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ABSTRACT

Theory, computation, and an example of mathematical programming
models with optimization problems in the constraints have been dis-
cussed in a previous paper [1]. A computer program for solving
mathematical programming models with nonlinear programs in the
constraints has been presented in a subsequent paper [2]. A

<
procedure for transforming mathematical programs with two-sided
optimization problems in the constraints into mathematical programs
with nonlinear programs in the constraints, enabling solution by
the computer program of [2], has been given in 3],

The present paper formulates models of defense problems which
are convex programs having the mathematical properties treated in

the previous papers. The models include several strategic forces

planning models and two general purpose forces planning models.
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I. INTRODUCTION

Reference [1] presents theory, interpretations and an example of
mathematical programs with optimization problems in the constraints.

The first result there deals with Problem(A): find vectors

X = (xl, ¢ ooy xn) and v’ = (vi, A vi ), for i =1, ..., m, tol

1

minimize f(x)
x e X

subject to

hi(x) = min gl(x,vl) >0 , i=1, ..., m .

i i
v eV

If f(x) is a convex function of x on a convex set X and gi(x, vi) is
concave in 'x on X for every vi ¢ vi and for i = 1, ..., m, then the
mathematical program is a convex program. In order to computationally
solve this problem it is desirable that gi(x, vi) be convex in vi and
the set Vi be convex. In Reference [1l] an example is presented and

. . i i, . . . i Gl B
solved in which g (x, v ) is concave in x , and min g (x, v ) is a
S |
v eV

linear programming problem in vt

The second result in Reference [1] dealswith Problem (B): find

i, i i I | i
vectors x = (xl, J Xn)’ e = (vl, cees Vi ), and u- = (ul, =g uz.),
3 i

fori=1, ..., m, to

1. All indicated maximums and minimums are assumed to exist,

-




minimize f(x)
x e X

subject to

R (x) = max min g(x, ut, v’)>0 , di=1, ..., m .

uleul(x) vleV1

If £(x) is a convex function of x on a convex set X 3 gl(x, ul, vl)

Ak

. . i i . i .
is concave in (x, u”) for every v- ¢ Vl,'and U~ (x) is a cOnyex set for

x ¢ X, for 1 =1, ..., m, then the mathematical program is a convex

program. In order to computationally solve the problem it is also
desirable that gl(x, ul, vl) be convex in v> and the set V' be

convex,

Reference [2] presents a computer program for solving Problem (A)

; . & i . .
where the constraints min g¢g7°(x, v') >0, i =1, ..,, m contain non-

1.1
v eV

linear programs.

Reference [3] shows how Problem (B) can be solved by the computer
program of Reference [2].

The purpose of this paper is to present optimization models having
the structure of the above mathematical programs for some defense
planning problems. Each of the problems that follows is formulated in
terms of its major planning variables. Specific functional forms are
assumed which have the general properties possessed by the physical
process being modeled. These functional forms have parameters, the
values of which could be determined from empirical data or detailed
quantitative descriptions of the physical processes. This paper
concentrates on the problem formulation. All of the models considered

are convex programs.
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II. GENERAL CHARACTERISTICS OF THE MODELS

Consider Problem (A)., The constraint set for the mathematical

program is equivalent to

{x e X2 gt (x, v1) > 0 for all vievt, i=1, ..., m }
This formulation renders a ready interpretation of the problem, The "outside
optimizer" chooses forces x such that each of the...m effectiveness 1
requirements in the constraint set can be met at a minimal value of

m
Y

the objective function, no matter what feasible choice of vl
the Minside optimizer" makes. An alternative interpretation is that
of the outside optimizer choosing x , followed by (or simultaneous
with) the inside optimizer's choice to minimize the effect of x .

The first military model having the structure of Problem (AR) is
that of an outside optimizer choosing forces x with minimum cost f£(x)
which can achieve effectiveness objectives Tys eees B in the face
of optimal allocations of vi e V({(i=1, ..., m) by one inside optimizer
in an attempt to minimize the effects. The model is to choose x and

I m
VRS Bsewy Wi EO

minimize f(x)

subject to

min gl(x, vl) 2T i=1, ..., m
viev
The outside optimizer can achieve his objectives against any of the

various uses of one inside optimizer'!'s resources V .

