A GENERAL PURPOSE OVERLAY LOADER FOR CDC 6000-SERIES COMPUTERS; MODIFICATION OF THE

NASTRAN LINKAGE EDITOR

NAVAL SHIP RESEARCH AND DEVELOPMENT GENTER

Bethesda, Md. 20034

A GENERAL PURPOSE OVERLAY LOADER
FOR CDC-6000-SERIES COMPUTERS;
MODIFICATION OF THE NASTRAN

LINKAGE EDITOR

by

Roger J. Martin

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

COMPUTATION AND MATHEMATICS DEPARTMENT

RESEARCH AND DEVELOPMENT REPORT

AN0T10 14044

April 1973 - Report 4062

Best Available Copy

S ——

J

The Naval Ship Research and Development Center is a U. S. Navy center for laboratory
effort directed at achieving improved sea and air vehicles.
merging the David Taylor Model Basin at Carderock, Maryland with the Marine Engineering
Laboratory at Annapolis, Maryland.

It was formed in March 1967 by

Naval Ship Research and Development Center

Bethesda, Md. 20034

% REPORT ORIGINATOR

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

NSRDC
COMMANDER

TECHNICAL DIRECTO%]

OFFICER-IN-CHARGE
CARDEROCK

OFFICER-IN-CHARGE

SYSTEMS
DEVELOPMENT

DEPARTMENT n

SHIP PERFORMANCE

DEPARTMENT 15

ANNAPOLIS

STRUCTURES
DEPARTMENT

AVIATION AND
SURFACE EFFECTS
DEPARTMENT

SHIP ACOUSTICS
DEPARTMENT

% COMPUTATION
AND MATHEMATICS

DEPARTMENT "

MATERIALS

DEPARTMENT
28

PROPULSION AND
AUXILIARY SYSTEMS
DEPARTMENT

CENTRAL
INSTRUMENTATION
DEPARTMENT

NDW-NSRDC 3960/43b (Rev. 3-72)

GPO 928-108

DEPARTMENT OF THE NAVY

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER
BETHESDA, MD. 20034

A GENERAL PURPOSE OVERLAY LOADER
FOR CDC 6000-SERIES COMPUTERS;
MODIFICATION OF THE NASTRAN

LINKAGE EDITOR

by

Roger J. Martin

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

April 1973 Report 4062

ABSTRACT . .

ADMINISTRATIVE INFORMATION

BACKGROUND .

INTRODUCTION .

. . . .

PROJECT DESCRIPTION

FEATURES AND FUNCTIONS . .

USING THE LINKAGE EDITOR .

LINKAGE EDITOR CONTROL COMMANDS

LINKEDIT
LIBRARY .
LINK . .
INCLUDE .
REGION .
OVERLAY .
INSERT .
RENAME .
ENTRY . .
END . . .
ENDLINKS

.

LINKLIB - THE CALL

LIBRARY .

EXECUTION OF THE OUTFILE .

TABLE OF

CONTENTS

LINK~-EDITED VERSION OF THE LINKAGE EDITOR+ &

SUGGESTIONS FOR FURTHER IMPROVEMENTS

ACKNOWLEDGMENT .

APPENDIX A - MODIFICATIONS TO THE LINKAGE EDITOR

APPENDIX B - DETAILS OF THE CDC 64N0/660N LINKAGE EDITOR .

APPENDIX C - EXAMPLES OF LINKAGE EDITOR PROCESSING

ii

10
12
13
14
15
15
19
19
20
21

1
<o

22
22
23
44
45
47
53

79

LIST OF FIGURES

Page
Figure 1 - Linkage Editor Input and Output 5

« Figure 2 - Diagram of the Link-Edited Version of the Linkage
EdItor v ¢« v v ¢ o o ¢ o o o o o o o o o o o s s s o o 24

iii

ABSTRACT

The NASA Structural Analysis (NASTRAN) Linkage Editor
is a general purpose linkage editor designed to execute
on CDC 6000-series computers. It provides a means of
utilizing available main memory to accommodate large
programs which normally will not fit into the available
main memory. As originally designed, the NASTRAN Linkage
Editor required RUN FORTRAN compiled input. This report
describes a modified and improved version of the Linkage
Editor which has been extended to accept either RUN

FORTRAN compiled or FORTRAN EXTENDED compiled input.

ADMINISTRATIVE INFORMATION

The work reported here was performed within the Computer Sciences
Division of the Computation and Mathematics Department. It was carried
out under Task Area ZF0990101, Work Unit 1-1844-007 sponsored by the
Office of the Director of Navy Laboratories (DNL) through the Navy NASTRAN

Systems Office, Code 1844, Naval Ship Research and Development Center.

BACKGROUND

The NASTRAN Linkage Editor was designed to provide an efficient load
capability for NASTRAN jobs being run on the CDC 6000 series computers.
It was limited, however, to input compiled using the RUN FORTRAN compiler.
Since RUN is being phased out, and since it was desired to use input com-
piled using the FORTRAN EXTENDED (FTN) compiler, this project was initiated
to modify the Linkage Editor to accept FIN input. In addition, the Linkage
Editor was to be converted to FIN compilable code.

A detailed description of the modifications made to the Linkage Editor
is given in A-pendix A. Excerpts from the NASTRAN Programmer's Manual
have been included in Appendixes B and C for the user's convenience.
Further details concerning the design of the Linkage Editor may be found

in the Manual, pp. 7.1-1 through 7.2-206.

The Linkage Editor and the system routines needed for LINKLIB are
maintained on both the NSRDC CDC 6700 and the CDC 6400 computer systems.

For further information, contact: User Services Office
Code 1892.1 v
Naval Ship Research and Development Center
Bethesda, Maryland 20034

1 "The NASTRAN Programmer's Manual," Edited by F. J. Douglas, National

Aeronautics and Space Administration Report NASA SP223, Washington, D.C.
(Sep 1970).

INTRODUCTION

The NASTRAN Linkage Editor is a general purpose linkage editor
designed to utilize memory storage efficiently for medium to large
programs. By using this Linkage Editor, a job which can be logically
structured into segments can be run using less memory, since the entire
job does not have to be present in the user's field length at any one
time.

The Linkage Editor allows the user to divide a program into sub-
programs which can be assembled or compiled independently. These
subprograms can then be combined into a link with contiguous storage
addresses. The link is written onto a random access file for immediate
access., Since the Linkage Editor can process more than one link per
job, each link is written with a unique link number.

During creation of the link, the relocatable binary code of
the user program is inserted into the link as directed by the control
cards. A library search is conducted for external references not con-
tained on the user library file.

In order to minimize main storage requirements, a programmer can
arrange a program into an overlay structure divided into segments.

Two or more segments which need not be in core simultaneously can be
assigned the same storage addresses in different links and can then be
loaded at differgnt times.,

The Linkage Editor can produce a storage map and a cross-reference

table of the subprograms in each link,

PROJECT DESCRIPTION

A flow chart showing input to and output from the Linkage Editor is
given in Figure 1 on the opposite page.
The work of this project was loglcally divided into two phases.

Phase 1 - Convert the Linkage Editor to accept FTN
compiled jobs,

Phase 2 - Convert the Linkage Editor code to FTN,
The original version of the Linkage Editor would not link-edit FTN
compiled jobs. Many minor problems existed, but the major fault was
with the handling of replication (REPL) tables in the relocatable
binary which was being link-edited. This problem required extensive
research into the structure of relocatable binary tables and was
solved by making changes to a number of routines. The main changes
were made to REPLTAB which performs the actual expansion of replication
tables. A description of the modifications made to the Linkage Editor
may be found in Appendix A.

The majority of the changes made during Phase 2 were to the COMPASS
language routines. One major problem involved the transfer of arguments
from FORTRAN to COMPASS subroutines. In RUN, the addresses of the argu-
ments are passed in the B registers while in FIN, Register Al points to a
list of argument addresses. When only one or two arguments were involved,
or the routine was very short, the code was changed to properly pick up
the arguments. When several arguments were passed, the B registers were
set with the addresses of the arguments and no further modification was

made to the code.

SOURCE
PROGRAMS

CbC
FORTRAN
COMPILER

OBJECT
FILE [~

OBJECT LIBRARY
OF PREVIOUSLY
COMPILED
ROUTINES

y

LINKAGE
EDITOR

1

FILE CONTAINING
EXECUTABLE
LINKS#*

LINK O
INTO CENTRAL
MEMORY

!

CDC
LOADER

CONTROL
CARDS
CALL FILE
(LINKLIB)
INDEXED FILE
WITH LINKS

* The Linkage Editor will either update an existing file with new LINKS
or create a complete new file.

Figure 1 - Linkage Editor Input and Output

A second major problem was the preservation of Register AO. With
RUN, since there was no need to save Register AN, A0 was often used as
a scratch register. To avoid such use, the code was changed to omit use
of Register A0. Otherwise, Register A0 is saved on entry to a routine
and restored just prior to returning to the calling program.

In addition to the conversion of the Linkage Editor to FORTRAN
EXTENDED, a number of other enhancements have been made and many minor
bugs found and eliminated.

(1) Dynamic allocation of memory. When it is not necessary to

maintain the maximum field length, memory can be dynamically adjusted
to the size needed for the current link. This feature is disabled by
default but can be enabled by including the following control card iﬁ
the Linkage Editor control cards for LINK 0.

RENAME LINK=LINKS
Note: The NOREDUCE option must still be used to link edit the program.
It need not be used to execute the user's link edited program (OUTFILE)
if memory is to be dynamically allocated. TIf LINK is not renamed LINKS,
the NOREDUCE option must be used.

(2) New end-of-card delimiter. The "end-of-card" control

character has been changed from "$" to "*'". This was done to allow
routines to be renamed with FTN routine names which end in '"$".

(3) New OUTFILE codes. The following codes may be used to indicate

what form of linkage editor output is to be created:

S = T = sequential file

R=2¢C random file

(4) A link-edited version of the Linkage Editor has been produced

which requires even fewer words of memory, although the execution time
is slightly longer. Assuming the use of the default values for the

parameters, the Linkage Editor requires 640008 words of memory, while

the link-edited version requires only 570008.

FEATURES AND FUNCTIONS

The NSRDC version of thils linkage editor has the following features:
+ An unlimited number of overlay levels.

+ Implicit segment loading. The user can describe the overlay

structure to the linkage editor through control cards. This

allows the program to be structured after it has been coded.

*+ Complete communication is maintained between all levels of
overlay.

+ Named common blocks can be explicitly positioned,.

« All segments are maintained on a random file. This provides
immediate access to a needed segment.

« Either FTN or RUN-compiled input may be used as input to ﬁhe
linkage editor.

+ Individual links of a LINKEDIT OUTFILE may be updated without
relinking the entire program.

+ Dynamic allocation of memory as each link is loaded is available.
The linkage editor has five separate functions:

1. Combine assembled or compiled subprograms into links suitable
for loading and execution.

2. Resolve undefined externals using a library file.

3. Rearrange control sections (subprograms) and rename external
references through the use of control statements.

4. Reserve common block space for each common area generated by
FORTRAN or COMPASS.

5. Provide processing options and diagnostic messages.

USING THE LINKAGE EDITOR

There are two prerequisites to the use of the Linkage Editor:

* The program to be link-edited must have a structure which can
be divided into independent or semi-independent segments.

There must be a library (LINKLIB) which contains the system
routines and other routines which are to be used to resolve
unsatisfied external references.

If these prerequisites are met, take the following steps:

Step 1.

Step 5.

Structure the source program into segments in the
form of a tree structure.

Define the tree structure of the program with Linkage
Editor control cards.

Create user libraries of compiled routines.
Create a call file (LINKLIB) which contains the needed
system routines (LINKLIB supplied with the 1inkage

ditor) and user routines which are to be used to
resolve external references.

Execute the Linkage Editor to create the link edited
OUTFILE.

LINKAGE EDITOR CONTROL COMMANDS

The commands discussed in this section are the only commands

which will be accepted by the Linkage Fditor. Note the following:

* The LINKEDIT command must always be first and it must be
followed by a LIBRARY command.
+ Definition of a link is begun with the LINK command and ended
with END. The last command must always be ENDLINKS.
+ Comments may be inserted after a command by using an asterisk
("%") as an end-of-card delineator. Example:
LIBRARY LGO * THIS IS A COMMENT

Several terms which are used generally throughout the individual

descriptions are explained here.

Control Section A control section consists of all the instructions

Segment A segment is the smallest functional unit (one or
more control sections) which can be loaded as a
logical entry during execution,

Region A region i1s a contiguous area of main memory
reserved for specific segments.

Link A link is a set of one or more segments which
comprise a logical subdivision of the program.

LINKEDIT

LINKEDIT 1INFILE = name (a), OUTFILE = name (b),
LET, NOLIST, NOMAP, XREF,
| PARAM (i) = n

Command Description:

The LINKEDIT command specifies input and output file names and

status, what processing is to be performed, and sizes of parameters.

10

and data defined for a subprogram or common block.

INFILE

Parameters:

OUTFILE

a, b

LET

NOLIST
NOMAP

XREF

PARAM

PARAM

PARAM
PARAM
PARAM

PARAM

PARAM

PARAM

oY)
(2)

(3)
(4)
(5)
(6)

(7

(8)

Previously produced Linkage Editor file which is
to be updated during this run.

File on which executable link edited file is to
be written.

R or C indicates the file is a random file or disk.
S or T indicates the file 1is a sequential file.

Directs the Linkage Editor to ignore non-fatal
errors.

Suppresses listing of control statements.
Suppresses storage maps.

Generates external reference tables as specified
by PARAM (7).

Length of FET + buffer for all files (Default: 530).

Maximum number of object decks in all libraries
(Default: 1000).

Maximum size of any table in object deck (Default: 500).
Maximum number of links (Default: 32).
Maximum number of segments per link (Default: 128).

Maximum length of a control section for whlch text
is defined (Default: 5000).

XREF Options (Default: 3).

= 1: References from each subprogram

2: References to each subprogram

3: Both 1 and 2

Intermediate table printout option (Default: O0)

0: Don't print tables

l: Print tables

11

Notes:

The LINKEDIT command must be the first input command. Only
one LINKEDIT command is allowad per job step.

