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ABSTRACT 

Theory, computation, and an example of mathematical programming 

models with optimization problems in the constraints have been dis- 

cussed in a previous paper [1]. A computer program for solving 

mathematical programming models with nonlinear programs in the 

constraints has been presented in a subsequent paper [2], A 

procedure for transforming mathematical programs with two-sided 

optimization problems in the constraints into mathematical programs 

with nonlinear programs in the constraints, enabling solution by 

the computer program of [2], has been given in r 3]. 

The present paper formulates models of defense problems which 

are convex programs having the mathematical properties treated in 

the previous papers. The models include several strategic forces 

planning models and two general purpose forces planning models. 
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I. INTRODUCTION 

Reference [1] presents theory, interpretations and an example of 

mathematical programs with optimization problems in the constraints. 

The first result there deals with  Problem(A):  find vectors 

x = (Xp ..., xn) and v
1 = (v*, ..., v£ ), for i = 1, ..., m, to1 

minimize f(x) 
x e X 

subject to 

h.(x) = min g1(x,v1) > 0 ,   i = 1, ..., m 

v eV 

If f(x) is a convex function of x on a convex set X and g (x, v1) is 

concave in "x on X for every v1 e V
1 and for i = 1, ..., m, then the 

mathematical program is a convex program. In order to computationally 

solve this problem it is desirable that g (x, v ) be convex in v and 

the set V1 be convex.  In Reference [1] an example is presented and 

solved in which g (x, v ) is concave in x , and min g (x, v ) is a 

v eV 

linear programming problem in v . 

The second result in Reference [1] deals with Problem (B): find 

vectors x = (x., ..., xn), v = (v][, ..., \ ),  and u = ("-]_, ..., u£-)> 

for i = 1, ..., m, to 

1. All indicated maximums and minimums are assumed to exist, 



minimize f(x) 
x e X 

subject to 

h\(x) =  max   min g (x, u , v ) > 0 ,  i = 1, ..., m . 

u1eU1(x) v1eV1 

If f(x) is a convex function of x on a convex set X , g1(x, u1, v1) 

is concave in (x, u1) for every v1 e V1,-arid U1(x) is a convex set for 

x e X, for i = 1, ..., m, then the mathematical program is a convex 

program.  In order to computationally solve the problem it is also 

desirable that g (x, u , v ) be convex in v  and the set V1 be 

convex. 

Reference [2] presents a computer program for solving Problem (A) 

where the constraints min g (x, v ) > 0, i = 1, ..., m contain non- 

v eV 
linear programs. 

Reference [3] shows how Problem (B) can be solved by the computer 

program of Reference [2], 

The purpose of this paper is to present optimization models having 

the structure of the above mathematical programs for some defense 

planning problems. Each of the problems that follows is formulated in 

terms of its major planning variables. Specific functional forms are 

assumed which have the general properties possessed by the physical 

process being modeled. These functional forms have parameters, the 

values of which could be determined from empirical data or detailed 

quantitative descriptions of the physical processes. This paper 

concentrates on the problem formulation. All of the models considered 

are convex programs. 
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II. GENERAL CHARACTERISTICS OF THE MODELS 

Consider Problem (A). The constraint set for the mathematical 

program is equivalent to 

| x e X: g1(xJ v
1) > 0 for all v1 e v1 , i = 1, ..., m } . 

This formulation renders a ready interpretation of the problem. The "outside 

optimizer" chooses forces x such that each of the...m effectiveness 

requirements in the constraint set can be met at a minimal value of 

the objective function, no matter what feasible choice of v , ..., v 

the "inside optimizer" makes. An alternative interpretation is that 

of the outside optimizer choosing x , followed by (or simultaneous 

with) the inside optimizer's choice to minimize the effect of x . 