3
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The second military model having the structure of Problem (A)
is that of an outside optimizer choosing forces x with minimum cost £(x)

which can achieve any one of the objectives r cees T in the face

l’
of optimal allocations of N (i=1, ..., m) by m inside

optimizers. The model is to choose x and vl, i V" to
minimize f(x)
subject to
min gl(x, vl)zj r.o, BN= B omen B .
a B ¢
vieV

The outside optimizer chooses x, and m inside optimizers choose
vl, cees V™. The outside optimizer will be capable of achieving his
objective in any one conflict in which he engages. One example might
be the outside optimizer planning to fight and win any one conventional
war but not more than one simultaneously.

The third military model having the structure of Problem (A) is
that of an outside optimizer choosing forces xl, L. X" with minimum
12 s T

ST |
in the face of optimal allocations of v ev? (i=1, ..., m). The model

cost f(xl, B3 [ox xm) which can achieve all of the objectives r

. 1 m 1 m
is to choose x, ..., X and v, ..., v to

minimize £(x¥, ..., ¥™)

subject to




There are two interpretations of this problem. There may be one inside

optimizer who divides his resources into Vl

s e Vm, or there may be
m inside optimizers with resources Vl, D V'. In either case, the
outside optimizer can simultaneously achieve all of the objectives,

Consider Problem (B). The constraint set for the mathematical
program 1is equivalent to

{x e X: min gl(x,ul,vl) > 0 for some ut e ut(x) ,i=1, ..., m} .
I |

viev
Again, this formulation provides a ready military interpretation. The
outside optimizer chooses forces x . For this choice, there is
a feasible set of alternative uses of these forces, in achieving an
effectiveness objective 1 , namely Ui(x). Thus the outside optimizer
chooses a force level x and an optimal and feasible use of these
forces for each of the objectives, namely ui € Ui(x) (2 2wy e Mk
The inside optimizer makes his feasible choices vi € Vi (i=1, ..., m)
to minimize the effects of the outside optimizer's choices,

It is shown in [3] that Problem (B) is equivalent to choosing x

and ul 4

smEgas Oy LS
minimize f£(x)
subject to

xe X ,

i i .

u e U(x) , i=1] ..., m 3

. i dh .

min g7 (x, uw, v1) >0 , i iy waes &
i i

v eV

Variants of Problem (B) analogous to those discussed above for

Problem (A) can also be treated.




III. STRATEGIC OFFENSE OR DEFENSE FORCE STRUCTURE OPTIMIZATION

This section presents an offense and a defense force structure
model, Each is a mathematical program with nonlinear programs in the
constraints. Both are convex programs. A passive defense model is
presented in detail.

In the strategic offense model, the outside optimizer chooses
minimum-cost offensive forces capable of achieving specified destruction
of various resources by type, despite allocation of specified defensive
forces of the inside optimizer to minimize the destruction,

In the strategic defense model, the outside optimizer chooses
minimum-cost defensive forces capable of assuring specified survival
of various resources by type, despite the optimal allocation of
specified offensive forces of the inside optimizer to minimize the

surviving resources.

Definitions

Let the indexes of locations be i =1, ..., p, of offensive

weapon types be j =1, ..., q, and of defensive resource types be
k =00y _ssen Pl ket the index of targetstybes be W= Ly &rwvs
Define

yij = offensive weapons of type j targeted to location i,

Zgy = defensive resources of type k assigned to location i,

aﬁj = parameter associated with destruction of target type £

in location i by offensive weapons of type j,




Bik parameter associated with defense of target type ¢ in

location i by defensive resources of type k,

w@ = value of target type 4 at location i

o
f(y) = cost of providing offensive weapons y = (yij)(i =1,

v o0y p;jzl’ ONOCl) Q)’
g(z) = cost of providing defensive resources z = (zik)(i =1,

o B K = ds sems B):

Effectiveness Function for Offense Optimization

The measure of effectiveness for offense optimization is destroyed
value of type £ . One function which is concave in yij and convex in
is

%k

)
E w@ exp ( - Z Blk lk)[l exp ( - : aljylj)]

In the strategic offense models the outside optimizer chooses yij and

the inside optimizer chooses z so the function is appropriately

ik’
behaved to yield a convex program.

