is described; it causes injury for a short time then is a useful source of nitrogen⁶⁸.

D. Cyanuric Acid

As stated earlier, cyanuric acid is formed by thermal decomposition of urea at about 200°C. through the trimerization of HNCO.

cyanuric acid

Formation of cyanuic acid is facilitated by removal of ammonia. Specific preparations involved: an ammonium halide with urea⁶⁹, H_2SO_4 as a catalyst¹¹,⁷⁰, a phenolic solvent¹⁰, a fluidized bed reaction⁷¹, use of HCl to lower the partial pressure of NH_3^{72} , and mixtures of cyanuric acid and urea^{12,14}. The reaction was carried out in vacuo at 280-300°C.^{26,73} By-products, ammelide, ammeline, and melamine decreased with decreasing pressure. These by-products were stated to be formed by reaction of cyanuric acid with NH₃. This has been verified by reaction of cyanuric acid with NH₃ at 270°C./80 atm.⁷⁵

Above 300° cyanuric acid will decompose¹². Temperatures in the 270°-300°C. range for urea pyrolysis give ammélide and ammeline rather than cyanuric acid¹⁹. Temperatures above 350°C. are used in the synthesis of melamine to avoid cyanuric acid formation⁷⁴.

E. Ammelide and Ammeline

The cyanuric bases have frequently been assumed to be formed by amidation of cyanuric acid¹⁷.

cyanuric acid ammelide

.ide

ammeline

melamine

These relationships can be demonstrated at temperatures of 250° and above. Ostrogovich and Bacalogu¹⁷, however, demonstrated the independent formation of each of these triazines at temperatures in the range 160-200°C. It thus seems likely¹⁵ that intermediates such as the postulated cyanamide, or preferably a carbodiimide complex, react to form the ammelide, ammeline, and melamine at lower temperatures.

Direct formation of ammelide and ammeline from urea at 270-300°C. is reported¹⁹. In pyrolysis of urea at 280-320°C., yields of ammelide and ammeline decreased with decreasing pressure^{26,73}. Preparation from cyanuric acid is described⁷⁵. Usefulness of ammelide as a slow-release fertilizer has been demonstrated⁷⁶. Spectrophotometeric methods of analysis have been reported^{77,78}.

F. Ammonium Nitrate-Urea Systems

Inasmuch as a urea-ammonium nitrate feed is used for guanidine nitrate preparation, references were sought which would indicate possible effects of one component on the reactivity of the other. The system NH4NO3-CO(NH2)2-H2O was studied⁷⁸. Compounds NH4NO3-CO(NH2)2 and NH4NO3-CO(NH2)2 appear to exist in solution. Phase diagrams for NH4NO3-CO(NH2)2 were reported⁸⁰. Addition of urea decreased the acidity of ammonium nitrate and decreased nitrogen losses 300-500°³¹. Thermal decomposition of ammonium nitrate during its preparation is reported to be inhibited by urea⁸². Urea (0.1-0.3°) added directly to HNO₃ in the preparation of NH₄NO₃ from NH₃ and HNO₃ eliminated the harmful effects of nitrogen oxides and Cl⁻ ions and inhibited the thermal decomposition of NH₄NO₃ during evaporation⁸⁵. The presence of <0.7° urea in NH₄NO₃ had no harmful effect on physiochemical or mechanical properties. Amounts of urea >1.5° increased hygoscopicity and decreased particle strength⁸⁺.

The presence of NH4NO3 in the pyrolysis of urea led to an increase in the content of cyanuric acid and a decrease in the amounts of ammelide, ammeline, and melamine⁸³. The effect was attributed to formation and pyrolysis of urea nitrate.

G. Boric Acid Systems

The presence of boric acid in stabilizers for ammonium nitrate led us to note references of possible interest.

In the H3BO3-CO(NH2)2 system, a compound was formed, H3BO3·2CO(NH2)2, melting point 79.1°C.⁸⁶

Heating 1 mole of H3BO3 and 2 moles of urea at about 60°C. gave a glass which decomposed above 165°C. to give BNO, stable to 1300°C. Passage of NH3 over BNO at 500-950°C. gave relatively pure boron nitride, BN⁸⁷.

A melamine synthesis catalyst, more or less equivalent to silica gel, termed boron phosphate, was made from 100 g. boric acid and 210 g. phosphoric acid⁹⁸. The mixture solidified on standing at room temperature and was converted to catalyst by heating to 350°C.

III. Formation of Melamine from Urea

In recent years, undoubtedly the most active area of research on reactions involving thermal decomposition of urea has been on processes for melamine from urea in eventually successful attempts to get away from dependence on calcium cyanamide and dicyanodiamide, "dicy". The first phase of this work from about 1950 to 1965 involved pressure reactions ^{8 8-99}, ¹⁰⁴, ¹⁰⁵. Ther low pressure reactions were developed, first in two steps involving formation of HNCO and leading this over a catalyst¹⁰⁰, ¹⁰¹, ¹⁰³, ¹⁰⁶, ¹¹⁰ Direct utilization of urea then followed ³¹, ⁷⁰, ¹⁰², ¹⁰², ¹⁰³, ¹⁰⁹, ¹¹¹⁻¹¹⁶.

