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ABSTRACT 

A theory is developed for predicting the time-dependent size and 

shape of cracks in linearly viscoelastic, Isotropie media, and its 

validity is demonstrated by applying the theory to crack growth and 

failure of unfilled and particulate-filled polymers.  Starting with a 

bounded solution for the stress distribution near a crack tip in an 

elastic body and the extended correspondence principle for viscoelastic 

media with moving boundaries, a simple equation is derived for 

predicting instantaneous crack tip velocity in terms of the 

opening-mode stress intensity factor; although the undamaged portion 

of the continuum is assumed linear, no significant restrictions are 

placed on the nature of the disintegrating material near the crack 

tip and, therefore, this material may be highly nonlinear, 

rate-dependent, and even discontinuous. A further analysis is made to 

predict the time at which a crack starts to grow, and then some 

explicit solutions are given for this so-called fracture initiation 

time, the time-dependent crack growth, and the time at which gross 

failure occurs under time-varying applied forces and environmental 

parameters.  Following a derivation of the linear cumulative damage 

rule, an examination of its theoretical range of validity, and a 

discussion of the experimental determination of fracture properties, 

the theory is applied to monolithic and composite materials under 

constant and varying loads. Some concluding remarks deal with 

extensions of the theory to include finite strain effects, crack 

growth in the two shearing modes and in combined opening and shearing 

modes, and adhesive fracture. 

H 



^W^^mt-mmm^ 

TABLE OF CONTENTS 

PAGE 

1. Introduction  1 

2. Stress and Displacement Distributions Near 
the Crack Tip  5 

Linear Elastic Analysis  8 

Linear Viscoelastic Analysis   19 

3. Analysis of Crack Motion  25 

Calculation of Work Done en Failure Zone  27 

Prediction of Continuous Crack Growth  29 

Prediction of Initial and Intermittent Crack Growth. 58 

4. Applications  65 

A Sheet Under Constant Stress  65 

A Long Strip under Constant Strain   ... 73 

Variable Loading and Properties;-the Linear 
Cumulative Damage Rule   75 

5. Related Theories  91 

6. Concluding Remarks  93 

Acknowledgment  97 

References  98 

Appendices  101 

A. Some Order Properties of Displacement and 
Stress Near the Tip  101 

B. Criterion for Crack Growth when a    -*■  °°  104 
m 

C. Work Input to Failure Zone for a One-Term 
Representation of v  108 

Figures , . Ill 

IM 



1. Introduction 

Prediction of the mechanical response and service life cf 

viscoelastic structures is very much dependent on one's ability to 

predict the time-dependent growth of flaws or cracks. This growth 

affects not only the time of gross failure, but, in the case of 

composite materials, may also have an appreciable influence on the 

effective mechanical behavior long before structural failure 

occurs [1], 

In this paper we focus our attention on the mc ement of a single 

crack tip or front, and establish and apply relatively simple 

equations for predicting the time at which motion initiates (the 

"fracture initiation time") as well as the instantaneous tip 

velocity, both in terms of the opening-mode stress intensity factor. 

Interactions between two or more cracks and the influence of 

boundaries and obstacles are implicitly taken into account through 

this stress intensity factor. For reasons of mathematical simplicity, 

the material in a small neighborhood surrounding the crack tip is 

divided into two regions:  (i) a failure zone where disintegration 

and eventual failure occur, and (ii) a linearly viscoelastic., 

macroscopically homogeneous and isotropic inertialess continuum. 

This idealization and some later mathematical approximations are 

motivated bv certain characteristics of viscoelastic behavior which   - 
t 

are common to many different polymeric materials. However, this 

motivation does not mean the theory is limited to polymers; indeed, 



it contains as a special case the classical theory of fracture for 

elastic and elastic-perfectly plastic media when the plastic zone 

size is small relative to crack length. 

We shall not attempt to review or even list the many experimental 

and theoretical papers which now exist on the subject of crack 

growth in viscoelastic materials.  Instead, the reader is referred 

to the excellent review article by Knauss [2], which covers molecular 

processes, stress analysis, crack propagation concepts, heat evolution 

effects (which we neglect in this paper), and environmental influences. 

Primarily only those studies which are closely related to the present 

one are discussed here. 

There already exist some theories for predicting fracture 

initiation time and crack growth in the opening mode in linear 

viscoelastic media. Williams [3] used the idealized geometry of a 

disintegrating hollow sphere to establish the essential dependence 

of fracture initiation time and initial crack velocity on external 

loading history. Wnuk and Knauss [4] derived an equation for 

fracture initiation time of a penny-shaped crack in a 

viscoelastic-perfectly plastic solid, and gave solutions for a 

Maxwell material and general linear viscoelastic solid having a 

time-dependent and time-independent yield stress, respectively. 

In order to predict crack growth following initiation, Knauss and 

co-workers [5-7] modeled the disintegrating material near the crack 

tip by assuming bi-singular stress and displacement distributions 

and using a rather idealized mechanism for calculating the transfer 



of energy from the linear viscoelastic continuum to the intermolecular 

or interatomic bonds. Kostrov and Nikitin [8] derived an equation 

governing crack growth in a linearly viscoelastic-perfectly plastic 

solid, studied its consequences for the Griffith problem of a crack 

in a large sheet under constant stress, and gave an explicit 

solution for a Maxwell material. 

One distinguishing feature of existing theories on crack growth 

is that the failing material near the crack tip is replaced by a 

very idealized model. Another feature is that solutions for the 

time-dependent crack size are given numerically or, if analytical, 

are for severely idealized media (e.g., a Maxwell material). 

The present study was undertaken primarily to remove these two 

limitations, and is accomplished by introducing one new 

assumption:  the second derivative of the logarithm of 

creep compliance with respect to logarithm of time is small for 

the linear viscoelastic continuum. To the writer's knowledge, all 

polymeric structural materials of technological interest satisfy this 

assumption over all or most of the time range of variation of the 

creep compli "•ce. Even if there are intervals over which the 

curvature is not small, the theory is valid whenever the effective 

cime parameter (Eq. (92a)) is ou»_oide of these intervals. 

The fact that the failure process at the crack tip is quite 

arbitrary in the present theory implies the theory should be valid 

for many different materials, including polymers exhibiting the 

crazing phenomenon [9] and filled polymers. This point is supported 



in Section 4 by successfully predicting crack growth and failure 

of an unfilled rubber (Solithane) and two particulate composites 

(solid propellant and asphaltic concrete) under constant and 

varying loads. Moreover, because of the simplicity and generality 

of the theory, we believe it will be useful for a variety of 

applications, such as the prediction of effective viscoelastic 

properties of composite media having "microstructural damage" [1], 

fatigue crack growth, and the statistical distribution of failure 

times of monolithic and composite materials in terms of 

fundamental property and flaw size distributions [10]. 

We now turn to a study of the elastic and viscoelastic 

distributions of stresses and displacement near the crack tip. 

The nature of these distributions is examined in some detail in 

order to provide a basis for making certain later approximations. 
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2. Stress and Displacement Distributions Near the Crack Tip 

The problem considered in this Section is that of predicting 

stresses and displacements lu  the vicinity of a crack tip in which, 

for simplicity, the relative displacement between the crack surfaces 

i 
is taken normal to them; i.e., the so-called "opening mode" is assumed. 

I 
A fixed (x,y) coordinate system and the idealized tip geometry 

are shown in Fig. 1; y = 0 will always correspond to the plane of the 
I 

crack, while the y-axis is placed at any convenient location and 

embedded in the continuum.  In the unstrained state the crack surfaces 

near the tip are assumed to be planar and to coincide with the x-z 

I 
plane, where z is perpendicular to the plane of the page. The 

| 
\ 

actual crack tip is a straight or curved line in space whose 
I I 

intersection with the x-y plane (the plane of the page) is defined 

by the point P (x = a, y = 0); it is assumed that the tip is 

essentially straight in the neighborhood of P and perpendicular to 

the x-y plane.  We should add "neighborhood of the point P" refers 

simply to the material contained in a spherical volume centered at P 

i 

and having dimensions on the order of the failure zone width, a; P is 

taken to be a generic location along the crack tip and, therefore, the 

term "neighborhood (or vicinity) of the crack tip" will be used to 

mean the same thing as "neighborhood of P" throughout this paper. 

The crack tip may be quite general in shape as far as our analysis 

is concerned.  For example, it may be a closed curv,e or begin and end 

on bounding surfaces of the continuum; of course, the first case 



corresponds to an "internal" crack, while the crack tip in the second 

case defines "through" and "surface" cracks. 

We assume the material outside of the failure zone shown in 

Fig. 1 is linearly viscoelastic. However, in general, the material 

in the zone may be highly nonlinear and viscoelastic; further, it 

need not be a continuum in that it could consist of very fine strands 

or any other disintegrating material which is representative of the 

complex structure near a crack tip, or the failure zone could be 

simply the region in which significant attractive interatomic forces 

act between atoms in adjacent crack surfaces. In practice, the 

boundary between the undamaged continuum and the material in the 

failure zone will be rather diffuse, and there will be a layer of 

damaged material which extends into the continuum along x < a as 

well as around the faille zone; we assume this layer is small enough 

that its effect on the prediction of the displacement v in the 

neighborhood of the tip is negligible. 

The location x = a defines the apparent crack tip, which is often 

referred to in the literature as the crack tip. However, in contrast, 

throughout this paper crack tip will mean the tip at x - a. 

The reaction of the failure zone on the surrounding continuum 

is represented by a tensile stress distribution, af,  as shown in 

Fig. 2, while o denotes the tensile stress acting within the linearly 

viscoelastic material along the crack's prolongation. External 

Joads applied to the continuum are assumed to act symmetrically with 

respect to the crack, so that shearing stresses along x > a are zero 

^^I^^^M*ttgaBi«iMMfllB«alfilM'niw'i<lfrin»tiiirn I II-111 ITU"  



and a pure crack opening mode results. 

However, in reality, shearing stresses act along the continuum 

within the failure zone.  This may be seen by referring to Fig. 3, 

which shows the forces acting on the material in this zone; the tip 

has been magnified to bring out the tip thickness, d,, which is taken 

to be a characteristic dimension defining an interatomic distance 

before failure in the case of a monolithic material, or an 

interpartlcle distance in the case of a particulate composite. As 

will be seen later, the stress a    acting along x > a is equal to a 

and, therefore, F.  - a  d. (per unit length of crack tip). Thus, 

a rough estimate of the average shearing stress, T,, is 

F   ad, _ x y i 
Tf = a ~ 2 a (1) 

Consequently, as long as a >> d , it is reasonable to neglect the 

effect of Tf, relative to that of af, on the surrounding linear 

viscoelastic material; this condition is consistent with that needed 

to be able to apply continuum mechanics in the first place to 

predicting the response of (assumed) homogeneous material close to 

the failure zone. 

Although Figs.l and 2 show the crack surface for x < a as 

being stress-free, the theory allows for forces to act directly on 

the crack surface, as long as they are not applied in the neighborhood 

of the tip.  If external forces c- close to the tip, the theory will 

be at least approximately valid when they are small relative to the 

resultant failure force.  (It is of interest to point out that an 

^M.MWMä*Üiil 
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important geological problem in which there is direct pressure on 

crack faces, viz., fracture of oil-bearing rock strata, satisfies this 

condition; there is always an unwetted portion near the crack tips [11].) 

Finally, it is assumed that the neighborhood of the point P in 

Fig. 1 is in a state of plane strain. This condition is (approximately) 

satisfied if (i) the distance between P and bounding surfaces of 

the continuum and other cracks is large compared to a;  (ii) the radius 

of curvature of the crack tip at P is much larger than a; and 

(iii) the value of o outside the neighborhood of P is small relative 
z 

to o inside the neighborhood. Of course, if one is interested in 

the problem of "through crack" in a thin sheet in which a is large 

compared to sheet thickness, the plane strain results are converted to 

this plane stress situation by means of a simple change in the solution; 

2 
i.e., v in Eq. (7) is dropped. 

Linear Elastic Analysis 

Stress and displacement distributions along y * 0 in the 

neighborhood of the crack tip are recorded here for later extension to 

viscoelasticity. We first consider stresses o and a , and displacement 

v (say) due to loads acting in and on a linear elastic continuum 

having a cvack tip at x * a and with of~0.    Based on the results 

given by Williams [12], we may write* 

N 
o° --2-H(C )[1 +0«./ß)] (2) 

*A term of order y is written as 0(y) for which, by definition, 
lim [0(y)/y] - finite, non-zero quantity. 

y ■*■  0 

atUMH^__IMMiM—————«^««»«. I I II i I    —.»—»^^——^——^ 



N 
°v --TZ*»« )[1 + 0(r/a)] (3) 

while the displacement of the top crack face is (for plane strain) 

v° = Ce 
No *^H<5>[1 + 0(S/ß)] (A) 

where (see Fig. 2) 

4^ = x - a  ,  C-a-x 

Also, H(p) is the unit-step function: 

(5) 

H(p) 
0 , p < 0 

1 , p > 0 
(6) 

and 

= Ad - v^) (7) 

where E is Young's modulus and v is Poisson's ratio. The coefficient 

N is called the stress intensity factor by Barenblatt [11]; this 

factor is simply related to another commonly used symbol, K , for 

the opening-mode stress intensity factor 

KT = /27 N 
I       o 

(8) 

In general, N is a functior of Young's modulus and Poisson's ratio 

as well as parameters which define the geometry of the continuum 

(e.g., crack length and location and overall dimensions of the body) 

and is a linear function of the applied loads and displacements. 
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The quantity 6 represents the distance between the point P 

(Fig. 1) and the closest geometric feature (e.g., free surface or 

opposite crack tip) or nearest point of load application, depending 

on which is smallest. By restricting £ and £.  to the neighborhood 

of P and assuming 

a/$ « 1 (9) 

the terms of order £,/ß and £/ß can be neglected since 

«xr*-0«!«1*   ;   °<£>-°<tr>- (10) 

Hence, close to the crack tip 

0°.a°.!?_H( j 
x   y        ' *r r (ID 

v° - C N *f H(U 
e o 

(12) 

Stresses and displacement In the linear solid due to the failure 

f 

y1 
stress, af,  acting alone are denoted by o , o , and v .  From 

Barenblatt [11], for £ > 0, 

f   f a    m a 
x   y t J^l 

° /? of(S) d£ 
(13) 

and the displacement of the top crack face is 
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f 
V      ■ 2*H(Ü* 

/■a 

oAV) ln[^+ ^jj dC 
1 Jv - vT 

(14a) 

where &   denotes "real part of"; Inasmuch as 

ln(-l) » i ir(2k + 1), k ■ 0,1,2,..., the last equation can be written 

In real notation as 

2TT a«) a£(S') In 
•T"+ vf 

^-/r 
dC (14b) 

Gn physical grounds it is assumed that o. is everywhere finite, 

which assures uniform convergence of the above integrals, Eqs. (13) and 

(14), for £1 > 0 and £ > 0. Although the failure stress is not 

restricted to being continuous for all £, we do make the physically 

plausible assumption that it is continuous to the left at ? = 0; viz. 

lim  aAO  - o-(0) (15) 
5 + 0+ 

As will be seen later, existence of the limit in Eq. (15) together 

with the assumption that the stresses in the linear continuum are 

finite establishes continuity of the temdle stress in the y-direction 

at y = C ■ 0; even if Eq. (15) is not mec, it can be shown that the 

stress immediately to the right of the tip, a (0+), still will be 

equal to the failure stress on the left side of the tip, of(0 ). 

Of particular interest to us is the behavior of stresses, Eq. (13), 

and displacement,Eq. (14), close to the crack tip; viz., 4,/« <<  1 and 
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C/a « 1. The stresses become [11] 

12 

ra 

<*TJ 
V5) 1/2 -±— d? + o,(o) + oa,/z) (16) 

Although not stated in [11], the order of the remainder term In 

Eq. (16), as well as the remainder shown later in displacement 

Eq. (25), is correct only if a    satisfies the following condition: 

lim      {[oAO - aAOYin112} 
S - 0+        f f 

(17) 

which will be established and discussed later in this subsection. The 

resultant stresses in the linear continuum due the combined action 

of the failure stress distribution and the externally and internally 

applied loads are obtained by adding Eq. (11) and (16). These 

stresses will be finite at the tip if and only if 

af(S) dC 
(18) 

which is Barenblatt's result [11]. The resultant stresses in the 

vicinity of tne crack tip become for £. > 0: 

o - o - o,(0) + oa\12) 
x   y   fx     %*1 ' (19a) 

A more complete representation is obtained by adding Eqs. (11) and 

(13) and then using Eq. (18): 
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rot 

**T 
of(0 

/T (5 + 5X) 
dC (19b) 

Equation (19a) together with Eq. (15) Implies the normal stress In 

the y-directlon Is continuous at £, ■ 0. For later convenience, we 

rewr**.e Eq. (18) in terms of a normalized coordinate, 

n =  C/a (20) 

and normalized failure stress distribution, 

f '=  V°m (21) 

where a    is the maximum of 0.(0  with respect to C; at this time 

there is no need to assume that o (0) is this maximum value. 

