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ABSTRACT

An autcomated general purpose system for analysis is
presented. This system, identified by the acronym, "MAGIC III"
for Matrix Anaiysls via Generative and Interpretive Computations,
is an extension of the structural analysis capability avallable
in the initial MAGIC System. MAGIC III provides a powerful frame-
work for implementation of the finite element analysls technology
and provides diversified capability for displacement, stress,
vibration and stability analyses.

Additional elements have been added to the MAGIC element
library in this phase of MAGIC development. These are the solid
elements; rectangular prism, tetrahedron, triangular prism, sym-
metric triangular prism, and triangular ring (asymmetrical load-
ing). Alsc included are the symmetric shear web element and a
revised gquadrilateral thin shell element. The finite elements
listed include matrices for stiffness, mass, prestrain lioad,
thermal load, distributed mechanical load,pressure and stress.

The MAGIC III System for structural analysis is presented
as an integral part of the overall design cycle. Considerations
in this regard include, among other things, preprinted input data
forms, automated data generation, data confirmation features,
restart options, automated output data reduction and readable

output displays.

Documentation of the MAGIC III System is presented in
three parts; namely, Volume I: Engineer's Manual, Volume II:
User's Manual and Volume III: Programmer's Manual. The subject
document, Volume I (Engineer's Manual) is an extension of the
primary Technical documents. Included are the theoretical develop-
ments for the additional finite elements included in the MAGIC III
System as well as a discussion of newly added computational

procedures.
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SECTION I

INTRODUCTION

The MAGIC III System for structural analysis is an extension
of the MAGIC I and MAGIC II Systems reported in References 1 to 6.
All capabilities available in the original systems have been
retained and improved upon. Extension of the MAGIC System has
been in the following areas:

{a) Incorporation of four (4) solid elements
(1) Rectangular Prism
(2) Tetrahedron
(3) Triangular Prism
(4) Symmetric Triangular Prism

(b) Incorporation of a Triangular Cross-Section Ring which
accommodates asymmetric mechanical and thermal loading.

(c¢) Incorporation of the Symmetric Shear Web element.

(d) Incorporation of a revised Quadrilateral Thin Shell
element which reflects high aspect ratio usage.

(e) Incorporation of new equation solvers into the
MAGIC III System.

(f) Inclusion or additional computational procedures to
support the analysis process.

The work reported herein is a dis~ussion of the extensions
listed above. The discussion encompasses three volumes of which
this is the rirst. This Volume, Engineer's Manual, (Volume I) i:
an addendum to the technical reports given in References 1 and 4
and as such should be used in conjunction with these references to
effectively utilize the MAGIC III System. The second Volume, liser's
Manuel, Reference 7, includes detailed specifications ior the
preparation of input data for the additicnal elements inciute:r 11
this third version of MAGIC, The last volume, Volume I11,
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Programmer's Manual, Reference 8, presents information on the
organlzation of the MAGIC III System as weil as its operational
characteristics,

Section II of this report presents the theoretical basis
of the additional finite elements and gives explicit expressions
for their characteristic matrices. These elements are:

(&) Rectangular Prism

(b) Tetrahedron

(c) Triangular Prism

(d) Symmetric Triangular Prism

(e) Triangular Cross-Section Ring (Asymmetric Loading)
(f) Symmetric Shear Web

() Revised Quadrilateral Thin Shell

Figures I-1 to I-3 depict thesc newly added elemenis as well
as previously existing elements of the MAGIC System,

A discussion of new computational features incorporated into
the MAGIC 1II System is given in Section III. 1Included are a
discussion of the ANALIC (Analysis In Core) Module and the out-of-
core variable bandwidth equation sclver based on Cholesky
triangularization.

The body of the technical report is concluded with a
general retrospective discussion in Section IV. An overview of the
MAGIC III Syscem is presented.
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SECTION II
ADDITIONAL FINITE ELEMENTS

a. INTRODUCTION

The MAGIC III System incorporates seventeen finite
elements. Ten of these elements; namely frame, shear panel,
triangulsr cross-section ring, toroldsl thin shell ring,
guadrilateral thin shell, triangulsr thin shell, trapezoidal
cross-section ring, quadrilateral plate, triangular plate and
incremental frame were available in the initial MAGIT and
MAGIC II Systems and are described in detail in References 1
and 4.

Seven additional elements; namely rectanguiar prism,
tetrahedron, triangular prism, symmetric triangular prism,
symmetric shear web, triangular cross-section ring and a revised
quadrilateral thin shell element have been incorporated inte
the MAGIC III System. Characteristic matrices have been derived
for these elements and include stiffness, stress, prestrain load,
pressure load, thermal load, and consistent mass matrices. The
derivation of these matrices for each finite element is presented
in the following sections.

B. RECTANGULAR PRISM ELEMENT

I. Introduction

The formulation of an element stiffness matrix
for the rectangular prism discrete element was first documented
in Reference 9, and the approach used here is one of three
suggested therein.

The rectangular prism element is a powerful tool
for the analysis of solid structures, thick plates, and beams,
It can be used in conjunction with the triangular prism and
tetrahedral discrete elements for the analysis of arbitrary solid
geometries, or with plate elements for the analysis of built-up
regions.

L
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An appropriate mathematlcal model for the
rectangular prism discrete element 1s formulated on the basis
of the variational principles of continuum mechanices. From an
admissible assumed displacement function only, algebralc expres-
sions for variocus element matrices which describe the mathematical

behavior of the element are derived by use of the Lagrange varia-
tional equation.

Consistent with the state of the art, the discrete
element representation for the subject element is taken to consist
of algebralc expressions for the following matrices:

a. Stiffness [X]
b. Stress I's]
¢. Prestrain Load {Fe}
d. Thermal Load {FT}
e. Consistent Mass [M]
f. Pressure Load {FP}

These matrices arise as coefficient matrices in
the generalized form of the Lagrange equations. The form of these

equations, necessary for the complete element representation listed
above, are:

36 3¢
oy S (k) = oo (1)
aqr dt aqr
where:
n pth ralized displ t
a, r generalize splacemen

q. v rth generallzed velocity
r
¢p v total potential energy

Qk ~ total kinetlc energy

R
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II. Geometry
Pigure II-l1 depicts the geometry of the rectangular
prism element. Also shown are the local and global axes systems;
namely, local X, y, 2 and global X, Y, Z. The local axes are fixed
at the centroid of the element. Use of vector analysls permits
definition of the dlmensions of the prism to be:

a=1/2 |r| (2)
b= 1/2 |r| (3)
¢ =1/2|r,| ()
Where:
1/2
|71 = |ry-rgl = [(xu-xs)2 + (y“-ﬁ&fa)2 + (zu-zs)z] (5)
1/2
|7, = |7-Tgl = [(X=%p)® + (¥-¥g)? + (2,-29)°] (6)
- R 1/2 (7)
7,1 = 1rgFgl = [(Xs%g)? + (15-%g)% + (25-2)7]

The quantities ?u, FS, 57, and ;8 are vectors emanating
from the origin of the global axes to prism grid points
4, 5, 7 and 8. The vectors ¥, Py, ?Z form a mutually
orthogonal set (see Figure II-1l).

A rotational and translational transformation

matrix from local to global coordinates 1s formed using these
vectors. This transformation 1s given below.
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o (8)y_sv (&)
(@1 = [T fx(®1-x ) (@)1} -

(xT L§(2), y(l)’ z(ﬂzj are the local coordinates

x(8)T - [g(g), Y(g), Z(gzj are the global coordinates

T -
{Xc(g>} = [?ég), Yég), Zégzj are the centroidal global

coordinates
n — _
[ng} = exl, ex2’ ex3
is the matrix of
eyl, ey2, ey3 direction cosines
e e e
% % 3
= "—l— - = —1—— ~ = .-_:!'.._. (z "Z )
P Xy - Xg), ®°x, T T2a (Yy-1g)» ®x;” T2a y~%g
1 1
= __]:__ (X -X )3 e =z — (Y -YB), e = ——— (Z7_28)
&y, = 3 | 0 Y 7 Y3 b
]
- 1 ( -Y ) e = -
ey, = g K57¥e) ®z, T T2¢ 577872 25 7 2o (25-2g)

The transformation matrix [%gg] is used not only for coordinate

transformations but deformgtion transformatlons also.
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III. Assumed Displacement Functions

A structural element 1s mathematically dis-~
cretized into a finite number of displacement degrees of free-
dom by the assumption of displacement mode shapes. For the
simple geometry of the rectangular prism element, trilinear
Lagrangian interpolation formulas are constructed. The dis-
placement 1s given by

s (x,y,2) = 1/8ave [-1,8,008) D p0,0,8,000 —r 1,76,

1727371
%3 (3) + £ £.£.6 (1)
+ f1f2f3 8y 1727375
- B) L350 273280
10,0086 + Bi0,F08, 00 - FF Eeg ) (9)
where
£, = (x+2) £, = (y+b) f3 = (z4c)
fl = (x-a) f2 = (y=-b) 53 = (z-c) (10)

and a, b, and c are the half-dimensions of the prism as shown
in Figure II-1.
Note that séj), k=1,2, ... .8 are the

grid point displacements where j = 1, 2, 3 corresponds to the
u, v, and w displacements.

Equation (9) can be written in matrix form as

§(3) - LB) {5&3)} + 8 abe (11)

where
” - - - - —— —— -
87 = 218,85, 38,00, <8, 8,80, £850, T Tt ~F18,00,

£t 85 =115 | (12)

and
T
{séa)} = L6897, 6,09),5,00),6,00), 5,805,000, (8)5, 8

(13)
11
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It 1s instructive to examine the nature of these
assumed displacement functions by considering th2 allowable de-
formation of :ach face of the prism. For example, the displace-
ment of the planes x = a2, ¥y = b, and z = ¢ can be written for

X = a

s (a,y,2) = (koyz + kiy + koz + k2 (=883) 4 5,(3) _ 5 (D)
1 2 3 y 3

fory =b
s (x,0,2) = (g x2 + Ky x # kg% + k) (8, - 6, (D)

51d) 4 6,090 (1%)

for z = ¢

603 (x,y,¢) = (ky xy +ky X + kg y + k“)(-dx(d) + 52(3)

+ 65(J)_ 55(3)) (16)

and similarly for x = -a, ¥y = -b, 2 = -c. It is noted that

the kl are arbltrary constants. Referring to Figure II-1,

it is seen that the displacements on these planes are functions
only of the displacements of the gridpoints defining the planes.
Hence, the assumed functions are admlssible in that they satisfy
the requirements of displacement continuity along interelement
boundaries. Due to the assumption of linear interpolation
formulas, the edges of the prism remain linear in defeormation.

A direct consequence of the above observations is that although
a single element maywarp under a force-couple, i% may not bend

under any conditions.
The foregoing assumed displacement functions
lead to three translaticnal displacement degrees of freedom

at each of the eight corner gridpolnts; thus the complete
element defecrmaiion 1s described by twenty-four displacement

degrees of freedom.
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It is instructlive to examine the nature of these
assumed displacement functions by considering the allowable de-
formation of each face of the prism. For example, the displace-
ment of the planes x = a, y = b, and 2 = ¢ can be written for

X = a

s (a,y,2) = (egyz + oy + kgz + k) (=610) 4 6. 10D L6 (D)
for y = b

6(3)(x,b,z) = (k1 Xz + k2 X + k3Z + ku)(GZ(J) - 53(3)
8st) w5, (9, (15)
for z = ¢

s (x,5,0) = Gy xy + Ky x + kg y + k) (6108 4 g, (D

(

and similarly for x = -a, y = -b, z = -¢c. It is noted that

the k1 are arbitrary constants. Referring to Figure II-1,

it is seen that the displacements on these planes are functions
only of the displacements of the gridpoints defining the planes.
Hence, the assumed functions are admissible in that they satisfy
the requirements of displacement continuity along interelement
boundaries. Due to the assumption of linear interpolation
formulas, the edges of the prism remain linear in deformation.

A direct consequence of the above observations is that although
a single element maywarp under a force-couple, 1t may not bend
under any conditions.

The foregoing assumed displacement functions
lead to three translational displacement degrees of freedom
at each of the eight corner gridpoints; thus the complete
element deformation 1s described by twenty-four displacement

degrees of freedom.

12




The definition of assumed displacement functions
permits the derivation of the straln-displacement relationships.

The element strain components are expressed as functions of the
assumed displacement modes by

1
e = (1) 2 _asth)
X s X X (17)
(2)
= §(2) ¢ 98
& = %y 3y (18)
= §(3) 58(3) (19)
‘2 fz 3z
.. 6(1§ +5(2) ad(1)+ 15(2) (20)
Xy s s X a.y 9%
s+ | @ (3)
gyz = G’Z 3y = 3d + 96 (21)
3z ay
(3) (1) (3)
e =61 w820 . 38T L a6 (22)
ZX 32 ’ 3z 9%
Performing the necessary differentiations
on the displacement functions yields:
(J) . 1 (3)} (23)
8 = D_j{é
o X 8 abe . 2 k
= 1 (3)
(J) = D_]{¢
Sy LT (24)
= 1 (J)
N T (25)
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where

T -~ « k4
{D,}" = |-T,f £3s r.f 30 ~fpT3, T f3, af3s ~Tfy (267
% -f2r3J
s = r :
{Dy) = Lf1r3, r1r3, -f)f3, £15, fle, ~£3f3,
5153, -512‘3_’ (27)
T _ _ - - -
{p,}" = Lfrz’ £105, =f1f,, £1f,, £1f,, T1f2
£105, ~f11,) (28)

and

{61(CJ)}T= LSI(J)’ 62('1), 63(J), GQ(J), 65(‘1),

56437, 5,080, 5,087 (29)

These equations are assembled into a single
matrix expression relating the strain components to the dis-
placement degrees of freedom,

le} 8 abe [p1 A ’
where
T _
{S} Lex, ey’ E exy’ Syz, EZX_I (31)
(61" = Ldél)’ Gk(z)’ Gk(3).1 (32)
14
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and

[o] =

—il‘-xj 0

0 i
o, |

lp,) 1o, ]

o |p,]

o, ¢

0

(o,

Io,

)
0, J

15
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Iv. Potential Energy

The potential energy of the element 1is

¢p = U-W (34) i
j
§
where
{el
U= ff lde] {o} av (35)
v “{0}
W are external work contributions (36)
()T = Leys €ys €5 €es €ups €, (37)
X Ty T2 Txy Tyz® TzXx
{(0}T = lo,, 0, 0, 0 o o,.J (38)
x, y) Z’ xys yz, Zx

Linear elastic materials behaviour is assumed from an
initial state of strain {€} to a final state of stress {o}
and strain {e}. From the generalized Hucke's Law,

() = (E3fte) - ()

where [E] is the symmetric matrix of elastic ccnstants
which, for three-dimensional orthotropic material, can be

(39)

written
Ex(l-vyzvzy)’ Ex(vyx + szvyz)’ Ex(vzx+vyxvzy)
[E]=1/A ’ Ey(l_\’zxvxz)’ Ey(vzy + ny vzx) 0, 0,0 (’40)
s Ez(l—vxyvyx) 0, 0, 0
AG 0. 0O
~-Symmetric~ xy* Vo
’AGyz , Q
’Asz




xyVyx T VyzVzy T VaxVxz ~ VxyVyzVzx"VxzVyxVzy (41)

and v 1s defined as the resulting strain in the Phae

direction due to a stress in the ith direction.[E] can be
expressed in more concise form as

—_— —
hll E12 E13 0 0 0
E22 E23 0 0 0
E33 0 ¢ 0
(E] = (42)
Euq 0 0
E55 0
Symmetric
- "66_|

Substitution of Equation (39) into the
strain energy function and integrating yields

U= f (172 [eJ[E] (e} - |e] [E] {epav , (43)
v
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V. Element Static Matrices

5.1 Introduction

To effect the discretization of the
element the assumed displacement functions are introduced
into the potential energy function which in turn is substi-
tuted into the Lagrange equations to yield element matrices
with respect to grid point displacement degrees of freedom.
An exception is the element stress matrix which is derived
from strain-displacement and stress-strain relationships.

5.2 Stiffness Matrix

The energy contribution to the linear
elastlic stiffness 1s given by

o, = 1/2 f le] [E] {e} av. (44)
A

Recalling the strain-displacement relations

te} = o1 (& (30)
abe
and substituting these into Equation (44) yields
2
1 1 3 T (1)
o = 5 (gapd) fLs $Ip1* [E] [p] {6* Y av . (45)
v

Performing the matrix multiplication, and noting that the
grid point displacement degrees of freedom are not functions
of the local coordinate system, the potential energy function
may be expressed as shown by Equation k6. Taking the first

18
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(Lm

(9n)

e

a1 @993+ (501 “ar a4 21 Par¥ea < [Pal e SS2 + (a1 €22 [%a1*@ 993 + [%alPay 'z

1
11 993 + %1y %5 4+ (P18 (PAn) g 4 [PA19€% « (¥Pr) 99 4 [¥Pqy Ty

0713 g + (13 Mg + (M1 g Mgy Mg . (Mg 2T

oTx33umAs »muNHu 93 4 mhhHu Thy 4 hxxHHAng

{eny®

a1 *ay®%a + M *a'a + 140150 %%e o da e+ Fa da Sl

oqe g

) = [(X]
N

‘e a %z + [fddfa s+ Yol Cay Vgl
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A

avl*al (%ay \.
A
anl2a] fay \

ap [ HxB%

X2

~2K
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varlation of the pectential energy function with respect to
displacement degrees of freedom (as showr. by the first germ
of Equation (1)), yields the element stiffness matrix [K]
referenced to local grid point displacements. This matrix
is depicted in Equation (47).

