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ABSTRACT

The NASA Structural Analysis (NASTRAN) Linkage Editor
is a general purpose linkage editor designed to execute
on CDC 6000-series computers. It provides a means of
utilizing available main memory to accommodate large
programs which normally will not fit into the available
main memory. As originally designed, the NASTRAN Linkage
Editor required RUN FORTRAN compiled input. This report
describes a modified and improved version of the Linkage
Editor which has been extended to accept either RUN

FORTRAN compiled or FORTRAN EXTENDED compiled input.

ADMINISTRATIVE INFORMATION

The work reported here was performed within the Computer Sciences
Division of the Computation and Mathematics Department. It was carried
out under Task Area ZF0990101, Work Unit 1-1844-007 sponsored by the
Office of the Director of Navy Laboratories (DNL) through the Navy NASTRAN

Systems Office, Code 1844, Naval Ship Research and Development Center.



BACKGROUND

The NASTRAN Linkage Editor was designed to provide an efficient load
capability for NASTRAN jobs being run on the CDC 6000 series computers.
It was limited, however, to input compiled using the RUN FORTRAN compiler.
Since RUN is being phased out, and since it was desired to use input com-
piled using the FORTRAN EXTENDED (FTN) compiler, this project was initiated
to modify the Linkage Editor to accept FIN input. In addition, the Linkage
Editor was to be converted to FIN compilable code.

A detailed description of the modifications made to the Linkage Editor
is given in A-pendix A. Excerpts from the NASTRAN Programmer's Manual
have been included in Appendixes B and C for the user's convenience.
Further details concerning the design of the Linkage Editor may be found

in the Manual, pp. 7.1-1 through 7.2-206.

The Linkage Editor and the system routines needed for LINKLIB are
maintained on both the NSRDC CDC 6700 and the CDC 6400 computer systems.

For further information, contact: User Services Office
Code 1892.1 v
Naval Ship Research and Development Center
Bethesda, Maryland 20034

1 "The NASTRAN Programmer's Manual," Edited by F. J. Douglas, National

Aeronautics and Space Administration Report NASA SP223, Washington, D.C.
(Sep 1970).



INTRODUCTION

The NASTRAN Linkage Editor is a general purpose linkage editor
designed to utilize memory storage efficiently for medium to large
programs. By using this Linkage Editor, a job which can be logically
structured into segments can be run using less memory, since the entire
job does not have to be present in the user's field length at any one
time.

The Linkage Editor allows the user to divide a program into sub-
programs which can be assembled or compiled independently. These
subprograms can then be combined into a link with contiguous storage
addresses. The link is written onto a random access file for immediate
access., Since the Linkage Editor can process more than one link per
job, each link is written with a unique link number.

During creation of the link, the relocatable binary code of
the user program is inserted into the link as directed by the control
cards. A library search is conducted for external references not con-
tained on the user library file.

In order to minimize main storage requirements, a programmer can
arrange a program into an overlay structure divided into segments.

Two or more segments which need not be in core simultaneously can be
assigned the same storage addresses in different links and can then be
loaded at differgnt times.,

The Linkage Editor can produce a storage map and a cross-reference

table of the subprograms in each link,



PROJECT DESCRIPTION

A flow chart showing input to and output from the Linkage Editor is
given in Figure 1 on the opposite page.
The work of this project was loglcally divided into two phases.

Phase 1 - Convert the Linkage Editor to accept FTN
compiled jobs,

Phase 2 - Convert the Linkage Editor code to FTN,
The original version of the Linkage Editor would not link-edit FTN
compiled jobs. Many minor problems existed, but the major fault was
with the handling of replication (REPL) tables in the relocatable
binary which was being link-edited. This problem required extensive
research into the structure of relocatable binary tables and was
solved by making changes to a number of routines. The main changes
were made to REPLTAB which performs the actual expansion of replication
tables. A description of the modifications made to the Linkage Editor
may be found in Appendix A.

The majority of the changes made during Phase 2 were to the COMPASS
language routines. One major problem involved the transfer of arguments
from FORTRAN to COMPASS subroutines. In RUN, the addresses of the argu-
ments are passed in the B registers while in FIN, Register Al points to a
list of argument addresses. When only one or two arguments were involved,
or the routine was very short, the code was changed to properly pick up
the arguments. When several arguments were passed, the B registers were
set with the addresses of the arguments and no further modification was

made to the code.
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* The Linkage Editor will either update an existing file with new LINKS
or create a complete new file.

Figure 1 - Linkage Editor Input and Output




A second major problem was the preservation of Register AO. With
RUN, since there was no need to save Register AN, A0 was often used as
a scratch register. To avoid such use, the code was changed to omit use
of Register A0. Otherwise, Register A0 is saved on entry to a routine
and restored just prior to returning to the calling program.

In addition to the conversion of the Linkage Editor to FORTRAN
EXTENDED, a number of other enhancements have been made and many minor
bugs found and eliminated.

(1) Dynamic allocation of memory. When it is not necessary to

maintain the maximum field length, memory can be dynamically adjusted
to the size needed for the current link. This feature is disabled by
default but can be enabled by including the following control card iﬁ
the Linkage Editor control cards for LINK 0.

RENAME LINK=LINKS
Note: The NOREDUCE option must still be used to link edit the program.
It need not be used to execute the user's link edited program (OUTFILE)
if memory is to be dynamically allocated. TIf LINK is not renamed LINKS,
the NOREDUCE option must be used.

(2) New end-of-card delimiter. The "end-of-card" control

character has been changed from "$" to "*'". This was done to allow
routines to be renamed with FTN routine names which end in '"$".

(3) New OUTFILE codes. The following codes may be used to indicate

what form of linkage editor output is to be created:

S = T = sequential file

R=2¢C random file



(4) A link-edited version of the Linkage Editor has been produced

which requires even fewer words of memory, although the execution time
is slightly longer. Assuming the use of the default values for the

parameters, the Linkage Editor requires 640008 words of memory, while

the link-edited version requires only 570008.



FEATURES AND FUNCTIONS

The NSRDC version of thils linkage editor has the following features:
+  An unlimited number of overlay levels.

+ Implicit segment loading. The user can describe the overlay

structure to the linkage editor through control cards. This

allows the program to be structured after it has been coded.

*+ Complete communication is maintained between all levels of
overlay.

+ Named common blocks can be explicitly positioned,.

« All segments are maintained on a random file. This provides
immediate access to a needed segment.

« Either FTN or RUN-compiled input may be used as input to ﬁhe
linkage editor.

+ Individual links of a LINKEDIT OUTFILE may be updated without
relinking the entire program.

+ Dynamic allocation of memory as each link is loaded is available.
The linkage editor has five separate functions:

1. Combine assembled or compiled subprograms into links suitable
for loading and execution.

2. Resolve undefined externals using a library file.

3. Rearrange control sections (subprograms) and rename external
references through the use of control statements.

4. Reserve common block space for each common area generated by
FORTRAN or COMPASS.

5. Provide processing options and diagnostic messages.



USING THE LINKAGE EDITOR

There are two prerequisites to the use of the Linkage Editor:

* The program to be link-edited must have a structure which can
be divided into independent or semi-independent segments.

There must be a library (LINKLIB) which contains the system
routines and other routines which are to be used to resolve
unsatisfied external references.

If these prerequisites are met, take the following steps:

Step 1.

Step 5.

Structure the source program into segments in the
form of a tree structure.

Define the tree structure of the program with Linkage
Editor control cards.

Create user libraries of compiled routines.
Create a call file (LINKLIB) which contains the needed
system routines (LINKLIB supplied with the 1inkage

ditor) and user routines which are to be used to
resolve external references.

Execute the Linkage Editor to create the link edited
OUTFILE.

LINKAGE EDITOR CONTROL COMMANDS

The commands discussed in this section are the only commands

which will be accepted by the Linkage Fditor. Note the following:




* The LINKEDIT command must always be first and it must be
followed by a LIBRARY command.
+ Definition of a link is begun with the LINK command and ended
with END. The last command must always be ENDLINKS.
+  Comments may be inserted after a command by using an asterisk
("%") as an end-of-card delineator. Example:
LIBRARY LGO * THIS IS A COMMENT

Several terms which are used generally throughout the individual

descriptions are explained here.

