
AD-761 963

UNIDEC ASSEMBLER

C. Stephen Carr

Utah University

Prepared for:

Advanced Research Projects Agency

6 June 1968

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

1
Technical Report 4-6 C. Stephen Carr

CO
CD
Oi

UNIDEC ASSEMBLER

I June 6, 1968

Computer Science

Information Processing Systems

University of Utah

Salt Lake City, Utah

ÖK-
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Dopnrlment of Commorce
Springfield VA 2215]

Advanced Research Projects Agency • Department of Defense • ARPA Order 829

Program Code Number 6030

DISTRIBUTION SYATFMEIfT'X

Apje-foved for public idieaae;
Di .dbu'.ion UrJiim'tjd

n

u

The difficulties in using the Project's PDP-8 computer are

primarily due to its inadequate input/output facilities. Assemblies

with paper tape and Macro-8 (manufacturer supplied) nominally require

an hour to perform. -As an alternative, the Unidec assembler runs on

the Univac 1108 and passes assembled PDP-8 code over the electronic link

between the two machines. The source statements are punched on cards

for input into tha 1108 in a format nearly identical to that of Macro-8.

A printed listing and the object code are produced as fast as the cards

can be read.

Of course, most users will prefer to write all programs for the

1108 and access the display facilities through the Graphics Monitor*.

Indeed, this is why additional input/output facilities have not been

purchased for the small PDP machine. However, Unidec meets the needs

of those who require special PDP-8 programs.

'..S. - Graphics System, Carr, C.S., Copeland, O.E., Information
Processing Systems, Computer Science, University of Utah, Technical
Report 4-1.

The sy„tax and operatlon of Unidec d.ffer suffi,ientiy ^^ ^^ oi

Macro-8 to „arrant a separata user manual_ ^^ ^ ^^ ^

sufficients Si.llar that ^pts from the DEC ^^^ ^^ ^^

«aauel-S-S-s. Di8ital Eqülpmant Corp.) ^^ ^ ^ ^ ^

uneltered. The impWntetio. on the 1108 is entirely new.

FUNDAMENTALS

Programs in the Unidec

Letters: A B C D . .

^fiits; 12 3 4 5 6 7

Punctuation Charar.f-Prc •

Character

space

plus

minus

exclamation point

end of card

comma

equals

semicolon

dollar sign

asterisk

point

Characters

language use the following characters:

X Y Z

8 9 0

Use

Combine symbols or numbers

Combine symbols or numbers (add)

Combine symbols or numbers (subtract)

Combine symbols or numbers (OR)

Terminate line

Assign symbolic address

Define parameters

Terminate coding line

End of pass

Set location counter

Has value equal to current location
counter

/ slash Indicates start of a comment

& ampersand Combine symbols or numbers (and)

quote Generate ASCII constant

() parentheses Define literal on current page

D brackets Define page 0 literal

<> angle brackets Define a macro

All other characters are illegal when not in a comment or a TEXT field,

and cause the error message E to be printed.

Source statements are entirely field free:

GO, TAD TOTAL/MAIN LOOP/

but it is easier to read if spaces are inserted:

GO, TAD TOTAL /MAIN LOOP/

Either ; (semicolon) or the end of the card (column 72) terminates the line.

The semicolon is considered identical to the end of a card except that it

will not terminate a comment. Example:

TAr) A /THIS IS A COMMENT ; TAD

The entire expression beyond the slash is considered a comment.

Use of the semicolon allows several lines of coding to be on a single

line: For example, a sequence of instructions to rotate the C(AC) and C(L)

six places to the right might look like:

RTR

RTR

RTR

The above sequence may be rewritten as;

RTR; RTR; RTR

This type of format is particularly useful when the instructions work together

conceptually.

A neat printout (or program listing, as it is usually called) makes

subsequent editing, debugging, and interpretation much easier than if the

coding were laid out in haphazard fashion.

Elements

Any group of letters, digits, and punctuation characters which rep-

12
resents binary values lens than 2 is an element.

Integers

Any sequence of numbers delimited by punctuation characters forms a

number. Example:

1

12

4372 .-'

The radix control pseudo-instructions set the radix to be used in

number interpretation. The pseudo-instruction DECIMAL indicates that all

numbers are to be interpreted as decimal until the next occurrence of the

pseudo-instruction OCTAL and conversely.

