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ABSTRACT

A theory is developed for predicting the time-dependent size and
shape of cracks in linearly viscoelastic, isotropic media, and its
yalidity is aemonstrated by applying the theory to crack growth and
!failure of unfilled and particulate-filled polymers. Starting with a
bounded solution for the stress distribution near a crack tip in amn
elastic body and the extended correspondence principle for viscoelastic
media with moving boundaries, a simple equation is aerived for
predicting instantaneous crack tip velocity in terms of the
opening-mode stress intensity factor; although the undamaged portion
of the continuum is assumed linear, no significant restrictions are

placed on the nature of the disintegrating material near the crack

tip and, therefore, this material may be highly nonlinear,

- rate-dependent, and even discontinuous. A further analysis is made to

predict the time at which a crack starts to grow, and then some
explicit solutions are given for this so-called fracture initiation
time, the time-dependent crack growth, and the time at which gross
failure occurs under time-varying applied forces and environmental
parameters. Following a derivation of the linear cumulative damage
rule, an examination of its theoretical range of validity, and a
discussion of the experimental determination of fracture properties,
the theory is applied to monolithic and composite materials under
constant and varying loads. Some concluding remarks deal with
extensions of the theory to include finite strain effects, crack
growth in the two shearing modes and in combined opening and shearing

modes, and adhesive fracture.
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1. Introduction

Prediction of the mechanical response and service life cf
viscoelastic structures is very much dependent on one's ability to
predict the time-dependent growth of flaws or cracks. This growth
affects not only the time of gross failure, but, in the case of
composite materials, may also have an appreciat.e influence on the
effective mechanical behavior long before structural failure
occurs [1].

In this paper we focus our éftention on the mc ement of a single
crack tip or front, and establish and apply relatively simple
equations for predicting the time at which motion initiates (the
"fracture initiation time') as well as the instantaneous tip
velocity, both in terms of the opering-mode stress intensity factor.
Interactions between two or more cracks and the influence of
boundaries and obstacles are implicitly taken into account through
this stress intensity factor. For reasons of mathematical simplicity,
the material in a small neighborhood surrounding the crack tip is
divided into two regions: (i) a failure zone where disintegration
and eventual failure occur, and (ii) a linearly viscoelastic,
macroscopically homogeneous and isotropic inertialess continuum.
This idealization and some later mathematical approximations are
motivated by certain characteristics of viscoelastic behavior which
are common to many different polymeric materials. However, this

motivation does not mean the theory is limited to polymers; indeed,
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it contains as a special case the classical theory of fracture for

elastic and elastic-perfectlv plastic media when the plastic zune

size is small relative to crack length.

e

We shall not attempt to review or even list the many experimentzl
and theoretical papers which now exist on the subject of crack
growth in viscoelastic materials. Instead, the reader is referred
to the excellent review article by Knauss [2], which covers molecular
processes, stress analysis, crack propagation concepts, heat evolution
effects (which we neglect in this paper), and environmental influences. %

Primarily only those studies which are closely related to the present i

one are discussed here.

There already exist some theories for predicting fracture 1
initiation time and crack growth in the opening mode in linear :
viscoelastic media. Williams [3] used the idealized geometry of a
disintegrating hollow sphere to ectablish the essential dependence :
of fracture initiation time and initial crack velocity on external
loading history. Wnuk and Knauss [4] derived an equation for 3
fracture initiation time of a penny-shaped crack in a

viscoelastic-perfectly plastic solid, and gave solutions for a

s aac e

Maxwell material and general linear viscoelastic solid having a 3

SR

time-dependent and time-independent yield stress, respectively.

In order to predict crack growth following initiation, Knauss and

co-workers [5-7] modeled the disintegrating material near the crack
tip by assuming bi-singular stress and displacement distributions

and using a rather idealized mechanism for calculating the transfer
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of energy from the linear viscoelastic continuum to the intermolecular
or interatomic bonds. Kostrov and Nikitin [8] derived an equation
governing crack growth in a linearly viscoelastic-perfectly plaatic
solid, studied its consequences for the Griffith problem of a crack
in a large sheet under constant stress, and gave an explicit
solution for a Maxwell material.

One distinguishing feature of existing theories on crack growth
is that the failing material near the crack tip is replaced by a
very ldealized model. Another reature is that solutions for the
time-dependent crack size are given numerically or, if analytical,
are for severely idealized media (e.g., a Maxwell material).
The present study was undertaken primarily to remove these two
limitations, and is accomplished by introducing one new
assumption: the second derivative of the logarithm of
creep compliance with respect to logarithm of time is small for
the linear viscoelastic continuum. To the writer's knowledge, all
polymeric structural materials of technological interest satisfy this
assumption over all or most of the time range of variation of the
creep compli - -~ce. Even if there are intervals over which the
curvature is not small, the theory is valid whenever the effective
cime parameter (Eq. (92a)) is ou.side of these intervals.

The fact that the failvie process at the crack tip is quite
arbitrary in the present theory implies the theory snould be valid
for many different materials, ingluding polymers exhibiting the

crazing phenomenon [9] and filled polymers. This point is supported
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in Section 4 by successfully predicting crack growth and failure
of an unfilled rubber (Solithane) and two particulate composites
(solid propellant and asphaltic concrete) under constant and
varying loads. Moreover, because of the simplicity and generality
of the theory, we believe it will be useful for a variety of
applications, such as the prediction of effective viscoelastic
properties of composite media having "microstructural damage" [1],
fatigue crack growth, and the statistical distribution of failure
times of monolithic and composite materials in terms of
fundamental property and flaw size distributions [10].

We now turn to a study of the elastic and viscoelastic
distributions of stresses and displacement near the crack tip.
The nature of these distributions is examined in some detail in

order to provide a basis for making certain later approximations.
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2. Stress and Displacement Distributions Near the Crack Tip

‘
The problem considered in this Section is that of predicting
stresses and displacements ... the vicinity of a crack tip in which,
for simplicity, the relative displacement between the crack surfaces
is taken normal to them; i.e., the so-called "opening mode" is assumed.
A fixed (x,y) coordinate system and the idealized tip geometry
are shown in Fig. 1; y = 0 will always correspond to the plane of the
crack, while the y-axis is placed at any convenient location and
embedded in the continuum. In the unstrained state the crack surfaces
near the tip are assumed to be planar and to coincide with the x-z
plane, where 2z 1is perpendicular to the plane of the page. The
actual crack tip is a straight or curved line in space whose
intersection with the x-y plane (the plane of the page) is defined
by the point P (x = a, y = 0); it is assumed that the tip is
essentially straight in the neighborhcod of P and perpendicular to
the x-y plane. We should add 'neighborhood of the point P'" refers
simply to the material contained in a spherical volume centered at P
and having dimensions on the order of the failure zone width, a; P is
taken to be a generic location along the crack tip and, therefore, the
term "neighborhood (or vicinity) of the crack tip" will be used to
mean the same thing as "neighborhood of P" throughout this paper.
The crack tip may be quite general in shape as far as our analysis
is concerned. For example, it may be a closed curve or begin and end

on bounding surfaces of the continuum; of course, the first case

it Sl




corresponds to an "internal" crack, while the crack tip in the second :
case defines "through" and "surface" cracks.

We assume the material outside of the failure zone shown in
Fig. 1 is linearly viscoelastic. However, in general, the material
in the zone may be highly nonlinear and viscoelastic; further, it
need not be a continuum in that it could consist of very fine strands
or any other disintegrating material which is representative of the
complex structure near a crack tip, or the failure zone could be
simply the region in which significant attractive interatomic forces
act between atoms in adjacent crack s:cfaces. In practice, the
boundary between the undamaged continuum and the material in the
failure zone will be rather diffuse, and there will be a layer of
dam-ged material which extends into the continuum along x < a_ as

well as around the fail:i.e zone; we assume this layer is small enough

that its effect on the prediction of the displacement 7 in the

neighborhood of the tip is negligible.

The location x = a_ defines the apparent crack tip, which is often

referred to in the literature as the crack tip. However, in contrast,
throughout this paper crack tip will mean the tip at x = a.

The reaction of the failure zone on the surrounding continuum
is represented by a tensile stress distribution, Ogs as shown in
Fig. 2, whi}e cy denotes the tensile stress acting within the linearly
viscoelastic material along the crack's prolongation. External
loads applied to the continuum are assumed to act symmetrically with

respect to the crack, so that shearing stresses along x > a are zero

N e AR ..m;.ﬁ‘_ii‘d
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and a pure crack opening mode results.

However, in reality, shearing stresses act along the continuum
within the failute zone. This may be seen by referring to Fig. 3,
waich shows the forces acting on the material in this zone; the tip
has been magnified to bring out the tip thickness, di’ which is taken
to be a characteristic dimension defining an interatomic distance
before failure in the case of a monolithic material, or an
interparticle distance in the case of a particulate composite. As
will be seen later, the stress Oy acting along x > a Js equal to o

and, therefore, F, = cydi (per unit length of crack tip). Thus,

i
a rough estimate of the average shearing stress, Tes is
Fx 21 di
= = I A 1
T4 2 o )

Consequently, as long as a >> di’ it is reasonable to neglect the
effect of Tes relative to that of Ogs ON the surrounding linear
viscoelastic material; this condition is consistent with that needed
to be able to apply continuum mechanics in the first place to
predicting the response of (assumed) homogeneous material close to
the failure zone.

Although Figs,l and 2 show the crack surface for x < a_ as
being stress-free, the theory allows for forces to act directly on
the crack surface, as long as they are not applied in the neighborhood
of the tip. If external forces .. ' close to the tip, the theory will
be at least approximately valid when they are small relative to the

resultant failure force. (It is of interest to point out that an

e
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important geological problem in which there is direct pressure on

crack faces, viz., fracture of oil-bearing rock strata, satisfies this

condition; there is always an unwetted portion near the crack tips [11]}.)
Finally, it is assumed that the neighborhood of the point P in

Fig. 1 is in a state of plane strain. This condition is (approximately)

satisfied if (i) the distance between P and bounding surfaces of

the continuum and other cracks is la¥éé compared to «; (ii) the radius

of curvature of the crack tip at P 1is much larger than a; and

(iii) the value of o, outside the nzighborhood of P 1is small relative

to oy inside the neighborhood. Of course, if one is interested in

the problem of "through crack" in z thin sheet in which o is large

compared to sheet thickness, the plane strain results are converted to

this plane stress situation by means of a simple change in the solution;

i.e., vz in Eq. (7) is dropped.

Linear Elastic Analysis

Stress and displacement distributions along y = 0 in the
neighborhood of the crack tip are recorded here for later extension to
viscoelasticity. We first consider stresses c: and c;, and displacement
v° (s8ay) due to loads acting in and on a linear elastic continuum
having a crack tip at x = a and with O¢ = 0. Based on the results
given by Williams [12], we may write*

% N

oy = % H(E,) (1 + 0(g,/8)] (2)
1

*A term of order u is written as O(u) for which, by definition,
1im [O(u)/u] = finite, non-zero quantity.
u+0




N
(o] 2]
cy = —;'1- H(El)ll + 0(£1/B)] (3)

while the displacement of the top crack face is (for plaue strain)
v =, N VB H(E)L + 0{E/8)] - 4)
where (see Fig. 2)
E,Ex-a , E:fa-x . | (5)

Also, H(o) is the unit-step function:

0,p<0
H(p) = (6)
l1,0p>0
and -
2
c, = i(_l_;_\’l %)

where E is Young's modulus and v 1is Poisson's ratio. The coefficient

No is called the stress intensity factor by Baremblatt [11]; this

factor is simply related to another commonly used symbol, K., for

I’

the opening-mode stress intensity factor
K. = /2n N . (8)

In general, N° is a functior of Young's modulus and Poisson's ratio
as well as parameters which define the geometry of the continuum
(e.g., crack length and location and overall dimensions of the body)

and is a linear function of the applied loads and displacements.
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The quantity B represents the distance between the point P

(Fig. 1) and the closest geometric feature (e.g., free surface or

opposite crack tip) or nearest point of load application, depending

R
i

]
o3

2

on which is smallest. By restricting £ and 51 to the neighborhood

of P and assuming
a/B << 1 9

the terms of order §,/8 and £/B can be neglected since
o

£ £
1y oo L r &y = o2 1
0™ =03 5 0@ =0G D) . (10)

Hence, close to the crack tip

N
o_ o0__ o
1 LA — H(E,) (11)
; 51
o .
vo=C N JEHE) . . (12)

; Stresses and displacement in the linear solid due to the failure
stress, cf, acting alone are denoted by ci, 05, and vf. From

Barenblatt [11], for &1 > 0,

3 o (€) dE

1
n /EI Bt El
o

(13)

f £
0 =g = -
X y

i and the displacement of the top crack face is
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63
C =
f e ] ! + /_ ’
v = -—HE)R o.(€") ln[—Fr5 4 (14a)
2n . f ET'_ &

where &2 denotes ‘'real part of"; inasmuch as
ln(-1) = { n(2k + 1), k = 0,1,2,..., the last equation can be written

in real notation as

o]
c Vil
Vf —m _2_: 1.1(5) of(‘t") 1in _g__t_g dg' b (l4b)
. /T - V&

Cn physical grounds it is assumed that 0. is everywhere finite,
which assurés uniform convergence of the above integrals, Eqs. (13) and
(14), for €, > 0 and £ > 0. Although the failure stress is not
restricted to being continuous for all £, we do maké the physically
plausible assumption that it is continuous to the left at & = 0; viz.

lim  o_(€) = 0_(0) . 15)
£ > ot f f
As will be seen later, existence of the limit in Eq. (15) together
with the assumption that the stresses in the linear continuum are
finite establishes continuity of the tensile stress in the y-direction
at y = £ = 0; even if Eq. (15) is not mec, it can be shown that the
stress immediately to the right of the tip, cy(0+), still will be
equal to the failure stress on the left side of the tip, of(0+).
O0f particular interest to us is the behavior of stresses, Eq. (13),

and displacement,Eq. (14), close to the crack tip; viz., Lllu << 1 and
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£/a << 1. The stresses become [11]
a
o (E)
ofeogfa- £ 40,0 +o0ct’dH . (16)
AR /3 B3 f 1
170
F Although not stated in [11l], the order of the remainder term in
%, Eq. (16), as well as the remainder shown later in displacement
1 Eq. (25), is correct only if O¢ satisfies the following condition:
4 .. 1/2
F lin  {[o.(€) - 0,(0)/6' "} = 0 an
which will be established and ‘discussed later in this subsection. The

resultant stresses in the linear continuum due the combined action
of the failure stress distribution and the externally and internally
applied loads are obtained by adding Eq. (11) and (16). These
stresses will be finite at the tip if and only if

NIEAGK
NO - —-—/_— (18)

|8 £

which is Barenblatt's result [11]. The resultant stresses in the

vicinity of tne crack tip become for 61 > 0:

1/2

1 ) (19a)

gk, & °y = of(O) + 0(E

A more complete representation is obtained by édding Eqs. (11) and

(13) and then using Eq. (18):




13
o
o (&)
oxoy--};»fa—l' Ff——dg : (19b)
o e (8 +8))
Equation (19a) together with Eq. ( 15) implies the normal stress in
the y-direction is continuous at El = 0. For later convenience, we
rewri“e Eq. (18) in terms of a normalized coordinate,
n = &/a (20)
and normalized failure stress distribution,
8= of/om (21)
where om is the maximum of of(E) with respect to §; at this time
there is no need to assume that of(O) is this maximum value.
Equation (18) now becomes
fio
N° S I1 (22)
in which I1 is the dimensionless integral,
1
f
115[ fan) 4, (23)
n
o
One further change of integration variable to n', where n' = 2 /H,
yields
2
I1 = J fdn' . (24a)
o

PPl 500 e i e SR A A MRSl A Mt A 8 P e
. askiiabl it Mot
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Since f < 1,

Il i 2 (24b)

which will prove useful in later considerations in order to establish
a lower bound on the maximum strength, O from experimental data.