Control Section A control section consists of all the instructions

Segment A segment is the smallest functional unit (one or
more control sections) which can be loaded as a
logical entry during execution,

Region A region i1s a contiguous area of main memory
reserved for specific segments.

Link A link is a set of one or more segments which
comprise a logical subdivision of the program.

LINKEDIT

LINKEDIT 1INFILE = name (a), OUTFILE = name (b),
LET, NOLIST, NOMAP, XREF,
| PARAM (i) = n

Command Description:

The LINKEDIT command specifies input and output file names and

status, what processing is to be performed, and sizes of parameters.

10

and data defined for a subprogram or common block.



INFILE

Parameters:

OUTFILE

a, b

LET

NOLIST
NOMAP

XREF

PARAM

PARAM

PARAM
PARAM
PARAM

PARAM

PARAM

PARAM

oY)
(2)

(3)
(4)
(5)
(6)

(7

(8)

Previously produced Linkage Editor file which is
to be updated during this run.

File on which executable link edited file is to
be written.

R or C indicates the file is a random file or disk.
S or T indicates the file 1is a sequential file.

Directs the Linkage Editor to ignore non-fatal
errors.

Suppresses listing of control statements.
Suppresses storage maps.

Generates external reference tables as specified
by PARAM (7).

Length of FET + buffer for all files (Default: 530).

Maximum number of object decks in all libraries
(Default: 1000).

Maximum size of any table in object deck (Default: 500).
Maximum number of links (Default: 32).
Maximum number of segments per link (Default: 128).

Maximum length of a control section for whlch text
is defined (Default: 5000).

XREF Options (Default: 3).

= 1: References from each subprogram

2: References to each subprogram

3: Both 1 and 2

Intermediate table printout option (Default: O0)

0: Don't print tables

l: Print tables

11




Notes:

The LINKEDIT command must be the first input command. Only
one LINKEDIT command is allowad per job step.

If XREF is selected, the status of INFILE and OUTFILE must
be S or T.

NOMAP is ignored when XREF is selected.

« TIf INFILE = OUTFILE, the status of the files must be the same.
If the status of INFILE is R, a new Scope file is not created.
Therefore, the permanent file must be EXTENDed if the updates

are to be made permanent. Remember that the old copy of INFILE
will not exist after an update run of this type.

Examples:
LINKEDIT OUTFILE = TAPE(S), LET, XREF, PARAM (7) = 3
LINKEDIT INFILE = OLDLKED(S), OUTFILE = NEWLKED(S)
LINKEDIT OUTFILE = ROGER(R), PARAM (6) = 8000

LIBRARY

" LIBRARY libnamel = namel, name 2, ... /libname2/libname3 = name3

Command Description:

The LIBRARY command names all files which may be used on INCLUDE
commands. It must always be in the second input command. There may be

only one LIBRARY command per job step.

Parameters:

libnamel = namel, name2, ... : Files namel and name2 may be
concatenated and renamed libnamel. If duplicate
deck names occur on the files, the first one found
will be used.

12



libname2 Files may be referred to by their actual local
name ... i.e., libname.

libname3 = name3: TFile name 3 may be renamed libname3.
Notes:

(1) The file names are not actually changed, but are renamed only
for Linkage Editor reference.

(2) "/" is used as a delimiter.
Examples:
LIBRARY LGO = LGO, OLDLIB

All references to LGO in INCLUDE commands will cause both
© LGO and OLDLIB to be searched.

LIBRARY LGO

LGO is the only file name which may appear on an INCLUDE command.
LIBRARY LINKED = LGO

All references to LINKED will cause LGO to be searched.
LIBRARY LGO = LGO, OLDLIB/MYFILE/LINKED=0LD

LINK
"LINK n |

Command Description:

The LINK command directs the Linkage Editor to begin processing link n.
The first LINK command must immediately follow the LIBRARY command. Additional
LINK commands may follow the END command of the current link description.

Whenever LINK 0 is processed, it must be processed first.

13



Parameter:

n - A non-negative integer link number.

Example:

LINK O

INCLUDE

| INCLUDE libname (deck, BLKDATA (comname))|

Command Description:

The INCLUDE command directs the Linkage Editor to include all the
named object checks from the specified library in the current link. This
command may appear anywhere between the LINK and END commands for a link.

Subprograms are included in the order found.

Parameters:
libname - Specifies the name of a sequential file listed in the
LIBRARY command.
deck - Specifies the name of an object file which 1s to be
included in this 1link from libname.
BLKDATA - Indicates named common areas are to be included.
comname - Specifies the name of the first mentioned named
common block in the BLOCK DATA subroutine.
Note:

While FIN allows BLOCK DATA subroutines to be given any name, the
Linkage Editor requires the BLOCK DATA subroutine be either unnamed
or have the first six (6) characters of the name be "BLKDAT".

14



Examples:
INCLUDE LGO (SUBL)

INCLUDE LGO (SUB2, SUB3, SUB4)
INCLUDE LINKED (BLKDATA(COM1))

INCLUDE MYFILE (SUB5, SUB6, BLKDATA(COM2))

REGION

{ REGION |

Command Description:

The REGION command defines the start of a new region. It may be used

anywhere within a 1link definition except in LINK O.

OVERLAY

OVERLAY name

Command Description:

The OVERLAY command indicates the beginning of an overlay segment.

It may appear anywhere in a link description, but may not be used in LINK O,

Parameter:

name =~ Specifies a symbolic name which indicates the origin of
a segment. It is not related to external symbols in the
link.

Notes:

(1) An overlay should be specified when two or more routines which
do not have to be in memory simultaneously are needed.

(2) Common blocks should be positioned at the end of the longest
overlay.

(3) Overlay names are defined for each region. Therefore the same
level overlay may have different names in different regions of
the same link. '

15



Examples:
Example 1 - Multiple Region Overlay

| SUB1

[

d b
REGION

B A F
d

REGION
OVERLAY ALPHAL
INCLUDE LGO (A)
OVERLAY ALPHAL
INCLUDE LGO (B)
OVERLAY BETAL
INCLUDE LGO (C)
OVERLAY BETAL
INCLUDE LGO (D)
REGION

OVERLAY ALPHA2
INCLUDE LGO (E)
OVERLAY ALPHA2
INCLUDE LGO (F)
OVERLAY BETA2
INCLUDE LGO (G)
OVERLAY BETA2
"INCLUDE LGO (H)

16



Example 2% - Single Region Structure (No REGION command needed)

SUB1
JCcoM1/
' ALPHA
MOD1 ~ |PrOGB
' BETA ROGC
MOD2 ROGA 4
MOD3

INCLUDE MASTER(SUBL)

INCLUDE MASTER (BLKDATA(COML))
OVERLAY ALPHA

INCLUDE NEWDCKS(MOD1)

OVERLAY BETA

INCLUDE NEWDCKS(MOD2, MOD3)
OVERLAY BETA

INCLUDE MASTER(PROGA)

OVERLAY ALPHA -

INCLUDE MASTER(PROGB, PROGC)

% Examples 2 and 3 have been taken from the NASTRAN Programmer's Manual

17




Example 3 ~ Multiple Region Structure

A
B
ONE C
Region 1 4 AA E
TWO BB F
cC i G
D
DD
——— — ——— ,'-ll A — — ——— —— ——— — -——— a—— — “— ——
THREE I
FourR___|FE
Region 2 { P
K
&
\

INCLUDE OBJ(A, B, C,)
OVERLAY ONE

INCLUDE DECKS (AA, BB)
OVERLAY TWO

INCLUDE OBJ(D)
OVERLAY TWO

INCLUDE DECKS(CC, DD)
OVERLAY ONE

INCLUDE OBJ(E, F, G)
REGION

OVERLAY THREE
INCLUDE OBJ(I, J)
OVERLAY THREE
INCLUDE DECKS (EE)
OVERLAY FOUR

INCLUDE DECKS(FF, GG)
OVERLAY FOUR

INCLUDE OBJ(K)

18



INSERT

| INSERT name |

Command Description @

The INSERT command positions control sections within an overlay
segment, It is used following an OVERLAY command that defines the segment

in which the control section is to be placed.
Parameter :

name - Specifies the name of the control section to be inserted.
Note:

(1) If the control section is inserted more than once within a link,
the last INSERT will be honored and all others ignored.