Symbols

A symbol is a string of one or more alphanumeric characters delimited

by a punctuation character. Symbols are composed according to the following

rules:

1. The characters must be either alphabetic (A-Z) or numeric (0-9).

2. The first character must be alphabetic.

3. Only the first six characters of any symbol are meaningful; the

remainder, if any, are ignored.

4. A symbol is terminated by any nonalphanumeric character.

Unidec's permanent symbol table defines symbols for PDP-8 operation

codes, operates commands, and many I0T commands (see Appendix A for a

complete list). These may be used without prior definition by the user.

Example:

JMS is a symbol whose value of 4000 is taken from the operation

code definitions.

A is a user-created symbol. When used as a symbolic address

tag, its value is the address of the instruction it tags.

This value is assigned by the Assembler.

Note that because of rule 3, a symbol such as INTEGER, for instance, would

be interpreted as INTEGE since the seventh letter is ignored. If symbols

of more than six characters are used, the programmer should be careful to

avoid the error of defining two apparently different symbols whose first

six characters are. in fact, identical. For example, the two symbols

GE0RGE1 and GE0RGE2 differ only in the seventh character and would be

treated as GEORGE.

It is not necessary to define a symbol before it is used in an expres-

sion. They must be defined before the end of PASS1, however. Thus, one

may refer to a number of registers by their address tags, and then define

the symbols later.

" a-*t»T*3 tAi-r^uj^nni
■ ■ ■■:■.. :.-.~\. -.< «WMOTJjrtilvynjKj^^

Parameter Assignments

A symbol may be assigned a value by means of a parameter assignment

statement which looks like an algebraic statement. The single symbol to —

the left of the equal sign is assigned the value of the expression on the

right. Examples:

A= 6

EXIT = JMP 10

C = A + B

All symbols to the right of an "=" sign must be already defined. The

symbol to the left of the "=" sign and its associated value is stored in

the Assembler's symbol table.

The use of the "=" does not increment the current location counter.

It is, rather, an instruction to the Assembler itself rather than a part

of the output binary. The equal sign may be used to redefine a symbol.

Symbol Definition

A symbol may be defined by the user in one of three ways:

1. By use of a parameter assignment. Example:

DISMIS = JMP RESTOR

2. As a macro name. Example:

DEFINE LOAD A

<CLA
TAD A>

3. By use of the comma. When a symbol is terminated by a comma,

it is assigned a value equal to the current location counter.

■ -■■■ ■--■- ■"■ " -. .■ -.:.-.,-- . -,::.-.,

Example:

*J-00 /SET CLC TO 100
TAG, CLA

JMP A
B, 0
A, DCA B

The symbol "TAG" is assigned a value of 0100, the symbol "B" a value of

0102, and the symbol "A" a value of 0103.

Expressions

All elements, i.e., symbols and numbers (exclusive of pseudo-

instruction symbols, and macro names) may be combined with certain operators

to form expressions. These operators are:

+ Plus This signifies 2,s complement
addition (modulo 4096.. n).

minus This signifies 2's complement
subtraction (modulo 4096..).

exclamation point This signifies Boolean inclusive
OR (union).

& ampersand This signifies Boolean AND (inter-
section) .

1—' space Space is interpreted in context.
It may signify inclusive OR or act
as a field delimiter.

Symbols and integers may be combined with any of the above operators.

A symbolic expression is evaluated from left to right; no grouping of terms

is permitted. Example:

A B A+B A-B A^B A&B

Value 0002 0003 0005 7777 0003 0002
Value 0007 0005 0014 0002 0007 0005
Value 0700 0007 0707 0671 0707 0000

Unidec makes a distinction between the types of symbols it is proces-

sing. These types are 1) permanent symbols, 2) user defined symbols, and

3) macro names. The character "space" is interpreted written in the

context of the expression. If a space is used to delimit two or more

permanent symbols, space signifies inclusive OR. Example:

CLA is a permanent symbol whose value is 7200.
CMA is a permanent symbol whose value is 7040.

The expression:

CLA, .CMA has a value of 7240.

If the symbol following the space is a user defined symbol, space acts as

an address field delimiter. Example:

*2117
A, CLA

• • •
• ■ •

JMP. .A

"A" is a user defined symbol whose value is 2117. The expression JMP. .A

is evaluated as follows:

The seven address bits of A are taken, i.e.:

A 010 00 1 001 111
1 001 111

The remaining five bits of A are tested to see if they are O's (page 0

reference); if they are not, the current page bit is set.
■?i a*

000 011 001 111

The operation code is ORed into the expression:
■ •■'

JMP 101 000 000 000
Address A 000 Oil 001 111
JMP A 101 011 001 111

or, written more concisely:

5317.

