AD-765 723

3.1 W

DYNAMIC TENSILE FAILURE IN ROCKS

a, Pija a

STANFORD RESEARCH INSTITUTE

PREPARED FOR

1 Constraint Anna State

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY BUREAU OF MINES, TWIN CITIES, MINNESOTA TWIN CITIES MINING RESEARCH CENTER

JUNE 1973

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMEN: OF COMMERCE

Final Report

June 1973

DYNAMIC TENSILE FAILURE IN ROCKS

By: DONALD A. SHOCKEY, CARL F. PETERSEN, DONALD R. CURRAN, JOHN T. ROSENBERG, and LYNN SEAMAN

Prepared for:

BUREAU OF MINES TWIN CITIES MINING RESEARCH CENTER ... TWIN CITIES, MINNESOTA 55111

Attention: DR, D, E, SISKIND

CONTRACT H0220053

The views and conclusion contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

STP

A

Sponsored by

ADVANCED RESEARCH PROJECTS AGENCY

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE (15 Department - Communication Communication Comm

STANFORD RESEARCH INSTITUTE Monto Park, California 94025 · U.S.A.

Final Report

DYNAMIC TENSILE FAILURE IN ROCKS

June 1913

1973

H. 25179

By: DONALD A. SHOCKEY, CARL P. PETERSEN, DONALD R. CURRAN, JOHN T. ROSENBERG, and LYNN SEAMAN

Prepand for:

BUREAU OF MINES TWIN CITIES MINING RESEARCH CENTER TWIN CITIES, MINNESOTA 55111 Attention: DR. D. E. SISKIND

CONTRACT H0220053

The views and conclusion contained in this document are those of the authors and should not be interpreted as increasinfy representing the official pulsies, either expressed or implied, of the Advanced Rosearch Projects Agency or the U.S. Government,

Sponsored by

100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

ADVANCED RESEARCH PROJECTS AGENCY

NATIONAL TECHNICAL INFORMATION SERVICE US Depondents of Continents Sun optical VA 72151

STANFORD RESEARCH INSTITUTE Menlo Park, California 94025 - U.S.A.

UNCLASSIFIED			
Brinnty (labailscation			
DOCUMENT CONTI	ROL DATA - R	D	
if a lutter of substances of sites, body of abstract and indexing a	anneterium anvet be ei	INFOUR WHEN THE	GVAIAT FROMITE FLAGALIAND, CUAITY CLAISIFICATION
		UNCLASSI	FIED
STANFORD RESEARCH INSTITUTE		IS. UROUP	
DYNAMIC TENSILE FAILURE IN ROCKS		· ·	
DESCRIPTIVE HOTES (Type of report and inclusive deteo)		****	
Finel Report - February 14, 1972 to Aug	ust 26 1973		
AUTHORISI (First name, middle Istize), feat name)			
Lynn Seaman	o a. Curran,	John T. I	osenberg, and
NEFOAT 0436	TA YOTAL NO. OF	PACES	TH. NO. OF REFS
CONTRACT DE GRANT NO.	14 00101NATOR'S	HEPORT	ZZ 26 (8)
H0220053	PYU-1793		
ARPA Code Number 1578, Amendmont 3 Progrem Code Number 2P10	the regorij	IT NO(8) (Any of	het numbere shat map (n coolgood
	l		
WINDERFORCE OF CHID DOCUMUNE IN UNITS	ited.		
DIRELAUGULUN OL UNIO DOCURUNE IN UNILIS	ited. Defense Ad Nashington	vancod Res	earch Projects Agency
Anti-contraction of this Document in Unlike Anti-contract (Summary) The results of a two-year program on a described. The goal was to develop the cap bution of rock resulting from known dynamic realized for a simple, well-characterized dimensional-strain impact loading. A gas a against flat rock specimens. Xtterbium pic seasure stress historics, and the dynamic butions were determined. The mechanism of observations on impacted specimens. A computational fragmentation model wa four stages of the hypothesized fragmental flaws, (2) crack growth, (3) crack coalesce inserted into a one-dimensional, finite di- obtain a capability to predict the fragment The required input parameters include properties as the initial flaw size distributed invaculite, and a calculation was made to experiment. The calculated and experiment is in qualitative agreement, and indicate	ited. Defense Ad Washington dynamic frac pability to c londs. Th rock type, A gun was usod ezoresistive tensile stre fragmentation as developed ion mechanis once, and (4 fference way t size distr the load hi bution, the ameters were simulate the al fragment that it is	vanced Res , D.C. ture behav predict ti is goal he rkansas no to accels stress ga ngth and f on was ded that treas m; (1) act) fragment bution. story and fracture t determine condition	vity iearch Projects Agency vior of rocks are be fragment size distri- is been largely ovaculite, under one- wrate flat plates igos were used to ragment size distri- luced from fractographic its quantitatively the sivation of inherent ation. This model was ion computer code to such rock specific oughness, and the d for Arkansas is of a dynamic impact ibutions (Figure 12) o make successful
The results of a two-year program on a described. The goal was to develop the cap bution of rock resulting from known dynamic realized for a simple, well-characterized is dimensional-strain impact loading. A gas a against flat rock specimens. Xtterbium pic seasure stress historics, and the dynamic butions were determined. The mechanism of observations on impacted specimens. A computational fragmentation model wa four stages of the hypothesized fragmental flaws, (2) crack growth, (3) crack coalesce institued into a one-dimensional, finite di- obtain a capability to predict the fragment The required input parameters include properties as the initial flaw size distribution invaculite, and a calculation was made to experiment. The calculated and experiment into in qualitative agreement, and indicato in parameters in qualitative agreement, and indicato	ited. i pressering a bafense Ad Washington dynamic frac pability to c loads. Th rock type, A gun was usod ezeresistive tensile stre fragmentation as developed ion mechanis once, and (4 fference wav t size distr the load hi bution, the ameters were simulate the al fragment that it is)	vanced Res , D.C. ture behav predict t: is goal he rkansas no to accele stress ga ngth and f on was ded that treas m: (1) act) fragment o propagat ibution. story and fracture t determine condition	vity icarch Projects Agency vior of rocks are as fragment size distri- is been largely ovaculite, under one- prote flat plates ages were used to regment size distri- luced from fractographic its quantitatively the divation of inherent stion. This model was fion computer code to such reck specific oughness, and the d for Arkansas is of a dynamic impact ibutions (Figure 12) o make successful

- with

52

.

UNCLASSIFIED

		_	_	_				
	utitu	C		1 11	16 4	tio	21	
				-				· · · · · · · · · · · · · · · · · · ·

	L.17	N A	LIN		Liet	n ()
	FOLE	**	HOLE	¥ T	ROLE	14 T
Dynamic tensilo test			•			
Tensile strongth	38					
Novaculite	×			() (2	P	20 ⁹⁰
Fracture toughness						54
Ces gun		8			° 8	28
Eragmontation	1.5 5	· ·	0 L.		. ** .	
Fregmentation size distribution	1.10					5.
Computational model			2.1	à		Seen is
				and and		

Abstract (Summary) copoluded

predictions of rock fragmentation based on knowledge of a few measurable rock properties. Characterization work on Sioux quartzite, Holston Limostose, and Westerly granite was begun.

15.

UNCLASSIFIED

Ą

Security Classification

Final Report

Juna 1973

DYNAMIC TENSILE FAILURE IN ROCKS

ANFORD RESEARCH INSTITUTE

Mento Park, California: 94075 - U.S.A

BY: DONALD A. SHOCKEY, CARL F. PETERSEN, DONALD R. CURRAN, JOHN T. ROSENBERG, AND LYNN SEAMAN

Prepaind for:

BUREAU OF MINES TWIN CITIES MINING RESEARCH CENTER TWIN CITIES, MINNESOTA 55111 Attention: DR. D. E. SISKIND

SRI Project PYU-1793

ARPA Code Number: Program Code Number: Name of Contractor. Date of Contract: . Contract Expiration Dale: Amount of Contract:

1579, Amendment 3 2F10 Stanford Research Institute April 8, 1972 . June 26, 1973 \$52,698

Contract Number: Principal Investigator: Dr. Cerl F. Peterson Phonu Number: Profect Scientist: Phone Number: Short Title of Work-

H0220053 (415) 326-6200, Ext. 4814 Dr. Donald A. Shockey 14151 326-6200, Ext. 2587 Dynamic Tensile Failure in Rocks

Approved by:

G. R. ABRAHAMSON, Director Poulter Lebenstory

G. J. COOK, Executive Director Physical Sciences Division

The views and conclusions contained in this document are those of the authors indishould not be interpreted as necessarily representing the official policies, either expressed or implied, of the Arivancest Research Projects Agency or the U.S. Government

Sponsored by

ADVANCED RESEARCH PROJECTS AGENCY

ACKNOWLSDGMENTS

Wet as

たけたけたいというというないないないないというという

ないというないないです。

This work was sponsored under Contracts H0210018 and H0220053 and was monitored by D.E. Siskind of the U.S. Bureau of Mines, Twin Cities Research Center.

The success of this program is due to a true team effort. Many of our colleagues contributed significantly to the work reported here.

David Erlich supervised the dynamic impact experiments on Westerly granite.

Paul De Carli tried various techniques for revealing the inherent fisw structure in Sioux quartzite, Westerly granite, and pink Tennessee marble.

Dante Petro sectioned the impacted rock speciment skillfully and provided excellent micrographs.