If XREF is selected, the status of INFILE and OUTFILE must
be S or T.

NOMAP is ignored when XREF is selected.

« TIf INFILE = OUTFILE, the status of the files must be the same.
If the status of INFILE is R, a new Scope file is not created.
Therefore, the permanent file must be EXTENDed if the updates

are to be made permanent. Remember that the old copy of INFILE
will not exist after an update run of this type.

Examples:
LINKEDIT OUTFILE = TAPE(S), LET, XREF, PARAM (7) = 3
LINKEDIT INFILE = OLDLKED(S), OUTFILE = NEWLKED(S)
LINKEDIT OUTFILE = ROGER(R), PARAM (6) = 8000

LIBRARY

" LIBRARY libnamel = namel, name 2, ... /libname2/libname3 = name3

Command Description:

The LIBRARY command names all files which may be used on INCLUDE
commands. It must always be in the second input command. There may be

only one LIBRARY command per job step.

Parameters:

libnamel = namel, name2, ... : Files namel and name2 may be
concatenated and renamed libnamel. If duplicate
deck names occur on the files, the first one found
will be used.

12

libname2 Files may be referred to by their actual local
name ... i.e., libname.

libname3 = name3: TFile name 3 may be renamed libname3.
Notes:

(1) The file names are not actually changed, but are renamed only
for Linkage Editor reference.

(2) "/" is used as a delimiter.
Examples:
LIBRARY LGO = LGO, OLDLIB

All references to LGO in INCLUDE commands will cause both
© LGO and OLDLIB to be searched.

LIBRARY LGO

LGO is the only file name which may appear on an INCLUDE command.
LIBRARY LINKED = LGO

All references to LINKED will cause LGO to be searched.
LIBRARY LGO = LGO, OLDLIB/MYFILE/LINKED=0LD

LINK
"LINK n |

Command Description:

The LINK command directs the Linkage Editor to begin processing link n.
The first LINK command must immediately follow the LIBRARY command. Additional
LINK commands may follow the END command of the current link description.

Whenever LINK 0 is processed, it must be processed first.

13

Parameter:

n - A non-negative integer link number.

Example:

LINK O

INCLUDE

| INCLUDE libname (deck, BLKDATA (comname))|

Command Description:

The INCLUDE command directs the Linkage Editor to include all the
named object checks from the specified library in the current link. This
command may appear anywhere between the LINK and END commands for a link.

Subprograms are included in the order found.

Parameters:
libname - Specifies the name of a sequential file listed in the
LIBRARY command.
deck - Specifies the name of an object file which 1s to be
included in this 1link from libname.
BLKDATA - Indicates named common areas are to be included.
comname - Specifies the name of the first mentioned named
common block in the BLOCK DATA subroutine.
Note:

While FIN allows BLOCK DATA subroutines to be given any name, the
Linkage Editor requires the BLOCK DATA subroutine be either unnamed
or have the first six (6) characters of the name be "BLKDAT".

14

Examples:
INCLUDE LGO (SUBL)

INCLUDE LGO (SUB2, SUB3, SUB4)
INCLUDE LINKED (BLKDATA(COM1))

INCLUDE MYFILE (SUB5, SUB6, BLKDATA(COM2))

REGION

{ REGION |

Command Description:

The REGION command defines the start of a new region. It may be used

anywhere within a 1link definition except in LINK O.

OVERLAY

OVERLAY name

Command Description:

The OVERLAY command indicates the beginning of an overlay segment.

It may appear anywhere in a link description, but may not be used in LINK O,

Parameter:

name =~ Specifies a symbolic name which indicates the origin of
a segment. It is not related to external symbols in the
link.

Notes:

(1) An overlay should be specified when two or more routines which
do not have to be in memory simultaneously are needed.

(2) Common blocks should be positioned at the end of the longest
overlay.

(3) Overlay names are defined for each region. Therefore the same
level overlay may have different names in different regions of
the same link. '

15

Examples:
Example 1 - Multiple Region Overlay

| SUB1

[

d b
REGION

B A F
d

REGION
OVERLAY ALPHAL
INCLUDE LGO (A)
OVERLAY ALPHAL
INCLUDE LGO (B)
OVERLAY BETAL
INCLUDE LGO (C)
OVERLAY BETAL
INCLUDE LGO (D)
REGION

OVERLAY ALPHA2
INCLUDE LGO (E)
OVERLAY ALPHA2
INCLUDE LGO (F)
OVERLAY BETA2
INCLUDE LGO (G)
OVERLAY BETA2
"INCLUDE LGO (H)

16

Example 2% - Single Region Structure (No REGION command needed)

SUB1
JCcoM1/
' ALPHA
MOD1 ~ |PrOGB
' BETA ROGC
MOD2 ROGA 4
MOD3

INCLUDE MASTER(SUBL)

INCLUDE MASTER (BLKDATA(COML))
OVERLAY ALPHA

INCLUDE NEWDCKS(MOD1)

OVERLAY BETA

INCLUDE NEWDCKS(MOD2, MOD3)
OVERLAY BETA

INCLUDE MASTER(PROGA)

OVERLAY ALPHA -

INCLUDE MASTER(PROGB, PROGC)

% Examples 2 and 3 have been taken from the NASTRAN Programmer's Manual

17

Example 3 ~ Multiple Region Structure

A
B
ONE C
Region 1 4 AA E
TWO BB F
cC i G
D
DD
——— — ——— ,'-ll A — — ——— —— ——— — -——— a—— — “— ——
THREE I
FourR___|FE
Region 2 { P
K
&
\

INCLUDE OBJ(A, B, C,)
OVERLAY ONE

INCLUDE DECKS (AA, BB)
OVERLAY TWO

INCLUDE OBJ(D)
OVERLAY TWO

INCLUDE DECKS(CC, DD)
OVERLAY ONE

INCLUDE OBJ(E, F, G)
REGION

OVERLAY THREE
INCLUDE OBJ(I, J)
OVERLAY THREE
INCLUDE DECKS (EE)
OVERLAY FOUR

INCLUDE DECKS(FF, GG)
OVERLAY FOUR

INCLUDE OBJ(K)

18

INSERT

| INSERT name |

Command Description @

The INSERT command positions control sections within an overlay
segment, It is used following an OVERLAY command that defines the segment

in which the control section is to be placed.
Parameter :

name - Specifies the name of the control section to be inserted.
Note:

(1) If the control section is inserted more than once within a link,
the last INSERT will be honored and all others ignored.

Examples:

INSERT SUB1

INSERT SUB2, SUB3

RENAME oldname = newname :
| RENAME oldname (subprogram) = newname !

Command Description :

RENAME changes external references to a name either throughout a
program or within a subprogram. It may appear anywhere within a link

description.

19

Parameters:
old name - Symbol which is externally referenced.
new name - Symbol to which the reference is to now be made.

subprogram - Name of the subprogram in which the rename is to
be performed.

Notes:

(1) RENAME does not actually change the symbol name, but switches
external references to the new name.

(2) Only one rename may be specified on a single command.

Examples:

RENAME SORT = SORTXX

I
[opd
=
A
o>

RENAME LINK

ENTRY

[ENTRY name |

Command Description:

ENTRY defines which control section will be branched to when a

link has been called.

Parameter:

name - Control section name.

20

Notes:

+ The control section must be in the root segment of the links.
+ In Link O, the entry name must be the main program.

«+ Each link must have one and only one ENTRY command.

Examples:
ENTRY MAIN
ENTRY SUBL
END

Command Description :

END defines the end of a set of control statements for a link.
It must be placed immediately after the last control command for a link

description.

ENDLINKS

ENDLINKS

Command Description :

ENDLINKS defines the end of the link editor control statements.
This command is the last one on the input file. It should be preceeded

by an END command for the last link definition.

21

LINKLIB ~ THE CALL LIBRARY

LINKLIB is the call library used by the Linkage Editor to resolve
external references which cannot be resolved from the routines listed
on INCLUDE commands. A LINKLIB must always be used when the Linkage
Editor is executed..

The LINKLIB supplied with the Linkage Fditor contains all the
necessary system routines for both FIN and RUN compiled routines.

If user routines are to be used to resolve external references, the
user routines should be confirmed with the supplied call library on

a file named LINKLIB. The call library must be called LINKLIB.

EXECUTION OF THE OUTFILE

The output (OUTFILE) of the Linkage Editor is produced in one of
two forms:
+ As a sequential binary file (status = T or S)
+ As an indexed random file (status = R or C)
One of the following three Scope control card formats should be used
to execute the outfile.

1. OUT1.CATLOG(OUT2)

22

This form is used when OUTFILE = OUT1(S) was used on the LINKEDIT
card and an indexed random form of the file is wanted.
The new random file (OUT2) is not executed.
2. O0UT2,ATTACH
. This form executes the indexed random file created with
OUTFILE = OUT2(R) in the LINKEDIT card or with OﬁTl. CATLOG(0UT2)
described in (1) above. |
3. OUT4.

This form is used when OUTFILE = OUT4(T) is specified on the
LINKEDIT file. This control card causes the bootstrap routine to
generate the following control cards:

OUT4 . CATLOG (SYSLMOD)
SYSLMOD .ATTACH

The OUTFILE is changed to an indexed random form and then executed.

LINK-EDITED VERSION OF THE LINKAGE EDITOR

The Linkage Editor has itself been link-edited. This has resulted
in a field length reduction of approximately 5100@ words.
A diagram of the link-edited structure is shown in Figure 2. The

Scope control cards used and the output received are reproduced in

the pages following the figure.

This output 1is provided merely as one example of a specific
application of the Linkage Editor. Other general examples are provided

in Appendix C.

23

LINK O
LKED, MAPFNS, BLKDAT.

System Routines

LKEDO0O, LKED100, LKED150, LKED175,
LKED300, LKED320, LKED900, LKED995,
LKED999, HASH, XRCARD, RECDUMP

LKEDO10 | " LKEDO15 LKED025 . LKEDO50 | T LKEDO75 | l
(26732B) ’ (27404B) LKED200 | ' (27237B) ! LKEDO77 |
LKED964 | LKED350 |

|

BLANK
COMMON
(46552B)

Figure 2 - Diagram of Link-Edited Version of the Linkage Editor

24

Scope Control Cards:

JOBCARD
CHARGE CARD

RFL,1300 .

LABEL (TAPE,L=CARUCA1277,R,D=HI) (CA1277/NORING)
RFL, 10000 .

COPYBF, TAPE, LINKLIB.

COPYBF, TAPE, LINKEDT.

RETURN, TAPE.

RFL, 70000 .

NOREDUCE .

LINKEDT .

25

24/92/0%

*£5°6L£°£T

GON3
G3X7 A¥LIN3

((20903% 1) ¥1VOXI8)IBIT 30NIONI
(SNAdVYRQINTIATT 3IGNTIINI
ANIT = 00003%7T 3INYNIY

SAS = W3LSAS 3WVNIY

‘W31

6 XNIT

LA3XNIT=8IT Auva8ll
£=(LIHYBVA 43X (1) 103=31141N00¢ 137 LIGINNIT

SY3TIJNOD NLlJ=NNY / W3LSAS INILv¥3Id0 £ 3I40JS S3I¥3S £009 200
WHE /WY A8 ¥311dW0O 03GN3IAX3 NV31¥0d 804 SNOISIAIY 0°T 13A31

43 0V0 17301103

IOV XAXNIT NOISY3IA NOUY

N1l 4

303 SN

T

IN3WI3S

26

054430

94278
$%9230

425110
§09030

eieonto
204400

£02400
595900
*0S900

944600
411600
495500
926508
505500
c0Ne00

sS3yaaY

A¥SO1

‘0340u4X
3LTENX

*NU4SAE
*TILINI

6660343
TdRNOX

*974483
*W3ILSAS
$1IX3

XXXXJdWA
AJ0H
NI0I3I4
HOL34X
14IHSY
#93dv1

ld=AUAN3

£14%30
8T0s%

0£0£30
2glete
9£9210

£24770
TISTY0
495010

158070
4%2400

sgeL0e
195988
954900

£14500
519500
495500
025580
S4%580
Si£700

ss3uoay

UMODE°0 292910 QA8 °C
0IOI 200510 L¥M3¥ol
£25%%0 MYUOI
XQv3y 022710 X31IM
03u%8X £242T0 ONIM3¥X
XONI3¥ T£92710 13IA3X
'UNISAS 2TLTTO *SOMAN
‘nNd0d 9ENTTO *N3d0
719°0IS 9££0710 *1v0
STE0TO 13S3y
40940 040010 £00d0
%£00T0 *ANJSEV
30VAlX TS%.00 ANIT
1109 £20200 12548
$WILSAS SES900 IWILASAS
*GN3 0hh300 . *AWLINSD
INO0 270900 IVASNI
INILAVO %S9500 alvol
4207 556500 avz
3Y0LSX SvS500 SANJ0D
430X 294500 47dH0D
#53dvy 204£00 #1NdiNo
1d=AMINI SS3UGOY Ld=-A¥N3
24/92/0% *£G°6L°ET

491510
500570
9HGHT0

£64270
029210
L%9210

£002T0
295110
CLETTO
0€4TT0
£2£070
597010
£01400
hahi0D

420.00
4353900
4249300

400900
119500
2465500
154500
£94500
SL£700

S$sS3y0av

MZ0I
31T aN01
HAOI

1S03uxX
av3ax
35073X

*31d4N0
*14S0d
GN3°01S
* 1IN
ai3s
20240
3V JHOD
$ANIT

$ISAS
* WY ONBY
*HINA

9913S
AYAQDIY
dWnrx
253090
440
#1NdNI

ld-A¥IN3

ANTI T ¥ 04

LL1570
£2TS10
751570
£491670
LLL9T0
£€5H7T0
62TE£T0
94210
h20£70
265270
991270
2h0270
WiLTT0
heaTT0
6590710
LI9TT0
£0£070
907070
904400
495400
652400
225900
0315900
324300

