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CHAPTER |

INTRODUCTION

1.1 Introduction.

In this thesis, a comsputation {s considered a system of
asynchronously cooperating “{ndependent” programs (coroutinesa)
1inked by paths of information aslong vhich messages are sent.

A programming language called DCPL, a Distributed Control
Programming Panguage. {n which such computations may be expressed,
and which may be considered as a system-oriented programming
language, is presented. A tree structured representation and
a very dynamic binding give to a DCPL program the flexibility
of the higheat level programming languages together with the
potential of concurrency of the asynchronous computational
structures.

The locslity of references which is exhibited in any
DCPL program allows a new computer organization using (inexpensive)
sequential storage devices with large transfer rate instead of
(expensive) random access storage devices with relatigely low
transfer rate. Moreover, the computer is expected to achieve

large throughput by taking the parallelism into account.
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1.2 Variables in computing processes.

In his paper "On certain basic concepts of programming

languages” [ 27) Niklaus Wirth wrote:

"The elementary concepts of computing processes are:

o}

These concepts are widely accepted today, and they under-
lie any actual implementation of a conventional programming language.
In DCPL we support the first part of the quotation: there

1s a universe of values structured in classes or types, and mappings

There exist certain quantities, to be called "values"
and elementary classes or types (possibly only one)
of values among whose elements glven elementary rela-
tionships hold. These relationships or mappings are
represented {n a computer by {ts operations which
generate a ne.' value (called result) which has the
specified relcilonship to the given value(s) (called
operands) .

There exist cells (usually called "variables") which
are able to contain a value, and which have a name.
That name serves to refer to the contained value.

There exists an operator for the assignment of a new
value to a cell.

from some classes to some possibly different classes which are

actualized by operations. There may be, for instance, in our uni-

verse, integer and logical values forming the classes I and L,

and the operations:

operations operators mappings
addition + IxI-+I
disjunction v LxL-+L
negation ~ L-L

equality = IxI-+L



Fig. I-1

In fact, it is not our intention to impose any restriction
on our universe. Consequently, we are leaving the list of types
and operations open-ended. For this reason, and since syntax has
received a rather speedy treatment, the emphasis being placed upon
semantice, it would be proper to consider DCPL as describing a family
of languages rather than defining completely one specific language.
DCPL, however, does not support the second part of the
quotation: one variable in DCPL has no meaning by itself; a system

of mutually bound variables defines communication paths,

I.2.1 An example.

Let us consider the evaluation of the following simple

expression:
(1) (2+3+x; (6-1)+y; x +ty=>x3y+1l-y (2 x y)- x)

in a conventional programming language (fig. I-2):



II.I'!

X+ ¥ ovx cells

Fig., I-2



- there are two cells x and y ;

- the expression is viewed as a sequence of statements.
The execution of any statement is a simple process involving
some cells: whenever the statement x + y > x , for instance,
is executed, the values contained in x and y are retrieved, and
their sum is then stored in x}

- the statements are executed serially one after the other.
The last item is not a statement; its value is considered to be

the value of the expression.

The same express:on may be interpreted in a quite different
way in DCPL., In order to study gradually the notions involved,

we start by interpreting a much simpler expression without variables:
(2) 2+2+2)+2+1

Association having to be done on the right, the expression may
be represented as the tree of fig. I-5a. We may view each node
as a simple autonaton, and each edge as a channel of information.
Whenever a node represents an integer, it sends up spontanenusly
along the edge its own value, and then vanishes (fig. I=-3).
Whenever a node represents an addition, it waits until
it receives a value from both the right and the left éide; then
it adds the two values and sends the result up along the channel,
and vanishes (fig. I-4). The evaluation of ex;ression (2)
is displayed in fig. I-5.
Let us consider again expression (1). The expression may

be represented as a syntax tree (fig. I-6).



Fig. I-4






Fig. I-6
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Each node is here again considered as being an automaton
which has an address in some address space. Whenever a node A
knows the addrezss of another node B, the former may send a message
to B (fig. I-7). Moreover any node may send a message up the
tree; any node receiving such s message may either pick it up
or pass it along upward.

The nodes representing values or operations have the same
behavior as before. Whenever a node represents some variable x,y, etc...y
it sends sponcaneously up the tree its name and its address. Such
a message can be  picked up by a binder ( -»x , -+y are binders)
containing the same variable name only if the message reaches the
binder by the right. The binder possesses then the uddress of the
node which has originated the message (fig. I-8).

The various nodes which act spontaneously are completely

independent from one another. However, in order to have figures

Note about the syntax: - is considered as being a triadic
operator (operator of degree 3),

» "-/’ |
/;)/ \r]-s\\ representing in fact /R‘)’ X ‘ B

i

Whenever an operator Op 1is triadic, A Op B;C represents:

Op

LN

B

The association being done on the left, A 92] B;C 922 D;E represents:

A/E[l\ .
PARN

€ D

E



10 y \
/ \ / \
/ \ / \
T ) message
Fig. 1-7

Fig. I-8
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more readable and to display the binding in a more visible way,
the binding operations are performed first.

Whenever a binder has received a value on its left, and
addresses of variable nodes on its right, it sends the value re-
ceivei to each variable node whose address it has received (fig. I-9).

Whenever a binder receives a value from its right, it
passes this value up along the tree and vanishes (fig. I-10).

The description of the evaluation is given in fig. I-il.

1.2.2 Variables as definire paths of information.

If we view a computation as a sequence of statements, variables
are to be considered as denoting cells in which some results may
be stored for subsequent use. Conversely if beforehand variables
ar~ considered as denoting cells, it is necessary to be assured
that no attempt will be made to use a value before it has been
produced, or to overwrite a value which is still to be used.
As a result some sequencing has to be done, sequencing whose
viscosity will cecrease the amount of possible parallelism.

If we view a computation as occurring in space and in time,
we will use varilables whenever we want some information to be
transferred from one piace to some other place(s). Whenever a
variable is free, it has no meaning by itself. A system of mutually
bound variables is used as a symbolic device defining paths of infor-
mation along which information flows toward computation. Whenever
the needed information reaches an operator node, the simple process
it represents would be activated asynchronously. Its completion

may result in sending some information to some other nodes.
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A
oy

. H"‘x\ x\
| | éﬁ N \
| \
/

Fig. I-10






14

-

I=11¢

Fig.

I-11d

Fig.



Fig. 1-11¢

e, ®



16
]
In DCPL a computation may be regarded as an object composed

of small automata which react to one another. Since a variable may
receive a computation as value, representing for instance a proce-
dural argument, the object representing a computation may expand
and shrink with a behavior which may lead us to think of Von
Neumann's self reproducing automata [24]. We may notice however
that our structures are not to be implemented in some cellular
space hut programmed on a storage device.

The binding of variables superimposes to the tree structure
a graph structure similar to a program graph. Fig. I-12, for instance
displays the graph of our previous example. Such a program graoh
accounts for all the possible parallelism (or preferably concirrency)

which may occur in the computation.

1.3 DCPL as a programming language.

As a programming language, DCPL has much in common with
languages emphasizing expressions (rather than statements) and
having to some extent the lambda calculus as background machine
(McCarthy (18); Landin (12,13,14]; A. Evans (7])). Any computation
is a structured object whose evaluation produces a value. Moreover
wve can have procedural arguments: a procedure may be constructed
in some place, produced as a value and sent to som: other places
vhere copies of the procedure are created (implemented in space).

However, DCPL presents many peculiarities:a computation,
vieved as an object, may produce explicit side-effects on the
eavironment in which the computation is ambedded, Together with
a binder 'lambda’ vhich binds the variables which are to receive

an argument {rom the environment (ns in some extent "value” in






i8

Algol 60), there is a binder 'mu' which binds the variables which
are to send an argument to the enviroggt%EfITLiz , as a binder,
is in some way similar to "resuit" In Algol W [261 with this impor-
tant difference: an argument may be sent !> the environment before
the computation has been completed or even while the computation
is actively worked out; as a result a cowputation may ask to the
environment how to pursue the process or, some special conditions
having occurred, if the computation is not to be cancelled , etc ...
As it has been already mentioned, DCPL is a programming
language implicitly displaying parallelism to a large extent.
Indeed, there is no need for special devices such as fork, join,
parbegin/parend etc ... which determine parallelism explicitly.

DCPL is a system-oriented programming language, this aspect

being discussed in the next section.

1.4 DCPL as a system-oriented prggyammingﬁlanguage.

"System" is regarded here as denoting a group of intevacting
procedures constituting a collective entity. A sophisticated
industrial organization, an administration, a hospital, are systems:
a number of departments are services interacting to ome another.

If a computer is to be used integrated in such an environment, it
is likely it should look like an information network; moreover
programming should reflect such an organization.

In DCPL we are able to write asynchronously cooperating
"{ndependent"” programs (coroutines) linked by paths of information
along which messages are sent, and to write them recursively, l.e.
any one of the previous programs may itself be a construct of
cooperating independent subprograms (fig. 1-14). It is possible

to embed in DCPL sequential programs and to master their synchro-
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ENVIRONMENT

Fig. I-13

ommunication path

Fig. 1-14
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nization. For such programs DCPL looks like a host system . In fact

it is possible to write in DCPL a hierarchy of host/guest systems.
Paths of information permit as well to have full programming

generality: the same program may be debugged in a testing environment,

made available in a program shop and put by some user in his own

environment without the need of any surgery (Krutar [8]) . In

conventional programming languages, such a programming generality

may not be available for two reasons: 1. A procedure in general

contains the names of <some uvther procedures to call; as a result

the former procedure 18 bound to the environment which contains the

latter ones. The situation is better when procedural arguments

are allowed. 2. Input/output operations are performed with parti-

cular instructions (read, write etc ...); thus it is not possible

to debug a procedure in a testing environment with I1/0 devices

simulated by some programs. In DCPL inputs and outputs are con-

sidered as paths of information coming into and going from the

procedures. Such paths may be connected as well to 1/0 devices

as to programs.

I.5 Machine organization.

DCPL gives to machine organization a new perspective.

Whenever a program is expressed in a current programming
language, the control may jump from one place to any other one,
a same cell may be accessed from quite different places. This
results in a serious lack of locality. This wuuld not be of any
importance {f today's computers were still Von Neumann type machines:
one processor has access to a random access memory whose cells

may be considered as being all "equidistant” from the processor.
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Frocessors becoming faster and faster (and cheaper and cheaper)

the trend in machine organization is to nlerarch.es of memories.
However, unless many iterative computations are expected to occur
in the fastest level, it is necessary to have at any level of the
hierarchy a transfer rate large enough to "feed" the processor.

A large tranfer rate may be obtained by taking at each
level a large block as unit of transferable information (the slower
the level of memory, the larger the block).

One may believe, however, that only a few words in such
blocks would be really used. For this reason Jack Dennis suggests
in [4] that information should be moved on demand with the word
as information unit, a large transfer rate being assured by perfor-
ming many computations in parallel.

In DCPL it is possible to consider a program as a construct
of "simply-connected" computations which, once triggered, could
be brought in the fastest level of memory and completed without
the need for any additional informatiorn.

Moreover it is possible to repiatce random access memory
by sequential rotative memory. This will be discussed extensively

in part III of this thesis.

In part 11 DCPL is presented. Part one is concerned with
preliminaries and discussions which the author believes to be relevant
to the subject and important. Some readers might prefer to skip them

and go directly to part two ( beginning p. 86).
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environments Fig. II-4

Fig. II-5
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signal. (. receiving it, the processor expects to find the object
to be transformed at some specific place. When the transformation
has been completed, it puts the resulting object at some (possibly
different) place and sends a control signal to the next processor
to operate. In fig. II-2 one single place is used; a cascade of
places is used in fig. II-3.

The latter situation may be somewhat abstracted. To each
processor is associated an environment (environments may overlap
one another). Each processor is able to perform a specific transformation
on its environment. The process is controlled by a control signal
as before (fig. II-4). In fig. II-5 there is one common environment
accessible by each processor.

In the light of these latter interpretations the arrows
in fig. 1I-1 appear to have two purposes: 1. They order in time
the occurences of the different transformations, carrying an implicit
control signal (which is the object itself); 2. They specify,
for each processor, on which object the crrresponding trar_.ormation

is to be done.

