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ABSTRACT

An automated general purpose system for analysis is
presented. This system, identified by the acronym, "MAGIC III"
for Matrix Analysis via Generative and Interpretive Computations,
is an extension of the structural analysis capability available
in the initial MAGIC System. MAGIC III provides a powerful frame-
work for implementation of the finite element analysis technology
and provides diversified capability for displacement, stress,
vibration and stability analyses.

Additional elements have been added to the MAGIC element
library in this pha.se of MAGIC development. These are the solid
elements; rectangular prism, tetrahedron, triangular prism, sym-
metric triangular prism, and triangular ring (asymmetrical load-
ing). Also included are the symmetric shear web element and a
revised quadrilateral thin shell element. The finite elements
listed include matrices for stiffness, mass, prestrain load,
thermal load, distributed mechanical load,pressure and stress.

The MAGIC III System for structural analysis is presented
as an integral part of the overall design cycle. Considerations
in this regard include, among other things, preprinted input data
forms, automated data generation, data confirmation features,
restart options, automated output data reduction and readable
output displays.

Documentation of the MAGIC III System is presented in
three parts; namely, Volume I: Engineer's Manual, Volume II:
User's Manual and Volume III: Programmer's Manual. The subject
document, Volume I (Engineer's Manual) is an extension of the
primary Technical documents. Included are the theoretical develop-
ments for the additional finite elements included in the MAGIC III
System as well as a discussion of newly added computational
procedures.
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SECTION I

INTRODUCTION

The MAGIC III System for structural analysis is an extension

of the MAGIC I and MAGIC II Systems reported in References 1 to 6.
All capabilities available in the original systems have been

retained and improved upon. Extension of the MAGIC System has

been in the following areas:

(a) Incorporation of four (4) solid elements

(1) Rectangular Prism

(2) Tetrahedron

(3) Triangular Prism

(4) Symmetric Triangular Prism

(b) Incorporation of a Triangular Cross-Section Ring which

accommodates asymmetric mechanical and thermal loading.

(c) Incorporation of the Symmetric Shear Web element.

(d) Incorporation of a revised Quadrilateral Thin Shell

element which reflects high aspect ratio usage.

(e) Incorporation of new equation solvers into the

MAGIC III System.

(f) Inclusion of additional computational procedures to

support the analysis process.

The work reported herein is a dis-ussion of the extensions

listed above. The discussion encompasses three volumes 3f which

this is the first. This Volume, Engineer's Manual, (Volume I) 1.

an addendum to the technical reports given in References 1 and 4

and as such should be used in conjunction with these reference. f,

effectively utilize the MAGIC III System. The seconJ VoLAme, IL' r'z

Manual, Reference 7, includes detailed specifications :or th#.

preparation of input data for the additional elements iJL'Iu1t v

this third version of MAGIC. The last volume, Volume Ii,



Programmer's Manual, Reference 8, presents information on the
organization of the MAGIC III System as well as its operational
characteristics.

Section II of this report presents the theoretical basis
of the additional finite elements and gives explicit expressions
for their characteristic matrices. These elements are:

(a) Rectangular Prism

(b) Tetrahedron

(c) Triangular Prism
(d) Symmetric Triangular Prism

(e) Triangular Cross-Section Ring (Asymmetric Loading)
(f) Symmetric Shear Web
(g) Revised Quadrilateral Thin Shell

Figures 1-1 to 1-3 depict theso newly added elementu a:; well
as previously existing elements of the MAGIC System.

A discussion of new computational features incorporated into
the MAGIC III System is given in Section III. Included are a
discussion of the ANALIC (Analysis In Core) Module and the out-of-
core variable bandwidth equation solver based on Cholesky
triangularization.

The body of the technical report is concluded with a
general retrospective discussion in Sectiion IV. An overview of the
MAGIC III System is presented.

2
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SECTION II

ADDITIONAL FINITE ELEMENTS

A. INTRODUCTION

The MAGIC III System incorporates seventeen finite

elements. Ten of these elements; namely frame, shear panel,

triangular cross-section ring, toroidal thin shell ring,
quadrilateral thin shell, triangular thin shell, trapezoidal

cross-section ring, quadrilateral plate, triangular plate and

incremental frame were available in the initial MAGIT and

MAGIC II Systems and are described in detail in References 1

and 4.

Seven additional elements; namely rectangular prism,

tetrahedron, triangular prism, symmetric triangular prism,

symmetric shear web, triangular cross-section ring and a revised

* quadrilateral thin shell element have been incorporated into

the MAGIC III System. Characteristic matrices have been derived

for these elements and include stiffness, stress, prestrain load,

pressure load, thermal load, and consistent mass matrices. The

derivation of these matrices for each finite element is presented

in the following sections.