B. Samuel Holmos made valuable suggestions for the development of the fragmontation theory.

R. Sodlacek monsurod the quasi-static tonsile strength of Arkansas novaculito and Sioux quartzite.

CONTENTS	
	Page
ACKNOWLEDGRENTS	111
LIST OF ILLUSTRATIONS	VII
LIST OF TABLES	
	VIII
SURMARY	18
I INTRODUCTION	1
11 INPACT EXPERIMENTS	3
Natorial Material	3
Impact Loading Procedure	3
Determination of Dynamic Tennile Strength	5
Determination of Fragment Size Distribution	9
In Situ Observations	13
Fregment Size Distribution	10
	10
III THE MICHANISM OF TRADERIATION	10
Fractographic Techniques	19
Fractographic Observations	19
Hypothesized Pragmontation Mechaniam	23
IV CONSTRUCTION OF THE FREDICTIVE CAPABILITY	25
The Computational Fragmentation Model	25
Stress History Calculations	32
V ROCK PROPERTIES	37
Inhorent Flaw Structure	37
Fracture Toughness	40
Crack Velocity	41
VI COMPARISON OF PREDICTED AND EXPERIMENTAL RESULTS	43
Experimental Conditions	43
Calculational Conditions	43
Predicted versus Observed Results	44
REFERENCES	49
APPENDIX 1 CHARACTERIZATION OF OTHER ROCKS	A-1
Microstructures	A-1
Inherent Flaw Structures	A-4
Physical and Machanical Properties	A-6
Quasi-Static Strongth Moasurements	A-8
Stress Wave Monsurements	A-10

Preceding page blank

いたないないというれ

日前訪諸派

LIST OF ILLUSTRATIONS

12

		Page
1	Experimental Arrangement for High Rate Tensile Testing of Cylindrical Rock Specimens in a Gas Gun	4
2	Cross Sectional View of Specimen 39 Showing Incipient Spallation	· 8
3	Target Assembly Used to Study Fragmentation of Rock Under Dynamic Tensile Londs	10
4	Polished Cross Sections of Arkansas Novaculito Specimens Showing the Extent of Fracture Damage Produced at Increasing Lovels of Dynamic Tonailo Stress	14
5	Photomicrographs of Various Sized Fragments from Experiment 53	15
6	Measured Fragment Size Distribution for Experiment 53	17
7	a and b Sections of Circular Hesitation Lines on the Fracture Surfaces of Dynamically Londed Novaculite	21
8	Internal Crucks in a Transparent Polycarbonate Produced by Similar Dynamic Loads	24
9	Composite Micrograph of a block of Novaculite Showing the Preferred Orientation of the Inheront Flaws	38
= 1 .0	D Sizo Distribution of Inherent Flaws in Arkanses Novaculite	39
1	Variation of Computed Total Crack Range with Position for Specimen 53	47
1	2 Comparison of Experimental and Computed Fragmont Size Distributions for Experiment 53	48
1	3 Microstructure of Arkansus Novaculite Showing the Equiaxed Quartz Grains.	
		A-2
. 1 -	4 Penny-Shaped and Pencil-Shaped Inherent Flaws in Novaculite (a). Photograph with Polarized Light (b) Schematic Depiction	A-3
1	5 Microstructures of (a) Sioux Quartzite (b) Westerly Granite and (c) Pink Tennessee Marble	A-5
1	6 The SHI Expanded Ring Test	A-9
1,	7 Experimental Stress History Near the Rear Surface of a Westerly Granite Specimen Measured with a Ytterbium Stress Gage	۸-1

VII

12.5

Preceding page blank

LIST OF TABLES

Pape

13

1	Dynamic Teasile Strength Experiments	×.	7	
2	Freguentation Experiments		11	
3	Sieve Analysis Results for Arhonsas Novaculite; Experiment 53		16	
4	Measured Properties of Several Nocks		A-7	

1

.

SUMMARY

The results of a two-year pregrom on dynamic fracture behavior of rocks are described. The goal was to develop the capability to predict the fragment size distribution of rock resulting from known dynamic loads. This goal has been largely realized for a simple, well-characterized rock type, Arkenses nevaculite, under one-dimensional-strain impact leading. A goal gum was used to necessarily file plotes apachet fint each opecimins. Ytterbium plozedesize stress gages were used to measure otrous histories, and the dynamic tensile stress gages were used to measure otrous histories, determined. The mechanics of fragmentation was deduced from irresting observations on impacted speciments.

A computational fragmentation medel was developed that treats quantitatively the four stages of the hypothesized fragmentation mechanism: (2) activation of inherent flaws, (2) erack growth, (3) crack confederate, and (4) frequentation. This model was inserted into a one-dimensional, finite difference wave propagation computer code to obtain a capability to predict the fragment size distribution.

The required input paramoters include the load history and such rech specific properties as the initial flaw size distribution, the fracture toughness, and the crack growth velocity. These material parameters were determined for Arkansas nevacutite, and a calculation was made to simulate the conditions of a dynamic impact experiment. The calculated and experimental fragment size distributions (Figure 12) are in qualitative agreement, and indicate that it is feasible to make successful quantitative predictions of rock fragmentation based on knowlodge of a few measurable rock properties. Characterization work on Sioux quartzite, Helston limestone, and Westerly granite was begun.

íх

1 INTRODUCTION

24

Rock fragmentation under high rate load applications is a littleunderstood phonomenon. There is at present no satisfactory theoretical basis for predicting dynamic fracture behavior, although such a capability would be very unaful in the solution of many practical mining and civil engineering problems. For example, rapid excavation could be done more safely and economically, the stability of structures in reck could be designed and evaluated with more confidence, and the efficiency of rock disintegration processes could be improved. It was with this motivation that the work described in this report was undertaken.

Our goal was to develop a capability for predicting the fragment size distribution in rock resulting from dynamic londs. We limited the main effort to a simple, well characterized, homogeneous rock type, Arksnsss novaculite, under one-dimensional-strain loading. The approach consisted of the following steps:

- Impact experiments were performed on a homogeneous rock under woll-controlled conditions, and the fracture behavior under various dynamic load histories was studied.
 - Observations were made on impacted specimens to establish the physical processes underlying rockfragmentation.
- A computational model of the fragmentation process was constructed based on experimental avidence to predict the fragment size distribution resulting from a given lond history.
- . Rock properties needed for the model were measured,
- The model was insorted into a wave propagation cede and colculations were performed. The results were compared with experimental results.

This report is organized into six chapters. Chapter 11 describes the impact experiments, the experimental and culculational mothods used to determine the stress history in the specimens, and the extent of fracture and fragmontation of the specimens. Chapter III presents petrographic and fractographic observations made on the impacted specimens; this ovidence is used to deduce the mechanism of fragmentation, i.e., the sequence of microprocesses which occur in the specimens during loading and result in fragmentation. In Chapter IV a computational model of rock fragmentation under those loading conditions is constructed to describe the resulting fragment size distribution. The model is based on the hypothesized fragmentation mechanism and requires the loading history and cortain rock properties as input. In Chapter V, the rock properties that control the fragmentation behavior (the initial flaw size distributica, the fracture toughness, and the velocity of crack growth) are determined in Arkansas novaculite. In Chapter VI the results of the calculations are presented and compared with the measured results. The results of characterization work on three other rock types are presented in the ppendix.

The essential results of this work may be quickly grosped by comparing figures showing experimentally observed crack patterns and measured fragment size distributions for noneculite (Figures 4 and 6, respectively) with the corresponding calculational results shown respectively in Figures 11 and 12. The agreement is considered good, and indicates that the approach taken here could lead to a useful solution to the problems of rock fragmentation under dynamic loads.

II IMPACT EXPERIMENTS

Material

Arkanses novaculite, a naturally occurring polycrystalline quartzite, was chosen as the baseline material for this study because of its simplicity. .t is pure, dense, and homogeneous, and consists of equisized, equiaxed and randomly crientud quartz grains having an average dismeter of about 10 µm. A population of flat flaws exists on planes roughly parallel to each other. The structural and mechanical properties of novaculite are presented and discussed more fully in Chapter V.

Impact Loading Procedure

Controlled impect experiments on novaculite were carried out with a gas gun using a flat projectile impact technique, so that fracture and fragmentation occurred under one-dimensional strain conditions.

Projectiles, 30.5 cm long by 6.33 cm in diameter for the smaller gas gun and 76.3 cm long by 10.2 cm in diamotor for the largor, were accelerated down the evacuated barrel of the gun by the sudden release of pressure from an adjacent pressurized chamber of helium. Flat target apecimens were impacted with thin polyothylene or plexiglass flyer plates attached to the front end of the projectilys (Figure 1). Under such flat plate impact, comprossive waves initially run into the specimen and projectile head to produce a state of one-dimensional compressive strain. Tension is produced in the specimens when release waves running inward from the free surface of the specimon must similar release waves running. inward from the back surface of the flyer plate. From a knowledge of the shock impedance (product of density and shock velocity) of the rock and flyer plate, the stresses in the rock specimon can be calculated. A sufficiently large diamoter-to-thickness ratio for the specimen ensures that the tensile strain is one-dimensional by preventing unloading wavea from the specime , periphery from reaching the interior during the tension phase.

з

The target specimens were short cylinders, usually about 0.635 cm thick and 1.27 to 3.81 cm in diameter. Their axes were carefully aligned to coincide with that of the gun barrel to ensure flat plate impact. The specimens were fit tightly into constraining rings of sluminum, which is a very close match to novaculite in shock impedance. Most of the sluminum constraining rings had an 8-degree taper on the outer circumference and were press-fitted into a larger aluminum plate serving as a specimen holder. Others had no taper and were lightly held in the specimen holder by several dabs of epoxy. Upon impact with the flyer plate, the specimen and constraining ring fly free from the aluminum holder and into a catcher tank, which is filled with regs to prevent subsequent impacts and possible uncontrolled damage. The projectile and projectile head are prevented from entering the catcher tank by the steel plate.

A Contact of the State of the S

Fifty-three tensile experiments on Arkansas novaculite at high loading rates were performed using the gas guns. Fourteen of these were instrumented with ytterbium stress gages to determine stress histories and to measure the magnitudes of recompression waves produced by fracture.¹ An additional twenty were uninstrumented experiments in which we attempted to determine the dynamic fracture strength of novaculite and any effects of orientation on fracture strength,^{1,2} whereas ten others were performed on jacketed specimens to study fragmentation behavior. The romaining nine experiments were either of a preliminary nature, to determine in a rough way the impact velocities and other experimental conditions required to carry out the proposed program, or of an investigative nature to determine, for example, the reason for the occurrence of undesirable radial cracking. Determination of Dynamic Tensile Strength

A series of 20 uninstrumented experiments was performed to measure the dynamic tensile strength of novaculite, to determine the effect of specimen orientation on the dynamic fracture strength, and to produce fracture surfaces for examination in the scanning electron wicroscope to gain information concerning the fracture mechanism. Ten specimens were cut so that the impact direction was normal to the planes of the inherent flaws; specimens in the remaining 10 were oriented so that the impact direction was parallel to the flaw planes. All specimens were 1.27 cm in diameter by 0.635 cm thick and press-fitted into 3.81 cm diameter by 0.633 cm aluminum annuli. The outher periphery of each annulus was provided with an 8-degree taper to facilitate ejection upon impact of the specimen-ring assembly from the aluminum target plate.

and a second second second second and and a second second second second second second second second second second

an na mangang mangang sa ina ina na mangan na mangan kara ang mangan karana na mangan na mangan na mangan sa ma

Very extensive cracking, usually resulting in comminution and loss of one or both sides of the specimen from the aluminum annulus, was produced in all of the first nine experiments even at streages as low as 20 MN/m^2 (2000/psi). This initially puzzling behavior was prevented in the subsequent 11 shots by lightly tacking the tapered annuli to the target plates in three or four places with epoxy instead of press-fitting. In the latter experiments no radial cracking occurred, and a good estimate of the dynamic fracture strength was obtained.