Examples:

INSERT SUB1

INSERT SUB2, SUB3

RENAME oldname = newname :
| RENAME oldname (subprogram) = newname !

Command Description :

RENAME changes external references to a name either throughout a
program or within a subprogram. It may appear anywhere within a link

description.

19



Parameters:
old name - Symbol which is externally referenced.
new name - Symbol to which the reference is to now be made.

subprogram - Name of the subprogram in which the rename is to
be performed.

Notes:

(1) RENAME does not actually change the symbol name, but switches
external references to the new name.

(2) Only one rename may be specified on a single command.

Examples:

RENAME SORT = SORTXX

I
[opd
=
A
o>

RENAME LINK

ENTRY

[ENTRY name |

Command Description:

ENTRY defines which control section will be branched to when a

link has been called.

Parameter:

name - Control section name.

20



Notes:

+ The control section must be in the root segment of the links.
+ In Link O, the entry name must be the main program.

«+ Each link must have one and only one ENTRY command.

Examples:
ENTRY MAIN
ENTRY SUBL
END

Command Description :

END defines the end of a set of control statements for a link.
It must be placed immediately after the last control command for a link

description.

ENDLINKS

ENDLINKS

Command Description :

ENDLINKS defines the end of the link editor control statements.
This command is the last one on the input file. It should be preceeded

by an END command for the last link definition.

21



LINKLIB ~ THE CALL LIBRARY

LINKLIB is the call library used by the Linkage Editor to resolve
external references which cannot be resolved from the routines listed
on INCLUDE commands. A LINKLIB must always be used when the Linkage
Editor is executed..

The LINKLIB supplied with the Linkage Fditor contains all the
necessary system routines for both FIN and RUN compiled routines.

If user routines are to be used to resolve external references, the
user routines should be confirmed with the supplied call library on

a file named LINKLIB. The call library must be called LINKLIB.

EXECUTION OF THE OUTFILE

The output (OUTFILE) of the Linkage Editor is produced in one of
two forms:
+ As a sequential binary file (status = T or S)
+ As an indexed random file (status = R or C)
One of the following three Scope control card formats should be used
to execute the outfile.

1. OUT1.CATLOG(OUT2)

22



This form is used when OUTFILE = OUT1(S) was used on the LINKEDIT
card and an indexed random form of the file is wanted.
The new random file (OUT2) is not executed.
2. O0UT2,ATTACH
. This form executes the indexed random file created with
OUTFILE = OUT2(R) in the LINKEDIT card or with OﬁTl. CATLOG(0UT2)
described in (1) above. |
3. OUT4.

This form is used when OUTFILE = OUT4(T) is specified on the
LINKEDIT file. This control card causes the bootstrap routine to
generate the following control cards:

OUT4 . CATLOG (SYSLMOD)
SYSLMOD .ATTACH

The OUTFILE is changed to an indexed random form and then executed.

LINK-EDITED VERSION OF THE LINKAGE EDITOR

The Linkage Editor has itself been link-edited. This has resulted
in a field length reduction of approximately 5100@ words.
A diagram of the link-edited structure is shown in Figure 2. The

Scope control cards used and the output received are reproduced in

the pages following the figure.

This output 1is provided merely as one example of a specific
application of the Linkage Editor. Other general examples are provided

in Appendix C.

23




LINK O
LKED, MAPFNS, BLKDAT.

System Routines

LKEDO0O, LKED100, LKED150, LKED175,
LKED300, LKED320, LKED900, LKED995,
LKED999, HASH, XRCARD, RECDUMP

LKEDO10 | " LKEDO15 LKED025 . LKEDO50 | T LKEDO75 | l
(26732B) ’ (27404B) LKED200 | ' (27237B) ! LKEDO77 |
LKED964 | LKED350 |

|

BLANK
COMMON
(46552B)

Figure 2 - Diagram of Link-Edited Version of the Linkage Editor
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Scope Control Cards:

JOBCARD
CHARGE CARD

RFL,1300 .

LABEL (TAPE,L=CARUCA1277,R,D=HI) (CA1277/NORING)
RFL, 10000 .

COPYBF, TAPE, LINKLIB.

COPYBF, TAPE, LINKEDT.

RETURN, TAPE.

RFL, 70000 .

NOREDUCE .

LINKEDT .

25
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SUGGESTIONS FOR FURTHER IMPROVEMENTS

The following problem areas of the Linkage Editor should be examined

in the future:

1. The Linkage Editor resolves externals only from those libraries
listed on INCLUDE commands and from LINKLIB. The ability to concatenate

several files and rename them LINKLIB with the LIBRARY command would be

very helpful,

2. Thé Linkage Editor should be changed to allow both the file type (R)
and XREF to be specified for the same job step. The problem appears to

be that the return address to the entry point of Link O is not saved

correctly.

3. An investigation should be conducted to determine the feasibility of

dynamically allocating memory when segments are loaded.

4, "RANDOM CALL TO NONRANDOM FILE" errors occur when two or more Linkedit

runs are made in the same job. This error apparently occurs because SYSUT1,

SYSUT2, SYSUT3, and SYSLMOD are not closed between runs. This problem should

be investigated and corrected.
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APPENDIX A

MODIFICATIONS TO THE LINKAGE EDITOR

The following paragraphs describe the various corrections and
improvements made to the Linkage Editor:
1. The last card image on the original program library was an
end-of-record card. This caused an error when compiling the last

routine, XEOF. The card was deleted.

2. When a program containing a BLOCK DATA subroutine was edited, the
following error message was written, even though no error existed.
-=-=ERROR---ENTRY TABLE DOES NOT FOLLOW PIDL
TABLE IN SUBPROGRAM
This was a logic error in the Linkage Editor. BLOCK DATA subroutines
do not contaln ENTRY tables.' This error was corrected by changing
LKEDO25 so that it would branch around ENTRY table processing when a

BLOCK DATA subroutine is being processed.

3. The end-of-card control character ("$") was not practical for FTN
since many FIN routine names end in "$". The code checking for the
character was deleted from XRCARD, and subsequently restored and

changed to "#*",
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4, Code names for the various installations using the NASTRAN Linkage
Fditor were deleted from SETA6 in MAPFNS. ©Now only the default code

name ""STANDARD" is accepted.

5. XLOADER is the program which handles the fetching and loading

of each link as it is loaded. It was designed for RUN which passes
argument addresses in the B reglsters. FTIN passes the argument
addresses in a list pointed to by register Al. 1In addition, register
A0 must be preserved. The code in LOADER and LINK (both entry points
to XLOADER) has been changed so that not only the B register but also

the A0 and Al registers are saved during the loading of a segment.

6. The code in XLOADER was changed to issue a memory macro call which

returns the current field length.

7. XLOADER failed to set a return address in a link being loaded. Thus
return could never be made from that link and the job would hang. Code
was added to LINK to store the return address to enable return from the

link to the calling segment.

8. REPLTAB, the routine to expand replication tables, did not comply
with the specifications of REPL tables dgfined in the Scope reference
manuals. Tbe logic was changed to the following.

IfVLR # SR, then return.

If DR = SR, then D = S,

If D

0, then D = S+4B.

If D=0 and DR = 0, abort.
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9. The Linkage Editor was changed to allow dynamic adjustment of

the field length to that needed té load the current link. To obtain
this dynamic allocation, include the following card in the LINK O
control cards:

RENAME LINK = LINKS$
If dynamic allocation is not desired, the NOREDUCE option must be used

and the field length set at that needed to load the longest link.

10. The dayfile and header messages were changed to reflect changes

in the Linkage Editor system.