The first military model having the structure of Problem (A) is 

that of an outside optimizer choosing forces x with minimum cost f(x) 

which can achieve effectiveness objectives r,, .... r in the face 1      m 

of optimal allocations of v1 e V (i = 1, ..., m) by one inside optimizer 

in an attempt to minimize the effects. The model is to choose x and 

1      m . 
v , ..., v to 

minimize f(x) 

subject to 

min g (x, v ) > r.  ,   i = 1, ..., m 

v1eV 

The outside optimizer can achieve his objectives against any of the 

various uses of one inside optimizer's resources V . 
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The second military model having the structure of Problem (A) 

is that of an outside optimizer choosing forces x with minimum cost f(x) 

which can achieve any one of the objectives r , ..., r in the face 

of optimal allocations of v e V (i = 1, ..., m) by m inside 

optimizers. The model is to choose x and v , ..., vm to 

minimize f(x) 

subject to 

min g (x, v )>- r.  ,   i = 1, ..., m 
i r,i v eV 

The outside optimizer chooses x, and m inside optimizers choose 

v , ..., v . The outside optimizer will be capable of achieving his 

objective in any one conflict in which he engages.  One example might 

be the outside optimizer planning to fight and win any one conventional 

war but not more than one simultaneously. 

The third military model having the structure of Problem (A) is 

that of an outside optimizer choosing forces x , ..., x with minimum 

cost f(x , ..., xm) which can achieve all of the objectives r , ..., r 

in the face of optimal allocations of v eV (i = 1, ..., m). The model 

1      ml      m . is to choose x , ..., x and v , ..., v to 

. . .   r,   1      ms minimize f(x , ..., x ) 

subject to 

min g (x , v ) > r.  ,   i = 1, ..., m 



There are two interpretations of this problem. There may be one inside 

optimizer who divides his resources into V , ..., V™, or there may be 

m inside optimizers with resources V , ..., V™. In either case, the 

outside optimizer can simultaneously achieve all of the objectives. 

Consider Problem (B). The constraint set for the mathematical 

program is equivalent to 

| x e X: min g (x,u ,v ) > 0 for some u e U (x) , i = 1, ..., m} . 

v eV 

Again, this formulation provides a ready military interpretation. The 

outside optimizer chooses forces x .  For this choice, there is 

a feasible set of alternative uses of these forces, in achieving an 

effectiveness objective i , namely U (x). Thus the outside optimizer 

chooses a force level x and an optimal and feasible use of these 

forces for each of the objectives, namely u e U (x) (i - 1, ..., m). 

The inside optimizer makes his feasible choices v e V (i = 1, ..., m) 

to minimize the effects of the outside optimizer's choices. 

It is shown in [3] that Problem (B) is equivalent to choosing x 

J 1      m .. and u , ..., u to 

minimize f(x) 

subject to 

x e X , 

u G U (x) ,   i = 1, 

i/   i  i\  r.     •  n nun g(x, u,v)>0 ,   i = l 

v eV 

Variants of Problem (B) analogous to those discussed above for 

Problem (A) can also be treated. 
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III.  STRATEGIC OFFENSE OR DEFENSE FORCE STRUCTURE OPTIMIZATION 

This section presents an offense and a defense force structure 

model. Each is a mathematical program with nonlinear programs in the 

constraints. Both are convex programs. A passive defense model is 

presented in detail. 

In the strategic offense model, the outside optimizer chooses 

minimum-cost offensive forces capable of achieving specified destruction 

of various resources by type, despite allocation of specified defensive 

forces of the inside optimizer to minimize the destruction. 

In the strategic defense model, the outside optimizer chooses 

minimum-cost defensive forces capable of assuring specified survival 

of various resources by type, despite the optimal allocation of 

specified offensive forces of the inside optimizer to minimize the 

surviving resources. 

Definitions 

Let the indexes of locations be i = 1, ..., p, of offensive 

weapon types be j =1, ..., q, and of defensive resource types be 

k = 1, ..., r. Let the index of target types be I =  1, ..., s. 