Equation (18) now becomes 

N    =   
O                71 

0 

(22) 

in which I. is the dimensionless integral, 

^dn 

4 
(23) 

One further change of integration variable to n', where n' = 2 i^n, 

yields 

f dn'     . (24a) 

^;v..^^.Ju^^^-^-'^-^^^^^^^^"---'^^^--^>. -' ri'**iW*tiimMXäm*iiäm*iim .......     .. *. r^  iiiBiiiiiiili iiiin iiin'1 
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Since f < 1, 

h«-2 (24b) 

which will prove useful in later considerations in order to establish 

a lower bound on the maximum strength, o , from experimental data. 
m 

The normalized form, Eq. (22), is a very important result. It 

will enable us to calculate the length of the failure zone, a, as a 

function of time and loading. 

The displacement of the top crack face near the tip due to 

of acting alone, as given by Barenblatt [11], is 

ra 

v
f , . l£ /I H(0 

oAVHV        f 
-L-—— + Avr H(0 (25) 

f     3/2 
where Av ■ 0(£  ).  In order to predict time-dependent crack growth 

in viscoelastic materials we need more explicit representations of 

Av ; for one purpose it will be necessary to evaluate the 

3/2 
coefficient of £   and establish the order of the remaining terms. 

This will be accomplished by first equating Eqs. (14b) and (25), which 

yields 

A f    "• of<£') 2(f7)1/2 - in SL+ fi 
ST- G 

(26) 

It is important to observe that the resultant displacement, 

»v + v , due to applied loads and to af  is simply related to Av* 

■-•-  
-    ■ - 

: Tfiinimif iriiiHüiiiiaiteMi^^üi 
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viz., 

v - Av H(C) 
(27) 

which follows from Eqs. (12), (14b) and (18). 

Determination of the behavior of Av from Eq. (26) requires that 

we express a in the form 

0f(O « af(0) + Aa (C) (28) 

In view of Eq. (15), 

lim  Aa.(0 =» 0 . 
K - 0+  f (29) 

Upon substituting Eq. (28) into Eq. (26) and evaluating the integral 

containing of(0) there results 

/a 

where 

(30) 

AI  = 
2TT 

■a 
' 

Aof(C) ■ 2<f,)1/2 ■ - In 
o 

V 

L+jur 
i - •/e7?r dV    .      (31) 

The term in curly brackets for 0 < UV  « 1 is approximately 

|2(fr)1/2 - in i + JUv U _ I ,£_v3/2 _ 2 A .5/2 
3 VC |1 - /C/5' 

Without any approximation, Eq. (31) is now written as 

(32) 

^^■^^^^■MM _^MHMMM-M^_MM.MM^aMH-aHM_    
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Ce .3/2 
" 3n *• 

< 

A°f 

C 

2ir 
• 

•a 

A0fa») • 

o 

2(fr)1/2 - in 1 + ^/C 

1 - /£/£' 

' 

+ 2  ,£ v3/2 
'3 V' • d£ (33) 

If Eq. (17) Is satisfied the first integral in Eq. (33) obviously 

converges; also, the second integral is easily shown to be convergent. 

This condition means, of course, that Ao. must approach zero faster 

1/2 3/2 
than £   as 5 + 0.  If this approach to zero is faster than £  ; 

viz., 

11m  [Aaf(£)/£
3/2] 

£ + 0+   f 
(34) 

then it follows from Eqs. (32) and (33) that the second integral in 

5/2 
Eq. (33) is of order £   or higher.  In contrast, if Eq. (17) is 

satisfied, but not Eq. (34), then the order of the second integral IT. 

3/2     5/2 
Eq. (33) is found to be between £   and £  . Moreover, it is shown 

in Appendix A that if Eq. (17) is not met, the order of AI, Eq. (31), 

3/2 
is between £ and £ 

Considering the complexity of the failure process at the crack 

tip, and the absence of information on the variation of o.(£) for 

most materials [2], it will be assumed throughout the remainder of 

this paper that Eq. (17) holds, unless stated otherwise. Note that 
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if a.  is constant (eg., when the failure zone is actually the zone 

of yielding in a metal having zero strain hardening) not only will 

Eq. (34) be satisfied but additionally AI = 0. 

Let us now integrate the first integral in Eq. (33) by parts, 

use definition Eq. (28) for Aaf, replace the second integral by an 

order statement, and then substitute the result into Eq. (30); thus, 

Av m—l- 

r<x 

fi 

da 
^^K3/2 + 0({3/2 + P) (35) 

where 0 < p < 1, and af (of) is the failure stress for £ just to the 

right of a; of coursa, if a is continuous at ? * o there is no need 

to distinguish between £ • o~ and £ ■ o. Equation (35) can be written 

»•tore compactly in the form 

Av 
2C 
 e 
3 TT 

/■«"*" 

^!i du 3/2   ( 3/2 + p (36) 

It is easily verified that Eq. (36) is equivalent to Eq. (35); when of 

is discontinuous at £ ■ a we may interpret do./d£' by means of a 

Dirac delta function or, more directly, by using the relation 

d5' /?    J 

da ,0 

Jo 

f d£'  1    yf +.      -.. 
dJT — + — [o/^(a ) - af(a )] (37) 
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The total vertical displacement of the upper crack face due to 

external and internal loading and to the failure stresses is given by 

Eq. (27). After writing the integral in Eq. (36) in terms of the 

normalized variables, Eqs. (20) and (21), there results 

2C a 
j-f -Ä I2c

3/2H(?) +0a
3/2 + P) H(g) 

where 0 < p < 1 end 

rl 
df dn 
dn 4 

(38) 

(39) 

The upper limit in Eq. (39) is to be interpreted as 1+ when f is 

discontinuous at n = 1; for example, if a    (and therefore f) is 

constant over 0 < n < 1» 

I2 - -1  . (40) 

Also, p ■ 1 for this case since AI = 0. 

3/2 
The fact that v ■ 0(£  ) according to Eq. (38), the cross-section 

of the crack near its tip (see Fig, 1) is cusp-shaped. This observation 

was made by Barenblatt [11]. However, as we have shown, this shape is 

predicted because Eq. (17) is assumed to be satisfied.  On the other 

hand when this limit condition i'~ not met, a study of AI, Eq. (31), 

in Appendix A reveals that the cros section could approach a 

straight-sided wedge. 

Finally, we should point out that the order of the stresses near 

the tip can be established in a manner that is entirely analogous to 

iMH-itrrt- t  HI um mi in n- _~.   ,   ■   ■  --      -   ■■ ■ >^;* 
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the above one for displacement by starting with Eq. (19b); it is found, 

for example, that the remainder term in Eq. (19a) is indeed of order 

1/2 
51  (or higher order when I?, Eq. (39), vanishes) if Eq. (17) is 

obeyed. That the order of this term could range between £ and 5 

when this limit condition does not hold is shown in Appendix A. 

The order of the stresses, however, does not have a direct bearing on 

the subsequent viscoelastic analysis. 

Linear Viscoelastic Analysis 

With stationary cracks the elastic stress and displacement 

distributions given in the previous subsection can be easily generalized 

to viscoelastic solutions by means of the classical correspondence 

principle plus Laplace transform inversion [13]. 

Under somewhat restrictive conditions, the extended correspondence 

principle established by Graham [14] can be used with moving cracks. 

The specific restrictions as they apply to the problem at hand are 

(a) the crack cannot decrease in size (da/dt > 0); (b) the elastic 

stress normal to the surface of crack prolongation (a ) must be 

independent of E and v; and (c) any dependence of the elastic 

displacement v along the crack face on E and v must be in the 

form of a separate factor (i.e., v = fntn(E.v) • fntn(£))- According 

to the theory in [14], the above restrictions apply to the entire 

crack and its extension up to the maximum time of interest, and not^ 

just the neighborhood of the instantaneous tip. 

With reference to restriction (b), we note that as long as all 
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boundary conditions are on stress, dimensional analysis implies the 

internal stresses will be independent of Young's modulus, E; they 

may, in general, depend on Poisson's ratio, v. Even this dependence 

on v disappears in many two- and three-dimensional problems. 

Indeed, there are two important classes of plane stress and plane 

strain problems for which the in-plane stresses will always be 

independent of v [15]:  (i) simply-connected bodies and 

(ii) multiply-connected bodies for which the resultant force on each 

boundary vanishes. It should be added that if the viscoelastic 

material of interest has a constant Poisson's ratio (which is at 

least approximately true in many situations involving polymeric 

materials [ 1 ]), then dependence of the elastic solution on Poisson's 

ratio does not invalidate the extended correspondence principle; 

this last point is easily verified by examining Graham's theory [14]. 

As one further observation, we note that if some or all boundary 

conditions are on displacement, the problem often can be recast in 

terms of applied forces; one simply calculates the resultant forces 

needed to maintain the specified displacements, and then views these 

forces as being specified quantities.  It will be assumed that such a 

recasting has been accomplished, when appropriate, in all of the 

following analyses; see, e.g., Eqs. (128) and (129). 

Under the conditions for which the extended correspondence 

principle is applicable, the stresses in a linearly viscoelastic body 

are the same as those given in the preceding subsection for elastic 

media. The only stress result which will be needed for predicting 

I     ■■■■■-   -"•      ■  ■■.." ■■■-..~-"-r»-™ -  -'-   --■'< ■— ■  - 
I  iiiiiiirii^i^TTi.iirir    - —-JLt^*M,"™M   < " ,i>MI*lgk^* i    i  n—  —"■ 
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crack growth is Eq. (22) relating the stress intensity factor, N , 

to the failure stress and size of the failure zone. Recall that, 

by definition, N is the stress intensity factor for a crack with 

o. = 0. This factor depends, at most, on parameters defining the 

geometry of the body (including instantaneous crack size and location) 

and on the applied stresses; in view of the earlier comment, Poisson's 

ratio dependence is not precluded as long as it is constant. 

Turning to the prediction of displacement v along y ■ 0, 

we observe that this displacement close to the crack tip, Eqs. (26) 

and (27), meets restriction (c). For a stationary or growing crack, 

the extended correspondence principle yields for t > t.: 

2TT 
cv(t - T) 17 

ra 

o£(5') [2(|r)1/2 

- In {VJ±Jj 
sv - Ji 

) «• dt (41) 

The variable of integration T is a generic value of time which ranges 

from the time, t-, when the crack tip first reaches a point x, to the 

current time t; this time integration is to be performed at constant x, 

and therefore for moving cracks J; must first be expressed in terms of 

x and T; viz., from Eq. (5): 

5(X,T) » a(r) - x (42) 

In view of the above definition of t  , 

— ^...--■-  -. -  -■■—,„■- 
Mthammmnmumtm ia,aMX«^..„,...„■..,.■    ...^ t<| M %     .      ...     ^ 
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ax.t^) - a^) - x « 0 (43) 

and since decreasing crack size is not allowed, 

C(X,T) > 0 } T > t.  . (A4) 

Also, although not explicitly shown, the length of the failure 

zone a and the failure stress may depend on time, T. 

If the crack is stationary we may set t, ■ 0, corresponding to 

the time at which loads are first applied to the body; Eq. (41) then 

applies for x < a. 

The function C (t) is defined by the equation 

3C S*U-^v)2] (45) 
V       sE 

in which the bar denotes the Laplace transform (LT) of a function of 

time; e.g., 

r 
e"St q(t) dt   , (46) 

o 

Also, E is the LT of the uniaxial relaxation modulus and v is the LT 

of the Poi-son's ratio for a uniaxial relaxation test.  Equation (45) 

can be easily established by comparing elastic stress-strain equations 

with the LT of those for a viscoelastic material [13].  For some 

problems, it may be desirable to express C (t) in terms of the uniaxial 

creep compliance D(t), where 

sD - ~  . (47) 
sE 

l^^a^m   i    i-iMMftliHilfflrtn-"  ■''"■""'-'-- —""■"■ "-■' "■--—»-■—^— ^.~.^~-~~^^-^--^-.,~'..'..^^^^^^   
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If Poisson's ratio is constant with the value v, then sv ■ v and 

we can combine Eqs. (45) and (47) to find, by LT inversion, 

Cy(t) - 4(1 - v
2) D(t)   . (48) 

Even when Poisson's ratio is not constant, Eq. (48) with v - v(t) is 

expected to be a good approximation [ 1 ]; this result, which is based 

on the quasi-elastic method, can be expressed just as well using the 

Poisson's ratio measured in a uniaxial creep test, v (t), since 

typically v (t) = v(t)  [ 1 J. 

Recall that Eq. (41) is based on an elastic solution which is 

valid only in the neighborhood of the crack tip.  Therefore one 

cannot expect this viscoelastic solution to be valid for values of 

£ much greater than a; this limitation does net restrict the subsequent 

fracture analysis as \»e will need the displacement only in the interval 

0 < £ < a. An additional result that will be needed is the viscoelastic 

3/2 
version of Eq. (38) in which only the term of order £   is retained: 

2 
vs "37 V - T> IT 

h 

Z»! C3/2 
G    2 

dt (49) 

where t > t.. All of the comments following Eq. (41) apply as well 

to Eq. (49) except, strictly speaking, this latter equation is 

restricted to the range 0 < £ << a; in Appendix C we demonstrate that, 

in reality, Eq. (49) represents quite a good approximation for the 

purpose of calculating work input to the failure zone. 

Finally, it should be mentioned that restriction (c) of Graham's 

fc»'^^.j-^^Bm.B^,ltf.,^-.mj..-^^iJ^..^^.;j^^aJ^..^.l-ciiiiti
,"~'-'-'> llirrtMiiWilf^-^^"-^'"-" "" -»»■.■■»— —  ■■-■■  „^^,ji^.^^^,^^^.^i:,..,^^^^.^a^^UimM,.f,,--r^^,r,iti.it-lA 
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extended correspondence principle, which was stated early in this 

subsection, is overly restrictive. Namely, the product dependence of 

the displacement on material properties is not essential, as we shall 

presently show. This latter observation is particularly important 

to us because the elastic displacement in Eqs. (26) and (27), which 

has the product dependence, applies only to the neighborhood of the 

crack tip; whether or not this dependence exists far away from the 

tip probably depends on the specific problem considered, and we do 

not want to restrict the viscoelastic displacement solution 

unnecessarily. Now, following the reasoning in Graham's paper [14] and 

assuming restrictions (a) and (b) are met, we conclude that the LT of 

the viscoelastic displacement anywhere along the entire crack plane is 

v - v [sE, 3v, x, s] where v is the LT of the elastic displacement 

in which Young's modulus and Poisson's ratio have been replaced by 

sE and sv, respectively.  Explicitly, 

v = v [sE, sv, x, t] e 
•st 

dt (5Q) 

where we have used the fact that the elastic displacement at the 

point x along the line of crack prolongation is zero until time t.. 

Change the variable of integration to p = t - t : 

-st! 
v [sE, sv, x, p + t.] e 

-sp 
dp 

Denoting the inverse bye<  { }, Eq. (51) yields 

v = K 
-sp , 

v e   dp 
e 

\  H(t - tx) 

(51) 

(52) 

-fail" -■ *-*..—. I --- -    
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which shows that this displacement correctly vanishes for t < t.. 

While there is no need, in principle, to assume a special form for 

the dependence of v on sE and sv, the inversion is greatly facilitated 

if this displacement consists of a sum of terms, or a single term, in 

which the dependence on E and v factors. Specifically, for the 

problem at hand we can write 

sC 
-sp      v —   — 

V
P 

e   dP " Ö— q + Av e I  IT     e (53) 

where q is the LT of the integral in Eq. (26), in which £ = a(p + t.) - x; 

also, Av is the LT of the higher order terms in Eq. (4). 

Substituting Eq. (53) into (52), neglecting Av , using the convolution 

rule for the inversion of a product of transforms and replacing p by 

t - t yields Eq. (41). 

3. Analysis of Crack Motion 

Equations for predicting time-dependent crack extension will be 

developed in this section; the preceding analysis plus an energy 

criterion for failure provide the basis for these predictions. 

However, we believe it will be helpful to first discuss briefly the 

hisfory of events which occurs in the failure zone from the standpoint 

of the simplified model illustrated in Fig. 1. 

Suppose an initially unstressed md unstrained body is subjected 

to gradually increasing load(s). The stress intensity factor in 

Eq. (22) will then increase in time; at any instant the length of the 

'«Mr iTfhfun^l-—*-■-■---- — ^*-.*»^m^*~M*a^.- ----- ---~~- —- * ,w.-.^,; ..-^^l—^. ...-.-.-,,-* -.., . -■•'^"--—-uri nr.i-mrii-a-'"---"-—'- "■*-- -~^-'    Hiürfrifin yrmmslMlMlmMi^MW^iMtt^* 
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failure zone must satisfy this equation, even before the left end 

(C = a) of the zone starts to move.  (If, for example, the maximum 

failure stress, o , and the "shape" of the failure stress distribution, 
m 

as defined by f in Eq. (21), remain constant, we see a, and 

2 
the *fore a, will grow in proportion to N .)  Eventually, with 

increasing load, a smaxl column of material at the left end of the 

failure zone will rupture and the entire failure zone will start to 

move to the right; the time at which this movement initiates will be 

called "fracture initiation time," and denoted by t. .  In many cases 

the time t.  will be er.tremely small compared to the total time for 

complete fracture of a body [2] and, therefore, may not be of direct 

practical use; prediction of the eventual crack growth behavior would 

then be of primary interest for establishing gross fracture times. 