2£4500
2ndsin
503500
95500
249500
450500
STusl0

S$S3y¥00V
d ¥ N

*33090v
$4007
val3is

7201
QY301
01
*Y3AA0N
J3¥dNEB X
TXQv3y
N340 X

dWNQ¥0 D

UYADANI Y

*131Nd0

*NIAQY
*0IS
*1010
TIV3AVS
3dJ
dhNOX

*¥y3avon

*134980

$H3LSAS
*d01S

*HOS1E

NOWROO X
*02HNIT
HSN3
SQNOMT
FEI]
30NV
['Eb

1d=-A¥1N3

£70000
200000
430000

£12000
£02000
£ETHI00

1292000
c9£000
£27000
©20000

904706
0% 0000
242000

£2£000

110700
200000
420000
1£0000
420000
290000

202080

258000
940500
£42100

Hi19N3T

39v3yo0ls

032870 = ANIT N1 SS3¥QOV 1SV

947510
£474170
£57ST0

LELNT0
££54910
LITETO

495210
491210
0n0270
£49.770

%££0T0
£0£070
%0030

Ha%l00

2E9900
424900
448900
S%£900
s7£900
422900
470900

uh%S 00
SL£700
107000

ss3yaav

$33090V
$4207
¥8139

oI
WANVYO0I
$3300%

SNLYOIX
dWNQa0d
JY3INNIT
$31dino

$01S
XIdANLd
3d3

¥30V¥0IX

SHILSAS
/80003 V
/7403C03%V
/75020 V
/400033 VWV
/7£0003XV
/20903%/

SNIdVHW
a3x
/7 $03NIV/

3WUN

L RN, -t

-

-

At

IN3IN93S

27

NOIiV307 NOILvI0T NOILVI0Y NOILVI0 NOILYDO0T NOILY30T NOILVI0T NOILVO01 NOILYI0T NOILVIOQ NOIL¥30Y

24792701

*£5°6E£°ET

0

55%000

A NI

29¢000
Shn000

022000

NI

420000

620000

STH 000 ®TH000

02% 000 074000

952000 %£2000

WVYY¥I30uydaaAas

£350000

540000

ThECOC

9397000

2thoo0

405004

£72000

#H3V3

TH0000
£50000

450000

£96000

9££000
GHe000

%02000
125000

S9£000
142000

£90000

051800

HWOod d

£40000
240000
420000
320000
250008
4£0000

£52000

g0coo0
£4%2000
s0£000
642000
e92000
0237000
11£000
2Te800
28000

£25000
402000
9£5000
Theo00
4£5000
®9£000
042000

550000
102000
422000
202060
921000
3931000

0c0%00
220qp0
*20%00
2207080
T£0%00
££0700
4£0%00

* WYONEY
IN3L1SAS
*y300%
*1lva
*0IS
*ILINI

vai3s

TXQY3S
843S
XXXXdWQ
3dd
dWNQ¥0D

AUINNIN

*1340d0
*3ldino
$1Ix3

119°01S
*ILINI
aN3°0IS
*1133
*NIAGY
*0Is
*ivQ

el3s
TdWnax
ANIT
$1Ix3
Jdd
SHILSAS

* AYLNSD
. 9913s
AdA023Y
NICI314
ANIT
*d0LS
*ON3

1o

£4927%0
H££0T0

whh200

2gH900

%1400

SLET00
SS3yaav

S3IJIN3IFII3A

$31d4N0
$0IS

430v0IX

SHILSAS

SNJdVH

a3axny
WY H¥30¥dE8NS

[« o]
N

407000
297000

530000
530000

s07000
227000

202000

212000

120000
220000

cr1000
%47000

980000

102000

002000

620000
940008

417000
947000

£20000

S21000

£27000

907000
077000

911000
427000

®20000

T4T000

s9t000

2ct000
221000

411000
902000

cs o000

G91000

S57000

257000
£57000

92tT000
402000

+©00000
s00000
££0000

1917000
¥40000

S07700

292000

“131000

991000
gl3000
910000
427000
222000

020000
320000
20000

920000

TH0000
657000
SH0000

150700
£07T00

221000
2450000

-eec000

£90000

202000

402000

£20000
5517000
£22000

420000
0£0000
240000

520000

9£T000
2E€T000
h30000

051000
+©20000

201100
0£0%00

02,000

li0000
051000
502000

950000

412000
022000
coTo00
4ST000
042000

T£0000
SE£0000
420000
850000

+w490000

£00000
%00000

h20000
9grI0080
%02000
e1c000

Sh1noo
HT000
100000
¢T0000
491000
2.0000
02C000

040700
260100
907700
287000

TT0000
9171000
020000
TIT000
%£1000
hoTco0
421000
SEC000

440000
h£2000
9£2000
207000
191000
The000
gecooco
490000

sH0000
9%00C0
TSC000
£3I0000
£5C0000

$WILSAS
*HAUONBY

666040
Jdd
%3349
£00d0

2201
MZOI
AVSOI
0101
6663d0
¢03d3
Jd3

*914¥d3

" SWHILSAS

*HAONEBY
*iva

TIVIAVYS
1383y
g13S
31I¥MO1
Qv3yol

34VdHOD
#1Ndino0
*131Nnd0

*01idino
30valx
$4007

#1ndino
*131Nnd0
*J31id1no
*u3090v

*d04sS

9L.T74T0

LELINTO

££64T0

LTTETO

4495210

%9121

390270

333090V

0I

WONVAHO0X

$¥300%

29

SN1u0IX

dHNGA0T

AAINNIT

410000 120000 §40000

907000

221000

251000
w0000¢C

991000 202000
020000 420000

472000
9£0000

~==3NON=-=

420n00 a3xa

-==3NON--~

420700 G3x1

-~=3NON---
-=-3NON=--
--=3NON=--=
-==3NON=--
-—=3NON===
---3NON-=-
---3NON-=-
-==3NON-=--
-~-3NON---
--=3NON-~--
-==3NON--=
~==3NON=---
~==3NON===
-~=3NON=--
-=<3NON=-=-

-=-3NON--~

4£2000 dHNQY0
5490000 YYINIT

-=-3NON-=--

~==3NON=-=-

NOILYJ07 NOILVI0T NOILVIO1 NOILVWOIDT NOILVI0T NOILVI0T NOILVO0T NOILVI0T NOILW30T NOILVI0) NOILVOO01 WOdd hhl]

ei/92/01

*£5°6£°ET

i}

ANTT

NI

I1NIOGGd

A d 1 N3

H3Vv 3

0

Py

%59500
119500
$09500
495500
4295500
$55500
2495500
Thes0D
925500
025500
545500
159500
24n500
505500
aum600
494500
£94%500
469500
204200
SLETRD

20m200
SLET00
STH500
Ss3d00v

S3IINIE IS

3lval
AYAOJ3Y
HSN13
NIGT3I3
4007
dvz
dHArX
SO¥OMI
HJ134X
3¥01SX
SAMY0D
1S¥02
134IHST
L41HSY
430X
47dN0D
EY-17]
JONY
#93dvl

#S3dvi

#10d1iN0
#1NdN1
a3

1d=A¥IN3

503100

920000

150700

£07700

SE0000

<0TT00

00700

490000

040700

£00000
250100
246000

THI000

400000
3017080
£40000

£a0000
£E£CH00

24g000
202000

He0h00

020400

s0£000

2cth0

$3300%
-==3NON=-~
~==3NON=-==
-=-3NON===
$¥3090V
$u300
$91d1n0
~==3NON===
SNdAdVR
===3NON-~--
333090V
$¥I0OM
$914100

YYIANIT
a3axnd

¥30Qv0IX
SNJdVH

a3,
43N
——=3NON-=-
-——3NON=-=-=
——=3NON===
¥3QY0IX
——=3NON===
—==3NON===
ENR)
~—=3NON---
~=<3NON-==

-~~3NON=~-

£02200
582200
£20400
420200

223900
595900
194900
46900

415900

0¥5300

©08900
954900
049900
LENSD0D
9£4900
2gL500
944500
£14500
210900
400900
enisig
4325900

529500

* 914443
1107
128548

1ISAS

1H31SAS
*H3LSAS
$HILSAS

3WILSAS

* HAONBY
°d0ls

$1Ix3
*GN3
®AULNSD
‘RO
WS4
NOHWOOJX
XXXXdWG
THI0D
TVLSNI
9913s

¢ 02XNIT
A007

3KILAVG

31

202000

2120090

SsH000 AL 11}

102000 547000 Titaoc

goeooo £27000 S9T000

0.2000

g2u000

S91600

S57000
952000

0T%000

292000

197000

Ts0000
®T1000

hg2000

£96000
h04%000

2h006 0

ec2000

221000

SS1 060

S%0000
£90000

£72000

02210080
£50000
142000

pstooo
402000
£90000

420000

gsigco

420000
950000
£90000
gsi000

2ET000
320000
I92C60

TH5000

911000
0.00C0
£92000
$50000
TT06CO

420000
®%1000

h02000

2to000

$3300X
$£31d100
$W2LSAS
$WILSAS

-=~3NON-=-

SNL¥0IX
SNL¥OIX
¥3QV0IX

SN3d¥H
SNLINOIX

0l
KONVu0I

oI

oI

240000
9E£T000
g626eco
SECOCO

642000
9¢310C0

250000

162000
920000

442000
TECHCO

WONVSOI
01
WONVHOI
SN1¥0IX
¥30¥07X
SNAQVR
~--3NON---
dNNQu03
=~-3NON---
SNIQVN
dHNO¥0D

SNAdVH
G321

~==3NON-=-=
-=-3NON---

==-3NON---

9£EDT0
0gnTT0
LTNTIT0

STEOTE

£2£670

£0£0T0

eL20%0
450070
050070

S9T010

307010
he00%¢C
£492400
502402
204400

L%2400

1469200
h4h .00
495200

852400

*ive
*T0y
‘301

4383y

wi3s

RRLEY Y

66004y
%0340
£0042

20045

Jadd
*IN3Sgv
3aVokh0D

dkNGX
TdkOUx

30VYyLX

ANIT
$ANIT
“¥30vol

¢ 1433980

32

403000 S0T000 211000
291000 241000 %43000
900000

ST0000 220000

417000
927000
£20000

940000

9TT000
447000
®20000

071000

411000
902000
2£0000

21000

c9£000

9271000
402000
££0000

£51000
s00000

STH000

480000

910000
427000
222000
0000

0470060

120000

%T4000

620000

540000

£20000
4517000
£22000
240000
THEDCO

202000
o0g0000

2000

991000

%50000

o0otTeo0
457000
0%2000
050000
0%£000

622000

280000
9££000

S$9£000

125000

%02000

0020600

292000
gergoe
20%000
Ts1000
Theo00
150000
21£000
9£2000

940000
112000

625000

985000

240000
4h9£000

%€£0000
20¢000

£25000

-=-3NON=--~
330V0IX
-==3NON-=--
---3NON---
__7mm3NON--
~==3NON=-==
---3NON--=
¥306Y0X

JIAVOIX

dRNONOQ
BYDINIT
3300
dWNONO3
UIINIT
¥3OV0IX
---3NON---
-=-3NON---
-==3NON=-~--
$W31SAS
~-=3NON---
~==3NON---
-=~3NON-=~-
SHILSAS

3$01dino
SH3LSAS

$31d4N0
SH3LSAS

SH31SAS

gi92t10
heDETO
599270
9g9210
TE92T0
419270
LSG2T0
991270

Sh02T0

£00270

helTT0
£24LTT0
214170
2358110
hE51T0
225110
TISTT0
9ENTTO

CLETTO

669070

509070

%950T0

Qv 3ux
IXav3y
311dMX
XONI 3y
AJ1A3X
3S070x

N3d0X

dRAGY0D

JAIANIT

*3idino

*131Nnd0
*YAYISAS
*SUMAK
*14S0d
*NIAGY
*NudSxe
*Nyud0a
*N3d0

GN3°0IS

*0Is

*ILINI

A13°01IS

33

Th0000

1£0000

2g£T000
9£7000

210000

%0000

£70000
%%0000

£52000

91000
SnT000
100000
creo00

111000

%£7000

401000
421000

4elfCOD

BUIANIT
dhNOY0I
$01IS
---3NON--=
-==3NON-=-~
WONVAH0I
KONVYOI
WONVHO0I
NONVY0I
~==3NON--=-
SN1¥0IX
SNAI¥OIX
-==3NON---
SN1¥OIX
SNI¥OIX
3914100
~~-3NON--~
~-=3NON-=-~
-==3NON=---
-~=3NON=-=
---3NON-=-=
=-=3NON---

---3NON-=--

LLTSTE
£27870
1497510
£24470
24944970
AN
E9IST0
Csinto
CI10s5T0
c00s70
mnumﬁa
L4970
£4549T0
348410
££5910
02T£T0
0g0£T0
Jiiere
£642110
ﬁ:umwa
94270
2EL2T0

£24270

*¥33090v
$3007
Yai39

dMao8ea

a3098°0
KZ01
2201
AVSOI
0101

LIM3A0T

31I4MOI

av3y0l
Mad0l
HY¥O01
AUJ0I
*33060X
XQv3y
X31IuM
15033x

I FdaNex

RETIN-FY

J3uN8X

GNIM3BX

34

ON3

00003%T A¥INI

(0S£03%7422003X1¢45200301) 817
v

(05003 NEIN

v

30NTINT
AVII3A0
300081
AVIA3A0

®*ANVI@ L1AISNI

¥0I0INT
(%9603%7¢00203%1452003N 18I

v

(S7003%N)8IY

v

(0T003INNEIT

v

(dNN0OIACUVIUXCHSYH *66603INT14S6603INT40060INTVIEIY
(022014 00£03NT4SLTOINT 0STAINT00TAINTC0D00G3IN N EI

AVW3A0
30NTINI
AYTE3A0
30NTINX
AVRAA0
30NTIINI
AVRIIAO
30NTINI
30NIONI

*W3LSAS = N3LSAS 3MWVYN3IY

S¥3ITIMHOD NLI-NNY / W3LSAS SNILV¥3IdO £ 3d0IS S3I¥3S 0009 34D
WHC/ZWMY A8 33T7IdWOO O30NILX3 NVILY04 A0S SNOISIAIY 0°T T3A31
24/92/0% *£S°6L£°ET ¥430Vv01/7301103 FOVIANTI I NOISYIA NNY=-NILS