11.1.3 Production line.

Up to now we vere interested in tranaforming one object into
anothe: one. Let us suppose we want to .ipply a process to a sequence
of incoming odjerts, fig. I1I-1 being interpreted as representing
1 production line.

For instance ve may consider a row of objects advancing on the
communication path. Any processor performs repetitfvely its transformation
on ~sch incoming object. If the varivus processors operate at different

rates, it becomes necessary for each arrovw to act as a first-in-first-out
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queue (fig. II-6).

In some instances, it may be preferable to just have one queue
before the process. It is then necessary to synchronize in some way
the various processors.

A straightforward solution is to process only one object
at a time, one processor at most being at work at any time: P1 is not
to accept any new object before Pé has completed the transformation
of the current one. As showr in fig. II-7 , a backward path links PQ
to Pl. On completion of its task P4 sends a control signal on this path.
On receiving it, P1 initiates the processing of a new object.

Let us abstract the situation in the following way., We represent
an object as well as a control signal by a token placed on the corres-
ponding arrow. An elementary transformation is triggered vhenever all
the incoming arrows contain a token (fig. II-8b): the tokens are then
removed from these arrows and the transformation is in progress (fig. 1I-8¢c).
On completion of the transformation, a token is placed on each outgoing
arrov (fig. II-8d). The processor then stays idle until there is sgain
a token or each incoming arrow (fig. I1-8a).

The process is described in figures I11-9a to 11-9§ .

A similar scheme may be used whenever the procesy uses placea
to store objects as in fig. 11-2 and in fig. il-3 (fig. 1I-10 and 11-11).
There is one token representing a control signal, which performs a loop
(the servicing of the input and the output in these examples i3 not

discussed here).
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11.1.4 Pipe-line.
It o large throughput (number of objects processed per uait

of time) fe desired, such strafghtlorvard sclutions are mot satisfactory:
At any time only one processar is varking: ve would prefer to have
the various processors working cencurrently oo different objects.

It the time required by one processor te transform coe object
is independent of the object and (f this time ie bnown, synchrenlzation
say be performed with a central tiner. Every T (an anowat of 1lme
during which any processor may perform ite tush on one object) the
timer triggeres 811 the processors by sending them a control sigmal
(fig. 11-12 and 1i-13).

A mote general solutlon may be achleved by replacing the
backverd path ir {ig. [1-7 by ¢ sequence of backwvard pathe as displayed
In fig. ll1-14. Pig. t1-15a~d describe th. orocess.

The processes we have just described are called plpe-lines.

la flg. 11-12 the pipe-line (s synchromous: (n fig. L1-14 the pipe-line

i cuynchrongus .

11.1.3 Petri-net.
The sftuation of fig. L1-14 nay be modeled by a Petri-net

(fig. il1-18).

The behavior of & Petri-net is very close to the behavior
described fn fig. 11-8. A Petri-net i» made out of transitions
(bars in fig. 11-06), &~ places (circles In fig. (1-16). An srrov
may lead {rom a place (o & tranaftion, or fram a4 teaneition to
2 place; a place In the former case (s called an Input place of the

transitlon, and in the latter case, an output place of the transition
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33
(fig. 11-17). A place is either empty or filled by a token. A transition

is ready to fire whenever all irs Input places are filled. (It is supposed
that the Petri-net is such that all the output places are empty at the
time of firing. For a detailed discussion, please see Holt [91]). The
firing of a transition may be viewed as a spontaneous and instantaneous
operation: each input place is emptied, a token is placed in each
output place of the transition (fig. 11-18a=b).

It may be interesting to note that a place may be the input
of several transitions. Several of these transitions may be ready to fire
at the same time; however only one transition among them may fire

at a given time (fig. II-19a=b).

Remark.
A given situation may be modeled in quite different ways depending
on the emphasis which is to be placed on various conditions. For
instance, fig. 11-20 and fig. II-16 account quite differently for

the same situation,

11.2 A process as a system of transformations.

In the previous section we discussed simple processes whose
elementary transformations were applied sequentially to some object.
In general an elementary process may be applied to one or
several inputs producing one or several outputs (fig. 11-21a).
We require of any would-be elementary process that it may only
be applied when all its inputs are available and that its outputs

are available only after the process has been completed (fig. II-21b).
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11.2.1 The odject-flow model.

Let us nov consider a process leading from e set of objects
to another set of objects by applying di{ferent elementary processes

P'.Pz. sse A8 1Bd((ll€a lﬂ ".. '!'zzo

8y and lerge, our previous discussion may he applied here again,

tach node may be considered as being a processor, Wheneve? an object
is produced (t advances on the corresponding path until {t reaches
the next processor, A preocessor (e triggered viienever there is an

objact on each of (ts input lines.

11.2.2 Control sigrnals.

In avother implementation there are places ir vhich and from
vhich obdjects may de storcd and reirieved. Control signaiz may trove!
on the arrovs. A processor s triggered whenever it has received
A contrel eignal om each of its imput lines. The processor retrieves
the objecis stored in (t> (nput places, performs the associated
elementary process, stoves the resulting objects fn {ts oculput
places, and esends a control signal on each of (ts cutput lines.

Fig. 11=2) ané 11-24 present two possidle cenligurations,

11.2.) Determinacy.

Ve may cdstract such a situatien by conal/ering each processor
as being able to perform a transformetion en its environment aftec
it has beer trigrered by some control signals (fig. 11-25). Hovever
it Is inportant to notice that the result of the procase say depend
on the order In vhich elementary processes have been applied (f
the different environments are interdependent or 1f there le one

klodal environment. A process is sald to be deterninistic or
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output-functicnal 1f the resulting objects or the resulting environ-

ments do not depend on the order im which elementary processus have
Seen spplied(15).

A process §s reid to be completely funct!onalo) {f, for any

elemntary process Pl' the objects or the local envircnment to which
P’ is wpplied do not depand on the order in vhich elemsentary procesces

are applied, at the time¢ vhen P, is triggered.

H
The process of (ig. 11-22 with objects flowing on arrovs

is determinate 1f the elementary processes are output-functional;

ve ove this result to the requirement wve made about elementary

processes (’ig. 11-21). Kovever the process vould not be determinate

if ve had asloved races to occur with, for {nstance, an elementary

process having as an output the first input received (fig. 11-26).
The processes of (ig. 11-22 and 11-2) are deterninate;

however, some othar configurations of places would have given

noa~Jeterninate processer.

11.2.4 Service-on-demand,

A same elementary proce: s may occur at different locations
in & process, Lat us assume that the process of fig, [1-27 is to de
carried out by a tesas of four vorkers, each vorker being able to
perfors & specific elementary process A,8,C or D,

The flov chart of the process s displayed on & teble with

8 light duld on each ncde and a place on each arrow. Whenever all

a) The term "determinate™ s oftea used instead of detersinistic,
However detersinate ia somctines opposed to deterninistic and means
then completely functional, Such eppesition (2 not ¢ very leportant one
froe the point of viev of this thesfe, and ve shall use “detersinate”
in general, Novever, vhemever the opposi.ion Is meaningful ve vill use de-
terministic and completely functienal.
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input places of & node are occupled by objects, the buld oa this
node is automatically turned on (fig, 11-28),

At the beginaing the objects to be processed sre put on the
input places (fig. [1-29),

Vhenover 4 vorker fs (dle, he loeks for a turnev-ou buld
representing an elementacy procesas he le able to perforn. On (inding
oae, ho takes the objects from the Input places, performs the
corresponding clesintary process and puts the resulting odjects
on the output places; then the verker 18 idle again,

In such an organisstion, the vorkers are satd to secvice
g8 _demand the elementary processes, The demands afe (ssved locally
vienaver some local condition occurs, The same acheme may be ueed
Ll one vorker {9 able to perfors more than one slewentary process,
However, If severa] vorkers were abdie to perforn & sanc elementary
process and If they could have acceses concutrently to the flov
chart, & systen of arbiters(aseigning to each ldle vorker an elementary
ptocecs te be petformed) veould be necessary (see Pattl (20D,

Let us consider agalm (ig, 11-22, Tve elementary proccsses
Ate wald to be grdered If there (s a path of atrevs leading fres
one to the other, The enecuticne of tve such eleventary processes
ate then secéggart\r otdered (n tise, Two elementary precesses ate
s4id to be concurrent If they are not ordered. When the vhole process
is carried out, twe such elementary processes may be performed
either concurrently or one alter the other, according to considerat fone
vhich ate not relevant teo the level of erganization in vhich ve are
interested here. In the situation of (g, 11=25, a sufficient

condition for the process to be detersministic ia that sny palr
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of coacutrent elemeatary processes (coansidered as operators oo ghe
eavironsent) commute. A sufficlent condition for the process to be
complately functional is that amy palr of concurreat elesentary
processes have "independent” environsents (fig. 11-)7). This latter

condition holds in the situations displayed in fig. 11«23 and 11-24,

11.2.3 Sequestial snecviioes.
Let us nov suppose that the process of (ig. 11-27 {s teo ke

peclorned by one vother exsculing the different ¢lescntary procesncs
ene after ihe other, At any Jine there ta & set of palrvise ceacurrent
elemantary processes vhich are ready to be enscuted (In our previous
scheme these processes are thosy vhose bulbe are turned on).
Our vorker may choose ot rendom one process im this rat and periotem
ft. The occurence of this elementary proceas (s ne longer I8 the set,
but st ite completion, nev clenentary protesses might be in the set,
Then the verker repeats the same sequence of actions unti] the
vhole process ls completed.

It the process is planned to be emecuted by enly ene vorker,
it may be described as a dequence of elementary procedses, Obviously
different sequences are posaible (fig. (1-J1 and 11=)2). Together
with the sequence wve have to kaow the (nputs and the outputs of
each elementary process and how oae Is related to anather, tn fig, 11=])
corresponding (nputs and cutputs are linked together, In fig. 11=)4
thete are four places; to each iaput (reep. output] is associated
a place (ron vhich (resp. In which) the ebject is to be taken (reep.
stored). These (lgures display the sane topologies as (g 11=32 and
tig. 11-29,
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11.2.6 Ceptralized vs, distributed control 1.55115.

Abstracting the situation, ve may consider the description of the

process as & sequence of instructions. One processor scans such a
sequence performing one &t a time the corresponding elementary trans-
formations on the enviromment (fig. 11-36).

We call a machine vith one or several processors verking (n
such & vay a centralized control machine, On the other hand we call
a distributed control machine a machine vhose special purpose processors
act on a service-on-demand basis: any action (s triggered by local
conditions occurring asynchromously,

Although such a disrinction may appear rather artificial
uader certain clircumstances, the notion of a4 distributed control machine

vill be helpful (n the sequel.



CHAPTER II1I
A COMPUTATION AS THE REALIZATION

OF A FORMAL OBJECT

So far, we have not particularized our discussion to any
apecial object or to any special elementary process. In this chapter
ve consider formal objects called obs which may be built up, and

then realized relatively to our universe of valuea and operations.

I11.1 Combinations and oba.

The following notions are due to Curry [1]. They are very
similar to Landin's notion of applicative structure (12]). In many
other works, auch notiona are expressed from a syntactic point
of view.

An ob is & formal object which is either primitive and
called an stom, or built up by combining already constructed obs
according to aome elementary processes called combinations.

A combination is a particular clementary process: an ob being

given, ve know at once vhat is ita structure; we know whether

or not the ob §s an atom, and {{ the ob fa not an atom we know
how 1t has been constructed: by applying which combination to

which obs, It {s therefore underatood that obs conatructed by

different processea are different as obdba.

As a result, concatenation of aymbols and strings,into
stringsyis not a combination. In Lisp, forming the "cons" of

tvo S-expressions {s a combination, In the same way a sentence
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which is syntactic relatively to a phrase structure grammar is
not an ob; however, anv syntax tree of the same sentence may be
considered as an ob.

A symbol denoting a combination is called a combinator.
The degree of a combination or of a combinator is the number
of obs to which the combinator is applied. An atom is considered
as a combination of degree zero.

Fig. III-1 represents an ob 0, with C C, and C, being

0 "2 3
respectively combinators of degree zero, two and three. The figure
displays the "topology" of O, i.e., the different obs, components

occurring in the construction of O,

I11.2 Realization of a process or of an object:

categories and functors.