Define 

y.. = offensive weapons of type j targeted to location i, 

z., = defensive resources of type k assigned to location i, 

i 
in location i by offensive weapons of type j, 

a.. = parameter associated with destruction of target type I 



0 

^ik = Parameter associated with defense of target type i  in 

location i by defensive resources of type k, 

W-    -  value of target type i  at location i 

f(y) = cost of providing offensive weapons y = (y..)(i = 1, 

...» p» j = I» ..., q), 

g(z) = cost of providing defensive resources z = (z., )(i = 1, 

• ••I P >       5 • ••y       )• 

Effectiveness Function for Offense Optimization 

The measure of effectiveness for offense optimization is destroyed 

value .of type I   . One function which is concave in y.. and convex in 

zik 1S 

jwjexp( - z  B^kzik)[l - exp ( -SaJ^)] . 

In the strategic offense models the outside optimizer chooses y. . and 

the inside optimizer chooses z., , so the function is appropriately 

behaved to yield a convex program. 

Effectiveness Function for Defense Optimization 

The measure of effectiveness for defense optimization is surviving 

value of type l  .    One function which is concave in z., and convex in 

y±j is 

Z wj jl   ■ exp (   • E Bikzik)[l - exp (  - S a^y^)]}   . 
k 

In the strategic defense models the outside optimizer chooses z., and 



the inside optimizer chooses y.., so the function is appropriately 

behaved to yield a convex program. 

Force Structure Optimization Models 

The strategic offense optimization model is to choose y.. 

(i = 1, ...,p; j = 1, ..., q) and zik(i = 1, ..., p; j = 1, ..., r) to 

minimize f(y) 

subject to 

min E W* exp(- S «ikzik)[l 
z ' i        k 

S Zik ± Zk 
l 

exp(- r ajjy±.)] > D£ 

where 

D = specified destroyed value to be assured by outside optimizer, 

Z, = defensive forces of type k available to inside optimizer. 

The strategic defense optimization model is to choose z., 

(i = 1, ..., p; k = l, ..., r) and y^C i = 1, ..., p; j = 1, ..., q) to 

minimize g(z) 

subject to 

mm 
y 

) f w± I1 - ex?<-£ 0ikzik>tl exp(- E a^y^)] 

pij < Yj 

> SJ 

where 

S^ 

Y. = 

specified surviving value to be assured by outside optimizer, 

offensive forces of type j available to inside optimizer. 
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Properties of Models 

The two models are convex programming problems. They contain 

convex programming problems in the constraints. Thus the procedure 

of Reference [2] can be used for their solution. 

Example: Passive Defense Model 

The outside optimizer's problem is to provide hardening and/or 

evacuation capabilities for population and hardening and/or dispersion 

capabilities for industry. Specified survival levels must be achieved 

in the face of a nuclear attack by the inside optimizer. These passive 

defense measures are to be supplied at minimum cost to protect against 

attacks on either population or industry. Let i = 1 denote population 

and l =  2 denote industry. 

Define 

y?. = offensive weapons of type j targeted to location i when 

attack is against target type I, 

Y. = offensive weapons of type j available, 

z1.     =  hardness of target type I  at location i, 

z49 = evacuation capability of population or dispersal capability 

for industry from location i, 

at■  =  scaling factor for damage by offensive weapon of type j 

on target type I  in location i, 

e-? = hardness parameter for target type I  at location i, 

g-f = target evacuation or dispersion parameter at location i, 

wf = value of the target type a  at location i. 



Let the surviving value of target type I  at location i. for 

offensive allocations y..(j = 1, ..., q) be given by 

w* 1 - exp (■^■^|-!xp(- j,««^) 
The expression exp(- ß*z..- B.2z.2) gives the fraction of the target 

« 
that is susceptible to attack.  Thus the effect of increasing z., 

and/or z.? is to remove a portion of the target.  If z._ = 0, then 

2 
none of the population is evacuated and if z.~ = 0, then none of the 

0 

industry is dispersed. The variables z., may be bounded from below, 

—I say by z.,, to represent the natural hardness of the population and 

disperson of industry. 