The normalized form, Eq. (22), is a very important result. It
will enable us to calculate the length of the failure zone, a, as a
function of time and loading.

The displacement of the top crack face near the tip due to

¢ acting alone, as given by Barenblatt [11], is

a
c g (5" )ar"
vf = _ ;E vE H(E) £ + Avf H(E) (25)

o ET

where Avf = 0(53/2). In order to predict time-dependent crack growth
in viscoelastic materials we need more explicit representations of
Avf; for one purpose it will be necessary to evaluate the

/2

coefficient of 53 and establish the order of the remaining terms.

This will be accomplished by first equating Eqs. (14b) and (25), which

yields
C a
vt =2l o ") 22 L B e L 26
a8 : /T - Ve

It is important to cbserve that the recultant displacement,

v=v"+ vf, due to applied loads and to o, is simply related to Avf;

f




-

15

viz,,

v = avi ) 27)

which follows from Eqs. (12), {14b) and (18).
Determination of the behavior of Avf frow Eq. (26) requires that

we express cf in the form

of(E) = of(O) + Aof(E) s (28)

In view of Eq. (15),
linm Ao (£) =0 . (29)
£+ ot

Upon substituting Eq. (28) into Eq. (26) and evaluating the integral

containing cf(O) there results

2¢_ 0.(0)
£f_""e f 3/2 5/2 (30)
Av-3n——/; (& + 07" )] + A1
where
C a
AL = Eﬁ-[ Acf(E') Z(ETol/z - 1|t X YE/E] dg' . (31)
. 1- v/g/g! _

The term in curly brackets for 0 < E/E' << 1 is approximately

1y el |
1 - v/g/g"

22 - 1 . 22 G2

-2 &
3 G7 £

J

Without any approximation, Eq. (31) 1is now written as
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| c * Ao (E")
AL = -3-‘-"-:;3/2 [ ——f TR
. (&)
Ce“ [51/2 1+ VEJE"
+ 52 | doge") 2697 - |2 L
L . 1 - /&g’
2 (£ \3/2 .
+5 6070 a (33)

If Eq. (17) is satisfied tiie first integral in Eq. (33) obviously
converges; also, the second integral is easily shown to be convergent.

This condition means, of course, that Aof must approach zero faster

than 51/2 as £ + 0. If this approach to zero is faster than 63/2

viz.,
Lin (a0 (8)/€%/%) = 0 (34)
£ -+ oF .
then it follows from Egs. (32) and (33) that the second integral in
Eq. (33) is of order 65/2 or higher. 1In contrast, if Eq. (17) is
satisfied, but not Eq. (34), then the order of the second integral iz
Eq. (33) is found to be between 63/2 and 65/2. Moreovcr, it is shown

in Appendix A that if Eq. (17) is not met, the order of AI, Eq. (31),

is between £ and 63/2.

Convnidering the complexity of the failure process at the crack
tip, and the absence of information on the variation of of(E) for
most materials [2], it will be assumed throughout the remainder of

this paper that Eq. (17) holds, unless stétéd otherwise. Note that

A il
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if Og is constant (e g., when the failure zone is actually the zone
of yielding in a metal having zero strain hardening) not only will
Eq. (34) be satisfied but additionally AI = O.

Let us now integrate the first integral in Eq. {(33) by parts,
use definition Eq. (28) for Aof, replace the second integral by an

order statement, and then substitute the result into Eq. (30); thus,

2C. o.(a) a-doc '
avi = —& £ - __:.EQ_}g

3/2
!
L CH

+o2* Rl s

where 0 < p < 1, and o¢(a”) is the failure stress for £ just to the
right of a; of coursz, if of is continuous at £ = a there is no need

to distinguish between £ = a and £ = a, Equation (35) can be written

uore compactly in the form

at

2C do
Avf - - e dgf dg! 53/2 " 0(“;3/2 + p) . (36)
o R -

It is easily verified that Eq. {36) is equivalent to Eq. (35); when O¢

is discontinuous at { = a we may interﬁret dof/de' by means of a

Dirac delta function or, more directly, by using the relation

+ - +
a rQl o
do do do
I f dg! - f dg! + I £ de!
«-

o ST | SR
ra” do 0
f d¢! 1 + =
= = —t+—=[g4@") -o.(a)] . 37
dg¢ /E—, ¥y { f

e Ak St

i
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The total vertical displacement of the upper crack face due to
external and internal loading and to the failure stresses is given by
Eq. (27). After writing the integral in Eq. (36) in terms of the

normalized variables, Eqs. (20) and (21), there results

2C o
- __em_ .3/2 3/2+p
Ve gy LE HE) ok ) HCE) (38)
where 0 < p < 1 and
1
| dfan

I2 - dn /; ()

o

The upper limit in Eq. (39) is to be interpreted as 1t when f is
discontinuous at n = 1; for example, if of (and therefore f) is

conrstant over 0 < n < 1,

I,=-1 . | (40)

Also, p = 1 for this case since AL = 0.

/

The fact that v = O(E3 2) according to Eq. (38), the cross-section
of the crack near its tip (see Fig. 1) is cusp-shaped. This observation
was made by Baremblatt [11]., However, as we have shown, this shape is
predicted because Eq. (17) is assumed to be satisfied. On the other
hand when this limit condition i< not met, a study of AI, Eq. (31),

in Appendii A reveals that the cros -section could approach a
straight-sided wedge.

Finally, we should point out that the order of the stresses near

the tip can be established in a manner that is entirely analogous to

R T e
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the above one for displacement by starting with Eq. (19b); it is found,
for example, that the remainder term in Eq. (19a) is indeed of order

1/2

El (or higher order when 12, Eq. (39), vanishes) if Eg. (17) is

obeyed. That the order of this term could range between Eo and 61/2
when this limit condition does not hold is shown in Appendix A.

The order of the stresses, however, does not have a direct bearing on

the subsequent viscoelastic analysis.

Linear Viscoelastic Analvsis

With stationary cracks the elastic stress and displacement
distributions given in the previous subsection can be easily generalized
to viscoelastic solutions by means of the classical correspondence
principle plus Laplace transform inversion [13].

Under somewhat restrictive conditions, the extended correspondence
principle established by Graham [14] can be used with moving cracks.
The specific restrictions as they apply to the problem at hand are
(a) the crack cannot decrease in size (da/dt > 0); (b) the elastic
stress normal to the surface of crack prolongation (oy) must be
indeperdent of E and v; and (c) any dependence of the elastic
displacement v along the crack face on E and v must be in the
form of a separate factor (i.e., v = fntn(E,v) - fntn(£)). According
to the theory in [14], the above restrictions apply to the entire
crack and its extension up to the maximum time of interest, and not
just the neighborhood of the instantaneous tip.

With reference to restriction (b), we note that as long as all
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boundary conditions are on stress, dimensional analysis implies the
internal stresses will be independent of Young's modulus, E; they
may, in general, depend on Poisson's ratio, v. Even this dependence
on v disappears in many two- and three-dimensional problems.
Indeed, there are two important classes of plane stress and plane
strain problems for which the in-plane stresses will always be
independent of v [15]: (i) simply-connected bodies and
(ii) multiply-connected bodies for which the resultant force on each
boundary vanishes., It should be added that if the viscoelastic
material of interest has a constant Poisson's ratio (which is at
least approximately true in many situations involving polymeric
materials [1]), then dependence of the elastic solution on Poisson's
ratio does not invalidate the extended correspondence principle;
this last point is easily verified by examining Graham's theory [14].
As one further observation, we note that if some or all boundary
conditions are on displacement,.the problem often can be recast in
terms of applied forces; one simply calculates the resultant forces
needed to maintain the specified displacements, and then views these
forces as being specified quantities. It will be assumed that such a
recasting has been accomplished, when appropriate, in all of the
following analyses; see, e.g., Eqs. (128) and (129).

Under the conditions for which the extended correspondence
principle is applicable, the stresses in a linearly viscoelastic body
are the same as those given in the preceding subsection for elastic

media. The only stress result which will be needed for predicting
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crack growth is Eq. (22) relating the stress intensity factor, No’
te the failure stress and size of the failure zone. Recall that,
by definition, No is the stress intéﬁsity factor for a crack with
o = G. This factor depends, at most, on parameters defining the
geometry of the body (including instantaneous crack size and location)
and on the applied stresses; in view of the earlier comment, Poisson's
ratio dependence is not precluded as long as it is constant.

Turning to the prediction of displacement v along y = 0,
we observe that this displacement close to the crack tip, Eqs. (26)
‘and (27), meets restriction (c). For a stationary or growing crack,

the extended correspondence principle yields for t > tl:

s )

t

- 3 -y & ' § y1/2
VR o= c, (t - 1) o= a.(E") [2(5.)
t1 o
\
-1n-€f;+—//§1 ds'}dr . (41)
E' - V&

The variable of integration T is a generic value of tiime which ranges
from the time, tys wken the crack tip first reaches a point x, to the
current time t; this time integration is to be performed at constant x,
and therefore for moving cracks { must first be expressed in terms of

x and 1; viz., from Eq. (5):

E = E(x,7) = a(1) - x (42)

In view of the above definition of tl,
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g(x,tl) = a(tl) -x=0 (43)
and since decreasing crack size is not allowed,

E(x,1) >0 ; 1>t (44)

1

Also, although not explicitly shown, the length of the failure
zone o and the failure stress may depend on time, T.

If the crack is stationary we may set t, = 0, corresponding to

1
the time at which loads are first applied to the body; Eq. (41) then
applies for x < a.

The function Cv(t) is defined by the équation

5T, = ML s (sv) ] (45)
sE

in which the bar denotes the Laplace transform (LT) of a function of

time; e.g.,

7= | et q) ar . (46)
[o]

Also, E is the LT of the uniaxial relaxation modulus and v is the LT

of the Poizson's ratio for a uniaxial relaxation test. Equation (45)
can be easily established by comparing elastic stress-strain equations
with the LT of those for a viscoelastic material [13]. For some
problems, it may be desirable to express Cv(t) in terms of the uniaxial

creep compiiance D(t), where

sD = — | &7
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1f Poisson's ratio is constant with the value v, then sv = v and
we can combine Eqs. (45) and (47) to find, by LT inversion,
2
Cv(t) = 4(1 - v7) D(t) 5 (48)

Even when Poisson's ratio is not constant, Eq. (48) with v = v(t) is
expected to be a good approximation [1]; this result, which is based
on the quasi-elastic method, can be expressed just as well using the
Poisson's ratio mezsured in a uniaxial creep test, vc(t), since
typically vc(t) = y(t) [1].

Recall that Eq. (41) is based on an elastic solution which is
valid oﬁly in the neighborhood of the crack tip. Therefcre oné
cannot expect this viscoelastic solution to be valid for values of
£ much greater than a; this limitation does nct restrict the subsequent
fracture analysis as we gill need the displacement only in the interval

0 <€ <a. An additional result that will be needed is the viscoelastic

version of Eq. (38) in which only the term of order £3/2 is retained:
t o
o -y lmg 32
WD = Cv(t 1) = 7 12 £ dt (49)
a
|

where t > t All of the comments following Eq. (41) apply as well

1.
to Eq. (49) except, strictly speaking, this latter equation is
restricted to the range 0 < § << a; in Appendix C we demonstrate that,
in reality, Eq. (49) represents quite a good approximation for the

purpose of calculating work input to the failure zoue.

Finally, it should be mentioned that restriction (c) of Graham's

o e "
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3 extended correspondence principle, which was stat;d early in this
subsection, is overly restrictive. Namely, the product dependence of
the displacement on material properties is not essential, as we shall
presently show. This latter observation is particularly important

to us because the elastic displacement in Eqs. (26) and (27), which
has the product dependence, applies only to the neighborhood of the
crack tip; whether or not this dependence exists far away from the

; ' tip probably depends on the specific problem considered, and we do

not want to restrict the viscoelastic displacement solution

i unnecessarily. Now, following the reasoning in Graham's.paper [14] and
E assuming restrictions (a) and (b) are met, we conclude that the LT of
{
the viscoelastic displacement anywhere along the entire crack plane is 1

v = ;e [sE, sG, X, s] where Ge is the LT of the elastic displacement
1 in which Young's modulus and Poisson's ratio have been replaced by

sE and s;, respectively. Explicitly,

00

v = ve[sﬁ, sv, X, t] e St 4t (50)

&1

T T T

where we have used the fact that the elastic displacement at the

point x aiong the line of crack prolongation is zero until time t_.

f 1
E Change the variable of integration top = t - tlz
1 v =e ot ve[sﬁ, 8V, X, p + tl] e 5P dp . (51)
o
‘ -1
3 Denoting the inverse byl ~{ }, Eq. (51) yields
v =a{-l Ve e % dp H(t - tl) (52)

(o]
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which shows that this displacement correctly vanishes for t <_t1.
While there is no need, in principle, to assume a special form for

the dependence of v, on sE and é;, the inversion is greatly facilitated
if this displacement consists of a sum of terms, or a single term, in
which the dependence on E and v factors. Specifically, for the
problem at hand we can write

sC

v e — ' 4
do 779+ Ave . (53)

~

-8
vep
e
[0}

where E is the LT of the integral in Eq. (26), in which £ =a(p + tl) - X3
also, A;e is the LT of the higher order terms in Eq. (4).
Substituting Eq. (53) into (52), neglecting Ave, using the convoluticn

rule for the inversion of a product of transforms and replacing p by

t ~ t yields Eq. (41).

3. Analysis of Crack Motion

Equations for predicting time-dependent crack extension will be
developed in this section; the Preceding analysis plus an energy

criterion for failure provide the basis for these predictions.,

However, we believe it will be helpful to first discuss briefly the
hisvory of events which occurs in the failure zone from the standpoint
of the simplified model illustrated in Fig. 1.

Suppose an initially unstressed and unstrained body is subjected
to gradually increasing load(s). The stress intensity factor in

Eq. (22) will then increase in time; at any instant the length of the
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failure zone must satisfy this equation, even before the left end

(¢ = a) of the zone starts to move. (If, for example, the maximum
failure stress, O’ and the "shape" of the failure stress distribution,
as defined by £ in Eq. (21), remain constant, we se2 a, and

the =fore a, will grow in proportion to NS.) Eventually, with
increasing load, a sma.l column of material at the left end of the

failure zone will rupture and the entire failure zone will start to

move to the right; the time at which this movement initiates will be

called "fracture initiation time," and denoted by t;- In many cases
the time: t, will be e:itremely small compared to the total time for
complete fracture of a body [2] and, therefore, may not be of direct

practical use; prediction of the eventual crack growth behavior would

then be of primary interest for establishing gross fracture times.

In developing the equations governing crack growth under various
loading conditions, it is desirable to divide the analysis into two
parts: (i) continuous crack growth corresponding to times t > ty
i and (ii) initial and intermittent crack growth correcponding to times
| 0<t< t; and to periods during #hich the applied loading drops below
] that necessary for continuous crack growth. It should be noted that the
loading may vary in time in both parts (i) and (ii); however, it is

assumed in the first part that the loading is at least great enough

to sustain continuous motion of the entire failure zone in the direction

3 of 4x.