11. A logic error limited BLOCK DATA subroutines to the definition

of one and only one named common. The error was traced to REPLTAB and

eliminated by returning to LKEDN75,

12. Unresolved external references occurred on the XBOOT step because
not all needed routines were included on the list BOOTDKS. The needed

routines were added to BOOTDKS.

13. The type of outfile to be generated was designated by a code
character. In the original system these were C for COMMON (random
file) and T for tape (sequential). These codes are ambiguous so
the code S for sequential and R for random were added. Both codes

are valid for each type of file.

14. REGION lines were printed when the options NOMAP and LET were
selected concurrently. the code of LKEDO75 was changed to stop

this error.
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15. Automatic reduce could not be used with a random outfile because
blank common had been dimensioned to one (1) word. The array size
was increased to 200 words to eliminate the need for the NOREDUCE

option.

16. When the options XREF and OUTFILE (R or C) are specified on the
LINKEDIT card, the random outfile is incorrectly created. Code

was added to flag this situation as an "error-exit' condition.

17. XBOOT was changed to check only the first six (6) characters
when searching for "ATTACH", 'CATLOG" or "CREATE" on an outfile
execution card. This change was necessitated because INTERCOM

appends a period to all commands.

18. To enable the Linkage Editor to be run on non-standard systems,
all system routines which are needed for the execution of the
bootstrap routine should be loaded with XBOOT. The Linkage

Editor was changed to automatically load the needed system

routines from LINKLIB.

19. The default value of PARAM (7) was changed to 3. This change
prevents LKEDO77 from aborting when XREF is selected and PARAM (7)

is not set.
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The remaining updates were made to convert the Linkage Fditor
to FIN compilable code. A number.of changes were made to FORTRAN
routines, but the bulk of the work consisted of converting the
COMPASS routines to correctly pick up the addresses of passed

arguments.,
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APPENDIX B
DETAILS OF THE CDC 6400/6600 LINKAGE EDITOR

The following pages have been excerpted from the NASTRAN Programmef's

1
Manual™ and reproduced here for the user's convenience:

5.6 THE CDC 6400/6600 LINKAGE EDITOR
5.6.1 Introduction

5.6.1.1 Concept of the Linkage Editor

The linkage editor has been designed to provide an efficient and effective means of utilizing
core storage for medium to large programs. The existing loader for the CDC 6400/6600 systems has

the following disadvantages:
1. Only two levels of overlay are provided beyond the root segment.

2. An overlay segment must be explicitly called. -Consequently, the overlay structure must

be known when the program is coded.

3. An overlay segment may be entered at one point only. Consequently, downward calls are

extremely limited.
4, No facility exists to explicitly position named common blocks.
5. Loading of overlay segments is accomplished from a sequential file, thus providing

unnecessary search time,

The CDC 6400/6600 Linkage Editor in conjunction with its partner, the Segment Loader, over-

comes these disadvantages in the following ways:

—_—

. An unlimited number of overlay levels is provided.

2. The programmer describes the overlay structure to the linkage editor after the program

is coded. The linkage editor provides implicit -segment loading.
3. Complete communication between all levels of overlay is maintained.

4, Linkage editor control statements may be used to explicitly position subprograms and

named common blocks.

5. The overlay segments are maintained in an indexed file. Consequently, every segment is
immediately available to the segment loader.

As may be seen from Figure 1, the primary input sources to the linkage editor include:

1. Object decks (relocatable binary decks)

2. Control statements

Ky

5.6-1 (12-1-69)
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3. A call library from which unsatisfied external references are resolved,

Another source of input (not shown in Figure 1) is a file containing executable links from a
previous linkage editor run. This feature allows changes or additions of links while not altering

previous links to which no changes are required.
The file produced by the linkage editor contains three portions:

1. A sequence of object decks suitable for loading by the CDC loader, The main program in
this sequence, named XB@@T, reads the remainder of the file containing the executable links
and writes it on the disk as an indexed file., XBP@T reads Link O into central memory and
transfers control to the entry point which initiates execution of the problem program, This
sequence of decks is terminated by a null record.
2. Three records:
(1) Link 0 directory record;
(2) Link 0 symbol dictionary containing entry points and common blocks in Link 0 and
their associated addresses;
(3) Link 0 executable record.
3. A directory record for each succeeding link and one logical record per segment containing
executable instructions and data.
This sequence of records is terminated by a directory record which contains the word ENDLINKS.
Link 0 remains in central memory at all times during program execution. Link O contains no
overlay segments. The linkage editor supplies a routine named Y¥L@ADER when Link 0 is constructed,
XL@ADER accomplishes the loading of segments and links when requested. Segment load requests
are supplied automatically by the linkage editor through tables called ENTAB$ (see section
5.6.3.2) which are written as a part of the text for each segment which may require additional
segment loading. An additional table, SEGTAB$ (see section 5.6.3.2), which is constructed by
the linkage editor as a part of the root segment of every link, {s used by XLPADER to facilitate
segment loading. '
“ Major divisions of a program are links. Each link consists of a self-contained overlay

structure and might be thought of as a complete program in itself. A1l routines in a link

communicate freely with Link O routines. Consequently, Link 0 may be thought of as logically

5.6-2 (12-1-69)
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belonging to every link. For many programs, a single link in addition to Link 0 will be sufficient.

Because of its size, however, NASTRAN has been divided into 14 links.
5.6.1.2 Functions of the Linkage Editor

The basic function of the Jinkage editor is the linking of separately assembied or compiled
subprograms into a link. The 1ink is in a format suitable for loading and execution.

Although this linking or combining of subprograms is its primary function, the linkage editor

also:
1. Incorporates subprograms from a Tibrary file to resolve undefined external references,
2, Constructs an overlay program in a format suitable for loading and execution,

3. Rearranges control sections and renames external references as directed by linkage editor

control statements.
4, Reserves storage for common control sections generated by C@MPASS and F@RTRAN,

5. Provides processing options and diagnostic messages.
5.6.1.3 Subprogram Linkage

Processing by the linkage editor makes it possible for the programmer to divide his program
into several subprograms which may be separately assembled or compiled. The linkage editor com-
bines these subprograms into a 1ink with contiguous storage addresses. The link is written in an
indexed file. The linkage editor can process more than one link in a single job step., Each 1ink

1s written with a unique Tink number,
5.6.1.4 Input Sources

Input to the linkage editor consists of one or more sequential files (libraries) containing
subprograms in relocatable format as produced by C@MPASS or F@RTRAN, and linkage editor control
statements contained in INPUT, the standard input file.

External references that are undefined after processing all subprograms cause the automatic
1ibrary call mechanism to search for subprograms that will resolve the references. When these

subprograms are found, they are processed by the linkage editor and become part of the link.

5.6-3 (12-1-69)
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5.6.1.5 Programs in an Overlay Structure

To minimize main storage requirements, the programmer can organize his program into an over-
lay structure by dividing it into segments according to the functional relationshp of the sub-
programs, Two or more segmenté that need not be in main storage at the same time can be assigned
the same storage addrgsses. and can be loaded at different times. The programmer uses Tinkage

editor control statements to specify the relationship of segments within the overlay structure.
5.6.1.6 Options and Diagnostic Messages

The linkage editor can produce a storage map and a cross-reference table that show the
arrangement of control sections in the 1ink and how they communicate with each other. A list of
the Tinkage editor control statements that were processed can be produced. Additionally, pro-
cessing options that negate the effect of minor errors and specify the disposition of input and .

output files can be specified by the programmer.

Throughout processing by the Tinkage editor, errors and possible error conditions are printed.

Serious errors cause a 1ink not be written on the output file,

5.6-4 (12-1-69)
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5,6.3 Designing an Qverlay Program

5.6.3.1 Overlay Tree Structure
In order to place a program in an overlay structure, the programmer should be familiar with
the following terms:

1. A control section consists of all instructions and data defined for a subprogram or a

common block.