The matrix products appearing as integrands in
Equation (U48) lead to integrations of the following gencral
form,

abe
Iij i/i/ﬁjr' (x+a)™ (x-a)" (y+0)P (y-0)? (z+e)T (z-c)®dzdydx
-a -b -c
(49)
Since the limits of integration arc constants, Equation
(49) can be written equivalently as
a b
Iy = f<x+a)‘“(x-a)“ dx [ (y+0)P (y-0)? ay
—a ~b
c
‘jr (z4c)T (z-¢)® dz (50)
-c

These definite integrals are readily evaluated by integra-
tion by parts and the [Iij] matrices are expressed in
Equations (51) - (56).
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[1,,]

-1 -1 1

2
-2
-2

-2 -2 2
2 2 =2
2 2 -2

-2 -2 2

-1 -1 1

P—

-1
-1

1 1-1
1 1-1
-1l -1 1
-2 -2 2

1
2

2
1
-1
-1

-2
~2

2 2 =2
2 2 -2
-2 -2 2

1 1-1
1 1 -1
-1 -1 1

2

1

16 ,3p2,2

(56)

[IZX]

2 |
-1
1
2
-2
-1

-2 -1 -1
-1 -2 -2
1 2
2 1
-2 -1 -1

-1 -2 -2

2
1
-1
=2
2
1

1
2
1
2

1
2
-1 -2 -2
-2 -1 =1
1
2

2
1

2

1
2

-1

-1l -2 -2

-2 -1 -1 -2

16 a2b3c2

e Wy T A T
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The potential energy function given by
Equation (46) is referenced to local gridpoint displacements.
These displacements must first be reordered to be compatibie
with the MAGIC III ordering system and then be transformed to
global displacements. The former 1s accomplished tbhrough use of
the transformation given below:

(693 = e3 (53U (57)
where

FONT 2 15,0 5,2 5 () 5, W@ (,(3) oo

50D 5,02 4, (3)]

]

—_— 1
—_— 1

(r] = |—

ce—

ey

C PO~
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The transformation
deformation is derived through the use

5(3)y o
64y = e, 1 (8

where

{A}T = pr, Vi. Wi, U2 Va. Wy

from local to global
of Equation (8), thus

(58)

ceey Uger Va. Wa_l.

The U, V, W deformations are defined in Figure II-1.
Also,
o ~
T =
{ Sg,J [TgL]
T ]
T
[ g,
T
[ g£3
v
ETszl
'b'\a
[ng]
N
[ng]
LI
g% "
[ngl
— N

LY

The [ngl matrix is defined by Equation (3).
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Use of Equations (57) and (58) in the
potential energy equation, Equation (46), yields

1 Al T T v T ;
3, = "i' ( abciJ[TS’L] (717 (K] [TITg,] {a). (59)

Taking the first variation of the potential energy with
respect to the displacement degrees of freedom {A} (as shown
by the first term in Equation (l))yields the element stiffness
matrix [Klreferenced to global gridpoint displacements. This
matrix is depicted by Equation (60).

1,2 T e o
[K] = (o )7 [Tgyd7 [T [KD 7] [Ty, . (60)

5.3 Stress Matrices

The element stress matrix follows as a
direct consequence of the strain-displacement and stress-strain
relationships. Recalling that

. o —

(o} = [E]{(e} - (e} (39)

where {€} 1s a column of either mechanical prestrain or
thermal prestrain or both. Also recalling that

1 (3)
= 6971 0
te} = (g ) [p] { (30)

it follows that

(o) = (=) [E1 (01 {6990} - (81 (&) - (EDGE™} . (61)

abe

Use of Equations (57) and (58) in Equation (61) yields:

{o} = (

1 - [E] (3} - }(62
g (E] D] [T] [T,,] {8} - [E] {£} -(ED(E}(62)
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The distribution of prestrain throughout
the element is assumed to be of the same functional form as the
displacement mode shapes; l.e., an interpolation between grid
point prestrain components. Thus,

@ -2 ) B EPhk=1, 2, ..., 8 (63)
8 abe

with j = 1, 2, ..... 6 corresponding to Ex, Ey, éz, Exy?

€
8yz’ ZX .

The vector {€} now becomes

T} = (——t -(J)
{e} (8 o ) [B] {¢*Y'} (64)
where
1= [1B) ©
Bl
B
[B]
B
i 3
- - - - - - =
{e } = [fx’ Eys €45 Exys Eygo esz

%151 L] 15300 10 1550, 1500 ]
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The vector {Ea}, the prestrain due to thermal effects, can

be written as

N
(T = (=2 8] [a] {am) (65)
abe
where
", - -1
(e =f e, (I]
oy [1]
_az {1]
{I] 3s an (8 x 8) identity matrix and
Uy ay, o, are coefficients of thermal expansion,

T
{aT, 3" = I_Tk -Toj, k=1,2,3 .., 8

Tk is the temperature at the kth grid point and To is the

element reference temperature.

Equation (62) can now be rewritten as
follows:
1
{c} = [S] {a} ~ {s} - {s} (66)

Each term in Equation (56) has a particular significance.

The matrix

£S) = (gypa) [ED (D] [T [T,,] (67)

ylelds the element apparent stresses due to displacements
of the element and is referred to as the element stress matrix.

The matrix

- 1 - (3)
{s} (8 abc) (E] [B] {e Y7} (68)
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yields stresses due to the prestrain state within the element
and 1s referred to as the element stress matrix due to pre-
strain. The matrix

1 1 o
V=
{s 1} (m ) [E] [B] [a] {ATk} (69)
yields stresses due to a temperature gradient within the

element and 1s referred to as the element thermal stress
matrix.

It 1s noted that the assumption made in
Equation (63) is invalid for a constant temperature and prestralin
I distribution throughout the element since thls assumption pro-
: duces zero prestrain and zero thermal) forces. Thus for a
! constant prestrain and temperature distribution, the following
equations replace Equations (68) and (69).

_ {s} = [E] (e} (684)
; {sh = AT o [E] {a} (68B)
where Tl + T2 + ... T8

ATave. = Tave. - To’ Tave = 8

T _
{a} = LOX, ay’ az_l

5.4 Prestrain Load Matrix

The prestrain contribution to the potential

energy function 1is

o = fl_e_] [E] (5} av (67)
\')

Substitution of Equations (30) and (64) into the above ylelds

12 J{ T - ) 68
0+ (g ) 4 L)) 01" (1 (B (5T} AV (69)

29




Performing the multiplication and integration glves

s (3
0. = [8')] (7)) (69)

where

2
v o 1 - ()
{FE} " (8 abc) [P] {EK )

(P1={E1o [lypls Bpp Llypls Epz [Iypls Eyy [Iyp 15 Egg (15510 (694)

Eyq (Izp], Eyg [Igg)s Egg [Iz8)s 0, Eg [Iypds Ege [IXB{_
.

v

[Iyg) = J”{DY} B] av = b [Iyy]
v

[1,5] = Jf{nz} 1B] av = ¢ [1,,]
v

Transformation of LG(J{j to global gridpoint deformations
through use of Equations (57) and (58) and differentiation
of the result with respect to the gridpoint deformations
yields the prestrain load vector

_ T T Y
P} = [ng] [r1" (F:l (70)
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For a constant prestrain throughout the element

o= = (—2) thp(J{JVDJT [E] {e} av (72
€ 8 abe v
Thus :
~ ~; .
{r_} = [P] {E} (72)

n
where {P] 1is given by Equation (69B) and the load vector
is glven by Equation (70).
5.5 Thermal Load Matrix
The thermal load matrix is a special case
of the prestrain load matrix. Substitution of the thermal
strain

¢ .
e} = [aary) (73)

into Equation (69) defines a load matrix

r 1% 1pv] 081 (az 3 (74)
{Fa} = (8 be AT, [
where _
Eyp [Iypls Eqp [Iypl, Eqg [Iygl
[p'] = | Epp Oypls Epp [Tyds Epg [Tygl

Ey3 [Iyp], Eyg [Iy5], Egg (Iyg]
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The final thermal load matrix 1is given by

- T T (X
() = (1,07 (11" ) (75)

For a constant temperature distriﬁution
throughout the element, the thermal strains are given by

o
te} = ar, .. {a) (76)
where- = -
ATave, = Tave.” To
Tave‘=T1+T2+ oo-+T8
8

Thus, substitution of Equation (76) into Equation (71)
defines a load matrix

() = sr, . [P'] (o} (77)

v
The [P'] matrix is obtained by taking only the first three
columns of the [P] matrix.
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5.6 Pressure Load Matrix

"'he pressure load matrix is derived on

prism element. Thus, the total work W_ due to the pressure
loads 1s the sum of the work done on each face.

The subscripts denote a face of the prism (see Figure II-1).
Now 1)
= 1
W23y ‘f Prpgy &7 dA
A

Recalling Equation (11), Equation (79) can be written as

a b A (1)
- 1 {§'\*/} dxdy
Wia3y = f [ T B

-a =b

e rire o t—— - — —

e th . s i o &

Performing the indicated integration yields

’ (1
w123ll = p123l| be |_61\3)3 62 ), 63(1), 6"(1)_J{1}

Additional integrations of the form shown by Equations (79)
and (80) for the remaining faces yields

(3), 6“(3)’ 67(3), 65(3)_1{1}

Wayqg ~ T3w7e 2 0 L

2 1
Wysgr = Pagep & ¢ L6202, 6:(3), 5(3), 4, (2D

Wisg = Prusg 2 ¢ 1612, 6@, 6.2 6, (D)

b
LT_,‘ e e ~—ope=—— Yy e | s

the basis of constant pressure on each face of the rectangular

(78)

(79)

(80)

(81)

(82)

(83)

(8h)




3 3
w1256 = p1256 ab L§£ ); 62(3):53(3)5 65( {J {1} (85) ﬂ

! (1) (1) ()
Wsg78 = Pggrg P L§§ ), S¢ ) s ] (1} (86)

Equations (81) to (86) are combined to yield total sork

. N
Wy = 16,00 () = L) 1mg, 1T ()" Ry (87)
through use of Equations (57) and (58) and

v T
{Fp} = \F\ Fu F1 Py F, F» P, F2 F3 Fy Py F;
b 1] 3 3 b b 2 2 s 3 H

b

F3 Flo’ F].’ Fa’ F5’ Fs’ FG’ FG Fb’ FS, FG, Fe_l

3 b

Where:

Fi1 = p1224 be, F2 = psg7s DC, Fb = DPiuyss ac

Fy = P23s7 ac, FS * Pi12s¢ ab, Fg = ab

P3y7s

Taking the first variation of Wp in accordance with
Equation (1) yields the pressure load matrix

iy T v
{Fp} = [ng] (71" (Fp} (88)
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VI. Kinetic Energy - Mass Matrix

The kinetic énergy for a discrete mechanical

system, assuming a constant mass density P, can be written

by = o/2f la) £ {a) av (89)
v

where f1] is an ldentity matrix and wh

ere {3} are generalizeg
velocities which, from the as

sumed displacement modes, are:

Lo L) (2) (s
fai= = js 3 » 6 ] (90)
Substituting Equation (90) into Equation (89) yields
o = p/sz;;P), 9,60 1y [500) w
72
v §() (91)
E
or
+(1), 2 o(z)f 2 ( 2 av (92)
¢K=p/2_[[(5 )T+ (8 + (8433 5 ]
vV
Recalling the displacement mode shapes
3 _ 1 B (sl (11)
8 8 abe L5} k
and differentiating gives
630 o 1 |pj (5U)y (93)
$ 8 abe L] k




n

e e —— oy . S ———

et o .

Thence,

ACP I
(8 ) (8 abc

where

v n N
[m] = (8} |BJ.

2 .- v .
) 169t 8,490

Substituting Equation (94) into Equation (92), for

j=1, 2, 3, ylelds

2 . (1 S(2) -(3)
= (i /2~f‘ §C), 6%
¢K (8 abc) g d L' .

or
o = £ Lﬁ(JZJ [ﬁ] {é(d)}
K 2
where - -
N L2 [m]
[”]""m)gj k|
v "
[m]
L i
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[s(1)
5(2)

5(3)

av

(94)

(95)

(96)

(97)
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Performing, as previously, the integration indicated in
Equation (97) gives

2 ; |
;1 ~ _ (8 abe /2 1 !
[m] = o y Jim] av = (2222, :
ml =ptaabe j[. 27 /4 172 1 SYMM.
v 1/2 /4 1/2 1

1/2 /4 1/8 1/4 1

/46 1/2 1/4 1/8 1/2 1

1/8 1/4 1/2 1/4 1/4 1/2 1
“}/u 1/8 1/4 1/2 1/2 1/b 172 1]

8)
hence (9
~
EM] = cm], 0, 0 *
0, {m], O (99)
0, 0, [ml
Reordering and transforr” ,. to global deformations through use

of Equations (57) and (»v, permits the kinetic energy to be
written as:

A T T :
0 = _lgl_ [Tged” (717 (W) (71 [T .0 (4) (100)

Taking the first varlation of ¢K:with respect to velocities
and differentiating once with respect to time, a2s shown in
Equation (1), yields the desired consistent mass matrix
referenced to global gridpoint displacements. Thus,

N
[M] = [Tgel® [TIT [M] [T] [Tgeld . (101)
g g
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C. TETRAHEDRON ELEMENT

I. Introducticn

The stiffness matrix for the tetrahedron element was
first derived and presented in References 10 and 11 respectively.
Later these relationships were reviewed and a consistent
mass matrisy was reported in Reference 12. These formulations
have been extended in MAGIC III to include stress [s] s
prestrain load ZF} s thermal load {FT} and pres;ure load {FP}
matrices. These matrices were formulated on the basis of tlre
variational principles of continuum mechanics, The material that
follows summarizes the derlvation of all the element matrices

2

mentioned above,.

A linear polynomigl is assumed for each of the
three displacement modes, These mode shapes lead to a total of
twelve undetermined coefficients for the element which are chosen
to correspond to three translational displacement degrees of
freedom at each of the four vertices of the element, The nature
of the assumed displacement modes is such that the strains
throughout the element are constant.

The tetrahedron elementi can be used to analyze
solid structures such as thick plates and beams. It can also be
used in conjunction with the rectangular prism and triangular
prism solid elements and in fact is used to generate the
triangular prism element,

IT. Geometrx

Figure II-2 deplicts the geometry of the tetrahedron
element. The local axes system X, y, Z, and global system X, Y, Z
are also shown. The local axes are fixed at element gridpoint one
with the positive x axis directed along side one-three as shown.
The global coordinates of each grid point are given as

-~ -

—n
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FIGURE II-2

TETRAHEDRON GEOMETRY
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input from which the volume of the element is cbtained

1X Y Z

1 “1 1 |
1X Y. YA !
Ul I I (1)
X3 Y3 I3

1 Xu YH Zu

The face areas of the element are given by

) , 172
Ayzo = “Au32) M3+ (y3) ) (3)
, 1/2
Aypy = [@531) + (Auzl) * <Au21) ] (4)
5 1/2 i
_ra¥Z s
Aypy = Lqa 321) * (A323) + (A 321) ] . (5)

The subscripts refer to an element face and the superscripts
refer to area projection on a global plane. The components of
the face area are given by:

YZ

Ayzp = 3V[By 4| Au32 = 3V[By 41, Ay3 = 3VIBg 4l (6)
Yz - XY

Misp = IVIBy ol M%) = IRy ol Y3 = Vg | (7)
Y2 - XY

Aypy = 3VIBy 3| Auzl = 3V|Bu’3|,Au21 = 3V|Bg 4l (8)
Yz - XY

A3y = 3v]sl,u| A321 = 3V[By | A3y = 3ViBg 4l (9)




The terms }Bl 1’ » lBl 2i » etc. represent the absclute value
H 4
of elements (1,1) and (1,2}, ete. in the |B] matrix which relates

strains to displacements as shown in Equation (1%) of this Secticn.

A rotstional and tramslational transformatien
matrix from global to leccal crordinatesz isz formed thru definition
of position veGtors emanating from the origin of the global axes

systém to element grid points 1, 2 and 3. This transformation
matrix is

8y« pz ) (o) - ix, 8 (10)
where

(xH7T . [;(z) (£3. z(i)j are the locsl coordinates.

{x(g)}pI = tx(g), X(s), Z(g{] are the global coordinates.

{Xl(s)}T = in(s): y,(g), sz)j are the globel cu.rdinates
of gridpoint cone.

I; ] %11 €32 €13
43 =T ° %l &
€21 €22 €23
»
el &l 15, |
°n ,  _°32 , a3
€3] Y €]
S
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€21 ¥ ©32 ®33 ~ ®1p €33s €5y ™ €11%33 = €31%13s €23%€31%127€11%3

31 = (3=¥02,-2.) - (Y,-¥,) (25-2,)

2]
L]

32 = (pmXy) (2572)) = (XgoX)) (2,2))
e33 ™ (X3-X ) (1p=1)) - (Xy=Xy) (Yg-¥;)
. 1/2
&1 = [“112 + 'iz * 3533 /
1/2

N 2 2 2
1851 = [e5) + €5, + e5;]

2

- i/
Ie3| - [e§1 + egz + e§3]

-

o e s —— z




III. Assumed Displacement Functions, Strain-
Displacement

The assumed displacement functions in the
’
global coordinate system are

U, - °1x +C, Y + c3z + Cy (11)
uy = csx +CeY 4+ c7z + Cg (12)
U, = ch + CyoY + €112 + Cy5 (13)

where Ux’ Uy, Uz are the deformations of the element
along the global X, Y, and Z axes.

Evaluation of Equation (11) at the four gridpoints yields:
' {Ux }= ("] {C} (14)
i

where

T
{Uxi} - Lles sz’ Ux3’ Uqu

1 = ey, Cy, Cqs Cy)
(M =[1 X, ¥y 24

1X, Y, 2,

1 X3 Y3 Z3

ERIRN

Thus {c} = [M1™ W, ) & U= 3% 1 2 ey 0, 3 Q5

-1
Likewise, Uy = |1, X, ¥, z] [I] {in} (16)

U, = L1, X, ¥, 2] [r]’l{uzil ~ (17)

Equations (15) to (17) are used to derive element matrices.
Note that the displacements functions are written in terms

of global coordinates and displacements.