Effectiveness Function for Defense Optimization

The measure of effectiveness for defense optimization is surviving
value of type £ . One function which is concave in 25y and convex in

yi; is

3 wﬁ {1 - exp ( - % 8% )1 - exp ( - 2 at VI -

i K ik%ik ij 13

In the strategic defense models the outside optimizer chooses 25y and

.




the inside optimizer chooses i 5B so the function is appropriately

behaved to yield a convex program.

Force Structure Optimization Models

The strategic offense optimization model is to choose yij
(i=l, ...,p; j =l, * 00y Q) and zik(i=l, e ey p; j=l, LG ) r) to
minimize f(y)

subject to

—

v

min E w exp(- E le lk)[l exp(- Z aljylj)]

where
ﬁz = specified destroyed value to be assured by outside optimizer,
Zk = defensive forces of type k available to inside optimizer.

The strategic defense optimization model is to choose Zix

(i=1, ..., p; k=1, ,.., r) and yij( i = by seum P BIE 1§ «uwy QOuGE0

minimize g(z)

subject to
il { 2 2
m;n } ? w1§1 - exp(- Z Blk 1k)[l - exp(- ? aljylj)] >S5
EYi5 £
where
§1 = specified surviving value to be assured by outside optimizer,
Yj = offensive forces of type j available to inside optimizer.

8
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Properties of Models

The two models are convex programming problems. They contain
convex programming problems in the constraints. Thus the procedure

of Reference [2] can be used for their solution.

Example: Passive Defense Model

The outside optimizer's problem is to provide hardening and/or
evacuation capabilities for population and hardening and/or dispersion
capabilities for industry. Specified survival levels must be achieved
in the face of a nuclear attack by the inside optimizer., These passive
defense measures are to be supplied at minimum cost to protect against
attacks on either population or industry. Let g = 1 denote population

and ¢ = 2 denote industry,

Define

yﬁj = offensive weapons of type j targeted to location i when
attack is against target type £,

Yj = offensive weapons of type j available,

zﬁl = hardness of target type ¢ at location i,

zﬁz = evacuation capability of population or dispersal capability
for industry from location i,

aﬁj = scaling factor for damage by offensive weapon of type j
on target type ¢ in location i,

Bﬁl = ‘hardness parameter for target type 4 at location i,

gfz = target evacuation or dispersion parameter at location 1i,

wﬁ = value of the target type ¢ at location i.




Let the surviving value of target type £ at location i. for
offensive allocations yij(j =1, ..., Q) be given by
wz 1l - ex - z z Bz £ 1 - ex g 4
i P i1%i1 T Pi2%i2 P j=1 &5 Jy il

L 2 L

The expression exp(- 811 i1 812 12) gives the fraction of the target

that is susceptible to attack. Thus the effect of increasing 2%

il
and/or z§2 is to remove a portion of the target. If ziz = 0, then
none of the population is evacuated and if z§2 = 0, then none of the
industry is dispersed. The variables zfl may be bounded from below,

say by Efl’ to represent the natural hardness of the population and
disperson of industry.
q 2 . .
The expression |1 - exp (- T aljyij) gives the fraction of
. J—l
the target which is destroyed by the attack yfj (1 =1, vy, Q).
S .
The sum T aijyij provides a measure of the joint effects
j=i

of various types of weapons. The parameters aﬁj scale weapons of

S P ] —

different yields to an equivalent number of a standard weapon.

A cost function for hardening the targets might be

1 _31 )d

il il ’
1 =8

where c > 0, 27, 2 25y

. . . 1 " .
evacuation is linear, namely, €.z ,. A similar cost function for

and d > 1. Assume further that the cost of

industrial protection is assumed.