As mentioned earlier, this reaction is analogous to guanidine nitrate production from urea, with the differences of higher temperature and substitution of NH3 for NH4NO3^{31,111}. Thus it utilizes a catalyst such as silica gel (also Al2O3, Al silica gel,

and B, Al, Fe, and Si phosphates) which must contain free hydroxyl groups at high temperatures. The first step is formation of HNCO which is complexed with the catalyst. The HNCO then undergoes disproportionation to form CO₂ and the reactive carbodiimide intermediate (HN=C=NH), which trimerizes to melamine.

The initial breakdown of urea and disproportion of HNCO on the catalyst are apparently the same for the melamine and guanidine nitrate processes. Then in the guanidine nitrate process, a large excess of ammonium nitrate and a carefully controlled temperature direct the reaction of the catalyst complex to guanidine nitrate. In the melamine process, temperatures >350°C. are used. The high temperature assures completeness of the urea breakdown and the HNCO disproportionation reaction, presumably increasing the concentration of the reactive carbodiimide intermediate. The high temperature also prevents formation of cyanuric acid and ammelide. The net result is trimerization of the intermediate to melamine with only traces of by-products.

IV. Silica Gel-Phosphate Reactions

It has been determined empirically that decreases in catalyst activity observed in the course of the studies at Hercules Kenvil Plant can apparently be attributed to the presence of diammonium phosphate in the stabilizer for the ammonium nitrate used. A brief search of the literature was therefore made in an attempt to determine whether such effects are known.

No specific references were found to interactions of phosphates with silica gel in the type of system involved. There are, however, numerous references to reactions of phosphates with mineral surfaces but generally with aluminosilicates rather than silica gel. Phosphate fixation by kaolinate (an aluminosilicate) was observed and explained in terms of a two-step precipitation of an aluminum phosphate¹¹⁷. Silica-alumina gels absorbed both NH4⁺ and HPO4⁼ from (NH4)₂HPO4 solutions¹¹⁸. Adsorption of phosphate on kaolinite was in other examples attributed to Al or Fe¹¹⁹⁻¹²¹.

Phosphoric acid impregnated silica showed infrared spectra attributed to phosphate interaction with surface hydroxyl groups¹²². Adsorption of orthophosphates on metal oxides was demonstrated; it was concluded that chemical bonds were formed at the reactive metal oxide sites¹²³. A study of the nature of active sites concluded that silica gel acquires ion-exchange capacity and catalytic properties exclusively as a result of substitution of Al for protons in active -OH groups¹²⁴ Surface hydroxylation of silica and the nature of the groups was reported¹²⁶.

Russian workers¹²⁵ studied reaction of PCl₃ with -OH groups on silica gel at 180°C. Each PCl₃ reacted with approximately 3 hydroxyl groups, with about 90% of the surface hydroxyls being susceptible to this reaction. This reaction is the closest to the type of reaction we would postulate to explain the effect of diammonium phosphate on catalytic activity. In fact, if diammonium

phosphate were as reactive as PCl₃, we would have a satisfactory explanation. However, in the present status of our information, we can only conclude that the literature is not inconsistent with surface reaction of the phosphate with -OH groups to inactivate the catalytic sites on the silica gel.

V. Summary and Conclusions

Little new information was found on the process for guanidine nitrate from urea and ammonium nitrate, but reaction characteristics and reaction mechanisms have been reviewed. The catalytic reaction with silica gel leads to the formation of guanidine nitrate and small amounts of triazine by-products at temperatures which give cyanuric acid as the main product in a straight thermal reaction. The mechanism appears to involve: (1) formation of HNCO from urea; (2) complexing of HNCO with the catalyst, followed by disproportionation to CO₂ and a reactive carbodiimide-catalyst complex; and (3) displacement of the carbodiimide by ammonium nitrate to give guanidine nitrate.

The current Hercules procedure of holding the urea-ammonium nitrate feed at about 110°C. for extended periods can be expected to involve the reactions: (1) hydrolysis of urea to give yield losses and (2) formation of biuret. An experimental check should be made of the biuret formed, but amounts in excess of 5% would not be expected. Formation of biuret is readily reversed at reaction conditions so that its formation in small amounts would not be a serious problem. Significant amounts of triazine products would not be formed at the feed temperature.

Cyanuric acid, ammelide, ammeline, and melamine can all form at the guanidine nitrate process temperature. Maintenance of catalyst activity, optimum reactant ratios, and temperatures as low as compatible with practical rates can be utilized to minimize these by-products.

Recently developed processes for production of melamine from urea and ammonia appear to involve the same initial steps as production of guanidine nitrate from urea and ammonium nitrate, namely, formation of HNCO from urea and disproportionation on the catalyst. The melamine process is run at temperatures >350°C. which avoid formation of cyanuric acid, ammelide, and ammeline and give high concentrations of the reactive intermediate which then trimerizes to melamine.

Information on possible reactions of phosphates with silica gel was sought in view of the finding at Hercules Kenvil Plant that diammonium phosphate in the ammonium nitrate stabilizer decreases the activity of the catalyst. Adsorption of phosphates on mineral surfaces has frequently been reported but generally appears to involve Al or Fe in the mineral clays. Phosphoric acidimpregnated silica showed evidence of chemical reaction of phosphate groups with surface hydroxyls. Chemical reaction between PCl₃ and hydroxyl groups of silica gel has been demonstrated and V-12 offers an analogy to what appears to happen with diammonium phosphate. Specific references have not been located for reaction of phosphates with silica gel under conditions of the guanidine nitrate reactions. However, the information in the literature is not inconsistent with surface reaction of phosphate to inactivate the catalytic sites on silica gel.