Ly
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Definition of the assumed displacement
functions permits derivation of the strain-displacement
relations. The element strain components are

— - pree oy

€y aUx/ax
au
sy y/3y
€, BUZ/az
e} =1 vygy | = | 3Ux/dy + 30 /0x | = [B] {U}
sz auy/az + aUZ/ay
Yyz U, /o, + 3U /3,
where
W = Uy L U, Uy L U U U, U U
2 3 74 1 2 3 4
U U U u_ |
zl’ z2’ z3’ Z)

The [B] matrix is constructed from the [r]'l matrix as follows:

Row 2 of [P]—a «———Zeroes - ——
<—12eroes ————=Roy 3 of [F]"}*- - Zeroes - ——
- Zeroes = Row I of [I':l—1

[(B] =|Row 3 of [F1™%,  Row 2 of [F1™* ,Row 3 of [I]™*

Row 4 of [P]'£-+—————-Zeroes ~———Row 2 of [P]'l

.

(18)

(19)
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Iv Potential Energy

The desired form of the potential energy 1is

U= 5 & le] [E] {e} - [e] (E (eh) av (20)
v

which was derived in Section II-B.IV of this report. The matrix

[E] is defined in that section also.

v Element Matrices

5.1 Introduction

To effect the discretization of the
element the assumed displacement functions are introduced into

the potential energy function which in turn is substituted into
the Lagrange equations to yleld element matrices with respect

to gridpoint displacement degrees of freedom. An exception is
the element stress matrix which is derived from strain-displace-
ment and stress-strain relationships.

5.2 Stiffness Matrix

The energy contribution to the linear
elastic stiffness is given by

1
¢y = _2_£ le] CE] {e} av. (21)

Substitution of the strain-displacement relationship,
Equation (18),1in this energy contribution yields

1 T )
b, = —2—£ lu] (81" ([E] [B] {U} av. (22)

Since matrix [B] is not a function of the global coordinates
the integration can be performed directly and

% = ¥ U] (81" [£] [B] (U} (23)

g eme e




The displacements {U} must be reordered to be compatible with

the MAGIC III ordering system. Thus, the fellowing transforma-
tion is defined:

{u} = (71 (U} (24)
where

@T={u, v, v, U. U U
X1, Y1, %1, ¥, Y2, 2%, Xy, Yy, 24

The [T] matrix is defined by Equation (24A). Substitution of
Equation (24) into Equation (23) yields Equation (25).

[r] = 1 (2LA)

sp =¥ L0 (3T (81T (E) (B (1] (D) (25)
2
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Taking the first variation of the potential energy with respect
to the displacement degrees of freedom {U} ylelds the element
stiffness matrix [X] referenced to global grid point displace-
ments. This matrix is given below:

(k1 = v [73* (81T [E] (B] [T . (26)

5.3 Stress Matrices

The element stress matrix follows as a direct
consequence of the strain-displacement and stress-strain relation-
ships. Recalling that

to} = (8] {te} - (e} (27)

where {€} is a column of either mechanical prestrain or thermal
prestrain or both. Also recalling that

{e} = [B] {U} = [B] [T} (U} (28)

it follows that

{o} = [E] [B] [T] {U} - [E] (&} - [E] {cF. (29)

The vector {E“}, the prestrain due to thermal effects, can

be written as

(£%) = aT {e}; {a)}T = logs ays ays 05 0, of (30)
where
AT = Tove. = Tos Taye, = Ty + Tp * T3 + Ty
4

and To is a reference temperature.

Equation (29) can now be rewritten

{o} = [8] {T}-{s}- (s} (31)

48
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where:
[s] = [E] [B] [T] '
{s} = [E] {&} ;
{sh =

AT {E] {a} f

5.4 Prestrain Load Matrix ' N

The prestrain contribution to the potential
energy function is

¢— = |e] [E] {E} av, (32)

€
Substitution of Equations {18) and (24) into this equation
yields

J:Lﬁj r1t 837 [E3 18 av
v (6] tr1" (83T [E] (8} = O] (P . (33)

¢z

0 —
r ¢€

Differentiation of Equation (33) with respect to the global :
gridpoint deformation yields the prestrain load vector

Fgd = v (117 (81 [E] (B} . (34)

5.5 Thermal Load Matrix

The thermal load matrix is a special case of
the prestrain load matrix. Substitution of the thermal strain,
Equation (30), into Equation (34) yilelds:

(F,} = arverd® (81T [ED (e} | (35)

5.6 Pressure Load Matrix

The pressure load matrix is derived on the
basis of constant pressure on each face of the tetrahedron
element. Thus the total work, W , due to the pressure loads
is the sum of the work done on each face.

(36)

Wy = Wapy * Wygy * Wygp + Wy




e .

The subscripts denote a face of the tetrahedron (see Figure
II-2). Each work term is initially derived in a special set of
local coordinates placed in a face of the tetrahedron. The
resulting work term is then transformed to the global coordinate

system. Thus

Wiy = -JrK P3py Mg dA (37)
A3z1
where the negative sign accounts for direction of the

pressure P321 and Kk = sgn Zy.

The deformation M, can be expressed in terms of the assumed
displacement functions and local coordinates x, y as

1 —
= T_“r H,s U s H H A

K (38)
3
By

where |y! = |x,y,2]
Al =(--y22)4 X +(x2-x3) Zuy + (x3yl"‘x2y“ + xuy2 - X3y2)z

+ x3y2zu) + lYl
Ay =(xg2)y = xgy2)+ |yl

Ay =(yyzy X = X2y + (xyy = Xu¥,) 2)% vl

Ay =(x3y,2)¢ |y|

¢ e e
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For purposes of integration, a triangular coordinate system
is defined as shown in Figure II-3 below:

\ o ——- n=constant

E=éonstant
n=1l

£=1
FIGURE II-3 TRIANGULAR COORDINATE SYSTEM

The transformation from (x,y) to (£, n) coordinates 1is
accomplished by using the following:

X = x5 £~ (x5-x3) &n
axdy = |3(x,y)|dkdn (39) ’
i
' B ax 2y 93X 9 = |
IJ"x’y) |= ag an _ an 5%! 1~X3y25|

Substitutions of Equations (39) and setting z = 0 into
Equations (38) yields

1 - £

M, = Lle’“zz’ uz3, uqu
(1-n) £ (ko)




Use of this relationship in Equation (37) and performing
the integration yields the result

=_ 31 1
W21 = - 3%P321 f3a1 |, e, Low o, [
z,’"z, Z4 z, 1
(41)
1
0
The work due to pressure on face U431 is given by
Wyzy = - f Py3y ¥y dA (42)
Ays1
where “§ is the deformation parallel to the pressure
vector. (See Figure II-4 below.)
Zsu, E,ui
6 4
pu3
1’3 o y) uy
S’-: [
FIGURE II-4 PRESSURE LOAD -~ FACE 431
As above, the deformation uy.can be expressed as
— = - - - - 1-
Mg = Lig s Mg, s Mg, s g Og
b
En (43)
(1-n)&

which is valid for y = 0. Thus, substitution of Equation
(43) into Equation (42) and integrating yields

52




= 1 A v. Mg » B s By
wll31 - _3. pu3l 431 Luyl uy2 uy3 uyu"

H o= O

(k)

The Mg s i =1, 2, 3, 4 deformations are transformed into
i

tetrahedron local deformations using

uii = uyi cos 6 - uzi sin 6
where
-1/ Y
6 = tan (
2y
- Tx X
Xy N ! 1
IYul = Y Y
Zy Zy Zy

Use of Equation (45) in Equation (44) yields

N
Wy3 3 Py3 €08 © Luyl, byt Myg? My

1
+ - sin 0 {u, > M, > B, » M, |
3 Pu31 L zy” T2y’ Tzg’ gy

53
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The work due to pressure on face 432 is

glven by

Wy3p = - Jr Pygp ¥y dA

Ry

where pV
Hy

(See Figure II-5 below).

\X,uz

PRESSURE LOAD--FACE 4322

FIGURE II-5

"
‘Z’UZ
y
4-——-[)}_;32
1
n
youy 2,3

The deformation u; can be expressed again as

Nvo= v n N un
uy l_lilyls uy29 Hy uyu.l

¥3

wrdeh is valid for § = O.
into Equation (47) yields

- —1 ~ I ~
Muz2 = - 3 Puse Musa Lo 5,0 50 v,

- 0 —
En

1-¢
(1-n)g

(47)

is the deformation parallel to the pressure vector.

(48)
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The uyi, i=1, 2, 3, 4 deformations are transformed into

tetrahedron local deformations using

{uy} = [1,] v} (50)
where
{u,\,}T = I.u‘" s> HY uy s u’.\'.l
y V' ¥y’ Y3t Ty
YT = Ly s Mo, W, s My s By s B s Moy My 5 U
xl, yi le xzs v,® Pz,? X3’ y.?* "z
1 T, n -
[Tl] = I'é’ I 8'51, g22’ 623’ ¢, 0, 0, 0, 0, 0, 0, 0, 0
2
0, 0, 0, &, &5, €3, 0, 0, 0,0,0,0
!
! 0, 0, 0, 0, 0, 0, 821, Ey0s 823, 0, 0, 0
n n, N
L?, 0, 0, 0, 0, 0,0, 0,0 €5y, €55, €53
¥y = Yoy
’\J = -
€5 zu(x3 x2)
’\‘ = - Ld —
€53 o (xy x3) ¥y (x, x3)

55




The local coordinates are obtained from the transforsation

e - amad -

Xy "xi‘ ’xl".
Yy 1= (Tged | Y- T (F.04)
A Z
i 1
zZy Tt
- - 1= 1,2,3,4

Uze of Equation (50) in Equation {(#9) glves

1 T (o] -
Wy3p = = -5 Pu32 Ry32 uJ (r,3° |0 ]

1
f (1)
1l
!
) 1
! The work due to pressure on face H21 is given
i’ by
| Wiy = - f Pypy Hyodh (52)

s Ayoy

where uy° is the deformation parallel to the pressure vector.
(See Figure II-6 below).

z‘,uz-
{ 1
———Py2q
i 3
¥°,uyo 1,2

xo H] pxo

FIGURE II-6 PRES3URE LOAD - FACE 421
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[TQJ'

The deformation uy‘ can be written as

us = &

LT 2 u;‘J iés (53)
1]
jl-n)i

which is valid for y® = (. Substitution of Equation (53)
into Equation (%2) and integrating yleids:

Hkﬁi 3 psﬁl Aual Luy s vyzi v)' } %,YJ
(54)

O ke

[

the gy° s 1 = 1,2,3,4% deformations are transformed into
i

tetrahedron local deformations using
thyod = {r,] () (55)

T
where '(ﬂye) ’l}’y?x "’ou uycn Hyo~_]

€31 eéz’ e53, 0,0,0,0,0,0,0,0,0

9, 0, 0, e}, €35, ega, 0, 0, 0,0,0,0

|e§I v, 0, 0, 0, 0, 0, e}y, eaz, e;3, 0, 0, 0

0, 0,0,0,0,0,09,0,0, €51 652, eE%J

e ¥ Yoy, e22 X524, e;3 = Xo¥y=Xy¥,

2.1/2
)2

] = L(e5))7 + (302 + (e55)°]

Use of Equation (55) in Equation (54) yields

¥i21 T T 3 pupy Mizy L) [T
(56)

- o
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The %otal work docne by a uniform normal
pressure on all sides of the tetrahedron is obtained by substi-
tuting Equations (41), (46), (51) and (56) into Equation (36).
Thus:

T —~ a4

W= B 7
p qui.ls [.Vyi.,’ Luzij—-! 0
0
0
0
1 ~
-=Pp A cos 6 1
3 31 “U31 0
]
| 1
1 - - . -
- = p321 A321K 1il+ .]_'. pu31Au31 sin © 1
3 3
1 0
1 1
.0 11
- 1/3 Ayap LB 070707 - 273 Ay, il 07,0 [17]
Py32 "432 1 Pyo1 "u21 2
1 1 :
1 0 (57)
1 1
The local deformations u_, , v, , ¥
X y z
1 i 1
must first be reordered to correspond to the MAGIC III ordering
system. Thus:
- T
iy 1o Lng 15 L, JJ = [u (7] (58)
i i i
In addition, these local deformations are transformed to
global deformations through use of
— ~ T
] = Lu (7] (59)




- - -

Substitution of Equations (58) and (59) into Equation (57)
and taking the first variatlon of the result with respect to
global deformations yields the final result:

DN

e i rmeesn e

_ T T (& T (4 T (=
(ry) = 1, 3% {0n1® ) + (2 (F, 1 + 1) {sz}} (60)

S ~ ]
where: [ng] = [ng]
[,
n
[Tézj
T ]
L L ga°
{Fp} = JO
0
0
.0
- 1/3 Py3y AU31 cos @ [17]
0
1
1
= 1/3 Py Aoy [17] + 1/3 py3; Ayzy sin @

F
"y




= v——— A S— —

——— - A S e ——

VI Kinetic Energy - Mass Matrix

The kiretic energy for a discrete mechanical
system assuming a constant mass density, p, can be written:

o =5 [l ma Gy a (61)
A

where [1] is an identity matrix and {1} are local velocities
of any point in the element.

L] = I_ﬁx, ﬁy, foJ . (62)
Thus
o, = —"f[(ﬁx)2 + (fxy);2 + (ﬁz)z] av . (63)
v

The velocilties ﬂx, ﬁy and ﬁz can be expressed in terms of
local grid point veloclities through the use of the assumed
displacement functions. Thus

To.
I

Wwlfe o - ALl

6V

ot m— =




. ¥ TEE ekt AR e A S T —— AP Y S it

where:

A. =

(2]

* Xyyg - x3y2) 2 + 6V

=3
!

2 = “¥gZyX + x Zu y + (xuy3-x3yu) Z

e
!

3 = ¥pZy X - X2y + (x2yu~y2xu)

Ay = (y2x3 - x2y3) z

and y32 = y3-—y2 R x23 = x2 - x3 .

Thus the products in Equations (63) are given by

Gi)® = by J (a1 LA Gy )

(ﬁy>2

iy 1 3 1] Gy ) (66)

(i,)°

L, | {8} |al G, 3 , 1=1,2,3,4
i 1°

The kinetlic energy now becomes

o = —;L'_'Lﬁxij, Lﬁyi_l, Lﬁzi_lJ ;II{A}I_A_] @&, 0 , 0 _?ﬁxi}”’
0 ,{_{A}LAJdv,o {ﬁyi}
0 , 0 .{’{A}I_Ajdv {ﬁzi}
- |
(67)
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or

1. . )
o = 5 Lug) M) (i)} (68) :
where
(M1 = [T, o, 0 ),[R] =p] (A} [ajav . (69)
0, [%], 0 v
N
0, 0, [m]

The local grid point velécities in Equation (68) must be
reordered for use in MAGIC III. This is accomplished
using Equation (58) in Equation (68). Thus

o = = Lii] (3% €3 (73 i) (70)

where

Y :
, 2]

l.uJ = Luxl, uyg Uzl, ux

2

In addition, these local grid point veloclitlies must be
transformed to global grid point velocities. Equation (58)

in Section B of %his report is used. Thus the kinetic energy is

- _l- L] T T ~ »
o = =5 U] [T, 1" (737 M1 (1] 1,0 (U} (71)
Taking the first variation of °K with respect to velocitles
and differentiating the result once with respect to time
yields the desired mass matrix referenced tc global grid
point velocities.




_ T T v
(M] = [ngl ()" [M] [7] [ngj . (72)

It now remains to evaluate the matrix [(m]
of Equation (63). For purposes of integration, a tetrahedral
coordinate system will be used. Let local coordinates x, y,
Z be deflned by the transformations

X = xu(l-f) + x3§S - (x3—x2)§n3
y o= yy(1-5) + x488 - (x4-y,)enS (73)
zZ = Zu (l"'f)

dv = dxdydz = |J(—;‘—§;"—§ﬁ)|dgdng = 6V £58° dednd¢ .

Using these relationships, the A terms in Equation (69) become

A; = (1-8)8, A, =808, A3 = (1-M)€8 , Ay = 1-S . (74)

Thus the integrations are performed simply and the [im]

matrix is
- 2 1 1 1
m] = £ 1 2 1 1 .
20 (75)
1 1 2 1
1 1 1 2
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D. TRIANGULAR PRISM ELEMENT

I. Introduction

Three tetrahedrons are assembled as shown in
Figure II-7 to form a triangular prism element. When this
approach is taken, element matrices for three tetrahedrons are
computed and assembled automatically within the MAGIC III System.
A considerable reduction in input 1s realized which leads to a
corresponding reduction In the possibility of input error when
large scale analyses are performed. The input required for one
triangular prism L5 iLdentical to that for one tetrahedron except
that six node points define the prism instead of four which
would define the tetrahedron.

II. Element Statlc Matrices

2.1 Stiffness Matrix

The stiffness matrix for each tetrahedron
which makes up the triangular prism element is computed in
accordance with Equation (26) of Section C of this report.
Recalling that

¢ = 1/2 |0} [K] {0} (1)

or for each of the tetrahedrons:

T - K, K, Ko Ko ][ ag]
p = 1/2 |8g, By, B3, ByjlKyy Kpp Kiz Ky f)Ag
L L L (2)
Koo Koz Kyy | 22
I I
K33 K3u A3
(Symm.) I \
_ y | oY
Where &g =[ |
6 for example. The superscript I
Y6
UZ6
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refers to tetrahedron numbepr one. Also

II _ II IT L II I
% = 1/2 86, 8y, 8y, 8] | Kjy K3 Kyz o Kyji |8
II L II 1T
K5o K3 Koyl 14,
11 II (3)
K33 K3y | |6,
(Symm.)
11
Ky | | 8y
I _ IIT L III . IIT IIT}i,
0p T = 1/2 |8y, B¢y g, 8y] K977 Kyt K3 Ky,
111 I LIII
Koo™ K3 Ko7 4
III  ,III
K337 Kgy7fss | W)
(Symm. ) 11X
| “i LA"_J

The total strain energy of the prism will be the sum of the
energies of the tetrahedrons. Thus, assembly of Equations (2)
to (4) yields:

of = 172 [aF) 1xP1 (4P (5)
P,T _ ,
where {A"} = Lpl, Bys A3, Bys b5, Ag!

and the superscript P refers to prism quantitiles.

[KP] i1s the desired stiffness matrix shown in
Equation (6).
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(k"3

I .

IT .