10




The overall problem of providing defensive forces at minimum cost to
achieve weighted population survival ry and weighted industry survival r,
. 1 : : 2 :
is to choose 23 (2 = Lyp somy PI; ziz (i=1, ..., p), 25 (2 = 15 13- 5 Bl

2 . . . .
10 ¢Gi =0 ., D)% yij (i=1, ..., ps J =1, o3 Q) y i (i=1, ..., p;

e il AL mipd- . B gEr
minimize 121 c (zil - zil) + iE e;2i0

P 2 2 —p.a? P 29
+ I c(z; z25.) + £ e,z
i a0 i1 - “an i=1 i2
subject to
minimum g wh 11 - exp (- Bl zl - Bl zl )[l - exp (- Z al Yi.)
1 j=1 ¥ i s 1255 7 = ij743
Yij !
p 1 Z J &l
L y;3<Y¥, 3=1, ..., a -
i=1
¥ =2 1% 2 2 [1 onle b Ehoid
O 21 5L - exp (- BiyZiy - BipZip) [t - exe (- o8, a9
Vit
ij 5 > 7,
z ij f_ Yj ’ b= 1’ ) q
i=l
1 =1 -
BBy v W EL P
2 -2 .
257 2 %y > i=1, <5 R

1y




IV. STRATEGIC BOMBER FORCE STRUCTURE AND BASING OPTIMIZATION

This model is an extension of the model presented in Reference [4].

The problem is to provide a minimum-cost force structure and basing
of strategic bombers which will enable the outside optimizer to
achieve specified survivability in the face of a submarine-launched
ballistic missile (SLBM) threat. The outside optimizer chooses bomber
forces and basing, and the inside optimizer chooses allocations of
submarines to launch areas and targeting of SLBMs to bases to minimize

surviving bombers.

Let i =1, ..., p index the missile launch area, j =1, ..., q
index the bomber bases and t = 0, 1, ..., r index time. Define
Xj = number of bombers assigned to base j ,
f(xl, 5 xq) = cost of providing bombers Xy ok xq,
g§(xj) = number of bombers on base j at time t when
the number at t = 0 is xj s
sz = number of missiles launched from area i which
are targeted to arrive at base j at time t ,
pgj = probability that a missile launched from
area i1 hits base j at time t ,
tij = missile flight time from launch area i to
base j ,
M, = number of missiles at launch area i ,

M = total number of missiles available.




If the objective of the attacker is to minimize the number of bombers

surviving, his problem is to choose 2% and M, to minimize

Vt vs
d @ = D ¢ i3 tel ¢ i3
z T gj(xj) i (s = le) (1 = pij)
Jj=1 t=0 i=1 s=0
subject to
q t+tij
_2 vij __Ml:l:l, ,p,t’—O, > T H
J=1
p
% M <M =
=i W <

Let S be the required number of surviving bombers after absorbing

the optimal attack. The overall problem is to choose x
t

12 =t Xq

Vij (1 =2, senmP; J = Lyt awese @5 £ 5 05 senmelds &nd M, (= 15 mem» BD
to
minimize f(xl, b o xq)
subject to
I
r t s
a T ¢ D g g "B s \Vij
minimum £ £ g (x;) mw (1 - pij) m (1 - pij)
t j=1 ¢=0 J I i=1 s=0
s Me
y 1J b1
q b+t
.E ij J_<_M1: i=1, ..., p, t =0, » T, >8 .
J.‘:
s M
T M. <
= =
e |

13




The optimization problem in the constraint is a convex nonseparable
nonlinear program. A detailed example of a special case of the inside
mathematical program is given in Reference [4], If the functions
gg(xj) are concave in Xj’ then the constraints satisfy the conditions
necessary for a convex program. Finally, if f(xl, 35, xq) is convex,

the overall problem is a convex program,

14




V. STRATEGIC DEFENSE OPTIMIZATION TO ACHIEVE
SPECIFIED POST-ATTACK PRODUCTION CAPABILITIES

This model is described in more detail in Reference [5]. It is
summarized here.

One of the planning considerations for defense against a nuclear
attack is the assurance of sufficient surviving economic capacity to
support the surviving population. The present model contains an
aggregate representation of the nation-wide production base. The
effect of strategic defenses, consisting of both active defenses (for
example, anti-ballistic missiles) and passive defenses (for example,
population shelters), against offensive weapons is modeled. The
defender chooses a minimum-cost mix of active and passive components
which ensures that specified post-attack production capacities will
survive after an optimized attack.