B. RECTANGULAR PRISM ELEMENT

I. Introduction

The formulation of an element stiffness matrix

for the rectangular prism discrete element was first documented

in Reference 9, and the approach used here is one of three

suggested therein.

The rectangular prism element is a powerful tool

for the analysis of solid structures, thick plates, and beams.

It can be used in conjunction with the triangular prism and

tetrahedral discrete elements for the analysis of arbitrary solid
geometries, or with plate elements for the analysis of built-up

regions.
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An appropriate mathematical model for the

rectangular prism discrete element is formulated on the basis

of the variational principles of continuum mechanics. From an

admissible assumed displacement function only, algebraic expres-

sions for various element matrices which describe the mathematical

behavior of the element are derived by use of the Lagrange varia-

tional equation.

Consistent with the state of the art, the discrete

element repreientation for the subject element is taken to consist

of algebraic expressions for the following matrices:

a. Stiffness [K]

b. Stress [S]

c. Prestrain Load {F I

d. Thermal Load {FTI

e. Consistent Mass EM]

f. Pressure Load {Fp)

These matrices arise as coefficient matrices in

the generalized form of the Lagrange equations. The form of these

equations, necessary for the complete element representation listed

above, are:

_p_ + d 0 ¢

Sqr dt aqr

where:

ur th  generalized displacement
q rqr " rt  generalized velocity

(D total potential energy
p

"k total kinetic energy

k7
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II. Geometry

Figure II-I depicts the geometry of the rectangular

prism element. Also shown are the local and global axes systems;

namely, local x, y, z and global X, Y, Z. The local axes are fixed

at the centroid of the element. Use of vector analysis permits

definition of the dimensions of the prism to be:

a = 1/2 lixi (2)

b = 1/2 jiy1 (3)

c = 1/2 IpZI (4)

Where:
1/2

p i1i= Ir4-r 8 = [(x4-x8)2 + (Y-y8) 2 + (z4-Z8) 2] (5)

1/2

I yl = 1 7- 81 = [(x7-x 8)2 + (YY 8)2 + (z-zs) 2] (6)

II = r- = [(X5-X8 ) 2 + (Y5-Y8)2 + (Z 5 -Z 8 )2] 1/2 (7)

t-

The quantities r4 , r 5, rT and r8 are vectors emanating

from the origin of the global axes to prism grid points

4, 5, 7 and 8. The vectors rxS isy, r form a mutually

orthogonal set (see Figure II-1).

A rotational and translational transformation

matrix from local to global coordinates is formed using these

vectors. This transformation Is given below.

8
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{x )-[T r g -{c (g) }
) [{ (8)

where:

= , , z are the local coordinates

ix(g) T = X(g), Y(g), Z(.9)1 are the global coordinates

{Xc g) 1T= [X g ), Y~g), czg are the centroidal globalcoordinates

[Tg ex -- ,e -

1k 2 x3

is the matrix of
eyl . ey2 . ey3 direction cosines

e, e4

2a a2a

exI = -(X4 - Xs' x = e- Y4Y) ex= 2a 4

e (XX) 1 (yY8 e= 1 (Z7-Z8)
ey I  2b 7 2b Y3  2b

1 Y - -

e = .i(X 5 -X8), ez - 2c 5ez 3  20 (Z5-z8)

The transformation matrix ETg] is Used not only for coordinate

transformations but deformation transformations also.

10



III. Assumed Displacement Functions

A structural element is mathematically dis-

cretized into a finite number of displacement degrees of free-

dom by the assumption of displacement mode shapes. For the

simple geometry of the rectangular prism element, trilinear

Lagrangian interpolation formulas are constructed. The dis-

placement is given by

6(J)(x,y,z) = i/8abc C-fIf 2 f36 1)+ fIf2 f 3 62 ( ) -f 1 f 2f 3 6 3 (J)

+ flf2f 3 64(
J ) + flf 2 f 3 6 5  )

-lf 2f3 6 (J) + lf 2 3 67 () - 6 80 )] (9)

where

f = (x+a) f2 = (y+b) f3 
= (z+c)

= (x-a) f 2 = (y-b) f3 = (z-c) (10)

and a, b, and c are the half-dimensions of the prism as shown

in Figure II-1.

Note that j), k = 1, 2, .... 8 are the

grid point displacements where J = l, 2, 3 corresponds to the

u, v, and w displacements.