33°

I
K2U + X

I
22

IIT
+ K11

(Symmetric)

It
23?2

IT
22

I 1T
K3H| K3H
I KII

Koz Koy ¥

II

2.2 Stress Matrices

Recalling that

il

14

ITT

Kyy + Ky

{0} = [S] {U} - [E] {€} - AT [E] {a}

0

i1

111

K3U

IIT

X33

L
14 * K3
I I1
L SPIAR SP
I1I
+ Koy
I
Ki3
IT  III
Ky + Koy
as:
23
. IT
kL) o+ kT
11T
+ KT

(7)

Equation (7) can be used for each tetrahedron to give

(oTy = (sT1 (B - (E) (& T} - ATECE] (eh)

{o11} = [sTly (I [E1 (2113 ar'? [E1(ID)

(8)

(9)

(o™ = (710 () - [e3 &) - ar™T (E16TTT (20)
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Neglecting the prestrain and thermal strain for the moment,

Equaticns (8) to (10) can be rewritten as:

I, _ 1 I I I - -
{00 } = [sl > 8575 s3 R s3 ] As
(L9}
A, (11)
1§
II, _ II 11 IT IT =
log™} = [8,77, 8,77, 8577, 8,771 As
Az
Ay (12)
L Ay
I1I, _ ., III II1I I1T III. -
{o "7 = {8,777, 8,777, ST, Sy 1ra7
Ae (13)
As
Ay
Assemblying Equations (11) to (13) ylelds the desired
relationship
N I I I 0,
oy SM 82 S3 0 0 S1 Ay
ot =l s II 3 II 0 SMII 0 3 I1 As
o) 3 2 1 (11)
III 111 1L orr s 1EE )%
_00"“ -? S1 0 SU S3 2 Ay
_ Bs
or, more compactly; Ae
tod) = tsf1 iaFy . (15)
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The contribution to the stresses from

prestrain and thermal loads can be written as follows:

(o7} = (B3 (1), (o111 = (£1GETDY, (o M1T0= (1 (e™11)  (16)

or
61y ] [l o o | [iety
.My [sl o B o | |tz™h
(17)
o1y | 0 o el |
N 4L L
cr
{(18)
;") = (B (%)
Likewise
(o T3=ar? [B] ('}, (cIT) = ar®t (3 (o), (29)
(o, 01 o™ [E] (oD
or — _ _ -
oL st [E] 0 o |[th
1= | o ot} 0 ™) (20)
ot 0 0 st Ity || (efth)
e 1L L
or
cfr = (g F1 Fy | (21)
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Combining equations (15), (18), and (21) yields:

(o'} = 15" 0"y - (ef3 (%) - 0] taPy (22)

2.3 Pre-Strain Load

The work energy is

o, = v {0] (12" (81T (E] (&) = |O] (Fy) (23)

where

F 1= v (217 (B [E] (&) .

Equation {23) can be rewritten as
1,1

2,1 (24)
F3,1

1251

where, for example:

u |

l'Ul‘] - kal; jyl’ 21

Then for each tetrahedron

(1) _ — (1)
077" = lBgs By, 83, 8] [TFy,

(25)
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HIT)
£

Assembly of Equations (25) to (27) yields the desired matrix:

L8gs 855 8y, 8] [ Fysy

(I11) _ _
®; = |_A2, Bgs Bg, By

- (1I1)

T (I11)

Fi2s3

.

= AP P,
o = [o7] (Fg'}

where the prestrain

(1)
Floon %

(1)
Fi31

(1)
Flat1 ¥

(1)
Fyp  *

(1)
F5,1 +

(1)
Fg 3

- (I)
{Fg 7,1

ate

load matrix is given by:

(11) ]
7,1

(II)
8,1

F

F
(I1)
9,1

(11) + F
51

F

(T1I)
F) 1,1

(11)
Py 2,1

(11)

Fg 4 3,1

(Continued on next page)
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(1
F8,1)
(1)
Fg’l
. (II) (1I1)
10,1+ Flo,l
(I1) (1I1)
Fla17 * Py
g (II) (I11)
12,1+ Flz,l
(I11)
Fo 1
(I11)
Fg 1
F (I11)
(I) (I1)
+ F
Fl,l 1,1 +
I II
(3) (I1)
F3’1 + F3’ +

(IT1)
F5 .1

3

(1I1)
Fg 1

——— ek

2.4 Thermal Load Matrix

in this vector are given by:

{Fa}

Equation (30) is evaluated for each tetrahedron.

The prism thermal load matrix {F
of the same form as {F } in Equation (29).

= var [71° (81T [E] (o} -
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2.5 Pressure Lcad Matrix
The prism pressuré load matrix {FPP} will

be of the same form as {F, } in Equation (29). The force entries
in this vector are given by: .

N N T{ 'i' ~"~ T o . T . »

(ep) = treen® ) ¢ 10" (B ) + 12,0 {ﬁkz}} (31)

Equatioh (31) is evaluated for each tetrahedron.

III. Kinetic Energy and Mass ‘Matrix

The kinetic energy for each tetrahedron is given

by:
QK(I) = 1/2 L&" Sz, AS, Al_l [M(I)I‘Lé‘iaza 83’ &lJT (32)

D) = 172 Liaha, ba, &y ] D0 (Ao dy, &y, BT (33)
0§III)' 1/2 l}zsic, is, A J,[M(III)]Léz.&‘, s, BT (38)

The mass matrix for the 1th tetrahedron can be
written as:

M M

My, M0 M3

M,,1 M M
2’ 2,2 ) 2,3

1M31 My 3 M3 3 M3,y

My,2 Mau Masy My

The total kinetic energy of the prism will be the sum of the
kinetic energiés of each tetrahedron. Assembly of Equations (32)

to (34) ylelds:

of = 172 |4F) M%) (AP (36)

‘where
{iP}T = LAx’ &z,A;’ s, &s, Ae}
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where xl, Yl, X2 andé Y2 are the global coordinates of the two

grid points which define the element.
The transformation from local deformations u, w
to global deformations U, V, W is given by the following:

{u} = [ngl {u} (2)
where
_ T
fu} = |_111, Wi, Yy, W, |
(07T = lUys Vos Wy ULs Vo, W
1 "1 T12 Yo 22 T2
[ng] =]cos ® sin 8 0 0 C 0
0 0 1 0 0 0
0 0 0 cos 6 sin6 O
0 0 0 0 0 1l
T ox-x Yo=Y B
cos 6 = 2 1 N sin 8 = —gf;'—l— ¢

III. Assumed Displacement Functions

The assumed displacement functions in the
local coordinate system are:

u = (a1 + a?x) z

by + by x + b3 x2 + by x3 (3)

£
]

1

dw _ 2
= W = b2 + 2b3x + 3bux
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Evaluation of Equatior (3)-2¢ gridpoints 1 and 2 yilelds:

u1 Z 0 0 0 0 0 a1
w1 0 0 1 0 0 0 a2
wxl =] 0 0 0 1 0 0 b1
0 0 0 0 b
u2 z2 x2z2 2
w 0 0 1 x x 2 b 4 3 b
2 2 2 2 3
L#xa 0 0 0 1 2x2 3x2 bu._
or
{u} = ("] {a}
where
T
{u}” = {uy, wy, Y%y Uys Wys Wyol
zq 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
[ 22 xaz? 0 0 0 0
2 3
0 0 1 x2 ' Xy x2
0o o0 0 1 2x 3x.,°
L_ 2 2

Thus

(a} = r17t

(4)

(5)
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Evaluation of Equatiui. (3) 2% gridpoints 1 and 2 yields:

- . [ - — v—
uy 24 0 0 0 0 0 ay
Wy 0 0 1 0 0 0 a,
wxl =10 0 0 1 0 0 b1
0 0 0 0 b
u2 A x2z2 2
2 3
w2 0 1 x2 x2 x2 b3
foe 0 0 G 1 2x2 3x2 bu
or
{u} = [ {4} . €}
where
T
{u}™ = lug, wy, wxl, Uy Wy, wxzj
(23T = |ay, a5, by, by, by, by
[z, 0 0 0 0 0o |
0 0 1 0 4 0
0 0 0 1 0 0
rj-
[ z2 x2z2 0 0 0 0
2 3
0 0 1l x2 x2 x2
o 0 0 1 2 3x.,°
l 2 2
Thus (8} = [r17? (u) (5)
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where:

{e} =

" - | 1
S 0 0 0 0 ‘
z 4
1
?
f i
=1 0 0 1 0 0 3;
X529 X222 o
0 1 0 0 0 0 i .
0 0 1 0 0 0
0 -3 -2 0 3 -1
2 2
x x x X,
5 2 2 :
0o —5— _1 0 -2 1
X 2 3 2
2 X X X2
2 2
Definition of the assumed displacement functions .
permits derivation of the strain-displacement relationships. }
The element strain components are: §
|
— - - . s Tl ' ‘
9 H/3x 0 z 0 0 0 o0 Ha
X 1
as
= {3 w(dz =0 0 0 0 0 0 jby i
Z : b
2| (6)
b
X2 3 ufazt ow/dx _} x 0 1 2x 3x] b3
- L | 4 |
{e} = [B] {A} (7

or

where

(B =|0 0 0 0 O0 O d (8)
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IV. Potentlial Energy., Stiffness Matrix

The potential energy is

g..l.fl_oj{e}dv
P
v
Now:
{c} = [E] {€}
where
T
{c}" = Lgx, L oxzj
[E] =[E, E,, 0 | -
sz Ez 0
~0 0 Gx&_

(9)

(10)

Use of Equations (5), (7), and (10) in Equation (9) yields

ey
¢, = 1/2 fl_u_l [r"lil [B]T {E] [B] [P“ll {u} av
v

o = 1/2 [u] [K] {u}

where

v -1 T T -1
[X] = f[r' J [B] [E] [B] [P] av .
v

Substituting for the [M], [B] and [E] matrices from above
and dropping the bending terms Ex’ Ez, Exz in the triple

(11)

(12)

product [B]T [E] [B] yields Equation (13) after integration.
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(“z2+-28)12 29~ (“zn+72) 72 229 (°z-Tz9) —
A S | 4 T
(“2+°2) =4 2c, T 2 ya
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The deformations {u} and element stiffness i,
matrix are now rearranged to give: 4

] = l 71 ¥ ‘
¢ = |8} [K,] {u} (14) i
‘
where ’f
@7 = fug, wp, up, Wy, Yx,? wxz’l
Vv
(K3 = Ky K)o
Ko1Ky
[K..] = tGxz — h—
11 0 2% (32, + 2,) Symmetric ,
zy s
|
=6 (32,+22,) 36_(2,+2,) |
: Zl L ;
5L (z1+zz) =6 (22,+32,)| 5L(Z,+32,)
: 2.2 Z 72
2 2 |8
; 6 (32,+22,) | =36 (2,+2,) | _6 (22,+32,)| 36 (Z,+Z,) |
; .._.Zl L Z2 L —
; — ] ,
i _ T_ tGxz | L
g [Kyy] = [K;,1° = —¢5— - (62,-2,) | 62, gg_(zlwzz) -62,
! 2
|
§‘ k. (42,+2,)| 62, | L (z,-62,) | -62,
§: 23 Z2
: tGx2z
: Woal = To— |20 Bip * ) | My Zp)
§ -L(Z, + 2,) 2L(2y +32,)
& .
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The transformation matrix [yl is formed which
eliminates the L and L degrees of freedom
1 .2
{a} = [y] {u} (15)
where yl= [I]

-1
[Kyp1 ™ [X5]

T = [pl, Wys Uo, w2J and [I] is an identity matrix.

Substitution of Equation (15) into Equation (14) yields:

o, = -1 18)7T (k51 (B (16)
2

The reduced stiffness matrix [KR] 1s given by
Equation (17).

n ——
(Kgl = [y1" (KD [¥D = Al 1 I
w1 - ymmetric
=22 | “If; )2
L | T :
21 1 _pp.2 2 (17)
> 1 ( 1 )s
2 LZ
Lote Zy ,
+22 2 yig.}
J 1 -~ zl 2 2Zl }h El{
L T Lz, ¢ \L ]
|
bamensnsemta—— ! nmmasend
where t a
- Xz
! 60(112,2 + 382.Z.+ 11%.°)
1 142 2
-——E—-(zl + 22) (z1 + 82122 + 22 )

2y

86

mX A e i e e e

DD M e e W o s gy SN v e v v e Seme A o e e R e At




—————— Y ——

M aae aa e _oong

Yo

TN UMY e

I g

~orkam v o

B N

I

-~ s - ce - g . T e N e et el a man T T e i

It is now necessary to transform the local
deformation {GQ} to global deformations. This is accomplished
by using Equation (2) in Equation (16). Thus

® _;. (0] K] (v} (18)

P=

where the final desired stiffness matrix for the symmetric
shear web 1is

T
(K = [Tg,3% [ [T,,1 . (19)

V. STRESS MATRIX

In the absence of prestrain and thermal strain, the
Stresses are given simply by Equation (10).

{oc} = [E] {¢} (10)

Use of Equations (5) and (7) yields:

{o} = (E] [B] [(M]L (u} - (20)

The deformation vector {u} is reordered to be compatible
with Equation (14) through the transformation

{u} = [frl] {G} (21)

where

[r,1 =

O O O O v O
O O+ O O o
© C O o o
O O O O ©

’OOOOOF—J
o 2 O O O ¢
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Use of Equations (21), (15) and (2) in Equation (20) yields:
{o} = (8] [T,,] (T (22)

where for x = L/2 and dropping the bending terms gives:

31 - Gyp (6212 + 482,2, + ng) o 0 0 0o
i (11212 + 382,2, + 11222) 6 0 o0 o | (3
1 -1 1 1
Lzzl' L 22, L |

G. IRIANGULAR RING ELEMENT (Asymmetric Loading)

I. Introduction

The formulation of the triangular cross-section
ring element described herein is derived from, and is mathematically
consistent with, the formulation described in References 13, 14,
and 15. This ring element provides a powerful tool for the analysis
of thick-walled and solid axisymmetric structures of finite length.
It may be used to ldeallize any axisymmetric structure taking into
account:

1. arbitrary axial variations in geometry,

2. axial variation in orientation of material
axes of orthotropy,

3. 7radial and axial variations in material
properties,

i, any asymmetric loading system including
pressure and temperature, and

5. degradation of material properties due
to temperature.
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The discrete element technique was first
applied to the analysis of axisymmetric solids by Clough and
Rashid(ls). The formulation of the triangular cross-section ring
was extended by wilson(17) to include nonaxisymmetric as well

as axisymmetric loads.

Wilson’s formulation for the asymmetric case
was extended 1n Reference (18) to include orthotropic material
properties with variable orientation axes. This extended develop-
ment is presented here as well as a more precise means of effect-
ing the integration of the strain energy over the volume of the
ring. Thermal and pressure load vectors and mass matrices are
also developed.

Thus, the discrete element representation
presented consists of algebraic expression for the following
matrices:

1. Stiffness , [K]
2. Pressure Load ’ {Fp}
3. Thermal Load ’ {FT}
4, @Gravity Load s {FG}
5. Centrifugal Load , {CG}
6. Stress s L8]
7. Mass s [M]

The matrices arise as coefficlent matrices in
the Lagrange equations for the element. The appropriate generalized
form of the Lagrange equation is

k. 4 (32 ).
aqr dt aqr

where

rth generalized displacement coordinate

$; = total potential energy
¢, = kinetlic energy

rt’h generalized velocity coordinate

89

o

PSR

H
f
i
)




AINNC \# -

U o TP IR SR iy T

Various quantities i the following develop-
ment will be expanded in terms of Fourier series. The set of -
unbarred amplitudes which make up these series are referred to
as the A serles coefficients and the barred quantities are
referred to as the B series coefficients. :

II. Dispiacement Functions for the Triangular .
Element .

The element géneralized dizplacements (sée
Figure II-10), can be expressed in Fpurier‘series form.

u(r,z,8) = u, (r,z) +321 uJ(r,z) cos Je + 2 uJ (r. z)sinje (1)

V(r,z,0) = vo(r,z) + ? l- VJ(r;z)'sin”qe‘+J§1 v,(r,z)cos jo (2)

3
" w(r, 2,9) =W (r,Z) +Jz w (x, z) cos je + ; J(r z)sinje. (3)
L g=1 .

Linear displac:ment amplitudés (in the r and 2% directidns)

v

are assumed.

Wy = Bgy + Bgy T + Bgy 2 16)

Note that continuity of displacement across element boundaries
is preserved. A transformation from generalized coordinates to
grid point displacement coordinates is effected by writing

Uy = Byg * Boy Tyt Bgy 2y

\'f

13 = Byy * Bgy vyt Bgy 2y

Wiy = Bgy + Bgg vy + Bgy 2y
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The generalized coordinates, {Bi}’ can be expressed {on the ; {

harmonic level) in terms of grid point coordinates {qi} as I s

(8} = [ 1 {qy) (8)

Bq

. where

T’ 'y 1 1
y tagh® = Wygs Vigs Wags Upgs Vogs Wags Ugyy Vg, Wagl  (9)
s ABgd = L8yys Bags B3gs Bugs Bogs Bgys Byys Bgys Boy)  (10)
1
i
2 From.Equation (7), with reference to Figure (II-10)
i
¢ - n
% 1 ry Zl 4] 0 0 0 0 0
i .
; 0 0 0 1 rl Zl 0 0 0
i i
: 0 0 0 0 0 0 1l Pl Zl ‘
f : 1 r Z 0 0 0 0 0 0 (11)
, r 1= : 2 2
: Bq
o 0 0 1 =r Z, 0 0 O
¢
0 0 0 0 0 0 1 r2 Z2 i
, i
1 P3 Z3 0 0 0 0 0 0 i
: 0 0 0 1 r3 Z3 0 0 0 '
i 0 0 0 ’0 0 0 1 P3 Z3J i
f which 1s non-singular:
¥ |
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Defining {qJ} as follows,
]
{qj} = LUJ, VJ, wJJ. (12)

Equations (4) thru (6) can be expressed in matrix form
as shown below

L .
{qj} = (B(r,z)] {83} . (13)
Substituting Equation (8) into Equation (13), an expression
relating the generalized element displacements to the element
nodal displacements (on the harmonic level) can be obtained.
This relation is given by Equation (14)
*
{q,} = [A] {q,} (1%)
J J
where

[A] = [8(F,2)] [Tp] - (15)

[A] can be expressed in explicit form as follows

Al 0 0 Aé 0 0 13 0 0
[A] 0 Al 0 0. A2 0 0 A3 0 (16)
-0 0 Al 0 0~ AZ 0 0 A3.
"y
where

A o= (r223-22r3-(z3-22)r + (r3-r2)z)/lA|

A2 = (zlr3-rlz3+(z3-zl)r "(r3—rl) Z)/IAI (17)

Ag = (Ty2y=2)Tp=(2y=2,)7 + (ry-r)2)/A]

la|=]r 23 + T 2y ¥ 29T3- 2573 = Ty 2y - Foz

122 137 %273 1 2

1]
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I1I. Potential Energy

The total potential energy is derived as the sum of
strain energy and external work contributions.