2. A segment is the smallest functional unit (one or more‘contro1 sections) that can be

loaded as one logical entity during program execution,

3. A path consists of a segment and all segments in the same region between it and the root
segment (first segment). The root segment {s a part of every path in every region, When a }

segment is in main storage, all segments in its path are also in main storage.

4, A region is a continguous area of main Storage within which segments can be loaded
independently of paths in other regions. An overlay program can be designed in single or

multiple regions,

5, A link is a collection of one or more segments which comprise a logical subdivision of
the program. Link 0 (consisting of one segment only) is in main storage at all times. It is
the first link to receive control when execution of the program is initiated. The root
segment of any other 1ink resides in main storage at all times that that link is being

executed. An overlay program must consist of at least one link other than Link 0,

6. A tree is the graphic representation that shows how segments can use main storage at

different times. It does not imply the order of execution.

The design of an overlay program requires the organization of the control sections of the

program in an overlay tree structure. The tree structure is developed considering:
1. The amount of available main storage.
2. The freguency of use of each control section,
3. The dependencies between control sections,

4, The manner in which control should pass within a path, from one path to another, and

from one region to another,

5.6-7 (12-1-69)
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When the programmer has determined the overlay structure for a program, he prepares @VERLAY,
INSERT and REGI@N statements that will segment the program in that manner, The use of these con-

trol statements is described in section 5.6.4,
5.6.3.2 Overlay Characteristics

During execution of an overlay program, the segment loader uses tables that were generated
by the linkage editor and incorporated into the text of applicable segments, Since these tables
are an integral part of the program, their size must be considered when planning the use of

available main storage. These tables are described as follows.

1. Input/Output Control Table

There is one Input/Output Control Table (LINKO$) in the root segment of Link O only
which contains a File Environment Table (FET), a circular buffer, a master index and a sub-
index. The LINKO$ table is used by the segment loader to read requested segments into
central memory. LINKO$ is the first control section in Link 0. Its size is determined as

follows:
Length in words = PARAM(1)} + PARAM(4) + PARAM(5) + 4

Section 5.6.4.2 contains definitions of the parameters.

2. Segment Table

There is one Segment Table (SEGTAB$) in the root segment of each link except Link 0.
The segment table is used to keep track of: (1) the relationship of the segments in the
program; (2) which segments are in main storage or scheduled to be loaded; (3) the main

storage address and length of each segment; and (4) the entry address of the link.

SEGTAB$ is the first control section in the root segment of each link. Its size is

determined as follows:
Length in words = n + 2,

where n is the number of segments in the link.

3. Entry Table

There can be an Entry Table (ENTAB$) in each segment of the program. The loader
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uses the entry table to determine the segment to be loaded when an external reference is

made to a segment not in the path,

An entry table may be produced as the last control section of a segment. An ENTAB$ entry
is created for a symbol to which control is to be passed. The symbol is defined in a seg-

ment not in the path. The size of ENTABS is determined as follows:

n
Length in words = 3n + I Gi,
i=1
where n is the number of unique external references not in the path and 8 = MAX(mi-G,O),
.My = number of arguments for each external reference not in the path.

4, Dump Control Word

In the text produced by the linkage editor for each segment, a uniquely formatted word
which identifies the control section is written immediately prior to each control section.
This word is recognized by the storage dump routine XDUMP in order to produce relative

addresses for each control section.

5.6.3.3 Overlay Communication

There are two ways in which the programmer can have his program request the overlay facilities

of the segment loader:

1. By a CALL statement (FPRTRAN language) or RJ instruction (C@MPASS language) which

couses a segment to be loaded and control to be passed to the symbol defined in that segment,

2. By a CALL LINK{N) (FPRTRAN language) or the equivalent in the C@MPASS language, where N
is the link number, which causes segment one (the root segment) of the requested 1ink to be
Toaded and control to be passed to the symbol named on the linkage editor control statement

ENTRY.

5.6.3.4 Reserving Storage

In F@RTRAN and C@MPASS the programmer can create control sections that reserve main storage

areas containing no data or instructions, Referred to as “"common", these control sections are

produced by the language translator, These common areas are efther named or blank (unnamed),

During processing, the linkage editor collects these common areas. If more than one blank

common area is found, the largest blank common area is contained in the Tink, If two or more
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common areas have the same name, the largest common area having that name is reserved in the link.

A1l references to a common area (named or blank) refer to the largect area defined. This largest
area 1s the one which is retained.

If the linkage editor encounters data or text for the same common area in more than one sub-
program, only data from the first subprogram encountered are retained and a diagnostic message is
generated for aﬁy subsequent data definitions,

When object decks which reference common areas are to be placed in an overlay structure, the
Tinkage editor automatically “promotes" the common areas to the root segment (unless oihenﬂise
directed by an INSERT control statement, see section 5.6,4.8), The position of a promoted common
area in relation to other control sections in the root segment is generally unpredictable.

Note: Blank common is treated by the linkage editor as a named common block with the
special name BLANK.. and is listed on the storage map with-this name. Consequently, it is possible

to position this control section with the statement INSERT BLANK...
5.6.3.5 Processing Options

1. List of control statements

The linkage editor automatically produces a listing of all control statements unless
the programmer selects the N@LIST option in the LINKEDIT statement (see section 5.6.4.2).
In the latter case, only the LINKEDIT, LIBRARY and ENDLINKS statements are listed (see
sections'5.6.4.2, 5.6.4.3 and 5.6.4,12 respectively for details).

2. Storage map and cross-reference table

The linkage editor automatically produces a storage map of each link unless the programmer
selects the N@MAP option in the LINKEDIT statement. For each segment, the storage map lists
the control sections in ascending order according to their assigned address. Included with

each control section is a list of all entry point names and assigned addresses.

When the XREF optionrin the LINKEDIT statement is specified, the linkage editor produées
a table of all references to each entry point in the link. Additional options (PARAM(7)
parameter, see section 5.6.4.2) allow the table to be extended to include all references from
the link to LINK O entry points and an additional table of all external references from each

subprogram to be produced.
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The N@MAP and XREF options are mutually exclusive. Therefore, if XREF is selected, N@MAP

is ignored and a storage map is produced.

3. The LET option

When the LET option of the LINKEDIT statement is selected, the linkage editor disregards
all errors except two and writes the 1ink on the output file. The two errors which preclude
the 1ink from being written are: (1) an undefined entry point to the 1link; and (2) insuffi-

cient storage space to form the 1ink to be written,
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5.6.4 Linkage Editor Control Statements

5.6,.4.1 General Statement Format

A11 linkage editor control statements are coded from the following possible forms:

operation  operand

VERB a, b(c), KEYWPRD, KEYW@RD = a, KEYWPRD = b(c),

KEYW@RD(i) = n, a = a, b(c) = a,n

where

a is an unsubscripted symbol,

b is a subscripted symbol,

c is a subscript symbol,

KEYWPRD is an explicit name or option,
i is an integer subscript,

n is an integer value,

The operation field must contain the name of the operation to be performed. The operand
field must contain one or more symbols or subscripted symbols (except REGI@N, END and ENDLINKS
which have no operands), Operands in the operand field are separated by a comma or blank (or both).

Two or more symbols within parentheses are similarly separated. A keyword must be written exactly
as shown.

The operation field begins with the first nonblank column on the“card. The operand field is

separated from the operation field by at least one blank column,

The LINKEDIT and LIBRARY control statements may be continued on subsequent cards by coding a
comma as the last nonblank column. The continuation begins with the first nonblank column of the

succeeding card, These two control statements are the only ones which may be continued.

5.6.4,2 The LINKEDIT Statement

The LINKEDIT statement specifies input and output file names and status, processing options

and size characteristics of the link(s) to be link-edited.
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5.6.6 Storage Requirements for the Linkage Editor

Figure 5 illustrates the layout of core storage for the linkage editor, For the discussion
below, it is assumed that the linkage editor has not itself been link-edited. A Tink-edited
version of the 1inkage editor is available. A memory saving of approximately 400010(100008) words

results.