The expression ll - exp (- Z a-.y^.J 
\ j=l 13 13/_ 

gives the fraction of 

the target which is destroyed by the attack yf. (j = 1, 

Hi 
The sum   E a*^y*j  provides a measure of the joint effects 

, Q). 

j=l ij ij 

of various types of weapons. The parameters a-- scale weapons of 

different yields to an equivalent number of a standard weapon. 

A cost function for hardening the targets might be 

c<4i 3i> 
where c > 0, z., > "z. , and d > 1. Assume further that the cost of 

evacuation is linear, namely, e.zi2. A similar cost function for 

industrial protection is assumed. 
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The overall problem of providing defensive forces at minimum cost to 

achieve weighted population survival r    and weighted industry survival r„ 

112 
is to choose z±    (i = 1,   ...,  p),   z±2 (i = 1,   ...,  p),   z±1 (i = 1,   ...,  p), 

zi2 (i = 1,   ...,  p), yj.  (i = 1,   ...,  p; j = 1,   ...,  q),  y
2    (i = i,   ...,  p; 

j =1,   ...,  q) to 

P      !    1 -id1 P      1 1 
minimize    E    c  (z. -  z..)       + E e.z. _ 

i=l           ll 1J- i=l    1 " 

P       2    2 — 9    d                    2  2 
+    E    o\z2 - z\f    + E e'z^ 

i=l          aj- 1X i=i    i:L^ 

subject   to 

minimum    E  Vq. 1 - 

minimum    E   WIT 
2        i=l   * 

yij 

exp (-  P-^Z-Q 

E   y.. < Y. 
1=1^-   3 

/     02    2 exp (- ßi;Lzi;L 

E    yj, < Y   , 
i=l    13        J 

- Bi2«J2)[l - exp (-   .^VaV] 

j = l, ..., q 

2   2 Nr 
"  *i2Zi2>l 1 - exp (• 

q      2     2 
E    a...y. 

j=l ij- iJ i>] 

j = 1, ...» q 

> r' 

^r2    • 

z1    >z1 zil - zil » 

2^-2 
!il > zil 

i = 1,   ...,  p 

i = 1,   ...,  p 

11 



IV. STRATEGIC BOMBER FORCE STRUCTURE AND BASING OPTIMIZATION 

This model is an extension of the model presented in Reference [4], 

The problem is to provide a minimum-cost force structure and basing 

of strategic bombers which will enable the outside optimizer to 

achieve specified survivability in the face of a submarine-launched 

ballistic missile (SLBM) threat. The outside optimizer chooses bomber 

forces and basing, and the inside optimizer chooses allocations of 

submarines to launch areas and targeting of SLBMs to bases to minimize 

surviving bombers. 

Let i = 1, ..., p index the missile launch area, j = 1, ..., q 

index the bomber bases and t = 0, 1, ..., r index time. Define 

x. = number of bombers assigned to base j , 

f(x,, ..., x ) = cost of providing bombers x , ..., x , 

q.(x.) = number of bombers on base j at time t when 

the number at t = 0 is x. , 

v.. = number of missiles launched from area i which 
ID 

are targeted to arrive at base j at time t , 

p.. = probability that a missile launched from 

area i hits base j at time t , 

t.. = missile flight time from launch area i to 

base j , 

M. = number of missiles at launch area i , 

M = total number of missiles available. 

12 



If the objective of the attacker is to minimize the number of bombers 

surviving, his problem is to choose v.. and M. to minimize 

q  r ij t-1 v. 