The strain energy density 1is defined as

v =fLaeJ {0} (18)

where

T,
(e} = L €pps €555 €gps €xgs Epgs Szl (19)
{o}" = lo...s © Oans Oy O o, o) {20)
rr? “zz? “66° "xz’ "r6’ "z6' .

Linear elastic material behavior is assumed from
the initial state of strain {ei} to the final state of
stress {o} and strain {e},

(™} = (™ i{e(m)} - {e§m>}§ , (21)

where the superscript (m) is used to indicate that the
elastic modulus natrix [E(m)] is evaluated in a coordinate
system defined for the material that may be different than
the r, z system (see Figure II-10).

The matrix of elastic constants for an orthotropic
body with respect to cylindrical coordinate axes 1is

E-r(l"“ez\)ze)’ Er(vzr + vzever)’ Er(ver t Vo Voz)s 05 05 6—
E,(1-v Vgp)s Egvgy + Ve v, ) 0, 0,0
_%_ Eg(l-v,, v, ), 0, 0, 0 (22)
86, 0, 0
Symmetric AGreao
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where
4 = l'vrever'vezvze'vzrvrz = VreVozVzr = VrzVorVze . (23)
From symmetry

E =E Ev, . =Ewv

evre5 r Zr zZ rz; Ezv = Egv (24)

r’6r 0z ~9Vze .

Poisson's ratio, vid’ is defined as the ratio of the strain

in the J direction to the strain in the 1 direction due to a
stress in the 1 direction.

Equation (22) is more conveniently written in the following

manner:
) (m) o(m) ]
Eq7 Elg El? 0 ) 0
(m) (m)
Ez‘g E2r§ 0 0 0
Egg) 0o o0 o0
ey . ™o o - (25)
(m)
Egp’ 0
(m)
| Ea? A

Substitution of the assumed constitultive relations into the
strain energy density, and the integration,yields

v = 172 €T £ (M) | (o m))T g {eim>} (26)

If the material axes {r(m)} are oriented at an angle vy
from the element geometric axes (see Figure II-10), a trans-
formation must be introduced

e™} = 7,1 (e} (27)
'™} = [T 1 {0} (28)
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.
o= 3
cosay sinay 0 2sinvy cos vy 0 0 l
4 Ya
sinzy cos2y 0 -2s8iny cos vy 0 0 1 V
1
- 0 0 1 0 0 0 R
[Teoj ) ” (29) N
-siny cosy siny cosy 0 cos“y-sin“y 0 0 §§
o
¢] 0 0 ] cosy siny
0 t] 0 0 -siny cosy
Substituting back into Equation (26) and integrating over {
the volume of the element, we obtain
’_ T T
U= (1/2 {e}" [B] {e} - {e}" [E] {es}) aV (30)
where _
T rn(m) A
[E = (7,3 (™7 [7.] . (31)

Equation (30) is the desired form of the potential energy.s-

The strains, Equation (19) are related to displacements
as follows in a cylindrical coordinate system.

U/r + V/r, U +W 1/2(Ug=V)+V_,V +1/r¥, | (32)

T
{e}” = [Ur, w s

z’

where

U = 2% Ete. (33)

IV. Stiffness Matrix for the Triangular Element

In order to effect the discretlization of the element,
the assumed displacement functions are introducted into the
potential energy function. Substitution of the total potential
energy function into the Lagrange equations ylelds the element
matrices with respect to gridpoint displacements. Stlffness
and mass matrices, as well as load vectors, are derived in
this way. The element stress matrix is derived frcm the strain-
displacement and stress-straln relations.
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The energy contribution of linear elastic stiffness
is, in terms of strains,

6, = 1/2 {e}T [E] {e} av (34)

In recognition of the fact that the generalized dis~
placements were described in Foarier series form, the strains
can be described as shown in Equation (35).

{e} = {e ) +,1§1 TcJ_l{eJ} +3£1 [EJJ (g} | (35)

th

For the A series, §  harmonic {eJ} is expressed as follows,

T

{e,}” = |e €, » €aq s Ep, 5 E J (36)
J rvd, zzJ 66J zJ reJ, ezeJ

and the Matrix fbdj is a diagonal matrix which appears as

given in Equation (37).

chJ = [cos J6, cos je, cos jo, cos jo; sin jo, sin joJ (37)

Matrix IEBJ is given by Equation (38).

[E‘JJ = [sin J6, sin Je, sin §6, sin J6, cos 6, cos je] (38)

Expressing the strains (on the harmonic level) in terms of the
generalized coordinates using Equations 4, 5, 6. and 32 yields

ey} = [o,] (8} (39)

where

{BJ}T = LBIJ . . B’JJ
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and

0 1 0 0 0 0 0 ] 0
Y 0 0 0 0 0 0 0 1
l/r 1 Z/r J/r j2/r O 0 0
] = 0 0 1 0 0 0 0 1 0 (40)
=3/r =3 =3Zfr -1/r O -Z/r 0 0 0
0 0 0 0 o0 1 -3/r =3 =3i/r |
vwhere for the B series J assumes the value of -] in Equation
(40). The differential volume 1is
dqV = r d6 dz dr . . (41)

Substituting Equations (35) and (41) into Equation (34),
and integrating with respects to 6 yields

o = 21’5 S leo] [E] {eo} r dz dr + T SSLEJJ[E]{eJ}rdzdr
rz J=1 % (42)
s T |, J{E] {E,} rdzdr .
W5 r% j 3

It can be seen that the energy term represented by Equation (34)
uncouples harmonically (Equation 42) due to the orthogonality
conditions which exist mathematically for the trlangulsr ring.
The energy component for the Ath series, Jth harmonic 1is

bg ™ LAY LeJ_l (E1 {eJ} rdzdr (43)

rz

and by substituting Equation (39) into Equation (43)

- "S 3 l8,) (o7 (£ (D] (8} r dmar . (W)
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Noting that the generalized coordinates are not variable
functions of r and Z, we can write

0 = L85 11 § 200,77 (21 (0] azar) ts,) (45)

rz

where the triple matrix product r[DJ]T [E] [DJ] is given by
Equation (U46) on the following page.

By inspection of the matrix in Equation (46), we see
that all the integrals in Equatdon (43) are the type

61.1 -Sri 29 azdr . a7

The integration is carried out over the interior of
the element, shown in Figure II-10. The integration 1s
performed in two parts: '

1) Between the lines 1-2 and 1-3, i.e. between

gz = k12 r + m12 and z = kl3 r + ml3 from rl to r3.

2) Between the lines 1-2 and 3-2, i.e., between z = k,,

r + P and z = k32 r + m32 from r3 to rye

where
22_21 rlzz-rgzl
Kyp ™ M2 = -
ro-ry ry-ry
7.2 ril,~r.2
K = __3____1_ M - ._1_3_——3-—-]-'—- (ua)
13 LAY 13 P o
3701 371
2,-2 r,2,=-r,Z
Kyp = 2 3. Myp = - 32 23
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The potential energy component for the specified harmonic i
(A series, 3*® narmonic) is related to the stiffness matrix 'l
Q

i

for that harmonic, [i}], referred to generalized coordinates
as follows

T o~
by = (837 (K1 e85} . (49)

[ij] is recognized as the integral in Equation (U45). Its terms
are evaluated by substituting the appropriate 61J integrals

(see Equation (47))for the powers of r and Z in Equation (46)
as well as the substitution of the appropriate harmonic number j.
The result is presented on the following page in Equation (50). '

R T

Introducing the transformation to gridpoint displace-
ments, Equation (8) of Section II, and taking the first variation
with respect to the displacements, we obtain the element '
stiffness matrix

- T
[Xy] = [543 (X, ] [r;‘] ] (51)

Through a judlcious choice of dlsplacement functions,

2 the essentially three-dimensicnal character of the ring changes

| to one inherently two-dimensional iIn nature. Thus, an essentially
three-dimensional problem (asymmetric loading on a solid of
revolution) can be solved by undertaking a series of two-dimen-
sional applications of the stiffness matrix given by Equation (51).

L ——

V. Load Vectors for the Triangular Element

5.1 Distributed Load Vector

- Y O £

; The external work potential for a system of distrib-
f uted loads (see Figure II-10) acting on the element face can
i be represented in the most general form as follows:
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Va= \Y le*) Py raeas . (52) |
so

The most general distributed load system which could be
applied to the element is expressed in the following Fourier
series relationships:

(-]
P, (r,z,8) = P (r,z) +3§1.Pr3(r,z) cos J6

+ §-1.§rj (r,z) sin j9

Pe(riz,G) = Pe(r,z) + ?-1 Pej(r,z) sin jo

(53)
+J§1 ;‘J(r,z) cos jo
P,(r,z,0) = P, (r,2) +J§l P,y(r,z) cos 38
+J°§1 Pzd(r,z) sin j6
If typically for the A series, Jth harmonic
tr)t - LPrys Pyys Poyl (54)
and
rCSJ = [cos jo, sih J6&, cos jo] (55)
IGOJJ = [sin j6, cos J6, sin jol (56)

103

AR

h—‘




P P

o R
I
f
¥

Then {P} and {q*} (see Section II, Equation (13)) can be

described as follows

\

. o T 790 (3

{P} = (P} +Jfl fc JJ {py} + 'll'cJ_l (7} (57)
= b ) w 5 -

{q*} {q¥} +I l‘cJJ {q;} + fa [cJOJ{qJ} . (58)

Substituting Equations (57) and (58) into Equation (52),
the following result is obtained

* ® *
Vg = 2nS quj (P} r ds +J£1 g [qJJ{PJ}r ds
s - s

(59)
© _s -
+J§1 nSquJJ {PJ} rds .

It can be seen that the external work potential due to

the applied distributed loads uncouples harmonically as.

did the internal energy term ¢k; in Section IV. For the Ath

t

series, J h harmonic

#*
a',rdJ = ]Ig LQJJ {PJ} r ds . (60)
S

Relating generalized element displacements to element nodal

displacements in Equation (60) via Equation 14 of Section II,
Equation (60) can be written as follows:

T
vd.j = nSLqJJ [AT" {py)r as | (61)

s
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Noticing that the generalized nodal coordinates are not a
function of ds, Equation (61) can be rewritten as follows:

Vd;; = LqJJHS[AIlT{PJ} rds , (62)
8

Substituting Equation (62) into the Lagrange Equation, it can
be shown that generailzed equivalent nodal loads {F_} can be .
defined which act on the generalized nodal coordinatés and which

represent the mathematical equivalent to the applied distributed
load system, :

{Fp } can be defined as follows

J
g, b =1§ 0T (2r as (63)
PJ J .
s
where
T ir 42 Z1e 2r -2z 20 3r .3z .36
{F_}" = |F Z, F r
pJ l.pja FPJ’ pJ’ FpJ’ ij: ij’ ijs ij’ FDJJ
expressing the following relationships, .
7 = K12 r + Ml2 ' - (64)
where
) 2, - 2 .
Kjp = —— . (65)
Ta=-Ty
r.Z. - T 2., ' :
My, = —22—12 (66)
r, -1y
and where " o

ds = \ar® + dz2 = 92 (67)
. - 8in &«
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it can be shown that the matrix of equivalent nodal forces b
represented by Equation (63) can be expressed as follows %
! - |
(pir] ((A#C M) &1 + (B + C.K )65} |
pJ rJ 127 21 171272 3
5 iz
t FpJ J{(A1+cl“12)6‘ + (B, + cy K;5)82}
[ tp1e 0
pJ
K. I
] *Faf | 12 P J{(A +C Mlz)G; + (B + C, K;5)82} (68)
P sin of
? 22 . i
de {(A + C M12)6’ + (B + 02 Klzlﬁg}
0
1 F29
P PrJ{(A3 + CgMy5)81 + (Bg + Cg Kypp)82)
) F3r (
P32
, pd 0 ;
. 36
P LFpJ

The constants A1 and B1 are defined as follows

B

A 1= (£oZ.-2,12) =L (z,-2,) (69)
| 1| | ' 2237273 1 IA] 3

‘(zlr3-rlz3)

1 1
A, = ——= (p. 2. -2.7,) B. = (z.-2.)
3 IA' 172 "1°2 3 lA! 1“2
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where
|4} -’r223 + T2y + 2 732,y - Tp,25 - r2z1| . (70)
8§, and §: represent the following definite integrals (71)
T2
§ = g rdr = r22 - rl2
2
1
and
T2 v, 3,3
62. = S r2 dr = .—_5._%_. ° (72)
rl

A special case is obtained when r, = ry. In this instance
the formulation must be changed. For this speclal case,
the equivalent nodal load vector {F_ } can be shown to be

P
J
equal to Equation (73).
PrJ (z, - Zl) ry
0
P, (Zz--Zl)rl
J
0
0
0
0
L. o
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The load vectors represented by Equations (68) and (73)

do not account for a distributed loading acting tangentlally

(Pe) to the element face. The loading system has been

specialized from the original complete representation (Equation
(53) to account for varying distributed loads which act parallel
to the r and Z axis (Pr and PZ) respectively. These can be

combined to model a varying pressure load. Both these loading
conditions can admit complete clircumferential asymmetry.

5.2 Prestrain and Thermal Load Vectors

The prestrzin load vector 1s constructed assuming
uniform distribution of prestrain across the element. The
prestrain contribution to the total potential energy is

0 =S{e}T (E] (e} av, (Th)

It can be shown that Equation (52) when appropriate substitu-~
tions are made and an integratbn with respect to 8 effected,
takes the following form

¢ = EHSS Leo_l (E] {eio}rdzdr + n,jzlgg L€JJ [E]{eigrdzdr
Tz

€
rz
(75)
+ N1z .
J=18% IeJI[E]{eij}rdzdr
y 2
T th vh
ypically, for the A" series, § harmonic we have
d’ej = HSS i_eJJ[E] {t—:iJ}rdzdr . (76)

r 2z
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Substituting Equation (39) of Section IV into Equstion (76)

yields
«beJ = {BJ}T H&S [DJ]T rdzdr [E] {t-:i } (77)
Tz J
Let
~ o T
[DJ] = HSS [DJ] r dzdr (78)
rz

Which may be written in terms of the 61J integrals, as

0 0 0,0 0 36, 0 -
5 6 -3 6 0
150 0 61’0 J 1’0
i 0 0 J8,0 0 -8 0
[DJ] =
0 0 J 61’0 0 0 0 [79)
0 0 J 8,1 0O %, 81,0
0 0 0 0 0 38, o
k]
0 c 0 61,0 0O -38; o
| o S0 O 0 0 ~38¢, 1)

Transformation of Equation (68) to gridpoint dis-
placement coordinates and substitution into the Lagrange
equation ylelds the prestrain load vector.

o
{F_ }=[r, 1T [D,] [E] {e, } (80)
eJ Bq J iJ
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Where the load components are

T _ gl 1z 18 2p gpe% p20 3y p3z p30
{FEJ} Lpej , FGJ, FeJ, Fej’ FEJ, Peys FSJ’ ey’ Fejj

and the prestrain components are
{eiJ}T = &gy, €10, €14,0 U
3’ J J
The thermal load vector is a special case of the pre-
strain load vector. Define a matrix of thermal expansion
coefficients as

T
{a}” = Lar, Ggs @5 0J

AT 1s the asymmetric temperature rise above ambient
to which the element is subjected and which represents the
average of adjacent gridpoint temperatures. AT can be
expressed in Fourler series form as follows:

- -]
v AT

i1

4 cos 38 +J§1 AEJ sin j6

AT = ATo +

th

The thermal load vector for the Jth series, A" harmonic

appears as follows

T n
{FTJ} =1 [qu] [DJ] [E] {a} ATJ

5.3 Gravity and Centrifugal Load Vectors

The external work done by the force of gravity on the
displacements can be written as follows:

Vg = Sp GW dv

dV = r @0 dr dz

G = Acceleration of Gravity

0 = Mass Density

W = Assumed Displacement Function

in 2 direction
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Substituting for W into Equation (86) and integrating
with respect to 6

v, = 2n o0 S x W, r drdz (87)

y z
Express Equaticn (87) in matrix form as follows,

Vg = [Bro, 8495 B2 2“DG§§ 1) rdrdz (88)
r
rz

z
The vector of forces.on the generalized coordinate is in
terms of the integrals defined by Equation (47) of Section IV.
Then

(F 3 = 2og [0, 0, 0, 0, 0, 0, &, 8205 631  (89)

This force is specifically a force whichk is present only in
the zeroth or axisymmetric harmonlic. The vector of gravity
forces on gtridpoint coordinates 1s

- T
(rg } = [rg 17 (Fy ) (90)

The external work done by centrifugal force due to spin about
the axis of symmetry can be written as follows

2
Vg =Spw r udv (91)

where w 1s the spin rate and p is the mass density, assumed
constant throughout the element. Substituting for u into

Equation (91) and integrating with respect to 6 gives

2
V, = 21 pu S g U, r° azdr (92)
r z

|
|
|

- . =

R e




Expressing Equation (92) in matrix form

R

2 1 2
v, = Lﬁxo’ B, Byg| 21 pw g x { r }r® dzdr (93)
rz 2

- ——
o ot S——c—r M -

The vector of forces as the generallzed ccordinates appears a

T 2
{FSO} = 21 pw Lﬁzos 630’ 521: 0, 0: 0, 0, 0: QJ (9“)

e e -

and the vector of centrigugal forces on gridpoint coordinates is

T
Py} = (g T gyl (95)

Again {Fso} represents a force which acts only on the

zeroth or axisymmetric harmonic.