The principal open-ended table {is the Symbol Chain Table. A three-word entry is created in
this table for each subprogram name, entry point, common block and unique external reference not
in the path. For a link other than Link 0, a three-word entry fbr each entry point and common
block in Link 0 is also created. A conservative estimate for the requirements of this table is

as follows:

Link 0: length in words = 4* (no. of entry points + common b1ock§),

6% (no. of entry points + common b1oéks)

Link # 0: length in words

+3* (no, of entry points + common blocks in Link 0).

The largest table is likely to be the Working Storage Table, It must hold all instructions
and data for the 1argest control section for which text is defined. If this figure is not known,
a linkage editor run can be made. The storage map will be printed even if the link is not writte
A scan of the lengths listed (in ocfal) will identify the largest control section. Note that

common blocks for which no data are defined are not to be used in defining the m5x1mum.

Field length for the linkage editor may be estimated from the following:

field length,, = 15000 + MAX(T0*N,2000) + MAX(T,2000) + 3*PARAM(1)

where
N = number of subprograms defined on INCLUDE statements,
T = 1length of largest subprogram or common block for which
instructions or data are defined,
and

PARAM(1) is defined in section 5.6.4.2.
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If default values for the linkage editor are used, a program of less than 200 decks would
require a field length of 23,600, = 60,0004.

Efficiency of the Tinkage editor may be improved by increasing the buffer size (PARAM(l)i.
For NASTRAN, PARAM(1) = 2080 is used. Additionally, one deck requires 16,000]0 words of text
storage (PARAM(6) = -16000). Consequently, for a Tink of 300 decks, the field length works out

as

field 1ength]0 = 15000 + 3000 + 16000 + 6240 = 4024010 = ]200008
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7.2.1 Introduction
7.2.1.1 Purpose of the Linkage Editor

The Tinkage editor is a service program designed to be used in associatiun with the RUN
compiler to prepare an executable program from symbolic language programs written in FPRTRAN and
CAMPASS. Linkage editor processing is a necessary step between source program compilation and

object program execution.

Linkage editor processing allows the programmer to divide his program into several parts,
each containing one or more control sections. Each part may then be coded in the programming

language best suited to it and may then be separately assembled or compiled.

The primary purpose of the linkage editor is to combine and Tink object decks (the output .
of the RUN compiler) into a program in which all cross references between control sections are
resolved as if they had been assembled or compiled as one program. The program produced by the
linkage editor consits of executable machine language code in a format that can be loaded into main

storage by the bootstrap program (see section 7.2.1.4.7) and segment loader (see section 7.2.1.4.8).

The main design objective of the Tinkage editor/loader is to efficiently process and execute
unusually large programs that require extensive segmentation (a feature entirely lacking in the

existing CDC Toader).

In addition to combining and linkage object decks, the linkage editor performs the following
functions:

1. Library Call Processing. If unresolved external references remain after the linkage

editor processes all input fo it, an automatic library call feature retrieves subprograms

required to resolve the references.

2. Program Modification. Control sections can be rearranged during linkage editor processing

as directed by linkage editor control statements. Common control sections are collected.

References to entry points can be altered by control statements.

3. Overlay Processing. The linkage editor prepares programs for overlay by inserting tables

(SEGTABS, ENTABS, see section 7.2.2.7) to be used by the segment loader during execution.
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7.2.1.2 Relationship to the SCPPE Operating System

The linkage editor is not an integral part of the SCPPE operating system. As a result, it is

executed as a normal "user" program, i.e., using the facilities of the CDC loader.

The object decks that comprise the linkage editor exist as a card, tape, or disk file and the

Tinkage editor is executed as a normal job step.

The executable program produced by the linkage editor may be in the form of a sequential file
on tape or disk or an indexed (random) file on disk. In either éase, the initial records of the
file. contain object decks that comprise the bootstrap program loads the initial portion (Link 0)
of the executable program into main storage and optionally writes the remaining links of the
executable program. Thereafter, all loading of additional segments of the executable program is

controlled by the segment loader which was included in Link O by the linkage editor.

In the Level 2.0 version of the linkage editor (the current version), processing is limited
to object decks produced by the RUN compiler because of linkage conventions established by that
compiler. Reasonably extensive modification of the linkage editor/loader and LINKLIB (see below)

is required to process object decks produced by the FTN compiler.

Associated with SC@PE and the RUN Compiler are a number of subprograms which accompiish the
primary interface between the user and, the resident monitor. These subprograms afe a principal
input to the linkage editor and reside on a file named LINKLIB. Since the linkage editor is not
an integral part of SCPPE, modification of the LINKLIB subprograms is not automatically accomplished

with SCAPE updates and remains a maintenance task at each installation.

Linkage editor processing and subsequent execution time loading is dependent on the file
concepts and operations as defined and supported in SC@PE 3.1. In particular, changes to the
subfields of the File Environment Table (FET) or changes to the object deck format are likely to

require modification to the linkage editor and segment loader code.
7.2.1.3 General Description

Input to the linkage editor consists of: a) one or more sequential files (libraries) con-

taining subprograms in relocatable format (object decks) as produced by the RUN compiler, and
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b} 1inkage editor control statements contained in INPUT, the standard input file. The primary
function of the linkage editor is to combine these subprograms, in accordance with the require-
ments stated on the control statements, into a machine-language program suitable f;r loading into
main storage and execu@ing. External references that are undefined after processing all subprograms
cause the automatic call mechanism to search for subprograms that will resolve the references.

When these subprograms are found, they become part of the executable program.

To produce an executable program, the linkage editor:

1. Assigns relative main storage addresses to the control sections to be included in the
program.

2. Resolves references between rontrol sections (translates symbolic references to relative
main storage addresses)

3. Collects common sections and assigns a single relative machine address to all sections
of the same name. The length of the common section is taken to be the longest length of any

individual section.

Figure 1 illustrates an example of linkage editor processing. The executable program produced

by the 1inkage editor contains three portions:

1. A sequence of object decks suitable for loading by the CDC Toader. The main program
in this sequence, named XB33T (see section 7.2.2.9), reads the remainder of the program
and writes it on the disk as an indexed file (unless the program is already an indexed file).
XB@AT reads Link O in main storage and passes control to the entry point whfch initiates

execution of the problem program.

2. A sequence of three records which defines Link 0 - a directory record, a symbol dictionary

record,. and the executable machine language code:

3. A sequence of records for each of the additional links - one directory record per link

plus one record containing executable machine language code for each segment in the link.

Link 0 remains in main storage at all times during program execution. Link 0 contains no
overlay segments. The Vinkage editor supplies the segment loader (named XLPADER, see section

7.2.2.10) when Link 0 is constructed. XLPADER accomplishes the loading of segments and links
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when requested. Segment load requests are supplied automatically by the linkage editor through
tables called ENTABS (see Figure 29) which are written as a part of the text (instructions and
data) for each segment which may require additional segment loading. An additional table,
SEGTABS (see Figure 28) which is constructed by the linkage editor as a part of the root segment

of every link is used by XL@BADER to facilitate segment loading.

Major divisions of a program are links. Each link consists of self-contained overlay struc-
ture and might be thought of as a complete program in itself. All routines in a link communicate
freely with Link 0 routines. Consequently, Link 0 may be thought of as logically belonging to

every link.
7.2.1.4 Major Divisions of the Linkage Editor

7.2.1.4.1 Initial Processing

Initial processing begins when the linkage editor receives control from the CDC loader.

After control is received, the following functions are performed:
1. The LINKEDIT card is read, echoed, and converted. Parameters are set based on options
selected.
2. 1Initial allocation of working storage and buffers is made.
3. If the program f;ém a previous linkage editor run is present as a sequential fil.
(INFILE), it is read and written as an indexed file.

4. Each file named on the LIBRARY card is read. Each deck is written on a local disk file
named SYSUT2 (indexed file). Subprogram names are saved in a main storage table. For the

file named LINKLIB, each of the entry point names is saved in main storage.
7.2.1.4.2 Control Statement Processing

For a link, cards from LINK through END are read and converted. Two passes are made. On
the first pass, each card is checked for proper format, content, and order (if important).
Various counts are accumulated such as the number of segments, number of regions, number of
RENAME cards, etc. The control statements are echoed on PUTPUT unless this option is suppressed.
At the end of the first pass, allocation of working storage is completed. If the currently pro-

cessed 1ink is not Link 0, the dictionary defining entry point and conmon block names and address
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for Link 0 is read, and entries are made in the General Table (see section 7.2.2.1.9) for each

Link 0 name and address.