The results of this series of experiments are presented in Table 1. The dynamic tensile strength was taken as the average of the highest stress at which no damage could be observed on diametrical sections of the specimen, and the lowest stress at which incipient spallation occurred. A cross-sectional view of incipient spallation is provided in Figure 2. For the parallel specimen orientation, Specimen 36 did not crack at 39.4 MN/m^2 (3710.psi) but Specimen 35 did crack at 43.5 MN/m^2 (6300 psi); for the normal specimen orientation, no cracking was observed in Specimen 43, which was subjected to a peak tensile stress of 38.8 MN/m^2 (5630 psi), whereas Specimen 37 showed cracking at 42.6 MN/m^2 (6180 psi). Thus the dynamic tensile strength of novaculite in the direction normal to the planes of inherent cracks is 40.6 ± 2.0 MN/m^2 (5890 ± 290 psi); the dynamic strength in the parallel direction is 41.4 ± 2.0 MN/m^2 (6000 ± 290 psi).

^{*}Standard International (S.I.) units, as now required by many government agencies and professional societies for technical reports, papers and journals will be used in this report. For convenience, however, English units will also be given in parentheses directly thereafter. Stress equivalents to slide rule accuracy are as follows: 1 Megapascal (MN/m^2) = $10^6 N/m^2 = 10.2 \text{ kg/cm}^2 = 145 \text{ psi} = 10 \text{ bar}.$

Table 1

加払いとそのと

DYNANIC TENSILE STRENGTH EXPERIMENTS

	Extent of Damage	No damage.	No damage.	I spall crack about half specimen dismete	No damage.	4 spall cracks on sectioned surface.	2 spall cracks on sectioned surface.	3 spall cracks on sectioned surface.	l spall crack on sectioned surface.	No damage.	l spall crack.	No daaage.	see with four dats of epoxy.
Peak .	Strees	- s 8					•	• •					ly 1n ple
Haximum	Tensile (MN/m ²)	33.3	32.8	43.4	39.4	42.6	50.5	64.0	49.2	46.0	46.4	38.8	eld light
Ispact	Velocity (m/sec)	12.2	12.0	15.9	14.4	15.6	18.5	23.4	18.0	16.8	17.0	14.2	annult were he
	Spectmen Orientation	đ	N	с,	d ,	N	X	N	X	N	N	×	e taps ed Al a
	Experiment No.	33	34	35	36	37	38	39	40	41	42	43	Notes: The

P = spectmen orientation was such that flaws procxisting in the rock lay roughly The tapared Al annuli were held lightly in place with four dabs of epoxy. Three experiments provided meaningful dynamic fracture strength values.

parallel to the impact direction.

N = specimen orientation was such that flaws precxisting in the rock lay normal to the impact direction.

Calculated from the measured 1mpact velocity is described in Reference 1

۰.

and the set of the second second second second

<u>1</u>2 = 4%.

FIGURE 2 CROSS-SECTIONAL VIEW OF SPECIMEN 39 SHOWING INCIPIENT SPALLATION

We conclude that the dynamic tensile strength of Arkansas novaculite is insensitive to the orientation of preexisting flaws. In view of the pronounced flaw orientation anisotropy of novaculite, the fracture strongth isotropy is surprising.

Determination of Fragment Size Distribution

At low impact velocities (less than about 20 m/sec), Arkanses novaculite specimens could sustain considerable fracture damage while maintaining integrity. At impact velocities sufficient to cause fragmentation, a method was required to prevent the fragments from scattering and thereby resulting in persible damage and less of the fragments. The arrangement used for recovering heavily damaged specimens entailed uncasing the cylindrical rock specimens completely in a much tougher material of similar shock impedance. Aluminum was found to be a suitable encasing material, first, because it does not-undergo brittle fracture under the loading conditions of these experiments and therefore contains the cracking and fragmenting rock specimen, rnd, second, because its shock impedance is very similar to thet of novaculite, so that disturbance of stress waves as they cross the specimen-encasement interface is minimal. The dimentions of the targets were designed to reduce edge effects.

As shown in Figure 3, specimens of Arkansas novaculite 1.27 cm in diameter by 0.635 cm thick were fit tightly in the center of an aluminum disk 5.08 cm in diameter and 0.953 cm thick. An aluminum cover plato 5.08 cm in diameter by 0.318 cm thick was then placed over the exposed end of the specimen and hold firmly to the disk with four equally spaced acrews. An epoxy was applied to the specimen surface adjucent to the cover plate to ensure intimate contact with the aluminum casing. This target assembly was then subjected to flat-plate impact with the gas gun.

Ten experiments were carried out; the details are given in Table 2; It was planned to subject Specimens 44, 45, and 46 to stresses a factor of about 2.0, 1.5, and 1.25 in excess of the dynamic tensile strengths in an attempt to obtain various degrees of crack coalescence leading to fragmentation. The resulting fracture damage is described in the next section.

ŕ

fell aport; sieve analysis performed. fime has roughly marallel to the import direction	ch that pressiating		- eneriese oriesta	Votes - D
Aluwinum encaserunt carefully removed; specinon feil annrt: sieve analysis nerformed.	136.0	48.9	22	53
Sectioned and sounted in spory to keep fragments from falling cut; severo craching, coslescence, and fragmentation.	138.0	4 9 .5	G.	52
Sectioned: isolated cracks.	48.6	5-21	× .	51
Sectioned: isolated cracks.	47.7	17.1	۰. ۲	50
Sectioned; isolated cracks.	45 .8	16.4	د	61:
Sectioned; no cracking,	41.4	11.8	۵.	S.
Sectioned: Incipient crack conlescence.	45.8	16.4	<u>د</u> ۲	47
Srctioned; incipient creck coalescence.	53.1	19.0	م	46
Aluminum encasement carefuliy removed; specimen crucked but intact: subsequently sectioned, incipiont crack coslescence.	58.1	20.8	₽	45
Aluminum encasement carefully removed; specimen badly cracked and fell apart in large fragments.	8.18	30.0	<u>د</u>	2
Remarks	Stress (337/a)	Velocity (m/sec)	Orientation	So.
	Peak Tensile	Impact	Spectren	Experiment
	Computed		. •	
UPRRIMENTS	FRACKEN, ATION EN			
	Table 2			

the state and the second second

* * *

N = speciaco prientation was such that preciating flaws lay roughly normal to the impact direction. described in the text. Specimens 52 and 53 were impacted on the mluminum cover; mil others mere All specimens were cylinders 6.35 mm thick by 12.7 mm in dismeter fully encased in sluminum as ippacted on the casing side.

a hall was been as a free

. 1

あいろうちろうちろう

A. LIGHUN

The next three experiments, 47, 48, and 49 were performed at stress levels near the dynamic tensile strength to determine whether the aluminum encasement arrangement caused significant stress amplitude attenuation. If so, impact velocities sufficient to cause incipient spall fracture in unencessed specimens would not result in damage when encased. Experiments 47 and 49 performed at an impact velocity of 16.4 m/sec produced significant cracking, whereas experiment 48 at 14.8 m/sec produced no damage. These results are in egreement with the damage threshold velocity of 15.1 ± 0.6 m/sec established for unencased novaculite in the first ennual report. and so we conclude that the eluminum encasement had little attonuating effect on the stress.

Specimens 50 and 51 were to be impacted at about 25 m/sec, in the velocity range of advanced stages of crack coalescence and incipient fragmentation, but unfortunately much lower velocities, about 17 m/sec, were attained and much less damage resulted than was desired. The final two specimens were shock-loaded at significantly higher velocities to produce detached fragments. The sluminum casing (Figure 3) was impacted by the flyer plate in the first eight experiments. In Experiments 52 and 53, however, the specimen assembly was oriented such that the cover plate side was impacted.

The recovered targets were prepared for fractographic observation and analysis in one of two ways. Either they were cut carefully on a diameter to reveal the crecking pattern on a cross section, or else the aluminum oncasement was removed by carefully machining the periphery down to a few mils in a lethe and subsequently dissolving the remaining few mils of aluminum in a 50% HCL solution.

In Situ Observations

Specimens 45 through 52 were sectioned and polished to reveal the cracking patterns. The effect of stress level on the extent of cracking is illustrated in Figure 4, which shows cross sections of specimens impacted at various velocities. The characteristic dome-shaped crack pattern is evident. Damage is usually heaviest in the half nearer the impact surface. Fine particles seem to be produced at midthickness and in the zone encompassed by the dome cracks. Large fragments originate mainly near the flat surfaces. The free-surface side of the specimen is usually least demaged and is often recovered in one piece, oven when the remainder of the specimen has fragmented. Free, uncoalesced crack tips are commonly observed in specimens impacted at high as well as at low strepses.

Fragment Size Distribution

We attempted to determine the fragmont size distributions produced in Experiments 44, 45, and 53 by carefully removing the aluminum encasements. Specimen 44, however, fell apart in only a few large pieces and was unsuitable for a sieve analysis. Specimen 45 remained intuct after removal of the aluminum and retained considerable strength (firm hand pressure was insufficient to break it up), so it was mounted in epoxy and sectioned as described in the previous discussion.

The fragment size distribution for Specimen 53 was determined by placing the collocted fragments in the top sieve of a series of U.S. sieves placed in the following order from top to bettom: No. 6, 8, 10, 14, 20, 40, 50, 100, 200, and 400, and a pan to entch the fines. The system was vibrated for a short time, and the particles retained on each screen were counted and weighed. Figure 5 shows the shapes of the particles; the raw data are presented in Table 3 and in Figure 6. These experimental fragmentation data were used to develop and check the lynemic fracture model.