VI. Stress Matrices For The Trlangular Element

The element stresses on the harmonic level for the A

th

series, J harmonic are given by

{oj}=[E] {eJ} - [E] {eij} (96)

The stresses are evaluated at the centroid of the cross-section,

l.e, at

r, = 1/3 (rl +r, o+ r3) (97)

Z, = 1/3 (zl + 2z, + z3)




In Equation (96), substitute for strains in terms of
displacements

{aJ} = [E] [DOJJ {Paq] {qd} - [E] {eij} (98)

where, from Equation (40) of Section IV

- -
\ 0 1 0 0 0 0 0 0 0
'~ 0 0 0 0 0 0 0 0 1
: [DOJ] =1 1/r, 1 Zo/ro J/ro 3 .1Zc/rO 0 0 (99)
' 0 0 1 0 0 0 0 1 0
: -3/ry =8 =3z /g Yr, 0 -2 /r, O 0 0 |

Lo 0 0 0 0 1 -i/rg =3 =3L /vy

T S

Equation (98) is used to evaluate elastic stresses on the
harmonic level. The matrix {c} represents a set of harmonic
level stress amplitudes. To arrive at actual stresses for any
circumferential position around the element, the various sets

of amplitudes which arise during an analysis must be recombined
in a set of appropriate Fourier series. Thernal stresses are
obtained by multiplying thermal strains by the matrix of elastic
coefficients, Equation (31) of Section III.

P R o D

PR

VII. Mass Matrix for the Triangular Element

The kinetic energy of the element 1is

B

‘ oy = {gp (u? + V24w?) av (100)

Where u, v and w are the components of radial, circumferential
and axial velocity. Substituting for u, v and w, integrating

’ with respect to 6 and utilizing Equations (8) from Section II,

. °V can be cast in the following form,

113

2 Sancad

g <
——

' .
\
/
‘k £ ’ N . -
L- T S Y U S Sy - - P asdiin adestioeniussnciiiiinsleniinseedatoone.

e e s gt et




e — — -

oy = 114 ) [rg 1" (M) [r 7 (q )

o T * .

=1

Ca Mg

s T o
layJlrg 3" M1 [rg g &)

o |

z
=1

Where for the A series, Jth harmonic

[m]
(M*] = p n
[m]
n
{m]
and _ _
é ) [
19 20 11
4"
[M] = 630 621

| Symmetric 612 |

Then the kinetic energy component for the A series, J

harmonic can be written in the following Matrix form
® A ®
¢ M
vJ = lq."] [(M] {QJ}

th

where for the A series, § ° harmonic

[QJ] = 1 [M*]

th

and for the zero harmonic

A
[M ] = 21 [M*]

The typical harmonic level mass matrix referred to
gridpoint coordinates is

= T v
M1 = [rgqd” U1 (rg)

e ek A A W Aoy = b af BB e - e [

th
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(102)

(103)

(104)

(105)

(106)

(107)




H. MODIFIED QUADRILATERAL THKIN SHELL ELEMENT

I. Introduction

The modified quadrilateral thin shell element (Entry number
38 1in the 1library of finite element representations Incorporated
within the MAGIC IXI System) is deécriﬁed in this section. This
finite element differs from the present finite element (number 21
of the MAGIC II System) only in the approximation of in-plane
behavior. No difference other than the identification number is
evident to the user.

This additional finite element representation, is included in
the MAGIC III System for use in the idealization of membrances and
plane-strain sections that require elongated finite element shapes.
This circustance is frequently encountered. One important class
of applications requiring high aspect ratio finite elements is
the stress analysis of structural joints. A rule of thumb that

may be applied to guide the choice of element type for such applica-

tions 1s to use the modified quadlateral thin shell element for
those finite elements whose aspect ratio exceeds six. This guide-
line derives from experience with the IBM 360/65 computer.

The approximation of in-plane behavior embodied in the modified
quadrilateral thin shell finite element differs from that in the
original finite element in two respects. Firstly, the subdivision
of the finite element into four triangular zones defined by the

diagonals of the quadrilateral 1s avoided in generating the modified

finite element. This avolds the integrations over triangular zones

that were judged to be the principal constraint for accurate genera-

tion of finite element number 21 at high aspect ratio. The other
distinguishing feature of the modified finite element 1s that it
embodies a relatively simple discretization by direct interpolation
of the displacement values of the eight gridpoints. The original
finite element number 21 on the other hand involves the assumption
of polynomials whose coefficients must be determined in terms of
the gridpoint displacements by a matrix inversion. The accuracy

of this operation which is carried out for each of the four
triangular subdivision deteriorates with increasing aspect ratio.
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The development and evaluation of the original finite
element 1is presented in Pages 113 to 162 of Reference 1. The
development of the modified finite element, number 38, parallels
that of the original finite element except for the central portion
of the representation of the in-plane behavior. Therefore, the
development reported herein is confined to the representation of
the in-plane behavior. The interface of this development with
that of Reference 1 is clearly defined and a common notation is
employed. All features of finite element number 21 such as
material orthotropy, midpoint node suppression, etc., are main-
tained in modified finite element (number 38).

The implementation into the MAGIC III System leaves the
program-analyst interface unchanged. The user documentation
for finite element number 21 applies to the modified finite
element which 1s designated finite element number 38. The inter-
face between finite element library and the surrounding framework
of the MAGIC IIT System is identical for finite element numbers
21 and 38. The new calculations are confined entirely within
that” portion of the finite element representation that generates
the basic in-plane behavior representation.

Numerical results are presented that compare the original
and the modified finite element representations at ordinary and
at high aspect ratios. For ordinary aspect ratios, the per-
formance of the modified finite element is found to be satisfac-
tory although generally less accurate than the original finite
element which 1s constructed as an assemblage of four subelements.
However, for high aspect ratios the performance of finite element
number 38 is shown to be superior to finite element number 21.
This confirms the successful completion of the effort to provide,
in the MAGIC III System, a quadrilateral membrane finite element
with relaxed constraints upon permissible aspect ratio.
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II. Basic Relationships

The geometry of the quadrilateral finite element is
1llustrated in Figure II-11(a). At the branch point from the
original sequence of calculations to the modified computation,
the following information is known:

a. (x_, y.) - coordinates of each of the eight

g g gridpoints.
b. tm - effective thickness of the membrane.
c. [E(g)] - material siiffness matrix for either

plare stress or plane strain as

appropriate.

d. {E(g)} -~ prestress vector arising from prestrain,
temperature load or direct prestress.

Using the foregoing information, the relations that underlie
the formulation of a representation of the quadrilateral membrane
are given below.

a. Strain-Displacement Relation (Eq. 285, Ref. 1)

{e(G)}T | auf8) a8 (8 | av(8) J (1)

ax
We g

b. Stress-Strain Relation (Eq. 280, Ref. 1)
(08} = (£®)1{(e(®)) - (3(8))) (2)

c. Potential Energy Functional (Eq. 279, Ref. 1)
= (&)
0 .5tm(% e8] [£(®)] (o)) (&) (& })dA (3)
A

The construction of the desired finite element representa-
tion consists of the assumption of approximations for u(g) and
v(g) and the substitution of these approximations into the above
relations. Then, integration of Equation (3) yilelds the basic
membrane finite element representations, as:
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xg(o,x)sxgs

yg(o,1)=ygs

xg( 0 ,%‘)‘xg

y=
yg(o,z) Ve,

Xg(o,o)=xg

yg(o 50 )8y8

FIGURE II-11(b)

B s

‘? x_(¥,1)=x (
g 86 xg(lsl)""xgz
3 1)=
N g yg(z’l) ng/2 <yg(x,l)’—‘yg2
(0y1) (1) (151) \
f N
*xg(lsé')=xgs
7\.0(09"’) (l,‘L) ~—~ 5 1y
2 (n’u) 2’ yg(lsz)“'ygs
\
(ose) (F50) (150) n
y s p >
8 1

xg(%’o )gx

yg(%’o)gch

xg(l »0)=X

ge g1

yg(z,o)=ygl

QUADRILATERAL ELEMENT IN TRANSFORMED -SPACE
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A

e M s A

- (g) :
o = 1/2 L«sng [k, "] {agm} - l_cgmj {F_} (4)
(), _ (g) (g)
{N*S7} = [SN ] {GSm} - {sN }
wherein,
{Ggm} is the vector of in-plane gridpoint displace-
ments in the (xg, y ) coordinate system (Eq. 255,
Ref. 1)
[Km(g)] is the element membrane stiffness matrix stated
with respeét to the {Ggm} displacement degrees
of freedom.
{Fe (g) 1s the element membrane prestrain matrix stated
with respect to the {GQm} displacement degrees
of freedom.
{N(g)} is the vector of sets of membrane stress resultants
aligned with the (xg, yg) coordinate axes.
[s (3)3 1s the element stress matrix stated with respect
N to the {Ggm} displacement degrees of freedom.
{sN(g)} 1s the vector of sets of membrane prestress

resultants aligned with the (xg, Vg ) coordinate
axes (Eq. 351, Ref. 1).

Equations (4) and (5) serve to define the information
that the present development must provide at the point of
return into the original sequence of calculations performed

in generatin
matrices [K

% finite element number 21. Specifically, the
g)

1, {F (g) } and {S (g)] must be provided. The

vector {s (g)} is unchanged by the modified calculations.
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The present objective 1s to develop explicit definitions
for the [Km(g)], {Fe(s)} and [SN(S)]. Once these have been

cbtained, the original sequence of cglculations is reentered
and Equations 257, 261, 262, 263 and 265 of Reference 1 are
employed to obtain the elemenet stiffness and load matrices
in terms of the components of displacement employed for
assembly. This sequence of transformations can be denoted
symbolically by:

= v Y
{Ggm} ('3 {g} (5)

wherein {q} is the final set of gridpoint displacement
degrees of freedoﬁ. The final form of the finite element
representation is obtained by substitution of Equation (6)
into Equations (4) and (5) and adding to the corresponding

.representation of the flexural behavior in the manner described

ia Reference. 1.

I1X. Transformation of Cocordinates

It is clear from‘Eduation (3) that the construction
of a finite element representation involves the integration
of functions (usually polynomials) over the interior region
of the finlte element. Because the performance of such
integrations 1s awkward for the quadrilateral shape defined
in the (xg, yg) coordinates of Figure II-11(a) a coordinate

transformation is introduced. Speclifically, the quadrilateral
element is mapped onto the unit square of Figure II-11b using
mapping transformations defined by Reference 20:

% (n,u) = K (n )] fﬁg} 0gn,ug 1 (6)
Y (n,u) = [H (n,u)] {?8} 0gn,us 1 (7)

[
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wherein:

I
TR

T
&gl = |%g1 *e2» X3 *eu» %50 *es> %gr* et ®) zi
A 4T . ’z
{yg} bd '_ygl’ .‘,825 yg3: ygll, 885: ygss yg": ygBJ (9)
i
() = (n(i-p) (420 - 24 - 1) X

np (+2n +2u -3)
(1-n) v (~2n # 2pu - 1)

) (1-n) (1-p) (-2n -2u + 1) f

£ ’

+4 nu (1-p) (10)
+4 nu (1-n)
+4 (1-n) u (1-§1)
+in (1-n) (1-w) 3 3
\I
Given the (xg, yg) coordinate values of the eight grid-
points, these relations map the physical (x_, y.,) space,

point-by-point, onto a unit square in the transformed (n,u)
space. Functions defined in the physical space are expressible
in the transformed space as explicit functions of the trans-
formed coordinates, i.e.,

f (xg, yg) = f (xg (n,u), Vg (n,u)) = £ (n,u) Osn,u <1 (11)

For example, for the components of displacement aligned with
the (xg, yg) - axes:

w8 = (&) (n,u), &) o (@) (nu) 0< n,u <1 (12)
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Derivatives of functions in the (xg, yg) coordinates Q
are expressible in terms of derivatives in terms of the !
transformed (n,u) coordinates. Using the chain rule of '
differentiation obtain !

s p——

[~ “ }
af % _ Yy _ar ‘
57\ an / an ax , :
= | ax 3 . (13) o
ar g Vg 3 % ‘
au an , au Wy ‘

The inverse relation follows by direct calculation, i.e.,

N and

af )4 Ay of
x8 1 du on an (14) i
= 1
a T 9x x ar \
ay ou an ou i
g | _ :

in which the coefficient matrix is denoted by [J] and

3, dy ax 3y
I, = det ([3]) = — —B - B —E (15)

The elemental area in the physical space 1s related to that
of the transformed space by:

= = 6
aA dx, dy, = J, 4, (16)

Equations (6) through (16) are sufficient to permit
transformtion of the basic relations of Equations (1) through
(3) Section II to expression in terms of the (n,u) coordinates. {
The form of the strain-displacement relation becomes, i
]
5

'8y = [ ay) (37)

whereln !

58 au(®) (8) av(8) (18) ‘
Byt = l_—'%ﬁ_’—é%‘—— ? —-——g:ga—%ﬁ——- ‘
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- 1
(7,3 = = Jyp 5 93920 , O
o]
0 s O J21, J22 (19)
J
21 * J J
i 222 "11° JlaJ

Equation (17) is a different mapping than that employed
in deriving finite element number 21 but takes a symbolic
form identical to Equation 299 of Reference 1,

As a direct consequence of Equation (17), the trans-

formed stress-displacement relation of Equation (2), Section II
is given by :

(o8} = (@7 (23 0 3 - &) (20)

‘The potential energy functional of Equation (3), Section II
1s transformed to expression as:

11 1
4= GG Loy D] () L (e Den an (2)
o o0

wherein
T o(g)
[Ty = Tyd, (T,)° (B g3 [r,J . (22)
Tney = ¢ J, (1,37 (8, (23)

This result is the symbolic equivalent of Equation 305
of Reference 1 although the mapping employed is different.

The potential energy functional, as given in Equation (21),
is now in a form that readily admits integration over the
area of the element for the limits of integration on n and u
are constants.
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IV. Discretization

The formulation of the finite element representation is
carried forward by approximating the displacement functions
u(g) and v(g) and integrating the potential energy over the
interior region of the finite element. Polynomials, defined
in the transformed space, are employed to approximate the dis-
placement functions. The symbolic form of the approximations
is glven by:

ul® () = 1 ()] (B08)y (24)

v® () = lH (n,p)] (808 (25)

The vector of mode shapes {H} is the same as that
employed to transform from (x_, yg) to (n,u) coordinates.
These mode shapes interpoiate the displacement functions
within the interior reglon of the element on the basis of the
assccliated sets of gridpoint displacement values:

AlEnT . \ (g) (g) (g) (g) (g) (g) (g)

3 uu ’ us > u6 » \’.7 3 ua(g

(25)

- (g) (g) (g) () (g) (g) (g) (g
{?(g)}T :lg:V2g3V3 ,Vus,vsg,v6 ,V7 » Vg

(26)

Discretization of the basic relations 1s accomplished
in two steps. First, the displacement approximations are
employed to obtain {Amu} of Equation (18), Section III as:

(A} = [D,] (853 1

)

-

)

N

.

.




wherein:

o = [ w0
?n
2w, o
o
[] , a
Lo - L (28)
lof ., _a_ |H]
e du -

DR l@(gq, t\f(g)._lj (29)

Now, using this extended symbolic notatlon, the basic
relations are discretized. The stress-displacement relation

of Equation (20),Section III becomes:
0leke [2®0] [%] [Pn] ogni- 158} (30)

The potential energy functional of Equation (21), Section III
is discretized using Equation (27) to obtain:

w172 |8g,) [K® tag,) _ |8gn| (7' (31)

wherein the stiffness [K(g)] and prestrain load {Fe(g)}

matrices for the quadrilateral membrane finite element are:

1 1

[x’] -j 5 (0,17 (I (D1 ¢ a, . (32)
o O
9 T
{Fe”)= J% J} [Dpd" {Tpel 449, (33)
o o
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Two principal steps remain in the development of the
finite element representation. Consideration must be given
to the particularization of Equation {(30) to specific points
within the finite element and the integrations indicated in
Equations (32) and (33) must be carried out.

V. Calculation of the Element Matwices

It is convenlent to invoke numerical quadrature to obtain
numerical values for the finite element matrices. All quantities,
in the integrals to be evaluated to obtain the element matrices,
are functions of the assumed mode shapes {H} and the gridpoint
values {?é} and f?g}. Thus, to obtain the values of the inte-
grands, as is required in the numerical quadrature calculation,
it is necessary to evaluate the mode shapes {H} at the sample
points. Then, with these, numerical values can be calculated
for all terms in the lntegrands.