■ WIMaHMWt>|t5S3BiailSW

In addition to the above outlined tests, the page bits of the address

field are compared with the page bits of the current location counter. If

the page bits of the address field are nonzero and do not equal the page

bits of the current location counter, an out-of-page reference is being

attempted. If the reference is to an address not on the page where the

instruction will be located, the Assembler will set the indirect bit (bit 3)

and an indirect address linkage will be generated on the current memory page.

If the out-of-page reference is already an indirect one, the error diagnostic

I (Illegal Indirect) will be printed. In the case of several out-of-page

references to the same address, the link will be generated only once.

Example:

*2117
A, CLA

*2600
JMPUJA

The space preceding the user defined symbol "A" acts as an address field

delimiter. The Assembler will recognize that the register tagged "A" is

not on the current page (in this case 2600-2777) and will generate a link

to it as follows:

in location 2600 the Assembler will place the word

5777 which is JMP 1 2777

in address 2777 (the last location on the current page), the word

2117 (the actual address of "A" will be placed.

The address field of a storage reference instruction may be any valid

expression. Example:

A=270
*200
TAD A-20

would produce, In location 200, the word

001 010 201 000 or 1250 (TAD 250)

Although the Assembler will recognize and generate an indirect address

linkage when necessary, the programmer may Indicate an explicit indirect

address by using the special symbol "1". This must be between the operation

code and the address field. The Assembler cannot generate a link for an

instruction that is already specified as being an indirect reference. In

this case, the Assembler will print I (Illegal Indirect).

Current Address Indicator

The single character period (.) has, at all times, a value equal to

the value of the current location counter. It may be used as any integer or

symbol (except to the left of an equal sign). Example:

*200
JMP .+2

Is equivalent to JMP 202.

*300
.+2400

would produce, in register 0300, the quantity 2700.

*2200
CALL=JMS 1.

0027

Since the second line, CALL=JMP 1., does not increment the current location

counter, 0027 would be placed in register 2200 and CALL would be placed in

the symbol table with an associated value of

100 110 000 000 or 4600.

Origin Setting

The origin (current location counter) is reset by use of the special

character asterisk (*). The current location counter is set to the value of

the expression following the "*". The origin is initially set to 0200. All

symbols to the right of "*" must already have been defined. Example:

If D has the value 250

then

*I>flO will set the location counter to 0260.

To simplify page handling, the pseudo-instruction PAGE may be used. When

"PAGE" is encountered, the origin is reset to the first location of the next

page. A page number may be specified by a legal expression following the

page pseudo-instruction. Example:

*270
• • •
a • •

at this point, either

*400
PAGE

or

PAGE 2

will reset the origin to 0400.

Literals

Since the symbolic expressions which appear in the address part of an

instruction usually refer to the locations of registers containing the

quantities being operated upon, the programmer must explicitly reserve the

registers holding his constants or use a literal. Suppose, for example,

that the programmer has an index which is incremented by two. One way of

coding this operation would be as follows:

10

CLA
TAD INDEX
TAD C2
DCA INDEX

C2,2

Using a literal, this would become;

CLA
TAD INDEX
TAD (2)
DCA INDEX

The left parenthesis is a signal to the Assembler that the expression following

is to be evaluated and assigned a register in the constants table of the

current page. This is the same table in which the indirect address linkages

are stored. In the above example, the quantity 2 is stored in a register in

a list beginning at the top of the storage page (page address 177), and the

instruction in which it appears is encoded with an address referring to that

address. A literal is assigned to storage the first time it is encountered;

subsequent references will be to the same register.

If the programmer wishes to assign literals to page 0 rather than the

current page, he may use square brackets, "C" and "J" in place of the

parentheses. However, in both cases, the right of closing member may be

omitted. The following examples are acceptable:

TAD (777
AND [JMP

Note that in the second example, the instruction AND CJMP has the same effect

as AND [5000.

Literals may be nested. For example:

*200
TAD (TAD (30

11

will generate

0200 1376
• • • a • ■

0376 1377
0377 0030

This type of nesting may be carried to as many levels as desired.

Literals are stored on each page starting at page address 177 and extending

toward page address 0. (Only 127^ or 177g literals may be placed on

page 0). If a literal has been generated for a nonzero page and then the

origin is set. to another page, the current page literal buffer is emptied

onto the old page where they are referenced. If the origin is then reset

to the previously used page, the same literal will be generated if used

again.