The same fracture criterion will be used in both parts.

Specifically, a column of material with cross-sectional area dA
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in the fajlure zone 0 < y < v is said to fail when the total work done
on it by the adjacent linear continuum reaches the value T' dA,
(There will be no need to separately identify the failure of perfectly
brittle materials. In this case I' dA could be inte.preted as the
mechanical work necessary to completely separate adjacent surfaces
with area dA, and T would be the so-called "cohesive surface energy";
as indicated previously,—the failure zone for this case is simply the
zone in which significant forces act between atoms in adjacent crack
surfaces.)

In general, the quantity I depends on the entire history of
the force, of dA, applied to a given column of material. Fortunately,
however, there are many viscoelastic materials for which experimental
and theoretical considerations indicate that I' is at least
approximately constant [2]. The quantity I, whether history-dependent
or not, will be called fracture energy in the remainder of this paper.
Equations which relate U to motion of the surrounding continuum are
given in the next s;bsectién. We then take up parts (i) and (ii) in

separate subsections.

Calculation of Work Done on Failure Zone

The energy I' dA is equal to the work done by the upper portion

(y > 0) of the continuum against the force, o, dA, at a fixed generic

f

location, x, as it suffers the total vertical displacement, vmg this

displacement is defined by the condition that o_ = 0 when v > Vo Thus,

f

the work input per unit of new area is

RO P T

”,M
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v
m
= o dv (54)
o
or, equivalently,
*
v
r Of T dt (55)

il

where vertical motion begins at t1 and reaches vm at tz; note that the

time derivative is taken with x held constant.

Another, more useful form with continuous crack propagation is
obtained by considering the displacement in Eq. (54) to be a function
of the independent variables (x,€), instead of (x,t), where by

definition

£ =8(x,t) = a(t) - x , (56)

Tt is assumed here that tl <ts« t2 and (a - a) < x < a. We select
X such that it is at the crack tip when t = cl; note that E(x,tl) = 0,
and(a(tz) - Xx) is the length of the zone of failure, a.

Equation (54) now becores

o
v
o
é in which v = v(x,£) and da/dt > 0.

The above change of independent variables, (x,t) » (x,£), may

be viewed as a coordinate transformation; viz.,

|
i
!
|
|
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= x {58a)

E=a(t) -x . (58b)

The Jacobian determinant is found to be da/dt, and therefore Eq. (58)

defines an admissible (one-to-one) transformation [13] as long as the

crack velocity does not vanish.

Prediction of Continuous Crack Growth

The governing equations for crack growth will be derived by
bringing together the finite stress con&ition, Ed. (22), the
viscoelastic displacement, Eq. (41) (and Eq. (49)), and the fracture
energy, Eq. (57). Even if a constitutive equation for the failure zone
were known, the task of finding the solution a =-a(t) tc this set of
nonlinear integro-differential equations would be very formi¢hble, to
say the least. There are, however, two cases when the equations
greatly simplify.

The first one is for a material with infinite strength (cm + @),
It is shown in Appendix B that the exact result is the classical

condition for critical stress intensity factor of a brittle material in

plane strain :
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' EO
N =\ [TEQ (59)
° Vi - v3(0))

where E(0) aﬁd v(0) are the initial values of relaxation modulus and

i Poisson's ratio. The stress predicted by this equation is unrealistic-
k ally high compared to the values at which cracks can be made to
propagate in viscoelastic materials [ 2}, and moreover the crack
velocity is undefined. Except for reprgsenting a limiting situation,

this case of infinite strength at the tip, therefore, is of little

practical interest.

The second case is based on a certain property of the creep
compliance which exists for most polymeric materials. Specifically,
a double-logarithmic plot of creep compliance (e.g., in simple shear

or uniaxial tension) has small curvature over most, if not all, of

its range of variation [e.g., 1, 16]; the specific meaning of

ﬁ "small" will be brought out later in the analysis. The creep
compliance, Cv(t), which is defined by Eq. (45), can be expected to
have small curvature when D(t) has this property since Poisson's

ratio typically is & very weak function of time; see also Eq. (48).

As one example, the creep compliance in the glass-to-rubber transition
§ range for Solithane 50/50 [6] under uniaxial tension is shown in

g Fig. 4; this material is an unfilled, crosslinked, amorphous polymer.
3 The compliance of particulate filled-polymers (e.g., solid propellant)

in the glass-to-rubber transitior range and the compliance of plastics

typically vary over a greater range of log t and have even less

o e

et Rt ek i e B

hee Ltk Sl Smial S




ol e G

G

RV e

o S T I a1 e P S R TR RS AT

P

AL BN

31

curvature than seen in Fig. 4. 1In view of the generality of this
behavior and the analytical simplification it produces, we shall
concern ourselves with this case in the.remainder of this subsection.
As noted previously, ¢ and of may be functions of time, although
this dependence is not explicitly shown in Eqs. (41) and (49).
However, it will be assumed that the time it takes for the crack to

propagate an amount o is small enough that o and o_ are essentially

f
timewise constant during this brief period, denoted as t, - t

2 i
Note that Eq. (18) (or Eq. (22)) implies No must be essentially
constant during this same period; nevertheless, it is important to
realize that No may vary eithg; weakly or strongly with time during
the total period of crack growth., Additionally, we assume a(t) can

be linearized during the short period t, = t;; thus with 0 < £ < a,

a(t) = a(t;> + (¢ - :1); (60a)

and using Eq. (42),

"

E(x,1) = a(1) - x = (T - :1)5 (60b)

]
1§

E(x,t) = a(t) - x = (t - :l)é (60c)

where a(tl) =xand a is the tip velocity at the generic time tl.
We consider tl to be a function of X since it is the time at which

the crack tip reaches the fixed location x.
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Reduction of Convclution Integrals: The above simplifications

will be used to reduce the (convolution) time integral in displacement
Eq. (49) to a simple product form; extension of this result tn exact

displacement, Eq. (41), is then made.

After changing the time variables in Eq. (49) by using the l
definitions , é
3
pET -t (61a)
At = t - t ' (61b)
i we find i
i
20 1 2
ve-—2262¢ e e (622) %
! 37 /; !
| 4
3 where
£ = E(x,t) = At a (62b)

and we have defined an "effective" compliance,

t il

/2

=52 c,(t - 0) oM ay (63)

=3
Cef(t) -2 t

Now convert Eq. (63) to a logarithmic time scale using the

definiticns (where log = loglo):
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P, = plt
Lzlogt
% = log(l - p )
c (L) =c (t) . (64)

Note that 6V(L) is

logarithmic time.

C .(t) =

The quantity in curly brackets will be called a weighting function

and denoted w3/2;

simply the creep compliance expressed in terms of

Equation (63) becomes

s f 1
% (1n 10) E (L + 2 vjtlo" (1 - 10"1*/2} 2e. (65)

-0

it is plotted in Fig. 5 over its major range of

variation. Recognizing that tne creep compliance év 18 an increasing

function of ics argument, and observing the rather narrow range for

-ﬂ.\ which w3/2

_ depends on only a s

uiffers

(e.g., Fig. 4). S1
Eq. (65) shows that
is in the (approxim
log t. We assume t

can be represented

Cv(c) = C

(t)

appreciably from zero, we conclude that Cef
mall part of the total creep compliance curve
nce L is the current value of logarithmic time,
the influencial part of the crezp cuapliance
ately) 1.2 decade range from (log t - 1.2) to

hat over this 1.2 decade range the creep compliance

by the power law

n
lc . (66)

i i B, ik

e
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Somewhat arbitrarily, we select the exponent n to be the log-log
slope of the creep compliaﬁce at the point L - 0,48, which is near the
centroid of the.weighting function., Inasmuch as
L ~-0.48 =1logt - log 3.0 = log (t/3.0), we see n 1is the slope
of a line drawn tangent to a double logarithmic plot of Cv(t) at
t/3. The coefficient C1 is the val?e of compliance where this tangent
line intercepts the log t = 0 axis.

The actual ;éIue of effective compliance is now readily derived

by substituting power law Eq. (66) into Eq. (63), and treating n and

C, as constants in performing the integration; there results

n . k]
Cef(t) =2 Ct (67)

or, equivalently,

o 1/n '
Cef(t) = Cv(An t) (68)
where
W 3/1?31"(:1 + 1)3 (69)
4(n + E) T(n + E)
and
I'(n) = J "1 7t g (70)
o

is the Gamma function with argument n. The factor An is plotted in
Fig. 6 for the range of n exhibited by polymers (i.e., 0 < n < 1);

for most polymers 0 < n < 0.5, with filled polymers and plastics
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usually having n values at the low end of this range. Consequently,
the effective compliance is coumonly very close to the creep compliance
itseif.

Returning to the displacement Eq. (62a), we see that it can be

written in the simple form

2o, L £3/2

3

n
An C1 At H(E) (71)

R

and using Egs.(62b) and (66),

) (312

V & & ————

C_(t) H(E) (72a)
3w Yo v

H
i
!
where }
|

: Ai/“ Ela . (72b) ;

(md
10

L

Equation (72) is identical to the elastic displacement except
CV(E) appears in place of Ce.

This simple result is easily generalized to the case in which

T TR L S L L TR e o g

higher order terms are retained in the displacement expansion.

Namely, suppose the elastic solution is represented by the sum, !

v=)v_ HE) (73)
r

in which

v =A £ C (74)

where r > 1 and Ar is essentially comstant during the period (tz = tl)

SRS ———
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required for the crack to propagate a distance a. The visccelastic

solution to each term for t >t>t

2 can be written in the form

1

- (r)
v_=A £ C o (a) ‘ (75)

where the rth effective compliance is

t
Cé;)(t) zrt? [ cv(t - p) pr-l do . (76)
[+

When this compliance is expressed using a logarithmic time scale

through definitions in Eq. (64) we obtain a result which is identical

to Eq. (65) except the weighting function V., 8ay, nust be changed using

the substitution,

“WUYZ 20t - 108" sy 7)

101 - 10 : =

The weighting function for r = % is shown in Fig., 5, and is seen to be

close to that for r = %. Indeed, this function is relatively insensitive

to r; for example, the maximum occurs at
2 =-1logr (78a)

with the wvalue

2 1,r-1
wr(max) = 3 (1 - ;‘) (78b)
and
w_{max) w8 e 0.25 as r > (78¢c)
o e . 5

The general shape of each W is the same as those in Fig. 5. It is
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important to realize *hat even for r quite large the essential part
of the weighting funccion lies in the same f-range as the curves in
Fig. 5; for example, with = 10 the maximum is at £ = -1 and has
the value wlo(max) = 0.26.

Thus, the effective compliance can be evaluated quite accurately
for a wide range of r wusing Eq. (66) with constants found from the

tangent to the log-log plot of Cv(t) at t/3. When this power law

is substituted into Eq. (76) we find

C(r) n

ef (t) ¥ Anr Cl t (79)

where

() I'tn+1)
nt (+r)I'(an+r1) . (80)

The coefficient Anr reduces to £q. (69) when we set r = %u This

compliance coefficient is drawn in Fig. 6 for four different values of

r; Anr for r = 1 is shown because the exponent is a lower bound,

2
although values of r less than-i ase not expected to appear in a

séries expansion of the exact displacement in view of the analysis
in Section 2.

The relative insensitivity of Anr to r, especially for the usual
range of n for polymers (0 < n < 0.5), leads immediately to a
simple solution to the viscoelastic displacement. For example,

suppose the elastic displacement, Eq. (27), can be approximated by

a three-term series

FIICIELE T r—
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R T W W S IR TG I (81a)

Then according to Eqs. (75) and (79) an approximate viscoelastic

solution is

_1/2 2 3 n
Vo= T Ay 08 + Ag oET + A €] A C At H(E) (81b)

and using Eqs.(62b), (66), and (72b),

o 51/2[A3/2£ + A5/2£2 + A7/2£3] c,(E) B(E) . (81c)

We have replaced the individual coefficients Anr with An (corresponding
tor = %) on the assumption that the first term in the series is the
largest, and therefore Xn ic more appropriate than a simple average

of the three coefficients. We now replace the series in Eq. (8ic) by

the original expression, Eq.(27), and obtain the important result,

¢ (t) . ;
v = —%—;— H(E) | og(e") 2457)1/2 - In [ARET dg'  (82)
o et - Vg

where t is given by Eq. (72b).

Although Eq. (82) is considerably simpler than the exact
displacement, Eq. (41), it is belifeved that it is sufficiently
accurate for our purposes regardless of the nature of the failure
stress distribution. We intend to use this displacement to calculate
only the work done on the total failure zone, Eq. (57); this
computation is, of course, an averaging process and reguires the

displacement just in the range of 0 < £ < a. Morecver, by assuming
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.several different realistic functions for O¢ it is shown in
Appendix C that even the one-term representation, Eq. (72a), is quite
good for this purpose.

In further support of the accuracy of Eq. (82), let us consider

a few simple examples of displacement predictions. First, suppose

1 , of is independent of £; viz., of = LA The exact elastic displacement
1
] is found from Eq. (26) to be
e
v -% [2/7 - @ - n) 1200 ke (83a)
1-+¥n
: where n = §/a and
t
l A= Ce oL a/m . (83b)

Expanding the logzuithm in a power series yields for 0 < n < 1: ]

1/2.1 1 2+_];n3+_];n4+...]ﬂ(g) (83c)

v Fatyea t g %3

As a measure of the error in Eq. (83c) if only three terms are
retained (as in Eq. (8la)), we shall calculate the ratio of this

displacement, denoted by Vs to the exact displacement, Eq. (83a),

at n = 1:

v3(1) 4 . .
i "-,—(-F- = 0.86 . (83d) !

If only the first term is retained in Eq. (83c), denoted by vy then

v, (1)
;-(—1-)—— = 0.67 . (839.) '
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As a further comparison we calculate the ratio vl(l)/v(l) given the

two functions

2
1) g, = Omll -n7]

f
(842)

(11) o = omll - n] .

Equation (38) may be used to find the one-term approximation,
vl(l), with Eq. (26) still used to find the exact displacement v(1l);

the result is

(1) vl(l)/v(l) = (0,80
(84b)

(11) vl(l)/v(l) = 1,33

The first result, Eq. (83d), although representing only a 14% error

in displacement at the end of the failure zone, could be

reduced even further by evaluating the three coefficients differently;

e.g., 2 least squares method could be used. The above

results (and Appendix C) for a one-term representation give evidence

that the essential features of the displacement at the boundary of
3/2

the failure zone are embodied in the function ¢ .

Calculation of Work Done on the Failure Zone: Equation (57) will

be evaluated using displacement Eq. (82). First, we define an

auxiliary function v ,

[ 1

a
- CV( a)
v =

o CV(E)

v (85)
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where v is the displacement in Eq. (82) and

(2 i

111

"zla/ Bala . (86)

Also, by definition, the coefficient C1 and exponent n used in
CV(EG) and Eq. (86) are to be obtained from the tangenf to the double
logarithmic plot of the creep compliance Cv(t) at the time a/3é;
note that a/é is the time the crack tip takes to propagate the
distance a.

Now, divide the work Xaput into two parts by adding and

subtracting va; thus

[ = Fa + Fb (87a)
where
(& Y
= a
I’a S of(E) ‘a'E- dg (87b)
‘o
ra
- 3
I’b = of(E) 3 (v - va) dg . (87¢)
‘0

It will be shown that the second integral is relatively small while
the first one reduces to a simple function of the stress 1ntensity
factor.