Let us consider an elementary process with input and output
places (upper part of fig. III-2), When realizing such a process,
each place is mapped into a value of the universe of values and
operations (see introduction), each elementary process into an
operation, such that the value associated to the output place is
obtained by applying the operation (associated to the elementary
Process) to the values associated to the input nlaces (fig. I11-2).

It is possible to realize an ob by assigning a value to
zach component and an operation to each combination with the same
rule as previously: the value associated to the ob, result of the
combination, is the value obtained by applying the operation
(associated to the combination) to the values associated to the obs,

operands of the combination (fig. II1I-3).
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It is useful to abstract slightly cuch situations by intro-
ducing a variation of the concept of categories and functors (see
Mitchell (17 ; as defined here, categories may be extended in
a trivial way to be mathematical categories ).

A category is a set of objects among wiich some given
relations, vhich we shall suppose to be mappings, hold. So, for
instance, the previous universe is a category. Any ob is also
a category: the components of the ob are the nohjects of the category,
and the relations are here the mappings actualized by the combinations.

Let C and C' be two categories. A functor is a mapping T: C » C’
which assoiiates:

- to each object O in C, an object T(0) in C'

- to each mapping R in C} a mapping T(R) in C'
such that whenever

0, 40y v vev s O T 01,05, ... , O inC
we have either

T(0,),T(0,), ... 1O )—LBL o1(01),7(0p), ... T(0,)
and T is called a covariant functor (fig. IIl-4a), or

' ' ' T(R)
T(Ol).T(Oz). ‘e ,T(Op)-———-——-bT(Ol).T(Oz). cos .T(On)

and the function is called a contravariant functor (fig. III=-4b).

II1.3 Iterative and recgraiveAproceules.

The previous definitions are significant because covariant
and contravariant functors lead to two different computational
schemata. We shall see that they correspoud to the intuitive
distinction of an iterative versus a recursive computation, when

applied to sequentiai processes,
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T is & covariant fenctor:
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Te any mapping R is associated %o operation T(R) (hich
nay be primitive or mot) in the ualverse of values and cperations,
and the correspendance B—eT R) is given beforchand. For suvme
objects a, , called sources, the values T(a ) are given in the wai-
verse of values, For some b’ the values T(b’) scalled gosle, are
to be determined,

Let wa consider a sequence of objects, cach object i(the
first one excepted) belng obtainable by applylng 4 particular
elesentary process (o the previcus object ir the sequeace. To each
elesentaty process r‘ ts asnoclated an operation T(P’). T being
a covariant functor. The (irst abdject Ao fs th2 source] the value
associated to the last oblect A, Is the goal (fig. 111-3).

The computation of T(A“) say be performed straightfor-rdly
vith one storsge place vhose contents vill be called the current
value. At the deginning r(Ae) io the current value; the control
then ptoceeds sequentially (rom the source to the last object of
the sequence; vhenever a sapping 'l is encountered, the cperation
T(P‘) is applied to the curreat value, and the result is taken as
the nev urrent value, When the control resches A“ s tha current
value §s the goal TCAG).

in peeudo-Algnl, the process may be described by means of an
iterationm

ess Currentvelue 13 T(Ao) H
for § ta | atep | until n do
CuUTT2NLYpive tsT(P‘)(cuttoalVllut) H

o0 06000



] ]

Me comsider sov the sanc sequence of cbjects, T helng a
contravariant functor. L the source and Y(A“) the goal ((ig. 11i-6),

It say reem that T(Aa) being given, the cromputativn of
T(Aa’ fa completely sinflar to our previcus computation t(ko)
and T‘Aa’ belng permuted: T(Pa). T(Pa_l). TOR t(r,) vould be
applied sequentlally to Y(A‘). Hovever, in general, this reverse
sequence of mappings is not hnovn beforehand.

The control goes as before f(rowm ‘o te A i vhenever »
napping ?‘ is encountered, the corresponding operation T(Pi) ie
placed at the top of & last-in-first-out queue (» stach),

Aftec the control has reached A. . the computation proceeds an In
our previous enanple, the operations being rteteleved, A, (rom
the stach.

The arrowe on the diasgcan say setve as a hullt-in stack.

Let us consider as an enample the factorial function:

() foct(n) * [5f a = O then | elge o ° fact(n-1)!

Let us compute fact()). The goal is fact()), the source ls 0
vith fact(0) belng 1. The diagran e displayed in (ig. 111-7.

Ve can interpret the progran as a diapran nodiflicatien
schese. The arrovs T(P') ate constructed as the contrel preceeds
along the artowvs r‘i Wien the contrnl reaches the soutce the two
sequences ate bound. Then the control procecds tovatda the goal,
petlorming the operations T(P'). (Fig. 111-8).

Ve may vender vhat Interpretation an fterative factorial

may have.
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A “uhile-lterative” factertal: (21 = 12 ) ; y 8¢ 1 ¢

A “lev~fterative” (scterial: (N & yis Iy
for 11+ step | yntil » dp yi* I°y |

y

In these progtana, the programmer kaowe belorehand vhat Live esquance
r(rn). r(ra.') v oos fIu. As & vresult fact(D) being bnownm, factil),
fact(2), ... may be computed lteratively, one witer the ather (flg. 111-9).
in the (irat progran, at cach step, & test deternines vhether the goal

ts veached or net, In the second progran, the prograwmer knovs

beforehand that the goal vil) be reached vhenever (he contrel

has passed three arrowve.

As & result ve can consider algerithn (1) as the meat geacral,
Algorithm (2) uses o particular sltuation. Algerithn ()) uses &
stil] mocre particular situation.

In the previcus discussion clementaty processes vere restric-
ted to transforn ane cbject inte another ene. The genetal case vhere
elerentary procecses ate applied on several Input ebjects and produce
several outpul ehjecta may recelve 9 rather einilar treatment.

Objects and mapplngs relating one object to annther constitute
a category ({lg. 111-10). Let T be a functer, associating te each
elenentaty process 'l an opetation in the univetae T(F‘)a 1T 4
covariant (fig. 111-11) we can take the Input objects a,i,] a=
agurces, the poals being the values of the «utpul ebjects ¢ and n.

The computation is nerformed vith & distributed control. 16 T ie
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T is & covariant fuactor ( in this figure X° denotes T(X) for any sysbol X)
Fig. 111-11
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contravariant ((ig. 111-12) the cutput odlects ate tahen ae soufces,
the goale being the values of the (aput odjects T(a), T(1), T(}).
The artows reptesenting the mappings T(r‘) are used as 4 firnt-in-
last-cut-libe atorage device. We may notice that o stach,belag an

essentially sequeatial storage device, canast be used here.

111.4 Synthetic and (nberited attributes.

111.4.1 Deftniticns.

Vhen applied to an oh, covarient and contravarfent fuuttors
lead to the notiens of synthetic and {aherited attributes. Indeed,
it Lo soretines Interesting to associate te each component of an obd
an attridbute, these attributes deing structurally related te ome
another. in our terminology, the components of an od are considered
to constitute & categury, vhich fe mapped by some functer into the
universe ef values and operations. [f the functur (s covarfant,
the sttribute of the given ob may be computed vhenever the attributes
of the atoss (primitive obs) are known. Such attribu’es are called
synthetic attributes. 1f the functor (s contravariant, the atteibute
of aa stom may be cowuted vihenever the attribute of the given ob
is known. Such attributes arc called ipherited ai’ributes (ece

Knuth [11) vhere a syntactic point of viev has been taken).

111.4.2 The value of an expression as a synthetfc attribute.

The eapresaion (2 ¢ ¢2) o 2 0 | (see section 1.2.1)
nay be regarded an an ob {te evaluation requires only one syathetic

attribute, the valve.
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Whenever an ob Like (x ¢y ex) + x+ 1 , containing
formal variadbles, is to be evaluated, it {e necessary that the
eavironsent detersines the value of each variable. The realfzation

of the ob is a covariant functor (fig. 111-13).

111.4.3 The environment as an inherited attribute.

In the previous exesple the environment was considered as
being global relatively to the expression, and as being accessible
by any variable. Ve may alsy coneider the environment as an inheri-
xcd‘attrliutéz)Tta evaluation may then be vieved as having two
phases: the binding and the evaluation proper (fig. 1I1-14).

In the example of section [.2.1,

Z2+¥4n;0~y i nty>xiyetl-y;lxy-x),

the =x and +y may be considered as being operators on

environments (fig. 111-19).

a) To cach node is associated an attribute: a local environment,
As a result, to two occurences of a sawe variable in a computation
asy correspond two different local environments which may associate to
these *ariadble-nodes two different valuvs.
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CHAPTER IV

SOME COMPUTATION MODELS

Iv.1 Introduction

in this chapter, two different approaches of modelling
computations are discussed. In both of these approaches, the
models present in some way concurrency and distribution of
control.

In the first approach, the directed graph is taken as
a model of computation [6,10,10a,16,21,23] . In section 1IV.2
we will discuss the "computation model with data flow sequencing"
due to Adams [1]. Such a representation is of interest for us
since a DCPL program may appear to be a data flow model af:er
the binding has been performed.

In the second approach, a functional computation is
considered as an expression; the evaluation of such an expression
may be carried out by some abstract machine. The lambda-calculus
provides a machine whose elementary operations are replacement
and substitution (section IV.3).

Curry's combinators allow to use a much simpler machine,
using replacement only. Strikingly enough, variables are not used
at all in this representation., As a vesult of the simplicity
o{ the machine and of the extreme locality of control, the repre-
sentation of an expression may appear rather complex (section IV.4).

The second part of this chapter (sect. IV.3 and IV,4)
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contains some technicalities. Some readers might prefer to

skip it,

IV.2 The Adams' computation model with data flow sequenciqg.a)

The directed graph is used as a model of the computation.
"The nodes of the graph represent computation steps and the edges
represent transmission paths for data and control. An edge may
be thought of as a queue of data produced by one node and waiting
to be consumed by another, A computation step may be initiated
whenever each edge directed into that node of the graph contains
the amount of data required for the node to execute properly,'

Fig, IV-1 displays some nodes which are activated whenever
there 18 an input value on each input edge. Then, output values
to be put on the cutput edges are computed according to a function f
associated with the node. "§' is a notational device: placing 'p"
on an edge means placing nothing on this edge.

Fig. IV-2 displays some nodes having a more involved behavior.

Relatively to a node, an input edge may be in any one of two status:

it is either locked or unlocked. In fig. IV-2, the status of input

edges is given, for instance, as ULL , which means that port 1

is unlocked and that ports 2 and 3 are locked, The computation
step of a node is initiated whenever there is an input value on
each unlncked input edge. Output values are computed as before
accord:..ng to an assoclated function f; moreover, a new status

for ench input edge is determined according to auother function g
associated with the node. The blocking capabilities of these nodes

permit the computations to be determinate,

a) We have taken the freedom to qu.t¢ some passages of,
and to reproduce some figures from Adams [1].
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int int

4
in ne
loop
epntrol
int
3

f: V3 - V1+ V2;

Fig. IV-la

f: \l3 « if V,= false then V, else ¥;
V, * if V = true then V, else'f;

Fig. Iv-1b

f: V3 « if V1= true then \I2 else \0;

Fig. IV-1c

g: ULL = LUL £f V.= true  f: V, «¥;
ULL » LLU 4f V,= false v, « %
LUL - ULL Vi, * Yy
LLU - ULL Va - V3;

Fig. IV-2a

g: UL - LU f: V3* Vl;
LU + LU Ve Vi

Fig. IV-2b (frow Adams (1))
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Fig. IV=3 and IV-4 represent an iterative (1, p. 31) anc

a recursive [1,p.32] factorial respectively. The latter figure
witnesses to the recuraive character of a graph procedure:

“When a node in a graph procedure represents a recursive
call upon the procedure of which it is a part, a copy of the
called graph procedure fa created. Thus, during the execution
of a graph program, an auxiliary graph referred to as the e¢xecuting
graph wil! be conatructed. Initially the executing graph will
conaist of the main graph procedure G, vith the infitial data
for the program placed on the edges of G. The initial data must
be of the asme type aa the edgea on which it i{s placed. Whenever
a procedure node in the executing grapt is ready for execution,
a copy of the defining gr’ph procedure vwill be created and added
to the executing graph 48/ ; and vhen the procedure terminates,
the created copy will be deleted. The executing graph can thus
expand &nd contract dynamically during the execution of the program,’

+
Remark., Such a situation may be regarded as an inatance of the

realization of a contravariant functor campare 111-8 and IV-3).