Bibliography

I. Guanidine Nitrate from Urea

- F. Armstrong and R. T. M. Fraser, Explosive Research and Development Establishment, Ministry of Defense, Waltham Abbey, England, "The Silica Gel Process: Small Scale Studies. Part I - Comparison of Catalysts. Labelling Experiments". This report was received by C. H. Nichols of Picatinny Arsenal through Dr. Pearson of the British Embassy, Washington, D. C. on Feb. 24, 1972 and forwarded to Hercules on Feb. 25, 1972. (Unclassified)
- L. G. Boatright and J. S. Mackay (American Cyanamid), U.S. Patent 2,783,276 (1957).
- 3. J. S. Mackay (Pittsburgh Coke & Chemical Co.), "Guanidine Compounds", U.S. 2,949,484, Aug. 16, 1960. <u>C.A.</u> <u>55</u>, 9288 (1961).
- 4. E. Roberts and T. Martin (to Minister of Aviation in Her Majesty's Covernment of the United Kingdom of Great Britain and Northern Ireland), U.S. Patent 3,043,878 (1962).
- 5. S. N. Kazarnovskii and R. I. Spasskaya, "Preparation of Salts of Guanidine from Urea and Ammonium Salts in the Presence of Silica Gel", <u>Zhur. Priklad. Khim.</u> <u>34</u>, 2079-84 (1961). <u>C.A. 56</u>, 2326 (1962).
- 6. A. Sonn, "Biuret and Triuret from Urea", Ger. 726,290, Aug. 27, 1942. <u>C.A.</u> <u>37</u>, 6281 (1943).
- R. C. Shen (U.S. Ind. Chemicals Co.), "Rate of Biuret Formation from Urea", <u>J. Agr. Food Chem.</u> 7, 762-3 (1959). <u>C.A.</u> 54, 3195 (1960).
- L. Jaeger, J. Gottfried, J. Nyvit, and J. Sura, "The Kinetics of Biuret Formation from Urea", <u>Chem. Prumysl</u> 15(1), 4-7 (1965). C.A. 62, 13004 (1965).
- 9. C. Merli, C. Galipo, and D. Ferroni (Montecatini), "Preparation of Biuret of High Purity", Ital. 698,339, Nov. 18, 1965. C.A. 67, 108269 (1967).
- 10. L. J. Christmann (American Cyanamid Co.), "Cyanuric Acid from Urea", U.S. 2,822,363, Feb. 4, 1958. <u>C.A.</u> <u>52</u>, 10223 (1958).

- 11. N. I. Malkina and S. N. Kazarnovskii, "Synthesis of Cyanuric Acid from Urea. I.", <u>Zhur. Priklad. Khim.</u> <u>34</u>, 1583-7 (1961). <u>C.A.</u> <u>55</u>, 27362 (1961).
- 12. H. A. Baskin (W. R. Grace & Co.), "Production of Cyanuric Acid from Urea", U.S. 3,236,845, Feb. 22, 1966. C.A. <u>64</u>, 15901 (1966).
- 13. R. I. Spasskaya and S. N. Kazarnovskii, "Triuret", U.S.S.R. 252,327, Sept. 22, 1969. C.A. <u>72</u>, 54820 (1970).
- 14. F. Suzuki and T. Tosen (Japan Light Metal Co., Ltd.), "Cyanuric Acid by Thermal Decomposition of Urea", Japan. 69 00,234, Jan. 8, 1969. <u>C.A.</u> 70, 87858 (1969).
- 15. R. I. Spasskaya and S. N. Kazarnovskii, "Reaction of Urea with Ammonium Salts in the Presence of Silica Gel", <u>Zh. Prikl.</u> <u>Khim.</u> 35, 1842-6 (1962. <u>C.A.</u> 58, 6828 (1963).
- 16. K. Alaminov, A. Vblcheva, and St. Georgieva, "Formation of Biuret and Possibilities for Its Decrease in the Production of Carbamide", Khim. i Ind. (Sofia) <u>32</u>, No. 3, 71-4 (1960). C.A. <u>55</u>, 3426 (1961).
- 17. G. Ostrogovich and R. Bacaloglu, "Kinetic Study on the Thermolysis and the Subsequent Transformations of Ursa. II.", <u>Rev. Roumaine Chim. 10(11), 1111-23 (1965)(Ger.); Studii</u> <u>Cercetari Chim. 13(11), 1165-76 (1965)(Rom). C.A. 64, 15700</u> (1966).
- 18. G. Ostrogovich and R. Bacaloglu, "Kinetic Study on the Thermolysis and the Subsequent Transformations of Urea. III.", <u>Rev. Roumaine Chim. 10(11), 1125-35 (1965)(Ger.); Studii</u> <u>Cercetari Chim. 13(11), 1177-86 (1965)(Rom.). C.A. 64,</u> 15700 (1966).
- 19. L. J. Beckham (Allied Chemical & Dye Corp.), "Ammelide and Ammeline", U.S. 2,572,587, Oct. 23, 1951. C.A. 46, 6163 (1952).
- 20. N. P. Shishkin and A. I. Finkel'shtein, "In Vacuo Pyrolysis of Urea", Tr. Khim. Khim. Tekhnol. 1969, (1), 188-90. C.A. 73, 24736 (1970).
- 21. Oesterrichische Stickstoffwerke A.-G., "Cyanic Acid from Urea", Belg. 621,602, Feb. 21, 1963. C.A. 59, 1307 (1963).
- 22. E. S. Roberts and L. J. Christmann (Carbogen Corp.), "Cyanic Acid", Ger. 1,159,411, Dec. 19, 1963. C.A. 60, 10254 (1964).