T ANIT

3 0¥SN

LN3NO3S
IN3W93S
ANINO3S
AN3NO3S
AIN3WI3S
IN3W93S

IN3W93S

35

025940 = MNIT NI SS3uQGQGv LSV

£00000 The2el / $8VINI/ A
£2g2e0 dIAdNA w0g2€0 JYXADNA L922¢80 JYXANIVd 256000 3382ctl g5 €03x7 P
SL0TED 22003%7 TLTT08 %.07€0 4200307 73
925920 S4003%7 96£200 s2s920 SLB03x7 3
925920 05003%7 945000 G25920 05003%7 9
coon1g 146280 /°*xNvI8/ s
£0000¢0 895280 / $8VIN3/ L]
002780 #9603x1 993000 8497€0 #9603%7 4
954120 1020351 chn1e0 802a3%1 6ge000 (AL RS A} 002037 L]
3249920 S2003A7 214200 625920 5200ax7 "
£000¢0 2hnied / $8VIN3/ £
925920 S7003x7 w12000 §¢5920 ST003%T £
£00000 159420 / $8VIN3/ e
442920 08003X7 326920 0T003%7 £27700 525920 0T 003N 2
$2 0000 4449920 / $8VIN3/ T
4949520 $13S¥383 Shinel SYIAVYA cESI00 LA TA T3] $UIAVAN T
Teineo *$roil TeLv20 *roll 9T0000 $2.%20 3roix) 4
. h0L420 *$10.0 h0.i%20 *Iold Tc 0000 £04%20 31010 1
445920 AHO* 403 LE9%20 *04iNdNI h19420 *Idingl 421000 £55%20 $310NdNI 1
L9920 *300030 £0s%20 *100330 Ss0000 Siv92 $S1NdNI ¥
kAL 141 SHUYNIY 0£0000 Yhhhel IRUUNIY 1
Sg1000 a0gwed /90303%V/ T
S%0000 gnehet /1020351 1
490420 dWNGO3y cs1000 R dWNO33Y 1
ecgeeo QyvoYXx hesI0o g2geco Cy. yv 1
sleezl HSYH %20000 £le220 1ISYH T
gegt20 66603%7 h9.000 ST£720 cwo 03X 1
%92120 96603%7 £E00CO 292120 S6603INT 1
££2120 00603%7 pgodoo T£cTe0 6060307 L
kXA 4] dWOX3vd £12120 GIdNdND 6LTT20 BEAJNN cETT20 8Vild3d ’
240120 CHLIANIT 450120 TBLANIT £30T20 aviTI4 09,020 8Viix31 2h.020 HON
424020 0660347 024020 1X301S £72020 1X3139 00020 IYOAJVd 799020 AVOAdND R] £99020 g2ga3an T

459020 XXAJVd
£499020 XXAANN hg9020 1S13VHD 0£9020 X13TIHSY 919020 L¥3ANCD 909020 Hi1vd93S

$95020 NHJIIVYD 285020 HSYHHAS L£5020 2IA3vd 924020 ST AdNN 415020 ASKADNN
115020 AdNN 105020 ASHAIVd £4%020 AJvd 094020 WASAJVd £h% 020 HASXdNN 02cto0 chhieo 00e03%7 L4
9s£020 EPRLEN] $90060 96E02¢ S4T03AD 1
141020 05730321 »91000 4381020 £5103x%1 1
£00020 0010351 597000 100020 00TG3x7 T
622510 00003%7 w56200 +©22510 600a3x%7 1
110000 2T24910 /738v1935/ T

SS3U00Y Ld-A¥IN3 SS3U0AY 1d-A¥INI - SSIYOOV L1d-ANUIN3 SSIWOAY Ld-A¥IN3 SS3¥A0V 1d=-AUIN3 HIONI1 $S3aGav AHUN LNIKWO3S

2i/92/701 *£5°6£°£T T A NI ¥4 0 4 d VH 39VvVy¥0.LsS

36

- £97000 497000 552000 ASHIGNN
©70000 £20000 ££0000 - £50000 $30000 111000 £27000 051600 147000
£I2000 922000 092000 592000 o0c000 1c£008 0h£ 000 $9£000 . 20%000 0349000 +w24%000 #93dvi
470000 $20000 9£0000 %S0000 040000 2TIT000 s2T1000 157000 +©27000
912000 - 4£2000 £92000 992000 £0£000 “££000 Heo00 S9£000 4049000 TIn000 52h000 *131nd0
4170000
020000 920008 0%0080 240000 £90000 550000 2.0000 %.0000 9.0000 007000 107000
£37000 421000 I£3000 ££7000 s£1000 LE£T000 093000 251000 943000 447000 412000
9g2000 0%20080 TH2000 %92000 492000 S0£000 202000 112000 £7£000 412000 9££000
4££000 295008 49£000 - T.£000 £2£000 SL£000 9.£000 904000 404000 239000 42h000
IEN880 ££9000 SE£4000 4£9000 THH000 £4949000 ShH 000 TS%000 £59000 S64000 954000 *3iding
290000 - T27000 s2£000 2TXdNN
4942000 462000 HASHdNN
g£eh000 TVNdNN 9TET20 666037

% 00000 #93dV1
500000 *134nd0
480000 030000 *31d41n0
230000 66601 292120 $6603X7

400000 #93d¥1
500000 *131nd0
400000 070000 *31d1no

270000 *°d01s TE£2720 g0603%7
940000 - TE£T000 062000 - ai3s

072000 TIVIAVS

£92000 13s3y

37

108000 TdWNOX
150000 $6603X1

20£000 £90000 190000 3dd £99020 02£03%7
c£ 0000 050000 TT1000 950000 050000 813s
421000 TIVIAVS

L£7000 1383y 29020 00£03AY
£30000 HSVH

ozo000 HSVHHAS %5£020 SLT03NTY

400000 XXAdNN
430000 290000 2TXdNN
2g0000 290000 990000 150000 007000 ASHADVd
$50000 407000 STAJVd
TIT000 XXAJVd 491020 0STO3INT

£90000 30NV
900000 HSVH
£70000 HSVHHAS
c£0000 00603%7
£50000 027000 ASHAIV
%40000 2TAdNN
407000 STAIVd oo0gooo0 3S0713x

NOILV¥J07 NOILVWJ0 NOIAVI0T NOILVIOT NOILYJO0T NOILVIOT NOILVIOT NOILVI01 NOILVIO0I NOILVIOT NOILVOO] hhi S$S3U0AV WV AS0ULBNS
2L/92/01 *£S°6E°ET T ANTIT N1 WYY 950u8dENS H3Jv3 NOoUd d SIINI3IY343

41100

908700 199000 "™IT00

SH1100 eLTI00 *TI100 990700
ThoT00

470000

S£2000

9£2000 £4.000 15000

cETI00

%£0T00
4£9000

120000

enl000
e52000

194000

960700
T£9000

821000

240000

£20000

2%0000
090000

L0L000
092000

040000

£ITT00
£9.000
194008
055000

90000

2171000

420000

s20000

150000
220000
211000

954000
192000

290000

$07000

112000
"h3000
592000
254000
025000
299000
051100
405000

LEBDOD

70831000

ggo000
gzo000

470000
ST0000
9200060

250060

290060
002000
%0£000
9500080
£22000

S59000
59,000
99,000

2£0000
107000
210000
"%0000
S27000
211000
££T000
9nT000

s12000
$90700
Ti2000
29.000
s4s000
S$4%9000
S£0T00
921000

§40000
190000
080000

sgpone.

£%0000
%17000
££0000

£20000
220008
200000
£00000

9%0000
240000
gstooo
2£0000
290000
950000

611000
L58£000
£%¢000
®/0000
££2000
££0000
102000
ci000
£4.000

900000

NHOTIWVD
ASKHAAND
HiVd93S
2060341
ASHAIVd
STAdNO
_ 2TAJvd
IVINJVd

AHD* 403
* 97443
31101
$2SAS
11SAS
$W3LSAS
* WAUONBY
*iva

*YBIASAS
*HYONBY
SH3LSAS
cYyIxAVAA
“ILINI
*0IS
*ilva

LHILSAS
*HAONEY

*1lva
cAIAVUA

#10d1ln0
*101Nd0
*31diN0
avaax
dRNax
$4201

14IHSY
13IHST
340
ERCLR
40NV
*$roilx
*$1040
*19ind0
*0l41n0

X13IHSY

geoocno

hhin2o

£55%20

EPALFA]

590420

gegeetn
£42220

2TAdVd

$U3INVUN

$010dN1

$S1NANI

dWNQJ3Y

GavIux

HSVH

38

250000 %1000 405000 HSVH
090000 SYT000 075000 HSVHHAS
910000 £42000 »I£000 962000 448000 0g+®000 495000 129000 249000 799000 #93dV1
438000 542000 51£000 09£000 004000 TEH000 145000 £29000 £49000 <99000 *101nd0
120000
£20000 w20000 242000 1oe000 £0£000 90£000 cI1£000 4T£000 e2E000 92£000 292000
%9£000 99¢e D00 122000 S.£000 209000 5049000 1T%000 ££49000 S£9000 9£4000 £45000
§45800 925000 $29000 429000 T£9000 “£9000 099000 599000 059000 453000 £99000 *Jldino
££0000 S%0000 2£T000 ch2000 954080 994000 945000 Ov3ax
203880 933000 £27000 0£3000 491000 2£2000 435000 $25000 + 2£5000 155000 455000 ASWAJVd
’ ’ ’ 902080 2TAdNA
§92000 - $%€000 AVANIVL
0S£000 41%000 2TIHOVd
hen000 ONIn3dx
429000 L0IA3IX
154000 £9%000 XONI3Y
£95000 dINdNN
079000 JUXXNdNN 000000 4400307

$50000 T9T000 S2T000 452000 OTEDOO 22E000 SEE000 SOL000 NASHNANA
: 070000 #%%0000 £2TD0O 2.T000 2TXANA
T20008 202000 WASNGNA
_h£0000 _ _£20000__ ¥IT000 _TSY000 _9ST000 0£2000 282000 392000 ££000 498080 XSHAOV
5T2000 83090V
¥52000 %92000 £22000 29060 06603X1
T2£000 9SE000 00TQ3INT
ITHEROD 9HE000 #934Vi
29£008 29000 °I191Nd0
£9£000 0S£000 °J14LN0 625920 0S0O3NT

39

£0%000 1X3139
427000 MSHIANN
530000 $50000 140000 211000 TE£3000 S51000
743000 212000 8£2000 £462000 %42000 01£000 92£000 THE£000 09g£000 %04000 9249000 #934dvl -
4310000 950000 640000 £37000 h£T000 95700 '
413000 £32000 9£2000 652000 s22000 11£000 422000 - £4£000 198000 905000 1429000 *121nd0
) g20000 0900008 290000 £900080
420000 303000 -£07000 s0T000 907000 s11000 417000 027000 9£7000 047000 eh1000
443000 941000 0s¥000 157000 091000 291000 *9T000 991000 497000 002000 402000
0T2000 612000 412000 022000 042000 ch2000 hH2000 942000 4492000 252000 192000
£92000 592000 492000 142000 222000 222000 102000 £0£000 $0£000 902000 £I£000
S1£000 4T£000 128000 c2£000 T££000 ££2000 %££ 000 549000 Z9£000 0S£000 £92000
$9£000 49€£000 04£000 034000 2T9000 4T%000 918000 419000 TEH4000 ££%000 wERG00 *J3ldino
£20000 OIXNdNN
422000 4©5£000 004000 GEXJND 991¢£ 0 49603X7

4%1T00 SHY100

970000 £42000

147000 212000 S£2000
410000
£32000 922000 092000

NOXLVI07 NOILvI0T NOIAVI07 NOILVOD NOILVOOT NOILVI0T NOILVO0Y NOILVOOT NOILVOO0T NOILVI0T NOILYDO0Y WO¥s 1W¥0 Ss3daay

900700

2ETT00

%1000

£52000
£20000
$92000

2L/92/01 *E£S°6E£°ET

1

199000

11300

95£000

%42000
££0000
cogo000

ANTIAT

53100

990300

442000

4310000
01£000
£500098
T££000

N1

.2ETTO00

w0700

0£4000

$50000
92£000
590000
o%£000

iNIOd

¥94000

9001700

gsg000
290000

495000

140000
Tned 00
117000
438000

£T1T00

£94000

194000

208000

240000

Ta0000

FA331'1)

129000

2itp00
09£000
£2T000
205000

A3 1NS3

499000
$9.000
- 254000
gist00
c99000

0ST100

£98000

00£000
290000
950000
®0£000
£42900
299000
THEDOD
TET000
49000

057000
0T4000

410000

HJV 3

cgggoa
T0£000
990700
344000
492000
945000
$4%9000
090000
geo00¢
Sg0T00
190000
420000
210000

T9C000

128000
0TT000
+©.40000
£9£000

£££000
£90G000

399000
94%£000
s51000
92h000
T4I000
wehioo
400000
%00000

940000

dhNa33y
023X
SUINVIN
$AIMVUN
UV
SADIVUN
SAINVEN
$J1NdNI
$SINANT
SHINVYA
$21NdN]
$S1NdNI
00603%7
02£0331
-==3NON---

QYVIYX

QyvIux

Guviax

QuvIux

QAVI¥X
350713x

42003%1
05003%1

©9603%1
66603%7
$6603%71
00603%1
-~=3NON=--

dhN0I3Y

904400
202200
£02200
5£2200
£20200
420400

229900

475900
0753900
S0T0TO
T5h500
244500
605500
494500
£9%500

459400

20ng0D
S.£700
209200

o1l S3IJINIBILIN

dkaax
TdRAOX
*94uu3
31107
12SAS
$TSAS

IHILSAS

* HYONBY
*d01S
3dd
25302
14IHST
13 IHSY
341dH0J
480

30NY

#93dVl
#53dVl
#1l0dinN0

1d=A¥IN3

40

===3NON--- 0£0£T0 XQav3y
===3NON--- 02227C X31IdM

w24h000 42003%7 "g£22270 GNIMIYX

gg000¢C SH0000 w£1000 chec000 954000 994000 9h000 42003%7

220000 dKRNQJ3y 02927¢C av3ux
<==3NON~-=-= 549270 31IYMX
159000 £9%000 4200337 9£92%10 XONI3d
L2h00g0 44003%7 T£92T0 101A3X
===3NON-== LT9270 3S070x
===3NON=--= 165270 N3d0X