In DCPL we will find the same notion of {mplementing in
space succesaive generationa of a recuraive procedure,

IV.3 Functional representation: the lambda-calculus b)

The diacuasion in thia section and in the next one {is

based on Curry (3]. The lambda-calculus provides a framework

in which functional expressions may be repreaented and evaluated.

a) Such a creation and addition of a graph piocedure to
the executing gi1..)h i{s referred to in this thesis as an implementation

in space.

b) There are different lambda-calculi, each one having
its particular idea sbout what objecta represent the same function.
However since in programmirg languagea the emphasia ia put to
the application of a function to an argument, and not to a function
ftself, only one calculus is generally used qp'-convec‘lon lastda~-calculus).
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Such evaluations present possibdilities of concurrency and distri-
bution of comtrol, Since Mc Carthy [ 18] , the Janbda-calculus has
often been conuidered In conncction with prograsming languages:

Landin [12,1),14), A, Evans [ 7], YMorels [19]),

1IV.3.1 Varisbles in mathenatice.

Let us consider vith Curry the folloving mathematical statements:

(1) o) et sanel
d 2
(2) d‘xtix

L
() x dx v 9
[ -]

in atatesmcnt (1) the variable x may be considered as
having en intuitive meaning: for any integer, for instance a,

2

wve have the relation (a * l)2 ra s 2a-+l .

We cennot interpret the use of the variable x In such a simple
vay in (2) and ()): they do not enunclate any statement about
some object for which x stands. In fact, (2) and (3) state

some propertics about a function, the square function., The use

of variables in thesc statesents may be cunsidered as only a
notational device. The use of variables may even be more emplicit
vith Church's Lasbda notatfon (Church (2 l):ku.xz denotes then

the square function. If D and l: denote reapectively derfivation

and fntegratlon betveen a and b, the statesents (2) and()) become:
(2°) o(A x.xz) + Ax.2x

(3') xg(h.x’) : 9
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The lanbda notation allovs us to coasider a function, at least
conceptually, as an object: (unctions become part of the imbverwe

of discourse, and statements abeut functions may be (ormulated,

IV.).2 Functicesl representstions in progressing languages.

Functions appear naturally (n programming languages vhenever

some object {s to be evaluated (n some realizetion (sece chapter 111).
Ceneraslly statements about functions vhich are considered (u
programning languages are very limited; v ith the exception, may be,
of some symnbolic manipulation oriented programming lenguages,
functions are considered as far as they will be applied to some
sTgumenis at some time, There (s a notation to represent functions
and another notation for the application of a function to sone
arguments, and there {s 2 background machine vhich may evaluate
functional expressions. If such a background machins Is to be
an abstract (or formal) one, a notation is noct suffictent, it s
necessary to be able to represent a functional expression. By
representation we meoani
1. Any function may be represented as an object, better
as an cb,
2. There s a combination called application vhich allovs
to represent In an enplfcit way the ob obtained by
comdining,vith the application, a function to lts arguments.
J. There s an abstract machine which can evaluate the
previous ob and produce the representstion of the resul-

ting object.
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Iv.3.) Ap abstract reducing machine,

Ve are interested here In abstract machines perforning
reductions since these machines are particulacly sisple: vhen
applied to some object, they look for any cesronenat correspon<
ding to a given pattern and replace it by an arsociated com-
ponent . A macro-processor, &n interpreter uning o sinple prece-

dence grammar (Wirch [28)) might be considered as reducing machines,

1v.3.3.1 Substitution versus replecement.

Ve preseat these notions pictorially: in (lg. 1V=-6 an
ob X is gubstituted (or an atos = in an ob A; the result {s
an ob B, (Ve may notice that
1. x is supposed to be an atom
2. esch occurrence of x is replaced by an occurrence of X.).
In (1g. IV=-7, a componant X of an ob A is replaced by an
cd ¥; the result is an ob B, (Note:
1. X is not necessarily an atom, but an ob
2. Even 1[ there are several occurrences of X tn A, only

the considered occurrence is repiaced. ).

1v.3.3.2 Reductior rules,

Let us consider tvo obs A and B and the reductlon rule

A-0B. Let X be an ob having A as a cosgonent. Ve say that X may
be reduced In Y, and ve note X £ Y (I Y is obtalned by replacing,
in X, the component A by B, We note X @Y vhenever X &Y or
YoX and @ anc = represent respectively the quasi-ordering

(sysmetric and transitive) and the equivaience generated by » and e -
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The same ¢-ftnitions may be given wvith a set of reduct fon
{t\“"!‘} €1 In susmary:

X Y 4=p there is in the ob X a component A, whose repla-
cement by the corresponding B‘ produces the ob ¥

XY @up either X BY or YPX

X WY quipthere is a sequence of objects X . X, ,... X,
Kol X and xn = Y such that Xob Xl ...>xn
( & denotes the ideatity of obs)

X =Y 4 there is 8 sequence of objects xo 3 xl N0QC Xn
such that X = X and xng\' and
X, = X

-...mX
;]

1

Fig. Iv-8

Iv.3.3.3 Reducing sachine.

Whenever a set of reduction rules is given we can consider

the following reductiun process, to be applied to any ob X:
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< dows I admit & component n‘? )

T | Fig. 1v-9

1

baplace this compoment ll
by the correspanding I‘

O (ously, such a process ls not in gereral deterministic. Moreover,
applied o0 an ob X 1t may or may not atop. If it does stop, pro-
ducing an od xo , there (s no reduction vhich may be performed on xox
X, is sald to bde o porsal form of X.

We are interested fn abstract reducing machines vt ich are
deterninis-ic to some extent, namely in sachines verifying the
folloving condition (Church-Rosser): {f X = ¥ there is an ob Z

such that X®2 and Y& 2Z.

Fig. IV-10
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Indeed such a condition guarantees that vhemever the rachince
stops vhen applied to an ob X, it produces the same norral form
(however in some simulation the machine may nol stop). Such a noreal
fora may be considered an the "yalue” of X, the reduction machine

being therefore an evalwating eachine.

1v.3.3.4 A trivial exasple.

Let us consider a trivial representation of simple computa-~
tions vithout variables:

- to each value v in the universc corresponds a cosbinater of
degree zero 9 and to cach operatoer of degroe n, opr, 8 combina-
tor of degree n, ofir. We call CL  the clane of obs which may be
constructed vith these combinators. For any operator opr and
for any values Vi oYy e e A producing opr(vl.vz. T .vn)

ve have the reduction rule :

_—-—/\-
- Opr(v . Vpe oo )

For instance if there is une operation, the addition, and

{ntegers as values, the reduction tules will be of the form:

Bo fro -

Ary sum vill be trivially evaluated by our smachine (fig. IV-11).

Tne Church-Rosser condition {s here obviously verifled; the machine



74

G ¢ Pig. I¥-1le

L e

@ Fig. Iv-114

Fig. Iv=-1)
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-
is deterministic and has a distributed control. The result 12 ,

as a combinator, ia the normal form of the given expression and
may be considered as being the value of the expression. The
relation of equality we have defined <orresponds to the tradi-

tional meaning of equality of sums.

IV.3.4 Evaluation of A -expressions.

Let us consider, together with the previous combinators,
a nev atom called a formal variable x. Any ob M containing x
may be considered as a3 function CLO——CLO (CLO fe the clase of
obs obtained with the combinators associated to values and opera-
tions of the universe): indeed, to any ob A in Cl.o ve may associate
the ob obtained by substituting A for x in M, vhich may b2 denoted
by (A/xM anJ the function A—=e[A/x]M may be denoted by Ax.M ([2)).
The operation M-e Ax.M is called abstraction rclatively to the
formal variable x

We can represent such a function as 2n od in the following
vay:

1. There is a combination of degree 2, called abstraction
and denoted by a combinator A. Whenever abatraction is applied

to tvo obs, the (irat one muyat be 4 formal varlable. A wricten

notation for such 4 combinstion in Ax.M : the ob ]a § b
\N

2. Therte is a cosbination of degreec 2 called applicatien,

and denoted by the combinator "apply’. A written notetion for

fs MM .,




76

3. There {s an abstract reducing machine defined by the
reduction rules generated by the following reductfon scheme:
Whenever M and N are two obs and x {s a formal varjable,

(/\x.N)N-,[N/x]H » Or graphically:

r..o IV'Iz

It is proven that these reductions verify the Church-
Rossner condition ( Church-Rosser theorem, sece Curry's [J,chapter 4))
We nov have a machine vhich can evaluate expressions such as:
(Ax.(2« (x+1)))(2 ¢ 3) (f1g. 1v-13)
or: (Ax.x * 1)((AXx.2 ¢ x) I) (fig. IV-14).
In fact, very general computations may he expressed with

such a model (see Landin (12)).

Resark 1: The reduction process may not stop vhen applied to some
peculiar obs ltke: YR AC.1(Ah.C{MR))(A ".0(NN))) called "parado-

Rical comdinator” (see Morris 119)).

Remark 2. The reduction machine is not n a strict sease deter~
minietic: we can only state that vhenever the machine stops, 1t

produces the same value; however noee sinulat fon nay produce a value
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Pla. 1v-14
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and some other simulation may go for ever. Fxample: any expression
(Ax.2)A , A being any ob, may be reduced to 2 llﬂ(l,l not occurring
in 2, (A/x]2 w2 . However I{ A B Y (the paracuxical comsbinater),
the machine may undelinitely reduce Y, Therefore a reduction of
(Ax.2)Y say not terminate.

The machine nay be modified {n order to be deterministic:

a reduction such as the cone of

ray only be applied vhen the argument K fs not reducible any more.
Thea (Ax.2)Y (Y being the paradonical comdbinator) becoscs
8 cosputation vhich does not terminate in any cese.

In Mc Carthy (18] and Landin (12) & sequentie] machine
in used (the order of the reduction fs uniquely determined).

The evaluation is therefore determintistic.

IV.s  Another functi.nal vepresentation: Cutry's cosbinators.

In the previous section, an abetract machine evaluating
A-expressions vas supposed to be able to perform replacesents
nd subatituticnn, Ve consider a replacesent ae a einple and basic
tronsformation; hovever ve view a substitution as # much more
complen transfornation. The question then arises vhether It f»
possible te represent functivnal computaticns vith an abstract
sachine which e only able to perform replacerenta.Thia (s possible
with Curry’s condinators and soreover formal varisbles ate not

needed any e In the representation. Such o property (¢ coficep-
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tually important eaough to legitimate this section of the thesis.
In fact the study of combinatory logic has been a point of departure

from vhich many ldess axpressed in this dissertation have emerged.

Iv.4.1 Notaticne and representations.

In this section (and in this section only), ve suppose that
there is only one coshination called spplication. Vhenever F and X
are tvo obs, ve represent the ob obtained by applying F to X by FX;

in a graphical notation:

& > application
L
r X
qﬂr:}

Whenever parentheses are not used, association is to be
performed on the left (in this secticn only). So FXYIZ @ (FX)YZ @ (rxy)2

Any combinrtion different from the spplication is teprosented
by an atom; for tnstence, 1f A denotes addition, A 2 ) rcepresents
(A 2) 3 i A say be considered as on operat’on of degree 2, (A 2) as

an operation of degree 1 . Fig. IV-13 represents the ob:
ACA2 (A

IV.4.2 The combinators 5,!,! 3

Let ua suppose that together vith the conbinstors sssoclated
vith values and operations we have the folloving combinators: K,1.¢.
To each of these conbinators fs sasociated a reduction schese!

For any ohe X,Y,2,T ve have!
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rule (K) ¢ KXY-eX
i Np— A\
L § X
cule (1) @ {1 X X
1§ X ——— /é\
rule (0) : OXYZT—eX(YT)(ZT)

A R

As ve have seen in section IV.) these rules define on

sbetrect reducing machine.