		2					
		2 2		Cumulative		Cumulative	Carulative
		•	Velght of	Telgit of	Number of	Vusber	Number of Retained
5	Sleve	Sieve Half	Retained	Retained	Retained	of Retained	Fragments
Sieve No	. Opening	Opening	Fragments	Fragments	Fragments	Fragments	per ca
	·(CR)	(69/	(8)	121			1 201
.9	0.3360	0.1680	0.4894	0.4894	4	•	
3C	0.2380	0.1190	0.1778	0.6672	9	10	12.9
10	0.2000	0.1000	0.0755	0.7428	4	14	15.0
14	0.1400	0.0700	0.2095	1.0046	61 62	36	46.4
20	0.0840	0.0420	0.0811	1.0857	50	86	0.111
40	0.0420	0.0210	0.0645	1.1502	77	163	210
50	0.0297	0.0149	0.6163	1,1665	195		462
100	0.0149	0.0074	0.0123	1.1788	547	905	1168
200	0.0074	0.0037	0.0046	1.1834	727	1632	2105
4 n n	0.0037	0.0018	0.0010	1.1844	1204	2836	3660
		:		ж			
Note:	Speciaen vo	blume = 0.773 c	a; specimen	weight = 2.03 g.			
	10111 000						

ş

and a substance of the

SIEVE ANALISIS RESULTS FOR ARMANSAS NOVACULITE: EXPERIMENT 53

...

Table 3

1

٠.

1 1

N

ŀ

Stress Novo Measurements

In fourteen experiments, an attempt was made to measure stress wave profiles transmitted through the specimen.¹ In addition to providing the peak stress and stress duration experienced by the rock under impact loads, measured stress histories yield important information about the constitutive relations and rate dependence. In the case of a specimen undergoing fracture, recompression waves emitted as microcracks form, impinge on, and reload the gage to an extent proportional to the dynamic tensile strength of the rock. Furthermore, the slope of the reloading pulse gives an indication of the rate of fracture--a sharp rise corresponds to brittle behavior.

ويقتدوه بدور الدرار

Ytterbium piezoresistant stress gages mounted in plexiglass blocks wore held in contact with the rear surface of the specimen. Upon impact, compressive waves impinge on the gage and the stress-induced electrical signals are recorded with an oscilloscope. The tensile stresses in the rock specimen are then calculable from the gage record, if the relative shock impedance of specimen and backing material are known.

The actual oscilloscope record, obtained in these experiments, as well as a more detailed account of this stress wave-measuring technique, can be found in reference 1. The results may be summarized by noting that clear and consistent differences in the gage records were observed for specimens which underwent fracture. Therefore it was possible to tell whether or not a specimen was cracked before actually examining it. Peak compressive stresses experienced by the specimens, however, were not measurable from the gage records because of significant deviations from planar impact and hence excessive rounding of the oscilloscope traces.

III THE MECHANISM OF FRAGMENTATION

Considerable importance is attached to establishing the fragmentation mechanism, because this forms the basis for the computational model. The fragmentation mechanism is defined as that sequence of evonts that occurs in the rock during loading and leads up to fragmentation. We constructed the computational model for predicting fragment size distributions by modeling individually the physical processes that precede fragmentation. A model developed on such a physical basis should be inherently more accurate as well as more applicable to other materials under other loading conditions that i model based on, say, empirical correlations. Thus, each impacted rock specimen was examined carefully in search of evidence concerning the physical processes involved in fragmentation.

Fractographic Techniques

Two main fractographic tochniques were used to deduce the fragmentation mechanism from impacted specimens. In one technique fracture surfaces and in lvidual fragments were examined by optical and scanning electron microscopy to look for markings that would reveal how the surfaces and fragments were formed. These observations provided information on the histories of individual cracks. The other technique entailed stopping the fragmentation process at various stages of completion through careful control of the experiment, then sectioning the specimen, and examining the pattern of cracks intersecting the section. This technique yielded insight into the behavior of interacting cracks.

Fractographic Observations

The purpose of optical and scanning electron microscope examinations of fracture surfaces was to look for inhomogeneitics that could have served as crack initiation sites, and river lines and hesitation lines which indicate the nature of crack growth.

As is typical of most rocks, the fractured surfaces were nearly featureless and for the most part yielded little evidence of how fracture occurred. The broken surfaces consisted of countless, well-defined and equisized polygonal blocks--quartz grains exposed by the passage of a crack along the grain boundaries. Only infrequently were propagation markings and hesitation lines observed. The circular markings in Figures 7a and b are known as hesitation lines because they are produced when the drack undergoes a suddem change of velocity as, for instance, when the crack is implanged upon by a stress wave. They are analogous to the arrest lines formed where a crack has actually stopped. Thus hesitation lines and arrest lines delineste the position of the crack front at some instant in time and thereby reveal the contour of the propagating crack. From the appearance of the hesitation lines in Figure 7, we deduce that the cracks had circular peripheries, i.e., they were penny-shaped.

Also evident on the fracture surface in Figure 7a are several lines radiating outward from the apparent center of the circular hesitation line and intersecting the hesitation line at right angles. These lines are actually height discontinuities and thus are rominiscent of river lines and cleavage steps commonly observed on fracture surfaces of metallic and ionically bonded materials. As such they form parallel to the propagation direction and thus indicate the propagation direction. Thus the river lines provide a running history of the crack path and a hesitation line gives the crack shape at an instant in time. Figure 7 is therefore interpreted to mean that crack propagation in novaculite under dynamic uniaxial strain loading occurs by the expansion of pennyshaped cracks radially outward from initiation sites.

A corollary of the fact that river lines form parallel to the crack propagation direction is that the fracture origin may be located by following the lines in a direction opposite to the propagation direction.

Figure 7 shows clearly that the river lines emanate from a single site situated at the approximate center of the circular hesitation line. High resolution examination of this site with the scanning electron microscope did not reveal any obvious heterogeneity that might have served as the weak spot. In fact in no instance was it possible to identify positively the heterogeneity in the rock responsible for the initiation of a crack at that particular place. Thus we can only speculate that the heterogeneities responsible for crack initiation were the small crack-like flaws that existed inbarently in the rock. The nature of these flaws is described more fully in Chapter V.

Individual fragments such as those shown in Figure 5 were also examined with optical microscopes. Their shapes as can be seen from the figure are roughly equisxed, as opposed to elongated bodies as might perhaps be expected from Figures 4b and 4c. In general the fragments had from 6 to 8 facets, regardless of fragment size, implying that on the average 3 to 4 cracks are associated with one fragment, and indicating that larger cracks produce larger fragments whereas smaller cracks produce larger fragments whereas smaller cracks produce smaller fragments. It was also noted that individual fragments that not all cracks were effective in producing fragments.

The purpose of performing impact experiments at stresses insufficient to produce fragments, was to provide specimens for observation that contained various degrees of prefragmentation fracture damage. Such specimens were cut carefully on a diameter with a diamond saw, and this surface was polished to reveal a cross section of the cracking pattern and to provide in situ views of fragmentation. Figure 4 shows the appearance of four such specimens impacted at stress levels ranging from one below the tensile strength through one sufficient to produce loose fragments. This figure may also be viewed as depicting successive stages in time of a fragmenting rock specimen, i.e., as the stress in the wave rises, increasingly more cracks originate and grow.

These pictures show that cracks initially form near to the impact surface and propagate predominately in the lateral direction (normal to the direction of the maximum tensile stress). At low stresses, few fragments can form, and they are large. As the stress level increases, more cracks are initiated and more coalescence occurs. Crack growth does int appear to be particularly sensitive to stress level. Only at the highest stress (Figure 4d) can significant numbers of vertical cracks be seen. The effect of the vertical cracks is clearly to increase the extent of specimen comminution. They transform the large elongated fragments (Figure 4c) to many smaller, more equiaxed fragments (Figure 4d) and thus influence strengly the resulting fragment size distribution.

Figure 4d also indicates that smaller fragments tend to originate near the mid-thickness of the specimens whereas the larger fragments came from the material near the impacted and free surfacts. Hypothesized Fragmentation Mechanism

From these observations we envision a mechanism $\sqrt{2}$ fragmentation consisting of four stages, namely:

- (1) Activation of a number of preexisting structural flaws
- (2) Propagation of activated cracks radially outward
- (3) Coalescence and branching of propagating cracks

(4) Isolation of individual rock fragments from one another.

The first two stages have been verified by similar impact experiments on a transparent material. Figure 8 shows the internal penny-shaped cracks produced in this material, a polycarbonate. The tiny black areas that are obsermable at the center of every crack have been positively identified as inherent flaws in the material produced during fabrication. The multiple concentric rings visible on the crack surfaces in polycarbonate are similar to the nesitation lines found on novaculite fracture surfaces and imply that the crack morphology in novaculite should be basically penny-shaped and should remain penny-shaped during growth until coalescence begins.

IV CONSTRUCTION OF THE PREDICTIVE CAPABILITY

wanter to a construction and

The capability for predicting the fragment size distribution for novaculite under dynamic one-dimensional-strain loads was obtained by combining a computational model of the fragmentation mechanism with a finite difference wave propagation code. The computational fragmentation model is based on the fragmentation mechanism hypothesized in the provious chapter, and treats quantitatively each of the four steges, namely; flaw activation, crack growth, crack coalescence, and fragment formation. The one-dimensional wave propagation code, PUFF, calculates from the impact conditions the stress history in the specimen, i.e., the magnitude and duration of the stress at any point in time.

The Computational Fragmentation Model

The fragmentation of novaculite under dynamic, one-dimensionalstrain conditions is modeled by treating quantitatively the hypothesized stages of the fragmentation mechanism. A treatment of each of the four st.ges is given below.

Activation of preexisting flaws--Based on experimental observations of impacted and unimpacted Arkansas novaculite (Chapters III and V, respectively) we assume that the material contains inherently a population of penny-shaped flaws of varying sizes, some of which become unstable upon passage of the stress wave and develop into propagating cracks. To calculate the number of flaws activated by a given stress pulse (and hence the number of cracks in the material) we invoke a Griffith-Irwin fracture mechanics criterion, ^{5,6} i.e., flaws having a radius c larger than some critical size that is a function of the tensile stress $c^* = c^*(\sigma)$ will be activated, whereas those flaws smaller than c^* remain dormant. Of the various crack geometries for which fracture mechanics stress analyses exist, Sneddon's ⁷ relation for an internal penny-shaped crack in an infinite clastic medium subjected to a uniform tensile stress
normal to the crack plane

$$e^* = \pi K_{1c}^2 / 4\sigma^2$$

most nearly applies to the conditions of our experiments, i.e., the cracks appear to be roughly penny-shaped, and the specimen behaves as if it were infinite during the life of the tensile pulse. The plane strain fracture toughness K_{IC} for novaculite is determined in the following chapter. Thus we use Eq. (1) to calculate the size of the smallest flaw which will be activated by a dynamic load. To obtain the number of activated flaws, we need to know the size distribution of flaws in the rock. This has been measured for novaculite and the results are presented in Chapter V.