1200600

£20000 ©20000 422000 T0£000 £0£000 90g000 creoeo i1g000 cce 000 92£000 29£000
49g00¢0 99¢£ 0080 122000 51000 20%00¢ s0w000 TT4 000 £24000 SEN000 9g%000 £45000
645000 9245000 629000 429000 1£9000 “£9000 093000 599000 059000 ®59000 £5900¢0 440037
£9£000 0s£000 €5003%7
020000 090000 290000 £9000¢C
440000 107000 £07000 S0T000 S07000 sTT000 437000 023000 9¢£7000 047000 271000
991000 941000 0ST000 ¥s1000 091000 297000 497000 937000 497000 602000 202000
gt2000 912000 1120080 geegoon 0%2c0no 262000 w%2000 9h2000 492000 462000 T9¢000
£92000 592000 492000 1220080 2zlzenngp 422000 10000 £0£000 s0e000 90000 £1£000
ST£000 272000 12£000 cegoet TEEG00 EE£C000 +EL000 she000 AP TRI] gsg000 £9£000
S9£000 498000 0Z£000° 0IH000 2IH080 4TH000 919000 412000 Ten000 ££5000 hEN000 %9603X%7
410000 120000 £20000 s200080 920000 040000 dhWNO33y
9£2000 £4%2000 154000 252000 094000 192000 992000 £c22000 GuvVI¥X
L30C00
020000 920000 0%0000 ch0000 £40000 450000 240000 %.0000 940000 00TD000 707000
£77000 421000 T£1000 £€T000 SET000 LETO00 041000 2s1000 927000 LL7000 472000
9g2000 642000 Theooo 492000 482000 s02000 402000 Tie000 £TE000 %1000 SEE000
LE2000 enedoo 498000 12000 £42000 6L£000 9.£000 904000 404000 2Th000 42h000
TEH000 £ER000 SE%000 4E9000 THh0 00 £99000 Shn D00 159000 £64%000 s5%000 969000 .66603X1
200000 otcooeo $6603X%7
400060 gt000C 006ea3x7 £00270 *31d100

41

430000 22000 STEO00 09E00D 0O%00C TEHO000 T25000 £29000 £49060 299000 24003x1
| 29€000 24£000 0S003x1
210000 950000 520000 £TT000 #£TD00 9ST00D
%.7000 £72000 9£2008 $S2000 S.2000 TTE000 /28000 £wE060 TOE000 904000 L2w080 %9603%7
, STOO00 2%0000 oWNGOIY
SEZ000 292000 292000 95,000 592000 222000 O%VO¥X
ST0000 S20000 90000 50000 020000 2TTO0D0 S2¥00C TSTO00 #7000
912000 4#£2000 £92000 9920060 £0£000 HEE£00C THSOBO0 S9E000 »O0%000 TTH0G0 520000 666G3%1
$00000 §6603%1
S00000 006Q3XT 4ZLTTO0 *1910d0

0100

2£9000

220000

1£9000
021000
240000

040000

085000
233000
4200080

840000
111000

592000

250000

495000
h01000
6go000

T£T000
950000

£95000
079000
She000

S1e000
950000
540000
917000
£40000
927000
££0000
400000

€62000
LET000

052000
050000

012000
9210080

22003%7
1200337
1200337
---3NON---
—-<3NON=--
~=—3NON~--
250031
JRNBO3Y
$91NaNI
$21NdNI
$91NdNI
SUINVUX
$910dNI
$S1NdNI

02ga3xy
00EQ3x%T

02£03x7
00£03%7

geeQan
00£03X7

£2£2£0
n0£280
192250
S.0T£0
000000
$225T0
247570
£275T0
£2170
559078

509070

9£20T0

STE0T0

£2g0T0

£0g0T0

d3INdNO
JUXADNN
J8X%3vd

4400337

00003%7
*¥3093vV
$4007
SAUAISAS
*01s

*TLINI

*ive

13838

813s

FIVIAYS

42

103 NO N311IuM N338 SVH T OANIT
103 NO N3LLI¥M N336 SvH 0 NIT

SANITON3

S¥3VI4W03 NLI4-NNY¥ /7 W3L1SAS 9INILV¥340 £ 340JS S3Ta3s 0009 203
WHPZWMY AB ¥371dWOO O03ONI AX3 NVALAY0d ¥OJ SNOISIA3ZY 0°7F 13437
eL/92/07 *£6°6E£°ET ¥430VvV0 17301103 39VANIT NOISYHYIA NRE-N1ILI 30y SN

43

SUGGESTIONS FOR FURTHER IMPROVEMENTS

The following problem areas of the Linkage Editor should be examined

in the future:

1. The Linkage Editor resolves externals only from those libraries
listed on INCLUDE commands and from LINKLIB. The ability to concatenate

several files and rename them LINKLIB with the LIBRARY command would be

very helpful,

2. Thé Linkage Editor should be changed to allow both the file type (R)
and XREF to be specified for the same job step. The problem appears to

be that the return address to the entry point of Link O is not saved

correctly.

3. An investigation should be conducted to determine the feasibility of

dynamically allocating memory when segments are loaded.

4, "RANDOM CALL TO NONRANDOM FILE" errors occur when two or more Linkedit

runs are made in the same job. This error apparently occurs because SYSUT1,

SYSUT2, SYSUT3, and SYSLMOD are not closed between runs. This problem should

be investigated and corrected.

44

ACKNOWLEDGMENT

The author wishes to thank Mr. James M. McKee (1844) for the extensive

technical assistance he provided and for his help in defining the problem

areas and the methods needed to accomplish the desired changes.

APPENDIX A

MODIFICATIONS TO THE LINKAGE EDITOR

The following paragraphs describe the various corrections and
improvements made to the Linkage Editor:
1. The last card image on the original program library was an
end-of-record card. This caused an error when compiling the last

routine, XEOF. The card was deleted.

2. When a program containing a BLOCK DATA subroutine was edited, the
following error message was written, even though no error existed.
-=-=ERROR---ENTRY TABLE DOES NOT FOLLOW PIDL
TABLE IN SUBPROGRAM
This was a logic error in the Linkage Editor. BLOCK DATA subroutines
do not contaln ENTRY tables.' This error was corrected by changing
LKEDO25 so that it would branch around ENTRY table processing when a

BLOCK DATA subroutine is being processed.

3. The end-of-card control character ("$") was not practical for FTN
since many FIN routine names end in "$". The code checking for the
character was deleted from XRCARD, and subsequently restored and

changed to "#*",

47

4, Code names for the various installations using the NASTRAN Linkage
Fditor were deleted from SETA6 in MAPFNS. ©Now only the default code

name ""STANDARD" is accepted.

5. XLOADER is the program which handles the fetching and loading

of each link as it is loaded. It was designed for RUN which passes
argument addresses in the B reglsters. FTIN passes the argument
addresses in a list pointed to by register Al. 1In addition, register
A0 must be preserved. The code in LOADER and LINK (both entry points
to XLOADER) has been changed so that not only the B register but also

the A0 and Al registers are saved during the loading of a segment.

6. The code in XLOADER was changed to issue a memory macro call which

returns the current field length.

7. XLOADER failed to set a return address in a link being loaded. Thus
return could never be made from that link and the job would hang. Code
was added to LINK to store the return address to enable return from the

link to the calling segment.

8. REPLTAB, the routine to expand replication tables, did not comply
with the specifications of REPL tables dgfined in the Scope reference
manuals. Tbe logic was changed to the following.

IfVLR # SR, then return.

If DR = SR, then D = S,

If D

0, then D = S+4B.

If D=0 and DR = 0, abort.

48

9. The Linkage Editor was changed to allow dynamic adjustment of

the field length to that needed té load the current link. To obtain
this dynamic allocation, include the following card in the LINK O
control cards:

RENAME LINK = LINKS$
If dynamic allocation is not desired, the NOREDUCE option must be used

and the field length set at that needed to load the longest link.

10. The dayfile and header messages were changed to reflect changes

in the Linkage Editor system.

11. A logic error limited BLOCK DATA subroutines to the definition

of one and only one named common. The error was traced to REPLTAB and

eliminated by returning to LKEDN75,

12. Unresolved external references occurred on the XBOOT step because
not all needed routines were included on the list BOOTDKS. The needed

routines were added to BOOTDKS.

13. The type of outfile to be generated was designated by a code
character. In the original system these were C for COMMON (random
file) and T for tape (sequential). These codes are ambiguous so
the code S for sequential and R for random were added. Both codes

are valid for each type of file.

14. REGION lines were printed when the options NOMAP and LET were
selected concurrently. the code of LKEDO75 was changed to stop

this error.

49

15. Automatic reduce could not be used with a random outfile because
blank common had been dimensioned to one (1) word. The array size
was increased to 200 words to eliminate the need for the NOREDUCE

option.

16. When the options XREF and OUTFILE (R or C) are specified on the
LINKEDIT card, the random outfile is incorrectly created. Code

was added to flag this situation as an "error-exit' condition.

17. XBOOT was changed to check only the first six (6) characters
when searching for "ATTACH", 'CATLOG" or "CREATE" on an outfile
execution card. This change was necessitated because INTERCOM

appends a period to all commands.

18. To enable the Linkage Editor to be run on non-standard systems,
all system routines which are needed for the execution of the
bootstrap routine should be loaded with XBOOT. The Linkage

Editor was changed to automatically load the needed system

routines from LINKLIB.

19. The default value of PARAM (7) was changed to 3. This change
prevents LKEDO77 from aborting when XREF is selected and PARAM (7)

is not set.

50

The remaining updates were made to convert the Linkage Fditor
to FIN compilable code. A number.of changes were made to FORTRAN
routines, but the bulk of the work consisted of converting the
COMPASS routines to correctly pick up the addresses of passed

arguments.,

51

APPENDIX B
DETAILS OF THE CDC 6400/6600 LINKAGE EDITOR

The following pages have been excerpted from the NASTRAN Programmef's

1
Manual™ and reproduced here for the user's convenience:

5.6 THE CDC 6400/6600 LINKAGE EDITOR
5.6.1 Introduction

5.6.1.1 Concept of the Linkage Editor

The linkage editor has been designed to provide an efficient and effective means of utilizing
core storage for medium to large programs. The existing loader for the CDC 6400/6600 systems has

the following disadvantages:
1. Only two levels of overlay are provided beyond the root segment.

2. An overlay segment must be explicitly called. -Consequently, the overlay structure must

be known when the program is coded.

3. An overlay segment may be entered at one point only. Consequently, downward calls are

extremely limited.
4, No facility exists to explicitly position named common blocks.
5. Loading of overlay segments is accomplished from a sequential file, thus providing

unnecessary search time,

The CDC 6400/6600 Linkage Editor in conjunction with its partner, the Segment Loader, over-

comes these disadvantages in the following ways:

—_—

. An unlimited number of overlay levels is provided.

2. The programmer describes the overlay structure to the linkage editor after the program

is coded. The linkage editor provides implicit -segment loading.
3. Complete communication between all levels of overlay is maintained.

4, Linkage editor control statements may be used to explicitly position subprograms and

named common blocks.

5. The overlay segments are maintained in an indexed file. Consequently, every segment is
immediately available to the segment loader.

As may be seen from Figure 1, the primary input sources to the linkage editor include:

1. Object decks (relocatable binary decks)

2. Control statements

Ky

5.6-1 (12-1-69)

53

3. A call library from which unsatisfied external references are resolved,

Another source of input (not shown in Figure 1) is a file containing executable links from a
previous linkage editor run. This feature allows changes or additions of links while not altering

previous links to which no changes are required.
The file produced by the linkage editor contains three portions:

1. A sequence of object decks suitable for loading by the CDC loader, The main program in
this sequence, named XB@@T, reads the remainder of the file containing the executable links
and writes it on the disk as an indexed file., XBP@T reads Link O into central memory and
transfers control to the entry point which initiates execution of the problem program, This
sequence of decks is terminated by a null record.
2. Three records:
(1) Link 0 directory record;
(2) Link 0 symbol dictionary containing entry points and common blocks in Link 0 and
their associated addresses;
(3) Link 0 executable record.
3. A directory record for each succeeding link and one logical record per segment containing
executable instructions and data.
This sequence of records is terminated by a directory record which contains the word ENDLINKS.
Link 0 remains in central memory at all times during program execution. Link O contains no
overlay segments. The linkage editor supplies a routine named Y¥L@ADER when Link 0 is constructed,
XL@ADER accomplishes the loading of segments and links when requested. Segment load requests
are supplied automatically by the linkage editor through tables called ENTAB$ (see section
5.6.3.2) which are written as a part of the text for each segment which may require additional
segment loading. An additional table, SEGTAB$ (see section 5.6.3.2), which is constructed by
the linkage editor as a part of the root segment of every link, {s used by XLPADER to facilitate
segment loading. '
“ Major divisions of a program are links. Each link consists of a self-contained overlay

structure and might be thought of as a complete program in itself. A1l routines in a link

communicate freely with Link O routines. Consequently, Link 0 may be thought of as logically

5.6-2 (12-1-69)

54

belonging to every link. For many programs, a single link in addition to Link 0 will be sufficient.

Because of its size, however, NASTRAN has been divided into 14 links.
5.6.1.2 Functions of the Linkage Editor

The basic function of the Jinkage editor is the linking of separately assembied or compiled
subprograms into a link. The 1ink is in a format suitable for loading and execution.

Although this linking or combining of subprograms is its primary function, the linkage editor

also:
1. Incorporates subprograms from a Tibrary file to resolve undefined external references,
2, Constructs an overlay program in a format suitable for loading and execution,

3. Rearranges control sections and renames external references as directed by linkage editor

control statements.
4, Reserves storage for common control sections generated by C@MPASS and F@RTRAN,

5. Provides processing options and diagnostic messages.
5.6.1.3 Subprogram Linkage

Processing by the linkage editor makes it possible for the programmer to divide his program
into several subprograms which may be separately assembled or compiled. The linkage editor com-
bines these subprograms into a 1ink with contiguous storage addresses. The link is written in an
indexed file. The linkage editor can process more than one link in a single job step., Each 1ink

1s written with a unique Tink number,
5.6.1.4 Input Sources

Input to the linkage editor consists of one or more sequential files (libraries) containing
subprograms in relocatable format as produced by C@MPASS or F@RTRAN, and linkage editor control
statements contained in INPUT, the standard input file.