1v.4.] Ap emample.
A and M denoting the addition and the multiplicatien,

let us consider the ob:
reéa(ontit)(oen(xk2)1)

Let us teduce the od F & , vith 'a’ standing for any integer:



-

Fag O\o\‘(! K1l 1)(0 N (KX 2)!!'.!
L =2

‘ (rule 0)
LeX (Y TH(Z T)
I"‘ '. "s
/0"’ O' “'b

A* (06 X 1 1 a) (06 XN(K 2)1 a)
N P Iy ' ¢ a ¢ '} L4 [
] ' 2 : ; : t : [ ] : ]
: S A 1 T v
i ' . : . c : : ‘ .
: ¢ ¢ o o B . °* ¢
) 0 X Y z T (-] ¢ ¥ r 4 T
'
E lruhﬁ 1 rule ¢
h X (Y T) (2 1) X (Y 1) (2 1)
5 R : b ¢
e, e L 3 ;
A (R (1 a) (1 a)) (8 (K 2 a) (1 a))

jnle 1) lmlo {X) l

¢

A (. 8 a ) (% 2 s )

We have F a A (Haa) (M2a) . So, T is a function
vhich, applied to any integer a, produces A(MNasa)(M2a).
F 1s therefore an ob representing A x . A (HNxxn) (N2 x)
of, vith vaual notatiens, A n.(n * n) ¢ (2 * x) ond F does rot

contain any varieble.
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Iv.4.4 An algerithe.

We may voader Lf every (fuaction may be represented in this
vay; Let us consider an ob M vhich say contain a forsal variable x.
Is there an ob F vhich does mot contain any variable, representing
Ax.M 17 The answver is yes. In order to simplify the discvestion,
let us assume that M only contains opersticns of degree 2. lot us
cull [2)M the od T ve are looking for. We have the folloving

algoritha:

1f M does not contatn x then (xMM® X M
else 4f X ts x then (xJM ® |
else ,
H has the form:
coperator> <left operand> <right operand>

and:

(xMmo «woutor{xltldt ncrmii:l«rlght ouuab)

T™hie slgorithm, applied to Ax.A(Max)(Mxx) produces in fact F.

lv.‘ns ..S'u.s. .

If % contains several variables =x, y. z . thes An y 2 . M
is odtained by forming (x) (Ly) CL2)0)) .

We have particulartaed our discussion vith operations of
degree 2. However any function say be represented vith:
K (8): 8t gx&figa)
c {C): Cfayd f(y x)

¥ (V): YEtn ® ¢ xx
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or, alternatively, with:

s (s) Sftgxaf x(g»)

K (x) Kex & ¢

¥ith any of these comdinators the sbhstract machine verifies the
Church-Rosser conditica.The remarks at the end of IV, are stiil

valid here,

Remark. Each of the previous combinators wey be considered as
a lasbdo-eapression, For instance, ve coan take!
8® Aigx . (g%
ce Af xy ., f(y x)
Ve Af x.  x x
Then 8,C,W¥ may be consiéured as a "base™, any lambda-expression

being expressidble as an od construsted vith B,CW,

This discussion is the last of our preliminaries, We are

nov going to study DCPL.
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A DISTRIBUTED CONTROL PROGRAMMING LANCUAGE

v.1 The gencra( frame

Velel A computatfion as a formal chlect.

In DCPL, any coeputation {s considcred as a formal object,
an od (see section 111.1). In the computing machine, such an ob
is actualized as a tree vhose nodes, representing combinators,
are sutomatsa, and vhose edges are directed channels of {nformation,
dlrected from "son” to "father” (fig. V-1). A nodz may have ze¢ro,
one or several sons; the nusber of sons it han is called its degree
(f1g. v-2).

The edges being directed channels of informat’ on, each node
aay send a message up the tree; such a message {s callad a notice
(fig. V-3). Hhcneve:'a node receives a notice, it may efther
pick it up or pass it along upward.

The tree {s considercd to be in some space in which each
node has an address. There is a communication system allowing any
nodz to send & message to any other node vhose address it knows;
such a message is called a reply. A reply contains explicitly
the address of the adiressee.

Whenever a node A wunts some i{nformation from ancestor B,

A sends up & notice with its own address (fig. V-4); such a notice

is called a request. A request is a notice containing the address



.......

F‘so v’]






89
of the sender to vhich some reply {s to be sade. A notice which

is mot a request is o simple sotice. On receiving the request
sent by ncde A, the node B may sead back the required information

(fig. V-3).

V.1.2 Values and operations: their representation.

As it has been already noted in the {ntroduction (chapter 1).
we assume that there is a universe of values structured in classes
or types, and mappings from some classes to some possibly different
classes which are actualized by operations, and ve leave the list
of types and operations open-ended. We require however that:

1. to each value in the universe corresponds a specific
combinator, tepresented by a value-node. Spontaneously a value-node
sends up the tree a simple notice containing the value i¢ represents;
the node then disappears (fig. 1-3, chapter 17.

2. to each operation in the universe corresponds a specific
operator represented by an operatinn-node, which has the degree
of the operation it represents. An operation-node waits until it
receives a value from each of its sons; it performs, then, the operation
it represents on these values.The result is sent up the tree, and
the operation-node disappears(fig. 1-4). Fig. 1-5, in the introduc-
tion, shows how a simple expression without variable may be evaluated.

3. to each ob corresponds a value in the universe,which
may be considered as a description of Lhe ob. As a result, a descrip-
tion of an ob may be sent as a message from some part of a computation
to some other part, where the described ob may be built and imple-

mented in space, extending the tree (fig. V-6).



l..
description # omponent
of an ob B

The description of an oh 3 may be

-
sent from some node to some other node as S

a value. When received the ob.B may be {mple :nted in space.

Flgo V-6
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As 8 result of these behaviora, the tree representing a

computation may grov and s:rink during its llfef)

V.1.) The other combinators.

Together with the combinators associated to the values

or operations, DCPL uses sany other specific comsbinators:

Triadic combinators (degree J):

ot (setdown)
et (setup)
‘IE' or 'I (1f)

Dyadic combinators (degree 2);
' UEW" (new)

* LAMBDA * (lambda)
MU (mu)

1o (sendup)
vyt (sendown)
'O (trigger)

' IMPL' (implement)
Voo (compose)
"R (or-event)
'AND' (and-event)

a) Such a behavior is similar to the behavior of the execu-
ting graph used in the Adams' model (IV.2). Instead of graphs, the
model describuu here manipulates trees.
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Bl‘ﬁ! 2ero combinators:

¢ (null ab)
a whole class of variables: X, ¥, Jui¥, VAN . ...

a whole class of alpha-variables: o\, al, o/, alA7 . ...

The function and ~he behavior of each of theae noden will

be progressively presented in the sequel,

v.2 About the syntax.

The tree-structured represcntation {s fundamental in DCPL.
However, it is useful to have a linear reprersentation easfer to
manipulate. Rather than a straight parenthesizatfon or a heavy
syntactic apparatus, we prefer the use of a few replacement rules:
programs gain a familiar appearance without any syntactic freczing.
T.e follow.ng rules determine a one-to-onc mapping between the

tree-structured and the lincair representation.

Rule 1. Parentheses may be used freely and no distinction
is made between parentheses and brackets.

Rule 2: Any combinator of degree 2 may be infixed. Assnciation
is to be done to the right, unless explicitly specified through the
use of parentheses. For instance X+Y+Z {8 to be structured as
(X1t Ye2) ) . As a consequence, whenever two combinators of degree 2
are not ordered by parentheses, the latter is, on the tree stru.:ture,

a descendant of the former: HM& X .... t .... has the following tree

) @
‘-|
structure: ° Qwhercas (NEW X ...)t ... represents @
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Eﬂlﬁul' Much like (6 Algol where integer b 0 I in sses
instead of  Integer X: integer Y: integer 7. , onr can (acturise

combinstors:

8 X.Y.2 Xl represents:

Rule 4. Cosbinstors of degree ) may be infixed between their
first tvo arguments, a semi-colon separating the second argusent

from the third. Rule 2 is then applicable to such combinators.

Some examples: o

S eX3;X12 represents ﬂ o n- and FREDVEXPHLEXFR2 repredents
010

The interest of this rule is sharpened when ft is used repetitively

on & nested structure:

O

and

10,90

@
Ono

ofo)eflo ®
may be represented respectively by Xe53(XeY)ei32-X and by
PLIB1 021823 384 or, with a non-necessary pair of parenthesces,
(Xe5:(XeY)»2:2-X) and (PUIEV;FP2IE2;P3IEIEWY

Rule 5. As it will be discussed in the sejuel, the application

of a function to an argument or to a parameter (s represented
through the use of '+' ('sendown') or 't' ('sendup'). However, in
order to conform to traditional notations, we allow e¢xpressions

such as FMALE.C) . FLAE.C:DEY | FGDE) ¢
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Remark. Application of rule 5 may be misleading: Fi/4,5,0)

un;l."

AN

cquivalent
representat f

is an ob;

tAB.C) is a notational convenicnce which has no seaning by ftself,

it does not represent any ob.

An cxample:

According to these rules, the expression

GEW X, Y.Z (Xe5:(XeY)+Z:20X)0(YeX21:X)

is the following ob:

This is as much as is necessary to know about the "syntax"

of DCPL.
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v.) The binding process.
In DCPL a system of mutually bound variable  detersines

communication paths. The process wvhich bullds these patha is called
the binding process. The binding process superisposes & graph
structure to the treec structure vhich represents a computat ion.
A communication path leads from a “binder-node” to a varlable-
node. Uf @ {3 a variable-node, Q.). . .
and ate possible corresponding hinder-nodes.

Any variable-node sends spontaneously o request containing

a) Note: '~' 13 a combinator of degree 3, whose second
argument must be a variable. However, the construct

{s considered as being one ude A . ln fact, in the

following 1ist, the constructs on the left are considered to
represent the constructs ou the rigut:

G}?\__.
S —

G

|
900 »»
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(ts address and Its mame (for imatance “/°), wp the trev (fig. ¥-1).

Such a request Is plched wp by (he (irst corrrsponding b mbe s crmuk

encountered. The variable-nade Is 2ren bound by this binder-arde:

3 communication path leads from the binder-ned. 2o the vatiable-ande.
A binder-nnde say bInd several varlable oo, Weneves

3 hinder-node receives an arpument, 1t sends a copy of this arpumeat

te cach vartable-node 1t binds (fig. V-8),

V.0l The bimder-pede setdewmi 7,
| being an tdeatiljer, <1 cemblies v componenls|

eft v ight
by

1 may only pick up the requests reaching it frem the right (fig. V=%),
On receiving a value sisple notice on the left, setdovn sends
a copy of this value te every varlableenade It binds, on tir right,
The acope of <X I therefore limited to the fight compenent; °\ may
be considered as ansigniig the value produced on the leit to the
variahle-nodes X In its scope (fig. V-10).
On recelving a value simple notlice on the right, =¥ passcs {1t

along up the tree and disappears ((ig. V-11).

Ixazple 1
The evaluation of the expression ' 0. 0o s displayed in

fig. V-12.

Exasple 2:
The evaluation of the expression /<007 Xel s displayed

in fig. V=13,
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Example 3:
The evaluation of the expression
[(203)X:5 3 (XoY)oXs(Ye1)=Ysi2:Y)-X]

has already been studied in the first chapter (fig. 1-6 and [-11).

V.3.2 The binder-nodes setup '+', and 'NiW',

As already noted, the scope of ~X is limited to the right
component. X+ allows to send a value in the right component and
in the environment as well (fig. V-14). In order to delimit exactly
the scope of X+ , ¥EW' X is used as a “top=-binder': the scope of X-
is entirely under the corresponding &EW X (fig. v=15).

X and X+ bind exactly in the same way any variable-node X
in their right compcnent. lowever, contrarily to +X, X+ sends up the
tree a request with its name which is picked up by the first JEW X
the request cncounters. As a reply, {NEW X sends to X+ the address
of any variable-nodes whose requests it has received (fig. V-16).

Whenever X+ receives a value on the left, it sends a copy
of it to each variable-node whose address it possesses (fig. V-17).

X+ , as »X, disappears whenever {t receives a value simple
notice on the right., NEW X disappears whenever it receives a value

simple notice.