In developing the equations governing crack growth under various 

loading conditions, it is desirable to divide the analysis into two 

parts:  (i) continuous crack growth corresponding to times t > t. 

and (ii) initial and intermittent crack growth correeponding to times 

0 < t < t. and to periods during vhich the applied loading drops below 

that necessary for continuous crack growth.  It should be noted that the 

loading may vary in time in both parts (i) and (ii); however, it is 

assumed in the first part that the loading is at least great enough 

to sustain continuous motion of the entire failure zone in the direction 

of +x. 

The same fracture criterion will be used in both parts. 

Specifically, a column of material with cross-sectional area dA 

Maul im riymiiii «»minniiMiHiii—it ■ i ■ ■ .-,. i ..,. ..^ -«.*..-^.w ,  ,.,.,.,,, iiniriiiiMMi^aiiBiaiii^iMiiiiiiiiMiitti 
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in the failure zone 0 < y < v is said to fail when the total work done 

on it by the adjacent linear continuum reaches the value T  dA. 

(There will be no need to separately identify the failure of perfectly 

brittle materials. In this case F dA could be interpreted as the 

mechanical work necessary to completely separate adjacent surfaces 

with area dA, and f would be the so-called "cohesive surface energy"; 

as indicated previously, the failure zone for this case is simply the 

zone in which significant forces act between atoms in adjacent crack 

surfaces.) 

In general, the quantity T  depends on the entire history of 

the force, a, dA, applied to a given column of material. Fortunately, 

however, there are many viscoelastic materials for which experimental 

and theoretical considerations indicate that r is at least 

approximately constant [2], The quantity T,  whether history-dependent 

or not, will be called fracture energy in the remainder of this paper. 

Equations which relate V  to motion of the surrounding continuum are 

given in the next s_bsection. We then take up parts (i) and (ii) in 

separate subsections. 

Calculation of Work Done on Failure Zone 

The energy T  dA is equal to the work done by the upper portion 

(y > 0) of the continuum against the force, a dA, at a fixed generic 

location, x, as it suffers the total vertical displacement, v \  this 

displacement is defined by the condition that a. -  0 when v > v . Thus, 
i m 

the work input per unit of new area is 

., -mii-i- -in i in ■ i. i II« Ti   ■-- -—.■■.--.— 
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v 
t m 

a    dv (54) 

or, equivalently, 

h 
3v . 

°f Hdt (55) 

where vertical motion begins at t. and reaches v at t ; note that the 
1 m    2 

time derivative is taken with x held constant. 

Another, more useful form with continuous crack propagation is 

obtained by considering the displacement in Eq. (54) to be a function 

of the independent variables (x,£), instead of (x,t), where by 

definition 

S - S(x,t) = a(t) - x (56) 

It is assumed here that t. < t .< t- and (a - a) < x < a. We select 

x such that it is at the crack tip when t » t.; note that £(x,t.,) - 0, 

and(a(t_) - x) is the length of the zone of failure, a. 

Equation (54) now becomes 

r« 
3v Jr af3cd5 (57) 

in which v ■ v(x,£) and da/dt > 0. 

The above change of independent variables, (x,t) •*■  (x,£), may 

be viewed as a coordinate transformation; viz., 

111 ITII llTll'lllliailliiilillilllirilltllTillliii  -nwmtiiininim-im-iiiinitii 'in nif --■-*■■ -^..- :. --.,.—,., ,., ■  ^-■■—--■'-->"—-—- 
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(58a) 

a(t) - x (58b) 

The Jacobian determinant is found to be da/dt, and therefore Eq. (58) 

defines an admissible (one-to-one) transformation [13] as long as the 

crack velocity does not vanish. 

Prediction of Continuous Crack Growth 

The governing equations for crack growth will be derived -by 

bringing together the finite stress condition, Eq. (22), the 

viscoelastic displacement, Eq. (41) (and Eq. (49)), and the fracture 

energy, Eq. (57). Even if a constitutive equation for the failure zone 

were known, the task of finding the solution a * a(t) to this set of 

nonlinear integro-differential equations would be very formidable, to 

say the least.  There are, however, two cases when the equations 

greatly simplify. 

The first one is for a material with infinite strength (a "►<*>), 
m 

It is shown in Appendix B that the exact result is the classical 

condition for critical stress intensity factor of a brittle material in 

plane strain : 

,■'-- -——"^" **""' "  '   •T-'i-nnimiiMtf- 
iii millwili .^v.--.,.-va.'h.—rfJf in» aw 
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■•"Vf 
r E(O) 

ir[l - v2(0)] 
(59) 

where E(0) and v(0) are the initial values of relaxation modulus and 

Poisson's ratio. The stress predicted by this equation is unrealistic- 

ally high compared to tba values at which cracks can be made to 

propagate in viscoelastic materials [2], and moreover the crack 

velocity is undefined. Except for representing a limiting situation, 

this case of infinite strength at the tip, therefore, is of little 

practical interest. 

The second case is based on a certain property of the creep 

compliance which exists for most polymeric materials. Specifically, 

a double-logarithmic plot of creep compliance (e.g., in simple shear 

or uniaxial tension) has small curvature over most, if not all, of 

its range of variation [e.g., 1 , 16 ]; the specific meaning of 

"small" will be brought out later in the analysis. The creep 

compliance, C (t), which is defined by Eq. (45), can be expected to 

have small curvature when D(t) has this property since Poisson's 

ratio typically is a very weak function of time; see also Eq. (48). 

As one example, the creep compliance in the glass-to-rubber transition 

range for Solithane 50/50 [6] under uniaxial tension is shown in 

Fig. 4; this material is an unfilled, crosslinked, amorphous polymer. 

The compliance of particulate filled-polymers (e.g., solid propellant) 

in the glass-to-rubber transition range and the compliance of plastics 

typically vary over a greater range of log t and have even less 

I. Ill, i I1 liillr-^-'-^"* 

 ■•■■- 



31 

curvature than seen in Fig. 4.  In view of the generality of this 

behavior and the analytical simplification it produces, we shall 

concern ourselves with this case in the remainder of this subsection. 

As noted previously, a and a, may be functions of time, although 

this dependence is not explicitly shown in Eqs. (41) and (49). 

However, it will be assumed that the time it takes for the crack to 

propagate an amount a is small enough that a  and a    are essentially 

timewise constant during this brief period, denoted as t_ - t . 

Note that Eq. (18) (or Eq. (22)) implies N must be essentially 
o 

constant during this same period; nevertheless, it is important to 

realize that N may vary either weakly or strongly with time during 

the total period of crack growth. Additionally, we assume a(t) can 

be linearized during the short period t„ - t ; thus with 0 < £ < a, 

a(t) » a(tx) + (t t1)a (60a) 

and using Eq. (42), 

£(X,T) = a(t) - x = (x - t1)a 

£(x,t) = a(t) - x -  (t - tx)a 

(60b) 

(60c) 

where a(t.) = x and a is the tip velocity at the generic time t.. 

We consider t1 to be a function of x since it is the time at which 

the crack tip reaches the fixed location x. 

■ I   ■■ «ill   litlil- r-. K'-iiif"  ■■" 
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Reduction of Convolution Integrals: The above simplifications 

will be used to reduce the (convolution) tine integral in displacement 

Eq. (49) to a simple product form; extension of this result to exact 

displacement, Eq. (41), is then made. 

After changing the time variables in Eq. (49) by using the 

definitions 

p = T - t, 

At = t - t, 

(61a) 

(61b) 

we find 

ifmii c3/2    (At) H(0 
3 TT /O 

(62a) 

where 

£ * £(x,t) *  At a (62b) 

and we have defined an "effective" compliance, 

c3f(t) 
3 -3/2 
2 Cv(t 

p) P   dp (63) 

Now convert Eq. (63) to a logarithmic time scale using the 

definitions (where log = log n): 
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Pv = p/t 

log t 

I  = log(l - pv) 

Cv(L) = Cv(t)  . (64) 

Note that C (L) is simply the creep compliance expressed in terms of 

logarithmic time. Equation (63) becomes 

ro 

C( T(t) = ~  (In 10) c a + A; • IO£ [I - io£] 
v       I 

l/2l 
dH.(65) 

The quantity in curly brackets will be called a weighting function 

and denoted w3/2» It Is plotted in Fig. 5 over its major range of 

variation. Recognizing that tne creep compliance C is an increasing 

function of ics argument, and observing the rather narrow range for 

which w_,„ uiffers appreciably from zero, we conclude that C f(t) 

depends on only a small part of the total creep compliance curve 

(e.g., Fig. 4). Since L is the current value of logarithmic time, 

Eq. (65) shows that the influencial part of the creap Ci.;ipliance 

is in the (approximately) 1.2 decade range from (log t - 1.2) to 

log t. We assume that over this 1 2 decade range the creep compliance 

can be represented by the power law 

cv(t) = Clt' (66) 

mttmt MM - iM . .,   -  -.       . ..■■■■ MÜH 
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Somewhat arbitrarily, we select the exponent n to be the log-log 

slope of the creep compliance at the point L - 0.48, which is near the 

centroid of the weighting function. Inasmuch as 

L - 0.48 - log t - log 3.0 - log (t/3.0), we see n is the slope 

of a line drawn tangent to a double logarithmic plot of Cv(t) at 

t/3. The coefficient C is the value of compliance where this tangent 

line intercepts the log t •» 0 axis. 

The actual value of effective compliance is now readily derived 

by substituting power law Eq. (66) into Eq. (63), and treating n and 

C., as constants in performing the integration; there results 

cef(t) - X cx t (67) 

or, equivalently, 

cef(t) ■ cyj« t) (68) 

where 

and 

V =   3/n" T(n + 1) 
n  4(n +|) r(n +|) 

(69) 

r(n) = 
„n-1 -t . 
t   e  dt (70) 

is the Gamma function with argument n. The factor A is plotted in 

Fig. 6 for the range of n exhibited by polymers (i.e., 0 < n < 1); 

for most polymers 0 < n < 0.5, with filled polymers and plastics 

■ ■ ■ —- —~ 
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usually having n values at the low end of this range. Consequently, 

the effective compliance is commonly very close to the creep compliance 

itself. 

Returning to the displacement Eq. (62a), we see that it can be 

written in the simple form 

v . EL-! ^3/2 A     n 

3* /a n X 

and using Eqs.(62b) and (66), 

v ~- - —*-? C3/2 C (t) H(6) 
3 7T /T V 

(71) 

(72a) 

where 

t = A1/n 5/a  . 
n 

(72b) 

Equation (72) is identical to the elastic displacement except 

C (t) appears in place of C . 

This simple result is easily generalized to the case in which 

higher order terms are retained in the displacement expansion. 

Namely, suppose the elastic solution is represented by the sum, 

v = I  vr H(0 
r 

(73) 

in which 

v = A K    C 
r   r    e 

(74) 

where r > 1 and A is essentially constant during the period (t? - t.) 

iiiaM , .n  ' nrr- *•--—~- ■ - - I "II i in I ii rni iV- iri.— lnHnltil"*-"" "-•' ,'"J- "-—-  - -■■■■--   
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required for the crack to propagate a distance a. The viseoelastic 

solution to each term for t„ > t > t, can be written in the form 

,(r) v = k   Cr Cly  (At) 
r   r    er 

where the r  effective compliance is 

rt 

(75) 

C<|>(t> -= r t"r Cy(t - p) pr~    dp    . (76) 

When this compliance is expressed using a logarithmic time scale 

through definitions in Eq. (64) we obtain a result which is identical 

to Eq. (65) except the weighting function w , say, must be changed using 

the substitution, 

10*[1 - 10£]1/2 - | r loV - loV'1 = w 3 i 
(77) 

The weighting function for r - - is shown in Fig. 5, and is seen to be 

3 
close to that for r - -j»  Indeed, this function is relatively insensitive 

to r; for example, the maximum occurs at 

log r (78a) 

with the value 

w (max) 1 (1 . V-l 
3 K       r; 

(78b) 

am 

w (max) -*■ ■=— = 0.25  as  r -*■ 
r      3e 

(78c) 

The general shape of each w is the same as those in Fig. 5.  It is 

■ ■"-* '  ' ■ *■">■ 
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important to realize that even for r quite large the essential part 

of the weighting funccion lies in the same £-range as the curves in 

Fig. 5; for example, with A* « 10 the maximum is at i  ■ -1 and has 

the value w ..(max) - 0.26. 

Thus, the effective compliance can be evaluated quite accurately 

for a wide range of r using Eq. (66) with constants found from the 

tangent to the log-log plot of C (t) at t/3. When this power law 

is substituted into Eq. (76) we find 

C(^(t) -A  C,tn 
ef      nr 1 

(79) 

where 

nr 
r F(r) T(n + 1) 
(n + r) T(n + r) 

(80) 

The coefficient X  reduces to Eq. (69) when we set r = -z.    This nr ■»  * / 2 

compliance coefficient is drawn in Fig. 6 for four different values of 

r; A  for r = 1 is shown because the exponent is a lower bound, 

although values of r less than ~ a^e not expected to appear in a 

series expansion of the exact displacement in view of the analysis 

in Section 2. 

The relative insensitivity of A  to r, especially for the usual 

range of n for polymers (0 < n < 0.5), leads immediately to a 

simple solution to the viscoelastic displacement. For example, 

suppose the elastic displacement, Eq. (27), can be approximated by 

a three-term series 

»J^..-.■,..., T..,. ni r»- i-.. i i. ■-■- 
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1/2 2 3 v » r7 [A3/2C + A5/2r + A7/2n ce H(0    . (81a) 

Then according to Eqs. (75) and (79) an approximate viscoelastic 

solution is 
\ 

.1/2 
V = K      tA3/2? + A5/24 + A7/2C ] Xn V^ H(5) (81b) 

and using Eqs.(62b),   (66), and  (72b), 

1/2 2 3 
v = r"[A3/2e + A5/2r + A7/2SJ]  Cv(t)  H(U     . (81c) 

We have replaced the individual coefficients A  with A (corresponding 

3 
to r « T) on the assumption that the first term in the series is the 

largest, and therefore A is more appropriate than a simple average 

of the three coefficients. We now replace the series in Eq. (8ic) by 

the original expression, Eq.(27), and obtain the important result, 

C (t) 
v 
2 TT 

roi 

H(0 of(C) i 2(fr)1/2 - m V+x, 
SV-JK 

d£»  (82) 

where t is given by Eq. (72b). 

Although Eq. (82) is considerably simpler than the exact 

displacement, Eq. (Al), it is believed that it is sufficiently 

accurate for our purposes regardless of the nature of the failure 

stress distribution. We intend to use this displacement to calculate 

only the work done on the total failure zone, Eq. (57); this 

computation is, of course, an averaging process and requires the 

displacement just in the range of 0 < E, < a.    Moreover, by assuming 

,„ ■■* ■■■«■ I   ■!!  -"  ~' 
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several different realistic functions for cf it is shown in 

Appendix C that even the one-term representation, Eq. (72a), is quite 

good for this purpose. 

In further support of the accuracy of Eq. (82), let us consider 

a few simple examples of displacement predictions. First, suppose 

a, is independent of £; viz., af = a  .    The exact elastic displacement 

is found from Eq. (26) to be 

1 + fi\ 
v - 4 12/T" - (1 - n) In 

1 - Vn 
] H(C) (83a) 

where n = S/ot and 

A = C o a/n 
e m 

(83b) 

Expanding the loses, ithm in a power series yields for 0 < n < 1: 

v - 2A n1/2[j n + -ß n2 + -£ n3 + ^y nA + •••] H(£)  (83c) 

As a measure of the error in Eq. (83c) if only three terms are 

retained (as in Eq. (81a)), we shall calculate the ratio of this 

displacement, denoted by v., to the exact displacement, Eq. (83a), 

at n = 1: 

v3(l) 

vTIT «= 0.86 (83d) 

If only the first term is retained in Eq. (83c), denoted by v., then 

vx(l) 

vOJ" = 0.67 (83e) 
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As a further comparison we calculate the ratio v.(l)/v(l) given the 

two functions 

(i) °f " °m11 ' n ] 

(84a) 

(ii)   o- - cr [1 - nj 
i   a 

Equation (38) may be used to find the one-term approximation, 

v (1), with Eq. (26) still used to find the exact displacement v(l); 

the result is 

(i)   Vl(l)/v(l) - 0.80 

(li)   v1(l)/v(l) - 1.33 

(84b) 

The first result, Eq. (83d), although representing only a 14% error 

in displacement at the end of the failure zone, could be 

reduced even further by evaluating the three coefficients differently; 

e.g., a least squares method could be used. The above 

results (and Appendix C) for a one-term representation give evidence 

that the essential features of the displacement at the boundary of 

3/2 
the failure zone are embodied in the function t, 

Calculation of Work Done on the Failure Zone; Equation (57) will 

be evaluated using displacement Eq. (82). First, we define an 

auxiliary function v , 

C (t ) 
_ v a 

Va = C1£TV v 
(85) 

I — .— .--.-  - ---   -'■—-■■"- ■-—-       ■-  "I-'"   '"■■■**"- 
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where v is the displacement in Eq. (82) and 

t 3 X1/n a/a 
a   n 

(86) 

Also, by definition, the coefficient C, and exponent n used in 

C (t ) and Eq. (86) are to be obtained from the tangent to the double 

logarithmic plot of the creep compliance C (t) at the time a/3a; 

note that a/a is the time the crack tip takes to propagate the 

distance a. 