£  E g^(x.) TT (l - P*\)   TT (l - p?.) 
13 

j=l t=0 3 3 i=l 13 s=0 ID' 

subject to 

q  t+t.. 
s v-i-i 1D < Mi »  i = 1, ..-, P, t = 0, ..., r  , 

j=l 1;) 

EM.   < M  . 
i=l 

Let S be the required number of surviving bombers after absorbing 

the optimal attack. The overall problem is to choose x , ..., x , 

v±. (i = 1, ..., p; j = 1, ..., q; t = 0, ..., r), and M± (i = 1, ..., p) 
13 

to 

minimize f(x,, ..., x ) 

subject to 

q p t   P    t vii t_3    s vij 
minimum E  E g-;(*-:) TT (1 - p.-j)     rr (1 • p,.^) 
t  M j=l t=0 3    3    i=l v.., M. J 

IJ'  1 

13 s=0 13 

q  t+t 
E v-iH   < 

M
T »  i = 1, ..., P, t = 0, . 

j=l 1J 

EM.  < M 
i=l 

» r, > S 

J 
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The optimization problem in the constraint is a convex nonseparable 

nonlinear program. Ä detailed example of a special case of the inside 

mathematical program is given in Reference [4] . If the functions 

g.(x.) are concave in x., then the constraints satisfy the conditions 

necessary for a convex program.  Finally, if f(x,, ..., x ) is convex, 

the overall problem is a convex program. 
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V.  STRATEGIC DEFENSE OPTIMIZATION TO ACHIEVE 
SPECIFIED POST-ATTACK PRODUCTION CAPABILITIES 

This model is described in more detail in Reference [5]. It is 

summarized here. 

One of the planning considerations for defense against a nuclear 

attack is the assurance of sufficient surviving economic capacity to 

support the surviving population. The present model contains an 

aggregate representation of the nation-wide production base. The 

effect of strategic defenses, consisting of both active defenses (for 

example, anti-ballistic missiles) and passive defenses (for example, 

population shelters), against offensive weapons is modeled. The 

defender chooses a minimum-cost mix of active and passive components 

which ensures that specified post-attack production capacities will 

survive after an optimized attack. 

The country is partitioned into j = 1, ..., n geographic regions, 

allowing consideration of varying population and production-base 

densities. The general model allows i = 1, ..., m different economic 

sectors in each geographic region. Each economic sector is charac- 

terized by a Cobb-Douglas production function. Also, k = 1, ..., p 

denotes the different types of defensive resources and £ = 1, ..., q 

the different types of offensive weapons. 

Define 

x ., = number of defensive resources of type k assigned 
ok 

to region j , 

15 



v. = number of offensive resources of type i  targeted 
3 * 

on region j in an attack on economic sector i , 

V = number of offensive weapons of type g,  . z 

The post-attack production function (in terms of value added) in 

economic sector i in region j is assumed to be 

H. 
3J 

1  II - E a.., x., 
k~i ljk -,k -Ä W. 

] - e 

a • • 

«is3 
1 - 

P     K 
-  Z a. ., x., 
k=l 3jk Jk 

c 

1 - 

P    l 

k=l «fc Jk 

e 

- E  b... v., 

^ .L  i - r. }>. . ,v 

">J 

1*1 i:j' ^ 
-  c 

3-3 

If v.  = 0, I  = 1, ..., q, then the production function has the 
3* 

standard Cobb-Douglas form 

a- • 8. . 
H.. K,^ L.1J  , 
13  13   13   ' 

where H.. represents the technological efficiency, K.. is the capital 

base, and L.. is the labor base.  The exponents a.• and 3.. are the 

elasticities of value added with respect to capital and labor, 

respectively. 

16 



The expressions of the form 

q     i 

modify the efficiency, the capital base, and the labor base as a 

function of the offense and defense allocations. The expression is 

convex in v. , concave in x., , and has the asymptotic properties 

expected for the physical processes being modeled. The parameters 

a.., and b..„ can be estimated from detailed analyses, 
vjk    13 i ■ - 

The aggregate production for the whole country is the sum of the 

production across geographic regions. 

p  n 
The cost of defensive resources is taken to be  E  S c.,x., , 

k=l j=l Jk Jk 

where c„ is the unit cost of defensive resource k in region j . 