Example 1:
Fig. V-18 displays the evaluation of the cxpression:
JEW V(20U VU1 UsV) ¢ (3U504Y)
in the left argument of the addition, 1 value V is produced;

V is used in the evaluation of both arguments,



Fig. V-14 Fig. V-15

Fig. V-16
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Fig. V-17
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NEW V (22U;V«U+1.U+V) + (32U U V)
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Example 2:
Fig. V-19 displays the evaluation of the expression:
NEW U,V  (U«S;[U+VI+Z:2+40) + (V«U+1.U) .

Such an expression is remarkable in that it cannot be evaluated
by a sequential machine: the evaluation of the first argument
requires the value of V which is produced in the second argument
whose evaluation requires the value U which is produced in the
first argument. In DCPL there is no deadlock since the two arguments

are evaluated concurrently.

V.3.3 The binding of procedures.

A procedure is a computation ob which is intended for
implementation and usage in various parts of a computation p:ogram.
In order to ensure generality of utilization, the set of variibles
used inside a procedure must not conform to the set of variables
used in the environments in which the procedure is to be implemented
(please, see fig. V-20).

Whenever a variable in a procedure is to receive an arpguneit
from the environment, the variable is bound inside the procedure to
environment through a node sendown '+' (fig. V-2la).

Whenever a variable in a procedure is to send an argument
to the environment, the variable is bound inside the procedure to
a MY binder-node; the procedure itself is interfaced with its environ-

ment through a node sendup 't' (fig. V=-21b).
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NEW U,V (U«5;[U+V]~2524U) ¢ (VeU+1, 0D
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'LAMBDA' and sendown '4'.

An example: [AMBDA S (5+41) is a procedure with ome lambda-
variable S. [LAMBDA S (5+1)] (3) represents that procedure applied
to one argument 3. According to the (syntax) replacement rule number 5,

the computation tree 1is:

Environment

procedure

In fig, V-22a and V-22b the variable-node S is bound to the
lambda-node: the former sends up the tree a request which is picked
up by the latter. This bindi‘h occurs inside the procedure itself
and may be performed beforé%%%plementation in space of the procedure,
i.e., the physical embedding of the procedure in its environment.
Then the procedure is bound to its environment: the lamtda-node
sends up the tree a request with its address which is picked up by
the sendown node (fig. V-22c and v-22d). The argument may flow down,
from the environnent into the procedure, and reach the variable-node
(remainder of figure v-22).

Whenever a prozedure contains several lambda-variables, it is
necessary to have the arguments mutched with the lambda-nodes
(fig. V=23). The matching is performed dynamically in the following way:
when a lambda-node sends up the tree a requesi with its address,
this request contains a count set to zero. This count is incremented
by one whenever the demand encovnteérs another lambda-node, and

decremented by one whenever the demand encounters & sendown node
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vith a non-zero count. The demand is picked up by the first scadown

node which receives ft with a count equal to zero (fig. v-24).

40" and sendup ‘t'.

An examp ie: veeee VMU T cow Tov o) D e

i i ronmeni

procedure

The binding inside the procedure and the binding of the
procedure to the environment are performed vsactly as for lamiula
and sendown. However, instead of receiving a0 argument, the variable
in the procedure recejves the address in the cavironmen. to which
the produced value is to be senc (fig. V=25).
Let us consider again the example of 1ig. V19

LEw U,V (Ut eV ) e280U) ¢ (VeUs1l))
It may be expressed as

AEW UV F(VU)Y ¢ GUULY)
with = & MU U LANEDA V (Ve[ Uil del)
and G s LANBDA U My Vo (Velatil) o In order to make it clear that
U and V are bound in F and G, we can take

F e XU KR LAMBDA 5 tRe Sslhel 1T ToI0

and G e LAMEOA & M4 2 (OeRY1K) (fig, V=26).



Fig. V=25
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Fig. V-26a
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Fig. V-26b
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V.4 Procedures as arguments.

Y.4.1 Pseudo-values.

As stated in section V.1.2, any ob has its description as
a value in the universe of vadlues. Such a value is called a pseudo-
value: "[AMBDA S (S+1)" is a pseudo-value representing the ob
LAMBDA S (Se1).
Whenever a variable receives a pseudo-value as an argument,
it implements the ob described by the pseudo-value at its own place.
As a result a procedure may be received as an argument and imple-
mented if the corresponding pseudo-value is given beforehand (fig. V-27).
Let us howsver consider the following example:
eoes LAMBDA S T (St¢T) »F ...y F(5)+G .... G(U) ...,
In this example the procedure [AMBD4 S.7 (5+T) 1s first imrlemented
i the environment A and receives the argument 5; then the resulting
procedure is to be sent and implemented in the place of G in the
environment B. This may only occur if the ob [LAMBDA &, ({/+7)1(5)
is able to produce a pseudo-value representing itself. We will see

in the sequel how we mav implement such a pattern of behavior.

V.4.2 Pseudo-argument.

There is a special message @ called pscudo-argument: whenever

a variable X receives a pseudo-argument, it sends up the tree the
pseudo-value ropresenting itself, "X" (fig., v-29).

Whenever the combinator representing an wvperation receives
the proper number of input values, it computes the resulting value

and sends it up the tree. If the same combinator recefves at least
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one pseudo-value representing an ob, it pruduces a pseudo-value
which is sent up the tree: for ‘nstance, in fig. V-30 the conbinator
'’ receives a pseudo-value "X+3" and a value 2; it sends up the tree
the pserdo-value "(X+3)+2".

An ob may have some of its variables receiving a value and some
other variatles receiving a pseudo-value. As a result, this ob is
partly evaluates into an ob whose associated pseudo-value is produced

and sent up the tree (fig. V-31).

V.4.3 Procedural arguments.

We are nov able to handle the example of fig. V-28: whenever
the node ~C receivea from the left a request sent by a lambda-node,
it sends as & reply a pseudo-argument (fig. V-32). As a result the
ob for which F(5) stands may be partially evaluated, the correspon-
ding pseudo-value ia produced and sent fo the variable G (fig. v-33).

The problem of having procedures as arguments is not yet
cospletely solved: we have seen hov a cmbinator representing an
oreration reacta whenever it reccives a pseudo-value; however we
do not know yet how other combinators (for instance <,i, ...) are

to react. Let us study the two following examples:

Example 1: (I LAMBDA X (| LAMBDA Y (Y91) 1+G:G(X)) [<F3F(2) )
(f‘g- V'J‘).
Example 2: U LANEDE X (L LEYBRA Y (YeX) ;=G:G(X)) j=FiF(2) )

(f‘s. V'JS) .
In example 1, the component <{((LAMGLA Y (Ye1)]+G;GiX))

may be handled as previously (fig. V-36):
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1. C sends to the lambda-node [AMSDA V a pseudo-argument ¢.

2. on receiving the pseudo-value "[ANE[4 Y (Y+1)", <G passes {t
along to the variable-node G where the procedure {s to be implemented.

The variable-node X (in G(X) ) receives a pseudo-argument sent
by +F via [AMBOA X ; it sends up the tree the pseudo-value "X" which
is received, on the left, by the node sendown,¢ ., On receiving this
pseudo-value, sendown sends a pseudo-argument to the procedwre on
the right, and waits for a pseudo-value from this procedure (fig. V-137).
Then ¢ combines the tvo pseudo-values into a pseudo-value it sends up
the tree. The completion of the evaluation of example 1 {s displayec
on fig. V-38.

in example 2 the procedure [ANEL4 Y (Y+X) cannot be
transmitted and implemented in the place of  for X is externally
bound: it is indeed our policy to implement an argument only after
its complete evaluation; ve require (see fig. V-35) that the (wple-
mentation of F in the place of F occurs before ihe implementation
of A in the place of G .

As & tesult <G must have here another behavior: o -ecefving
a pseudo-value on the left it sends . *.eudo-argument to each
varisble-node it binds on the right. On recelving & psiuic-value
or Its right 7 coabines the twe paeudo-values and sends the resulting
pscudo-value up the tree (fig. V-19).

in sommary, in the fellowing sfluatien
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the ob A may or may not be to receive some argument from the
environment.

In the latter situation (fig. V-40) and {f A does rececive
these arguments, A produces 8 paeudo-value "A”, after having received
a pseudo-argument ¢ fiom G (fig. V-41). This pseudo-value "A" 1s
sent by -G to the variable-node G vhere 4 {s implemented.

If A receives at least one pseudo-argument from the envircament
(fig. V-42), the evaluation of A is not completed and "A" s ot
to be sent and (mplemented in the place of G . Instead, on receiving
the pseudo-value "A", <G sends to the variable node G a pseudo-argu-
pent. On receiving the pseudo-value "8", -G sends up the tree the
pseudo-value "A<(:B" (fig. V-33).1t {s therefore necessary that <}
is able to distinguish betveen these two sitvations.

We i{mpliwent such a behavior in the following way:

¥henever a varisble-node sends up the tree 8 request with {te
oun ¢daress, such 8 request conteins an integer called count, equal
to tero at the beginning. While the request flovs up the tree, the
count is incremented by one every tise the request reaches on the left

one of the cosbinators setdown "<’ , getup '+’ , or sendown !

Such & count ls associsted to pseuda-argunents and psevdo=-valws

as shovn in the followving table:



124

the ob 4 say or may not be to receive sose argument froe the
environsent .

In the latter situation (fig. V-40) and {f A does recelive
these arguments, A produces a peudo-value 4", siter having received
a pseudo-argument ¢ from i (fig. V-41). This pecudo-value A" 1e
sent oy <G to the variadble-node G where 4 {s fuplemented.

If A vreceives at least one pseudo-srgument (rom the zavironment
(f1g. V-42), the evaluation of A 19 not completed and "A™ {» not
to be sent and irpleswunted in the place of G . Instead, on receiving
the pseudo-value "A™, <C sends to the varlable wode ' 8 pseudo-argu-
sent. On receiving the pseudo-value "A", <G sunds up the tree the
pseudo-value "A<5.8" ((ig. V-=)9).1t i thevrelore necessary that
fs able to distinguish betveen these two situations.

Ve implement such a behavior {a the folloving vay:

Whenever » variable-node sends up the tree a request with its
own sddress, such & request contalns an integer called ~ount, equal
te zero at the begianing. Vhile the request flovs up the tree, the

count is incrementsd by one every time the request reaches on the left

(] .‘.

one ef tha combinaters setdowm '+' | gpetup '+’ , or sendovn

Such B count e asseciated to psevdo-arzuments and pseudo-values

as shovn In the folicving table:
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Fig. V-42
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Remark.

Whenever a conbluator(}brecelves from the left a pseudo-value
with a count of zero, it is assured (by these behaviors) that the lert
ob has not received a pseudo-argument from nbove<:3l As a result, the

pseudo-value received may be {mplemented (see example 1).

The behaviors o!@nm@are similar to the one described for@.

Vv.§ Conditional expressions.

'IE' (or 'i') is a combinator of degree three:

PREDICATE [F-FALSE-DN

The ob "predicate' is assumed to produce a logical value:
FALSE or TRUE . In the former case the ob "{f-true-ob" is deleted
from the computation tree: in the latter case it is the ob "if-false-
ob" which is deleted from the computation tree (fig. V-43a and V-43b).
As shown in section V.3, any ob may exchange information
with {ts environment; as a result, messages can freely flow down
{rom the environwent into the obs "predicate", "if-true-ob", "if-
false-ob" which may be considered as being evaluated concurrently.

However, it is important to prevent an ob which eveitvally wouid

be cancelled from sending messages to its environment. For this reason,

the messages which are sent to the environment by the obs "i{f-true-ob"
and "if-false-ob" are picked up and kept in two different packapes
at the '/f'-combinator level (fig. V-44a). When the value of the ob

"predicate' reaches the combinator, one of the two packages is destroved



IF FALSE-08

Pig. V-43a

IF-TRUE-OR

icked up and kept outpo

IF-FALIF -
IF-IRUK-OR

Fig. V=-44b Fig. V-44c
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and the messages contained in the other one are freed (fig. V-44b

and V-dic).

v.6 DCPL as & system-oriented prograsming language.

In the previcus section of this chapter, ve have seen how

simple DCPL programs may be considered as expreseions vhich may be
evaluated. This section sustains our claim that DCPL 1o & system-
oriented progra-!n: language: a computation is considered a systen
of asynchronously zooperating “indenendent” programs (corout ines)

linked by paths of information along which messages are seat.