Gaussian quadrature is employed. For the interval of
interest (o §<1) the set of sample points {p} and weights
{w} for one dimensional quadrature are:

2-point
T
{p} = |0.21132487, 0.78867483] (34)
{w} T = l0.5 , 0.5 ] (35)
3-point
tp}T = |0.11270165, 0.5 , 0.88729811] (36)
w1t = |0.27777777, 0.4NULNLLY, 0.27777777_| (37)

These one-dimensicnal sets of sample points and weights
permit the construction of two-dimensional sets., Let I
{(n,u), for example, denote an integrand defined on the two-
dimensional domain 0 £ n,u £ 1. Furthermore, let the sample
polnts Py and weights W, along the n - coordinate line be R
in number. Similarly, let there be S sample points Pg and

welghts w_ along the u- coordinate. The Gaussian product

8

127

e v e

R - — -
A K emmm ——

M




formula for this two-dimensional integration follows as:

11

R 8
g 5 I (n,u) dn dp .E E w, W, I (n, u) ( (38)
(o} (o]

r=1 s=1 P.sPg)

The quadrature problems posed by Equations (32) and (33)
Section IV involve integrands expressed in terms of {H}, {H,n}
and {H,u}. Therefore, in preparation for quadrature these
vectors are evaluated at the quadrature points. The collective
results are given symbollic definlitions as:

w? = |y By ceees LS
LHJQI’ LHJ22’ ceees LHJ25’ (39

1,00 Wlpos vees Lﬂjlﬁj
[Hanlgs Eanfyps oo, LV

{H,n}T = LH:’”—'zl’ Handgps  voes LHondpg, (40)
[Ean) gy [Hanlgps oo LR
[ulyys Bandyps oo [Houlys,

mat = By Woudpps ooy Woulyy  4D)

u{.:u_JRls LH:UJR2, vy LHsu_lRé-_l

wherein:
{H} = {H (n,u)}| (42)
rs (prs ps)

{H,n} . & {H(n,m)}] (43)

rs an (pr’ ps)
} $ Wl = & il (41)

r’ “s
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The foregoing relations specify the quadrature operation
completely. Using the evaluated mode shapes, the element stiff-
ness [K(g)] and prestrain load {Fe(g)} matrices follow from
Equations (32) and (33), Section IV by direct calculation, 1.e.,

() RS T

(K = w, 0, [D 1% {I .} [D ]

" : rgl %-l rEom K " I{H’“}rs’m’u}rs
(45)

R S8
(F ()} =Y. 3w, ug (D17 (10 (46)

r=1 s=)

{H,n}rs, {H,u}rs

The stress-displacement relation of Equation (30),
Section IV provides the means to recover values for the
stresses at any point within the finite element. This rela-
tion is particularized to a set of five display points similar
to that employed in the original, number 21, membrane finite
element, e.g.,

(g)
N8}y = [sy] ) (8,0 - {8y} 4 (47)

wherein:
(5, ‘®1 1 = (E‘®)3 [7, (1,00 (D, (1,0] (48)
s = (&8 (1,00 (49)

The stress vectors at the other poinis (n,u) = (1,1), (0,1),

(0,0) and (%,%) follow similarly. The (5,81 and {s, (&)}
matrices are the matrices of Equation (5), Section II which
complete the specificacion of the modifications made to the
original thin shell element (number 21) to obtain the modified
thin shell element (number 38).
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A careful calculation of the gridpoint loads that are
equivalent to a specified distribution of boundary loading
should be based upon work equivalence rather than static
equivalence. Such a calculation is not presently provided
within the MAGIC II System for the membrance situation and must
be made manually. An illustrative calculation is included to
encourage the use of work equivalent gridpoint loads.

Consider an element side of Length L. For a coordinate
0 s L along the element side, the assumed displacement functions
employed in finite e2lement numbers 21 and 38 are quadratic, i.e.,

ufs) = —25 (s~L) (s~ %) u,

L
-2 (s-L) u (50)
‘ 2 L/2

L
2 L

+—§S(S-'2‘) UL
L

Let the tractlion component assoclated with this component

of displacement have a specified distribution, say quadratic,

e.g.,
| p(s) = —i—z- (s-L) (s- %) P,
i
’ 1 (51)
; - -—;2- ) (S-L) pL/2
{

L
+ 2.8 (5= 3) pp

L2

The external work of associated components of boundary
traction and displacement is given by:

L
W= [u(s) p(s) as (52)

(o]
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This energy functional 1is specialized to the 1llustrative '
example by.substitutlion from Equations (50) and (51), i.e.,

O

1
W '.5 L‘-o, ué . “1.{- 125 {s-1L) (s~ !21) ng? (s-L) (s~ %‘), - %3_; (=-L)s, ,2-'5 s (s~ % 'po ‘| de  (43)
F) * !
o
?
- §_2_ B (8L}

no
3
[

4-—55(5-;—‘-

t

e e

The result of this integration is,

(] Ly JT}, u, -2}, ~
W= |u,u u = == Wgs Uy /o Uy i
L?L | ~r2, u, g_ L?L _

from which the vector of gridpoint loads is obtained, as:

—

P, 8, 4, -2 P,

L .
Prsal = 8 |4 32, 4] | Py (55)
Py -2, 4, 8 Py,

This result permits convenient manual calculation of the
gridpoint loads that correspond to a quadratic distribution ef
boundary traction specified by its intensity at the element
gridpoints.




VI. Convergence

The example chosen to illustrate the convergence
characteristics of finite element number 38 is the parabol- ;h
ically lvoaded membrane shown in Pigure II-12. This same
problem was considered previously in evaluation of the
original finite element, number 21.

-

The membrane 1s constructed of isotropic material and
the distributed loading is replaced by work equivalent grid-
point loads obtained in the manner outlined in Section V.
Only one quadrant of the membrane is considered explicitly
in the analysis. This quadrant is idealized using square
} finite elements. The idealization for the case of four
' finite elements 1s shown in Figure II-13.

This example prolem was analyzed using idealizations
of 1, 4 and 16 finite elements. Finite element types 21 and
38 were considered as well as a bi-cubic element referred to
throughout as the COMEC finite element. Additionally, a
solutbn obtained by an alternative method of analysis is
included in the comparison. The displacement at the point of
* , maximum load, uq, and the total potential energy ¢ are taken
to characterize the predicted behavior.

The numerlcal results are presented in Table II-1. These

numerical results are given graphical interpretation in Figure

I1-14, It is clear from Figure II-14 that the maximum dis-

placement 1s predicted accurately by all three types of finite

elements. Moreover, the potentlial energy converges monotoni-~

cally for each type of finite element. Specific displacements (
need not converge monotonically and indeed they do not for the 3
case illustrated in Figure II-14.
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TABLE II-1

-
-

PARABOLICALLY LOADED MEMBRANE CONVERGENCE RESULTS ?

D.0.F. = Degrees of Freedom

Number of [Element Type No. D.O.F. | Pot. Energy |Displace- |E ﬂ
Elements ] ment u_ v
- 3
EXACT - - 0.000492 - i
IMagic Plug #21 10 -0,2138 0.000492 0.0 ,
1 Magic Plug # 38 10 -0.2147 0.000496 {0.8
COMEC 16 -0.2162 0.000489 |0.6 §
Magic Plug #21 32 -0,2155 0.000492 | 0.0
i
] i Magic Plug #38 32 -0.2167 0.000492 0.0
COMEC 50 -0.2169 0.000493 0.2
i
!
| Magic Plug #1| 107 -0.2167 0.000492 0.0
i
| 16 Magic Plug #38| 112 -0.2169 0.000492 |0.0
; o)l 162 -0,2169 0.000492 0.0
?
!
%
1
%
i
f
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VII. Shape Sensitivity

The parabolically loaded membrane problem of Figure II-12
is employed to obtain an indication of the sensitivity of finite
element number 38 to distortion of its shape at ordinary aspect
ratios. The baseline idealization is comprised of four équare
finite elements as shown in Figure II-13. Idealizations of elements
of distorted shape are obtained by moving the central gridpoint
(No. 5) to selected positions on the dashed circle shown in
Figure II-13.

The displacement uq and the potential energy are taken to
characterize thé predicted behavior. The results obtained using
finite element number 21 are shown in Table II-2, together with
results obtained using finite element number 38 and the COMEC
finite element. This comparison is portrayed graphically in
Figure II-15,

Observation of the results of Table II-2 and Figure II-15
indicates that the cons;derahle distortion imposed does not greatly
5 affect the accuracy of the behavior predlcted by finlte element
j number 38. It is concluded at this point that the new finite
element number 38 may be used in conjunction with the original
" ‘ finite element number 21 without significant adverse effects upon

} the predicted behavior. Indeed, the performance of the new simpler
finite element 1s nearly equlvalent to that of finite element
; number 21.

t VIII. Bending At High Aspect Ratlo

; It is useful to separate the evaluation of the performance
of finite element number 38 at high aspect ratios into two parts.
First, bending is considered. Subsequently, the type of deforma-
tion wnich predominates in structural joints will be examined.

Consideration of bending at high aspect ratios is included
principally to emphasize the need for caution in applications
where shear deformations are relied upon to represent flexural
behavior. The example problem chosen to illustrate the difficulty
of coping with behavior of this type is shown in Figure IT-16.
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TABLE I1I-2 PARABOLICALLY LOADED MEMBRANE SHAPE STUDY RESULTS
CASE ELEMENT TYPE |POT. ENERGY | DISPLACEMENT E, %
o] U
q

EXACT - 0.000492 -
Magic Plug #21| -0.2155 0.000492 0.0
1 Magic Plug #38| -0.2167 0.000492 0.0
Comec -0.2169 0.000493 0.2
Magic Plug #21 . 0.000492 0.0
2 Magic Plug #38{ -0.2164. 0.000494 0.4
Comec -0.2168 0.000492 0.0
Magic Plug #21 0.000491 0.2
3 Magic Plug #38| -0.2165 0,000492 0.0
Comec -0,2166 0.000489 0.6
Magic Plug #21 0.000491 0.2
4 Magic Plug #38] -0.2166 0.000490 0.4
Comec -0.2168 0.000492 0.0
Megic Plug #21 0.000491 0.2
5 Magic Plug #38| -0.2166 0.000490 0.4
Comec -0,2162 0.000490 0.4
Magic Plug #21 0.000492 0.0
€ Magic Plug #38| -0.2166 0.000491 0.2
Comec -0,2168 0.000492 0.0

* L4 FPINITE ELEMENTS
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A = MAGIC PLUG #21(32 DOF)
¢ .lgg— 1% Error O = MAGIC PLUG #38(32 DOF)
m” 0= cOMEC (50 DOF)
S gy~ DOF = DEGREES OF FREEDCM
E
>° L kgd—
"
I -1 =
Q
g
[
g .488—— 1% Error
e’
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p AR 1. :
48l + + t + + i
1 2 3 y 5 6
CASE
~ o
\ LY
COMEC - \ / \ /\'\_
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I
MAGIC > ™
- —l
C, CASE 1 CASE 2 CASE 3 CASE U CASE 5 CASE 6

FIGURE II-15 PARABOLICALLY LOADED MEMBRANE SHAPE SENSITIVITY
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The cantilever beam of Figure II-16 is loaded with a
parabolically distributed shear ioad. Two elements, each extend-
ing over the entire depth are employed to idealize the structure.
A sequence of cases involving increasing aspect ratios of the
finite elements is obtained by hoiding the depth and number of
finite elements constant while increasing the length of the beam.

The displacements, pctential energy and reactions are
taken to characterize the predicted behavior of the cantilever
beam. These results are presented in Table II-3 for finite
element number 38. Corresponding results obtained from finite
element number 21, the COMEC finite element and beam theory are

also shown in Table II-3. Dimensional, nondimensional and error
values are included.

Interpretation of these results is accomplished more
conveniently using the graphical representation of Figure II-17.
At a finite element aspect ratio of unity, the structure is not
a slender beam but the finite element results are in agreement
with each other within a fraction of a percent.

At aspect ratios of two and four, the finite element results
achleve reasonable approximations of beam results and, more
importantly are in satisfactory agreement with each other except
for the anomalous 7.4% error in the reaction predicted using
finite element number 38. The difficulty of representing bending
behavior with membrane elements 1s more apparent for the increased
aspect ratio of 8.0. While this 1is not considered to be especially
high, the system stiffness matrix did not admit accurate solution
using single precision arithmetic on the IBM 360/65 computer. The
The reactions obtained using finite eler:1t numbers 21 and 38 are
grossly in error. Although not shown, for slightly higher aspect
ratlos, the r2action obtained using the COMEC filnlite element was
also grossly in error.
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ASPECT RATIO
A = MAGIC PLUG #21 (22 D.O.F.)
© = MAGIC PrL.UG #38 (22 D.O.F.)
® = COMEC (37 D.O.F.

D.0.F. = DEGREES OF FREEDOM

FIGURE II~17 CANTILEVERED BEAM BEHAVIOR
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The point of special interest herc is that the source
of the difficulty does not reside in the finite element deriva-
tions themselves. The difficulty 1s in the conditioning of the
system stiffness matrix. Thus, the above example emphasizes
the inappropriateness of this class of finite elements for bending
applications but does not constitute a meaningful evaluation
of the relatlve performance of members of this class at high aspect
ratios.

IX. Tension-Shear At High Aspect Ratio

The results presented in prior sections have examined
considerations that are subordinate to the evaluation of the
finite element number 38 in the present context. 1In this section
of the report the performance of the modified finite element 1is
compared to that of finite element number 21 for an idealized
structural joint. Errors that arise in generating the stiffness
matrix for high aspect ratio shapes of finite element number 21
have severely restricted attempts to analyze structural jJoints
using the IBM 360/65 computer. The success of the modification
of the quadrilateral thin shell element hinges upon the analysis
of a structural joint using finite element shapes of substantlally
higher aspect ratio than is possible with the original finite
element.

The highly idealized structural joint employed in this
evaluation is shown in Figure II-18. Symmetry permits explicit
consideration of one quadrant. A total of four identlcal finite
elements arranged as shown in Figure II-18 is used in each case
considered in this parametric study. The total load, uniformly
distributed over the end, and the length of the Joint are held
constant. The parametric variation of the aspect ratlo of the
finite elements is accomplished by varying the thickness of the
Joint.
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The displacement uq on the centerline at the load, the
potential energy and the reaction at the line of symmetry
cpposing the load are taken to characterize the behavior of the
joint. Of these, the reaction is the most sensitive measure.
The results obtalned using finite element number 38 are compared
with those obtained using the original finite element and the
COMEC finite element. Reference values are calculated consider-
ing the Jjoint as a tensile bar.

Two distinct serles are presented corresponding to the
use of isotropic and orthotropic material properties. The
complete set of numerical results for the isotropic series is
presented in Table II-4, The principal results are portrayed
graphically in Figure II-19. It is clear from Figure II-19 that
the various predictions are in agreement at the outset. When
the aspect ratio is increased beyond 8 the original finite
element representation leads to an unsatisfactory error. On the
other hand, the modified element representation performs satis-
factorily up to a value of 64.0. Thus the modified finite
element exhibits an improvement of a factor of 8 over finite
element number 21. The relative accuracy of the COMEC finite
element which involves polynomials of higher order was unexpected.

The same calculations were repeated for the case of an
orthotroplic material. Table II-5 contains the numerical results
and Figure II-20 presents the corresponding graphical interpre-
tation. The original finite element performs satlsfactorily to
an aspect ratio of 16.0 while the modified finite element is
apparently satisfactory even beyond an aspect ratio of 128.0.
These results reinforce the factor of 8 improvement inferred
from the results obtained for the 1isotroplc series.
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TABLE II-4

ISOTROPIC LAP JOINT® - RESULTS

ELEMENT } (%)
ELEMENT DISPLACE{ POT. |REACTION % * e (%)
eyl TYPE HENT ENERGY| g ge |y a,) R
g x
x 1077
ALL BAR - - 100. - *00H17 -
MAGIC PLUG #2}f 0.182 .00091| 99.993 118. .0091 0.007
1 MAGIC PLUG #38} 0.188 .00094| 99,975 126, .0094 0.025
(de=19.) COMEC 0.180 .00091/100.007 116. .0091 -0.007
MAGIC PLUG #21| 0.209 .00105}100.006 25.4 .00525 -0.006
2 MAGIC PLUG #38] 0.212 .00106| 99.982 27.2 .00530 -0.018
(de=5-) COMEC 0.209 .00105]100.005 25.4 .00525 -0.005
MAGIC PLUG #21] 0.354 .00177| 99.885 .20 .0044 0.115
4y MAGIC PLUG #38] 0.358 .00179| .99.943 7.4 .00448 0.057
(a, =2.5 COMEC 0.351 .00179) 99.992 7.1 .00448 0.008
MAGIC PLUG #21] 0.702 0.0035] 106.21 5.3 .00439 -6.210
8 MAGIC PLUG #38{0.685 0.0034] 99.986 2.8 .00429 0.01%
(de #1.25) COMEC 0.682 0.0034| 99.996 2.4 .00426 0.004
MAGIC PLUG #21f 1,89 .00945{ 178.47 41.8 .0059 -78.48
16 MAGIC PLUG #38]1.35 .00675| 101.05 1.3 .00h2 ~1.09
(d,=0.625) COMEC 1.33 .00666] 99.995 -.24 .0042 .005
MAGIC PLUG #21
32 MAGIC PLUG #38} 2,66 .0133 | 99.68 -.25 .0042 0.32
(de=0.3125) COMEC 2.64 .0132 | 99.959 -1.0 .0043 0.41
MAGIC PLUG #2)
64 MAGIC PLUG #38] 4.85 L0243 | 84.573 -9.1 .0038 5.427
(d,=0.15625) COMEC 5.21 .0260 | 98,389 =2.3 .00k2 1.611
MAGIC PLUG #21
128 MAGIC PLUG #38] 4.44 .0222 | 15.874 -58.3 .0017 84,126
(d4=0.078125)] coMEC 10.3 .0519 | 97.125 -3.4 .0039 2.875

apmx

1 e o YR

* 4 FINITE ELEMENTS
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X. Summary and Concluslons

The modification of quadrilateral thin shell element
number 21 was undertaken to relax the aspect ratio constraint
on the in-plane portion of the representation. Attempts to
analyze structural Jjoints had proved unsuccessful in that large
residuals (for instance, loss of load throughout the structure) -
were obtained that were attributed to the unavoidable high \
aspect ratios of the finite elements. |

A

v e e
R

The development of finite element number 21 was examined
and the use of triangular subdivisions was Judged to be the
limiting factor. Even at modest aspect ratios of the quadri-
lateral, the ratios of the sides of the triangular subdivisions
are extreme in comparison. Accordingly, the principal modifica-
tion in constructing finite element number 38 was the elimination
of the use of triangular subdivisions within the finite element.

The modification to obtain finite element number 38 is
presented in subsections I through V. A simple, low order dis-
placement approximation was chosen because experience has shown
‘ that the simpler approximations are ‘generally better conditioned. ;
Additionally, the gridpoints and gridpoint degrees of freedom of
the final form of the finlte element representatlion were stipulated
at the outset tc be the same as those of finite element number 21.
The resulting membrane representation of finite element 38 is
equivalent to the quadratic "serendipity" isoparametric finite
element representation.

s v

The modified finite element representation is available in
the MAGIC III system as finite element 38. This new finite
element representation maintains all features present in finite
element 21. The program-analyst interface is nnchanged. The
input data is the same. The displays of results have exactly the
same interpretation for the two finite elements.
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The results presented for the membrane at different levels
of grid refinement establish that the new membrane representation
1s satlisfactory although somewhat less accurate than finite ele-
ment number 21. Similsarly, the results presented for idealiza-
tions of the membrane using distorted finlte element shapes show ;
that the new element performs satisfactorily at ordinary aspect !
ratios.