Equation (9) can be written in matrix form as

S()= L' J {6(j)} abc (1

where
T L-f i f, f~f f, f f- f -T l2f3 ' ff2f3$ _flf 2f 3 , f 1 2 3 ,f- 1 f-2f 3, _fif 2 f 3 ,

f 1 f 2 3 -if 2 f 3 J (12)

and
(j)T

Q) 0), 6(J), 0(), 0() s(), Q() Q() QJ

(13)
1i



It is instructive to examine the nature of these

assumed displacement functions by considering the allowable de-

formation of ach face of the prism. For example, the displace-

ment of the planes x = a, y = b, and z = c can be written for
x=a

6(J)(a,y,z) = (klyz + k y + k3z + k 4)(-61i) + 6 2 (i) _

+ 6 4 (J)) (14)

for y = b

6(i)(x,b,z) = (kI xz + k 2 x + k3z + k4)(6 2
( j ) - 6(j)

66 ( j ) + 6 7 (J) (15)

for z =c
(!) (J)

S((x=y,c) (k xy + k x + k y + k+)(-61J) 6 )
2 3 4 62

W+()_ (J)) (16)

and similarly for x = -a, y = -b, z = -c. It is noted that

the l are arbitrary constants. Referring to Figure II-1,

it is seen that the displacements on these planes are functions

only of the displacements of the gridpoints defining the planes.

Hence, the assumed functions are admissible in that they satisfy

the requirements of displacement continuity along interelement

boundaries. Due to the assumption of linear interpolation

formulas, the edges of the prism remain linear in deformation.

A direct cnnsequence of the above observations is that although

a single element maywarp under a force-couple, it may not bend

under any conditions.

The foregoing assumed displacement functions

lead to three translational displacement degrees of freedom

at each of the eight corner gridpoInts; thus the complete

element deformation is described by twenty-four displacement

degrees of freedom.

II

121
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It is instructive to examine the nature of these

assumed displacement functions by considering the allowable de-

formation of each face of the prism. For example, the displace-

ment of the planes x = a, y = b, and z = c can be written for

x=a

6(J)(a,y,z) = (klYZ + k y + k3z + M )(-6i) + 62 - 63(J)

+ 6 4 ()) (14)

for y = b

6(J)(x,b,z) = (kI xz + k2 x + k3Z + k4)(6 2
(j ) - 63

( j )

- 6 6 (i) + 6 7 (J) (1)

for z = c

6(J)(xyc) = (kl xy + k x + ky + k4)(-61(J) +

+ )( 6 6 (i)) (16)

and similarly for x = -a, y = -b, z = -c. It is noted that

the k are arbitrary constants. Referring to Figure II-1,

it is seen that the displacements on these planes are functions

only of the displacements of the gridpoints defining the planes.

Hence, the assumed functions are admissible in that they satisfy

the requirements of displacement continuity along interelement

boundaries. Due to the assumption of linear interpolation

formulas, the edges of the prism remain linear in deformation.

A direct consequence of the above observations is that although

a single element maywarp under a force-couple, it may not bend

under any conditions.

The foregoing assumed displacement functions

lead to three translational displacement degrees of freedom

at each of the eight corner gridpoints; thus the complete

element deformation is described by twenty-four displacement

degrees of freedom.

12



The definition of assumed displacement functionspermits the derivation of the strain-displacement relationships.

The element strain components are expressed as functions of the
assumed displacement modes by

e=
Sax (17)

= 6(2) = (18)

= 6(3) 36(3) (19)z z 3z

= 6(!) + 6(2) 6 (1) 6(2) (20)
x y , x = --- - +2 ).

ay ax

S (2) + 60) (2) . b(3) (= ,z $y = as--- -- + (22)
az ayCz (i) + 6(3) +(I 6(3)  (22

Performing the necessary differentiations
on the displacement functions yields:

68) ab LDXJ {6(J)) (23),x 8 abc

.Y 8 abc y k(24)

Z0 8ab LDz j {6 })
8 abc L ~k (25)

13



where

(DxIT L-? 2r3, f~f3' -293' r 3, *t433 -f V (2b)

2f 3 2 -3'3f2

f 3-T F{D y T - L-fir 3- firs3 3-_f3P f1 33' fif'3 -F/ 3'

fi 3' 3 _f 1 J (27)

(z 1T -- 2L- flf i 2, -fir2 , flif 2,1f I fr2,-i1 r2

f1f 2, -tit2 (28)

and

(,kJ)}= LJ), ,(J), Q(), 0(), 0()

66 (j ), 167(J), 68(J)j (29)

These equations are assembled into a single

matrix expression relating the strain components to the dis-
placement degrees of freedom,

{})1 [D] { 6 (6)1  (30)
8 abc

where

{ C) L ' X Cy z ' x y' y z ' z xj (31 )

{6) L6k 1', 6 k ) 6 k3j (32)