Single Character Text Facility

If a single character is preceded by a double quote, the 8~bit value

of the ASCII code for the character is inserted instead of taking the

letter as a symbol. Example:

CLA
TAD ("A
• • ■

will place the constant 0301 in the accumulator.

12

PSEUD 0 -INSTRUCTIONS

The pseudo-instructions are directions to the Assembler to perform

certain tasks or to interpret subsequent coding in a certain way. By them-

selves, pseudo-instructions do not generate coding or (in general) effect

the current location counter.

PAGE

PAGE n

PAGE

Current Location Counter

This pseudo-instruction is'used to set the current location

counter.

This will reset the current location counter (CLC) to the

first address of page n, where n is an integer, a previously

defined symbol, or a symbolic expression. Examples:

PAGE 2 will set the CLC to 0400

PAGE 6 will set the CLC to 1400

When used without an argument, PAGE will reset the CLC to the

first location on the next succeeding page. Thus, if a

program is being assembled into page 1 and the programmer

wishes to begin the next segment on page 2, he need only

insert the pseudo-instruction PAGE, as follows:

JMP .-7

PAGE

CLA

The current location counter may be explicitly set by use of

the asterisk.

13

Radix Control

Normally, all integers used in a program are taken as octal numbers.

If, however, the programmer wishes to have certain numbers treated as

decimal, he may use the pseudo-instructions:

DECIMAL When this pseudo-instruction occurs, all integers encoun-

tered in subsequent coding will be taken as decimal until

the occurrence of the pseudo-instruction

OCTAL which will reset the radix to its original (octal) base.

Text Facility

There is a text facility for single characters and text strings. The

single character mode (double quote) has been described previously.

A string of text may be entered by giving the pseudo-instruction TEXT

followed by a space, a delimiting character, a string of text, and repeating

the same delimiting character. Example:

TEXT ATEXTA

. The character codes are stored two to a register in ASCII code that

has been trimmed to six bits. Following the last character, a 6-bit zero

is inserted as a stop code. The above statement would produce

2405

3024
0000

TEXT!_! /BOB/

would produce

0217
0200

Note that while the TEXT pseudo-instruction causes characters to be stored in

a trimmed code, the use of the single-character control code (") causes

characters to be stored as a full 8-bit ASCII code.

14

End of Program

The special symbol "$" indicates the end of a program. When the Assembler

encounters the ,,$", it terminates the PASS. Several programs may be assembled

at one time. A dollar sign terminates each program.

15

MACROS

When writing a program, it often happens that certain coding sequences

are used several times with just the arguments changed. If so, it is conven-

ient if the entire sequence can be generated by a single statement. To do

this, the coding sequence is defined with dummy arguments as a macro. A

single statement referring to the macro by name, along with a list of real

arguments, will generate the correct, sequence in line with the rest of the

coding. DEC's Macro-8 provides a weak macro facility which Unidec provides

for compatibility.

The macro name must be defined before it is used. The macro Is defined

by means of the pseudo-instruction DEFINE followed by the macro's name and

list of dummy arguments. For example:

A macro to move the contents of register A to refister B and also

leave the result in the accumulator, would be coded as follows:

DEFINE t , MOVE i i DUMMY11 i DUMMYZ
<CLA
TAD DUMMYl
DC A DUMMY2
TAD DUMMY2>

The actual choice of symbols used as dummy arguments is arbitrary;

however, they may not be defined or referenced prior to the macro

definition.

The above definition of the macro MOVE is identical to the following:

DEFINE i i MOVE i i ARG1L_I ARG2
<CLA:TAD ARG1; DCA ARG2; TAD ARG2>

The actual definition of the macro is enclosed in angle brackets.

When a macro name is processed by the assembler, the real arguments

will replace the dummy arguments. For example:

16

—_ .

Assuming that the macro MOVE has been defined as above,

*400
A,0 0400 0000
B,-6 0401 7772
MOVE A,B 0402 7200
$ 0403 1200

0404 3201
0405 1201

NOTE: A macro need not have any arguments: For example, a sequence
coding to rotate the C(AC) and C(L) six places to the left
might be encoded as a macro by means of

DEFINE ROTL 6
<RTL;RTL;RTL>

The macro definition can consist of any valid coding excepi for TEXT or

" type statements.