~ On the second pass of the control statements, each statement (having been saved in main stor-
age during the first pass) is again converted, and entries are made in various tables depending

on the control statement and its contents.

Following the second pass of the control stateménts, control is passed to LKEDO25 (see
Figure 35, section 7.2.3) to read each of the object decks named on INCLUDE statements plus those

subprograms required to satisfy undefined external references.
7.2.1.4.3 Object Deck Processing

The 1ist of subprogram names in each of the named libraries is scanned. For each subprogram

which is marked for inclusion, the following processing occurs:
1. The deck is read from SYSUTZ.
2. Subprogram (or common block) length is entered in the General Table (GT).

3. Each common block referenced by the subprogram is entered into the GT (if not already
present), and the length field is updated. If text {data) for the common block exists, a

reference to the defining subprogram is noted.

4. An entry in the GT is created for each entry point of the subprogram. The relative
address of the entry point is saved. The number of arguments associated with each entry
point is found by searching the TEXT tables (see section 7.2.5) for the conventional identi-

fication word. If not found, less than seven arguments is assumed.

' 5. The LINK table is processed. For each external reference by the subprogram, the GT
is checked for an existing entry. If present, a path analysis is made. If the call is not
in the path, a call chain entry is created in the GT. If the entry is not présent, an entry

in the GT is created and 'a call chain entry is created.

. ‘When all object decks have been processed, the automatic call logic is invoked. For each
undefined external reference, the 1ist of entry pointé to LINKLIB is searched. If found, the

corresponding subprdéram from LINKLIB is included. If not found, an error message is issued.
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When al! object decks from LINKLIB have been processed, a pass through each 'of the entries in
the GT is made and various checks are made. Call chains are checked, and entries now resolved
(in the path) are removed. Remaining entries in the call chains will require facilities of the

segment loader, and these entries will form the ENTABS tables.

At this point, all information is available to perform assignment of final addresses for the

program. Control is passed to LKEDOS0 (see Figure 36, section 7.2.3) for this task.
7.2.1.4.4 Address Assiagnment Processing

The program computes final storage addresses for al} subbrograms, entry points, and common

blocks in the program by executing the following steps:

1. Lengths for each segment are computed bv summing the lengths of éach entry (subprogram -
or common block) in the segment. This information is stored in the Segment Defihition

Table (see section 7.2.2.1.7).

2. The lengths for each region are computed by finding the longest path in the region and

summing the length of all segments in that path.

3. Region lengths are converted to region addresses by summing the region lengths. This

information is stored in the Region Definition Table (see section 7.2.2.1.5).

4. Segment addresses are computed by following the paths in each region and summing the

previous segment lengths.

5. Finally, addresses for each entry in each segment are computed by tracing the order of

each entry in the segment and summing lengths of previous entries.
7.2.1.4.5 Relocation Processing

The final phase for each link consists of building the executable machine language code,

performing all necessary relocation of relative addresses.

This is accomplished by executing the following steps:

1. If the current link is Link 0, object decks defining the bootstrap program are copied
from LINKLIB to the executable program file (either SYSUT1 or QUTFILE). A directory record

containing link number, number of entries in the Link O dictionary, and total length of the
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1ink is written followed by the Link 0 dictionary defining each of the entry points and

common blocks and their addresses in the link.

2. If the current 1ink is not Link 0, a directory record containing 1ink number, number of

segments, and total lenyth of the link is written as in 1. above.

3. The first entry in the root segment of each 1ink is a table (LINKOS for Link O and

SEGTABS for any other link). This table is bhi]t and written.

4. Executable machine language code is built and written one logical record per segment.
Each entry (subprogram or common block) in each segment is éxamined. If text (for a sub-
. program) or data (for a common block) is defined for the entry, the object deck containing
the text is read from SYSUTZ2. Address relocation defined in TEXT, FILL, LINK, and REPL
tables (see section 7.2.5) is performed, and.the relocated text for the entry is written.

If no text is defined for the entry, zero words are written.

5. As the relocation of text is being performed, the storage map is printed on QUTPUT unless

NPMAP was selected.

6. Finally, if an ENTABS table is defined for the segment, the text for this table is

assembled and written as the last entry for the segment.

7. MWhen all segments for the lfnk are complete, the XREF option on the LINKEDIT card {see
section 5.6.4.2) is tested. If selected, LKEDO77 (Figure 37, section 7.2.3) is called to

produce a listing of all cross references in the link.
7.2.1.4.6 Final Processing

When processing for all links is complete (the ENDLINKS card has been read from INPUT), the
status of PUTFILE is tested. if PUTFILE = name(C) was coded, no further processing is required.
Otherwise, the executable program exists as a local indexed file (SYSUTT) and it is necessary to
write it as a sequential file on the user-requested file. This is accomplished by LKEDO8BO
(Figure 38, section 7.2.3). When the link has been copied to QUTFILE, a message is written on

PUTPUT indicating the event.
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7.2.1.4,7 The Bootstrap Program

The bootstrap program is a computer program made up of relocatable routines which are
appended by the linkage editqr to the beginning of the absolute output of the .linkage editor.
These routines consist of: a) a dummy Block Data subprogram containing one labeled common block
of a length sufficient to hold Link 0; b) the bootstrap program driving routine, XB@AT; c) an
input/output utility routine XIPRTNS; and d) MAPFNs; a routine containing miscellaneous utility

routines for bit manipulation, field length determination, etc.

The bootstrap program is employed to permit the execution of the absolute output of the
Jinkage editor in a way that requires no special handling of the job and allows the job to appear
as any other batch job. It is a small pregram, loaded by the CDC loader which if necessary reads
and outputs to the disk the sequential linkage éditor output in a direct "access (random) format.
The bootstrap program also reads into the locations 778+l through 778+N Link 0 (N being its length).
This core space is available because the CDC loader has placed the dummy Block Data subprogram

there.

Having completed its function, the bootstrap program calls COMPASS routine XJUMP in, MAPFNS
which directs the central processor to jump to location 1018 in the jobs core, which is in Super-
main, and execution then continues from there. Figure 2 illustrates core through the bootstrap
process. It should be noted that for the completion of this particular job step, execution of

the bootstrap program is no longer required, nor is it available.
7.2.1.4.8 The Segment Loader

The bootstrap program is actually the initial loader of absolute object code as produced by
the linkage editor. It does in fact load "Supermain," Link 0. After the bootstrap program
directs the central processor to branch into Supermain, and execution proceeds from there, any
calls for the loading of a link's root segment, results in an automatic transfer into the seg-
ment loader to the entry point LINK. Similarly, any calls to a segment lower in a tree or in
another region results in an automatic call into the segment loader to the entry point LPADER..
This type of "downward" call is forced through an entry table ENTABS (see section 7.2.2.7) before

reaching the segment loader at entry point LPADER..
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Calls made to LINK from any segment, anywhere in core, result in the segment loader first
checking the 1ink nunber for legitimacy. The indexes of relative disk addresses for the segments
of the 1ink desired is then read from the disk. A link directory is then read from the disk and
further legitimacy checks are made along with a check to insure that sufficient core is available

for the loading of the lowest segment of the link.

After successfully completing these tasks, the root segment of the new link is read into core,

and a branch is made to its entry point and execution of the program continues.