The country is partitioned into j = 1, ..., n geographic regions,
allowing consideration of varying population and production-base
densities. The general model allows i =1, ..., m different economic
sectors in each geographic region. Each economic sector is charac-
terized by a Cobb-Douglas production function. Also, k =1, ..., P
denotes the different types of defensive resources and ¢ =1, ..., 4
the different types of offensive weapons.

Define

xjk.= number of defensive resources of type k assigned

to region j ,




vjz = nunber of offensive resources of type ¢ targeted
on region j in an attack on economic sector i ,
VA=

number of offensive weapons of type ¢ .

The post-attack production function (in terms of value added) in

economic sector i in region j is assumed to be

| =l & o a5
- ra,. x. - b.., V.
Hy, = 45Kk RS DET
1 -e ' 1 - ¢
- -
= 1%i5
P q
X i
a - T a X - % b, v
¥ Kllj k=1 ijk ik 151 138 " J9
J i = € . = @ .
A .y
- _8,-j
B - g'aP,kx,y < g bg.zvii
'LijJ K=y LikKTJK gy 134734
1l -e¢ l-c
Ifvi =0, £=1, ... q, then the production function has the
Jff b > > >
standard Cobb-Douglas form
.. B..
1) 1]
Hij Kij Lij s

where Hij represents the technological efficiency, ij is the capital
base, and Lij is the labor base. The exponents a5 and sij are the
elasticities of value added with respect to capital and labor,

respectively,

16




The expressions of the form

modify the efficiency, the capital base, and the labor base as a
function of the offense and defense allocations. The expression is

. i . . .
convex in vjn, concave in x and has the asymptotic properties

Jk’
expected for the physical processes being modeled, The parameters

oo o and bijz can be estimated from detailed analyses.

The aggregate production for the whole country is the sum of the
production across geographic regions.
P n
The cost of defensive resources is taken to be T § c. X., ,
-1 527 JK Ik
k=1 j=1
where cjk is the unit cost of defensive resource k in region j

The requirements for surviving post-attack production capacity

are given by ri( I = Ly wewmy M)
The overall model is to choose xjk (j=1, ..., n k=1, ..., p)
and v?z Cd =21 oowpMyd= Ly oows, B b = Ly seunm 9) ke
. p o
minimize kEl jil Cjkxjk

17




subject to

The overall model is a convex program.

are convex nonseparable nonlinear programs.

18
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VI. OPTIMIZATION OF WEAPON MIX AND
TARGETING FOR ATTRITION PROCESSES

A conventional warfare model is formulated for the attrition of
a heterogeneous mix of weapons. The problem for the outside optimizer
is to choose a minimum-cost mix of weapons and their optimal targeting
patterns against the optimal targeting of the weapons of the inside
optimizer. The force size must be sufficient to allow the outside
optimizer to achieve a specified differential value of weapons at
the end of the engagement.

Let the index i =1, ..., m denote weapon type for the outside
optimizer and J =1, ..., n denote weapon type for the inside

optimizer. Define

X, = initial number of outside optimizer's weapons of type i ,

yj = initial number of inside optimizer's weapons of type j ,

uij = number of outside optimizer's weapons of type i assigned
to fire on inside optimizer's weapons of type j ,

. vji = number of inside optimizer's weapons of type j assigned

to fire on outside optimizer's weapons of type i ,

bij = effectiveness of outside optimizer's weapon type i on
inside optimizer's weapon type j ,

rji = effectiveness of inside optimizer's weapon type jon outside

optimizer's weapon type i .
In classical Lanchester theory the instantaneous attrition to

a weapon by type i from an opposing weapon of type j is given by

19




or

X, - T..X.Y.
1 T 1x1y3 ’
the first equation being the "square™ law and the second the "linear®

law. More generally,

where 1 < p < 2, gives the "pM-law, with the square and linear laws
being special cases.