<u>Crack Propagation</u>--The distance which each crack can propagate depends on the crack velocity and the duration of the stress pulse. We assume here that the cracks accelerate very rapidly to a constant maximum velocity of one third the longitudinal wave speed. This is in accord with our experimental observations (Chapter V) as well as with theoretical estimates. $^{8-11}$ Knowing that crack propagation occurs radially outward from activation sites, the fracture surface area produced per crack at any given time step can be approximated by

$$A_{j}(t) \cong 2\pi (C_{j} \Delta t/3)^{2}$$

providing the crack was not stopped prematurely by barrier to crack growth or coalescence with other cracks. Individual cracks arrest when the stress level falls below the value given by Eq. (1). Thus the total fracture surface area produced in novaculite by a known stress pulse of peak stress σ and duration Δt insufficient to cause significant coalescence is given by

(1)

(2)

where N is the number of activated flaws.

Furthermore, the total energy absorbed in creating new surface area can be estimated if the specific fracture surface energy γ is known.

 $A_{total} \cong \frac{2N_{act}}{3} (C_{\lambda} \Delta t)^2.$

$$\frac{2\gamma N}{\text{sture}} \approx \frac{2\gamma N}{3} \text{ (C}_{\text{g}} \Delta t)$$

Crack Coalescence--Our quantitative treatment of coalescence of propagating cracks entailed assuming a criterion for the distance between converging cracks at which interaction first occurs, and taking a statistical approach by treating large numbers of coalescing cracks.

To develop the coalescence criterion, the concept of the "crack range" is introduced. The crack range $\tau_{c}(c)$ is defined as the volume of solid material surrounding a crack that experiences magnified strains of some arbitrary level, which arise from the stress concentrating effect of the crack. When the crack ranges of two cracks overlap, they are considered to have coalesced. As an upper limit (obtained from the solution of the elastic stress field around a penny-shaped crack in an infinite modium) the crack range includes the material within one crack radius of any part of the crack. Thus for a penny-shaped crack the maximum crack range is an ellipsoidal volume of revolution shaped like a hamburger. The volume then is

$$T_{c}(c) = (\pi^{2} + \frac{10}{3}\pi)c^{3} \cong 20.34 c^{3}$$

The observation that the fragments are nearly equiaxed suggests a much smaller crack range volume. For instance if the fragments were

(3)

. (4)

(5)

cube-shaped, then the crack ranges would be the volumes of two small pyramids on either side of each crack (one crack forming one side of the cube) and the crack range volume is

 $T_{c}(0) = \frac{8}{3}c^{3}$

T (c) = T c

(6)

For our purposes we will define T by

where T will probably lie between 2 and 20.

We can now postulate a coalescence criterion. It is logical that two propagating cracks in an infinite body have no knowledge of one another until they come within some critical distance of each other. When this critical nearness is attained, the cracks sense each other and interaction begins. The concentrated stresses at each cruck front superimpose, and the propagation behavior of each crack is influenced by the presence of the other. In the present experiments the crack tip stresses are similar and therefore should be additive, thereby encouraging the cracks to propagate into each other and conlesce. The extent of the strain field about a crack is given by its range as previously defined. and we presume that crack coalescence occurs when the ranges overlap. For numerical computations with the wave propagation code we adopt the following coalescence criterion: crack coalescence occurs when the sum of the crack range volumes for all the cracks in a finite difference coll is equal to the volume of that coll. This criterion may be expressed mathematically as follows:

Consider a distribution of penny-shaped cracks whose size distribution is given by $p_{c}(c)$, the density of cracks as a function of size.

The cumulative crack density $N = \binom{c}{g}$ (the number of cracks per unit volume with radii greater than c) is given by

$$N_{g}^{C} = \int_{C} \rho_{c}(c) dc$$

Recalling the definition of the crack range $T_c(c)$, we can write the expression for the relative volume of material influenced by the cracks per unit volume

$$\tau = \int_{c}^{\infty} \tau_{c}(a) \rho_{c}(c) dc.$$

The coalescence criterion then may be simply stated as

$$\gamma = 1$$
 (10)

(8)

(9)

<u>Fragment Formation</u>--After a certain degree of crack coalescence, fragments of various sizes will form. The fragment sizes will reflect in some way the crack size distribution which led to the fragmentation. The procedure for determining whether fragments have formed is to compute the volumes of the fragments which would be formed by the cracks which exist. If the fragment volumes fill the volume of the finite difference cell, then complete fragmentation has occurred. Otherwise, the fracture calculations continue. Preparatory to introducing the procedure for computing the number of fragments, the fragment size distribution, the fragment volume, and the relations between the crack and fragment variables are defined.

Let the fragment size distribution be described by $o_f(c)$, a density of fragments associated with the crack radius c. As for cracks, the continuous size distribution is represented in the computer program by a discrete set of size groups $\Delta N_{i}^{f} = \int_{c_{i}}^{c_{i+1}} \rho_{f}(c) dc$

Here we note that the fragment size distribution is a function of the radii of the cracks, not of the fragments. Let $\mathcal{T}_{f}(c_{f})$ be the volume of the fragment with fragment radius c_{f} . This volume may be written

$$f(c_f) = T_f c_f^3$$
(12)

(11)

where T_f is, for example $4\pi/3$ for spherical particles and 8.0 for cubes.

The fragment volume will just fill the total volume at the time of complete fragmentation. Therefore the fragmentation criterion is

$$V_{\tau}^{f} = \int_{0}^{0} \rho_{f}(c) \tau_{f}(c_{f}) dc = 1 \qquad (13)$$

or

$$v_{\tau}^{f} = \sum_{i} \Delta N_{i}^{f} \tau_{f}(c_{f}) = 1 \qquad (14)$$

To determine the number and size of fragments, we introduce the following relations between crack and fragment variables.

$$\rho_{i} = V_{i} \beta \rho_{c}(c) \qquad (15)$$

where β and γ may be functions of c, and V is the remaining relative volume which has not been fragmented by cracks larger than c.

For 8-sided fragments where each face is formed by one crack, $\beta = 1/4$ and $\gamma = 1.0$.

والوالا المتعاليات والمتعالي

The procedure for computing the fragment size distribution and for determining whether fragmentation has occurred begins with $V_r = 1.0$. First, the largest cracks are transformed to fragments using Eq. (15). These fragments have a volume

$$V_{1}^{f} = \Delta N_{1}^{f} T_{f} \gamma^{3} c_{1}^{3}$$

(17)

(18)

in the computer program. This volume V_1^{f} is presumed to contain small cracks which do not form fragments. Therefore, to compute the fragments for the next smaller crack size, this volume is removed before computing the number of fragments of the next smaller size. In general, the number of fragments is

where $V = 1 - \sum_{j=i+1}^{r} y_j^{f}$

This process for determining the number of fragments is followed until all activated cracks are treated or until all the volume is full of fragments. If all the volume is filled with fragments, then the cell is presumed to be completely fragmented.

 $\Delta N_{i}^{f} = E \Delta N_{i}^{c} V_{r}$

At the end of the computation the material that contains coalescing cracks but is not fully fragmented is taken as partially fragmented. The number of fragments of each size is determined by the foregoing colculation. The remaining unfragmented material is not assigned to any fragment size group, but is assumed to be part of one of the large chunks observed in the experiments.

Stress History Calculations

FUFF, a one-dimensional. finite difference wave propagation code was used to calculate the magnitude and duration of the stress at every location in the specimen and at every point in time. It also calculates the current density and energy. Because of the low stresses required to produce fragmentation, the Rugoniet elastic limit is never exceeded and plastic behavior is never realized. Therefore a very simple equation of state, Hooke's law, can be used to calculate the stresses in novaculite. The equation of state for plexiglass is well known.¹² The PUFF code has been used successfully to predict wave profiles in a number of materials under known conditions of one-dimensional impact (Reference 13, for example).

The simple elastic equation of state for novaculite is no longer adequate for describing the unterial response once the fragmentation process begins. When cracks begin to form and grow, the apparent elastic stiffness decreases. Recompression waves run out from the surfaces of the propagating crac : to interact with and erode the stress pulse. This effect is of considerable magnitude, and must be taken into account in the calculations.

The procedure used to determine the stiffness of material undergoing fracture and fragmentation has been given elsewhere.¹³ The basis of the method is the concept of a two-component system: solid material, and void inside the open cracks. The specific volume of the system changes when loaded: this change is due partially to the solid and partially to the change in the void volume. The void volume calculation follows the analysis of Sueddon⁷ for a penny-shaped crack in an elastic material. During the wave propagation calculation, the following sequence of events may occur while the material is in tension:

(a) Initial tensile loads cause only elastic volume changes in the solid until a threshold stress (equal to the dynamic fracture strength) is reached.

are end incontrate practing agins parents a set of a distance of the set of the set of the set of the set of the

الهارية والممتعان والمارية العقبون أنفته والمحا المعايمة والمارا بعا

ودوالمستعرفين ومعاورته ومعاديه ومعاور والمراقع

(b) When the stress exceeds the fracture threshold, cracks begin to nucleate and grow, and the void volume produced by the cracks acts to decrease the volume change required of the solid. Thus the tensile stress in the solid is lower than it would be for undamaged material under the same volume change; hence, the effective modulus of the solid has decreased.

(c) With increasing stress and continuing volume change, a point is reached where the void volume increase just equals the applied volume change. Here there is no change in solid volume and hence no change in tensile stress: the stress-volume path has reached a peak and the effective modulus is zero.

- (d) With further volume changes the increase of void volume (by growth and nucleation of cracks) tends to exceed the applied volume change. Then the solid volume change is negative and the tensile stress is decreasing. The effective modulus is negative during this period.
- (e) If compressive volume changes occur at any time, there will usually be a decrease in both void volume and solid volume. Then the effective modulus is positive as in (a).
- (f) If no net volume change occurs, there will usually be an increase in void volume and a corresponding decrease in solid volume: the effective modulus in such a case is infinite.