T ——on g oo

The cantilever beam problem emphasizes that this type of
behavior 1s not predictable using fuil depth membranes (or shear .
panels) regardless of how accurately the element matrices are
generated. The problem class of interest is represented by the '
idealized structural joint in which tension-shear behavior 1is {
dominant.

The idealized isotropic lap joint suggests an improvement
of a factor of eight In the aspect ratio that can be employed
using the new finite element number 38 in place of the original
finite element number 21. Thils factor is substantiated by the |
analysis of the same joint configuration constructed of ortho-
tropic materials.

! The permissible aspect ratio limit of finite element
number 38 relative to finite element number 21 is considered to
be reasonably well established by the examples presented. How-
ever, the permissible absolute 1limit on aspect ratio depends
upon computer characteristics, the size of the problem and the
amount of bending present. All results presented herein were
obtained using an IBM 360/65 computer. The problem sizes were
chosen to be small for economlc reasons. Clearly, the detri-
mental effects of bending were negligible in the 1lllustrative
lap Joint examples.

Bt S VAU o

e - et At stk ™ Ak

The new quadrilateral thin shell element number 38 is re-
commended for use for elongated element shapes on the basis of
the numerical evaluation presented herein. Its relative advan-
tage is clear. Guidance for Just how large finite element aspect
ratios can be in specific applications must evolve from usage in
practical design. '
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SECTION III
INCORPORATION OF NEW COMPUTATIONAL PRCGCEDURES

A. INTRODUCTION

Several new computational modules have been incorporated into
the MAGIC III System to support the structural analysis capability.

The first module is designated as ANALIC (Analysis in Core).
This module can be uzed to perform a complete linear elastic stress
analysis, selected portions of a linearily elsstic analysis or as
a general purpose equation solver. Four distinct equation solvers
are available in this module and are described in the following
subsection. The abstraction inctructions required for this module
and detailed instructions for its use are delineated in Volume II
of this document (Reference 7).

In addition to the ANALIC module, an additional out-of-core
equation solver has been added to MAGIC III. A variable bandwidth
solver utilizing the square-root Cholesky technique is available
for the decomposition of symmetric positive-definite matrices.

The theoretical details of the method are presented in a
subsequent subsection while detailed instructions for its use in
the MAGIC III System are given in The User's Hanual(7), Volume II
of this report.
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B. AMALIC (ANALYSIS IN CCRE)

I. Introdugbion

ANALIC 43 a MAGIC IXII module which can be used to perform
a complete linear eixstic stress analysis using in-core routines.
This module may alsc be used to perform selected portiocns of a
linear elastic analysis opr as a general purpose equation solver.
The ANALIC mcdule is capable of solving prcblems of approximately
175 reduced degrees of freedom with 18,000 words of working
storage. This module features "dynamic" storage which allows the
miximum-3ize prcblem to fit in core.

ITI. Equation Solvers In ANALIC

2.1 Method of Bordering

The procedure descridbed hereln determines the
inverse of a symmetric mstrix by the bordering method. The given
matrix A is regarded as the result of bordering a matrix of order
{M-1), the inverse of which iz assumed known. Thus let

&1 E [" :
¢ ]
A_ = f21 “22 5 o An-l ;
n a a i - ; ----- !;---~
31 32 ¥ n " nn
a a : ' -
25 YE S n-l, n=l .
a a a ! a8
1 - 1
Lmn, n,2 n,n-1 ; nn ]

Then, by seeking A-l in the same form, we finally arrive at

! ]
- -1 T ,-1 !
Anil + %n1 Vn'nfna i
-1 i
A, i ¢ S, 4 ........
-1 i
-v_ A 1
n"n-1 g 1
n 1% n
= ! e
. _ -1 T
Wwhere &, = &, -vA 1V
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The algorithm used is a method of inverting a matrix
by successive borderings. The system loops on the order of the
desired matrix inverse and computes the inverse of a (1 x 1),

(2 x2), (3x3), ¢e0s (n xn) in turn by using the preceding com-
puted inverse. Each step of the process 1s accomplished on the
basis of Equation (2).

The following operations are to be carricd out in
order to find A~

{a) The computation of the row -vnA;EI with elements

Yn1* Yn2> Yn,n--l
(b) The computation of the number

n-1
% * 8 * 2::: 8n Ym1
i=1

(¢) The determination of the elements 844 of the
inverse matrix by the relationships
' ani

Bip = 8y * . (1

A

Y
= Dk
nk o (k

1A

n-1)

Storage for the subroutine used, consists of n (mﬂgl-) locations

for matrix A (symmetric stored in the lower half by rows) and one
column of length n. The solution for displacements is computed
by multiplying the total load column by the computed inverse.
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2.2 Gauss Elimination

The subroutine presented in %his section solves a
system of simultaneous linear equations with symmetric coefficient
matrix by Gauss elimination. Consider the system of simultaneous
linear equations

A*X =R

with symmetric m by m coefficient matrix, the upper triangular
part of which is stored by column in m* (m+l)/2 successive storage
locations, and an m by n right-hand side matrix R stored by column
in m * n successive storage locatiociic. Solution is done by Gauss
Elimination with pivoting in the main diagonal of matrix A, If

matrix R is the identity matrix, solution X is the inverse of matrix

A. Solution matrix X 1s placed in positions of the right-hand
side matrix R and is stored by column also. Thus, the computation
of the solution reqhires no extra m by n array of storage. Only

an auxiliary storage array named AUX with (m-1) storage locations
is necessary.

Explicitly, the given system (1) is of the form:™

ay__' a}.g 8.&3 cee al’_’_‘. xn x12 e x;‘

321 a?_g 823. cee agﬂ i x21 X22 eve x2n

831 8-3_2- a§§. e 3-3_2 X31 x32 cee x3n

aml am2 am3 cee a@. xml xm2 ) xmn
1y Tp e Ty

r

I‘ml rm2 v I‘mn

+ Note that subroutine GELS requires only the upper triangular
part of matrix A; that is, the elements a

aoa oa.o
8333 eee3 830 Apps vees 8 m These elem%ﬁ%s ﬁ?é u%gérlgﬁéd in
Equation (2}. ,
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The first step is to search the main diagonal of matrix A for the
element of greatest absolute value, say aJJ’ end to select it as
first ?1vot (p = aJJ)' The reason for pivoting only in the main
diagonal of A is that rest-matrices of A(k) (k =1,2,...,m-1) must
remain symmetrical during the whole algorithm. With aJJ’

generate the internal absolute tolerance for testing usefulness

of the symmetric algorithm in the following way:

aaal -6 (3)

with a given relative tolerance € .

tol =

Suppose that pivot element aJJ is equal to ay1° I
it is not, interchange the first rows of matrices A and R with the
Jth and the first column of matrix A with the Jth, and ‘save column
interchange information by storing the difference (j-1) of pivot
column index j and step counter k = 1 [1nterchang1ng column 1
with column J means interchanging variables Xy4 with le (1=
1,2’,...,'!1)] .

Now transform the elements of pivot rows in matrices A
and R by division with p, and the other elements by adding “8y 4 times
the new first rows of tnese two matrices to the otherv rows,
obtaining:**

aﬁ) = 21 (1=1,2...,m (4)
p
r{1) = ™a (@-12..n) (5)
P
1 1 = .
R e S
1) _ 1 - .
r\\(l) = Ty, -2y - rl(_l) (% = %:g:.-:gs (7)

++ Note that transformation of pivot row in matrix A destroys
pivot column, which is, due to symmetry, stored in the same
location, As pivot column 1s used unchanged for transforma-
tion of rest of A and R, 1% has to be saved in auxiliary array
AUX before transforming pivot row.
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As column interchange information is saved in the first position
of the main diagonal, the result of the Tirst step is the two

matricqii
J-1
C
A(l) =
0
0
) N
R(l) =

o

aly)

a3

@

SR

5

o

)

aié) e @

s |

* 2 0 0080000000 POGIGsLNLOCECOC

aé%‘-) oo aén]i)
B )
SO )

e D)
B L D)
NEO RN €3
B L

5%
Sl-Jl
S

and

It is easily seen from equations (4) - (7) that the rast of the

matrix A(l) -- that 1is, matrix A

without the first row and first

colunn -- is symmetric and that actually only the underlined

elements must be calculated and stored.

Therefore, the range of

index 1 in formula (6) reduces to 1 =V, y+1, ..., m.

at each step with the matrix A
first k rows and first k columns, and the matrix R(

k rows.

(k)
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This procedure is now repeated m-~-2 times, starting
of the step before without the

) without the first
The total result after m-1 steps is the matrices:
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' r}(gf) = r§.i) - a(l) r(m) - a(l) - r(m)

(Jl-l) agé) a&%) ces agi)
(1) 0 (3o-2) ald ... af2)
0 0 (33-3) . aga) and
0 0 0 (Jp=m)
r— ey
() i)
- R
U R
NCIGY ()
L -

Now work backward and set:

r(® a1 r{m- 1} - a(m‘l) S‘) (1=1,2,...,n) \
R P ORI e
»

ooooooooooooo

12" * '21 13 31

- ar(n‘f;azl . r(® (1-1,2,...,n)

-~ e -all) LB 3,2, ,n) j
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After each step of back substitution, rows of solution matrix

X = R(m) have to be back-interchanged according to interchange
information in the corresponding main diagonal element of matrix
a{™1) 45 order to get the correct sequence of right-hand side
column elements corresponding to the sequence of left-hand side
row elements.

The only case in which the procedure described above can

fail to give a solution occurs when at any step all elements in

the main diagonal of the rest-matrix of A(k) become zero, and no
pivot element can be found. In this case, the procedure is by-
passed and the error message ier = -1 1s given. This may --but

not necessarily--mean, that matrix A is singular. Possibly
subroutines GELG or DGELG (which are working with complete pivoting)
will be able to find a solution in cases where subroutines GELS

or DGELS fail., Actually, because of rounding errors, a further
check of the absolute values of pivot elements is performed by

the procedure, If at elimination step k this absolute value
becomes less than tol {see Equation 3), it is likely that there

was loss of significance in the computation of the diagonal
elements. But as this may not necessarily be the case, and as

this test depends highly on the choice of the relative tolerance
84} the procedure gives only the warning ier = k-1, which indicates
that there 1s a possible loss of significance in the results
computed by the algorithm.++ But here it is also possible that
subroutines GELG or DGELG will give better results, If there

is only one equation to solve (m=l), the test on loss of significance
is suppressed.

+ For_subroutine GELS, a relative tolerance between 10'6 and
10'7uis suggeiged; and for subroutine DGELS, between 10
10-* ana 10-16,

++ For example, £ = 10'5 and warning ier = 3 mean that there is a

possible loss of about five or more significant digits in the
initial values of elimination step 4.
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2.3 Cholesky Triangularization

Given an n by n symmetric positive definite matrix
A, compute an upper triangulay matrix R such that

A = R'R

The elements Tix of R are computed using the

following recursive relationships:

rlk o= alk/rll k=1,2’3,aoo,n

J-1
Tk = (l/rJJ) (aJk - ;E:: riJrik) J=2,3,...,n
11 k=j,J+l,...,n
n 2
The determinant of A 1is det(A) = ;z; ryy .

The given matrix A is assumed stored columnwise
compressed form, that is upper triangular part only. MFSD
stores the solution R in the same locations as A.

o
s

If any calculated radicend ro, (k =1,2,...,n) is
not positive, further calculation is bypassed, and the error
parameter IER is set to -1. This means that A is not
positive definite, possibly due to roundoff errors., IER is also
set to -1 if the input parameter n is less than 1.

Let all radicands be positive and let rﬁk be the
first radicand which is no longer greater than the internal
tolerance TOL = |EPS ay,]. The subroutine then gives the
warning IER = k-1; however, calculation is continued. The
warning indicates that there may be loss of significance
at factorization step k due to loss of significant digits in
the calculation of rﬁk.
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Given a general matrix A and a nonsingular upper
triangular matrix T, the subroutine MIDS will perform one of the
following six operations, depending -on the value of an input
parameter IOP:

1,

IOP=-1: A is replaced by ar-l,

IOP=i: A is replaced by T

TOP=2: A is replaced by (T'l)TA.
IOP=-2: A is replaced by A(T’l)T.
I0P=3: A is replaced by (T'T) la.
IOP=-3: A is replaced by A(TTT)'l.

with the above information available:

, (1) Calculation of X=T"1A 1s done using backward

substitution to obtain X from TX=A.

(11)  Calculation of Y=(T'1)'I'A is done using forward
\ - substitution to obtain Y from T y=A.

(111) Calculation of Z=(T'T)"lA is done by first
solving TTY=A-and then solving TZ=Y.

EET

The remaining three operations are reducible to the
above three.

This particular module may also be used to compute
the solution of a system of equations BX=A with symmetric positive
definite coefficient matrix B. The first step towards the solution
is the triangular factorization of B. Thé second step, which may
be repeated for different sets of righthand sides A, is the
calculation of (TTT)'lA. Another useful application is the
‘ computation of the product AT 1A with symmetric positive definite
F B and arbitrary A in only three steps and without additional
storage requirements:

s v S R e TR, 2
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(1) Replace B to T where B=T"T,

(11) Replace A by C=(TT)'1A.
(1i1) Replace B by cTe,

2.4 Gauss Wavefront

This method uses a modified Gauss solution algorithm,
A wavefront approach is used to manipulate the data and solve
the symmetrix matrix of linear equations. The routine is a
modified version of the method described in Reference 20. .

Given:
K1 Ko U P
o - 1= (1)
Kio Koo Us Py

where U2 are prescribed displacements and P1 are given forces,
From (1) we can write:

KjaUy + Kol =R (2)
We can decompose Kll as

o1 ot
Ki1 = I3aPlpy (3)

where L11 is lower triangular

D is diagonal with d

N
11 is L11 transpose

1

11 T 14

and the elements of L,y are given by

; . 1-1  Anjd ni ( ) )
1, =k, - 14 (
i 1
s ! n= zn,n
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Substituting into (2) we can write:

N2 KA Kt s ann, okl
——
—

P
L,,DL3,U; = B - K05 (5) s
Now setting
y = DL']I“IU]_ (6) |
we write
LY = By - Kol (7)

i e Ao

and solve for y by forward substitution. Finally we obtain the
unknown displacements Uy by using backward substitution in
Equation (7).

The stiffness matrix is stored in wavefront format which :
contains -columns consisting of the first non-zero row to the !
diagonal element. The subroutines in ANALIC operate on the data
in this format. Subroutines are called in turn to convert the
symmetric matrix to wavefront format, decompose the matrix, perform
forward substitution, and finally back substitution.,
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IV CONCLUSIONS

It is concluded that the MAGIC III System is a logical and
consistent extension of the MAGIC I and II Systems, and that

the additional capabilities realized with MAGIC III have met

or exceeded the requirements of Contract No, F33615-71-C-1390.
The satisfactory achlevement of the overall objectives is

given substantiation by a number of subsidiary conclusions.
Specifically, it is concluded that:

(1)

(2)

(3)

(4)

(5)

The addition of the solid finite element represen-
tations to the MAGIC III System provides enhanced
capability to predict general three dimensional
states of stress in structures of arbitrary profile,

The éddition of the triangular cross-section ring
finite element which accommodgtes asymmetric
mechanical and thermal loading on axisymmetric
structures provides capability for the analysis of
thick-walled and solid axisymmetric structures of
finite length.

The addition of the modified quadrilateral thin shell
element provides enhanced capability for the
prediction of structural response of membranes and
plane-strain sections that require elongated finite
element shapes,

The addition of the ANALIC (Analysis In Core) Module
provides an in-core equation solution capability
designed for "moderate-sized" applications. Four
equation solution techniques are provided.

The out-of-core variable bandwidth equation solver
utilizing the square root Cholesky technique has
been provided for the decomposition of "large order"
positive definite symmetric matrices,
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(6) The MAGIC III Agendum Library has been expanded and
includes computational procedures for the following:

a,

STATICSASYM

STATICS
STATICSC

STATICS2

STABILITY
STABILITYA

DYNAMICS

DYNAMICSF

DYNAMICSC

DYNAMICSCF

{Linear Elastic Displacement and
Stress Analysis, Triangular Ring -
Asymmetric Loading)

(Linear Elastic Displacement and
Stress Analysis)

(Linear Elastic Displacement and
Stress Analysis with Condensation)
(Linear Elastic Displacement and
Stress Analysis With Prescribed
Displacements)

(Linear Elastic Instability Analysis
Using Cholesky Triangularization)
(Linear Elastic Instability Analysis
Using Matrix Inversion)

(Vibration Frequeacies, Mode Shapes,
Generalized Mass and Stiffness for
Supported Structures)

(Free-Free Vibration Frequencies,
Mode Shapes, Generalized Mass and
Generalized Stiffness for Unsupported
Structures)

(Vibration Frequéncies, Mode Shapes,
Generalized Mass and Generalized
Stiffness with Condensation for
Supported Structures)

(Free-Free Vibration Frequencies,
Mode Shapes, Generalized Mass and
Generalized Stiffness with Condensa-
tion for Unsupported Structures)

These computational procedures listed above enable
the conduct of linear displacement, stress, and .
stability analyses in the presence of general prestrain
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(7)

(8)

(9)

(10)

(11)

and thermal loading as well as distributed and
concentrated mechanical loading. Additionally,
vibration analyses for free-free or supported
structures can be employed with or without the
use of condensation techniques.

The versatile MAGIC III System finite element
library, which is composed of sixteen finite
elements, enables effective idealization of most
linear structures.

The stability analysis procedure provided in the
MAGIC III System enables the prediction of
critical load levels for general bulilt-up shell
structures,

The preprinted input data forms facilitate the rapid
and reliable specification of problem data as
evidenced by their wide acceptance with the

original MAGIC I and II Systems.

The output provided by the MAGIC III System is
oriented to the engineering user, is consistent with
MAGIC II, and facilitates clear and concise
interpretation of output parameters.

The computer program orgenization of the MAGIC III

Syste1 1s logical in design and is well suited to
generalization,
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