Now, divide the work input into two parts by adding and 

subtracting v ; thus 

r - r + ru a   b 
(87a) 

where 

fa 

r = 
a 

3v 

o£«) jf- dC 
o 

a£tt) ^ (v - va) dC 

(87b) 

(87c) 

It will be shown that the second integral is relatively small while 

the first one reduces to a simple function of the stress intensity 

factor. 

The Integral r : Use of Eq. (85) yields 

rOL 

°f <« k 
C (t) 
[-*-_ . i] v 
C (t )      C 

v a 

• dS (88a) 

...,^^-.^.-^  ->   —  v.-i—*~-.n. ,».„,,.„,   .  -,.>... -.-.„■„,,.-.,, ■, ...  .„i ■„■ .,-..  .„i ■,**,*,«,*>*....._,.— .. 
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Integrate-by-parts and use the fact that v ■ 0 at £ • 0 and 

C (t ) ■ C (t) at 5 » o: v a    v 

3of C (t) 

95  C (t )     a 

v a 

(88b) 

We see that T,   vanishes identically for two important limit cases: 

(i) constant failure stress distribution, ac = a  ;  and (ii) elastic 
i   m 

continuum.  It should be added that in both of these cases the material 

in the failure zone may be highly nonlinear and viscoelastic without 

affecting the vanishing of I\ .  For cases other than the above two 

we return to Eq. (88a) and note that the term in curly brackets is 

small in magnitude when v is large (i.e., when £ z  u) and vice-versa 

(i.e., when £ = 0).  Figure 7 shows the entire term in curly brackets 

(normalized with respect to the displacement at the end of the failure 

3/2 
zone, v(a)) when the displacement variation is given by £  ; this 

use of a one-term representation of displacement is not crucial to 

the argument as other cusp-type displacement variations 

would lead to the same general behavior shown in Fig. 7. 

We have used the same constants (n,C ) in both compliances in 

Eq. (88a), which yields 

C (t) 

C (t ) 
v a 

- 1] v » - [1 - n"] n3/2 v(a) a 
(89a) 

Now, r, is the work done by a.  acting through a displacement equal to 
D JL 

-   •■"••*"*' 
_. m~. —  ■ . ■   
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the entire quantity in Eq. (89a). By comparison, Eq. (87b) shows 

that r is the work done by a, acting through the displacement v , 
3 X 01 

3/2 
v(a) (89b) 

Examination of the displacements in Fig. 7 reveals clearly that 

T >> r. unless a.  acts mainly in the neighborhood of n = 0.  Such 

behavior of o, cannot exist in view of the definition of the failure 

zone; viz., a is defined as the distance over which only significant 

values of a, act, and if af  acted only at the far left of Fig. 7, 

a would be reduced accordingly.  However, it is of interest to point 

1/2 
out that for even the rather rapidly decaying stress a, * a  (1 - r\      ) 

the ratio T./T    is n/(n + 2) and this ratio is less when the actual 
b a 

3/2 
displacement variation is used in the calculation instead of n 

(If one wished to retain I\, its evaluation using even a crude estimate 

of af  probably would be adequate considering its smallness.) 

As one final point concerning I\, we should mention that 

quantities n and C.  generally will vary with n, rather than being 

constant as assumed in deriving Eq. (89a).  However, by changing 

Eq. (88b) to a logarithmic scale, log n, and using arguments analogous 

to tho3e used to derive Eq. (67), it can be shown that r, is essentially 

-2 
independent of t except for the range 10 " t < t < t ; this 

observation together with the typically weak dependence of C and n 

on log t justifies our use of Eq. (89a). 

The Integral T  :    We shall write out T , Eq. (87b), by using 
a a 

- — MüiHilto^ÜII „ÜB,», m■ i. in.,, wtmmnjna tttm M*mmWUaäm 
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Eq. (82) and definition Eq. (85); after performing the differentiation 

there results, finally, 

C (t ) 
r - v a 

a " 2 it 

ta ra 

o J o 

oftt)  af(C) 

e - V ■ dC* dZ (90a) 

Note that 

C - 5' 2  2^-5* 
(90b) 

Substitution of Eq. (90b) into (90a) and use of Eq. (18) for the 

stress intensity factor yields 

r = 7 C (t ) N2 + z 
a  4 v a  o (90c) 

where 

Z = 
C (t ) v a 
4 TT 

f0( ra 
af(?) ofU') 

£ + 4' 
5 - £' 

d?' d? (90d) 

The integral Z is identically zero. This result is clearly seen by 

referring to Fig. 8 and observing that the integrand, J?(C,£'), say, 

is skew-symmetric with respect to the line 5=4'; viz., by direct 

substitution one finds 

jfoj.Sj) = -JiKvV2) (90e) 

Governing Equations for Crack Growth: Neglecting V    on the basis 

of the above arguments and bringing together Eqs. (87a) and (90c) 

iMin "'-H"-"':-,,'"J,r  "■»■ " j^mgBMiBflBMMfldifci 
■   -.-..- 
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yields the principal result of this paper; 

C (t ) -AL (91) 

This equation is identical to that for the critical stress intensity 

factor of an elastic material (see Eq, (59)) except the linear 

viscoelastic creep compliance C (t ) appears in place of the elastic 

2 
constant, 4(1 - v )/E. For completeness we record here the definition 

of t : 
a 

ta = Xn  a/a (92a) 

where a is found from Eq. (22), 

2 2 
■n    N 
 o 
2 T2 a I. 
m 1 

(92b) 

and An  is obtained from Fig. 6, with the value of n 

simply related to creep compliance,* 

n = 
d log Cy(t) 

d log"! 
(92c) 

at the time t = a/3ä. Experimental and theoretical determination 

of fracture properties F and a    I , and their possible velocity 

dependence, will be discussed a little later; for the time being we 

shall treat them as known quantities. 

The general character of continuous crack propagation in 

viscoelastic media can now be described. First, we note that 

C (t ) is a continuous, monotonic, increasing function of t having 
v a o 

,1/n 
»In most problems, the value A^'" = 1/3 obviously will be acceptable. 

■■'—  -■■'■  niiMii^ii— ^■>-~>S'*^^-isi*<*»^-<i**z** 
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the range of variation, 

Cv(0) < Cv(£Q) < Cv(-)   . (93) 

Thus, Eq. (91) admits a single-valued continuous solution t , given 

N and T,  for the following rang:; of stress intensity factors 

N  < N < N (94a) 
oe   o   og v ' 

where 

Noe5V/H^ Wb) 

and 

og-y.rW    • (94c) 

These limiting stress-intensity factors are identical to so-called 

critical stress-intensity factors of elastic media having elastic 

2 2 
constants 4(1 - v (°°))/E(°°) and 4(1 - v (0))/E(0), respectively; 

the relation between C (°°), C (0) and these elastic constants 
v     v 

follows from application of the initial and final value theorems of 

Laplace transform theory [17] to Eq. (45). 

Henceforth, N  and N  will be called the equilibrium and 
oe     og —a  

glassy factors, respectively; the equilibrium factor for a non- 

crosslinked polymer is zero since C (") = °°. 

Returning to Eqs. (91) and (92), we see the behavior described 

above implies the instantaneous crack tip velocity a is a 

monotonically increasing function of N in the range in Eq. (94); 

ii ■■■ — -■- - 
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although T and a I may depend on velocity it is doubtful this 

dependence would alter this general behavior. As N approaches N 
o rr       og 

from below, a becomes unbounded, while as N approaches N  from above 
'        o vv oe 

a approaches zero. It is concluded, therefore, that a crack will not 

propagate if N < N  and will propagate at high velocities (limited 

of course by effects of wave action which have not been taken into 

account in this paper) when N > N  . 
o - og 

Another point of interest is that instantaneous tip velocity 

depends on the current value of N but not on past values. Recall 

also that a is actually the velocity normal to the curve defining 

the crack tip, and consequently Eq. (91) enables one to compute the 

time-dependent shape and size of a crack in terms of local stress 

intensity factors. 

In order to solve Eq. (91) explicitly for tip velocity it may be 

desirable to reintroduce the power-law form C (t) = C.t"; Eqs. (91) 

and (92) then yield, with a = da/dt: 

da 
dt 

1 n 
(2n+i) 

4 r 

l/n N2(l+l/n) 

2 _2 
m 1 

(95) 

(In the development of the theory, a was defined to be the velocity 

at the time, t-, which is the time at which the crack reaches a 

generic location x; for notational simplicity we now drop the 

subscript "1" on the time variable.)  In general, this is a first order 

nonlinear differential equation for crack length.  If n is not 

constant, it has to be expressed in terms of N and a through 

gamma  —- ■ «.... I    a» — 
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Eqs. (92b) and (92c).  (In solving Eq. (95) numerically, a considerable 

reduction in computational time may be achieved by letting n be 

piecewise constant over approximately one-decade intervals in a/a, 

depending on the amount of curvature in the log-log plot of creep 

compliance; this is especially true when Eq. (95) adu..us an analytical, 

closed-form solution with n constant.) 

The solution of Eq. (91) may be facilitated by incorporating 

the initial value of compliance, C (0), in the analytical representa- 

tion of C (t); we do this by means of the generalized power law: 

Cv(t) = CQ + C2t
m (96) 

where C = C (0); m and C„ are, respectively, the slope and the 

log t = 0 intercept of a line drawn tangent to a double-lcga: thmic 

plot of [C (t) - C ] at time t. The main advantage of this 

representation over simple power law Eq. (66) is that m and Cl- 

are constant over many decades of time for numerous plastics and 

elastomers [ 1 ]; for example, the above form of power law fits the 

uniaxial data in Fig. 4 extremely well for - <*> < log t < -2; in fact, 

except for a small portion of the curve close to log t = -2, the 

entire compliance can be represented by the generalized power law up 

to its intersection with D(°°) and by the constant D(°°) at greater 

times.  (Observe that the condition of small curvature used in 

developing the theory (e.g., Eq. (67)), which requires the slope n 

to be essentially constant over approximately 1.2-decade intervals, is 

not particularly well satisfied close to log t = 2.  It is important 

 i mmm ■ —-— - - mmm   ammtmmm jamnüi u m ^MtrtMatilMM^ 
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to realize that this curvature will produce some error in Eq. (91) 

only when log (a/3a) ~ 2, but will not cause error at other 

velocities.) 

One can easily show that if generalized power law Eq. (96) had 

been used in the development of the theory, instead of Eq. (66), 

Eq. (91) still would have been obtained. However, one must replace 

n by m in Eqs. (92a) and (92c) and in Fig. 6; also, replace 

C (t) by [C (t) - C ] in Eq. (92c). We now solve Eq. (91) for tip 

velocity after drawing upon Eq. (96) and definition Eq. (94c): 

da 
dt 

C.A IT 
2 m 

(2m+l) 

Urn - N2 1No 
lj 

1/m N2(l+l/m) 
o 

2 T2 
m 1 

(97) 

N, og 

2   2 2 2 
for N < N . We see that when N /N  «1 this result reduces 

o   og o og 

to Eq. (95); for this range we may set C = C and m = n. Equation (97) 

also shows clearly that the velocity becomes unbounded when N 

approaches N  from below, 
og 

Fracture Properties: The basic Eq. (91) was derived without 

explicitly imposing any significant restrictions on the nature of 

the failure stress, af.    Now we shall deduce some special, but still 

relatively general, representations in order to be able to make 

explicit predictions of crack growth and/or determine pertinent 

fracture properties from experimental data. 

First it should be pointed out that the assumed geometry of 

the crack cross-section, Fig. 1, probably limits us to functions 

 Ill llU'llMN   """* 
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a At,)  which are either independent of £ or are decreasing functions 

of £. For if o increased appreciably with £ (such as for a metal 

with significant strain hardening), the continuum adjacent to the 

failure zone would be subjected to stresses outside of its range of 

linear viscoelasticity, thereby invalidating a basic assumption of 

the theory. This limitation is not believed to be a serious one 

for most filled and unfilled polymers; certainly the theory will 

be suspect for some materials, such as natural rubber in which 

stress- and rate-dependent crystallization forms a strong, anisotropic 

crack tip reinforcement [ 2 ].    On this basis it will be assumed 

that the maximum value of ac,  which is denoted by a , occurs at 
i m 

the tip or at least very close to it. 

Let us now determine the principal geometric and mechanical 

variables affecting the dimensionless failure stress distribution 

f(= Or/o  ) , at a generic location, E,.    In general» this stress will 

depend on the displacement v at £ as well as the t*._* variation 

of displacement as it increases from zero to the maximum value v 
m 

at C = ex. This time variation of displacement is defined by the 

tip velocity a (which already has been assumed constant during 

the time an element of material is stretched from its initial length 

at £ = 0 to complete failure at a), the shape of the interface 

jetween the linear continuum and failure zone, and the maximum 

displacement v ; we shall express the interface shape using the 

single parameterJ27, which is intended to represent the set of all 

values of v/v over 0 < E, < a.    The rate at which the tensile stress 
m      -  - 
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in the x-direction within the failure zone decreases from its value 

of o (o) («* o (o)) at C ■ 0 to zero could affect the rate of 
x      y 

degradation and, therefore, a  ; e.g., the triaxial tensile stress 

state near the tip may facilitate the production of cavities In the 

failure zone for some materials. It will be assumed that this 

effect is determined by the overall failure zone dimensions, v and 
m 

a, tip velocity, a, and interface shape«. 

One might also argue that the crack tip thickness d (see Fig. 3) 

is not a constant, and therefore should be explicitly included in 

the set  of parameters affecting f. However, implicit in the 

assumption of linear visco-ilastic behavior for the material outside 

of the failure zone is that the strains are small, and this restriction 

includes the strain at the tip, S = 0; within this context d. is 

essentially constant and no further mention of this thickness need 

be made. 

On the basis of the above remarks and dimensional considerations, 

the dimensionless distribution f can be written as follows: 

o     a T . 
f = F(y_ J   £_  1) 

m     m 
(98a) 

where i. (j = 1,2,...,N) are N time-constants defining the 

rate-dependence of the failing material through bond failure and/or 

relaxation processes; note that each one of the associated 

nondimensional parameters is the ratio of the time constant to the 

time the crack tip takes (a/a) to propagate the distance a.    The 

HüBi—üü rlir^.--~-—* .^„..   .L-vI—  -J», rr—■■- -"-""--■ ■■■-- Hü—"--— i I I,■ ■-  ■ ■ - I - ---■■-— -———■ iniiiiiM 
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parameter o/v reflects primarily the influence of the triaxial 

stress state on the degradation process. 

In order to establish the variables affecting the maximum 

stress o , consider a material point along the line of crack 

prolongation. As the crack tip approaches, the stresses (o , a  , a  ) 
x  y  z at this point approach (a , a , o ), where 

m  m  z 

rt 

a ■ 
z V(t - T) 

3(c + a  ) 

Strictly speaking a    depends on stress history as shown in Eq. (98b) 

However, considering the relative insensitivity of Poisson's ratio 

to time [ 1 ] and the fact that e = 0 in the neighborhood of the 

crack tips this dependency will be neglected; hence a    - a  . 

With this observation in mind and using the previously stated 

.sumption that the material is linearly viscoelastic 

outside of the failure zone, and therefore is undamaged, we conclude 

that a    is independent of stress history; a may, however, depend 

on tip velocity. Thus 

a T 
o■ - o ( 1) 
m   m a ' 

(98c) 

It is of interest to mention that the above representation of 

af 
m a    F contain*! as a special case the fracture theory of 

Barenblatt et al.[18], which is based on the application of rate 

process theory to the failure zone in an otherwise linearly elastic 

material. However, we shall not use their special form of a.  as it 

knMaUHMyMBti^^ ■UriHdMOtflMiütiiaaaaii —'-■■■ - ^»"' J:~ " '■"'   -"■■-■irrtirii.r.riimnn  ■—I    I II II 
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is derived from a rate equation for bond failure which is probably 

over-simplified [2] and also predicts the physically incorrect 

result of a non-zero tip velocity for a vanishingly small stress 

intensity factor; while such behavior could exist in noncrosslinked 

polymers above their glass-transition temperature, they do not satisfy 

the elasticity assumption made by Barenblatt et al.[18] when a •> 0. 

Returning to the discussion leading up to Eqs. (98a) and (98c), 

we may conclude that the fracture energy (which is the work done by 

a    acting through the displacement v ) depends, at most, on the 
r m 

nondimensional parameters shown in Eq. (98a) except for v/v ; viz., 
m 

n 
a T. 

m 
(99) 

The quantities r, o , I , and F, by themselves or in combination, 
m  1 

will be called fracture properties. For the sake of argument, let 

us now suppose that these fracture properties, as well as C (t), are 

given functions of their arguments. Equations (91), (92), and 

Eq. (82) provide a set of five equations from which the five 

quantities n, t , a, a, and v can be found, in principle, given 

N ; note that the shape, jy, is defined by the variation of v with 

£, through Eq. (82).  It is therefore concluded that the instantaneous 

crack tip velocity depends on only the instantaneous stress intensity 

factor; neither the history of this factor nor the history of the 

stresses in the continuum enter. 