The preceding sequence of events is treated in the present formulation of the behavior of material undergoing fracture. A derivation of the effect of damage on the material stiffnoss is given below to indicate the basis of the method. Here the case is considered in which no growth or nucleation of cracks occurs: the resulting modulus is that which is appropriate for a residual strength calculation. The fundamental relation is that the total volume change is the sum of solid and void volume changes:

The void volume change is derived from the analysis of Sneddon' for the opening of a penny-shaped crack in an elastic medium under uniform tension. The half-opening of the crack faces is

 $\Delta V = \Delta V_{g} + \Delta V_{v}$

$$\delta = \frac{4(1-v^2)c\sigma}{\pi E}$$

where c is the half crack length

σ is the stress applied normal to the crack plane

- E 1s Young's modulus
- v is Poisson's ratio.

The void within the crack faces is an ellipsoid with semiaxes c, c, and δ , so the volume is

$$c = \frac{4}{3}\pi \delta c^2 = \frac{16(1-v^2)c^3\sigma}{3E}$$

(20)

(19)

To determine the total crack volume a sum is made over all cracks.

$$= \sum_{i=1}^{N} N_{i} V_{i}$$

where N is the number of cracks of volume V_{ic} per unit volume. Then Eq. (19) becomes

$$= \frac{\Delta \sigma \cdot v_{g}}{(\kappa + \frac{4}{\pi}\mu)v} + \frac{16(1-v^{2})\Delta \sigma}{3E} N_{1}c_{1}^{3}$$
(21)

where Log is a change in stress

ないとなっていた時間のななからないためで

K, u are bulk and shear moduli

V is the total specific volume.

Dividing Eq. (21) by $\Delta\sigma$; an offective modulus M is derived.

$$\frac{1}{M} = \frac{\frac{V}{H}}{K + \frac{4}{3}} + \frac{16(1 - v^2)}{3E} N_i c_i^3$$
(22)

This compliance is similar to that which would be obtained for a composite made of solid material plus void. The term $K + \frac{4}{3}\mu$ is the stiffness of the solid and V_{s}/V is its volume fraction. The last term on the right in Eq. (22) must be into-preted then as the compliance of the cracks. This expression shows that the compliance of the composite increases with increasing vold fraction, i.e., increasing number and/or increasing size of cracks.

ROCK PROPERTIES

Execution of the predictive capability described in the previous chapter requires a knowledge of certain rock-specific properties, for their values are required as input. Included are the size distribution of inherent flaws, the plane strain fracture toughness, and the crack growth velocity. Values of these parameters for Arkansas nevaculite are determined in this chapter.

Inherent Flaw Structure

Casual observation with the unaided eye of polished novaculite surfaces is sufficient to show that this rock has a strongly oriented flaw structure. The flaw structure is clearly evident in the low magnification composite micrograph of Figure 9. The size distribution of the inherent flaws was determined by counting and measuring the flaw traces on a polished section through a specimen. Those data, which represented the size distribution of flaw traces per unit area, were then converted by means of a statistical transformation to obtain the actual size distribution of inherent flaws pe. unit volume.

Nine overlapping photographs at 40X were required to span the diameter of a rock specimen. The total photographed area was slightly more than 1.1 cm², and in this area 194 preexisting crack traces were counted and measured. These data were converted by means of a Scheil type statistical transformation^{14,15} implemented by the BABS2 computer code;¹⁶ the results are presented in Figure 10.

Here the cumulative concentration of cracks having radii greater than radius c_i is plotted as a function of c_i . The relatively few (194) traces observed on about 1 cm² of the surface of section transform into a very large volume density (~100,000/cm³). The size distribution of preexisting cracks has a parabolic form in log-normal space with a cutoff at about $c_i = 500 \text{ µm}$. The curve is well described by the analytical

37

Preceding page blank

FIGURE 9 COMPOSITE MICROGRAPH OF A BLOCK OF NOVACULITE SHOWING THE PREFERRED ORIENTATION OF THE INHERENT FLAWS

+ MP-1087-12A

expression

$$l = \delta(c) \exp[11.1 - (3.7 \times 10^2)c + (0.42 \times 10^4)c^2] \quad (23)$$

where $\delta(c) = 1$ for $0 \le c \le 0.05$ $\delta(c) = 0$ for $c \ge 0.05$ and c is in centimeters.

The cutoff in crack half size at about 500 µm appears to be realistic. A very large number of observations of polished novaculite surfaces were made, and nover were flaw traces significantly greater than 1 mm observed. Statistically speaking if many observations of crack traces are made, the length of the largest trace is approximately equal to the diameter of the largest flaw. Thus the radius of the largest inherent flaw in the present specimens of Arkansas novaculito was taken to be about 500 µm.

Fracture Toughness

The plane strain fracture toughness K_{IC} is a material property that describes the resistance of the material to crack propagation. This parameter is used in the first stage of the fragmentation model to determine the critical flaw size for a given dynamic stress and hence the number of inherent flaws in novaculite that became propagating cracks.

The dynamic plane strain fracture toughness for novaculite was calculated from the measured dynamic tensile strength of 41.0 ± 2.0 MN/m² (5950 ±290 psi) (Chapter II) and the radius of the largest flaw, 500 µm, established in the previous section. Sneddon's expression, Eq. (1), is used to relate the dynamic tensile strength $\sigma_{\rm f}$ and the radius of the largest penny-shaped flaw $c_{\rm max}$ to the dynamic fracture toughness K_{ICS}.

and a value for K_{ICS} of 1.04 MN/R^{3/2} is obtained. Quasi-static tensile strongth determinations using the SRI expanded ring tests yielded similar values for the tensile strength and hence the fracture toughness, demonstrating that these properties of novaculite are strain rateinsensitive, at least for strain rates in the range of 3 x 10⁻⁴ sec⁻¹ to 7 x 10³ sec⁻¹.

 $K_{\rm ICS} = 20 \, \frac{c_{\rm max}}{r}$

Crack Velocity

The distance each crack can propagate depends on the crack vulocity and the duration of the stress pulse. Ytterbium stress gages were used to measure the latter in this work and crack velocities were inferred from direct measurements of the distance propagated by cracks in essentially crack-free material. The radii of the cracks shown in Figure 2 are about 2 mm. The ytterbium stress gage records indicated that the stress duration was about one microsecond, in agreement with the result obtained from simple calculations using the measured elastic wave speed and the thicknesses of the specimen and flyer plate. Thus crack propagation volocities of 2 x 10^5 cm/sec are indicated--an interesting result, since it is approximately one-third of the measured longitudinal wave velocity for novaculite, and is thus in agreement with theoretical estimates of the maximum crack velocities of brittle r. terials. Materials such as Armco iron and beryllium, investigated in other projects, 13,16 fractured in a brittle manner at high strain rates, but exhibited viscous crack propagation and maximum crack speeds well below c,/3.

VI COMPARISON OF PREDICTED AND EXPERIMENTAL RESULTS

والمرجوع والمرجوع المرجوحة والألا

A test of the predictivo capability of the model was made by calculating the fragment size distribution of Experiment 53, and then comparing the predicted result with the experimentally measured result.

Experimental Conditions

- Starte and Starte and Starte and Starte and Starte

Experiments 52 and 53 were carried out under identical conditions (Table 2). Both novaculite specimens were encased in aluminum to retain the fragments, and both were impacted at a velocity of about 49 m/sec. Specimen 52 was sectioned afterwards to reveal the location of cracks and fragments (Figure 4d), whereas the aluminum encasement was carefully removed from Specimen 53 and the size distribution of the fragmonts was determined (Figures 5 and 6).

In both experiments the novaculito specimens were bended on the impact side to the aluminum with epoxy; the rear surface however was unbonded, and it appears therefore that a gap perhaps 10 to 30 µm wide existed there. It was not realized at the time of the experiment how critical the gap at the rear interface would be, and consequently no steps were taken to either eliminate or measure the gap. Subsequent wave propagation calculations, however, showed that the presence of a gap has a large influence on the location and magnitude of the peak tensile stresses and, therefore, on the fracture behavior.

Calculational Conditions

Computations made at stress levels bolow that required for fracture for the situation where a bond existed at the rear interface predicted a peak tonsion of about 160 MN/m^2 (23,200 psi), which first appeared near the rear interface. For the situation of an unbonded interface with no gap, a peak tension of 100 MN/m^2 (14,500 psi) occurred first near the interface and dropped off rapidly as a gap formed. For the

43

Preceding page blank

case where an initial gap existed at the interface, the rear face of the specimen behaved as a free surface, and tensile stresses of about 100 MN/m² (14,500 psi) were predicted throughout the specimen thickness, arising first at about one-third of the specimen thickness from the rear interface. This last stress distribution is in accord with the cracking patterns observed in Figure 4d, and so we assumed in calculating the fragment size distribution for Experiment 53, that a 0,0025-cm gap existed at the rear interface.

In attempting to predict the fragment size distribution for Experiment 53, we assumed 8-sided fragments and fragment sizes equal to the sizes of the cracks at the time of coalescence, i.e., we let $\beta = 1/4$ and $\gamma = 1.0$. The calculation was stopped after five reverberations of the tensile waves;

Predicted versus Observed Results

The results of the calculations are presented in Figure 11, which shows that fragmontation occurred at three positions through the specimen thickness. The coalescence criterion was choson by comparing this computed result with the observed crack patterns of Figure 4. This comparison indicates that the total crack range volume for coalescence should be about 3 cm³, which implies a value for T of $\pi/3$. In view of our previous estimates of the T parameter in Chapter IV, this value is somewhat low, but several calculations with different values of $T_{\rm c}$ show that there is no significant effect on the fragment sizes. Rarefaction waves interacted to produce tension first near Cell 40, and the stress duration was sufficiently long that enough crack growth occurred for the total crack range to equal the cell volume. Hence Cell 40 fragmented. During the third tensile reverberation, Cell 44 fragmented and during the fifth, Cell 21 also fragmented. Cell 22, which exceeded the coalescence condition by nearly as much as Cell 21, did not reach the fragmentation condition. Thus the calculations predict two heavily

fractured positions in the vicinity of each face of the specimon--a prodiction that is in reasonable accord with the experimental result as shown in Figure 4d.

Stand S. P. Advertised

Although the fracture pattern in Specimen 52 (Figure 4d) was predicted well by the code calculation, the agreement may be somewhat fortuitous. Whereas the calculations showed cracking and fragmentation occurring first at two locations near the rear surface and later at locations nearer the impact surface, the sories of micrographs of Figure 4 implies that cracking occurs first near the impact surface and later near the rear surface. Thus if the micrographs of Figure 4 may be thought of as a time sequence, the experimental observations are opposite from the fracture behavior predicted by the code.