1

23. Oesterreichische Stickstoffwerke A.-G., "Cyanic Acid from Urea", Neth. Appl. 6,500,131, July 15, 1965. <u>C.A. 63, 17916</u> (1965).

- 24. A. Schmidt, F. Weinrotter, and W. Mueller (Lentia G.m.b.H.), "Process for Cyanic Acid from Urea", Ger. 1,204,643, Nov. 11, 1965. C.A. 64, 3096 (1966).
- 25. E. Inaba, S. Uesugi, and Y. Enoeda (Shinetsu Chemical Industries Co.), "Alkali Cyanate", Japan. 4030('55), June 14, 1955. C.A. 51, 14217 (1957).
- 26. D. O. DePree and K. L. Lindsay (Ethyl Corp.), "Metal Cyanates", U.S. 2,801,154, July 30, 1957. C.A. 51, 18507 (1957).
- F. O. Barrett and J. Kamlet (Emery Industries, Inc.), "Conversion of Urea to Metal Cyanates", U.S. 2,899,198, June 2, 1959. C.A. 53, 17449 (1959).
- 28. A. G. Koryakin, V. A. Gal'perin, A. N. Sarbaev, and A. I. Finkel'shtein, "Thermographic Analysis of Urea and Products of Its Pyrolysis", <u>Zh. Org. Khim.</u> 7(5), 972-7 (1971). <u>C.A.</u> 75, 54200 (1971).
- 29. J. Gisbier and J. Koch, "Pyrolysis of Urca in a Low-Temperature Plasma", <u>Z. Chem. 11(12)</u>, 465 (1971). <u>C.A. 76</u>, 63932 (1972).
- 30. V. A. Gal'perin, A. I. Finkel'shtein, and N. P. Shishkin, "Mechanism of the Thermal Decomposition of Urea, Biuret, and Triuret", <u>2h. Vses. Khim. Obshchest.</u> <u>17</u>(3), 359-60 (1972). C.A. <u>77</u>, 93348 (1972).
- 31. A. Schmidt (Oesterr. Stickstoffwerke A.-G.), "Reaction Mechanism for Melamine Formation from Isocyanic Acid", <u>Monatsh. Chem. 99</u>(2), 664-71 (1968). <u>C.A. 68</u>, 95792 (1968).
- 32. R. K. Iler (Du Pont), "Esterifying the Reactive Siliceous Surfaces of Supercolloidal Substrates", U.S. 2,657,149, Oct. 27, 1953. C.A. <u>48</u>, 2336 (1954).
- 33. G. W. Watt and R. G. Post, "Guanidine from Urea and Ammonia", Ind. Eng. Chem. 45, 846-9 (1953). C.A. 48, 1276 (1954).
- 34. J. L. Boivin, "The Proparation of Guanidine from Urea, Ammonium Chloride, Aluminum Sulphate, and Ammonia under Pressure", Can. J. Chem. 33, 1467-72 (1955). C.A. 50, 11246 (1956).
- 35. R. I. Spasskaya and S. N. Kazarnevskii, "A Continuous Method for the Production of Guanidine from Urea", <u>Whim. Prom.</u> 1963(7), 488-91. C.A. 60, 1580 (1964).
- 36. R. Bacaloglu and G. Ostrogovich (Romania Chemical Plant), "Catalyst for the Thermal Dehydration or Disproportionation of Amide-Type Compounds", Rom. 51,080, July 24, 1968. C.A. 70, 41266 (1969).

- 37. R. Bacaloglu and G. Ostrogovich (Romania, Chemical Combinate), "Catalyst for the Thermal Dehydration or Disproportionation of Amide-Type Compounds", Rom. 51,083, July 19, 1968. <u>C.A.</u> 70, 41267 (1969).
- II. Reactions of Urea

A. Hydrolysis

- 38. C. E. Redemann, F. C. Riesenfeld, and F. S. LaViola, "Formation of Biuret from Urea", Ind. Eng. Chem. <u>50</u>, 633-6 (1958). <u>C.A. 52</u>, 11317 (1958).
- 39. O. Alpaut, "The Rate of Decomposition of Urea", Communs. fac. sci. univ. Ankara 7B, No. 1, 28-44 (1956). C.A. 52, 19939 (1958).
- 40. W. H. R. Shaw and J. J. Bordeaux, "The Decomposition of Urea in Aqueous Media", <u>J. Am. Chem. Soc.</u> 77, 4729-33 (1955). <u>C.A. 50</u>, 3045 (1956).
- 41. Y. Kauko and O. Alpaut, "Decomposition of Urea", <u>Naturwisen</u>schaften 42, 390 (1955). <u>C.A.</u> 51, 17760 (1957).
- 42. Same as reference 39.
- 43. R. B. Moodie and D. W. Farlow, "Hydrolysis of Amides, Esters, and Related Compounds in Acid Solution. III. Ureas", J. Chem. Soc. B 1971, (3), 407-10. C.A. 74, 111207 (1971).
- 44. H. L. Welles, A. R. Giaquinto, and R. E. Lindstrom, "Degradation of Urea in Concentrated Aqueous Solution", J. Pharm. Sci. 1971, 60(8), 1212-16. C.A. 75, 107915 (1971).