The Integral Fb: Use of Eq. (85) yields

’ &) 2 [CV(E) ] (88a)
Ifny 0.(8) =7 — =1} v > df . a
b f o5 c (t) a

[+] v a

i e S i it

|
E
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Integrate-by-parts and use the fact that Ve B 0 at £ =0 and
Cv(ta) = Cv(t) at £ = a3
%30, ¢ (b) |
r, = - [——— - 1) v_dt . (88b) ]
b 12 . a
c (t)
) v a

We see that Pb vanishes identically for two important limit cases:

(1) constant failure stress distribution, o, = o and (ii) elastic

f
continuum., It should be added that in both of these cases the material
in the failure zone may be highly nonlinear and viscoelastic without

affecting the vanishing of Pb. For cases other than the above two

we return to Eq. (88a) and note that the term in curly brackets is

PIETPRC (I WU

small in magnitude when v, is large (i.e., when £ ¥ «) and vice-versa
(i.e., when £ = 0), Figure 7 shows the entire term in curly brackets
(normalized with respect to the displacement at the end of the failure

/2

zone, v(a)) when the disnlacement variation is given by 53 ; this
use of a one-term representation of displacement is not crucial to
the argument as other cusp-type displacement variations
would lead to the same general behavior shown in Fig. 7.

We have used the same constants (n,Cl) in both compliances in

Eq. (88a), which yields

(-1l v =~ (1 -7 ' v@ . (89a)
Cv(ta)
Now, Fb is the work done by o acting through a displacement equal to
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the entire quantity in Eq. (89a). By comparison, Eq. (87b) shows

that Pa is the work done by O¢ acting through the displacement \

v =
Qa

-

n3/2 v(a) . (89b)

Examination of the displacements in Fig. 7 reveals clearly that

. Pa >> I, unless ¢o_ acts mainly in the neighborhood of n = 0, Such

b f

behavior of of cannot exist in view of the definition of the failure

zone; viz., o is defined as the distance over which ouly significant

values of o_ act, and if o_ acted only at the far left of Fig. 7,

f f
o would be reduced accordingly. However, it is of interest to point
I}
out that for even the rather rapidly decaying stress O = qm(l = nl'z)

the ratio I‘b/I‘a is n/(n + 2) and this ratio is less when the actual

displacement variation 1is used in the calculation instead of n3/2.

(If one wished to retain I, its evaluation using even a crude estimate

b’

of ¢ probably would be adequate considering its smallness.)

As one final point concerning I, , we should mention that

b
quantities n and C1 generally will vary with n, rather than being

constant as assumed in deriving Eq. (89a). However, by changing
Eq. (88b) to a logarithmic scale, log n, and using arguments analogous

to those used to derive Eq. (67), it can be shown that TI'. is essentially

b
-~ _?~ IO
independent of t except for the range 10 - ta <t < ta; this

observation together with the typically weak dependence of C1 and n

on log t justifies our use of Eq. (89a).

The Integral ra: We shall write out Fa, Eq. (87b), by using




b4

Eq. (82) and definition Eq. (85); after performing the differentiation

there results, finally,

dg’' dg f (90a)

= a ra 5
LA 0 (8) 0g(e") |
d adr & BT |55

Note that

£ 1,1 g+¢e’
L . (90b)

Substitution of Eq. (90b) into (90a) and use of Eq. (18) for the

stress intensity factor yields
r =Xc()n +z (90c)
a 4 via® o ¢

where

=

dg' dg . (90d)

= a ra -
c,(t) 0g(8) 0 (B") 1, 4 ¢y
sl e J/c | S

The integral Z is identically zero. This result is clearly seen by
referring to Fig. 8 and observing that the integrand,uﬂ(g,i'), say,
is skew-symmetric with respect to the line § = g£'; viz., by direct

substitution one finds
4 " o~ _ ' .
K(E1,E7) = - A, ,E)) : (90e)

Governing Equations for Crack Growth: Neglecting Fb on the basis

of the above arguments and bringing together Eqs. (87a) and (90c)
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yields the principal result of this paper:

5 4T
Cv(ta) = 2 (91)
! No

This equation is identical to that for the critical stress intensity
factor of an elastic material (see Eq. (59)) except the linear
viscoelastic creep compliance Cv(Eu) appears in place of the elastic

constant, 4(1 - vz)/E. For completeness we record here the definition

of t :
a

t o=l s (92a)
a n

where o is found frem Eq. (22),

[ 5]
on

a = (92b)

Q

B~
4

N

/n

and li is obtained from Fig. 6, with the value of n
simply related to creep compliance,*

d log Cv(t)

iy d log t $92¢)

at the time t = a/3a. Experimental and theoretical determination
of fracture properties I' and % Il’ and their possible velocity
dependence, will be discussed a little later; for the time being we

shall treat them as known quantities.

The general character of continuous crack propagation in

viscoelastic media can now be described., First, we note that {

CV(Eu) is a continuous, monotonic, increasing function of Ea having
= 1/n
In most problems, the value An = 1/3 obviously will be acceptable.
e - — _— . = al e ikt ks
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i
the range of variation,

._ €, (0) 2 € (e) < C (= . (93)
3 Thus, Eq. (91) admits a single-valued continuous solution Ea’ given ]
é No and I, for the following rang: of stress intensity factors
N <N <N (94a)
oe ) og ]
where 3
*
_ 4 T
Noe /i o @ _ (94b) 3
v
and
= 4 T ‘
Nog E = CV(O) F (94c)

These limiting stress-intensity factors are identical to so-called

i
i
i
3

: critical stress-intensity factors of elastic media having elastic
é constants 4(1 - vz(w))/E(w) and 4(1 - v2(0))/E(0); respectively;

the relation between Cv(w), CV(O) and these elastic constants

g

follows from application of the initial and final value theorems of

3 e

Laplace transform theory [17] to Eq. (45).

Henceforth, Noe and Nog will be called the equilibrium and
glassy factors, respectively; the equilibrium factor for a non-

crosslinked polymer is zero since Cv(w) = o,

Returning to Eqs. (91) and (92), we see the behavior described

above implies the instantaneous crack tip velocity a is a

monotonically increasing function of No in the range in Eq. (94);

e VR R S v iind Mmﬁd
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although T and LS Ii may depend on velocity it is doubtful this
dependence would alter this general behavior. As No approaches No
from below, a becomes unbounded, while as No approaches Noe from above
a approaches zerc. It is concluded, therefore, that a crack will not
propagate if No < NOe and will propagate at high velocities (limited

of course by effects of wave action which have not been taken into

og
Another point of interest is that instantaneous tip velocity

account in this paper) when No >N

depends on the current value of No but not on past values. Recall
also that a is actually the velocity normal to the curve defining
the crack tip, and cecnsequently Eq. (91) enables one to compute the

time-dependent shape and size of a crack in terws of local stress

intensity factors.

In order to solve Eq. (91) explicitly for tip velocity it may be

desirable to reintroduce the power-law form Cv(t) = Cltn; Eqs. (91)

and (92) then yield, with a = da/dt:

T
. C. Tr(2n+_L/ 1/n N2(1+1/n)
a 1 0

dat yRPY)
0m I1

ac aT (93)
(In the development of the theory, a was defined to be the velocity

at the time, tl’ which is the time at which the crack reaches a

generic location x; for notational simplicity we now drop the
subscript "1" on the time variable.) 1In general, this is a first order
nonlinear differential equation for crack lerngth. If n is not

constant, it has to be expressed in terms of NO and a through

i

g
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Eqs. (92b) and (92c). (In solviag Eq. (95) numerically, a considerable
reduction in computational time may be achieved by letting n be
piecewise constant over approximately one-decade intervals in a/é.
depending on the amount of curvature in the log-log plot of creep
compliance; this is especially true when Eq. (95) adu...s an analytical,
closed-form solution with n- constant.)

The.solution of Eq. (91) may be facilitated by incorporating
the initial value of compliance, Cv(O), ir the analytical representa-

tion of Cv(t); we do this by means of the generalized power law:

C,(t) =c_ + C2tm (96)
where C0 = Cv(O); m and 02 are, respectively, the slope and the
log t = 0 intercept of a line drawn tangent to a double-lcga: .thmic
plot of [Cv(t) - Co] at time t. The main advantage of this
representatién over simple power law Eg. (66) is that m and C2
are constant over many decades of time for numerous plastics and
elastomers [ 1 ]; for example, the above form of power law fits the
uniaxial data in Fig. 4 extremely well for - » < log t < -2; in fact,
except for a small portion of the curve close to log t = -2, the
entire compliance can be represented by the generalized power law up
to its intersection with D(«) and by the constant D(~) at greater
times. (Observe that the condition of small curvature used in
developing the theory (e.g., Eq. (67)), which requires the slope n

to be essentially constant over approximately l.2-decade intervals, is

not particularly well satisfied close to log t = 2. It is important

PENERTL RN
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to realize that this curvature will produce some error in Eq. (91)
only when log (a/3;) * 2, but will not cause error at oiher
velocities.)

One can easily show that if generalized power law Eq. (96) had
been used in the development of the theory, instead of Eq. (66),
Eq. (91) still would have been obtained. However, one must replace
n by m in Egs. (éZa) and (92c) and in Fig. 6; also, replace

Cv(t) by [Cv(t) - Co] in Eq. (92c). We now solve Eq. (91) for tip

velocity after drawing upon Eq. (96) and definition Eq. (94c):

c "(2m+1) 1/m N2(1+l/m)

da _ | 2'm o)
it N2 52 12 @7
4T [1 - —‘21-] m°1
Nog

for N2 < N2
[o]

. We see that when N2/N2 << 1 this result reduces
og o og

to Eq. (95); for this range we may set C, = C, and m = n. Equation (97)

2 1
also shows clearly that the velocity becomes unbounded when No

approaches Nog from below.

Fracture Properties: The basic Eq. (91) was derived without

expiicitly imposing any significant restrictions on the nature of
the failure stress, Tg Now we shall deduce some special, but still
relatively gerneral, representatious in order to be able to make
explicit predictions of crack growth and/or determine pertinent
fraciure properties from experimental data.

First it should be pointed out that the assumed geometry of

the crack cross-section, Fig. 1, probably limits us to functions

i o il sl e il
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of(E) which are either independent of £ or are decreasing functions
of £. For if L increased appreciably with £ (such as for a metal
with significant strain hardening), the continuum adjacent to the
failure zone would be subjected to stresses outside of ite range of
linear viscoelasticity, thereby invalidating a basic assumption of
the theory. This limitation is not believed to be a serious one
for most filled and unfilled polymers; certainly the theory will

be suspect for some mzaterials, such as natural rubber in which
stress- and rate-dependent crystallization forms a strong, anisotropic
crack tip reinforcement [2]. On this basis it will be assumed
that the maximum value of of, which is denoted by om, occurs at

the tip or at least very close to it.

Let us now determine the principal geometric and mechanical
variables affecting the dimensionless failure stress distribution
f(z of/om), at a generic location, £. In general, this stress will
depend on the displacement v at £ as well as the t.... variaticn
of displacement as it increases from zero to the maximum value ¥
at £ = a. This time variation of displacement is defined by the
tip velocity a (which already has been assumed constant during
the time an element of material is stretched from its initial length
at £ = 0 to complete failure at a), the shape of the interface
Jetween the linear continuum and failure zone, and the maximum
displacement v i we shall express the interface shape using the
single parameter.&/, which is intended to represent the set of all

values of v/vm over 0 < £ <a. The rate at which the tensile stress

. N s anie £ e il e e i i s ok e At Do G ST DD LS
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in the x-direction within the failure zone decrezses from its value
of cx(o) (= oy(o))'at £ = 0 to zero could affect the rate of
degradation and, therefore, Ops €:.8., the triaxial tensile stress
state near the tip may facilitate the production of cavities in the
failure zone for some materials. It will be assumed that this
effect is determined by the overall failure zone dimensions, Vo and
a, tip velocity, 3, and interface shape£[

One might al;o argue that the crack tip thickness di (see Fig. 3)
is not a constant, and therefore should be explicitly included in
the set of parameters affecting f. However, implicit in the

assumption of linear visco:lastic behavior for the material outside

of the failure zone is that the strains are small, and this restriction
includes the strain at the tip, £ = 0; within this context di is

essentially constant and no further mention of this thickness need

be made.

On the basis of the above remarks and dimensional considerations,

the dimensionless distribution f can be written as follows:

a T,
-r, S, %, (98a)

m m

(]
I

where Tj ( =1,2,...,N) are N time-constants defining the
rate-dependence of the failing material through bond failure and/or
rélaxation processes; note that each cne of the associated
nondimensional parameters is the ratio of the time constant to the

time the crack tip takes (a/é) to propagate the distance a. The
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Parameter u/vm reflects Primarily the influence of the triaxial
A\

Stress state on the degradation Process,

In order to establish the variables affecting the maximum

Stress Op® consider a material point along the line of crack

| prolongation.
1 .

As the crack tip approaches, the stressges (ox, Oy’ cz)

at this point approach (om, O oz), where

i
I
1 ‘ e+ 0 ) ¢ %,
3 2T Ve —E— Vg | ge - ) 57 dt . (v8b)
o o

to time [ 1] and the fact that €, = 0 in the neighborhood of the

crack tip, thig dependency wil] be neglected; hence o,

= 0.
m

With this observation in mind and using the Previously gtated

-sumption that the material ig linearly viscoelastic
outside of the failure zone, and therefore ig undamaged, we conclude

that o is independent of stress history; On May, however, depend

on tip velocity, Thug

- contains as a special case the fracture theory of

Barenblatt et al.[18],

Process theory to the failure zome ip an otherwise linearly elastic

material, However, we shall not use their special form of of as it
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is derived from a rate equation for bond failure which is probably

over-simplified [2] and also predicts the physically incorrect

result of a noan-zero tip velocity for a vanishingly small stress

intensity factor; while such behavior could exist in noncrosslinked

polymers above their glass-transition temperature, they do not satisfy

the elasticity assumption made by Barenblatt et al.[18] when a~+o0.
Returning to the discussion leading up to Eqs. (98a) and (98c),

we may conclude that the fracture energy (which is the work done by

g acting through the displacement vm) depends, at most, on the

nondimensiunal parameters shown in Eq. (98a) except for v/vm; viz.,

arT, .
renied, & —d) . (99)
m

The quantities T, O Il’ and F, by themselves or in cowbination,

will be called fracture properties. For the sake of argument, let

us now suppose that these fracture properties, as well as Cv(t), are
given functions of their arguments. Equations (91), (92), and

Eq. (82) provide a set of five equations from which the five

quantities n, ta’ a, é, and v can be found, in principle, given

No; note that the shape, Jyﬂ is defired by the variation of v with

§ through Eq. (82). It 1s therefore concluded that the instantaneous

crack tip velocity depends on only the instantaneous stress intensity

factor; neither the history of this factor nor the history of the
stresses in the continuum enter.
This conclusion has an important practical implication. Suppose

that the function No = h(é) has been obtained experimentally over the

et o

cue . B
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velocity range of interest. Then to predict;cracg growth due to a
stress intensity factor which has different time-dependence than used
in the experimental determination of h(a), one does not have to
introduce any new functions or fracture theory per se. Rather, all
one need do is integrate the first order differential equation

No = h(a), where No may possibly depend on a as well as other
time-dependent parameters. Of course, use of the previously derived
theoretical relationships may greatly facilitate the evaluation of

h(a) from experimental data (especially if T and omI are constant)

1
and simplify the determination of its dependence on such important
factors as chemical aging and temperature; incorporation of these
factors will be discussed shortly. For the three materials studied
later in Section 4 it is found that T and omll can indeed be
taken as constants; this result will be seen to provide a simple
analytical representation of h(é) in terms of creep compliance

"and enable some rather useful conclusious to be drawn concerning
crack growth and failure under realistic loading conditions.