Restrictions

1. Macros cannot be nested; i.e., another macro name or definition

cannot appear in a macro definition and cannot be brought in as

an argument at reference time.

2. TEXT or " type statements cannot appear in a macro definition.

J. Arguments cannot be:

a. Macro name
b. TEXT pseudo-instruction or " special character

4. The symbols used as dummy arguments must not have been previously

defined or referenced.

5. A macro may not be redefined. Example:

DEFINE) lL00P|_i Ai ■R

<TAD A
DCA B
TAD COUNT
ISZ B
JMP .-2>

The symbol "COUNT" is not a dummy argument but an actual symbol.

17

A macro is referenced by giving the macro name, a space, and then

the list of real arguments, separated by commas. There must be at least

as many arguments in the macro reference as in the corresponding macro

definition. Wien a macro is referenced, its definition is found, expanded,

and the real arguments replace the dummy arguments. The expanded macro

is then processed in the normal fashion.

• • • •
L00Pi_iX,Y2
• i • •

is equivalent to:

i ■ • •

TAD X
DCA Y2
TAD COUNT
ISZ Y2
JMP .-2
• • • •

18

OPERATING INSTRUCTIONS

1. Set up an 1108 deck.

v RUN _, ,__,

V G=$PDPS$

V XQT CUR

IN G

V XQT UNIDEC

PDP-8 program

$ ♦-(end of assembly indicator)

next PDP-8 program l]
$

2. The assembler uses the ARPAIO program. Therefore,

ready the PDP as explained elsewhere.

3. Run the 1108 deck into the 1004.

4. The assembled program goes directly into the PDP core storage.

A listing is produced on the 1004.

NOTE: The following PDP locations are used by the link program:

1, 3,

10, 11

20, 21

7000 - 7777

All other locations are available. Unidec assumes a starting location of

200g if no other origin information is given.

19

APPENDIX A

Unidec Permanent Symbol Table

AND 0000
TAD 1000
ISZ 2000
DCA 3000
JMS 4000

JMP 500C
TOT 6000
OPR 7000
CLA 7200
CLL 7100

CMA 70A0
CML 7020
RAR 7010
RTR 7012
RAL 7004

RTL 7006
IAC 7001
SMA 7500

SZA 7440
SNA 7450
SNL 7420
SZL 7430
SKP 7410

OSR 7404
HLT 7402
CIA 7041
LAS 7604
STO 7240

STL 7120
GLK 7204
ION 6001
I0F 6002
RSF 6031

KCC 6032
KRS 6034
KRB 6036

TSF 6041
TCP 6042
TPC 6044
TLS 6046
NOP 7000

CLA 7200
STA 7240
SPA 7510
I 0400
VEC 7000

JUMP 7400
DOT 7410
DASH 7420
LINE 7430
FRAM 7440

SYMB 7200
FIN 5407

20

APPENDIX B

Alphanumeric Character Codes

Symbol ASCII Fieldata Trimmed-ASCII Card

Symbo1 ASCH Fieldata Trimmed-ASCII Card

0 (zero) 60 60 20 n
1 61 .. ., ° 61 61 21
2 62 62
3 63 63
4 64 64
5 65 65

6 66 66
7 67 67
8 70 70
9 71

J 112 17

K 113 20
L 114 21
M 115 22
N 116 23
0 117 24

P 120 25
Q 121 26
R 122 26
s 123 30
T 124 31

U 125 32
v 126 33

Z 132 36

22 2
23 3
24 4
25 5

26 6
27 7
30 8

71 31 9

A 101 06 4i
B 102 07 42
C 103 io 43
D 104 n 44
E 105 12 45

F 106 13 46
G 107 14 47
H 110 15
1 111 16

W 127 34 67
x 130 35
Y 131 36

12-1
12-2
12-3
12-4
12-5

12-6
12-7

50 12-8
51 12-9
52 11-1

53 11-2
54 11-3
55 11-4
56 11-5
57 11^6

60 11-7
61 11-8
62 11-9
63 0-2
64 0-3

65 0-4
66 0-5

0-6
70 0-7
71 0-8
72 0-9

21

Symbol ASCII

a 141
b 142
c 143
d 144
e 145

f 146
g 147
h 150
i 151
j 152

k 153
1 154
in 155
n 156
o 157

P 160
q 161
r 162
s 163
t 164

u 165
V 166
w 167
X 170
y 171
z 172

Fieldata Trlmmed-ASCII Card

22