B. Cyanic Acid and Cyanates

- 45. L. Birckenbach, H. Kolb. and J. Goubeau, "Pseudohalides. XXIX. Preparation, Reactions and Tautomers of Cyanates and Cyanic Acid", Ber. 68B, 895-912 (1935). C.A. 29, 4687 (1935).
- 46. M. B. Jensen, "Kinetics of the Decomposition of Cyanic Acid", Acta Chem. Scan. 12, 1657-70 (1958). C.A. 54, 2906 (1960).
- 47. J. R. Marier and D. Rose, "Determination of Cyanate, and a Study of Its Accumulation in Aqueous Solutions of Urea", Anal. Biochem 7(3), 304-14 (1964). C.A. 60, 8334 (1964).
- 48. D. O. De Pree and E. B. Oldenburg (Ethyl Corp.), "Metal Cyanates", U.S. 2,729,541, Jan. 3, 1956. C.A. 50, 6001 (1956).
- 49. N. Groving and A. Holm, "Alkyl Cyanates. V. Existence of Cyanic Acid, HOCN", Acta Chem. Scan. 19(7), 1763-9 (1965). C.A. 64, 6059 (1966).

Also see references 21-27. V-16

C. Biuret and Triuret

1 at 1

- 50. T. Nukada, "Aqueous Solution of Urea and the Biuret Reaction", Japan. J. Pharm. Chem. 23, 391-2 (1951). C.A. 46, 10107 (1952).
- 51. S. N. Kazarnovskii and N. I. Malkina, "Mechanism of the Reaction of Thermal Decomposition of Urea under the Pressure of the Gases Formed", Zhur. Priklad. Khim. 31, 452-8 (1958). C.A. 52, 17104 (1958).
- 52. N. I. Malkina and S. N. Kazarnovskii, "The Study of the Mechanism of Formation of By-Products During the Synthesis of Cyanuric Acid from Urea", <u>Trudy Gor'kovsk</u>. Politekh. <u>Inst.</u> 13, No. 5, 32-6 (1957). <u>C.A.</u> 54, 1538 (1960).
- 53. A. Baranski, E. Blasiak, and Z. Matuszewski, "The Reactions of Synthesis, Decomposition and Condensation of Urea", <u>Chim. Ind.</u> (Paris) <u>93</u>(4), 408-12 (1965). <u>C.A.</u> 63, 11306 (1965).
- 54. G. Ostrogovich, R. Bacaloglu, A. Nemes, and M. Moraru, "Kinetic Study on the Thermolysis and the Subsequent Transformations of Urea. I.", Acad. Rep. Populare Romine, Baza Cercetari Stilut. Timisoara, Studii Cercebari, Stilute Chim. 8, No. 1-2, 59-78 (1962). C.A. 59, 2628 (1963).
- 55. R. Colin Havorth and F. G. Mann, "Some Properties of Urea, Biuret and Friuret", J. Chem. Soc. 603-6 (1943). C.A. 38, 1475 (1945).
- 56. E. V. Lassak, "Autocondensation of Urea at 105-110°", J. Proc. Roy. Soc. N. S. Wales 100(3-4), 179-80 (1966). C.A. 68, 87276 (1968).
- 57. J. Harmon (Du Pont), "Biuret Production from Urea", U.S. 2,145, 392, Jan. 31, 1939. <u>C.A.</u> 33, 3399 (1939).
- 58. M. Mikhailov and K. Alaminov, "Corrosion of Some Stainless Steels and Al during the Pyrolysis of Urea in a High Boiling Oil Medium", <u>Khim. Ind.</u> (Sofia) <u>38</u>(1), 19-21 (1966). C.A. 65, 401 (1966).
- 59. D. G. Shipley (ICI), "Urea Pyrolysis", Brit. 1,155,907, June 25, 1969. C.A. 71, 60784 (1969).
- 60. R. Bacaloglu and G. Ostrogovich, "The Synthesis of Biuret from Urea", <u>Rev. Chim.</u> (Bucharest) <u>11</u>, 332-4 (1960). <u>C.A. 57</u>, 12315 (1962).
- 61. A. F. Beale, Jr., and J. M. Lee (Dow Chemical Co.), "Biuret from Urea by Pyrolysis", Ger. Offen. 2,049,294, Apr. 22, 1971. C.A. 74, 141038 (1971).
- 62. A. F. Beale, Jr. and J. M. Lee (Dow Chemical Co.), "Biuret Manufacture by Urea Pyrolysis", Fr. 2,065,102, Aug. 27, 1971. C.A. 76, 126431 (1972).
 V-17