Finally, it should be clear that if only the function h(;) is
known, it is not possible to establish the separate fracture
properties appearing in the theory. For example, we could arbitrarily
assume F = 1 (or I1 = 2) and select any constant value for % and
still adjust the theory, Eq. (91), so as to fit the function f(é);
this fitting would be accomplished by absorbing as much velocity ;

dependence in I' as necessary by setting No = h and comhining Eqs. (91)

and (92) so as to find I' from the equation,

sppy cat B o Si i 050 it i
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1.2 1/n -
r 3 h CV(An a/a) (100a)
where

a ﬂzhz
gy I U S (100b)
. e 2 2
a aoc 1

m 1

and n 1is defined in Eq. (92¢). Unless Omll is actually
constant and its value correctly chosen, T as given by Eq. (100a)

cannot be interpreted as true fracture energy. On the other hand,

if both h and o are determined experimentally as functions of a,

Eq. (100a) yields the actual fracture energy after substituting

these two functions. Then Eq. (100b) can be used to find chl

in terms of a.

We are thus led to an important conclusion concerning fracture
experiments. If it is desired to use these experiments to establish
the rate dependence of T' and omIl’ if indeed any exists, one must

measure both crack velocity and failure zone length as functions of

N .
o

Effect of Environmental Changes and Aging: The creep compliance

Cv and fracture properties T and cmll which appear in the basic

fracture Egs. (91) and (92) can be expected, in general, to vary

with the eunvironment through, for example, dependence on temperature

and relative humidity. These properties may also vary directly with
age due to such phenomena as post cure reactions and oxidation. As
long as the resulting changes in Cv’ r, and ch

y are relatively small

in the generic time interval a/;, we can incorporate this time

i ————————,

e
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variation in properties directly into Eqs. (91) and (92), as well
as Eqs. (95) and (97), without having to alter the form of the
equations; integration of the appropriate equation, taking into
account the time-varying properties, will yield instantaneous crack
size as a function of environment and aging histories.

As a point of caution it should be recalled that the crack
propagation theory was developed under the assumption that NO is
independent of viscoelastic properties of the continuum. With
sufficiently rapid changes in the environment and/or spacially
nonuniform aging, the resulting inhomogeneity may give rise to
significant dependence of No upon the viscoelastic properties.
Consequently, the theory will not be valid during those periods for
which such inhomogeneities exist.

A study of the possible ways in which the fracture properties
may change is beyond the scope of this paper. But we will comment
briefly on temperature dependence of the creep compliance as a large
amount of experimental data exists on this property. For many
crystalline and amorphous polymers, below and above the
glass-transition temperature, Tg’ temperature dependence of the
compliance is characterized under isothermal conditions by the

simple equation {1],

Cv(t, T) = Co + AC(E)/aG (101)
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Co = Co(T) = jnitial compliance

AC(E) = (Cv - Co) aG

[ME t/aT = reduced time

a, = aG(T) = compliance factor

ap = aT(T) = time-scale factor
Thus, three functions of temperature (Co, ass aT) plus one function
of reduced-time (AD(£)) define the compliance Cv(t, T). It should
be added that most of the data used to establish the form of
Eq. (101) are from unianial tensile tests; however, this equation
should be quite accurate for Cv as well since the uniaxial creep
compliance and Cv differ by only the factor (1L - vz).

Let us assume the common power law form fcr AC(E),
m

AC(E) = CRg (102a)
where CR and m are constants. Upon comparing Eqs. (96) and
(102a) we see that C2 is a function of temperature; viz.,

C, =C,/a: a (102b)

2 RR'T G )

This coefficient, as well as Co(T)’ can be substituted directly
into Eq. (97) in order to predict crack growth under different

constant or transient temperatures.

When amorphous polymers are in their glass-to-rubber transition

e kel o

T R —




: "+« one can neglect the temperature dependence of a, and Co’
S ar ~e2vefore write
3
C, = C,(€) (103)

where § = t/aT. Any material whose temperature dependence enters
entirely through the time scale, as in Eq. (103), is called

E "thermorheologically simple''[13]. *

3 Prediction of Initial and Intermittent Crack Growth

The preceding analysis enables one to predict crack growth

cte S e Bt

under a constant or varying stress intensity factor during those

5 periode for which No’ I, ard O do not vary appreciably over each

time increment a/é. Of course, even if there are intervals during
which this condition is not met, the theory is still valid for
predicting growth in each intervening period when N0 is sufficiently
large.

Prediction of the time at which a crack starts to grow (i.e.,
the fracture initiation time, ti) and growth when No varies
significantly during the time increment a/é (as in low stress level
fatigue) is accomplished by bringing together the convolution
representation of displacement, Eq. (41), the finite stress
condition, Eq. (22), and the fracture energy Eq. (54) or Eq. (55).
The analysis may be considerably more involved than the preceding
one of contiriuous growth since simplificd displacement Eq. (82)

cannot be used and the cnergy T and failure stress distribution

‘~ﬁaﬂmn‘u&%ﬂﬂﬁhﬁmﬁﬁﬂﬂﬂi
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will possibly depend on loading historv. Because of this complexity

we shall limit our analysis to the prediction of ti and initial

velocity using an idealized representation of ¢ A possible

f.
approach to analyzing more general problems will be outlined at the
conclusion of this section. Environmental and aging effects are

omitted for simplicity.

Fracture Initiation Time: Suppose that the crack tip is

initiaily located at x = 0 and that the body is subjected to load(s)
starting at t = 0. As the first case we assume (i) No is a
nondecreasing function of time, and (1i) the fallure stress

distribution 1s coustant (viz., of = om = constant). The length of

the failure zone is found from Eq. (22),
"2 N2
0

. (104)
402
m

Inasmuch as the left end of the faillure zone (see Fig. 1) does not
completely fail until an amount of work equal to I'dA has been done
on it, the failure zone length in Eq. (104) 1s also equal to the
movement of the crack tip during the first stage of loading.

The crack opening displacement at the left end (x = 0) is obtained
from Eq. (41) by substituting Eq. (42) with x = 0 and a(t) = a(1),

and then using Eq. (104) for o; there results,

2
T N0 c(z)

v = —

4o v - 0%
m

(2)

where Cv is a so-called "secant compliance,"

59
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(2) (2) = _
C, =C, () =- C (t - 1)

e dt . (106)

Failure of the material at x = @ occurs when v reaches the

value Vp? €orresponding to the displacement for which the energy

input is equal to I specifically, from Eq. (54),

A s (107)

Setting t = ti and v L in Eq. (105) and substituting this result

into Eq. (107) we obtain

r=71 Ng(ti) C\Ez)(ti) (108)

which is identical to the condition for the onset of crack growth

in an elastic body except the Secant compliance, Eq. (106), replaces

41 - vz)/E (see Eq. (59)). Referring to Eq.

t. = 0*if N (0*) > N
i o - 0

(94), we conclude that

8,and that fracture does not initiate if

N <N .,
o oe

Secant compliance Eq. (106) can be rewritten as follows:

t d N%(1)

c(? e, (6) - ¢ (c - D) —2— 4t (109a)

v

(£) = ¢ (1) -

No(t) o

Since No and Cv are nondecreasing functions of time, this equation

implies

@

s (&) < ¢, ()

(109b)
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Hence, if the Creep compliance itself were used in the elastic-like

Eq. (108) instead of the secant compliance, the predicted initiation

time, tci’ say, would satisfy the condition

(109¢)
ci - 7i ‘

The equality results if No is constant for t > 0,

When No is a power law in time, the secant compliance can be

obtained from the previous result for effective compliance, Eq. (79).
Namely, if NO N tu, where u is 3 positive constant, we find

(2) . a
C, (t) = Anruv(t) (110)

where Anr is given by Eq. (80) and r = 2y, Figure 6 can be used

to estimate Anr if 1/2 S0 <3

The fracture initiation time predicted by Eq. (108) was derived

assuming O = Om = constant. However, the results in Appendix ¢

provide evidence that Eq. (108) is at least approximately valid even

if £ varies with B Specifically, when approximate displacement

Eq. (49) is used along with Eq. (22) to predict Vo and it is

assumed that the shape of the failure zone is the same as in Eq. (72)

(viz., v~ £n+3/2) and that e omF(v/vm), there results

o4 M2 (2)
Io= Ay 7 N(t) c,” (t,) (111a)

where Ai is given by

I

Ins

- _8
By = 3

‘F(p) do . (111b)
I

2
1
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The coefficient Ai turne out to be equal to the ratio Fap/F in i
Eqs. (C-4) and (C-5) when ¢ is given by Egs. (C-1) and C-2), :
respectively. In view of the results shown in Fig. C-1, it is
tentatively concluded that Eq. (108) can be used to predict fracture
initiation time even when of varies with £. (Thefe are cases,
however, when ti is very sensitive to I' and therefore very‘sensitive
to the variation of of. For example, this situation exists when

No is a constant within the range in Eq. (94a) and Ciz) is a weak
function of time.)

Let us now consider the problem of predicting fracture‘initiation
time when we remove the assumption that No is nondecreasing but, for
simplicity, retain the assumption that g =0 . Equation (104) 1
implies the position of the crack tip a(= a) will move to the
left (a < 0) upon unloading (dNo/dt < Q) if o does not decrease at
least in proportion to No; result a < 0 is physically unacceptable
since it would impiy complete healing of the material in the failure
zone and, moreover, would invalidate Eq. (41) since it is restricted
to a > 0. At any time (0 < t < ti) during the loading or unloading
periods the displacement is given by Eq. (41) as long as a > 0 and |

the crack faces do not contact one another (which could occur if

No < 0). At x = 0 and with op = om(r) and £ = a = a(1), we find

t
Cv(t - T)'%? [om(r) a(t)] dr . (112)

o
One physically reasonable selection for om(r) and a(t) would be

1
v ==
m

L constant when dNo/dt > 0 and No > No(max), where No(max) is the

iargest No up to the present time, and o = constant whenever No < No(max).

i s o e e R ‘-ﬂd
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The analysis will not be pursued further in this paper. However, it
is to be noted that the resultant work input to the failure zone
at t = £y should be calculated using Eq. (55), rather than £q. (107),

since o is time dependent.

Initial Velocity: Calculation of tip velocity during the first
stages of crack growth will be illustrated using the assumptions
that No is nondecreasing and 9 =9 = conétant. Motion of the crack

tip prior to t, is obtained directly from Eq. (104) since

i
da/dt = da/dt:
da nzNo dNo
Se e G O 1
dt 202 s 0 <t < ti i (113)

m

Immediately after fracture initiates, the tip velocity becomes
dependent on the creep compliance of the continuum., This velocity
can be calculated from Eq. (91) if No does not change appreciably
during the time it takes for the crack to propagate the distance
a in Eq. (104). Inasmuch as No satisfies Eq. (108) at ty comparison

of Egs. (91)'and (108) yields an implicit equation for 5,

1/n l. - '\(2)
Cv()\n afa) = C, (ti) (114)
where ti < t < ti + a/é. If, for example, No is constant for t > 0
and N <N <N ,
oe o og

(2) A
¢, " (t) =¢C () (115a)

i

and therefore,

g

TR g et Y s D B
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i (115b)

1 or

: (115c¢c)
3 ti 402
- m

which is the velocity immediately after the fracture initiates at

time L, Referring to Fig. 6, it is seen that 0.29 < Al/n

n
when 0 < n < 1; thus, according to Eq. (115b) the time for the

< 0.40

crack to propagate the distance a is approximately three-times the

initiation time. 1In deriving Eq. (115b) it was assumed that the

1 value of n obtained from the creep compliance at t = o/3a

(see Eq. (92c)) is the same as that at ti; this is justified since

Eq. (115b) and the average value of Al/n

J7 v 1/3 imply a/3a * t

i
Equation (114) is based on the assumption that the fracture

energy required to produce the initial failure at x = 0 is equal to

F that under continuous growth. Whether or not this assumption is

valid probably depends on the material and loads since the former

energy could depend on loading history when t < ti and the latter

1 energy may be velocity dependent. Furthermore, an element of

; material in the failure zone at x = 0 is unstressed in the

r x~direction for t > 0, while in the continuous growth case an element

of material in the failure zone is under triaxial stress at least

part of the time.

Low Stress Level Fatigue: When Eq. (91) cannot be used to

predict tip velocity, we must return to the convolution
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representation of displacement, Eq. (41), in order to establish a
criterion for crack growth. Such may be the case in the important
problem of cyclic loading when the maximum stress intensity factor
is large enough to cause crack growth while the minimu& factor is
so low that either the crack is stationary durirg a portion of each
cycle or o/a is not small comparad to the vibration period.

The method of analysis used by Knauss and Dietmann [7]
apparently could be applied to the present theory; they expanded
the stress intensity factor in a power series in time over the
interval in which the crack moved a distance o, where a was constant
in their theory. Here it would be necessary to account as well for
the fac- that a, and possibly Og» vary with time over each cycle,

but such an analysis will not be pursued in this paper.

4. Applications

A Sheet Under Constant Stress

Consider a centrally cracked plate, such as shown in Fig. 9.
Assuming the crack length, 2a, is large compared to sheet thickness
but small compared to the in-plane dimensions, the stress intensity

factor is [5],

N =
(o]

(116)

e

i3,
Z

where ¢ is the applied stress. Crack growth and failure time will

be predicted using Eﬁ. (97) under the assumption that the creep

|
|
!
i
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compliance parameters, C2 and m, and e fracture properties, I' and
omll, are constant. Substitution of Eq. (116) into Eq. (97),

assuming ¢ is applied at t = 0 and is constant thereafter, and

integrating yields

2 .2 ala
o 1 C y1/m o a
t = 2 m 1| o [_B_ - 1]1/“‘ dy (117a)
2 2 AC a y Y
T o] m 2 1 o
where ag is defined as
a = —30 = . (117b)
& " Coc'

Whun the central crack reaches length Zag complete failure of the
sheet occurs; thie point follows from Eqs. (91), (94c), and (116),
which imply a~>w®asa- ag. The time at which a = ag is called

the failure time, tes which, after changing the intergration variable
in Eq. (117a), becomes
2052 1
[ § C y1/m
m 1 o (1 - u)l/m - (1+1/m)du
AmCZ

=2
te =73
m

3 (118)
o a/a
(o]

It is of interest to notice that when ag/ao >>1and 0 <m <1,

the integrand in Eq. (117a) goes quickly to zero as Yy increases.

In fact, the current time is already 90% of t_ when

f

. m

= 10 . (119)

mlm

[o}

One can easiiy show that if the assumption ag/ao >> 1 is removed, the

crack growth at t = 0 90 te will be even less than given in Eq. (119).

1

i
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These observations are important because they tell us if the stress
intensity factor, Eq. (116), is valid over most of the time period

0 <t<t.or if the effect of finite sheet width must be

f
included when predicting failure tiwe. For three typical values of

m, Eq. (119) yields

10 ,ym=1
g— =4{3.3,m= 0.5 . (120)
(o]

1.6 , m= 0.2

Surprisingly, most of the time required for failure is consumed
while the crack is still relatively small, especially for
0 <m < 0.5.
As a point of comparison, i1f the bracketed term in the integrand
in Eq. (117a) is replaced by (ag/aoy)l/In for all 0 < t < tf, the

failure time is derived by setting a/ao = e to find

-

= 2 °n 1 [ 8T ]l/m c—2(1+1/m)
f “(2+1/m) AmCZao

(121)

which brings out very simply the effect of stress on failure cime.
This is the same result as would be obtained by neglecting
(Ni/Nig) in Eq. (97) at the outset of the analysis.