The requirements for surviving post-attack production capacity 

are given by r.( i = 1, ..., m). 

The overall model is to choose x-k ( j = 1, ..., n; k = 1, ..., p) 

and v"!' ( i = 1, ..., m; j = 1, ..., n; i =  1, ..., q) to 

P  n 
minimize T,      S c.,x 

k=l j=l Jk 3K 

17 



subject to 

r 

minimum EH.. 
i   j=l X3 

v 
31 

..J^i.;^' 
a- • 

°ii 
13 

6. • 

n 

K q K  i - E b*. V 
1 - e"^

aiJkXj1l ,n^~iit'U 

- T  aV..x.. /   - y bj..v* 

Bij 

AV^-V' ' £ = 1, . . ., q 

> ri 5 i-l>. • • >>R, 

The overall model is a convex program. The inside optimization problems 

are convex nonseparable nonlinear programs. 
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VI. OPTIMIZATION OF WEAPON MIX AND 
TARGETING FOR ATTRITION PROCESSES 

A conventional warfare model is formulated for the attrition of 

a heterogeneous mix of weapons. The problem for the outside optimizer 

is to choose a minimum-cost mix of weapons and their optimal targeting 

patterns against the optimal targeting of the weapons of the inside 

optimizer. The force size must be sufficient to allow the outside 

optimizer to achieve a specified differential value of weapons at 

the end of the engagement. 

Let the index  i =1,  , m denote weapon type for the outside 

optimizer and  j = 1, ..., n denote weapon type for the inside 

optimizer.  Define 

x. = initial number of outside optimizer's weapons of type i , 

y. = initial number of inside optimizer's weapons of type j , 

u.. = number of outside optimizer's weapons of type i assigned 

to fire on inside optimizer's weapons of type j , 

. v.. = number of inside optimizer's weapons of type j assigned 

to fire on outside optimizer's weapons of type i , 

b.. = effectiveness of outside optimizer's weapon type i on 

inside optimizer's weapon type j , 

r.. = effectiveness of inside optimizer's weapon type j on outside 

optimizer's weapon type i . 

In classical Lanchester theory the instantaneous attrition to 

a weapon by type i from an opposing weapon of type j is given by 

19 



x. = - r..y. 

or 

x. = - r.. x. y. , 

the first equation being the "square" law and the second the "linear" 

law. More generally, 

2-p 
x. = - r..x. *y. , 

where 1 < p < 2, gives the "p"-law, with the square and linear laws 

being special cases. 

The heterogeneous Lanchester attrition considers more than one 

weapon type for each opponent. The heterogeneous analog to the 

p-law is 

2-Pi n 

xi = - xi  " * rjivji » 
j=l J 

where 1 < p. < 2, i = 1, ..., m. 

In conventional Lanchester analysis the parameters b.. (and r..) 

are instantaneous attrition rates. For purposes of the model here it 

is useful to consider these parameters to be the kill rates over some 

positive length of time. Thus, b.. might be the average effectiveness 

of a weapon type i firing at a weapon type j for a day, a week, or 

longer. The number of surviving weapons of type i for the outside 

optimizer at the end of the length of time is 

2-p.  n 
x - x  1 T    r..v. . . 
i   i    .   ]i ]i ii    j=1 j 

20 



Similarly the surviving weapons of type j for the inside optimizer 

are 

2-q. m 
y • - y • 3    E b. .u. . , 

where 1 < q. < 2, j = 1, ..., m. 