- 63. Stamicarbon N.V., "Suppression of Biuret Formation in Urea", Dutch 94,646, June 15, 1960. C.A. 55, 14314 (1961).
- 64. E. Sacher (Oesterreichische Stickstoffworke A.-G.), "Femoval of Biuret from Urea", Austrian 219,051, May 24, 1960. <u>C.A.</u> 56, 12749 (1962).
- 65. V. I. Kucheryavyi, L. N. Al'mshuler, L. N. Erastov, "Ammonolysis of Biuret in Aqueous Solutions of Urea", <u>Zh. Prikl. Khim.</u> (Leningrad) <u>41(9)</u>, 2097-8 (1968). <u>C.A.</u> 70, <u>19319 (1969)</u>.
- 66. M. DeMalde, "The System Water-Urea-Biuret", <u>Chinica e</u> industria (Milan) <u>38</u>, 571-5 (1956). <u>C.A. 51</u>, 61 (1957).
- 67. V. I. Bairak, M. S. Malinovskii, and E. A. Makarova, "Biuret Borate", U.S.S.R. 298,533, Mar. 16, 1971. C.A. 75, 88155 (1971).
- 68. R. W. Starostka and K. C. Clark, "Greenhouse Evaluation and Nitrification Characteristics of Biuret and Urea-Biuret Mixtures", Agr. Chemicals 10, No. 10, 49-50, 103-4 (1955). C.A. 50, 520 (1956).

Also see references 7, 8, 13, 16, 18, 30, and 38.

D. Cyanuric Acid

- 69. J. S. Mackay (American Cyanamid), "Cyanuric Acid", U.S. 2,527,316, Oct. 24, 1950. C.A. 45, 2513 (1951).
- 70. W. F. Marzluff and L. H. Sutherland (American Cyanamid Co.), "Cyanuric Acid", U.S. 2,768,167, Oct. 23, 1956. <u>C.A. 51</u>, 4665 (1957).
- 71. A. Schmidt, F. Weinrotter, and W. Mueller (Lentia G.m.b.H.), "Cyanuric Acid from Urea", Ger. 1,179,215, Oct. 8, 1964. C.A. <u>62</u>, 4042 (1965).
- F. J. Schiltknecht, "Reaction Mechanism of the Pyrolysis of Urea to Cyanuric Acid", Promotionsarb. (Zurich) 3403, 92 pp. (1963). C.A. 63, 5647 (1965).
- 73. N. P. Shishkin, A. I. Finkel'shtein, "Formatio: of By-Products During the Preparation of Cyanuric Acid from Urea", <u>Zh. Prikl.</u> Khim. (Leningrad) <u>42</u>(2), 47:-5 (1969). <u>C.A.</u> 71, 22115 (1969).
- 74. A. Schmidt, "Chemical Research in Austrian Industry.
 I. Technical Processing Problems in the Production of Melamine from Urea at Atmospheric Pressure", Oesterr. Chem.-2tg. 68(6), 175-9(1967). C.A. 67, 116874 (1967).
- 75. V. A. Gal'perin and A. I. Finkel'shtein, "Reaction of Cyanuric Acid and Its Amides with Ammonia", <u>Khim. Geterotsik1. Soedin.</u> <u>7(7), 1002 (1971). C.A. 76, 14504 (1972).</u>

Also see references 10-12, 14, 19, and 26. V-18 E. Ammelide and Ammeline

- 76. G. L. Terman, J. D. DeMent, C. M. Hunt, J. T. Cope, Jr., and L. E. Ensminger, "Crop Response to Urea and Urea Pyrolysis Products", J. Agr. Food. Chem. 12(2), 151-4 (1964). C.A. 60, 11334 (1964).
- 77. V. A. Gal'perin, T. N. Roginskaya, "Determination of Amino Oxo Derivatives of Symtriazine and Nitrate Ion Present Together", Zavod. Lab. 34(11), 1324-5 (1968). C.A. 70, 64144 (1969).
- 78. S. G. Farrow, S. R. Hill, and J. M. Skinner, "High Precision Spectrophotometry. II. Determination of Ammelide, Ammeline, and Melamine in the Thermal Decomposition Products of Urea", <u>Analyst</u> (London) <u>97</u>(1150), 42-51 (1972). <u>C.A.</u> 76, 80876 (1972).

Also see references 15, 17, 19, 73, and 75.