Equations (118) and (121) will be compared to experimental data
on Solithane 50/50, which is a crosslinked, amorphous, polyurethane
rubber. The experimental data, which are shown in Fig. 9, have been

normalized with respect to the stress o,, where
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-f 3T E
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; is the critical stress for the onset of crack growth in an elastic

e A ab 0

b

plate having Poisson's ratio v = 1/2 and Young's modulus J
E =4 - v2)/Cv(w) = 3/Cv(°); thus, no crack growth occurs for
log(o/ow)2 < 0. Also, all data have been reduced to a common

temperature of 0°C by recognizing that the material is essentially 3

ATTTTINIRITY TEwTry

thermorheologically simple [5]; according to Eq. (103) the effect ]

! of temperature can be introduced by replacing te with tf/aT in
Eq. (118). Since log(t/aT) = log t - log ars the theory, if valid,

implies experimental failure data obtained at different temperaturee

can be superposed by means of horizontal translations of magnitude
log ar so as to form a single curve; the failure data at the i
temperatures indicated in Fig. 9 were shifted to the data at 0°C.

(One can interpret the reduced failure data as being the results of

tests conducted entirely at 0°C.) We should add that the creep |

compliance in Fig. 4 was formed in the same way; in fact, the values

of log a

s o O M

T used to shift the failure data are those obtained by

ﬂ shifting the creep compliance. That a single creep compliance curve
was obtained is a check on the thermorheological simplicity

i assumption; the fact that the failurc data superpose extremely well 1

(as seen in Fig. 9) using the same values of log a, helps to

T

substantiate the assumption that I' and o, are constant, and checks the

underlying fracture theory itself.
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In view of the power law fit shown in Fig. 4, we set m = 0.5

in Eq. (118) and carry out the integration to find

2 .2
1 C a a a
.2m1 o231 %2 % %
T3 Z(AC){2+2(a)—2a+lna (123)
n c o 2 o) o o)

where ag depends on stress through Eq. (117b). When ag/ao 5> 30 this
equation reduces to Eq. (121) after setting m = 1/2. The latter
equation shows the theory is a straight line with slope of -1/3 when

log(clom)2 is plotted against log t_; it is observed in Fig. 9

£
that this is indeed the slope of the experimental data in the low
stress level range ((o/ow)Z s 100.75).

Referring to Eq. (121}, we see that the influence of the fracture

properties on the relation between o and t_. in the straight line

f
region is through the combination (omIIF). Had the fracture data
been given in terms of o in [5], rather than o/o_, this combination
of properties could have been found by matching the theory and
experiment at any point in the straight line range. (Note that
omIl and T appear by themselves in the high stress level range of
Eq. (123); if the theory is applicable in this range one can then
determine omll and [ separately.) Knauss [5] obtained the fracture
energy itself from other experiments on swollen rubber, in which
state the material is essentielly elastic, and then used the
corresponding value orf o_ to normalize the failure data. He found

I = 2.41 x 10_2 1b/in., which corresponds tc o = 8.40 psi.

2

(Knauss actually reported the value of I' = 3.21 x 10" ¢ 1b/ir. [5],
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but this value was obtained by using the plane stress equation for
critical stress in an elastic sheet; later it will be found that
o is much less than sheet thickness, which means the plane strain
version should have been used. . In order to correct the reported
I' value we have multiplied it by (1 - vz) = 3/4, Now, express
Eq. (121) in terms of (0/0_) and solve for omll by noting that the
straight lire in Fig. 9 intercepts the stress axis at

8 6.22

tf =10 sec = 10 min; hence

3
m

By taking into account Eq. (24b), a lower bound to the maximum

failure stress is cbtained:

Q
v

where the equality is used if o, is constant throughout the failure

f
zone. The ideal theoretical strength based on failure of a regular
arrangement of carbon atoms is approximately thirty-times this
value [19]; however, considering the irregular nature of real
networ..s, the presence of shear forces at the tip {see Fig. 3) and
that Eq. (124b) is the lower bound and not necessarily Gm’ this
numexrical result does not seem unreasonable.

Inasmuch as both Gmll and T are now known, we can plot the
remainder of the solution as given by Eq. (123). While having the

correct shape, the theory underpredicts failure time in the high

stress level range above log (o/om)2 = 0.8, say; this stress

o I, =172 x 107 psi : (124a)

> 86 x 10° psi (124b)

70
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corresponds to an overall strain of approximately 5%. Since

tf ~ N;6 for m = 1/2, even a small amount of nonlinearity, such
as blunting of the crack tip and consequent reduction qf stress
intensity factor, could have a significant effect. 1In fact, we
find the theory agrees with all of the experimental results if

the stress intensity factor in Eq. (116) is replaced with

No= 1+ 2e)'1.v/§ o (125)

(It is to be noted that the effective modulus of the sheet is a
constant 430 psi since the time scale for crack growth in Fig. 9
is far beyond the viscoelastic range in Fig. 4.)

Even though the stress at the tip is very high (Eq. (124b)),
the strain is not because practically equal triaxial tension exists.
Using a typical value of bulk modulus, 2 x 105 psi, the Young's

modulus of 430 psi, 0. =0 , and 0 = v(o_ + o ) we find
X y z X y

1/2
1

the strain decays rapidly along the line of crack prolongation.

= €= 21%. Moreover, because oy SO + 0(¢

€ 7 ) near the tip,

The length of the failure zone is found from Eq. (92b). For
the lowest and highest stresses at which experimental data are shown

in Fig. 9 we find, respectively

0.6 & 10 ven 5 L= Ot

71

(1) log(o/o )’ = 0.2 : = (126a)

2.0 x 108 cn , t =09t

ot o P R
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10x108 cm, ¢ =0t

(11) log(o/o)? = 1.6 : a = % (126b)
32x10 " em, t =0.9 te

where Eq. (125), rather than Eq. (116), has been used to calculate

stress intensity factor. Although tue accuracy of the theory in

ISP SE—

predicting failure zone lengths comparable to interatomic spacing

(Eq. (126a)) is suspect, it is believed the scale is.at least g
correct in view of the agreement between experiment and theory in

the low stress level range; if o were constant, for example, a slope 4

of (-1/2), rather than (-1/3), would be predicted for the graph in 1
Fig. 9. (In an attempt to bracket the actual failure zone size,
stationary and moving cracks were observed with the TAMU scanning
electron microscope. Figure 11 shows a tip which was moving at
approximately 10-.3 in./min at 77°F. Cracks at 10x the magnification
of this figure were also studied visually but the failure zone was
still too small to te observed; because of excessive discharging, i
with and without a coating, the resolution of the crack boundary
was not as good as in Fig. 11.)

The instantaneous value of a/é is found from Eqs. (92b) and

(97) to be a decreasing function of N . Therefore, the largest a/a

for the entire set of experiments occurs at t = 0% under the lowest

stress. We find

%-(max) = 14 x 10_2 min : (127)
a

Referring to Fig. 4, we see (a/BA)(max) is practically within the

»
e it G i G r.~§<.v.J




range of the generalized power law creep compliance; since

(a/a) ~ N;a and Eq. (127) is based on a (rather than a), use of
Eq. (96) with m = 1/2 1s justified in all predictions of failure times.

Moreover, the maximum fracture initiation time is approximately

A W TN SR RIS

; (a/3a) (max) and therefore t, is negligible relative to the range of

tf in Fig. 9.

Additionally, as required by the underlying theory, the change
in stress inter-sity factor over each time increment a/é is small
for the entire experimental range of behavior; this observation

follows from Eq. (127) and the fact that the increase in No during

most of the propagation time is small according to Eq. (120).

A Long Strip under Constant Strain

The previously determined creep compliance and fracture

properties of Solithane 50/50 will be used in conjunction with
Eq. (97) to predict constant velocity crack propagation in the long
strip shown in Fig. 10. Provided a > 1.5b, the stress intensity

factor in a strip clamped to rigid grips is [6],
2.41/2
N = {M} o (128)
o 27

where ¢ is the stress which must be applied to the clamps to produce

the strain €. Although this applied stress and strain could vary

with time, the experimental results are for the case in which the
strain is held constant and the strip is in a fully relaxed state

outside the neighborhood of the tip; thus o = E /(1 - vz), which

Frpm—
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when substituted into Eq. (128) yields i
- g (2byL/2

No Ew(3“) € (129)

where we have set v = 1/2,
Theoretical upper and lower bounds on strain for which stable

growth exists in the Solithane are obtained by using Ec. (94);
there results

-1.89 < log € < ~-0.81 . (130)

These bounds arz drawn with dashed lines in Fig. 10.

Except at high strains, the predicted velocities are seen to
be in very good agreement with the experimental data. (If the stress
inténsity factor in Eq. (129) is divided by (1 + 2¢), as in Eq. (125),
the predictions at the high strains are likewise found to agree.)
Whenever Ni/Nig can be neglected in the denominator in Eq. (97)
we find a ~ e6, and therefore the theory plots as straight lines in
Fig. 10 with slope of 1/6; the upper strain limit for this behavior
is found to be at log ¢ = -1.2.

It should be pointed out that Mueller and Knauss [6] gave a
value of T which is three times that reported in Knauss' constant
stress study [5] and used above. This larger value cannot be
reconciled with the existence of failure data under low values of
constant stress in (5], and therefore was not used in any of the

calculations made here.

For the range of experimental data in Fig. 10, Eq. (92b) with

i ey
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No corrected Zor finite strain as mentioned above, yields

0.70 x 105 < o < 53 x 107 e : ©(131) ¢

The largest value of a/3a, after converting to T = 0°C, 1is

0.9 x 10-3 min; this result implies, of course, that the generalized

power law in Fig. 4 is valid for the entire experimentzi range.

Variable Loading and Properties; the Linear Cumulative Damage

Rule

Some consequences of Eq. (95) concerning crack growth and failure

will be examined and then compared with experimental results on two

different particulate composites: solid propellant and asphaltic

concrete. For reasons of clarity, we first introduce some simplifying

assumptions. Although they may not be satisfied exactly in practice,

it is believed there are many applications in which the resulting

error will have little effect on the total time required for failure.
Except for some later cbservations, we assume (i) n 1is constant.

The other material properties (Cl, I, omIl) may be functions of

time (which, for example, could be due to a transient temperature

and/or aging) but we assume (ii) their variation during most

intervals o/a is small. Also, motivated by Eq. (115b), we assume

(iii) fracture initiation time for the initial loading (as well as

for subsequent reloading if there are periods for which a=0) is
negligible. Finally, it is assumed (iv) that the stress intensity

factor depends on only one length parameter defining either the
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crack size "a" (say) or local geometry of the body "L'" (say).
From dimensional considerations,
N =+val (132)
or
No=vhL (133)

where "L'" is a linear function of the stresses applied to the body;
e.g., see 2gqs. (116) and (128). The éize "a" may represent the
radius of an isolated internal (penny-shaped) crack or the half-length
of an isolated through-crack. The parameter "h" could be the
separation of two rigid boundaries, where the crack length or
diameter has to be at least somewhat greater than h; recall that
a > 1.5b is sufficient for the plane problem in Fig. 10.

It should be emphasized that if th--e are periods when the
stress intensity factor is negative {due to, for example,
cyclic loading having a zero mean value) the analysis is not
invalidated. ~for the above assumptions (ii) and (iii) together with
Eq. (95) imply a during growth periods deperds on the instantaneous
stress intensity factor and not on either its history or the stress
history. The following equations will be given without explicitly
writing a = 0 whenever L < 0; however, one should set L = 0 during
all periods in which L 1is actually negative.

Supposing first that Eq. (132) applies, integration of Eq. (95)
and setting a = ® yields an implicit equation for failure time, tf,
in terms of the initial half-length, a_ s and material property and

load histories,

e a Bl ST A

|

i i S
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(2n+1))1/n (£
aAT® C. 1/n _2(1+1/n)
1=1Jen R T (134)
n 4 r 2 .2 ‘
o- 1
o m 1
This equation can be expressea in a more recc,nizable form by
introducing a new quantity, tc, where
“ °i Ii 4T e
£ = & (&) = 3 g (135)
c c L2(1+l/n, a TT(2n+l)C
on 1
Then Eq. (134) becomes simply
‘f
_ dt
1= T (D) (136)
c
o

It is easily demenstrated by means of Eq. (134) that tc(t) would

be the failure time for the body if it had timewise constant applied
loads and constant material properties equal to those that exist

in the actual variable loading problem at the current time t.

If L and the properties are piecewise constant in time,

then Eq. (136) becomes

Nf At,
R (137)
j=1 "c¢j

where Atj is one of the time periods over which the body has constant
applied loads and properties, tcj would be the failure time for the
body if it had these timewise constant loads and properties from

t = 0 to failure, and N_. is the number of steps that are needed to

f

produce failure in the actual variable loading case.

Equations (136) and (137) are two forms of the well-known
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linear cumulative damage rule which has been used by engineers to

predict failure times of specimens and structures (usually with
acceptable accuracy) subjected to varying loads, given experimental
data on the failure time tc for constant loads. This rule, but in

a slightly different form, was originally proposed by Palmgren [20]
and used by Miner [21}] as an empirical method of predicting failure
under variable amplitude cyclic loading of metals; it is often called

"Miner's Hypothesis" or '"Miner's Law."

Another feature of Eq. (134) may be brought out by predicting
failuce under constant loading rate, L. For simplicity we assume
the mechanical and fracture properties are constant. Substituting

L=1t in Eq. (134), and defining the "critical stress intensity

factor" N _ by
cr

N

Ya_ Lt (138)

cr X X

(which is the stress intensity factor existing at the time of failure,

t s Say, referred tc tire initial crack size a_x’ say) yields

1/n|n/(3n+2)

- 3/22 2+ _ar ]

Ncr = ¢(3n + 2) a. % I1 L - 2ntD) J . (139)
n" C1

The insensitivity of NCr to loading rate, i, when 0 < n <1 is
espezially to be noted.

Now, return to Eq. (95), which is not limited to a stress
intensity factor of the form in Eq. (132). Still assuming the

fracture properties are constant we may express these properties

in terms of t , N , and a _; Eq. (95) becomes
x> Ter oX

it i e A i b i
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da 3n + 2, %ox No 2(1+1/n)
TR ) re i) - (140)
T b4 cr

This equation enables one to predict crack growth and failure of a
structure, given the critical stress intensity factor determined
experimentally in a simple specimen having initial crack length
Zaox and failing in time t,. In writing Eq. (140) we have assumed

thermorheological simplicity and selected a, to be unity at the

T
temperature of the experiment used to establish Ncr' The value of
a;, = aT(T) shown in Eq. (140) corresponds to the instantaneous
temperature of the structure of interest.

If instead of taking a specimen to failure, one simply measures
the crack velocity, éx’ corresponding to an instantaneous stress

intensity factor, Nx (which need not be restricted to the forms in

Eqs. (132) and (133)), then the crack growth equation (95) becomes

da _ % ($)2(1+1/n)

dt aT Nx

(141)

An advantage of this experimental method over that leading to Eq. (140)
is nonlinear effects can be minimized in the test by measuring
velocity early in the growth period. However, Eq. (140) does not
require a velocity measurement and, therefore, may be more desirable
if nonlinearity “s not a problem.