This conclusion has an important practical implication.  Suppose 

that the function N = h(a) has been obtained experimentally over the 

b^ tMWiti^m^tMmiitäf anna- •■-- 
.-..I* a^j,--—-^■niii,-t"-" -■■■..-gujMB ürnintiBi—^tiifa-" "-*- -•<"■•■>"•<■<* ^"■.aa 
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velocity range of Interest. Then to predict crack growth due to a 

stress intensity factor which has different time-dependence than used 

in the experimental determination of h(a), one does not have to 

introduce any new functions or fracture theory per se. Rather, all 

one need do is integrate the first order differential equation 

N ■ h(a), where N may possibly depend on a as well as other 

time-dependent parameters. Of course, use of the previously derived 

theoretical relationships may greatly facilitate the evaluation of 

h(a) from experimental data (especially if T  and a  I, are constant) 
m 1 

and simplify the determination of its dependence on such important 

factors as chemical aging and temperature; incorporation of these 

factors will be discussed shortly. For the three materials studied 

later in Section 4 it is found that V  and o I. can indeed be 
m 1 

taken as constants; this result will be seen to provide a simple 

analytical representation of h(a) in terms of creep compliance 

and enable some rather useful conclusions to be drawn concerning 

crack growth and failure under realistic loading conditions. 

Finally, it should be clear that if only the function h(a) is 

known, it is not possible to establish the separate fracture 

properties appearing in the theory. For example, we could arbitrarily 

assume F • 1 (or I. & 2) and select any constant value for a and 
i m 

still adjust the theory, Eq. (91), so as to fit the function f(a); 

this fitting would be accomplished by absorbing as much velocity 

dependence in T  as necessary by setting N ■ h and combining Eqs. (91) 

and (92) so as to find T  from the equation, 

|M      ,.,=. ■■ .,.„■.«..„■,,  .„„.„IMB  
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% h2 C (A1/n a/a) 4    v n (100a) 

where 

2, 2 
7T h 

' 2 T2 a  a o I, m 1 

(100b) 

and n Is defined in Eq. (92c). Unless a  I, is actually 
m 1 

constant and its value correctly chosen, r as given by Eq. (100a) 

cannot be interpreted as true fracture energy. On the other hand, 

• 
if both h and a are determined experimentally as functions of a, 

Eq. (100a) yields the actual fracture energy after substituting 

these two functions. Then Eq. (100b) can be used to find a I, n ml 

in terms of a. 

We are thus led to an important conclusion concerning fracture 

experiments. If it is desired to use these experiments to establish 

the rate dependence of T  and a  I , if indeed any exists, one must 
m 1 

measure both crack velocity and failure zone length as functions of 

N . 
o 

Effect of Environmental Changes and Aging:  The creep compliance 

C and fracture properties r and o I which appear in the basic 

fracture Eqs. (91) and (92) can be expected, in general, to vary 

with the environment through, for example, dependence on temperature 

and relative humidity. These properties may also vary directly with 

age due to such phenomena as post cure reactions and oxidation. As 

long as the resulting changes in C , r, and a I. are relatively small 

in the generic time interval a/a, we can incorporate this time 

i i ■■■ —i 
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variation in properties directly into Eqs. (91) and (92), as well 

as Eqs. (95) and (97), without having to alter the form of the 

equations; integration of the appropriate equation, taking into 

account the time-varying properties, will yield instantaneous crack 

size as a function of environment and aging histories. 

As a point of caution it should be recalled that the crack 

propagation theory was developed under the assumption that N is 

independent of viscoelastic properties of the continuum. With 

sufficiently rapid changes in the environment and/or spacially 

nonuniform aging, the resulting inhomogeneity may give rise to 

significant dependence of N upon the viscoelastic properties. 

Consequently» the theory will not be valid during those periods for 

which such inhomogeneities exist. 

A study of the possible ways in which the fracture properties 

may change is beyond the scope of this paper. But we will comment 

briefly on temperature dependence of the creep compliance as a large 

amount of experimental data exists on this property. For many 

crystalline and amorphous polymers, below and above the 

glass-transition temperature, T , temperature dependence of the 

compliance is characterized under isothermal conditions by the 

simple equation [ 1 ], 

Cy(t, T) = CQ + AC(5)/aG (101) 

where 
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C = C (T) - initial compliance 
o   o 

ACU) MC - C ) a_ 
v   o  G 

£ = t/a_ * reduced time 

a_ = aß(T) ■ compliance factor 

a = a (T) * time-scale factor 

Thus, three functions of temperature (C , a„,  a_) plus one function 
o  O  T 

of reduced-time (AD(?)) define the compliance C (t, T). It should 

be added that most of the data used to establish the fora of 

Eq. (101) are from unia:;ial tensile tests; however, this equation 

should be quite accurate for C as well since the uniaxial creep 

2 
compliance and C differ by only the factor (1 - v ). 

Let us assume the common power law form fcr AC(?), 

ACU) - CRC 
m 

(102a) 

where C and m are constants. Upon comparing Eqs. (96) and 

(102a) we see that C? is a function of temperature; viz., 

m c2 ■ v; ac (102b) 

This coefficient, as well as C (T), can be substituted directly 

into Eq. (97) in order to predict crack growth under different 

constant or transient temperatures. 

When amorphous polymers are in their glass-to-rubber transition 

r,-r -~.~l-n ..r—-.-.-.~ v ■<■ <* ,mmmtfHmn»Mn*am-.^  - iH-nnr -' ^■'"--'-^^»^ 
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one can neglect the temperature dependence of a and C , 

^.arefore write 

Cv s Cv(0 (103) 

where £ = t/a_. Any material whose temperature dependence enters 

entirely through the time scale, as in Eq. (103), is called 

"thermorheologically simple"[13]. 

Prediction of Initial and Intermittent Crack. Growth 

The preceding analysis enables one to predict crack, growth 

under a constant or varying stress intensity factor during those 

periods for which N , r, and af do not vary appreciably over each 

time increment a/a. Of course, even if there are intervals during 

which this condition is not met, the theory is still valid for 

predicting growth in each intervening period when N is sufficiently 

large. 

Prediction of the time at which a crack starts to grow (i.e., 

the fracture initiation time, t ) and growth when N varies 

significantly during the time increment cx/a (as in low stress level 

fatigue) is accomplished by bringing together the convolution 

representation of displacement, Eq. (41), the finite stress 

condition, Eq. (22), and the fracture energy Eq. (54) or Eq. (55). 

The analysis may be considerably more involved than the preceding 

one of continuous growth since simplified displacement Eq. (82) 

cannot be used and the energy T  and failure sr.ress distribution 

■...■.^-^-.--.w^.-^ ^,>...~. ■:-...„.,—..^.,,....... , mmmjmäss^       ...,^,^.   -B«m'M<vMiii>>ii«)iiiiit»imawiiiii^wr«n>«i<MiiiiiinitiiiHtt* 
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will possibly depend on loading historv. Because of this complexity 

we shall limit our analysis to the prediction of t and initial 

velocity using an idealized representation of a,. A possible 

approach to analyzing more general problems will be outlined at the 

conclusion of this section. Environmental and aging effects are 

omitted for simplicity. 

Fracture Initiation Time; Suppose that the crack tip is 

initially located at x = 0 and that the body is subjected to load(s) 

starting at t = 0. As the first case we assume (i) N is a 

nondecreasing function of time, and (ii) the failure stress 

distribution is cous.ant (viz., o. = a    ■ constant). The length of 
i   m 

the failure zone is found from Eq. (22), 

2 M2 

o 
(104) 

4a' m 

Inasmuch as the left end of the failure zone (see Fig. 1) does not 

completely fail until an amount of work equal to FdA has been done 

on it, the failure zone length in Eq. (104) is also equal to the 

movement of the crack tip during the first stage of loading. 

The crack opening displacement at the left end (x = 0) is obtained 

from Eq. (41) by substituting Eq. (42) with x « 0 and a(x) » O(T), 

and then using Eq. (104) for a; there results, 

v = J^ c(2) 4a   v 
m 

(2) 
where C   is a so-called "secant compliance," v r 

(105) 

.ir..i.:~.,<x±. -  i.Yi Hi m BMB i-nVi.n 
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cJ2)-q<»(t,B-Jk 
No

2(t) 

et 2 
d IT(T) 

Cv(t - x) --£— dT (106) 

Failure of the material at x = 0 occurs when v reaches the 

value vm, corresponding to the displacement for which the energy 

input is equal to T;  specifically, from Eq. (54), 

T = a v 
tn m (107) 

Setting t - t. and v »  v, in Eq. (105) and substituting ^ ^^ 

into Eq. (107) we obtain 

r-T<<h><?\> (108) 

which is identical to the condition for the onset of crack growth 

in an elastic body except the secant compliance, Eq. (106), replaces 

4(1 - v )/E (see Eq. (59)). Referring to Eq. (94), we conclude that 

t. = 0+if N (0+) > N ,and that fracture does not initiate if i       o    - og* 

N < N  . 
o   oe 

Secant compliance Eq. (106) can be rewritten as follows; 

<f>(t) = cv(t)-- 
ft 

N (t) J 
I'C (t) - C (t - x)] 

d N (T) 

—£  dT  d09a) 

Since No and Cy are nondecreaaing functions of time, this equation 

implies 

c(2)(t) < C (t) 
(109b) 

■ - ----- ■■- - 
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Hence, if the creep compliance itself were used in the elastic-like 

Eq. (108) instead of the secant compliance, the predicted initiation 

time, t , say, would satisfy the condition 

Cci 2 fci (109c) 

The equality results if N is constant for t > 0. 
o 

When N is a power law in time, the secant compliance can be 

obtained from the previous result for effective compliance, Eq. (79) 

Namely, if N ^ t , where p is a positive constant, we find 

<V2)(t) = A G (t) v       nr v (110) 

where X      is given by Eq. (80) and r = 2\i.  Figure 6 can be used 

to estimate X      if 1/2 < u < 7/4. 

The fracture initiation time predicted by Eq. (108) was derived 

assuming a,. = a    = constant. However, the results in Appendix C 

provide evidence that Eq. (108) is at least approximately valid even 

if f varies with £, Specifically, when approximate displacement 

Eq. (49) is used along with Eq. (22) to predict v , and it is 

assumed that the shape of the failure zone is the same as in Eq. (72) 

(viz., v -v C    ) and that 0, = a F(v/v ), there results 
r   m    m 

..,2, . ,(2) r = AiiWcv V (Ilia) 

where A is given by 

8^2 
3  T2 

fl 

F(p)   dp 
(111b) 
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The coefficient A. turns out to be equal to the ratio T    /T  in 
i n ap 

Eqs. (C-4) and (C-5) when a    is given by Eqs. (C-l) and C-2), 

respectively. In view of the results shown in Fig. C-l, it is 

tentatively concluded that Eq. (108) can be used to predict fracture 

initiation time even when af varies with £.  (There are cases, 

however, when t is very sensitive to r and therefore very sensitive 

to the variation of af. For example, this situation exists when 

(2) 
N is a constant within the range in Eq. (94a) and C   is a weak 

function of time.) 

Let us now consider the problem of predicting fracture initiation 

time when we remove the assumption that N is nondecreasing but, for 

simplicity, retain the assumption that a.  = a . Equation (104) 
r   m 

implies the position of the crack tip a(= a) will move to the 

left (a < 0) upon unloading (dN /dt < 0) if a    does not decrease at 
o m 

least in proportion to N ; result a < 0 is physically unacceptable 

since it would Imply complete healing of the material in the failure 

zone and, moreover, would invalidate Eq. (41) since it is restricted 

to a > 0. At any time (0 < t < t.) during the loading or unloading 

periods the displacement is given by Eq. (41) as long as a > 0 and 

the crack faces do not contact one another (which could occur if 

N < 0). At x = 0 and with a    = a  (T) and E,  = a = CX(T), we find 

1 
v = — C (t - T) j-  [0 (T) O(T)] dx 

v      ax  m 
(112) 

One physically reasonable selection for a   (T) and CX(T) would be 

o ■ constant when dN /dt > 0 and N > N (max), where N (max) is the 
m o        o - o o 

largest N up to the present time, and a = constant whenever N < N (max) 

  ..-■■-■■ - - — --——■■--——-■**■———--:"" ■ - ■ ■■■■ ■ ■"-■■■-   
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The analysis will not be pursued further in this paper. However, it 

is to be noted that the resultant work input to the failure zone 

at t = t. should be calculated using Eq. (55), rather than Eq. (107), 

since a    is time dependent. 

Initial Velocity: Calculation of tip velocity during the first 

stages of crack growth will be illustrated using the assumptions 

that N is nondecreasing and a£  = a = constant. Motion of the crack o f   m 

tip prior to t. is obtained directly from Eq. (104) since 

da/dt = da/dt: 

,   tr N dN da _  o  o 
dt=2a2 dt 

m 

0 < t < t, (113) 

Immediately after fracture initiates,the tip velocity becomes 

dependent on the creep compliance of the continuum. This velocity 

can be calculated from Eq. (91) if N does not change appreciably 

during the time it takes for the crack to propagate the distance 

a in Eq. (104).  Inasmuch as N satisfies Eq. (108) at t., comparison 

of Eqs. (91) and (108) yields an implicit equation for a, 

C (A1/na/a) - C(2)(t.) 
v n vi (114) 

where t < t < t + a/a.  If, for example, N is constant for t >  0 

and N  < N < N , 
oe   o   og 

C(2)(t.) = C (t.) vi    v i (115a) 

and therefore, 

iiin---*'"^ ni Hiiiiii'^"""-^" 
i iiMif"^1"" ''''irii ^■■■■-^-'■" "--^ 
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*- t,/A1/n 
i n 

a 
(115b) 

or 

a = 

.1/n   22  , 
A     T  N (t ) 
n      o i 

4a 
(115c) 

m 

which is the velocity immediately after the fracture initiates at 

time t.. Referring to Fig. 6, it is seen that 0.29 < A   < 0.40 
i - n 

when 0 < n < 1; thus, according to Eq. (115b) the time for the 

crack to propagate the distance a  is approximately three-times the 

initiation time. In deriving Eq. (115b) it was assumed that the 

value of n obtained from the creep compliance at t = a/3a 

(see Eq. (92c)) is the same as that at t,; this is justified since 

1/n 
Eq. (115b) and the average value of A   ^ 1/3 imply a/3a * t.. 

Equation (114) is based on the assumption that the fracture 

energy required to produce the initial failure at x = 0 is equal to 

that under continuous growth. Whether or not this assumption is 

valid probably depends on the material and loads since the former 

energy could depend on loading history when t < t. and the latter 

energy may be velocity dependent. Furthermore, an element of 

material in the failure zone at x = 0 is unstressed in the 

x-direction for t > 0, while in the continuous growth case an element 

of material in the failure zone is under triaxial stress at least 

part of the time. 

Low Stress Level Fatigue: When Eq. (91) cannot be used to 

predict tip velocity, we must return to the convolution 
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representation of displacement, Eq. (41), in order to establish a 

criterion for crack growth. Such may be the case in the important 

problem of cyclic loading when the maximum stress intensity factor 

is large enough to cause crack growth while the minimum factor is 

so low that either the crack Is stationary during a portion of each 

cycle or a/a is not small compared to the vibration period. 

The method of analysis used by Knauss and Dietmann [7] 

apparently could be applied to the present theory; they expanded 

the stress intensity factor in a power series in time over the 

interval in which the crack moved a distance a, where a was constant 

in their theory. Here it would be necessary to account as well for 

the facs. that a, and possibly af, vary with time over each cycle, 

but such an analysis will not be pursued in this paper. 

4. Applications 

A Sheet Under Constant Stress 

Consider a centrally cracked plate, such as shown in Fig. 9. 

Assuming the crack length, 2a, is large compared to sheet thickness 

but small compared to the in-plane dimensions, the stress intensity 

factor is [5], 

N -/£ o (116) 

where o is the applied stress. Crack growth and failure time will 

be predicted using Eq. (97) under the assumption that the creep 

iilinriiir -  - - um oiif.nr- M    '" ■'" üümHü n   ii in i Mart"1 -"■-*"»  
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compliance parameters, C. and m, and ae fracture properties, r and 

a I., are constant. Substitution of Eq. (116) into Eq. (97), 

assuming a  is applied at t * 0 and is constant thereafter, and 

integrating yields 

t ■ 
2 T2      _ 

!sLii LjL.) 
o2      tW 

1/m a/ar 

a    V o  ' 
(117a) 

where a 
g 

is 

a 
8 

defined 

_    8r 

as 

TCC 
o 

2 ! 
(117b) 

When the central crack reaches length 2a complete failure of the 

sheet occurs; this point follows from Eqs. (91), (94c), and (116), 

which imply a + » as a + a . The time at which a = a is called 
8 g 

the failure time, tf, which, after changing the intergration variable 

in Eq. (117a), becomes 

rl 2 T2 
2  m 1 

f " 2  2 
TT   O 

C -,1/m 
o 

\nC2 
(1 - u)1/m u"(1+1/m)du . (118) 

a /a 
o g 

It is of interest to notice that when a /a »1 and 0 < m < 1, go -  - 
the integrand in Eq. (117a) goes quickly to zero as y increases. 