V.6.1 Asynchronous eveats and scquential processes.

Sequential processes vl ich are triggered by the occurrence
of some asynchronous event can e embedded in DCPL. Whenever some
actions are to be synchrnnlted‘]n some vay, such sequential processes
may be used ( these processes may be very small and performn just one
elementary action).

Any value may be considered as an event vhenever wve afe
interestud in knovln; vhether the v-lue has been recelved or not,
disrexarding the value itself.

We may operate on events with the operators ‘430" and U’
which are not to be confused vith the logical operators ‘A’ and 'v'.
The nodes which correspond to these cperators consider any valuce they
receive as an event. An ANl-node produces an event whenever it re-
cefves an event from both of (ts sons. An Of-node produces an event

vhenever it receives an cvent from one of its two sons (fig. V-43).

Thus it s possible to have an expression producing an event (fig. V-46).

a) The word "synchronize” is here a poor cholfce.We mcan that these
actions must be safeguarded from one another as they would be with sema-
phores (Dfjkstra (S5]).
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Such an esnression may be used to trigger a sequential prr-

cess with the cosbinator trigger, ‘[':

EVENT=
FROCUCTIG O

Whenever the trigger-node receives an event from the left, ft
triggers the sequential process on the right (fig. V-47),

A sequential process is considered s a sequence of statements.
Whenever such a sequentiasl process is triggered, the statements are
executed sequentiaily. A sequential process may be connected to its
DCPL envircnment by cosmunication peths (fig. V-48). Some statements
say, vhen executed, send some values on these paths; sos~ other
statements may only be ezecuted sfter they have received a velue
from such & path. If the control resches such a s.stement bufore the
arrival of thy required velue, the control nteys pending in this
statemsent iati]l the velue does arrive: the servicing of the communi-
cation paths in s sequentisl process say be vieved as some kind of
input/output operations.

A sequential process may be DCPL-1ike; in this case the
hinding of variables is performed ss alresdy described (rach variable-
node sends a request vhich s picked up by the rorresponding binder,
ete ...). However it may be useful to esbed in DCPL some suhset of
a usual sequential prograsming lenguage; the prograss (n these
languages being conaidered as sequentisl processes, the DCPL enviren-

sent serves as a host systes. ln this case a special dinding process
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sust be wvorked out in ordes to bind the sequential processcs to thelr

cnvironments.

V.6.2 Cells.

Simple or structured cells mey be used tu DCPL. A cell is
declared vith ite type: [NTIGER X LOGICAL ¥ et ... . Each cell
is implemented as 3 node in & computation tree (fig. 7=49). The
scope of a cell declaration I3 limited te the portion of the subtree
under the declaration node which is not superseded by another cell
declaration vith the same name. In order to assure that no attewpt
of retrieving % value from a cell vill eccur belore the value ix
stored, these actions ate to be ordered and synchrontzed. For this
reason, in DCPL a cell can only be accessed from a sequential process.
There {3 An assignment operator °‘::° to avaign a value to a cell;
the value {s retrieved vhenever the neme of the cell s veferred to

in an ¢xpression,

v.6.) K!Sg ‘.!w z:ﬁi‘:!":-

Let us try to implewent a recursive procedure like the
factorial function. For {nstance ve may suggest for n! semething like
(LAMBO4 3 (520113 1BoPACTIE- 1))

ot soce specifically we nay suggest for 3
¢ "M & [ (R0 L N FACIE-1) JI7 #R I FACTIY) )
In this progras, several cccurrences ef the ob assigned to FACT

ate to be entedded one inm another (fig. V-50). At some poeint the

a) *iE* end ' denote the same conhination,
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N
vartakie 5 will be locally eqgual to sere and the right sudtres

EeFACT(H-1) of the correspendiag "[I’ coabinator will be disregarded.
Rovever such 4 Progras presents 3 wmajor shortcoming: the
inp .onentations of the different occucrences of Fi(T are i1 mo way
e vehroalsed vith the computation Iteell; thouwsands of gencrations
of FACT may be needlessly (wplemented.
With the combinator ‘[MIL° (implement) we can saster the inple-
reatatlon of » procedure. "[MIL° steps amy reguest teaching Lt on
the right. Yhenever (t receives an event on the left, it freee the
stopped taquesta. The varlable-nodes on the right nay then recelve
their argusents (fig. V=31).
In the progran
€ (L0808 & ((B20) 11808 [MEL FACTIN<) ) oFACTy FACUN )
the irslementation of FACT (o symchronised with the avalladilicy
of the varladle &, In the tolleving progras an (nplesentation of
FACT te only perforeed il the corresponding test produces & FAL & value
C “(LA008 & QEF T (((BeC)IPROE (Pl PALSE) )13 384T JMBE PACTIME-1)) 170l

FACTE2) )

Some ethet prograss vould pernit & (ised apount of “loob-ahead™,

Vebo4 Taths of information: siphs-variabice,

Alphacvariables (as lor Imstance al , of , &' & etc...)
allew the construction ef slphaspaths aleng vhiilch an indetetninate
punbet ol argurents may bo sent, As far as ob-comatruction and
binding ate concerned, alphasvariables have cvactly the same behav.or
ae varisbles (there lo ome esception, see the “cyclic behavior”

cubsection), Hovever, passing sn alpha=valve never tesulls In the
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deletion of a node; &8 a resuit, alpha-variables allov a computation

tree to carry ocu: repstitively a seme computation,

An alpha-variadle may successively receive argsumente vhich
it passes along, wp the tree, 88 alpha-values (fig. V-352),

AL vperation-node may successively receive an alpha-value
on each incoming path snd produces each time a resulting alpha-value
(fig. V=3)). If an cperation-node has an incoming alpha-path and
an {ncoming .imple-path, it uses the valus received on the simple
path iteratively vith the successive values received on the alpha-

path (fig. v=34).

Cyclic behavier.
Iterative and cyclic behavicrs say be sodeled vith alpha-

paths. ln particular a setdovn-node may bind & setup-node constitu-
ting a recirculating path. Fer instance, the pregres

8 ol [1ea¥; aleaV; aVeaiel; @)
is an infinite loop sending out on the path al/ the successive

integers starting at 1 (fig. V-39).

Interlinked coroutines.

Alpha-paths may iaterconnect coroutines. In the follewving
example, the procedure FAOC) sends nessages to procsdures FHOC2 and
PROCY:

G oV ... FROCI(;al)) ... PROC2eY) ... FROCI ) (fig. V=38),
In order Lo associate tegether procedures it is useful to have a
particular dyadic combinator comgose ‘*' ; wvhencver compose reccives
a vajve from one of its tve sons, it produces this value and deletes

the other son, Our previous examsple may be vritten:
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(3 o 7ROCI:aY)ePRCH ol ) MR ST ) ) (tig. V=97;.

in the (olloving exanple, any of the procedutes PRl PEAT,

FROCV car send information vhich s duplicated and sent to the tw
other procedures:

LEEs aV,aV .ol  PROCU(AY el 1all) s FROCT( 0! ol ol Ve PRIV all ,0i'i98 ) )
(tig. V=58),

Vhenever a procedure (s interfaced vith (i1s enviroament,
an alpha=variable {n the environment may be bound with another
alpha=variable or with a simple variable,

In the former case the path fa the eavironment {s conaected
to the path in the procedure; any nusber of arguments may use these
paths,

In the latter case the procedure rust be recursive, the path
in the environsent is connected successively to each generat.va of the
tccurnloﬂ"(f!.. V=39). If the path goes into the procedure the incoming
arguments are queved on reaching ~ndovn, constituting a Pirst=In-
First=Out queue. Whenever such @ sendown recelves a request from a
lanbda-node, the [irat element in the queve s popped out and sent

as & teply to the lasbda-node (fig. V-60),

ueue dec .
1t is possidle to declare the end of a path as a queue:
ol GUEE Vi the scope of such a declatation i the subtree under (0.
Vhenever ¥V is referred to in a sequential process, the (irst of the
queue 1s popped out: 1t may then be (orvarded to the environment of

the sequential process (fig. V-61).

a) each genaration receives one argument from the path,
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Let us reviev the main noticns encountered in this chapter.

1. A computation {is vieved as a tree vhosc nodes are autonata
and whose edges are directed channels of information.

2. Each node has an address in & particular space; any node
ray send & message to aay other node vhose address it Lnows.

3. The universe of values and operations is left open-ended.
To cach value corresponds a value-node and to each operation an
operation-node.

4. A fev replacesent rules allow to have a linear Tepresenia~
tion of any DCPL computation tree.

5. A binding process superimposes a graph structure to the
computation °ree: each variable-node sends a request (containing
{-« address) up the trae. This request is picked up by the corres-
ponding binder.

6. Setdown '<' allows to aend a value “down the tree’.

Setup '*' allovs to send & value "down the tree” and to the eavi-
ronment ; its scope is delimited by the binder {iE.

7. A varisble in a procedure may either veceive an argusent
from the environment or send an argument to the environment. In the
fcrmer case, the variable is bound inside the procedure vith a (AXCLA
binder-node and the procedure is fnterfaced vith its environment
through a node sendown *4'.1n the latter case, the variable is bound
{nside the procedure with a YU binder-node and the procedure is inter-
faced vith fts environment through a node sendup '*'.

8. The description of any computation trec may he transaft-

ted as a pseudo-value. Whenever a variable receives a pseudo-value,



1%

the torrespoading computation tree ls foplemented ia the place of
the varisble. "I+1™ {s a pseudo-vaiuve describing the tree Xol.

9. A procedure ney be sodified through intersctioa vith
ite arvironment, and then be trasnsaltted as o poeudo-value in order
to be impiemented in some other place.

10. The different parts of & conditional expression arve
evalusted concurreatly. However, as long as the result of the test
{s not available, the outgoing messages of the alternste sudbtrees
aste picked up and retsined.

11. Mith the nodes 4XD end QR it is possible to have an enpres-
sion produce an event.

12. '0O«' , trigger, is used to trigger sequantial processes,
and UL to master the synchronisation of the faplementation of
the different generstions of s recursive procedure.

13. Cells m°y ba declared; they may only be sccessed from
a sequential process.

14. Alpha-verisbles allov the comstruction of alpha-pathse
on vhich an indeterminste number of argusents can be sent. They
permit cyclic behsvior, interlinked coroutines and {splicit or
explicit FIPO queve servicing.

1t should be noted that the concepts descrided here do not
constitute & set of primitive concepts.

Moreover, the behavior of the aodes might be modelled in
very different veys. We consider the general notions discuesed as

more important than the descridbed schemes themselves.
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CRAPTER VI
INPLDENTING DCPL : MACHINE ORCANIZATION

vi.l ntr tiom.

Any wachine vhich is intended to actualize and to carry out
& DCPL program sust respect and be adble to express the following
preperties:

1. A computstion in DCPL is represented as a tree vhose nodes
are automata and vhose edges are directed channels of
faformation.

2. Lach node has an address in a certain address space; any
node may send a message to any other node vhose address
it knows.

). During tts 11fe, & computsion tree evolves, growing and
ahrinking.

The third requirement may apjear to be the most tringen:

one. Ve would like to have some host physical structure wvhich can
gtov and shrisk ss the guest computaction it contains evolves, synthe-
sieing iteelf from the components aveileble in the surrounding wilfeu,
1ihe & DHA molecule governs its swm reproduction. In (2u), Von Neumann
weed o sinilar analogy, comparing s computing process to & celf-
reproducing organiss. Ne used .\e supporting structure a celluler
space. Such on approach for designing a machine for DCPL may be

valid from o theoretical polat of view, hovever as a result of



15)
concentration phoac-na'). it would tura out to be too impractical.
Different kinds of sachine organization are descrided in the
sequel. In particular it s showr hov large transfer rate sejuent ial
sesories may be used. Moreover am organization alloving swapping

in advence is discussed.

Vi.2 Cellular structure using busses as communication paths.

DCPL computation trees may be implesented in the supporting
physical structure showm in (ig. Vi-1: autonomous "active” cells
ney cosmunicate tc one another through a systems of busees; each
cell has an address end may send a message via a bus to any other
cell. Each node of the computation tree {s actualized by one or
several «~lls (the smount of storaye & node may need {a not bound:
there is indeed no limit to the number of pointers a node say
contatn). The edges of the tree are actualised vith pointers.