Consider now stress intensity factor Eq. (133), in which h 1is

constant. Let us define failure in this case as the time at which

o b

1

s




the crack length reaches some preselected value, a x> 8ay. Then

all of the results Eqs. (134) - (137) apply directly to this

case after making the substitution

al/n 141/

Py +a = (142)
mx (o}

in Egqs. (134) and (135).

The sensitivity of crack velocity, and therefore failure time,
to stress intensity factor is clearly revealed by Eqs. (140) and
(141). Suppose, for example, Eq. (140) is used to predict failure
time of a structure having n = 0.2, a constant value of No, initial
flaw length a =a . and failure is defined to occur when the crack
grows to ten times its initial length., Suppose further that the
experimental failure time is tx = ] minute and for the structure

a, = 1 and No = Ncr/Z. We find the structure fails at t_ = 10 days.

f
1f, however, No = Ncr/4, then te = 100 years! Obviously, the
ability to predict service life of viscoelastic structures is very
much dependent on the accuracy of the stress intensity factores.
However, because of the variability of material properties and
environmental and loading factors, one can expect considerable
scatter in failure times when a large number of structures are
involved, which is already a well-known empirical fact.

Before turning to the application of the theory to specific
materials, it should be emphasized that the cumuiative Jamage rule

is not generally valid in the range for which n 1is time-dependent.

A simple illustration is provided by Eq. (97) using stress intensity
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factor Eq. (132). Even with a constant value for m, the presence
of Ni in the denominator prerludes writing the right-hand side in
the form f(a) x g(L), which is necessar if the linear cumulative
damage rule is to be derived.

Failure of Solid Propellant: Failure data on several different

solid propellants (which consist of a cross-linked rubber matrix
filled with approximately 75 vol % hard particles having diameters
typically on the order of 10-200 microns) under constant uniaxial

stress have been reported by Bills et al. [22,23] to fit the equation

g
Eﬁnﬂ = (gﬁ)k (143)
o T

where
op = o(l + €) = true stress
0o = engineering stress (constant during test)

€ = engineering strain at failure

Og = engineering failure stress below glass transition
temperature
v =t /axg
8

q = constant = 10
ap = temperature~dependent time-scale factor
t = failure time
D(y) = uniaxial propellant creep compliance (= Dan in
the range of y for which the experimental failure
data exist, where D, and n are essentially

R

independent of temperature)

e 22
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and

Do = D(o)

Also, 1.5 <k < 2.5 is approximately constant for any one propellant.
In the referenced work [22], the relaxation modulus, E(¢), is used
instead of D(y); to obtain Eq. (143) we have applied the quasi-elastic

approximation

E(Y) D(¥) =1 {144)

which is quite good for the usual range of n, 0.15 < n < 0,25 [24].
It was found that failure did not occur when the tensile stress was
below some relatively small value, which evidently corresponds to
the stress for which No< Noe (see Eq. (94b)). 1In writing Eq. (143)
it is implied that the stress is above this lower limit,

The theoretical equation (135) will be cast in the same form as
Eq. (143); in doing this we obtain a partial check on the theory and
enable the empirical constants (k,q) to be evaluated in terms of
basic material properties. First, note that Eq., (48), together with
the fact that v ~ 1/2 and that propellants are (approximately)

thermorheologically simple,

D
C,(6) = 3D{g) = 3 D" = 32 (" (145)
a
T
and therefore
3D
¢, = (146)
&1
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Next, introduce the stress intensity factor for an (internal)
penny-shaped crack of radius a [25]
_ V2a
NOp o o] (147)
and define the ratio R as
R = actual stress intensity factor of the most rapidly
growing crack in speclmen/N0
Then substitute L = R Nop//; into Eq. (135), assume op * 0 and find
that it becomes identical to Eq. (143) if
k = 2(1 + n) (148a)
and
B 2 2 -2(1+1/n) 2T 7w .1/n
Q=70 I1 [ch] [33;7—5;] (148b)

In order to interpret the parameters in Eq. (135) or (148) in
terms of the properties of solid propellant and its constituenus, it
is essential to consider the size of the failure zone relative to
the particle sizes and spacing. Figure 12 shows this zone at the
tip of a through-crack in a sheet of propellant. It is seen that
the zone is large relative to the particles, and consequently cthe
overall or "effective" properties of the composite propellant
are the appropriate ones to use in the fracture model; on the other
hand, if the failure zone had been entirely Qithin a relatively

large volume of matrix material, the matrix mechanical and failure

s s
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properties would be the ones to use in the fracture theory. Now,
empirical Eq. (143) was established using specimens wichout cracks
except for naturally existing flaws; the fact that the correlation
of stress and failure time for all propellants studied is in terms
of propellant compliance (rather than that of the matrix) is believed
to imply that the crack tip geometry is similar to that seen in
Fig. 12, at least during most of the time required for failure.
As further evidence of this point, one can usually see very fine
surface cracks (with sizes on the order of the largest filler
particles) in a specimen under tensile stress; and these cracks grow
only a small amount during most of the time required for failure [24].
Since propellant contains a large percentage of much smaller particles,
it is tentatively concluded that typically 2ao > 200 microns, and
that the failure zone is significantly larger than most of the
particles; since the compliance of the surrounding continuum is
essentially that of the propellant, n = 0.2, and consistent with
observations we predict from Eq. (120) that gross failure follows
shortly after the largest crack has grown approximately 60% in size.
It is to be observed that Eq. (148a) predicts k = 2.4 when
n = 0.2, which is on the high side of the experimentally determined
range 1.5 < k < 2.5. That the reported values of k are not larger
is believed to be primarily cue to the r-iuction of the effective
stress intensity factor with strain, as suggested previously in the
study of Solithane.

As further evidence of the validity of the theory,

PR Ty PP 2
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Bills et al. [22,23] have applied the linear cumulative damage rule,

Eq. (136), together with Eq. (143), to the failure prediction of

D SN P
el g A Sl AT AN

solid propellant specimens and structures under monotonic and

cyclic temperatures and stresses with considerable success.

One final observation concerns a method of predicting fracture p g

b’

initiation in propellant structures that was originally suggested - f
and successfully applied by Swanson [26}; it was motivated by a g

technique used widely for metals. Essentially the method consists
of applying a constant strain rate to a precracked specimen and

noting the critical stress intensity factor and time when the

specimen breaks. It is then assumed that a crack in a more complex
structure will start to propagate when the stress intensity factor

reaches the value determined from the laboratory specimens, even

though the stress history in the structure may be different, By
referring to Eq. (140) or (141) we can see why such a method is
successful, at least for some stress histories. Inasmuch as

n v 0.2, the exponent 2(1 + 1/n) ~ 12, which implies there is very
slow crack growth (relative to laboratory specimen time scale and ?

crack size) when N0 < Ncr’ while the velocity is relatively high i

when N0 > Ncr' However, one must be aware of the limitations of
this method as, for example, structural failure can occur even
though the stress intensity factor is always less than Ncr; of
course, fallure time might be very long relative to the experimental

time for failure, tx'

Fatigue Crack Growth in Asj'.altic Concrete: As a result of a
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large amount of fatigue testing it has been found that the crack
growth per cycle, da/dN, can be expressed as the simple power law
[27-29],

da B

N B Nom (149)

where B and 8 are constant under fixed environmental conditions

and input wave shape, and Ncm is the amplitude of ar oscillating

stress intensity factor. For beams and plates on foundations with

sufficiencly high rigidity B = 4 at 77°F [27,28]. Probably due to

strain effects (e.g., crack tip blunting), values of B somewhat

less than 4 have been reported for unsupported specimens [27,29].

Also, it has been noted that B tends to increase with decreasing

temperature [29].

We shall show that the theoretical fracture model, Eq. (95),

is consistent with these findings. First, introduce the function

w = w(t) vhich defines the wave shape of the stress intensity factor,
No
w = N (150)
om

where the maximum value of stress intensity factor during a cycle,
which is Nom’ may vary from cycle-to-cycle. We make the reasonable
assumption that crack growth per cycle is small, which implies w(t)
is essentially equal to the wave shape of the externally applicl
loading. Now substitute definition Eq. (150) into Eq. (95) and

integrate over a cycle having period tp; writing the crack growth

per cycle, Aa, as da/dN we find
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da _ 2(141/n)
dN Bt Nom GioL)
where
( t+t
PR A A ,2(141/n)
Bt = _T—— }mc-,—z—-l—z dt 5 (152)
J t m 1
Note that I' and omIl are shown in the integrand as they could be
time-dependent, depending on the complexity of the wave shape and
wiether or not the crack is stationary during part of the cycle;
the exponent n and Cl are assumed constant during each cycle.
Equality of empirical Eq. (149) and theory Eq. (151) requires
B = Bt and H = 2(1 + 1/n) . (153)

Interpretation of these results turns out to require that we
differentiate between a failure zone which is entirely within the
bitumen matrix ("micro-zone") and one which encompasses many aggregate
particles ("macro-zone'), with the latter situation being analogous

to that in Fig. 12 for solid propellant. For a macro-zone the
properties in Eq. (152) and the exponent (n) are those of the
asphaltic concrete nposite; while there may be exceptions, the
typical range of the exponent for the composite is 0 < n < 0.5,

at ieast for temperatures not exceeding 100°F, with n decreasing
monotonically with decreasing temperature until it is approximately
zero at temperatures below the glass transition temperature [e.g., 30,31].

On the basis of the latter observation, we conclude B > 6 for a

oo
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macro-zone.

This value of B is considerably larger than the values
(B < 4) commonly reported for asphaltic concrete above 40°F. Thus,
we must consider the Possibility of the failure zone being entirely
within the bitumen. Pursuing this question we found from microscope
studies at room temperature that the failure zone is not at all
like that in Fig. 12. Rather, the bitumen matrix is so weak (it is a
non-crosslinked polymer having a much smaller molecular weight than
the propellant binder) that the failure zone of a single crack
appears to be confined between individual particles irstead of
being spread out over many. If there is ga sufficiently large
neighborhood of bitumen around the tip (which is certainly possible
if a is comparable to the zone size in solithane, for example)
then the value of n and other material pProperties in Bt 5
Eq. (152), weuld te those for the bitumen. Except at temperatures
close to and below the glass-transition temperature of the bitumen,

the value n = 1, which implies from Eq. (153) that B8 = 4, is believed

to be appropriate, Besides pPredicting the experimentally observed
value of B at small strains, it is to be noted that the creep
compliance of the bitumen is given by D(t) = Dlt except at short
times or at low temperatures [32]; in addition, a state of high
triaxial stress,which exists at the tip according to the earlier
analysis and in the neighborhood of a tip confined between rigid
particles, is known to Suppress the glass transition temperature of

polymers [33] and thereby extend the temperature range for which
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B = 4 is predicted.

Carrying this interpretation somewhat further, let us consider
the micro-zone to be a precursor of a macroscopic crack having total
length much larger than o and particle spacing. Then since the
local amplitude of stress intensity factor, Nom’ is proportional to

the far-field stress amplitude normal to the precursor, o', say, we

may write

= J . ' 1
Nom pry . (154)

In the simplest situation Eq. (128) implies gp = (3b/8n)l/2,

where 2b is the distance between adjacent particles and we have

set v = 1/2., More generally, gp can be expected to depend on particle
shape and size as well as spacing. Because of the relative rigidity
of the aggregate particles compared to the bitumen, dimensional
considerations imply gp is essentially independent of modulus; then
assuming v = 1/2 for the bitumen,the correspondence principle [13]

implies Eq. (154) is valid for viscoelastic media. Now, lor a

sufficiently long crack,
' ~ N' //:)T (155)
y om' ’1

where Ném is the stress intensity factor one would calculate for the
asphaltic concrete when viewed as a homogeneous continuum, and 51 is
at least somewhat larger than the particle spacing in the
neighborhood of the crack tip. Substituring Eq. (155) into (154)

and the result into Eq. (151), we obtain a result which is formaily

Mttt gt .'.u;.:.:.u-A
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identical to original Eq. (151); viz.,

da _ gy
dN Bt(Nom)

2(1+1/n) (156)

where Bé depends on particle spacing and geometry, in addition tc
bicumen properties, while N;m is the "effective" stress intensity
factor for the composite material. In general, both B; and Ném
could be functions of the number of cycles N.

While the above description of ~rack growth in asphaltic
concrete represents at best a tentative model and a partial check
on the theory, it does bring out the importance of the microstruc*ture
(i.e., particles) in the fracture of composite materials. Proper
interpretation of expériﬁental results obviously requires that the
failure zone size be known relative to microstructural dimensions,
and that the possibility of its size changing appreciably with
temperature be recognized.

With n constan%, and Ném having the form of either Eq. (132)
or (133), cumulative damage ruies analogous to Eqs. (136) and (137)
are easily derived. The only difference in the result is that t is
replaced by the number of cycles, N, and tc by NC, where Nc is
the number of cycles required to fail a specimen under constant
amplitude, Ném, and constant B;. The rule Eq. (137) then becomes

identical to Miner's Hypothesis.
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5. Related Theories

As mentioned in the Tntroduction, the existing theories of
crack propagation in viscoelastic mediz have already been reviewed
in Knauss' recent article [2] and, therefore, such an effort will not
be repeated here. Reiher, we shall simply compare some results of
this paper with closely related ones established by others.

The governing equation derived by Knauss {5] f.r growth of a
central crack in a large sheet (see Fig. 9) and one derived by
Mueller and Knauss [6] for a cracked strip (see Fig. 10) have the
same form as Eq. (91). Namely, the relations are essentially those
for an elastic material except creep compliance replaces the elastic
compliance. Although there is some difference in certain details
it is surprising how similar the results are, considering the fact
that the method of derivation is so different in each case.

In [5], the work done by the continuum on the failing material is
approximated using the same relation as for an elastic material
(viz., 1/2 force x displacement) along with some other analytical

approximations at the crack tip. The result is

D(afa) = 2L

(157)

o a

In contrast, the approach in [6] to predicting crack propagation in
a long strip is to let the crack grow in steps. With éhe crack
stationary, the stress in the failure zone is assumed to decay

linearly with time until it vanishes; the tip is then instantaneously
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advanced a distance a and the stress again decays linearly in time.

With v = 1/2 the governing equation is

32 > (158)
2be Ew

G(a/a) =

where G is the difference of two integrals involving the uniaxial
creep compliance; for Solithane it is shown in [6] that

G(a/a) = D(a/3a). Both Eqs. (157) and (158) were derived using a
singular stress distribution along with the assumptions of plane
stress and a constant value of a. As we have already discussed,
when a is much less than sheet thickness (it is for Solithane)

plane strain theory should be used, which accounts for one difference
between the results in [5,6) and the theory in this paper.
Furthermore, o is not really constant; referring to Figs. 9 and 10,
for example, with constant o the slopes c¢f the straight portion of
the curves are predicted to be (-1/2) and (1/4), as compared to the
actual values of (-1/3) and (1/6), respeétively. Finally, since
Ai/n * 1/3 for all 0 < n < 1, according to Fig. 6, the theory in
this paper, Eqs. (91) and (92a), shows that the use of D(a/3a)

on the left-hand side of Eq. (158) is essentially correct, while
the argument a/a in Eq. (157) is three-times too large. In later
work dealing with rapidly changing stresses, Knauss and Dietmann [7]
removed the assumption of plane stress and considered relatively
general crack geometries, but the other features in [6] {(i.e.,
stepwise crack propagation, singular stress, and linear decay with

time of stresses near the tip) were retained.