In fact, the current time is already 90% of t when 

^-= 10m 
a 
o 

(119) 

One can easi±y show that if the assumption a /a »1 is removed, the 
g o 

crack growth at t « 0.90 t will be even less than given in Eq. (119). 

iHI i in-- - '-■*■-" 
■ I ■ llTllf-J ' 
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These observations are Important because they tell us If the stress 

intensity factor, Eq. (116), is valid over most of the time period 

0 < t < t or if the effect of finite sheet width must be 

included when predicting failure time. For three typical values of 

m, Eq. (119) yields 

a_ 
a 

10  , m * 1 

3.3 , m = 0.5 

1.6 , m = 0.2 

(120) 

Surprisingly, most of the time required for failure is consumed 

while the crack is still relatively small, especially for 

0 < m < 0.5. 

As a point of comparison, if the bracketed term in the integrand 

in Eq. (117a) is replaced by (a /a y)   for all 0 < t < tf, the 

failure time is derived by setting a/a = °° to find 

2m o*" 
t .  m x 

f    (2+1/m) 
8r 

A C.a , 
m 2 o-' 

1/m 
-2(l+l/m) 

(121) 

which brings out very simply the effect of stress on failure time. 

This is the same result as would be obtained by neglecting 

2 2 
(N /N ) in Eq. (97) at the outset of the analysis. 

Equations (118) and (121) will be compared to experimental data 

on Solithane 50/50, which is a crosslinked, amorphous, polyurethane 

rubber. The experimental data, which are shown in Fig. 9, have been 

normalized with respect to the stress om,  where 

■ Mi.l ll..,.f — 
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APB. 
(122) 

is the critical stress for the onset of crack growth in an elastic 

plate having Poisson's ratio v ■ 1/2 and Young's modulus 

2 
E^ m 4(1 - v )/C («*) « 3/C («); thus, no crack growth occurs for 

2 
log(a/o^) < 0. Also, all data have been reduced to a common 

temperature of 0°C by recognizing that the material is essentially 

thermorheologically simple [5]; according to Eq. (103) the effect 

of temperature can be introduced by replacing tf with t./aT in 

Eq. (118). Since log(t/a ) » log t - log a_, the theory, if valid, 

implies experimental failure data obtained at different temperatures 

can be superposed by means of horizontal translations of magnitude 

log a_ so as to form a single curve; the failure data at the 

temperatures indicated in Fig. 9 were shifted to the data at 0°C. 

(One can interpret the reduced failure data as being the results of 

tests conducted entirely at 0°C.) We should add that the creep 

compliance in Fig. 4 was formed in the same way; in fact, the values 

of log a„ used to shift the failure data are those obtained by 

shifting the creep compliance. That a single creep compliance curve 

was obtained is a check on the thermorheological simplicity 

assumption; the fact that the failure data superpose extremely well 

(as seen in Fig. 9) using the same values of log aT helps to 

substantiate the assumption that r and a    are constant, and checks the 
m 

underlying fracture theory itself. 

UHH IM  ■Mar"-*-'*— 
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In view of the power law fit shown in Fig. 4, we set m • 0.5 

in Eq. (118) and carry out the integration to find 

2 2 

2.JLil(A.)2 /3 + l(V2. 
2   2 VA C>    \2  2 la ; 

IT   a   m 2  v      o 

a     a i 
2 —& + In —&l (123) 

where a depends on stress through Eq. (117b). When a /a > 30 this 

equation reduces to Eq. (121) after setting m = 1/2. The latter 

equation shows the theory is a straight line with slope of -1/3 when 

2 
log(a/a )  is plotted against log t,.; it is observed in Fig. 9 

that this is indeed the slope of the. experimental data in the low 

stress level range ((o/o^) < 10 ' ). 

Referring to Eq. (121). we see that the influence of the fracture 

properties on the relation between a  and tf in the straight line 

region is through the combination (a InT). Had the fracture data 
m 1 

been given in terms of a in [5], rather than cr/o , this combination 

of properties could have been found by matching the theory and 

experiment at any point in the straight line range.  (Note that 

o I and r appear by themselves in the high stress level range of 

Eq. (123); if the theory is applicable in this range one can then 

determine o I1 and r separately.) Knauss [5] obtained the fracture 

energy itself from other experiments on swollen rubber, in which 

state the material is essentially elastic, and then used the 

corresponding value of o to normalize the failure data. He found 

_2 
T = 2.41 x 10  lb/in., which corresponds tc a = 8.40 psi. 

_2 
(Knauss actually reported the value of T = 3.21 x 10  lb/in. [5.J, 

■ar»i~."-  ■-■•■•■■■■—-- ■ ■-■■   ' fr"'Tiii«rii) 
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but this value was obtained by using the plate stress equation for 

critical stress in an elastic sheet; later it will be found that 

a is much less than sheet thickness, which means the plane strain 

version should have been used. In order to correct the reported 

2 
T value we have multiplied it by (1 - v ) - 3/4. Now, express 

Eq. (121) in terms of (a/a  ) and solve for a I,  by noting that the 
<*> ml 

straight line in Fig. 9 intercepts the stress axis at 

t -10 sec = 10 '  min; hence 

el.- 172 x 10 psi 
ml r (124a) 

By taking into account Eq. (24b), a lower bound to the maximum 

failure stress is obtained: 

a    > 86 x 10 psi (124b) 

where the equality is used if a    is constant throughout the failure 

zone. The ideal theoretical strength based on failure of a regular 

arrangement of carbon atoms is approximately thirty-times this 

value [19]; however, considering the irregular nature of real 

networks, the presence of shear forces at the tip (see Fig. 3) and 

that Eq. (124b) is the lower bound and not necessarily a   , this 
m 

numerical result does not seem unreasonable. 

Inasmuch as both o I_ and T  are now known, we can plot the ml »       r 

remainder of the solution as given by Eq. (123). While having the 

correct shape, the theory underpredicts failure time in the high 

2 
stress level range above log (a/a  ) ~  0.8, say; this stress 

„■■ -ir ,.-■ -Sh ..»■> !'*■" »■■■..la .-im .in ■* ■■ 
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corresponds to an overall strain of approximately 5%. Since 

t, i» N  for m ■= 1/2, even a small amount of nonlinearity, such 

as blunting of the crack tip and consequent reduction of stress 

intensity factor, could have a significant effect. In fact, we 

find the theory agrees with all of the experimental results if 

the stress intensity factor in Eq. (116) is replaced with 

No - (1 + 2e)_1y^a (125) 

(It is to be noted that the effective modulus of the sheet is a 

constant 430 psi since the time scale for crack growth in Fig. 9 

is far beyond the viscoelastic range in Fig. 4.) 

Even though the stress at the tip is very high (Eq. (124b)), 

the strain is not because practically equal triaxial tension exists. 

Using a typical value of bulk modulus, 2 x 10 psi, the Young's 

modulus of 430 psi, a    = a   , and a    -  v(o + a ) we find 
x   y      z     x   y 

1/2 
e = e * 21%. Moreover, because a = a + 0(£.,  ) near the tip, 
x   y '        y   m     1 K' 

the strain decays rapidly along the line of crack prolongation. 

The length of the failure zone is found from Eq. (92b).  For 

the lowest and highest stresses at which experimental data are shown 

in Fig. 9 we find, respectively 

(i) log(o/a ) = 0.2 

,-8 = n+ 0.6 x 10  cm , t = 0 

2.0 x 10  cm , t = 0.9 t. 
(126a) 

 .^MMlMl«MI«Ml«>iiiMlll 
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(ii) log(o/a)    m  1.6 :  a 

v-8 
10 x 10" cm , t - 0+ 

—8 
32 x 10  cm , t » 0.9 t. 

(126b) 

where Eq. (125), rather than Eq. (116), has been used to calculate 

stress intensity factor. Although tue accuracy of the theory in 

predicting failure zone lengths comparable to interatomic spacing 

(Eq. (126a)) is suspect, it is believed the scale is at least 

correct in view of the agreement between experiment and theory in 

the low stress level range; if a were constant, for example, a slope 

of (-1/2), rather than (-1/3), would be predicted for the graph in 

Fig. 9.  (In an attempt to bracket the actual failure zone size, 

stationary and moving cracks were observed with the TAMU scanning 

electron microscope. Figure 11 shows a tip which was moving at 

-3 
approximately 10  in./min at 77°F. Cracks at lOx the magnification 

of this figure were also studied visually but the failure zone was 

still too small to be observed; because of excessive discharging, 

with and without a coating, the resolution of the crack boundary 

was not as good as in Fig, 11.) 

The instantaneous value of a/a is found from Eqs. (92b) and 

(97) to be a decreasing function of N . Therefore, the largest a/a 

for the entire set of experiments occurs at t = 0+ under the lowest 

stress. We find 

— (max) = 14 x 10  min (127) 

Referring to Fig. 4, we see (a/3a)(max)  is practically within the 
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range of the generalized power law creep compliance; since 

-4 
(a/a) 'v N  and Eq. (127) is based on a (rather than a), use of 

o o 

Eq. (96) with m = 1/2 is justified in all predictions of failure times, 

Moreover, the maximum fracture initiation time is approximately 

(a/3a)(max) and therefore t. is negligible relative to the range of 

tf in Fig. 9. 

Additionally, as required by the underlying theory, the change 

in stress intenity factor over each time increment a/a is small 

for the entire experimental range of behavior; this observation 

follows from Eq. (127) and the fact that the increase in N during 

most of the propagation time is small according to Eq. (120). 

A Long Strip under Constant Strain 

The previously determined creep compliance and fracture 

properties of Solithane 50/50 will be used in conjunction with 

Eq. (97) to predict constant velocity crack propagation in the long 

strip shown in Fig. 10. Provided a > 1.5b, the stress intensity 

factor in a strip clamped to rigid grips is [6], 

N b(l-vV1/2 

2TT 
(128) 

where a is the stress which must be applied to the clamps to produce 

the strain e. Although this applied stress and strain could vary 

with time, the experimental results are for the case in which the 

strain is held constant and the strip is in a fully relaxed state 

2 
outside the neighborhood of the tip; thus a = E e/(l - v ), which 

M .....^...: „^„,.„-       ft   -    m    .    innrim« i    .1  ■     ' ■>.....,-         .Ji.-. 
!!•■--• - ii n iTn  ulriimr  ■•  •- 
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when substituted into Eq.   028) yields 

N    = E (|V/2e o        «V
3TT 

(129) 

where we have set v = 1/2. 

Theoretical upper and lower bounds on strain for which stable 

growth exists in the Solithane are obtained by using Ec. (94); 

there results 

-1.89 < log e < -0.81 (130) 

These bounds are drawn with dashed lines in Fig. 10. 

Except at high strains, the predicted velocities are seen to 

be in very good agreement with the experimental data.  (If the stress 

Intensity factor in Eq. (129) is divided by (1 + 2E), as in Eq. (125), 

the predictions at the high strains are likewise found to agree.) 

Whenever N /N  can be neglected in the denominator in Eq. (97) 
o og 

6 
we find a ^ e , and therefore the theory plots as straight lines in 

Fig. 10 with slope of 1/6; the upper strain limit for this behavior 

is found to be at log e -  -1.2. 

It shouJd be pointed out that Mueller and Knauss [6] gave a 

value of r which is three times that reported in Knauss' constant 

stress study [5] and used above.  This larger value cannot be 

reconciled with the existence of failure data under low values of 

constant stress in [5], and therefore was not used in any of the 

calculations made here. 

For the range of experimental data in Fig. 10, Eq. (92b) with 

m>af 'if"- i^^.»-^- '   iv :i ir-'i'iiWT'"--- - 
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N corrected for finite strain as mentioned above, yields 

0.70 x 10 8 < a < 53 x 10~8 cm (131) 

The largest value of a/3a, after converting to T ■ 0°C, is 
-3 

0.9 x 10  min; this result implies, of course, that the generalized 

power law in Fig. 4 is valid for the entire experimental range. 

Variable Loading and Properties; the Linear Cumulative Damage 

Rule 

Some consequences of Eq. (95) concerning crack growth and failure 

will be examined and then compared with experimental results on two 

different particulate composites:  solid propellant and asphaltic 

concrete. For reasons of clarity, we first introduce some simplifying 

assumptions. Although they may not be satisfied exactly in practice, 

it is believed there are many applications in which the resulting 

error will have little effect on the total time required for failure. 

Except for some later observations, we assume (i) n is constant. 

The other material properties (C. , T, a I.) may be functions of 
i     mi 

time (which, for example, could be due to a transient temperature 

and/or aging) but we assume (ii) their variation during most 

intervals a/a is small.  Also, motivated by Eq, (115b), we assume 

(iii) fracture initiation time for the initial loading (as well as 

for subsequent reJoading if there are periods for which a = 0) is 

negligible.  Finally, it is assumed (iv) that the stress intensity 

factor depends on only one length parameter defining either the 

■- ■■—• 
■ nt» mannt 

 — ■   ■ -- 
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crack size "a" (say) or local geometry of the body "h" (say), 

From dimensional considerations, 

N = S&  L o 
or 

N = *4T L 

(132) 

(133) 

where "L" is a linear function of the stresses applied to the body; 

e.g., see Eqs. (116) and (128). The size "a" may represent the 

radius of an isolated internal (penny-shaped) crack or the half-length 

of an isolated through-crack. The parameter "h" could be the 

separation of two rigid boundaries, where the crack length or 

diameter has to be at least somewhat greater than h; recall that 

a > 1.5b is sufficient for the plane problem in Fig. 10. 

It should be emphasized that if th -e are periods when the 

stress intensity factor is negative (due to, for example, 

cyclic loading having a zero mean value) the analysis is not 

invalidated,  for the above assumptions (ii) and (iii) together with 

Eq, (95) imply a during growth periods depends on the instantaneous 

stress intensity factor and not on either its history or the stress 

history. The following equations will be given without explicitly 

writing a = 0 whenever L < 0; however, one should set L = 0 during 

all periods in which L is actually negative. 

Supposing first that Eq. (132) applies, integration of Eq. (95) 

and setting a = °° yields an implicit equation for failure time, tf, 

in terms of the initial half-length, a , and material property and 

load histories, 
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n 

a A TT 
o n 

(2n+l) 1/n rcf 
C 1/n T2(l+l/n) 

0   4y dt (134) 

m 1 

This equation can be expressea in a more recognizable form by 

introducing a new quantity, t , where 

2 T2 no I1 
t = t (t) -  S_i_ 
c   cKZ'  ' T2(l+l/n) 

4r 
a . nT(2n+l)r a A TT     C, 
on      1 

1/n 

(135) 

Than Eq. (134) becomes simply 

rcf 
dt 

tc(t) 
(136) 

It is easily demonstrated by means of Eq. (134) that t (t) would 

be the failure time for the body if it had timewise constant applied 

loads and constant material properties equal to those that exist 

in the actual variable loading problem at the current time t. 

If L and the properties are piecewise constant in time, 

then Eq. (136) becomes 

N, At. 

1 - f -1 L
     t 

j=l cj 
(137) 

where At. is one of the time periods over which the body has constant 

applied loads and properties, t . would be the failure time for the 

body if it had these timewise constant loads and properties from 

t = 0 to failure, and N is the number of steps that are needed to 

produce failure in the actual variable loading case. 

Equations (136) and (137) are two forms of the well-known 
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linear cumulative damage rule which has been used by engineers to 

predict failure times of specimens and structures (usually with 

acceptable accuracy) subjected to varying loads, given experimental 

data on the failure time t for constant loads. This rule, but in 
c ' 

a slightly different form, was originally proposed by Palmgren [20] 

and used by Miner [21] as an empirical method of predicting failure 

under variable amplitude cyclic loading of metals; it is often called 

"Miner's Hypothesis" or "Miner's Law." 

Another feature of Eq. (134) may be brought out by predicting 

failure under constant loading rate, L. For simplicity we assume 

the mechanical and fracture properties are constant. Substituting 

L = L t in Eq. (134), and defining the "critical stress intensity 

factor" N  by 
cr ' 

N  = /ä      L t 
cr    ox   x 

(138) 

(which is the stress intensity factor existing at the time of failure, 

t , say, referred tc the initial crack size a , say) yields 

N  = U3n + 
cr 

(3n + 2) a3/2o2 I2 L 
ox m 1 

4r 
A TT       C, 
n      1 

1/n 

) 

n/(3n+2) 
(139) 

The insensitivity of N  to loading rate, L, when 0 < n < 1 is 

especially to be noted. 

Now, return to Eq. (95), which is not limited to a stress 

intensity factor of the form in Eq. (132). Still assuming the 

fracture properties are constant we may express these properties 

in terms of t , N , and a ; Eq. (95) becomes 
x  cr     ox 



79 

da  ,3n + 2. , oXw o .2(l+l/n) 
dt * l a- Mt MN ; 

T    x   er 
(140) 

This equation enables one to predict crack growth and failure of a 

structure, given the critical stress intensity factor determined 

experimentally in a simple specimen having initial crack length 

2a  and failing in time t . In writing Eq. (140) we have assumed 
OX x 

thermorheological simplicity and selected a    to be unity at the 

temperature of the experiment used to establish N . The value of 

a = a (T) shown in Eq. (140) corresponds to the instantaneous 

temperature of the structure of interest. 