The heterogeneous Lanchester attrition considers more than one
weapon type for each opponent. The heterogeneous analog to the

p-law is

X; = - X 'El rjivji s

where 1 < P; < 2, 1 =1, ..., m,

In conventional Lanchester analysis the parameters bij (and rji)
are instantaneous attrition rates. For purposes of the model here it
is useful to consider these parameters to be the kill rates over some
positive length of time. Thus, bij might be the average effectiveness
of a weapon type i firing at a weapon type j for a day, a week, or
longer. The number of surviving weapons of type i for the outside

optimizer at the end of the length of time is




Similarly the surviving weapons of type j for the inside optimizer

are

where 1 < qj T 23 Jasl Ly s e

it Bi and pj are the values of the surviving weapons for the
outside optimizer and for the inside optimizer, respectively, then
the model for finding minimum-cost forces subject to the difference
in value of surviving weapons being at least r 1is to choose

X = (xl’ SISIENS xm)s u = (uij)’ and v = (Vji)(l = ls ceey My

1l

J iy newyy Ayl Ee

minimize f(x)

subject to

m 2—pi n 2-qj m
max min{ & B.[x. - X. T r..v..] - I p.[y. - Y. b b..u..}g 2 By
[ueU(x) veV;i=l hs s R I N S £ B

where

n
U(x) Zl uij

]
P e
[y
.
.
v
(@]
IA
x

3

m
vV = gvji > 0O: izl Vji < yj, j=1, ..., n

and where f(x) is the cost of forces x .

21
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T

Applying the result in Reference [3], the above optimization
model is equivalent to the following:
minimize f£(x)
X, U

subject to

ne s
e
IA
X
[

n
[
3

The inside mathematical program is a linear program. Further, the
inside objective function is concave in (x,u). Thus, if f(x) is
convex, the program is convex. There is a possibility that an
"overkill" of forces will occur if the attrition parameters are not
small relative to the number of weapons. The numerical solution

of the problem should be examined for this eventuality.

22




VII. OPTIMIZATION OF AIRCRAFT DEPLOYMENT AND SORTIE ALLOCATION
The purpose of this model is to choose optimal Blue aircraft
deployments to theater, and Blue and Red optimal sortie allocations,
assuring that Blue achieves specified differences of cumulative ground
and air firepower at the end of a war. The war consists of two periods.
Red aircraft deployments are fixed. The sortie allocations are to

combat air support (CAS) and air-base attack (ABA).

Let t

Xe

Ye

ul, u2

Vl,V2

Destruction of aircraft is a function of the number of opposing

ABA aircraft. The attrition of Blue aircraft is given by

1, 2 index time, and

number of Blue aircraft deployed to theater for use in
period t

number of Red aircraft deployed to theater for use in
period t

number of Blue aircraft assigned to CAS and ABA,
respectively, in period 1

nunber of Red aircraft assigned to CAS and ABA,
respectively, in period 1

kill parameter for Blue ABA killing Red aircraft

kill parameter for Red ABA killing Blue aircraft
firepower per Blue CAS sortie

firepower per Red CAS sortie

cost per Blue aircraft introduced at time t

required cumulative firepower difference by time t.

_QV
X(1 - e 2) 5
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and similarly for Red. Both sides allocate all of their aircraft
to CAS 1in the second period, since aircraft allocated to ABA would

have no effect due to the war having ended.

The two-period optimization model is to choose X15 Xg, Up, U,
Vys Vo to
mlglmize CyXq + CoX,
1°72
subject to
-Qv2
max min {fru + (X +X,=%X, (1 - e )]
+u, <x  fv.+v, < L ek > S
U tuas [V1tYeSYy &5p €

_auz
. g[vl = (yl+Y2_yl(l - € ))]}

Applying the result of Reference [3] the problem can be written as

to choose X15 Xos Ups Upy Vi, YV, to
minimize c,x; + C,Xx
171 272
12 %2oU1s Y
subject to
B -8v, -
min {f[ul + (xl+x2-xl(l - e )]
V1>V2 > S

- glvy + (y+y,-yy(L - e 2)]}

|
<
=
+
<
N
IA

Y1

<%

The overall program is convex, and the inside program is also convex,
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