Downward calls reaching the entry point LPADER. via an ENTAB$ table result in a series of
conditional events by the segment loader. The loader first checks to see if the segment to which
the call is directed is in core. If the segment-is not in core, it is loaded along with any
segments above and in its path as required. Once the segment is determined to be’in core, any
argument addresses over six (which are assigned to B registers Bl through B6 by the RUN compiler
generated code) are moved from the ENTAB$ entry and placed in the actual subroutine being called
along with the actual branch return., A jump is then made to the desired entry point to complete
the automatic loading process. ‘Returns from any called control section are always made directly

to the point from which the call was made .
7.2.1.5 Linkage Editor Files
7.2.1.5.1 Input Files

There are three types of files that may be input to the linkage editor. They are:

1. Libraries. A1l object decks that are to be processed by the linkage editor are con-
tained in libraries. A library is defined to be a sequential file {(which may reside on tape
or disk) consisting of one or more fogica1 records with one object deck per logical record.
The names of the library files are defined on the LIBRARY control statement (see section
5.6.4.2). A file named LINKLIB must always exist for linkage editor processing. LINKLIB
contains object decks for automatic library call plus object decks which are required 1n
constructing the initial load portion (bootstrap program) of the executable program. There
is no theoretical 1limit to the number of libraries which may be defined for linkage editor
processing. Subprograms of the same name may appear in more than one library or even in the

same library. In the latter case, the first such subprogram is included.
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2. Control statements. Statements which direct and control processing by the linkage

editor are contained as a single logical record on the file named INPUT. INPUT must be
positioned to the logical record containing the control statements prior to executing the
linkage editor. For a complete description of the linkage editor control statements, see

section 5.6.4.

3. Previously link-edited links. This input source is optional and is required only if the

user desires to modify an existing link (other than Link Q) or add a new link to the program.
The name and status of this file is defined by the INFILE keyword on the LINKEDIT control
_ statement (see section 5.6.4.2). It may be a sequential file on tape or disk or an indexed

file on disk.
7.2.1.5.2 Local Files

These may be one, two or three local files generated by the linkage editor during processing.
A file named SYSUT2 is always generated. It is an indexed file and contains all object decks
from all defined libraries (including LINKLIB). When the file is being generated, a directory of
subprogram names as well as a list of all entry points in LINKLIB is extracted and maintained in
working storage. [f either INFILE or QUTFILE is declared as a common (indexed) file, then a
second local file does no; exist (nofe that if both INFILE and QUTFILE are declared common files,
they must be the same file). Otherwise, a local file named SYSUT1 is generated as an indexed
file to contain each of the links as they are constructed. If the XREF option is selected on the
LINKEDIT control statement (see section 5.6.4.2), a sequential file named SYSUT3 is written by
LKEDO75 and read by LKEDO77 (see Figure 37, section 7.2.3). This file contains information
regarding ca]{s made by each subprogram and is used by LKEDO77 to produce a cross reference

listing.
7.2.1.5.3 Output Files

There are two files output by the linkage editor. One is a file named PUTPUT which contains
a listing of control statementg, messages, a storage map, and a cross reference dictionary. Most
jtems scheduled for QUTFUT are selectable (or suppressed) by options on the LINKEDIT control
statement. The second output file contains the executable program. It may be a sequential file
on tape or disk, or an indexed file on disk. Its name and status are defined by the QUTFILE key-

word on the LINKEDIT control statement.

7.2-11 (6/1/71)
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APPENDIX C

EXAMPLES OF LINKAGE EDITOR PRNCESSING

The following examples have been excerpted from the NASTRAN Programmer's

Manuall. The SCOPE control cards have been modified to satisfy the requi-
rements of the NSRDC computing system. In these examples, it is assumed
that the file containing the call library (LINKLIB) and a file containing
the Linkage Editor program (LINKEDT) are contained on separate magnetic
tapes. .

Example A creates a new user library (NEW) by compiling a source
program from input cards. A second user library (OLD) is created by
copying previously compiled library decks from the input file. The out~
put of the Linkage Editor is written on a scratch file and executed from
that file. This method is most efficient for "compile and go''- type code
check runs.

Example B uses a previously compiled user library which is contained
on tape. The output of the Linkage FEditor is written on tape, but not
executed. This type of run should be used when most of the coding errors
have been eliminated and the executable link-edited program is saved on
tape for subsequent repeated executions.

Example C uses previously compiled binary decks and a tape. Both
are used as user librarieé. A previously link-edited file (LINKFIL) is
modified. The output of the Linkage Editor is written on tape and then

executed.
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Example D illustrates the link-editing of the program structure

shown on page 80.

EXAMPLE A

JOB card
CHARGE card
MAP, OFF.
RUN(S,,,,,NEW) or FTN, B = NEW.
REWIND (NEW)
COPYBR (INPUT,0LD,n)
| REWIND (OLD)
REQUEST LINKEDT,HI. (reel #/NORING)
REQUEST LINKLIB,HI. (reel #/NORING)
LINKEDT,
RETURN (LINKLIB)
RETURN (LINKEDT)
LINKS,ATTACH
789
{FORTRAN or COMPASS source programs}
789
{n object decks}
LINKEDIT OQUTFILE=LINKS(R)
LIBRARY NEW,OLD
LINK O
{INCLUDE statements}
ENTRY entry point
END
LINK 1
{INCLUDE, OVERLAY, etc. statements}
ENTRY entry point
END
ENDLINKS
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{data for problem program}

» EXAMPLE B

JOB card

CHARGE card

MAP, OFF.

REQUEST OBJECT,HI. (reel #/NORING)
REQUEST LINKLIB,HI. (reel #/NORING)
REQUEST LINKEDT,HI. (reel #/NORING)
REQUEST LINKFIL,HI. (reel #/RINGIN)
LINKEDT.

RETURN, OBJECT.

RETURN, LINKLIB.

RETURN, LINKEDT

RETURN, LINKFIL

7
8

LINKEDIT OUTFILE=LINKFIL(S),LET,XREF,PARAM(7)=2
LIBRARY OBJECT
LINK 0
{INCLUDE statements for Link 0}
ENTRY entry point .
END
LINK 1
{INCLUDE, OVERLAY, etc. statements for Link l}
i ENTRY entry point
END
ENDLINKS
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EXAMPLE C

JOB card
CHARGE card
MAP, OFF.
COPYBR(INPUT,0BJ,n)
REWIND (OBJ)
REQUEST MASTER,HI. (reel #/NORING)
REQUEST LINKLIB,HI. (reel #/NORING)
REQUEST LINKEDT,HI. (reel {#/NORING)
REQUEST LINKFIL,HI. (reel #/RINGIN)
LINKEDT,
RETURN, MASTER.
RETURN, LINKLIB
RETURN, LINKEDT
LINKFIL,
RETURN, LINKFIL
7g
{a object decks}
LINKEDIT INFILE=LINKFIL(S),OUTFILE=LINKFIL(S),PARAM(6)=90000
LIBRARY MASTER,O0BJ
LINK 2
{INCLUDE, OVERLAY, etc. statements for Link 2}
ENTRY entry point
END
ENDLINKS
7

8
{iata for problem program}
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EXAMPLE D

MOD7
. /com3/

Link O MAIN
UTILL
UTIL2
: UTIL3
Link 1 START
’ MOD1
 MOD2
EMODS B | MOD4
| /com1/ MOD5
MOD6
| /com2/
LIBA LIBB
| MAIN UTIL1
UTIL3 UTIL2
MOD2 START
MOD4 MOD1
MOD6 MOD3
MOD5
MOD7

The Linkage Editor control commands Iisted on the opposite page

83
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Control Commands

LINKEDIT OUTFILE=LINK(S)
LIBRARY LIBA,LIBB

LINK O

INCLUDE LIBA(MAIN)
INCLUDE LIBB(UTILL,UTIL2)
INCLUDE LIBA(UTIL3)
ENTRY MAIN

END

LINK 1

INCLUDE LIBB(START,MOD1)
OVERLAY A

INCLUDE LIBA(MOD2)
INCLUDE LIBB(MOD3)
INSERT COM1

OVERLAY A

INCLUDE LIBA(MOD4)
OVERLAY 3B

INCLUDE LIBB(MOD5)
INCLUDE LIBA(MOD6)
INSERT COM2

OVERLAY B

INCLUDE LIBB(MOD7)
INSERT COM3

ENTRY START

END

ENDLINKS
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