If instead of taking a specimen to failure, one simply measures 

the crack velocity, a , corresponding to an instantaneous stress 

intensity factor, N (which need not be restricted to the forms in 

Eqs. (132) and (133)), then the crack growth equation (95) becomes 

da _ fx \2(l+l/n) 
dt  a_ ^N ; 

T  x 
(141) 

An advantage of this experimental method over that leading to Eq. (140) 

is nonlinear effects can be minimized in the test by measuring 

velocity early in the growth period.  However, Eq. (140) does not 

require a velocity measurement and, therefore, may be: more desirable 

if nonlinearity -'s not a problem. 

Consider now stress intensity factor Eq. (133), in which h is 

constant. Let us define failure in this case as the time at which 
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the crack length reaches some preselected value, a , say. Then 
rax 

all of the results Eqs. (134) - (137) apply directly to this 

case after making the substitution 

3nl/n    h1+1/° 
Hr~ * T—r (142) 
n    a  - a 

mx   o 

in Eqs. (134) and (135). 

The sensitivity of crack velocity, and therefore failure time, 

to stress intensity factor is clearly revealed by Eqs. (140) and 

(141). Suppose, for example, Eq. (140) is used to predict failure 

time of a structure having n = 0.2, a constant value of N , initial 

flaw length a = a , and failure is defined to occur when the crack 
o   ox 

grows to ten times its initial length. Suppose further that the 

experimental failure time is t =1 minute and for the structure 
x 

a„ = 1 and N * N /2. We find the structure fails at t,. - 10 days. 
T       o   er f      ' 

If, however, N = N /4, then tf - 100 years! Obviously, the 

ability to predict service life of viscoelastic structures is very 

much dependent on the accuracy of the stress intensity factors. 

However, because of the variability of material properties and 

environmental and loading factors, one can expect considerable 

scatter in failure times when a large number of structures are 

involved, which is already a well-known empirical fact. 

Before turning to the application of the theory to specific 

materials, it should be emphasized that the cumulative Jamage rule 

is not generally valid in the range for which n is time-dependent. 

A simple illustration is provided by Eq. (97) using stress intensity 



81 

factor Eq. (132). Even with a constant value for m, the presence 

2 
of N In the denominator precludes writing the right-hand side in 

the form f(a) x g(L), which is necessar; if the linear cumulative 

damage rule is to be derived. 

Failure of Solid Propellant: Failure data on several different 

solid propellants (which consist of a cross-linked rubber matrix 

filled with approximately 75 vol % hard particles having diameters 

typically on the order of 10-200 microns) under constant uniaxial 

stress have been reported by Bills et al. [22,23] to fit the equation 

where 

Do    V 
(143) 

a    -  a(l + e) = true stress 

a = engineering stress (constant during test) 

e  = engineering strain at failure 

o ■ engineering failure stress below glass transition 

temperature 

i>  = tc/aTq 

Q 

q = constant = 10 

a = temperature-dependent time-scale factor 

t = failure time 
c 

D(#) = uniaxial propellant creep compliance (= D IJJ in 
K 

the range of ij» for which the experimental failure 

data exist, where D and n are essentially 
K 

independent of temperature) 

_________ 
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and 

D - D(o) . 
o 

Also, 1.5 < k < 2.5 is approximately constant for any one propellant. 

In the referenced work [22], the relaxation modulus, E(i|»), is used 

instead of D(i|»); to obtain Eq. (143) we have applied the quasi-elastic 

approximation 

E(*) D(*) (144) 

which is quite good for the usual range of n, 0.15 < n < 0.25 [24]. 

It was found that failure did not occur when the tensile stress was 

below some relatively small value, which evidently corresponds to 

the stress for which N < N  (see Eq. (94b)). In writing Eq. (143) 

it is implied that the stress is above this lower limit. 

The theoretical equation (135) will be cast in the same form as 

Eq. (143); in doing this we obtain a partial check on the theory and 

enable the empirical constants (k,q) to be evaluated in terms of 

basic material properties. First, note that Eq, (48), together with 

the fact that v = 1/2 and that propellants are (approximately) 

thermorheologically simple, 

C (O = 3 D(0 = 3 D_Cn = 3 — tn 
V K 11 

aT 

and therefore 

3 D„ 

n 

(145) 

(146) 
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Next, introduce the stress intensity factor for an (internal) 

penny-shaped crack of radius a [25] 

»      - |/2ä N      =  a 
op        vr 

and define the ratio    R    as 

(147) 

R H actual stress intensity factor of the most rapidly 

growing crack in speclmen/N 

Then substitute L = R N //e  into Eq. (135), assume a„ - a  and find op        1  \  /»       T 

that it becomes identical to Eq. (143) if 

k = 2(1 + n) (148a) 

and 

o n o 
(148b) 

In order to interpret the parameters in Eq. (135) or (148) in 

terms of the properties of solid propellant and its constituents, it 

is essential to consider the size of the failure zone relative to 

the particle sizes and spacing. Figure 12 shows this zone at the 

tip of a through-crack in a sheet of propellant.  It is seen that 

the zone is large relative to the particles, and consequently ehe 

overall or "effective" properties of the composite propellant 

are the appropriate ones to use in the fracture model; on the other 

hand, if the failure zone had been entirely within a relatively 

large volume of matrix material, the matrix mechanical and failure 
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properties would be the ones to use in the fracture theory. Now, 

empirical Eq. (143) was established using specimens without cracks 

except for naturally existing flaws; the fact that the correlation 

of stress and failure time for all propellants studied is in terms 

of propellant compliance (rather than that of the matrix) is believed 

to imply that the crack tip geometry is similar to that seen in 

Fig. 12, at least during most of the time required for failure. 

As further evidence of this point, one can usually see very fine 

surface cracks (with sizes on the order of the largest filler 

particles) in a specimen under tensile stress; and these cracks grow 

only a small amount during most of the time required for failure [24]. 

Since propellant contains a large percentage of much smaller particles, 

it is tentatively concluded that typically 2a > 200 microns, and 

that the failure zone is significantly larger than most of the 

particles; since the compliance of the surrounding continuum is 

essentially that of ths propellant, n = 0.2, and consistent with 

observations we predict from Eq. (120) that gross failure follows 

shortly after the largest crack has grown approximately 60% in size. 

It is to be observed that Eq. (148a) predicts k = 2.4 when 

n = 0.2, which is on the high side of the experimentally determined 

range 1.5 < k < 2.5. That the reported values of k are not larger 

is believed to be primarily due to the reduction of the effective 

stress intensity factor with strain, as suggested previously in the 

study of Solithane. 

As further evidence of the validity of the theory, 
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Bills et al. [22,23] have applied the linear cumulative dam ige rule, 

Eq. (136), together with Eq. (143), to the failure prediction of 

solid propellant specimens and structures under monotonic and 

cyclic temperatures and stresses with considerable success. 

One final observation concerns a method of predicting fracture 

initiation in propellant structures that was originally suggested 

and successfully applied by Swanson [26]; it was motivated by a 

technique used widely for metals. Essentially the method consists 

of applying a constant strain rate to a precracked specimen and 

noting the critical stress intensity factor and time when the 

specimen breaks. It is then assumed that a crack in a more complex 

structure will start to propagate when the stress intensity factor 

reaches the value determined from the laboratory specimens, even 

though the stress history in the structure may be different. By 

referring to Eq. (i40) or (141) we can see why such a method is 

successful, at least for some stress histories.  Inasmuch as 

n "*» 0.2, the exponent 2(1 + 1/n) ^ 12, which implies there is very 

slow crack growth (relative to laboratory specimen time scale and 

crack size) when N < N , while the velocity is relatively high 
o   cr 

when N > N . However, one must be aware of the limitations of 
o   cr 

this method as, for example, structural failure can occur even 

though the stress intensity factor is always less than N ; of 

course, failure time might be very long relative to the experimental 

time for failure, t . 
x 

Fatigue Crack Growth in As^'altic Concrete; As a result of a 
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large amount of fatigue testing it has been found that the crack 

growth per cycle, da/dN, can be expressed as the simple power law 

[27-29], 

dN     om 
(149) 

where B and ß are constant under fixed environmental conditions 

and input wave shape, and N  is the amplitude of an oscillating 

stress intensity factor. For beams and plates on foundations with 

sufficiently high rigidity ß = 4 at 77°F [27,28], Probably due to 

strain effects (e.g., crack tip blunting), values of ß somewhat 

less than 4 have been reported for unsupported specimens [27,29], 

Also, it has been noted that ß tends to increase with decreasing 

temperature [29]. 

We shall show that the theoretical fracture model, Eq. (95), 

is consistent with these findings.  First, introduce the function 

w = w(t) vrhich defines the wave shape of the stress intensity factor, 

N 

N (150) 
om 

where the maximum value of stress intensity factor during a cycle, 

which is N , may vary from cycle-to-cycle. We make the reasonable 

assumption that crack growth per cycle is small, which implies w(t) 

is essentially equal to the wave shape of the externally applied 

loading.  Now substitute definition Eq. (150) into Eq. (95) and 

integrate over a cycle having period t ; writing the crack growth 
p 

per cycle, Aa, as da/dN we find 



where 

da _   N2(l+l/n) 
dN ' Bt Nom 

1 n 
1/n 

t+t 
P 2(l+l/n) 
w  

rl/Xin2   T2 
r  a I, 

m 1 

dt 
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(151) 

(152) 

Note that T  and a I are shown in the integrand as they could be 

time-dependent, depending on the complexity of the wave shape and 

whether or not the crack is stationary during part of the cycle; 

the exponent n and C are assumed constant during each cycle. 

Equality of empirical Eq. (149) and theory Eq. (151) requires 

i 

B = B   and  6 - 2(1 + 1/n) (153) 

Interpretation of these results turns out to require that we 

differentiate between a failure zone which is entirely within the 

bitumen matrix ("micro-zone") and one which encompasses many aggregate 

particles ("macro-zone"), with the latter situation being analogous 

to that in Fig. 12 for solid propellant.  For a macro-zone the 

properties in Eq. (152) anH the exponent (n) are those of the 

asphaltic concrete  nposite; while there may be exceptions, the 

typical range of the exponent for the composite is 0 < n < 0.5, 

at j.east for temperatures not exceeding 100°F, with n decreasing 

monotonically with decreasing temperature until it is approximately 

zero at temperatures below the glass transition temperature [e.g., 30,31] 

On the basis of the latter observation, we conclude 3 > 6 for a 
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macro-zone. 

This value of ß is considerably larger than the values 

(3 < 4) commonly reported for asphaltic concrete above 40°F.  Thus, 

we must consider the possibility of the failure zone being entirely 

within the bitumen. Pursuing this question we found from microscope 

studies at room temperature that the failure zone is not at all 

like that in Fig. 12. Rather, the bitumen matrix is so weak (it is a 

non-crosslinked polymer having a much smaller molecular weight than 

the propellant binder) that the failure zone of a single crack 

appears to be confined between individual particles instead of 

being spread out over many.  If there is a sufficiently large 

neighborhood of bitumen around the tip (which is certainly possible 

if a  is comparable to the zone size in solithane, for example) 

then the value of n and other material properties in B , 

Eq. (152), would be those for the bitumen»  Except at temperatures 

close to and below the glass-transition temperature of the bitumen, 

the value n = 1, which implies from Eq. (153) that 6=4, is believed 

to be appropriate.  Besides predicting the experimentally observed 

value of 3 at small strains, it is to be noted that the creep 

compliance of the bitumen is given by D(t) = D t except at short 

times or at low temperatures [32]; in addition, a state of high 

triaxial stress,which exists at the tip according to the earlier 

analysis and in the neighborhood of a tip confined between rigid 

particles,is known to suppress the glass transition temperature of 

polymers [33] and thereby extend the temperature range for which 
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$ ■ 4 is predicted. 

Carrying this interpretation somewhat further, let us consider 

the micro-zone to be a precursor of a macroscopic crack having total 

length much larger than a and particle spacing.  Then since the 

local amplitude of stress intensity factor, N  , is proportional to 

the far-field stress amplitude normal to the precursor, a', say, we 

may write 

N  = g a' 
om   p y 

(154) 

1/2 
In the simplest situation Eq. (128) implies g = (3b/87r) ' , 

where 2b is the distance between adjacent particles and we have 

set v = 1/2. More generally, g can be expected to depend on particle 

shape and size as well as spacing. Because of the relative rigidity 

of the aggregate particles compared to the bitumen, dimensional 

considerations imply g is essentially independent of modulus; then 

assuming v = 1/2 for the bitumen,the correspondence principle [13] 

implies Eq. (154) is valid for viscoelastic media.  Now, Tor a 

sufficiently long crack, 

o' - N' //s7 y   om  1 
(155) 

where N'  is the stress intensity factor one would calculate for the 
om J 

asphaltic concrete when viewed as a homogeneous continuum, and £■, is 

at least somewhat larger than the particle spacing in the 

neighborhood of the crack tip.  Substituting Eq. (155) into (154) 

and the result into Eq. (151), we obtain 3 result which is formally 
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identical to original Eq. (151); viz., 

dN  Bt(Nom) (156) 

where B' depends on particle spacing and geometry, in addition tc 

bitumen properties, while N' is the "effective" stress intensity 
om 

factor for the composite material. In general, both B' and N' 
° t    om 

could be functions of the number of cycles N. 

While the above description of f:rack growth in asphaltic 

concrete represents at best a tentative model and a partial check 

on the theory, it does bring out the importance of the microstructure 

(i.e., particles) in the fracture of composite materials. Proper 

interpretation of experimental results obviously requires that the 

failure zone size be known relative to microstructural dimensions, 

and that the possibility of its size changing appreciably with 

temperature be recognized. 

With n constant, and N' having the form of either Eq. (132) 

or (133), cumulative damage rules analogous to Eqs. (136) and (137) 

are easily derived. The only difference in the result is that t is 

replaced by the number of cycles, N, and t by N , where N is 

the number of cycles required to fail a specimen under constant 

amplitude, N' , and constant B'. The rule Eq. (137) then becomes 

identical to Miner's Hypothesis. 



91 

5. Related Theories 

As mentioned in the Introduction, the    existing theories of 

crack propagation in viscoelastic media have already been reviewed 

in Knauss' recent article [2] and, therefore, such an effort will not 

be repeated here. Rather, we shall simply compare some results of 

this paper with closely related ones established by others. 

The governing equation derived by Knauss [5] fcr growth of a 

central crack in a large sheet (see Fig. 9) and one derived by 

Mueller and Knauss [6] for a cracked strip (see Fig. 10) have the 

same form as Eq. (91). Namely, the relations are essentially those 

for an elastic material except creep compliance replaces the elastic 

compliance. Although there is some difference in certain details 

it is surprising how similar the results are, considering the fact 

that the method of derivation is so different in each case. 

In [5], the work done by the continuum on the failing material is 

approximated using the same relation as for an elastic material 

(viz., 1/2 force x displacement) along with some other analytical 

approximations at the crack tip.  The result is 

D(a/ä) = ~-   . (157) 
■no a 

In contrast, the approach in [6] to predicting crack propagation in 

a long strip is to let the crack grow in steps. With the crack 

stationary, the stress in the failure zone is assumed to decay 

linearly with time until it vanishes; the tip is then instantaneously 
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advanced a distance a and the stress again decays linearly in time. 

With v * 1/2 the governing equation is 

G(a/a) 2£__ (158) 
2be E^ 

where G is the difference of two integrals involving the uniaxial 

creep compliance; for Solithane it is shown in [6] that 

G(a/a) = D(«/3a). Both Eqs. (157) and (158) were derived using a 

singular stress distribution along with the assumptions of plane 

stress and a constant value of a. As we have already discussed, 

when a is much less than sheet thickness (it is for Solithane) 

plane strain theory should be used, which accounts for one difference 

between the results in [5,6] and the theory in thi3 paper. 

Furthermore, a is not really constant; referring to Figs. 9 and 10, 

for example, with constant a the slopes of the straight portion of 

the curves are predicted to be (-1/2) and (1/4), as compared to the 

actual values of (-1/3) and (1/6), respectively. Finally, since 

An 
n = 1/3 for all 0 < n < 1, according to Fig. 6, the theory in 

this paper, Eqs. (91) and (92a), shows t:hat the use of D(a/3a) 

on the left-hand side of Eq. (158) is essentially correct, while 

the argument a/a in Eq. (157) is three-times too large.  In later 

work dealing with rapidly changing stresses, Knauss and Dietmann [7] 

removed the assumption of plane stress and considered relatively 

general crack geometries, but the other features in [6] (i.e., 

stepwise crack propagation, singular stress, and linear decay with 

time of stresses near the tip) were retained. 
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Turning to the prediction of fracture initiation time, t., 

Williams [3] used a spherical flaw geometry in order to establish 

this time. For a constant stress applied at t = 0, he obtained a 

relation which is very close to an equation for critical stress in 

an elastic body. Translating Williams' solution to the notation in 

Eq. (108) for plane strain, we find his result is obtained if 

Cr(t ) is replaced by 2C (t ) - C (o). Thus, the two theories agree 

qualitatively for t. > 0 and predict the same critical stress 

intensity factor when t. - 0. Predictions for time-varying stresses 

do not lend themselves to such a direct comparison. Additionally, 

when the stress intensity factor is specialized to that for a 

penny-shaped crack, Eq. (108) predicts the same fracture initiation 

time as derived by Wnuk and Knauss [4] for a viscoelastic-perfectly 

plastic solid having a constant yield stress. 