F. NIi4NO3-Urea System

- 79. C. S. Pande, "Formation of Complex Compounds Between Ammonium Nitrate and Urea. The System: NH4NO3-CO(NH2)2-H2O (Conductivity and Viscosity)", Z. anorg. u. allgem. Chem. 280, 157-60 (1955). C.A. 50, 1510 (1956).
- 80. D. Trandafelov and T. Kovachev, "Molten Salt Systems with Ammonium Nitrate as the Main Component. I.", <u>Izv. Inst.</u> <u>Obshta Neorg. Khim., Bulg. Akad. Nauk.</u> 5, 25-36 (1967). <u>C.A. 69</u>, 90302 (1968).
- 81. S. Popov, V. Vasilev, and A. Angelov, "Lowering Ammonium Nitrate Settling", Khim. Ind. (Sofia) 43(10), 463-5 (1971). C.A. 76, 156207 (1972).
- 32. Y. Kil'man, "Inhibition of the Thermal Decomposition of Ammonium Nitrate", U.S.S.R. 191,498, Jan. 26, 1967. C.A. 68, 31636 (1968).
- 83. N. P. Shishkin, A. I. Finkesl'shtein, and V. I. Zagranichnyi, "Effect of Acid Additives on the Pyrolysis of Urea", 2h. Prikl. Khim. (Leningrad) 45(2), 433-4 (1972). C.A. 77, 4646 (1972).
- 84. Y. B. Gradinar, "Effect of Urea Additives on Physicochemical Properties of Ammonium Nitrate", "r. Nauch, -Issled. Proekt. Inst. Azotn. Prom. Prod. Org. Sin. 1971, No. 6, 351-6. C.A. 77, 64085 (1972).
- 85. Y. I. Kil'man, G. S. Barkhatova, and M. A. Kuzina, "Thermal Decomposition of Ammonium Nitrate in the Presence of Urea", <u>Tr. Nauch.-Issled. Proekt. Inst. Azotn. Proc. Prod. Org.</u> <u>510. 1971, No. 6, 321-33. C.A. 77, 607/1 (1972).</u>

G. Boric Acid Systems

- 86. V. G. Skvortsov and I. G. Druzhinin, "Solubility Polytherm of Boric Acid-Water and Potassium Metaborate-Water Binary Systems and the Phase Diagram of CO(NH₂)₂-Boric Acid", Uch. Zap., Chuvash. Gos. Pedagog. Inst. 1969, No. 29, 150-63. C.A. 74, 116570 (1971).
- 87. T. E. O'Conner, "Synthesis of Boron Nitride", J. Am. Chem. Soc. 84, 1753-4 (1962). C.A. 56, 3061 (1962).

Also see reference 98.

111. Melamine from Urea

- Monsanto Chemical Co., "Melamine", Brit. 644,374, Oct. 11, 1950. C.A. 45, 4274 (1951).
- 89. W. F. Gresham (du Pont), "Titanium Apparatus for Manufacture of Melamine", U.S. 2,644,820, July 7, 1953. <u>C.A.</u> <u>47</u>, 9070 (1953).
- 90. R. S. Hood (Monsanto Chemical Co.), "Melamine", U.S. 2,776,284, Jan. 1, 1957. C.A. 51, 6107 (1957).
- 91. Bergwerksgesellschaft Hibernia Akt.-Ges., "Melamine", Brit. 754,720, Aug. 8, 1956. <u>C.A.</u> <u>51</u>, 7671 (1957).
- 92. Suddeutsche Kalkstickstoff-Werke A.-G., "Melamine from Urea", Ger. 836,354, Apr. 10, 1952. <u>C.A.</u> 51, 11759 (1957).
- 93. M. Mikhailov and K. Alaminov, "Preparation of Melamine from Urea", Khim. Prom. 1961, 319-25. C.A. 55, 25351 (1961).
- 94. M. Mikhailov and K. Alaminov, "Preparation of Melamine from Urea", Khim. Prom. 1961, 805-6. C.A. 57, 11200 (1962).
- 95. A. Brenman and M. Weinberg, "The Synthesis of Melamine from Urea", <u>Rev. Chim.</u> (Buchares') <u>12</u>, 652-5 (1961). <u>C.A. 56</u>, 15114 (1962).
- 96. G. Naumov, "Synthesis of Melamine from Urea", Khim. Ind. (Sofia) 33, 190 (1961). C.A. 57, 16619 (1962).
- 97. Z. Jezic, "Preparation of Melamine from Urea", <u>Croat. Chem.</u> Acta 34, 203-9 (1962). C.A. 58, 11362 (1963).
- 98. O. B. Claren and L. Unterstenhoefer (Badische Anilin- & Soda-Fabrik A.-G.), "Cyanuric Acid", Fr. 1,363,760, June 12, 1964. C.A. 60, 14693 (1964).
- 99. V. I. Zagranichnyi and O. S. Rukevich, "The Reaction-Equilibrium in the Formation of Melamine from Urea", Khim. Prom. 1965(3), 188-90). C.A. 62, 19335 (1965).

- 100. Oesterreichische Stickstoffwerke A.-G., "Melamine from Cyanic Acid", Neth. Appl. 6,412,596, May 2, 1966. C.A. 65, 8936 (1966).
- 101. A. Schmidt (Osterr. Stickstoffwerke A.-G.), "New OSW Process Makes Melamine Direct from Urea", Hydrocarbon Process. 45(11), 146-50 (1966). C.A. 66, 10906 (1967).
- 102. A. Schmidt, "Preparation of Melamine from Urea at Atmospheric Pressure", <u>Chem. Ingr. Tech.</u> 38(11), 1140-4 (1966). <u>C.A.</u> 66, 18700 (1967).
- 103. W. Boehler, W. Mueller, A. Schmidt, and F. Weinrotter, (Oesterreichische Suickstoffwerke A.-G.), "Melamine from Cyanic Acid", Brit. 1 047,095, Nov. 2, 1966. <u>C.A. 66</u>, 18727 (1967).