External references that are undefined after processing all subprograms cause the automatic
1ibrary call mechanism to search for subprograms that will resolve the references. When these

subprograms are found, they are processed by the linkage editor and become part of the link.

5.6-3 (12-1-69)

55

5.6.1.5 Programs in an Overlay Structure

To minimize main storage requirements, the programmer can organize his program into an over-
lay structure by dividing it into segments according to the functional relationshp of the sub-
programs, Two or more segmenté that need not be in main storage at the same time can be assigned
the same storage addrgsses. and can be loaded at different times. The programmer uses Tinkage

editor control statements to specify the relationship of segments within the overlay structure.
5.6.1.6 Options and Diagnostic Messages

The linkage editor can produce a storage map and a cross-reference table that show the
arrangement of control sections in the 1ink and how they communicate with each other. A list of
the Tinkage editor control statements that were processed can be produced. Additionally, pro-
cessing options that negate the effect of minor errors and specify the disposition of input and .

output files can be specified by the programmer.

Throughout processing by the Tinkage editor, errors and possible error conditions are printed.

Serious errors cause a 1ink not be written on the output file,

5.6-4 (12-1-69)

56

5,6.3 Designing an Qverlay Program

5.6.3.1 Overlay Tree Structure
In order to place a program in an overlay structure, the programmer should be familiar with
the following terms:

1. A control section consists of all instructions and data defined for a subprogram or a

common block.

2. A segment is the smallest functional unit (one or more‘contro1 sections) that can be

loaded as one logical entity during program execution,

3. A path consists of a segment and all segments in the same region between it and the root
segment (first segment). The root segment {s a part of every path in every region, When a }

segment is in main storage, all segments in its path are also in main storage.

4, A region is a continguous area of main Storage within which segments can be loaded
independently of paths in other regions. An overlay program can be designed in single or

multiple regions,

5, A link is a collection of one or more segments which comprise a logical subdivision of
the program. Link 0 (consisting of one segment only) is in main storage at all times. It is
the first link to receive control when execution of the program is initiated. The root
segment of any other 1ink resides in main storage at all times that that link is being

executed. An overlay program must consist of at least one link other than Link 0,

6. A tree is the graphic representation that shows how segments can use main storage at

different times. It does not imply the order of execution.

The design of an overlay program requires the organization of the control sections of the

program in an overlay tree structure. The tree structure is developed considering:
1. The amount of available main storage.
2. The freguency of use of each control section,
3. The dependencies between control sections,

4, The manner in which control should pass within a path, from one path to another, and

from one region to another,

5.6-7 (12-1-69)

57

When the programmer has determined the overlay structure for a program, he prepares @VERLAY,
INSERT and REGI@N statements that will segment the program in that manner, The use of these con-

trol statements is described in section 5.6.4,
5.6.3.2 Overlay Characteristics

During execution of an overlay program, the segment loader uses tables that were generated
by the linkage editor and incorporated into the text of applicable segments, Since these tables
are an integral part of the program, their size must be considered when planning the use of

available main storage. These tables are described as follows.

1. Input/Output Control Table

There is one Input/Output Control Table (LINKO$) in the root segment of Link O only
which contains a File Environment Table (FET), a circular buffer, a master index and a sub-
index. The LINKO$ table is used by the segment loader to read requested segments into
central memory. LINKO$ is the first control section in Link 0. Its size is determined as

follows:
Length in words = PARAM(1)} + PARAM(4) + PARAM(5) + 4

Section 5.6.4.2 contains definitions of the parameters.

2. Segment Table

There is one Segment Table (SEGTAB$) in the root segment of each link except Link 0.
The segment table is used to keep track of: (1) the relationship of the segments in the
program; (2) which segments are in main storage or scheduled to be loaded; (3) the main

storage address and length of each segment; and (4) the entry address of the link.

SEGTAB$ is the first control section in the root segment of each link. Its size is

determined as follows:
Length in words = n + 2,

where n is the number of segments in the link.

3. Entry Table

There can be an Entry Table (ENTAB$) in each segment of the program. The loader

5.6-8 (12-1-69)

uses the entry table to determine the segment to be loaded when an external reference is

made to a segment not in the path,

An entry table may be produced as the last control section of a segment. An ENTAB$ entry
is created for a symbol to which control is to be passed. The symbol is defined in a seg-

ment not in the path. The size of ENTABS is determined as follows:

n
Length in words = 3n + I Gi,
i=1
where n is the number of unique external references not in the path and 8 = MAX(mi-G,O),
.My = number of arguments for each external reference not in the path.

4, Dump Control Word

In the text produced by the linkage editor for each segment, a uniquely formatted word
which identifies the control section is written immediately prior to each control section.
This word is recognized by the storage dump routine XDUMP in order to produce relative

addresses for each control section.

5.6.3.3 Overlay Communication

There are two ways in which the programmer can have his program request the overlay facilities

of the segment loader:

1. By a CALL statement (FPRTRAN language) or RJ instruction (C@MPASS language) which

couses a segment to be loaded and control to be passed to the symbol defined in that segment,

2. By a CALL LINK{N) (FPRTRAN language) or the equivalent in the C@MPASS language, where N
is the link number, which causes segment one (the root segment) of the requested 1ink to be
Toaded and control to be passed to the symbol named on the linkage editor control statement

ENTRY.

5.6.3.4 Reserving Storage

In F@RTRAN and C@MPASS the programmer can create control sections that reserve main storage

areas containing no data or instructions, Referred to as “"common", these control sections are

produced by the language translator, These common areas are efther named or blank (unnamed),

During processing, the linkage editor collects these common areas. If more than one blank

common area is found, the largest blank common area is contained in the Tink, If two or more

5.6-9 (12-1-69)

59

common areas have the same name, the largest common area having that name is reserved in the link.

A1l references to a common area (named or blank) refer to the largect area defined. This largest
area 1s the one which is retained.

If the linkage editor encounters data or text for the same common area in more than one sub-
program, only data from the first subprogram encountered are retained and a diagnostic message is
generated for aﬁy subsequent data definitions,

When object decks which reference common areas are to be placed in an overlay structure, the
Tinkage editor automatically “promotes" the common areas to the root segment (unless oihenﬂise
directed by an INSERT control statement, see section 5.6,4.8), The position of a promoted common
area in relation to other control sections in the root segment is generally unpredictable.

Note: Blank common is treated by the linkage editor as a named common block with the
special name BLANK.. and is listed on the storage map with-this name. Consequently, it is possible

to position this control section with the statement INSERT BLANK...
5.6.3.5 Processing Options

1. List of control statements

The linkage editor automatically produces a listing of all control statements unless
the programmer selects the N@LIST option in the LINKEDIT statement (see section 5.6.4.2).
In the latter case, only the LINKEDIT, LIBRARY and ENDLINKS statements are listed (see
sections'5.6.4.2, 5.6.4.3 and 5.6.4,12 respectively for details).

2. Storage map and cross-reference table

The linkage editor automatically produces a storage map of each link unless the programmer
selects the N@MAP option in the LINKEDIT statement. For each segment, the storage map lists
the control sections in ascending order according to their assigned address. Included with

each control section is a list of all entry point names and assigned addresses.

When the XREF optionrin the LINKEDIT statement is specified, the linkage editor produées
a table of all references to each entry point in the link. Additional options (PARAM(7)
parameter, see section 5.6.4.2) allow the table to be extended to include all references from
the link to LINK O entry points and an additional table of all external references from each

subprogram to be produced.

5.6-10 (12-1-69)

60

The N@MAP and XREF options are mutually exclusive. Therefore, if XREF is selected, N@MAP

is ignored and a storage map is produced.

3. The LET option

When the LET option of the LINKEDIT statement is selected, the linkage editor disregards
all errors except two and writes the 1ink on the output file. The two errors which preclude
the 1ink from being written are: (1) an undefined entry point to the 1link; and (2) insuffi-

cient storage space to form the 1ink to be written,

5.6-11 (12-1-69)

61

5.6.4 Linkage Editor Control Statements

5.6,.4.1 General Statement Format

A11 linkage editor control statements are coded from the following possible forms:

operation operand

VERB a, b(c), KEYWPRD, KEYW@RD = a, KEYWPRD = b(c),

KEYW@RD(i) = n, a = a, b(c) = a,n

where

a is an unsubscripted symbol,

b is a subscripted symbol,

c is a subscript symbol,

KEYWPRD is an explicit name or option,
i is an integer subscript,

n is an integer value,

The operation field must contain the name of the operation to be performed. The operand
field must contain one or more symbols or subscripted symbols (except REGI@N, END and ENDLINKS
which have no operands), Operands in the operand field are separated by a comma or blank (or both).

Two or more symbols within parentheses are similarly separated. A keyword must be written exactly
as shown.

The operation field begins with the first nonblank column on the“card. The operand field is

separated from the operation field by at least one blank column,

The LINKEDIT and LIBRARY control statements may be continued on subsequent cards by coding a
comma as the last nonblank column. The continuation begins with the first nonblank column of the

succeeding card, These two control statements are the only ones which may be continued.

5.6.4,2 The LINKEDIT Statement

The LINKEDIT statement specifies input and output file names and status, processing options

and size characteristics of the link(s) to be link-edited.

5.6-12 (12-1-69)

62

5.6.6 Storage Requirements for the Linkage Editor

Figure 5 illustrates the layout of core storage for the linkage editor, For the discussion
below, it is assumed that the linkage editor has not itself been link-edited. A Tink-edited
version of the 1inkage editor is available. A memory saving of approximately 400010(100008) words

results.

The principal open-ended table {is the Symbol Chain Table. A three-word entry is created in
this table for each subprogram name, entry point, common block and unique external reference not
in the path. For a link other than Link 0, a three-word entry fbr each entry point and common
block in Link 0 is also created. A conservative estimate for the requirements of this table is

as follows:

Link 0: length in words = 4* (no. of entry points + common b1ock§),

6% (no. of entry points + common b1oéks)

Link # 0: length in words

+3* (no, of entry points + common blocks in Link 0).

The largest table is likely to be the Working Storage Table, It must hold all instructions
and data for the 1argest control section for which text is defined. If this figure is not known,
a linkage editor run can be made. The storage map will be printed even if the link is not writte
A scan of the lengths listed (in ocfal) will identify the largest control section. Note that

common blocks for which no data are defined are not to be used in defining the m5x1mum.

Field length for the linkage editor may be estimated from the following:

field length,, = 15000 + MAX(T0*N,2000) + MAX(T,2000) + 3*PARAM(1)

where
N = number of subprograms defined on INCLUDE statements,
T = 1length of largest subprogram or common block for which
instructions or data are defined,
and

PARAM(1) is defined in section 5.6.4.2.

5.6-29 (12-1-69)

63

If default values for the linkage editor are used, a program of less than 200 decks would
require a field length of 23,600, = 60,0004.

Efficiency of the Tinkage editor may be improved by increasing the buffer size (PARAM(l)i.
For NASTRAN, PARAM(1) = 2080 is used. Additionally, one deck requires 16,000]0 words of text
storage (PARAM(6) = -16000). Consequently, for a Tink of 300 decks, the field length works out

as

field 1ength]0 = 15000 + 3000 + 16000 + 6240 = 4024010 =]200008

5,6-30 (12-1-69)

64

0. Instructions
and Data
=14000,4 Buffer]
Buffer2
Buffer3

Master Index

Segment Index

Library Index

_Names Table

Entry Point Table

.Library Table

Region Definition Table

Segment Definition Table

Segment Chains Table

T

Rename Table

Symbol Chain Table

Field Length

Working Storage

‘Figure 5,

[72]
pefs
~N
o

PARAM(1)

PARAM(1)

PARAM(1)
PARAM(4)

PARAM(5)

No. of decks in all
Libraries (< PARAM(6))

No. of decks in all
Libraries (< PARAM(6))

No. of entry points in
LINKLIB (= 200)

No. of libraries

No. of regions + 1

No. of segments + 1
(< PARAM{4) + 1)

No. of segments + 1
(< PARAM(4) + 1)

3*(no. of RENAME
statements)

Remaining storage

PARAM(3) + PARAM(6)

Layout of core storage for the linkage editor.

5.6-31 (12-1-69)

65

7.2.1 Introduction
7.2.1.1 Purpose of the Linkage Editor

The Tinkage editor is a service program designed to be used in associatiun with the RUN
compiler to prepare an executable program from symbolic language programs written in FPRTRAN and
CAMPASS. Linkage editor processing is a necessary step between source program compilation and

object program execution.

Linkage editor processing allows the programmer to divide his program into several parts,
each containing one or more control sections. Each part may then be coded in the programming

language best suited to it and may then be separately assembled or compiled.

The primary purpose of the linkage editor is to combine and Tink object decks (the output .
of the RUN compiler) into a program in which all cross references between control sections are
resolved as if they had been assembled or compiled as one program. The program produced by the
linkage editor consits of executable machine language code in a format that can be loaded into main

storage by the bootstrap program (see section 7.2.1.4.7) and segment loader (see section 7.2.1.4.8).

The main design objective of the Tinkage editor/loader is to efficiently process and execute
unusually large programs that require extensive segmentation (a feature entirely lacking in the

existing CDC Toader).

In addition to combining and linkage object decks, the linkage editor performs the following
functions:

1. Library Call Processing. If unresolved external references remain after the linkage

editor processes all input fo it, an automatic library call feature retrieves subprograms

required to resolve the references.

2. Program Modification. Control sections can be rearranged during linkage editor processing

as directed by linkage editor control statements. Common control sections are collected.

References to entry points can be altered by control statements.

3. Overlay Processing. The linkage editor prepares programs for overlay by inserting tables

(SEGTABS, ENTABS, see section 7.2.2.7) to be used by the segment loader during execution.