6. Concluding Remarks 

A simple theory of crack propagation has been developed 

and successfully applied to three different unfilled and filled 

polymeric materials under constant and variable loading. Although 

the continuum was assumed linearly viscoelastic, the nature of the 

failure zone is quite arbitrary and, therefore, could include 

material which is highly nonlinear, rate dependent, and even 

discontinuous. Under mildly restrictive conditions, an equation for 

fracture initiation time was derived and found to be very similar 
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to the elasticity relation for critical stress, except a "secant 

compliance" appears in place of an elastic constant. 

Some influence of finite strains on crack velocity was noted 

for the three materials studied. The general tendency appears 

to be that the actual crack velocity falls below the linear theory 

prediction as the strain is increased; it was suggested that an 

important cause is geometric nonlinearity, in that crack-tip blunting 

at high strains could reduce the effective stress intensity factor. 

An ad hoc modification for finite strain effects in Solithane, in 

which a simple product form was used, brought the theoretical and 

experimental results together at high strains. As to whether or not 

one can normally expect to be able to account for geometric and 

material nonlinearities in the continuum through such a simple 

modification is not known at this time. A point of encouragement is 

that the relaxation modulus of many polymers can be expressed as 

a product function of strain and time [3], 

Although only the opening mode has been analyzed in this paper, 

it seems reasonable to expect the governing equations for fracture 

initiation time and crack growth in shearing modes to be analogous 

to those developed here and, therefore, to be similar to equations 

for critical stress intensity factors in elastic media. Thus, for 

the skew-symmetric mode [34] (T i  0 along plane of crack prolonga- xy 

tion)  ic is conjectured  that, in analogy with propagation Eq.   (91), 
/ 

C   (t   )   - ^r (159) 
V    "        TTN

2 

2 
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where energy T  is not necessarily equal to that for the opening mode, 

and the stress intensity factor N2 is defined in the singular 

shear stress distribution near the tip, T  = N„//cT; while for 
xy   2  1 

the antiplane mode [34] (T i  0 along the plane of crack prolongation), 
zy 

2J(t ) «4L (160) 

i 

where J(t) is the creep compliance in shear and, just as for N_, 

N_ is defined in the singular distribution T  = NL//c7. Equations 

for predicting a in these two modes probably are similar to Eq. (92b), 
i 

but determination of their exact form requires further analysis. 

When two or three stress intensity factors exist simultaneously, 
i 

and it is assumed that the fracture energy is the same ab in the 

opening mode, we add the work input to the failure zone for each 

mode and find that Eq. (91) is to be replaced by 

(N2 + N2,) C (t ) + 2N2 J(t ) - — (161) 
o   2  v or    3   o   ir 

whenever N > 0. The opening mode does not contribute energy if 

N < 0 since the displacement in the y-direction is then zero; 

we must therefore set N = 0 in Eq. (161) unless N is positive. o       iv'       0 

Without further analysis it is not clear what the length of 

the failure zone should be under combined loading. Nevertheless, by 

means of the following idealized problem the nature of the interaction 

can be demonstrated: Assume N_ = 0, N > 0, the failure stress 
3     o - 

a~ - a   ■ constant with the x- stress component negligible, and a 

maximum principal stress criterion in which o    is the same regardless 
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of the relative magnitudes of N and N„. By analogy with the deriva- 

tion of Eq. (92b) we deduce 

»2 /"o. r,\2 * -2-1/212 a=^2 jr+ f(r} +N2j  /   • 
m 

(162) 

The major problem in generalizing the opening mode theory to 

include shearing modes is believed to be that of predicting the 

direction of crack tip motion, as it is very likely that the crack 

will not extend in its original plane. An example of the complexity 

of the problem may be seen in Knauss' paper [35], in which a crack 

was forced to propagate in Solithane in the antiplane shear mode. 

Crack growth was found to occur by the opening of semi-penny-shaped 

cracks which straddle the main crack front at an angle of 45 degrees; 

i.e., the individual planes of crack extension have normals parallel 

to the direction of maximum principal stress.  In the more general 

case when two or three modes of loading exist together, one can 

expect the direction of crack motion to depend at least on some 

average of the maximum principal stress directions over the failure 

zone. That the propagation direction does not depend solely on the 

state of stress at the crack tip (£.. * 0) may be argued by 

considering the stresses in rubber, in which case v = 1/2; since 

the opening mode stresses at the tip are essentially equal, the 

direction of propagation when N? and/or N_ are not zero would be 

relatively insensitive to N , which contradicts observed behavior. 

Finally, let us briefly consider the problem of opening-mode 
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adhesive fracture. The critical stress required to cause propagation 

of an isolated debond between a linear elastic, incompressible 

(v * 1/2) continuum and &  rigid substrate is identical to that for 

cohesive fracture of the continuum itself except the adhesive 

fracture energy T   ,, say, replaces the cohesive fracture energy [36]. 

Moreover, it is a simple matter to show that the extended 

correspondence principles which was used in the derivation of 

Eq. (91), is valid as long as the substrate is rigid and the 

continuum is homogeneous and incompressible. If these restrictions 

are essentially met, we suggest that Eq.  *1) can be used in predicting 

propagation of the debond crack after T is replaced by r ,. 
ad 

However, it is anticipated that some modification of Eq. (92b) for 

failure zone length will be required as both shear and normal 

stresses act along the interface. 
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Appendices 

A. Some Order Properties of Displacement and Stress Near the Itp 

We first examine the order of the integral AI, Eq. (31), when the 

failure stress-difference is given by 

Aof(£) = A C
q (A-l) 

in the interval 0 < £ < a , where 0 < a < a, A and q are non-zero 

constants, and 0 < q < 1/2; for this range of q Eq. (15) is met but 

not Eq. (17). The integral in Eq. (31) is rewritten as follows: 

o 

(A-2) 

3/2 
The second integral is readily shown to be of order I        by expanding 

the logarithm in a power series in the variable /g/5' and letting 

C -*■ 0. The first integral is expressed in terms of a new variable of 

integration, y  = /£'/£ , and together with Eq. (A-l) it becomes 

1 r^TT? 
= 2A K 

1+q 1 ^ {2 - * HHil} dv (A-3) 

Again divide the range of integration into two parts, 

ral 

2A C 
1+q 

r/aj/5 

(A-4) 
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Since we are interested in the order of Eq. (A-4) as 5 + 0, the upper 

limit and the constant y.  are taken to satisfy the inequality 

0 « y.  < /a /£; this choice of y,» together with the series expansion 

for Y » 1» 

Y In Y ±  1 
Y - 1 

renders Eq. (A-4) as 

2    2 

3Y   5Y^ 
(A-5) 

= 2A C1+q U + 
3(1 - 2q) 

T " <J 

'o 

- ^ - q 

5(3 - 2q) 
(A-6) 

where q j* r and B is non-zero and is independent of £• When 

q- 2» 

f
al 

= 2A^{B+ilni-+-..} 
■'o 

(A-7) 

Equations (A-6) and (A-7) together with Eq. (A-2) imply that 

AI = 0U1+q) (A-8) 

when 0 < q < — and 

Al = 0(C3/2 In O (A-9) 

when q = -r.  It therefore follows from Eqs. (27) and (30) that the 

 .—— . —■ 

-  



103 

order of v is also given by Eqs. (A-8) and (A-9) for 0 < q < — and 

q ■ -r, respectively. Note that if q •+■ 0, the displacement v •*■ 0(5) 

which implies the crack cross-section approaches a straight-sided 

wedge very close to the tip. 

The limiting case q = 0 corresponds to a constant stress over 

0 < i <  ex.; in order that a.  be continuous to the left at £ ■ 0, in 

accordance with Eq. (15), we must take A = 0.  For this case v ■ 0(5""'). 

Prediction of the behavior of the stresses near the tip is 

accomplished in a similar manner. First, we record the resultant 

stresses, Eq. (19b), after substituting Eq. (28) for a  : 

.3/2, 

ax = oy = af(0)+af(0)[f tan-^-l] 

^ 

Aof(5) 
d£ (A-10) 

where £. > 0. 

-1/2 
The second term is of order 4  , which follows from a power 

series expansion of the arctangent in the variable /£ /a. Given 

the power law, Eq. (A-l) , the order of the integral in the third 

term is established by following essentially the same steps used to 

analyze AI (i.e., Eqs. (A-2) - (A-7)). We find 

, i, , ,,- -. ■ .iTliH. I" ■■'-*■ 



r,'*V-.'h;.-r--.?<ipn--,-.,'^,,.l ■', »Kr^JWTi'PW- 
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**T 
Aof(D 

n *f(£ + 5.) o l 

dC 

iBo5J + 0«f,   :0<,<i 

f 4" u h ♦ ,«i«, 
(A-ll) 

1 
2 

where B is non-zero and is independent of L. Thus, 

a    = a - a,(0) + 0(5?) 
x   y   f       1 (A-12) 

when 0 < q < — and 

o    = o    =  a,(0) + 0(d/2  In Z,) (A-13) 

when q = j.    Note that Eqs. (A-12), (A-13), and (19a) predict these 

stresses to have a vertical tangent at S« 0; it can be shown that 

only for the unlikely situation in which af(£) has a horizontal 

tangent at £ = 0 and the integral I , Eq. (39), vanishes will the 

stresses CJ
X(51) and o  (£,  ) also have a horizontal tangent at ? . 

The above order properties for stress and displacement are 

different from those in [37] because da /d£ was assumed 

to be bounded in [37], 

B.  Criterion for Crack Growth when a -*■<*> 
m 

At the outset the normalized failure stress distribution, 

f = of/o  , is assumed to satisfy only the following physically-based 

assumptions: 

(i) f(£) is piecewise continuous and non-negative 

(ii)  lim  f(C) « f(0) > 0 
£ ■*■  0+ 
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Now, let us show that a vanishes. To this end, write Eq. (22) 

in the form 

7T N 

i m 

Supposing that the stress intensity factor is finite, we obtain 
i 
r : 

Sä I ■*■  0  as a    -*■ » 
X in 

} 
Moreover, the integral I-, Eq. (23), cannot vanish on account of 

J. 

the above two conditions on f(£); hence, a + 0 as o ■+ °°. Letting 
m 

a •* 0 in Eq. (23) yields 1,-2 f(0) and, in turn, Eq. (B-l) yields 

lim [2/ä a    f(0)/ir] = N   . (B-2) 
m o 

a    ■*■<*> 
m 

With continuous crack growth, da/dt > 0, the total time needed 

for the crack to propagate the distance o, viz., t_ - t., approaches 

zero. Therefore, assuming f(0), a , and N are continuous functions 

of time, or else are independent of time, Eq. (B-2) shows that a is 

essentially independent of time during the period t.. < t < t_. 

In view of these results, we will evaluate the displacement, 

Eq. (41), and then the fracture energy, Eq. (57), for the case of a 

very small, constant a.  First, write displacement Eq. (41) by 

making an integration-by-parts and the following change of variables: 

"-. • ni = f • i = r (B"3) 
m 

where 0 < (n,n,,f) < 1. The result is 



2lT   V 

a    a        v m 
C  (0) f(an,)(2(f-)1/2'■- In 

1       nx 

/n^+ /T 

>^i~ - /n 
dn, 

c;<t - x) f(an,)[2(f-)1/2 

in which t.  < t < t  , 

in the first line, and 

in the second and third lines. Also 
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- In 
nl + ^ 

v^ - Sr\ 
] dn1 di (B-4) 

n = [a(t) - x]/a (B-5) 

n = [a(x) - x]/a (B-6) 

c;<t) = d cv/dt (B-7) 

is finite and positive for all t > 0 for real materials; it is a 

simple matter to show that Cv(t) is the creep compliance of a plate 

of infinite extent in the z-direction (i.e., e - 0) and subjected 
z 

to a constant stress in the x- or y-direction. 

Equation (B-4) yields 

■ i' ■ 'i ■ .-.i.- HP"«PflHP«(S!>ÜW! 
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limj2ir v/ooa] - cv(0)  f (0)   [2^ -  (1 - „)  1„ I±A] (M) 

1-4 m 

The second and third lines in Eq. (B-4) vanish on account of the 

finiteness of C' and / , and the fact that t + t, as o ■*■ °°; recall 
v     o 1    m 

that t < t < t0 where (t. - t,) ■*■ 0 as a   ■*  » for da/dt > 0. 

Now, change the variables in fracture energy Eq. (57) using 

definitions in Eq. (B-3) for n and f: 

a 
r = a 

m f (an) |X dn . 
9n (B-9) 

Rewrite this equation to read 

2-TT r 
2 

o a 
m 

f(an) |- [i2LVj d 
9n o a m 

and let om  -► . (which implies a -v 0+): 

fl 
lim [2TT r/o^ a] = f(0) 

~      m 
9_ 
9n 

lim [-^j 
0 ,»°/ m 

dn 

(B-10) 

(B-ll) 

The process of taking the limit under the integral and inside the 

derivative is valid on account of the piecewise continuity of f(£) 

for 0 < t, < a  and the boundedness and continuity of the derivative 

in Eq. (B-10) with respect to 0 < n < 1 and a ■*■  0+.  Integrate 

Eq. (B-ll) and then use Eq. (B-8) to find 
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lim  [2ir r/o2 a]  - 2C (0)  f2(0)       . (B-12) m v 
a   -*■ °° 

m 

The quantity /ä o f(0) can be eliminated between Eqs. (B-2) and 

(E-12) to obtain the equation for critical stress intensity factor 

of a brittle elastic solid, 

(ÖT     ' (B"13) 

The initial value theorem for Laplace transforms [17] may be used 

in conjunction with Eq. (45) to find 

which when substituted into Eq. (B-13) yields Eq. (59). 

Graham [25] used a global energy criterion and the singular 

stress distribution for a large centrally-cracked sheet and for a 

large body with a penny-shaped crack. He obtained results for the 

critical stress which are identical to those obtained from Eq. (B-13) 

when N is specialized to these two geometries. 

C. Work Input to Failure Zone for a One-Term Representation 

of v 

Work input based on approximate displacement Eq. (72a) will 

be derived and compared with energy Eq. (91). The following two 

classes of failure stress a    are assumed: 
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(i) of-< 

/V >a 
Vri - €->  1 5 0 < v < v 

m - m 

v > v m 

(C-l) 

; 

(Ü) 
°f = < 

m 

/V .-b 
ra v. 

b 

; 0 < v < v, 
-  - b 

v > v. 

(C-2) 

where the quantities a , v , v, , a, and b, as well as C, and n in 
m  m  b i 

power law Eq. (66), are assumed to be positive constants; in reality 

they may depend on tip velocity, but for the problem at hand it is 

not necessary to show this dependence explicitly. 

The second distribution rigorously implies a » », and we shall 

use this limit in evaluating the integrals / .  However, from a 

practical standpoint, if b is sufficiently large the influence of 

the stress a    outside of some finite distance a  f, say, will be 

negligible; it is assumed that a ,/ß << 1, where ß is the length 
er 

parameter appearing in Eqs. £2) - (4). 

The approximate work input derived using displacement 

Eq. (72a) and the above failure stresses will be denoted by T 

We ratio the results to T as given by Eq. (91), 
ap 

r = f CA> No (C-3) 

and obtain, finally: 
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(i) ~2£, I 
ta(n + |)+|]2 

<a + l)(n + 4)[a{n + |) - \) 

where a(n + |) > ~, and 

(Ü) JE. 1  
r  3 ,_ . 3 

[b(n + |) -i]2 

(n +|)(b - l)[b(n +|) +j] 

(C-4) 

(C-5) 

where b > 1. These ratios are plotted In Fig. C-l for a few different 

values of the constants. The ratio for the case a * 1/2 is rather 

large at n ■ 0 because this exponent is close to the value 

(a ■ 1/3) for which the integral I„,Eq. (39), diverges. We see that 

for most of the predictions the error is no greater than 33%. 
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Figure 1. Cross-Section of an Idealized Crack 
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Figure 2. Normal Stress Along Crack Plane 
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Figure 3. Exploded View of Failure Zone 
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Figure 4.  Creep Compliance in Uniaxial Tension for Solithane 50/5Q 

(experimental data,——» after Mueller and Knausa [6]) 
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DIMENSiONLESS  DISTANCE FROM CRACK TIP 

Figure 7.  Normalized Displacement Used in Energy 
Integrals T    and I\ 
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Figure 8.  Region of Integration for Integral Z 
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Figure 11.  Crack in Solithane 50/50. 
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Figure 12.     Crack in Solid Propellant. 

■mniini iiiiniioiinniNimiiniiii nun- niiiiiiiiiu  naiii »inmaElBn wi!Mipi^niiipw^jji|jpgiiii»iipA'"i||:|ir™i|l.llI"i 



/*/ 

2.0i 

1.2h 

op 

0.8 

I r 

 Eq. (C-4) 

  Eq. (C-5) 

0.4 

Constant <r. 

(a = oo   8   b = oo) 

0.2 0.4 0.6 0.8 

n 

1.0 

Figure C-l.  Ratio of Energies In Failure Zone 