To compute the fragment size distribution, the fragments in all the cells were summed. In Cells 21, 40, and 44, the fragments were counted and sized as described in Chapter IV. In the other cells, where the total crack range did not meet the fragmentation critorion but did meet the coslescence criterion, we computed the fragments in the usual we and disregarded the unfragmented material. The computed fragment size distribution is presented in Figure 12, where the distribution messured experimentally is also given for comparison.

The calculated and experimental curves in Figure 12 do not coincide. but they are qualitatively alike. Agreement concerning the sizes of the large fragments is good, and the curves have the same shape for intermediate-sized fragments. There appear to be too many computed fragments

* We attempted to obtain an extra point on the exparimental curve by measuring the radii of the three lagest fragments. This point is included in Figure 12 and used to guide the extension of the experimental curve (broken line). The three largest fragments weighed 0.4367 g. in the range of c = 0.03 cm. This suggests that changes should be made in either the growth or fragmentation process for the smaller size cracks. The cutoff in the computed distribution curve at small fragment sizes exists because no fragments were computed for those sizes since inherent flaws smaller than about 0.02 cm were not activated.

No attempt was made to repeat the calculations using diffe ont values of β and γ . However, it is likely that better agreement could be obtained, and it would be valuable in future work to study the consequences of variations in these paremeters for cases where more experimental data are available.

The above fracture and fragmentation model applies only to uniaxial strain loading conditions. However, the generalization to two dimensional axially symmetric loading geometries such as those obtaining in many blasting and drilling situations is possible, and is in fact currently in progress under Contract DAAD05-73-C-0025 with the Ballistic Research Laboratory, Aberdeen, Maryland.

In this report all incipient flaws are assumed to lie normal to the direction of wave propagation. However, our present fracture model allows an initial flaw orientation distribution which is maintained during propagation. In this case the driving and opening stress for a given crack is the component normal to the crack. This option was not exercised in the present work because the incipient flaws nearly all lay in a plane normal to the direction of wave propagation.

225

1

 $\{ x_i \}_{i \in I}$

٠.

• `

...

1.

1.5

١

٠,

-

.

``

1

'\:

REFERENCES

- Shockoy, D. A., C. F. Petorsen, D. R. Curran and J. T. Rosenberg, "Dynamic Tensile Failure in Rocks," Annual Technical Report to the U.S. Bureau of Mines, Contract No. H0210018, March (1972).
- Shockey, D. A., C. F. Petersen, D. R. Curran, and J. T. Mosenberg, "Failure of Rocks Under High Rate Tensile Loads," <u>New Horizons in</u> <u>Rock Mechanics</u>, p. 709, Proc. 14th Symp. on Rock Mech. eds., H. R. Hardy, Jr., and R. Stefanko, Amer. Soc. Civil Engrs. New York, NY (1973).
- Curran, D. R., D. A. Shockey, and L. Seaman, "Dynamic Fracture Criteria for Polycarbonate," J. Appl. Phys. (to be published Sept. 1373).
- Seaman, L., "SRI PUFF, 3 Computer Code for Stress Wave Propagation," Technical Report No. AFWL-TR-70-51, Air Force Weapons Laboratory, Kirtland AFB, New Mexico, September (1970).
- Griffith, A. A., "The Phenomena of Rupture and Flow in Solids," Phil. Trans. Roy. Soc. London A221, 163 (1920).
- 6. Irwin, G. R., "Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys," Proceedings 1955 Sagamore Conference on Ordnance Materials, Vol. II (Syracuse University Press, New York, 1956).
- Sneddon, I. N., "The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid," Proc. Roy. Soc. London <u>A187</u>, (1946).
- Nott, N. F., "reacture of Motals: Some Theoretical Considerations," Engineering, 165, p. 16 (1948).
- 9. Roberts, D. K., and A. A. Wells, "The Velocity of Brittle Fracture," Engineering <u>178</u>, 820 (1954).
- Dulancy, E. N. and W. F. Brace, "Velocity Behavior of a Growing Crack," J. Appl. Phys. 31, 2233 (1960).

- Borry, J. P., "Some Kinetic Consideration of the Griffith Criterion for Fracture - Parts 1 and II," J. Moch. Phys. Solids 8, 194-216 (1960).
- Barker, L. M., and R. E. Hollenbach, "Shock Wave Studies of PMMA, Fused Silica, and Sapphiro," J. Appl. Phys. <u>41</u>, 4208-4226 (1970).
 Shockey, D. A., L. Seaman, and D. R. Curran, "Dynamic Fracture of Beryllium Under Plate Impact and Correlation with Electron Beam and Underground Test Results," Contract F29601-70-C-0079, AFWL-TR-73-12, Air Force Weapons Laboratory, Kirtland AFB, New Mexico, January 1973.
 - Scheil, E., "Die Berechnung der Anzahl and Grossenverteilung kugelformiger Kristalle in undurchsichtigen Körpern mit Hilfe durch einen ebenen Schnitt erhaltenen Schnittkreise," Z. Anorg. Allgem. Chem. 201 (1931).
- Scheil, E., "Statistischo Gefügeuntersuchungen I," Z. Motallk. <u>27</u>, 199 (1935).
- Barbee, T., L. Seaman, and D. R. Curran, "Dynamic Fracture Criteria of Homogeneous Materials," AFWL-TR-71-156, Air Force Weapor-Laboratory, Kirtland AFB, Albuquerque, New Mexico, December 1971.
 Brace, W. F., E. Silver, K. Hadley, and C. Goetze, "Cracks and

Pores: A Closer Look," Science 179, 162 (1972).

- Sedlacek, R., "Tensile Fatigue Strength of Brittle Materials,"
 Air Force Materials Laboratory, Wright Patterson AFB, Ohio, Technical Report AFML-TR-66-245, March 1968.
- Sedlacek, R., and F. A. Halden, "Method of Tensile Testing of Brittle materials," Rev. Sci. Instr. <u>33</u>, 298 (1962).
- Sedlacek, R., "Processing of Commics--Surface Finishing Studies," Final Technical Report, Stanford Research Institute, prepared for Naval Air Systems Command, Contract No. NOCO19-69-C-0229, April 1970.

21. Wawersik, W. R., and W. S. Brown, "Creop Fracture of Rock," Seminunual Technical Report, DARPA Contract No. H0220007 prepared for the Bureau of Mines, Twin Citics Mining Research Center, Twin Citics, Minnesota, July 1972.

22. Ginsberg, M. J., "Piezoresistance of Ytterbium and Calibration of Ytterbium Stress Transducers," prepared for Defense Advanced Research Projects Agency under DNA Contract No. DNA001-72-C-01-6, Draft Final Report, June (1973).

51

APPENDIN I CHARACTERIZATION OF OTHER ROCKS

Four rock types were used in this study. Arkansas novaculite was the material most completely investigated, but characterization work was also performed on Sioux (Jasper) quartzite, Holston limestone (Pink Tennessee marble), and Westerly granite. This section describes the microstructures and defect structures of the four rock types and presents the results of measurements of their physical and mechanical properties.

Microstructures

Figure 13 shows a polished surface of Arkansas novaculite that was etched for 2 minutes in 40% HF at room temperature to reveal the grain structure. Black areas are holes where inherent flaws intersect the surface or where grains have been removed during the polishing process; bright areas are caused by reflected light from internal flaw surfaces.

By exploiting the translucency of novaculite and focusing into the material to a depth of about 100 μ m, we found that the inherent flaws ext t predominately in two shapes: penny-shaped and pencil-shaped. Best results were obtained by viewing the specimens in reflected polarized light through a microscope slide and with an oil film of matching refractive index (n = 1.55) on the specimen surface. Figure 14 shows a penny-shaped and a pencil-shaped flaw slightly below the surface of polish and inclined at an angle to it, so that only a section of each is in focus. The planes of the rather homogeneously distributed penny-shaped flaws are roughly parallel to one another, and most of the pencil-shaped flaws are inclined at about 45 degrees to these planes.

One-inch cubes of Sioux quarizite, Westerly granite, and pink Tennessee marble were cut from the large blocks received from the

 Supplied by the Property Determination Research Support Group, Twin Cities Mining, Research Center, Bureau of Minos, Twin Cities, Minnesota 55111.

٨-1

A 2

Bureau of Minos and polished on three porpendicular sides in preparation for petrographic examination. Photomicrographs showing the grain structures of the three rock types are presented in Figure 15.

The Sioux quartzite is relatively pure, dense, and homogeneous. Large cracks, pores, and faults are noticeably absent. The grains are equiaxed, randomly oriented, and about 30 times larger than those in Arkansas novaculite (average grain diameter is of the order of 300µ).

As indicated by the pronounced relief of polished surfaces, Westerly granite consists of hard grains (quartz) in a softer matrix (microcline and plagioclase). The quartz grains are generally irregular with diameters often exceeding 1000µ. The dark biotite phase is randomly oriented.

The grain size in the marble ranged from very small (~104) to very large (30004) and was easily discernible in 3/4 polarized light. A large majority of the grains exhibited pronounced twinning. No preferred grain orientation was evident.

Inherent Flaw Structures

The inherent flaw structure of Arkansas novaculite was easily discernible, and it was possible by counting and measuring flaw traces on polished surfaces to dotermine quantitatively the inherent flaw size distribution. This effort was described fully in Chapter V. The inherent flaw structure of Sioux quartzite, Westerly granite, and pink Tennessee marble, however, was much more difficult to see. Nearly all flaws in these rocks are associated with grain boundaries and could be detected only by focusing painstakingly up and down with the optical microscope at magnifications greater than 100X. Occasional transgranular, cracks were observed in the feldspar grains of the Westerly granite.

Special viewing and crack decoration tochniques were tried in attempting to observe the flaw structure. Phase contrast photography and scanning electron microscopy proved ineffective; likewise swabbing polished rock surfaces with silver nitrate and vacuum impregnation with an organic fluorescing agent to decorate the microcracks was of little use. Thermal grooving was not attempted, but seems of doubtful value since the flaws are associated almost exclusively with grain boundaries which themselves should be attacked by the thermal grooving process. It might be fruitful to attempt to relate grain size or some other readily observable characterizing parameter of the grain boundaries to the number, sizes, and shapes of crack-like defects between the grains.