If 8. and p. are the values of the surviving weapons for the 

outside optimizer and for the inside optimizer, respectively, then 

the model for finding minimum-cost forces subject to the difference 

in value of surviving weapons being at least r is to choose 

x = (x1? ..., xm), u = (U.J.), and v = (v.jXl = 1, ..., m; 

j = 1, ..., n) to 

minimize f(x) 
x 

subject to 
It  m   r-     2-p.  n      l   n   r     2_<^' m     1 f 

max  min Z Bj^k-x x    Z r v j- Z p.  y - y. 3    Zb u 
ueU(x) vevii=l lL X        X        j=l 3X 3^       j=l 3l3        3 i=l 3    3J[ 

where 

\ n 

U(x) = \u   .  > 0:  Z u.. < x., i = l, ..., 1 
I «      j=l *J 

V = |vj;L > 0:  E v..<y., j=l  n| 

> r> 

and where f(x) is the cost of forces x . 
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Applying the result in Reference [3], the above optimization 

model is equivalent to the following: 

minimize f(x) 
x, u 

subject to 

n 
E u. . < x. ,  i = 1, ..., m 

j=l 1J   * 
uij > ° »  i = 1, ..., m; j = 1, ..., n 

\m   r     2_pi n        i   n   r     2_qi      1/ mm E 8. x. - x.    E r..v..  - Ep. y. - y.  Jb..u..} 

m 

i=l J1        J 

i = 1, ..., m; j = 1, v. . > 0 
Ji - 

n 

> r 

The inside mathematical program is a linear program. Further, the 

inside objective function is concave in (x,u). Thus, if f(x) is 

convex, the program is convex. There is a possibility that an 

"overkill" of forces will occur if the attrition parameters are not 

small relative to the number of weapons. The numerical solution 

of the problem should be examined for this eventuality. 
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VII.  OPTIMIZATION OF AIRCRAFT DEPLOYMENT AND SORTIE ALLOCATION 

The purpose of this model is to choose optimal Blue aircraft 

deployments to theater, and Blue and Red optimal sortie allocations, 

assuring that Blue achieves specified differences of cumulative ground 

and air firepower at the end of a war. The war consists of two periods. 

Red aircraft deployments are fixed. The sortie allocations are to 

combat air support (CAS) and air-base attack (ABA). 

Let t = 1, 2 index time, and 

x. = number of Blue aircraft deployed to theater for use in 

period t 

y = number of Red aircraft deployed to theater for use in 

period t 

u,,u? = number of Blue aircraft assigned to CAS and ABA, 

respectively, in period 1 

v,,v = number of Red aircraft assigned to CAS and ABA, 

respectively, in period 1 

a = kill parameter for Blue ABA killing Red aircraft 

8 = kill parameter for Red ABA killing Blue aircraft 

f = firepower per Blue CAS sortie 

g = firepower per Red CAS sortie 

c. = cost per Blue aircraft introduced at time t 

S. = required cumulative firepower difference by time t. 

Destruction of aircraft is a function of the number of opposing 

ABA aircraft. The attrition of Blue aircraft is given by 

-Bv 
x(l - e ')  , 
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and similarly for Red. Both sides allocate all of their aircraft 

to CAS in the second period, since aircraft allocated to ABA would 

have no effect due to the war having ended. 

The two-period optimization model is to choose x-., x2, u , u2, 

vp v2 to 

subject to 

max 
u1+u2<x1 

minimize ex + c„x2 
x^, x2 

-flv, / -nv2 
min  -SfTu1 + (x-j+Xj-x^l - e   )] 

v,+v <y 
L    z    L - g[v1 + (y^-y^l - e  ^))]j. 

-au, > s2 . 

Applying the result of Reference [3] the problem can be written as 

to choose x,, x2, u , u2, v , v2 to 

minimize c.x, + c?x_ 
Xl'X2,U1'U2 

subject to 

mm 
V1'V2 

-8v, 
|f[u1 + (x1+x2-x1(l - e   )] 

-au, 
gO-L + (y1+y9-y1(i ry2 JV ») 

vl + v2 < yl 

Ul + U2 - Xl 

> S, 

The overall program is convex, and the inside program is also convex. 
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