.
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Turning to the prediction of fracture initiation time, ti’
Willjams [3] used a spherical flaw geometry in order to establish
this time. For a constant stress applied at t = 0, he obtained a
relation which is very close to an equation for critical stress in
an elastic body. Translating Williams' solution to the notation in
Eq. (108) for plane strain, we find his result is obtained if

Cv(ti) is replaced by 2Cv(ti) - Cv(o). Thus, the two theories agree
qualitatively for ti > 0 and predict the same critical stress
intensity factor when ti = 0. Predictions for time-varying stresses
do not lend themselves to such a direct comparison. Additionally,
when the stress intensity factor is specialized to that for a
penny-shaped crack, Eq. (108) predicts the same fracture initiation

time as derived by Wnuk and Knauss [4] for a viscoelastic-perfectly

plastic solid having a constant yield stress.

6. Concluding Remarks

A simple theory of crack propagation has been developed
and successfully applied to three different unfilled and filled
polymeric materials under constant and variable loading. Although
the continuum was assumed linearly viscoelastic, the nature of the
failure zone is quite arbitrary and, therefore, could include
material which is highliy nonlinear, rate dependent, and even
discontinuous. Under mildly restrictive conditions, an equation for

fracture initiation time was derived and found to be very similar
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to the elasticity relation for critical stress, except a ''secant
compliance" appears in place of an elastic constant.

Some influence of finite strains on crack velocity was noted
for the three materials studied. The general tendency appears
to be that the actual crack velocity falls below the linear theory
prediction as the strain is increased; it was suggested that an
important cause is geometric nonlinearity, in that crack-tip blunting
at high strayns could reduce the effective stress intensity factor.
An‘ad hoc mddlfication for finite strain effects in Solithane, in
which a simple product form was used, brought the theoretical and
experimental results together at high strains. As to whether or not
one can normally expect to be able to account for geometric and
material nonlinearities in the continuum through such a simple
modification is not known at this time. A point of encouragement is
that the relaxation modulus of many polymers can be expressed as
a product function of strain and time [3].

Although only the opening mode has been analyze&‘in this paper,

it seems reasonable to expect the governing equations for fracture

initiation time and crack growth in shearing modes to be analogous
to those developed here and, therefore, to be similar to equations
for critical stress intensity factors in elastic media. Thus, for
the skew-symmetric mode {34] (Txy # 0 along plane of crack prolonga-

tion) it is conjectured that, in analogy with propagation Eq. (91),
7

= 41
c,(t,) 2 (159)

N
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where energy I' is not necessarily equal to that for the opening mode,
and the stress intensity factor N2 is defined in the singular
shear stress distribution near the tip, Txy = NZ//EI; while for

the antiplane mode [34] (sz # 0 along the plane of crack prolongation),

2J(t ) = 2 (160)
o 2
nN3

where J(t) is the creep compliance in shear and, just as for NZ’
N3 is defined in the singular distribution sz = N3//EI. Equations
for predicting a in these two modes probably are similar to Eq. (92b),
but determination of their exact form requires further analysis.

When two or three stress intensity factors exist simultaneously,
and it is assumed that the fracture energy is the same as in the

opening mode, we add the work input to the failure zone for each

mode and find that Eq. (91) is to be replaced by

4T

2, 2 - 20 oy 41 ’
(N] + N3) C (e ) + 2N3 J( ) = = {161)

whenever No > 0. The opening mode does not contribute energy if

No < 0 since the displacement in the y-direction is then zero;

we must therefore set No = 0 in Eq. (161) unless No is positive.
Without further analysis it is not clear what the length of

the failure zone should be under combined loading. Nevertheless, by

means of the following idealized problem the nature of the interaction

can be demonstrated: Assume N3 =0, No > 0, the failure stress

O = o, = constant with the x- stress component negligible, and a

maximum principal stress criterion in which Om is the same regardless
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of the relative magnitudes of No and NZ' By analogy with the deriva-

tion of Eq. (92b) we deduce

2 N N 2
o« = -:-2- {?‘?— % [(f-)2 5 Ng]llz} . (162)
[ |

The major problem in generalizing tha opening mode theory to
include shearing modes is believed to be that of predicting the
direction of crack tip motion, as it 1is very likely that the crack
will not extend in its original plane. An example of the complexity
of the problem may be seen in Knauss' paper [35], in which a crack
was forced to propagate in Solithane in the antiplane shear mode.
Crack growth was found to occur by the opening of semi-penny-shaped
cracks which straddle the main crack front at an angle of 45 degrees;
i.e., the individual planes of crack extension have normals parallel
to the direction of maximum principal stress. In the more general
case when two or three modes of loading exist together, one can
expect the direction of crack motion to depend at least on some
average of the maximum principal stress directions cover the failure
zone. That the propagation direction does not depend solely on the
state of stress at the crack tip (£1 = 0) may be argued by
considering the stresses in rubber, in which case v = 1/2; since
the opening mode stresses at the tip are essentially equal, the
and/or N, are not zero would be

2 3

relatively insensitive to No, which contradicts observed behavior.

direction of propagation when N

Finally, let us briefly consider the problem of opening-mode
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adhesive fracture. The critical stress required to cause propagation
of an isolated debond between a linear elastic, incompressible

(v = 1/2) continuum and a rigid substrate is identical to that for
cohesive fracture of the continuum itself except the adhesive

fracture energy rad’ say, replaces the cohesive fracture energy [36].
Moreover, it is a simple matter to show that the extended
correspondence principle, which was used in the derivation of

Eq. (91), is valid as long as the substrate is rigid and the

continuum is homogeneous and incompressible, If these restrictions

are essentially met, we suggest that Eq. ‘1) can be used in predicting
propagation of the debond crack after I' is replaced by rad'
However, it is anticipated that some modification of Eq. (92b) for
failure zone length will be required as both shear and normal

stresses act along the interface.
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? Appendices

A. Some Order Properties of Displacement and Stress Near the Tip

We first examine the order of the integral AI, Eq. (31), when the

failure stress-difference is given by
do (£) = A g (A-1)

in the interval 0O <g< al, where 0 < al <a, A and q are non-zero

constants, and 0 < q < 1/2; for this range of q Eq. (15) is met but

not Eq. (17). The integral in Eq. (31) is rewritten as follows:

v al a
J J J . a2
0 0

The second integral is readily shown to be of order 53/2 by expanding
the logarithm in a power series in the variable /E7ET and letting

€ > 0. The first integral is expressed in terms of a new variable of
integration, y = /Eiﬁf-, and together with Eq. (A-1) it becomes

*1 va. /¢
l 14q [ 1 2q
= 2A ¢ Y {2 -y 1ln

y+1 .
= E 1’} dy (A-3)

Again divide the range of integration into two parts,

o

Y1 JVGI/§

1
{ = 24 g1 { J +
(o)

(o}

} (A-4)
7y

U S,
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Since we are interested in the order of Eq. (A-4) as § -+ 0, the upper
limit and the constant Y, are taken to satisfy the inequality

0 << g, < VGI/E; this choice of Yo together with the series expansion

for y >> 1,
ylnx———ti|=2+—-g-§+-—2——+. (A-5)
H 3y 5y
renders Eq. (A-4) as
ay 1 .
- 1+q Y S S
| st (4
o
t) - q
2 & |2 -
ot 50 - 29) [“1] + } (A-6)
where q # % and B 1is non-zero and is independent of {. When
=1
q=73
*
J‘ = 24 M {B+l1n§-—+---} (A=7)
3 a
1
o
Equations (A-6) and (A-7) together with Eq. (A-2) imply that
a1 = oY) (A-8)
1
when 0 < q < 2 and
AL = 0(g3/2 1n &) (A-9)

N

when q = It therefore follows from Eqs. (27) and (30) that the
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order of v 1is also given by Eqs. (A~8) and (A-9) for 0 < q < %-and
q= %, respectively. Note that if q + 0, the displacement v -+ 0(§)
which implies the crack cross-section approaches a straight~sided
wedge very close to the tip,

The limiting case q = 0 corresponds to a constant stress over

0<¢gcx< al; in order that ¢ be continuous to the left at £ = 0, in

accordance with Eq. (15), we must take A = 0. For this case v = 0(53/2

Prediction of the behavior of the stresses near the tip is
accomplished in a similar manner. First, we record the resultant

stresses, Eq. (19b), after substituting Eq. (28) for Ot

o = Oy = of(0)+o£(0)[% tan_l %I - 1]
. Y b0 (6)
+o | —— (A-10)
OB A

where £, > 0.
1=
The second term is of order 51/2, which follows from a power
series expansion of the arctangent in the variable VElla. Given
the power law, Eq. (A-1) , the order of the integral in the third
term is established by following essentially the same steps used to

anclyze AL (i.e., Eqs. (A~-2) - (A-7)). We find

).

L e S Ao S 3107 LSS, g ALK
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o 23 t3+0etY t0<qel
T o °1 1 2
1 Lo (£)
S NGRS A 1/2 1/2 1
= ;’El 1n El + O(El Yiqr= )
where Bc is non-zero and is independent of El. Thus,
= - 9 z
o cy cf(O) + 0(51) (A-12)
1
when 0 < q < E-and
= - 1/2 i
o, = cy of(O) + O(El 1n gl) (A-13)

when q = %u Note that Eqs. (A-12), (A-13), and (19a) predict these

stresses to have a vertical tangent at El = 0; it can be shown that
only for the unlikely situation in which cf(E) has a horizontal
tangent at £ = 0 and the integral 12, Eq. (39), vanishes will the
stresses ox(gl) and cy(&l) also have a horizontal tangent at El.

The above order properties for stress and displacement are
different from those in [37] because dcf/dg was assumed

to be bounded in [37].

B. Criterion for Crack Growth when om > ©

At the vutset the normalized failure stress distribution,
f = of/cm, is assumed to satisfy only the following physically-based
assumptions:
(1) f(E) is piecewise continuous and non-negative

(i) lim f(g) = £(0) > 0
£ of
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<.

Now, let us show that o vanishes. To this end, write Eq. (22)

in the form

T YW S T

m N

[o)
Vo I, = o : (B-1)

Supposing that the stress intensity factor is finite, we obtain

Veal,+0 as o + o
1 m

Moreover, the integral Il’ Eq. (23), cannot vanish on account of
the above two conditions on £(£); hence, a + 0 as o = Letting

a + 0 in Eq. (23) yields Il = 2 £(0) and, in turn, Eq. (B-1l) yields

. 1imw[2/3 o £(0)/n] =N_ . (B-2)
m

With continuous crack growth, da/dt > 0, the total time needed

for the crack to propagate the distance o, viz., t, - tl, approaches

2

zero. Therefore, assuming £(0), O and N0 are continuous functions
oi time, or else are independent of time, Eq. (B-2) shows that a 1is
essentially independent of time during the period L, <t
In view of these results, we will evaluate the displacement,
Ez. (41), and then the fracture energy, Eq. (57), for the case of a

very small, constant a. First, wrice displacement Eq. (41) by

making an integration-by-parts and the following change of variables:

El

o
. 3 -
1 » =3 (B-3)

Q
B

wnere 0 < (n,nl,f) < 1. The result is
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o o+
! . n, +vn
iy, ¢, (6) f(anl){Z(z—)l/z'- In|—t— an,
E m 1 /ﬁ_ - /H
o i ) |
t- 1 _.
+J c!(t - 1) J £(an,) [2(2) /2
v 1 nl
t o
/rE+ n
- In ] dnl dt (B-4)
h -k
in which t:l <t«< tz’
n = [a(t) - x]/a (B-5)
in the first line, and
n = [a(x) - x]/a (B-6)
in the second and third lines. Also
] = -
Cv(t) =d Cv/dt (B-7)

is finite and positive for all t > 0 for real materials; it is a
simple matter to show that Cv(t) is the creep compliance of a plate
of infinite extent in the z-direction (i.e., e, = 0) and subjected
to a constant stress in the x- or y-direction.

Equation (B-4) yields
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lim [2n v/oma] =€, (0) £(0) [2/n - (1 - n) 1n 12 '/;1 (B-8)

<> o -
cm 1 n

The second and third lines in Eq. (B-4) vanish on account of the
finiteness of C& and Ii, and the fact that t - t; as o, > ®; recall
that k<t t, where (t2 - tl) + 0 as o, > « for da/dt > 0.

Now, change the variables in fracture energy Eq. (57) using

definitions in Eq. (B-3) for n znd f:
(l

—
1]
Q

£ (an) g—:f dn . (B-9)

o

Rewrite this equation to read

1 .
2n I 9 (21 v -
7 = f (an) o [o a] dn (B~10)
o« m
m o

and let g, > (which implies o - 0+)

1
lim [27 T/o? o] = £0) | 2! 1in (2 "]] dn . (B-11)
m an g a f

o+ O + o q
m o m

The process of taking the limit under the integral and inside the
derivative is valid on account of the piecewise continuity of f (&)
for O £ & < o and the boundedness and continuity of the derivative
in Eq. (B-10) with respect to 0 < n <1 and o » 0t, Integrate

Eq. (B-11) and then use Eq. (B-8) to find
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&
lim [2n F/ci a] = 2cv(0) £°¢(0) . (B-12)

g+
m
The quantity Ya o £(0) can be eliminated between Eqs. (B~2) and

(B~12) to obtain the equation for critical stress intensity factor

of a brittle elastic solid,

i
N = V;v(o)- : (8-13)

The initial value theorem for Laplace transforms [17] may be used
in conjunction with Eq. (45) to find

2
41 - v (0
c, ) = 009 (B-14)

which when substituted into Eq. (B-13) yields Eq. (59).

Graham [25] used a global energy criterion and the singular
stress d}stribution for a large centrally-cracked sheet and for a
large body with a penny-shaped crack. He obtained results for the
critical stress which are identical to those obtained from Eq. (B-13)

when No is specialized to these two geometries.

C. Work Input to Failure Zone for a One-Term Representation

of v

Work input based on approximate displacement Eq. (72a) will
be derived and compared with energy Eq. (91). The following two

classes of failure stress of are assumed:
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vV .a
Wil = G 0cvey,
(1) o = (c-1)
% 0 3 vV>v
} m
%
&
> Om ’Of"i"b
(ii) o = (c-2)
v .-b
om(;;) ;v o> vy

where the quantities Om’ vm, Vi @, and b, as well as Cl and n in
power law Eq. (66), are assumed to be positive constants; in reality
they may depend on tip velocity, but for the problem at hand it is
not necessary to show this dependence explicitly,

The second distribution rigorously implies o = ©, and we shall
use this limit in evaluating the integrals fz. However, from a
Practical standpoint, if b is sufficiently large the influence of
the stress o outside of some finite distance @ gs SaY, will be
negligible; it is assumed that aef/s << 1, where B is the length
pardueter appearing in Eqs, (2) - 4).

The approximate work input derived using displacrment
Eq. (72a) and the above failure stresses will be denoted by T

We ratio the results to T as given by Eq. (91),
r=2c¢ (t) n? (C-3)
4 v a o

and obtain, finally:




r (a(n + -3—)+ -]2=]2

(1) ap 2
LGS (a+l)(n+%)[a(n+%) --;-]

3 1
where a(n + 2) > L and
3 1,2
r b(n +3) - =

(n +%)(b - 1)[b(n +-3—) +%}
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(C-4)

(C-5)

where b > 1. These ratios are plotted in Fig. C-1 for a few different

values of the constants. The ratio for the case a = 1/2 1s rather

large at n = 0 because this exponent is close to the value

(a = 1/3) for which the integral IZ,Eq. (39), diverges. We see that

for most of the predictions the error is no greater than 33%.
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Figure 3. kp+ded View of Failure Zone
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Figure 11. Crack in Solithane 50/590.
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Crack in Solid Propellant.
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Figure C-1., Ratio of Energies In Failure Zone