7.2-2 {(61/1)

66

7.2.1.2 Relationship to the SCPPE Operating System

The linkage editor is not an integral part of the SCPPE operating system. As a result, it is

executed as a normal "user" program, i.e., using the facilities of the CDC loader.

The object decks that comprise the linkage editor exist as a card, tape, or disk file and the

Tinkage editor is executed as a normal job step.

The executable program produced by the linkage editor may be in the form of a sequential file
on tape or disk or an indexed (random) file on disk. In either éase, the initial records of the
file. contain object decks that comprise the bootstrap program loads the initial portion (Link 0)
of the executable program into main storage and optionally writes the remaining links of the
executable program. Thereafter, all loading of additional segments of the executable program is

controlled by the segment loader which was included in Link O by the linkage editor.

In the Level 2.0 version of the linkage editor (the current version), processing is limited
to object decks produced by the RUN compiler because of linkage conventions established by that
compiler. Reasonably extensive modification of the linkage editor/loader and LINKLIB (see below)

is required to process object decks produced by the FTN compiler.

Associated with SC@PE and the RUN Compiler are a number of subprograms which accompiish the
primary interface between the user and, the resident monitor. These subprograms afe a principal
input to the linkage editor and reside on a file named LINKLIB. Since the linkage editor is not
an integral part of SCPPE, modification of the LINKLIB subprograms is not automatically accomplished

with SCAPE updates and remains a maintenance task at each installation.

Linkage editor processing and subsequent execution time loading is dependent on the file
concepts and operations as defined and supported in SC@PE 3.1. In particular, changes to the
subfields of the File Environment Table (FET) or changes to the object deck format are likely to

require modification to the linkage editor and segment loader code.
7.2.1.3 General Description

Input to the linkage editor consists of: a) one or more sequential files (libraries) con-

taining subprograms in relocatable format (object decks) as produced by the RUN compiler, and

7.2-3 (6/3/71)

67

b} 1inkage editor control statements contained in INPUT, the standard input file. The primary
function of the linkage editor is to combine these subprograms, in accordance with the require-
ments stated on the control statements, into a machine-language program suitable f;r loading into
main storage and execu@ing. External references that are undefined after processing all subprograms
cause the automatic call mechanism to search for subprograms that will resolve the references.

When these subprograms are found, they become part of the executable program.

To produce an executable program, the linkage editor:

1. Assigns relative main storage addresses to the control sections to be included in the
program.

2. Resolves references between rontrol sections (translates symbolic references to relative
main storage addresses)

3. Collects common sections and assigns a single relative machine address to all sections
of the same name. The length of the common section is taken to be the longest length of any

individual section.

Figure 1 illustrates an example of linkage editor processing. The executable program produced

by the 1inkage editor contains three portions:

1. A sequence of object decks suitable for loading by the CDC Toader. The main program
in this sequence, named XB33T (see section 7.2.2.9), reads the remainder of the program
and writes it on the disk as an indexed file (unless the program is already an indexed file).
XB@AT reads Link O in main storage and passes control to the entry point whfch initiates

execution of the problem program.

2. A sequence of three records which defines Link 0 - a directory record, a symbol dictionary

record,. and the executable machine language code:

3. A sequence of records for each of the additional links - one directory record per link

plus one record containing executable machine language code for each segment in the link.

Link 0 remains in main storage at all times during program execution. Link 0 contains no
overlay segments. The Vinkage editor supplies the segment loader (named XLPADER, see section

7.2.2.10) when Link 0 is constructed. XLPADER accomplishes the loading of segments and links

7.2-4 (6/1/7)

68

reviousTy

Compiled
Object Decks

Source
Programs

Run
Compiler

Indexed
File With
Links

tink 0
in Central
Memory

Object
Deck
Library

Figure 1.

File
Containing
Object Decks

Statements

Linkagé»_
Editor Control

Bootstrap
Program

can
Library

LINKLIB

<

L INKAGE
EDITOR

y

File
Containing
Executable
Links

coc
Loader

Linkage editor processing.

7.2-8a (6/1/71)

69

when requested. Segment load requests are supplied automatically by the linkage editor through
tables called ENTABS (see Figure 29) which are written as a part of the text (instructions and
data) for each segment which may require additional segment loading. An additional table,
SEGTABS (see Figure 28) which is constructed by the linkage editor as a part of the root segment

of every link is used by XL@BADER to facilitate segment loading.

Major divisions of a program are links. Each link consists of self-contained overlay struc-
ture and might be thought of as a complete program in itself. All routines in a link communicate
freely with Link 0 routines. Consequently, Link 0 may be thought of as logically belonging to

every link.
7.2.1.4 Major Divisions of the Linkage Editor

7.2.1.4.1 Initial Processing

Initial processing begins when the linkage editor receives control from the CDC loader.

After control is received, the following functions are performed:
1. The LINKEDIT card is read, echoed, and converted. Parameters are set based on options
selected.
2. 1Initial allocation of working storage and buffers is made.
3. If the program f;ém a previous linkage editor run is present as a sequential fil.
(INFILE), it is read and written as an indexed file.

4. Each file named on the LIBRARY card is read. Each deck is written on a local disk file
named SYSUT2 (indexed file). Subprogram names are saved in a main storage table. For the

file named LINKLIB, each of the entry point names is saved in main storage.
7.2.1.4.2 Control Statement Processing

For a link, cards from LINK through END are read and converted. Two passes are made. On
the first pass, each card is checked for proper format, content, and order (if important).
Various counts are accumulated such as the number of segments, number of regions, number of
RENAME cards, etc. The control statements are echoed on PUTPUT unless this option is suppressed.
At the end of the first pass, allocation of working storage is completed. If the currently pro-

cessed 1ink is not Link 0, the dictionary defining entry point and conmon block names and address

7.2-5 (6/1/71)

70

for Link 0 is read, and entries are made in the General Table (see section 7.2.2.1.9) for each

Link 0 name and address.

~ On the second pass of the control statements, each statement (having been saved in main stor-
age during the first pass) is again converted, and entries are made in various tables depending

on the control statement and its contents.

Following the second pass of the control stateménts, control is passed to LKEDO25 (see
Figure 35, section 7.2.3) to read each of the object decks named on INCLUDE statements plus those

subprograms required to satisfy undefined external references.
7.2.1.4.3 Object Deck Processing

The 1ist of subprogram names in each of the named libraries is scanned. For each subprogram

which is marked for inclusion, the following processing occurs:
1. The deck is read from SYSUTZ.
2. Subprogram (or common block) length is entered in the General Table (GT).

3. Each common block referenced by the subprogram is entered into the GT (if not already
present), and the length field is updated. If text {data) for the common block exists, a

reference to the defining subprogram is noted.

4. An entry in the GT is created for each entry point of the subprogram. The relative
address of the entry point is saved. The number of arguments associated with each entry
point is found by searching the TEXT tables (see section 7.2.5) for the conventional identi-

fication word. If not found, less than seven arguments is assumed.

' 5. The LINK table is processed. For each external reference by the subprogram, the GT
is checked for an existing entry. If present, a path analysis is made. If the call is not
in the path, a call chain entry is created in the GT. If the entry is not présent, an entry

in the GT is created and 'a call chain entry is created.

. ‘When all object decks have been processed, the automatic call logic is invoked. For each
undefined external reference, the 1ist of entry pointé to LINKLIB is searched. If found, the

corresponding subprdéram from LINKLIB is included. If not found, an error message is issued.

“ 7.2-6 {6/1/71)

i | n

When al! object decks from LINKLIB have been processed, a pass through each 'of the entries in
the GT is made and various checks are made. Call chains are checked, and entries now resolved
(in the path) are removed. Remaining entries in the call chains will require facilities of the

segment loader, and these entries will form the ENTABS tables.

At this point, all information is available to perform assignment of final addresses for the

program. Control is passed to LKEDOS0 (see Figure 36, section 7.2.3) for this task.
7.2.1.4.4 Address Assiagnment Processing

The program computes final storage addresses for al} subbrograms, entry points, and common

blocks in the program by executing the following steps:

1. Lengths for each segment are computed bv summing the lengths of éach entry (subprogram -
or common block) in the segment. This information is stored in the Segment Defihition

Table (see section 7.2.2.1.7).

2. The lengths for each region are computed by finding the longest path in the region and

summing the length of all segments in that path.

3. Region lengths are converted to region addresses by summing the region lengths. This

information is stored in the Region Definition Table (see section 7.2.2.1.5).

4. Segment addresses are computed by following the paths in each region and summing the

previous segment lengths.

5. Finally, addresses for each entry in each segment are computed by tracing the order of

each entry in the segment and summing lengths of previous entries.
7.2.1.4.5 Relocation Processing

The final phase for each link consists of building the executable machine language code,

performing all necessary relocation of relative addresses.

This is accomplished by executing the following steps:

1. If the current link is Link 0, object decks defining the bootstrap program are copied
from LINKLIB to the executable program file (either SYSUT1 or QUTFILE). A directory record

containing link number, number of entries in the Link O dictionary, and total length of the
7.2-7 (6/1/71)

72

1ink is written followed by the Link 0 dictionary defining each of the entry points and

common blocks and their addresses in the link.

2. If the current 1ink is not Link 0, a directory record containing 1ink number, number of

segments, and total lenyth of the link is written as in 1. above.

3. The first entry in the root segment of each 1ink is a table (LINKOS for Link O and

SEGTABS for any other link). This table is bhi]t and written.

4. Executable machine language code is built and written one logical record per segment.
Each entry (subprogram or common block) in each segment is éxamined. If text (for a sub-
. program) or data (for a common block) is defined for the entry, the object deck containing
the text is read from SYSUTZ2. Address relocation defined in TEXT, FILL, LINK, and REPL
tables (see section 7.2.5) is performed, and.the relocated text for the entry is written.

If no text is defined for the entry, zero words are written.

5. As the relocation of text is being performed, the storage map is printed on QUTPUT unless

NPMAP was selected.

6. Finally, if an ENTABS table is defined for the segment, the text for this table is

assembled and written as the last entry for the segment.

7. MWhen all segments for the lfnk are complete, the XREF option on the LINKEDIT card {see
section 5.6.4.2) is tested. If selected, LKEDO77 (Figure 37, section 7.2.3) is called to

produce a listing of all cross references in the link.
7.2.1.4.6 Final Processing

When processing for all links is complete (the ENDLINKS card has been read from INPUT), the
status of PUTFILE is tested. if PUTFILE = name(C) was coded, no further processing is required.
Otherwise, the executable program exists as a local indexed file (SYSUTT) and it is necessary to
write it as a sequential file on the user-requested file. This is accomplished by LKEDO8BO
(Figure 38, section 7.2.3). When the link has been copied to QUTFILE, a message is written on

PUTPUT indicating the event.

7.2-8 (6/1/7)

7.2.1.4,7 The Bootstrap Program

The bootstrap program is a computer program made up of relocatable routines which are
appended by the linkage editqr to the beginning of the absolute output of the .linkage editor.
These routines consist of: a) a dummy Block Data subprogram containing one labeled common block
of a length sufficient to hold Link 0; b) the bootstrap program driving routine, XB@AT; c) an
input/output utility routine XIPRTNS; and d) MAPFNs; a routine containing miscellaneous utility

routines for bit manipulation, field length determination, etc.

The bootstrap program is employed to permit the execution of the absolute output of the
Jinkage editor in a way that requires no special handling of the job and allows the job to appear
as any other batch job. It is a small pregram, loaded by the CDC loader which if necessary reads
and outputs to the disk the sequential linkage éditor output in a direct "access (random) format.
The bootstrap program also reads into the locations 778+l through 778+N Link 0 (N being its length).
This core space is available because the CDC loader has placed the dummy Block Data subprogram

there.

Having completed its function, the bootstrap program calls COMPASS routine XJUMP in, MAPFNS
which directs the central processor to jump to location 1018 in the jobs core, which is in Super-
main, and execution then continues from there. Figure 2 illustrates core through the bootstrap
process. It should be noted that for the completion of this particular job step, execution of

the bootstrap program is no longer required, nor is it available.
7.2.1.4.8 The Segment Loader

The bootstrap program is actually the initial loader of absolute object code as produced by
the linkage editor. It does in fact load "Supermain," Link 0. After the bootstrap program
directs the central processor to branch into Supermain, and execution proceeds from there, any
calls for the loading of a link's root segment, results in an automatic transfer into the seg-
ment loader to the entry point LINK. Similarly, any calls to a segment lower in a tree or in
another region results in an automatic call into the segment loader to the entry point LPADER..
This type of "downward" call is forced through an entry table ENTABS (see section 7.2.2.7) before

reaching the segment loader at entry point LPADER..

7.2-9 (6/1/71)

74

0
8
]003 words for system Essentially unchanged.
77 use.
8
]008
/XB@@TBD/
Link 0
Segment 1
Dummy Block (now executing)
Data Subprogram "Supermain
100+N
XBOQT
XIPRTNS
MAPENS

Field Length

(Core after SC@PE 3
loads the bootstrap
program.)

SCPPE routines

ﬁ{NK/A

(Core after execution
of bootstrap program.)

core available” for
the loading of
segments.

A\

Figure 2. Core before and after execution of the bootstrap program.

7.2-8a (6/1/71)

75

Calls made to LINK from any segment, anywhere in core, result in the segment loader first
checking the 1ink nunber for legitimacy. The indexes of relative disk addresses for the segments
of the 1ink desired is then read from the disk. A link directory is then read from the disk and
further legitimacy checks are made along with a check to insure that sufficient core is available

for the loading of the lowest segment of the link.

After successfully completing these tasks, the root segment of the new link is read into core,

and a branch is made to its entry point and execution of the program continues.