And the second se

And a function of the second sec

en 20 k - 14 marchadara - 🐔 a 20 - 20

- 104. E. E. Jackson (Cominco Ltd.), "Preparation of Melamine from Urea", Can. 743,956, Oct. 4, 1966. C.A. 66, 28801 (1967).
- 105. Nisson Chemical Industries, Ltd., "Continuous Manufacture of Melamine from Urea", Fr. 1,483,116, June 2, 1967. C.A. 68, 13007 (1968).
- 106. Inventa A.-G. fuer Forschung und Patenverwertung, "Two-Stage Preparation of Melamine from Urea", Fr. 1,484,358, June 9, 1967. C.A. 68, 13008 (1968).
- 107. S. W. Tribit (American Cyanamid Co.), "Preparation of Melamine from Urca", U.S. 3,377,349, Apr. 9, 1968. <u>C.A. 68</u>, 105252 (1968).
- 108. E. K. Watson and J. M. Witheford (American Cyanamid Co.), "Melamine", U.S. 3,377,350, Apr. 9, 1968. C.A. 68, 114657 (1968).
- 109. G. Hamprecht, M. Schwarzmann, "Synthesis of Melamine from Urea by a Pressureless Single-Stage Process", <u>Chem.-Ing.-</u> <u>Tech.</u> 40(9-10), 462-4 (1968). <u>C.A.</u> 69, 27388 (1968).
- 110. M. Manes (Chemical Construction Corp.), "Synthesis of Melamine", U.S. 3,386,999, June 4, 1968. <u>C.A. 69</u>, 27463 (1968).
- 111. M. Schwarzmann, "Make Melamine at Atmospheric Pressure", <u>Hydrocarbon Process.</u> 48(9), 184-6 (1969). C.A. 71, 112893 (1969).
- 112. R. F. Hazelton (Allied Chemical Corp.), "Melamine", U.S. 3,470,163, Sept. 20, 1969. C.A. 71, 112990 (1969).
- 113. S. Furutani, K. Narizawa and M. Tanaka (Tohoku Fertilizer Co., Ltd.), "Melamine from Urea", Japan. 69 28,910, Nov. 26, 1969. C.A. 72, 31844 (1970).
- 114. S. Furutani, K. Narizawa and M. Tanaka (Tohoku Fertilizer Co., Ltd.), "Melamine from Urea", Japan. 69 28,909, Nov. 26, 1969. C.A. 72, 55512 (1970).

- 115. P. Ellwood, "Lower Investment, Easier Operation to Make Melamine", Chem. Eng. (New York) 77(23), 101-3 (1970). C.A. 74, 66116 (1971).
- 116. O. Rukevichand V. I. Zagranichnyi, "Reaction Equilibrium of the Formation of Melamine from Urea. I.", <u>Zh. Prikl</u> <u>Khim.</u> (Leningrad) <u>44</u>(5), 1132-7 (1971). <u>C.A.</u> <u>75</u>, 7675C (1971).

Also see references 31 and 70.

- IV. Silica Gel-Phosphate Reaction
- 117. P. F. Low and C. A. Black, "Reactions of Phosphate with Kaolinite", <u>Soil Sci.</u> 70, 273-90 (1950). <u>C.A.</u> 45, 4387 (1951).
- 118. C. J. Plank, "The Adsorption of Ions from Buffer Solutions by Silica, Alumina, and Silica-Alumina Gels", J. Phys. Chem. 57, 284-90 (1953). C.A. 47, 6214 (1953).
- 119. G. C. Russell and P. F. Low, "Reaction of Phosphate with Kaolinite in Dilute Solution", Soil Sci. Scc. Am. Proc. <u>18</u>, 22-5 (1954). C.A. <u>48</u>, 6636 (1954).
- 120. A. G. Scholten, "The Reaction of Phosphate with Mineral Surfaces and Iron Oxide Gels", Univ. Microf Inc, Order No. 65-6238, 254 pp.; Dissertation Abstr. 25(12), 6949-50 (1965). C.A. 63, 10975 (1965).
- 121. R. M. Barrer and D. J. Marshall, "Chemistry of Soil Minerals. II. Reactions of Phosphates with Kaolin and Faujasite", J. Chem. Soc. 1965(Nov.), 6621-8. C.A. 64, 1853 (1966).
- 122. M. J. D. Low and P. Ramamurthy, "Infrared Study of the Surface Properties of Phosphoric Acid Impregnated Silica", J. Phys. Chem. 72(9), 3161-7 (1968). C.A. 69, 89965 (1968).
- 123. D. R. Vissers, "Sorption of Orthophosphate on Crystalline Metal Oxides", J. Phys. Chem. 72(9), 3236-44 (1968). C.A. 69, 89966 (1968).
- 124. K. G. Miesserov, "Nature of Active Sites of Aluminosilicate Catalysts", J. Catal. 13(2), 169-85 (1969). C.A. 70, 71378 (1969).
- 125. R. J. Passarelli, "Self-Diffusion Coefficients of Strontium in Agar Gels as Functions of Concentration and Temperature", Diss. Abstr. 3 29(8), 2388 (1969). C.A. 70, 91108 (1969).
- 126. C. G. Armistead, A. J. Tyler, F. H. Hambleton, S. A. Mitchell, and J. A. Hockey, "Surface Hydroxylation of Silica", J. Phys. Chem. 73(11), 3947-53 (1969). C.A. 72, 6453 (1970).

John A. Harp

V-22