A procedure recently reported by Brace at al.,¹⁷ which uses ion thinning to reveal cracks in Westerly granite and Rutland quartzite, appears promising. However, we wore not able to try it in this work.

Physical and Mechanical Properties

The density of each rock tope was measured by an immersion technique and the longitudinal and transverse sound wave velocities were determined by the time-in-flight method. The results are given in Table 4. The density measurements were all near the theoretical value and indicated that porosities were less than 1%. The Young's moduli for the four rock types were calculated from the measured densities and sound speeds according to the relationship

$$E = {}_{0}C_{L}^{2} \left[\frac{(1+\nu)(1-2\nu)}{(1-\nu)} \right]$$
(24)

where a value of 0.25 was assumed for Poisson's ratio, and the resulting values are included in the table.

Table 4

日本のないためので

Ŀ 100 MEASURED PROPERTIES OF SEVERAL ROCKS

er.

	Density (g/cm ³)	Longitudinal Sound Speed* (a/rec)	Transverse Sound Spoed* (m/fec)	Elastic Nodulus (NN/m ²)	Quasi-static Tensile Strength (MX/m ²)
rkansas Novaculite	2.63	5900	4030	9.15x10 ⁴ (13.3x10 ⁶ ps1)	44.1±3.0 (6400±440 psi)
lioux Quartzite	2.64	5030	3750	6.65x10 ⁴ (9.64x10 ⁶ ps1)	18.342.3 (26604230 ps1)
esterly Granite	2.65	4330	2860	4.92x10 ⁴ (7.14x10 ⁶ ps1)	10.8 ⁴ (1575 ps1)
ink Tennossee Marble	2.71	5670	3370	8.46x204 (12.3x10 psi)	8.18 ⁴ (1185 pat)

÷

As measured by time-in-flight method.

A-7

Calculated from Eq. 24 assuming a value of 0.25 for Poisson's ratio. Average values measured by Wawersik and Brown (Ref. 21) in a uniaxial stress tem

Cart Na-

.....

Quasi-Static Strongth Measurements

The tensile strength of novaculite and Sioux quartzite under quasi-static loading conditions was determined using the SRI expanded ring test^{18,19} shown in Figure 16. In this test hydrostatic pressure acts radially against the inside wall of a cylindrical specimen to create a uniform tangential tensile stress in the specimen wall. Nonaxial stresses caused by misalignment and localized stress concentrations, which normally arise from gripping or supporting the test specimens, are eliminated in this method.

Ring-shaped specimens were diamond ground from oversized blanks to the following dimensions:

	Arkansas	Sioux
	Novaculite	Quartzite
I.D. (mm)	50.8	81.4
O.D. (mm)	58.4	87.8 to 91.2
Height (mm)	7.62	26.4

All strength measurements were made at a strain rate of 3×10^{-4} sec⁻¹.

Measurements on novaculite were taken both in air und under a vacuum of 10^{-5} torr. Some materials show higher strengths under vacuum, indicating that stross corrosion is an important factor. No significant difference was seen for novaculite. Results of 15 tests in zir indicated a tensile strength of $44.1 \pm 3.2 \text{ NN/m}^2$ (6400 $\pm 440 \text{ psi}$) and .2 tests under vacuum indicated $44.9 \pm 3.0 \text{ NN/m}^2$ (6500 $\pm 480 \text{ psi}$). The extremes measured were 50.7 and 38.6 MN/m². The results of nine tests on Sioux quartzite in air indicated a tensile strength of $13.3 \pm 2.3 \text{ NN/m}^2$ (2660 $\pm 330 \text{ psi}$). Average values of the quasi-static tensile strength of Westerly granite and pink Tennessee marble have been reported by Wawersik and Brown to be 10.8 MN/m² (1575 psi) and 8.14 MN/m² (1185 psi), respectively.

1

4

ł.

17

45.00

P

It is noteworthy that the quasi-static tensile strength of novaculite is the same as the high strain rate tensile strength measured in the impact experiments in Chapter II. The strain rate of the dynamic tests was estimated from the oscilloscope records of the ytterbium stress gages in the instrumented experiments.¹ The rise time of the stress pulse is about a tenth of a microsecond, the elastic strain is about 7 x 10⁻⁴, hence the strain rate is estimated to have been approximately 7 x 10³ sec⁻¹. Since this is more than seven orders of magnitude higher than the strain rates of the quasi-static ring tests, the negligible difference in strength values indicates that the fracture strength is strain-rate insensitive, at least in this range.

Stress Wave Measurements

Four attempts were made to measure the load history in specimens of Westerly granite that were impacted in the gas gun. The experimental conditions were similar to those described in Chapter II and Referenco 1.

Small grid-like gages made of ytterbium wore comented to the back surfaces of the rock specimens and backed by a plexiglass plate. Because of the piczoresistive nature of ytterbium, a change in resistance is produced in the material when traversed by a compressive wave. This resistance change is measured and recorded by an escilloscope as a change in voltage, and is subsequently converted to a rocord of stress versus time hy means of an established calibration.²² The tensile stress history in the rock specimen is then calculated from the measured compressive stress history in the plexiglass and the relative shock impedances of the two materials. (See the Appendix to the First Annual Report).

Four specimens of Westerly granite, 10 cm square by 0.625 cm thick, were impacted by flat plexiglass flyer plates 0.165 cm thick at velocities of 27.4, 123, 36.9 and 41.0 m/sec. The impact velocities were chosen

Λ-10

such that stressus in excess of the dynamic tensile strength wore obtained. The purpose was to record the "fracture signal," a second hump on the stress gage record caused by impingement on the gage of recompression waves emanating from internal surfaces as cracks form and grow. In all four experiments, the impact was too nonplanar to yield analyzable results.

- Contract and a second s

Figure 17 gives the measured stress history at the rear surface of spocimen 1260 impacted at 41 m/sec. A clear fracture signal was recorded, but nonplanarity of impact resulted in a triangular rather than a flat-topped initial compressive wave, and therefore a direct and unambiguous determination of the dynamic tensile strength of Westerly granito is not obtainable from this record. Herefore, the peak compressive stress was calculated for this experiment, and using the results of this record an upper limit on the dynamic tensile strength of Westerly granite was determined to be 47 NN/m² (6800 psi).

STRESS GAGE

1

3 St. - . .

···/.

ς'.

÷.

il in protesta

. .

٠.
Form DI-1216 (June 1968)

UNITED STATES DEPARTMENT OF THE INTERIOR

Date June 1973

SUMMARY REPORT OF INVENTIONS AND SUBCONTRACTS

The following report must be submitted in *triplicate* as part of the interim or final report as provided for by the REPORTS and/or PATENT ARTICLE in the grant or contract.

Name of Contractor or Gruntee	Address And State State
STANFORD RESEARCH INSTITUTE	333 Ravenswood Avenue, Menlo Park, California 94025
Contract or Graut No. H0220053	
(Check appropriate boxes) 1. Type of Report: [] Interim	., 19
To	, 19
 A. Invention made], not made], during inter B. If invention (s) made, provide the following in Previously fully disclosed in Invention D 	val of (1). nformation: Disclosures. Give dates submitted, and Contractor's docket number
Invention Disclosures attached herewith	h. Give Contra-tor's docket numbers.

A-13

(OVER)

a title an post around	Date Submitted	Contractor's Desket Number		•
A. Invention (s) previously			•	
reported-		· · · · · · · · · · · · · · · · · · ·	•	•
			0	
		•	•	
			•	
B. Investion (a) reported			·• .	
herewith-	n		•	- ¹⁶ x 1
1. E			· ·	
X			•	
			•	
			-	
			·	
C. Others (explain)-				
95 Y 2 E 1				1 K

****		***************************************		
				•

Contractor's Docket No.				
a this is a and report and no inv	· · · ·	the grant of contract,	certify as follow	s. b colled as po
under the grant or contract identifie	ventions conceived or Ars ed herein.	t actually reduced to pr	active in the wor	a called of re
under the grant or controct identific	ventions conceived or Ars ed horein.	t actually reduced to pr	active in the wor	a caned of re
under the grant or controct identific DateJune28	ventions conceived or Ary ed horein.	Signature		a called of re
Letrily that there were no in under the grant or contract identific DateJune28,	ventions conceived or Ars ed herein.	Signature		
Letrify that there were no in under the grant or contract identific DateJune28,2673	ventions conceived or Ary ed horain.	Signature		a caned of re
DateJune28,	ventions conceived or firs ed horein.	Signature		
Letrify that there were no in under the grant or contract identific DateJune28	ventions conceived or firs ed herein. hta article:	Signature TitlePhysicist		
Letrify that there were no im under the grant or contract identifie DateJune28	ventions conceived or firs ed herein. hts article: 2 subcontractors net prev	Signature TitlePhysicist lously identified.		
Letrify that there were no in under the grant or contract identific DateJune28	ventions conceived or firs ed herein. hts article: e subcontractors act prev	Signature TitlePhysicist lously identified.	sontract	_ Date
Subcontracts containing patent rig Name of Subcontractor	ventions conceived or firs ed herein. hts article: 2 subcontractors net prev Address	Signature TitlePhysicist iously identified.	Sontract	Date Eserviced
Letrify that there were no in under the grant or contract identific DateJune28	ventions conceived or firs ed herein. hts article: 2 subcontractors net prev Address	Signature TitlePhysicist iously identified.	sontract	Date Executed
Leeraly that there were no in under the grant or contract identifie DateJune28 _y 2673 Subcontracts containing patent right None. Listed below are Name of Subcontractor	ventions conceived or Arg ed horein. hts article: e subcontractors net prev	Signature	sontract	Date Eneruted
Subcontracts containing patent right Subcontracts containing patent right Name of Subcontractor	ventions conceived or firs ed herein. hts article: s subcontractors act prev Address	Signature	sontract unaber	Date Executed
Subcontracto containing patent right Name of Subcontractor	ventions conceived or firs ed herein. hts article: e subcontractors act prev Address	Signature	sontract maber	Date Eneruted
Letring that there were no in under the grant or contract identific DateJune28	ventions conceived or firs ed herein. hts article: e subcontractors act prev Address	Signature	sontract maber	Date Eneruted
Subcontracts containing patent right None	ventions conceived or firs ed herein. hts article: e subcontractors act prev Address	Signature	sontract	Date Eneruted

20

. :

A-14

1. 1

21

15

• 1

; . .

 L_{λ}