Downward calls reaching the entry point LPADER. via an ENTAB$ table result in a series of
conditional events by the segment loader. The loader first checks to see if the segment to which
the call is directed is in core. If the segment-is not in core, it is loaded along with any
segments above and in its path as required. Once the segment is determined to be’in core, any
argument addresses over six (which are assigned to B registers Bl through B6 by the RUN compiler
generated code) are moved from the ENTAB$ entry and placed in the actual subroutine being called
along with the actual branch return., A jump is then made to the desired entry point to complete
the automatic loading process. ‘Returns from any called control section are always made directly

to the point from which the call was made .
7.2.1.5 Linkage Editor Files
7.2.1.5.1 Input Files

There are three types of files that may be input to the linkage editor. They are:

1. Libraries. A1l object decks that are to be processed by the linkage editor are con-
tained in libraries. A library is defined to be a sequential file {(which may reside on tape
or disk) consisting of one or more fogica1 records with one object deck per logical record.
The names of the library files are defined on the LIBRARY control statement (see section
5.6.4.2). A file named LINKLIB must always exist for linkage editor processing. LINKLIB
contains object decks for automatic library call plus object decks which are required 1n
constructing the initial load portion (bootstrap program) of the executable program. There
is no theoretical 1limit to the number of libraries which may be defined for linkage editor
processing. Subprograms of the same name may appear in more than one library or even in the

same library. In the latter case, the first such subprogram is included.

7.2-10 (6/1/7)

76

2. Control statements. Statements which direct and control processing by the linkage

editor are contained as a single logical record on the file named INPUT. INPUT must be
positioned to the logical record containing the control statements prior to executing the
linkage editor. For a complete description of the linkage editor control statements, see

section 5.6.4.

3. Previously link-edited links. This input source is optional and is required only if the

user desires to modify an existing link (other than Link Q) or add a new link to the program.
The name and status of this file is defined by the INFILE keyword on the LINKEDIT control
_ statement (see section 5.6.4.2). It may be a sequential file on tape or disk or an indexed

file on disk.
7.2.1.5.2 Local Files

These may be one, two or three local files generated by the linkage editor during processing.
A file named SYSUT2 is always generated. It is an indexed file and contains all object decks
from all defined libraries (including LINKLIB). When the file is being generated, a directory of
subprogram names as well as a list of all entry points in LINKLIB is extracted and maintained in
working storage. [f either INFILE or QUTFILE is declared as a common (indexed) file, then a
second local file does no; exist (nofe that if both INFILE and QUTFILE are declared common files,
they must be the same file). Otherwise, a local file named SYSUT1 is generated as an indexed
file to contain each of the links as they are constructed. If the XREF option is selected on the
LINKEDIT control statement (see section 5.6.4.2), a sequential file named SYSUT3 is written by
LKEDO75 and read by LKEDO77 (see Figure 37, section 7.2.3). This file contains information
regarding ca]{s made by each subprogram and is used by LKEDO77 to produce a cross reference

listing.
7.2.1.5.3 Output Files

There are two files output by the linkage editor. One is a file named PUTPUT which contains
a listing of control statementg, messages, a storage map, and a cross reference dictionary. Most
jtems scheduled for QUTFUT are selectable (or suppressed) by options on the LINKEDIT control
statement. The second output file contains the executable program. It may be a sequential file
on tape or disk, or an indexed file on disk. Its name and status are defined by the QUTFILE key-

word on the LINKEDIT control statement.

7.2-11 (6/1/71)

77

APPENDIX C

EXAMPLES OF LINKAGE EDITOR PRNCESSING

The following examples have been excerpted from the NASTRAN Programmer's

Manuall. The SCOPE control cards have been modified to satisfy the requi-
rements of the NSRDC computing system. In these examples, it is assumed
that the file containing the call library (LINKLIB) and a file containing
the Linkage Editor program (LINKEDT) are contained on separate magnetic
tapes. .

Example A creates a new user library (NEW) by compiling a source
program from input cards. A second user library (OLD) is created by
copying previously compiled library decks from the input file. The out~
put of the Linkage Editor is written on a scratch file and executed from
that file. This method is most efficient for "compile and go''- type code
check runs.

Example B uses a previously compiled user library which is contained
on tape. The output of the Linkage FEditor is written on tape, but not
executed. This type of run should be used when most of the coding errors
have been eliminated and the executable link-edited program is saved on
tape for subsequent repeated executions.

Example C uses previously compiled binary decks and a tape. Both
are used as user librarieé. A previously link-edited file (LINKFIL) is
modified. The output of the Linkage Editor is written on tape and then

executed.

79

Example D illustrates the link-editing of the program structure

shown on page 80.

EXAMPLE A

JOB card
CHARGE card
MAP, OFF.
RUN(S,,,,,NEW) or FTN, B = NEW.
REWIND (NEW)
COPYBR (INPUT,0LD,n)
| REWIND (OLD)
REQUEST LINKEDT,HI. (reel #/NORING)
REQUEST LINKLIB,HI. (reel #/NORING)
LINKEDT,
RETURN (LINKLIB)
RETURN (LINKEDT)
LINKS,ATTACH
789
{FORTRAN or COMPASS source programs}
789
{n object decks}
LINKEDIT OQUTFILE=LINKS(R)
LIBRARY NEW,OLD
LINK O
{INCLUDE statements}
ENTRY entry point
END
LINK 1
{INCLUDE, OVERLAY, etc. statements}
ENTRY entry point
END
ENDLINKS

80

{data for problem program}

» EXAMPLE B

JOB card

CHARGE card

MAP, OFF.

REQUEST OBJECT,HI. (reel #/NORING)
REQUEST LINKLIB,HI. (reel #/NORING)
REQUEST LINKEDT,HI. (reel #/NORING)
REQUEST LINKFIL,HI. (reel #/RINGIN)
LINKEDT.

RETURN, OBJECT.

RETURN, LINKLIB.

RETURN, LINKEDT

RETURN, LINKFIL

7
8

LINKEDIT OUTFILE=LINKFIL(S),LET,XREF,PARAM(7)=2
LIBRARY OBJECT
LINK 0
{INCLUDE statements for Link 0}
ENTRY entry point .
END
LINK 1
{INCLUDE, OVERLAY, etc. statements for Link l}
i ENTRY entry point
END
ENDLINKS

31

EXAMPLE C

JOB card
CHARGE card
MAP, OFF.
COPYBR(INPUT,0BJ,n)
REWIND (OBJ)
REQUEST MASTER,HI. (reel #/NORING)
REQUEST LINKLIB,HI. (reel #/NORING)
REQUEST LINKEDT,HI. (reel {#/NORING)
REQUEST LINKFIL,HI. (reel #/RINGIN)
LINKEDT,
RETURN, MASTER.
RETURN, LINKLIB
RETURN, LINKEDT
LINKFIL,
RETURN, LINKFIL
7g
{a object decks}
LINKEDIT INFILE=LINKFIL(S),OUTFILE=LINKFIL(S),PARAM(6)=90000
LIBRARY MASTER,O0BJ
LINK 2
{INCLUDE, OVERLAY, etc. statements for Link 2}
ENTRY entry point
END
ENDLINKS
7

8
{iata for problem program}

82

EXAMPLE D

MOD7
. /com3/

Link O MAIN
UTILL
UTIL2
: UTIL3
Link 1 START
’ MOD1
 MOD2
EMODS B | MOD4
| /com1/ MOD5
MOD6
| /com2/
LIBA LIBB
| MAIN UTIL1
UTIL3 UTIL2
MOD2 START
MOD4 MOD1
MOD6 MOD3
MOD5
MOD7

The Linkage Editor control commands Iisted on the opposite page

83

organize LIBA and LIBB into the link-edited structure shown above.

Control Commands

LINKEDIT OUTFILE=LINK(S)
LIBRARY LIBA,LIBB

LINK O

INCLUDE LIBA(MAIN)
INCLUDE LIBB(UTILL,UTIL2)
INCLUDE LIBA(UTIL3)
ENTRY MAIN

END

LINK 1

INCLUDE LIBB(START,MOD1)
OVERLAY A

INCLUDE LIBA(MOD2)
INCLUDE LIBB(MOD3)
INSERT COM1

OVERLAY A

INCLUDE LIBA(MOD4)
OVERLAY 3B

INCLUDE LIBB(MOD5)
INCLUDE LIBA(MOD6)
INSERT COM2

OVERLAY B

INCLUDE LIBB(MOD7)
INSERT COM3

ENTRY START

END

ENDLINKS

84

INITIAL DISTRIBUTION

DODCI
T. Braithwaite

ARPA
L. Roberts

U.S. Army Picatinny
Arsenal
1 R,

U.S, Army Frankford
Arsenal
D. Frederick

USAMERDC
J. Marburger

CNO

1 OP 916

1 OP 916Cl, LCDR Poteat
1 OP 916D

1 OP 098TD, L. Aarons

CMC

CHONR

400R, R. Ryan
430, R. Lundegard
432, L. Bram

437, M. Denicoff
437, G. Goldstein

Isakower

e

DNL

CHNAVMAT
1 MAT 0141E, R. Jeske
1 MAT 03 .
1 MAT 03A, CDR Booth
1 MAT 03P2, P. Newton
1 MAT 03P21, S. Atchison
S

USNA :
1 D. Rogers
1 A. Adams
1 Dept of Math

85

Copies

T = T = I

NAVPGSCOL
1 M. Woods
1 D. Williams
1 G. Barksdale
1 C. Comstock

NAVWARCOL

USNROTC & NAVADMINU, MIT
NAVCOSSACT
ADPESO
CGMCDEC
ONR Boston
ONR Chicago
R. Buchal
ONR Pasadena
R. Lau
NRL
1 5030, S. Wilson
1 5400, B. Wald
1 7810, A. Bligh
1 8050, CDR Tatro
COMNAV INT
NAVELECSYSCOM
NAVSHIPSYSCOM
1 SHIPS 03, RADM Andrews
1 SHIPS 0311, B. Orleans
1 SHIPS 03414, A. Chaikin
1 SHIPS 03423, C. Pohler
1 SHIPS 0719, L. Rosenthal
1 SHIPS 08, Nuclear Power

Directorate

Copies

10

16

NAVAIRSYSCOM
1 NAVAIR 5033, R. Saenger
1 NAVAIR 5333F4, R. Entner
1 NAVAIR 5375A, J. Polgren

NAVFACENGCOM

NAVORDSYSCOM
1 NAVORD 032C, C. McCuigan

NAVAIRDEVCEN
1 A. Somoroff

CIVENGRLAB

NELC
3 5000, A. Beutel
3 5200, M. Lamendola
3 5300, J. Dodds

NAVUSEACEN

NAVWPNSCEN
L. Diesen

NAVCOASTSYSLAB

NOL
1 R, Edwards
1 H. Stevens

Code K
Code K-1
Code KO
Code KP
Code KPS

NPTLAB NUSC

NLONLAB NUSC
A. Carlson

NAVSEC

SEC 6102C, CDR Anthony
SEC 6102, CDR Burnett
SEC 6102C, W. Dietrich
SEC 6102C, P. Bono

SEC 6105C1, Y. Park

SEC 6110.01, R. Leopold
SEC 6114, R. Johnson
SEC 6114E, A. Fuller
SEC 6128, J. 0'Brien

el g

b e W

86

Copies

12

SEC 6129

SEC 6133E, E. Straubinger
SEC 6178D03, L. Biscomb
SEC 6179A20, J. Singer

AFOSR, Code 423

e

Rome Air Development Center

WPAFB AFFDL
1 J. Johnson
pPDC

NASA Langley Research Center
1 R. Butler
1 R. Fulton
1 J. P, Raney

NASA Ames
1 P. Pollentz

NASA Goddard Space Flight
Center
T. Butler

Computer Data Corp

Computer Sciences Corp
D. Roberts

Ford Motor Company
Adv Anal Tech Dept
P. Anderson

CENTER DISTRiIBUTION

Copies Code

1532, E. Baker

1725, P. Roth, N. Gifford

1735, P. Meyer

174, T. Toridis

18/1809

1802.1

1802.2

1802.3

1802.4

1805

183

1832, R. Martin

1833

1834

1835

184

1844
12
1
1
1
1
1

185

186

188

189

1891 Central Depository

1892.1, S. Good

1892.2, D. Sommer

1892.3

N
N O R e e e e N

[ol

. McKee
Golden
Hurwitz
Kelly
Everstine
Matula

TRwW R R Y

I—I
N
DN e

87

UNCLASSIFIED
Security Classification
DOCUMENT CONTROL DATA-R&D
(Security classilication of title, body of ahstract and indexing annotation must be entered when the overall report is classified)
1. ORIGINATING ACTIVITY (('r)rpn!a!e author) 2a. REPORT SECURITY CLASSIFIC ATION

UNCLASSIFIED

Naval Ship Research and Development Center
Bethesda, Maryland 20034

2b. GROUP

3. REPORY TITLE

. A General Purpose Overlay Loader for CDC 6000-Series Computers; Modification of the
NASTRAN Linkage Editor

4. DESCRIPTIVE NCTES (Type of report and inclusive dates)

5. AUTHORI(S) (First name, middle initial, last name)

Roger J. Martin

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
April 1973 90 1
\ 8a. CONTRACT OR GRANT NO. 9a, ORIGINATOR'S REPORT NUMBER(S)
b PROJECT NO. ZR(0990101 NSRDC 4062
c. 65851N 9b. S'?SHrigoi)EPORT NO(S} (Any other numbers that may be assigned
d. 1-1844~007

10. DISTRIBUTION STATEMENT

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

1t. SUPPLEMENTARY NOTES 12. 5PONSORING MILITARY ACTIVITY

13. ABSTRACT

The NASTRAN Linkage Editor is a general purpose linkage editor which provides
a means of utilizing available main memory to accommodate large programs which will
not fit into the avajilable main memory. As originally designed, the NASTRAN Linkage
Editor required RUN FORTRAN compiled input. This report describes a modified and
improved version of the Linkage Editor which has been extended to accept either RUN
FORTRAN compiled or FORTRAN EXTENDED compiled input.

FORM (PAGE 1)
DD 1 NOV 651 473 UNCLASSIFIED
S/N 0101-807-6801 Security Classification

S ———————————————

UNCLASSIFIED
Security Classification
|4 LINK A LINK 8 LINK €
RrY woRes ROLE wT ROLE wWT ROLE wT
Link Editor
Loader
CDC 6000
Memory Usage
Overlay Loader
NASTRAN
Computer Program
DD "3 1473 (sack) BNCLASSIFIED

(PAGE" 2)

Security Classification