At sny time there are cells wvhich are free: they do not participate
to any coaputation free. Vhenever a computation tree grovs (or
shrinks), free cells are aliocated to that tree (or deallocated
and (read). 1f the busses may be used cuncurrently, such an orgeni-
gation allows concurrency and distribution of control. However,
since every cell is "active”, such an organization vould be prohi-
bitively eapensive 1f large cosputation trees were to be carried

out. Moreover, since there is a lack of locallty in such an organi-

A e

a) As any reproducing organism, trees may grow enponent ially:
their esbedding in & n-cellular space may therefore be problematic.
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zation, such a communication system would probably clog rapidly
vhenever the size of a computation would grow. In the organization
displayed in fig. VI-2, we can take advantage of the locality

a progras may present: each cell has a hierarchy of neighborhoods.
However, with this organization the cell-allocation problem may
become more difficult. It should be noted that such a cellular
organization with busses may be very attractive if used as the
fastest level of a "memory" hierarchy: the main computation tree
is implemented in some other type of organization, small parts of
a computation with many local interactions being swapped into the

cellular structure to be carried out.

V1.3 A machine organization with the nodes stored on a random access

storage medium.

In the previous section, a node was actualized by an "active"
cell. Thia is a straightforward approach when considering a ncde as
an automaton. However, we may view a no;e behavior in the following
vay: & node is quiescent until it receives a message; the interaction
of & node with a message addressed to it results in a new quicscent
state of the node and possibly messages for some other nodes?)rrog
this interprecation derives the following machine organization:

The nodes are placed on a storage medium, each node having

a physical address on this storage. At any time, the addresses of

the nodes for which some messages are waiting form u queue to which

a) Whenever a node acts spontaneously in DCPL, this action
occurs right after the creation of the node; it may then be con-
sidered that a correspondent messsge is addressed to the node at
its creation.
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1s associated the set of corresponding messages. One or several
processors may access the nodes on the storage sedium, the queue

of addresses and the corresponding set of messages. Any processor
may service the queue: it takes the first message, accesses the node
to which the message is addressed, "computes' the interaction,
stores the new content of the node, and places at the end of the
queues the addresses of the nodes to which the resulting messages
(1f any) are to be sent.

Fig. VI-3 displays such an organization with one processor;
in fig. VI-4 several processors may access different parts of the
storage medium; to each processor is associated a queue; any pro-
cessor may access the queue associated to the other processors and

place messages in it.

VI.4 A machine organization with a sequential rotative memory.

The computation trees may be implemented on a sequential
rotative mamory. For instance, ia fig. VI-5, a processor controls
a read/write head; the addresses of the node for which some messa-
ges are wvaiting, and the corresponding massages, are queued;
however, such & queue is not serviced on a FIFO basis: the addresses
in the queue are ordered according to the order of appearance of
the corresponding nodes under the head. Thus, the top of the queue
contains the address of the first node to appear under the head.

One processor may service several sets of tracks, nodes
being implemented on each of these set: (fig. VI-6).

Several processors may serve differeat sets of tracks

(fig. VI-7) or may serve the same track at different locations
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(f1g. VI-8). In both cases a communication systes Sust link each
processor to the quaves associated to the other processors.

A DCPL cosputation tree may be {aplemcated on o sequential
rotative mesory su that a sca alvays sppears uadir the head before
its father. As 8 result, sny request say be weat from son to father
up the tree in a fraction of the rotation tire (fig. V1-9). In the
same vsy, structured cells may be implenented in order to be
accessed and searched in a fraction of a rotation time (fig. vi-10).

Ve consider theae machine organizations as being of special
{nterest: not only sequential memories are generally rather cheap,
but they also allov very large transfer rates. It becowes then
possible to take advantsge of the possibility of having very fast
processors (for imstance, a processor designed on a vafer vith a

cycle time of 20 ns.).

Vi.$ |lierarchy of mesories.

Vhenever it is desired to take advantage of a very fast
processor, a hierarchy of random-access mesories is used (fig. Vi-11):
the smaller a level, the faster its mesory((25]).When a memory hierarchy
is used, the processor vorks in the fastest level, prograss being
svapped back and forth betwveen the varioua levels. It Is hoped
that the processor would feel that the vhole memory is as fast as
the fastest one. Unless many {terative computationa are expected
to occur in the fastest level, it is necessary to have detveen any
tvo levels a trensfer rate large enough to "feed" the processor.

A large transfer vate may be obtained by taking at each level
s large block as a unit of transferasble information (the slower the

level, the larger the block).
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One may believe, howvever, that only a few words in such
blocks would be really used. For this reason Jack Dennis ausgcsto
in [4] that information should be moved on demand with the word
ss information unit, a large transfer rate being assured by perfor-
ming many computations in parsllel.

In order to be able to use efficiently large units of
transferable information, we introduce the notion of connected
progras. A cosputation i{s said to be connected {f:

1. it can be activated vhenever a certain set of arguments

is available, and then completed without the need of any
external information;

2. no partial result must be supplied to its environment

before the completion of the computation.
As a result, a connected computation may be brought in the fastest
level of a memory hierarchy and completed without the need for any
information from some othcr level; moreover, there is no advantage
in breaking the connected computation iato picces, carrying out
separately the various pieces.

The notion of simple connectedness arises because a connected
computation tree may be too large to be swapped in the fastest level
of the memory hierarchy and have some of its parts not being connected.

A computation is said to be simply connected if it is comnected
and 1f any subcomputation it contains {s connected. As a result,

a simply connected computation may be brought by parts {n the fastest

level.

Consider the follovwing examples in DCPL:
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1. the computation tree (fig. V-18):
UEW V (2eU; VelUel; UsV) ¢ (34U; UeV)
is simply connectad.
2. the computation trea (fig. V-19):
SEW U,V (UsS; [UeV]eZ; 24U) ¢ (VeUr1; V)
is connected, but not simply: the ob (U+5; (UeV]sZ; Z4V)
is not connactad since the argument V can only come after the
argument U has baen sent to tha sscond expression.
In DCPL it is easy to detarmine simply connectad parts
by taking for instanca tha largest parts which do not contain
any satup '«'(these simply connscted parts are by no means maximal).
Whanaver a computation trea is simply connacted, it is
trrAIAQ;at for its snvironsent whether tha computation is carriad

out with a distributad or a saquential control.

VI.6 A computation as s network of sequantial connectad programs.

A sequential connacted program alement may ba dascribad by
giving (fig. VI-12):

1. an avant tabla, each antry of which may raceive an
argument from the anvironment,

2. a sequential connected procass which may ba applied
to tha arguments contained in the avent table when this
tabla is fillad,

3. addressss of some other avant table entries to which

a produced value is to be sant (addressee tabla).

Remark: Any refsrenca in a sequantial connected process is local
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to its program element, Any binding with the environment favolves

only the event and the addressee tables.

Whenever an argument is sent to am entry of the eveat table,
this entry is filled with it. The sequential process is triggered
wvhen all the entries of the event "able are filled. At the coaple-
tion of the computation, the produced values are sent to some antries
of some other program elements, sccording to the addressee table.

A computation may be considered as a netwvork cf sequential
connected program elements (fig. Vi-13). Fig. Vi-14 displays a
machine organization vhich can carry out such a computation. The
configuration is similer to the one of fig. VI-3: the netvork of
sequential connected program elements is stored on a sequentislly
accessed rotative mesory; at sny tise there are messsges wajting
for an entry in 2n event table; the addresses of these entries
are ordered in the order of appearence of these entries under the
hesd. Whenever an event table containing an entry for which o
message is vaiting passes under the head, the table s examined.
1f, in addition to the entry for vhich there {s a sessage, & noh-
f1lled entry remains, the message is just placed in the event table
at the proper eatry. On the contrary {f, with the exception of the
entry for vhich there is s message, the event table is filled, the
corresponding progras element is svapped into the scratch-pad
senory (sce fig. V1-14) and executed there; at ite completion,
the addresses of the event tables to vhich the messageés are to
be seat are placed together with the corresponding messages,
at the proper places in the queve.

Let us suppose nov that some of the sequential processes
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ate stored §in a library, their addresses appearing only in the

progrew elements (fig. VI-1%9). A computatica looks at any tims:
l1ine the metvorn of fig. Vi-16. W¥henever there is a message for
an eatry in an event tadle vhich will be (illed with this message,
a request for the proper sequential process in the librery will
be made; the clementaiy program can only be performed vhen this
process vill be available. Ve can already hnow to which entries
in vhich event tadles we vill have messages to scnd: {f these
entries pass under the head vhile the required progras has not
yet been provided, the messages to be sent to these entries are
not yet avallable. Vovever ve may see vhether the event table
vould be filled {f the message vere availadle;: (f so, ve may already
request from the Library the sequential process wvhose sddress i
contained in this last elesentary progran. The scheme may be
perfcrmed again vith this nev elementary program. For instance,
in tig. Vi-17, one message triggers the request for five sequential
processes froe the libdrary.

We have seen that 1t is possible to single out (rom the
computation netwrk a subgraph of elementary prograsa vhich can
be performed as soon as the corresponding sequential processes
vill be available f(rom the library.

WVhenever a message is conditional, ve cannot knov in advance
vhether this nessage vill be sent oz not to the associated entry
in the corresponding event table. 1t Is then a question of pclicy
to extens ar not the scheme to such event tables.

¥e can nov propose another machine organization with a hierar-

chy of sequential rotative memocries (fig. VIi-18). FPor instance,
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each memory might have the sar~ transfer rate and the capacity might be

almost proportional to the rotation time:

Ml M2 M)
rotation time 16 ns 1 ms 64 ) o
capacity 256K 16K 256 words

Subgraphs of computation networks may be swepped between these
memory levals uaing tha pravious scheme.

A aequential memo* o a privilagad direction: consequently,
an implementation of & natwork will be mora efficient 1{f a greater
nusber of messages are to be sant in the pri-ileged diraction.

The intarnal binding of a DCPL procedure may be performed
before tha procadure is placed ‘n & lidbrary. This b’nding super-
isposes to tha procedure a greph structure which may be axprassed
a8 & netvork of aequential connected program elesents. Moreovar,
this network may ba {mplemented contiguously in a logical space
(for inatance, a segment). WVhanever this procedure is implesented
in a computation tree, this segment ia stored on the rotative sesory
in & vay vhich keeps (relatively to the privileged direction) the
topology of the network. Then tha procadure is bound to its environ-
ment, ir the computation tree, according to che D'PL dinding rules.
The convention wve have takan pravicusly ( a son appeas wnder tha
head defore ita father) assures a non-optimal but to & large extent

satisfying solution.
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A program in DCPL exhibits, to a large extent, the flov
of information, the possible concurrency, and the “topology"” of
the computation structure. This allovs nev wmachine organizations
wvhich, ve believe, would permit to obtain a larger throughput

with less resources.
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CHAPTER VIl
CONCLUSION

Notions wvhich are relevant to both programming language design
and machine organization have been discussed in this thesis.

Progresses made in these two dosains occurred generally inde-
pendently; aince these developments vere to be compatible, artificial
restrictions have been isposed in order to define a common frase of
reference. We believe such restrictions can only be removed by com-
prehensive approsches.

Today's prograsmsing langusges view computers as if they were
still simple von Neumann's type machines. A computation is msainly
considered as a sequence of inmstructions, vhich car todify the con-
tents of some cells. As a result, almost any possibility of heving
concurrency and distribution of control in computstion structures
i lost.

Today's machine and aystem orgiziz=stiuns consider progresming
languages as 1f they vere unadle co grasp the iInformation and control
topology of the computations which are enpressed vith them. As a result,
possibilities to plen in advence the computation process sie lost,
producing, im our opinion, less efficient systews.

A OCPL program exhibits comcurrency, distribution of control
ond locality of references. We bdelleve that this wvill permit to have

a oc.e efficient machine organization with less engensive resources:
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vith a traditional organization, & very fast processor (a "processor

on a chip” vill be very incxpensive in just a fev years) would not

be able to be fully used unless a prohibitively expensive very fast
memory were to be used, or small {terative computations vere cxpected
to occur very often. The machine organization proposed here s believed
to be able to "feed" such a processor by using relatively not cxpensive,

very large transfer rate, sequent ial memories.
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