14



ttfxJ o 0 (33)

o IDJ 0

0 0 LDZJ

[D] = D 1DJ LD xJ 0

o LDZJ I.D y

LLDzj 0 'LDXJ

15



IV. Potential Energy

The potential energy of the element is

pp = U-W (34)

where

ie)
U= ff Ld J (o dV (35)

v (01

W are external work contributions (36)

= LCx, , C (37)

G = Lax, a az' axy' ayz' Gzx] (38)

Linear elastic materials behaviour is assumed from an

initial state of strain {F1 to a final state of stress {o}

and strain (c). From the generalized Huoke's Law,

{o} = [E] [{) - {-C} (39)

where [E] is the symmetric matrix of elastic constants

which, for three-dimensional orthotropic material, can be

written

E(1-V V )E (V + V V) E (V+V 7 v~
x yz zy x yx zx yz x(zx+yx zy

[E]=l/A E y(1-Vzx Vxz EY(VzY + xy Vzx ) 0, 0, 0 (40)

E z(1-V xyV yx ) 0, 0, 0

-Symmetric- 
0, 0

AGyz , 0

1AGzx
16



where

A = 1 -Vxyvyx - vyzvzy - vzxvxz - vxyvyzvzx-v xzvyxvzy (41)

and vij is defined as the resulting strain in the jth

direction due to a stress in the ith direction.[E] can be

expressed in more concise form as

Ell E1 2  El3 0 0 0

E22 E23 0 0 0

E33 0 0 0

[E] E (42)E44 0 0

E55
Symmetric

E 66

Substitution of Equation (39) into the

strain energy function and integrating yields

U = f (1/2 LWEE] {} - LWJ [E] {EJCV (43)
v

This is the desired form of potential

energy P,

17



V. Element Static Matrices

5.1 Introduction

To effect the discretization of the

element the assumed displacement functions are introduced

into the potential energy function which in turn is substi-

tuted into the Lagrange equations to yield element matrices

with respect to grid point displacement degrees of freedom.

An exception is the element stress matrix which is derived

from strain-displacement and stress-strain relationships.

5.2 Stiffness Matrix

The energy contribution to the linear

elastic stiffness is given by

if

Op = 1/2 f [c [E] {0 dV. (44)
V

Recalling the strain-displacement relations

= [D] 0) (30)

8 abc

and substituting these into Equation (44) yields

Op = 1 ( ) f (J[D]T [E ] [D] {6() dV (45)
V

Performing the matrix multiplication, and noting that the

grid point displacement degrees of freedom are not functions

of the local coordinate system, the potential energy function

may be expressed as shown by Equation 46. Taking the first

18
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1
variation of the potential energy function with respect to

displacement degrees of freedom (as shown by the first term
06

of Equation (M)), yields the element stiffness matrix [K]

referenced to local grid point displacements. This matrix

is depicted in Equation (47).

The matrix products appearing as integrands in

Equation (48) lead to integrations of the following gencral

form,
a b

Iij=f (x+a)m (x-a )n (Y+b)P (Y-b )q (z+c)r (z-c)Sdzdydx--b-

-a -b -c
(49)

Since the limits of integration arc constants, Equation

(49) can be written equivalently as

a b

'iJ = [f (x+a)m(x-a)n dx][f (y+b)P (Y-b)q dy]

a -b

c -

f (z+c)r (z-c)s dz (50)

-C

These definite integrals are readily evaluated by integra-

tion by parts and the [I matrices are expressed in

Equations (51) - (56).
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4

2 4
1 2 4 -SYM.-

32 a b3 c 2 1 2 4
-9 -4 -2 -1 -2 4 xx]  (51)

-2 -4 -2 -1 2 4
-1 -2 -4 -2 1 2 4
-2 -1 -2 -4 2 1 2 14

14
-4 4
-2 2 4 -SYM.-

32 a3 b 3  2 -2 -4 4 =

9 2-2-11 4 (52)
-2 2 1-1 -4 4
-1 1 2 -2 -2 2 4
1_-1-2 2 2-2-4 4

-4
2 4
-2 -4 4 -SYM.-
-4 2 2 432 a33 

(53)
abc +2 -1 -1 -2 4 - [I (

1 +2 2 -1 2 4
-1 -2 2 1 -2 -4 4
-2 -1 -1 2 -4 -2 2 4

22
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-2 2 1 -1 -2 2 1 -1
-2 2 1 -1 -2 2 1 -1

-1 1 2 -2 -1 1 2 -2

-1 1 2 -2 -1 [ 2 -2

L-a 2b 2c 3  2 -2 -1 1 2 -2 -1 1 [1 xy ]  (54)

2 -2 -1 1 2 -2 -1 1

1 -1 -2 2 1 -1 -2 2

1 -1 -2 2 1 -1 -2 2

-2 -2 2 2 -1 -1 1 1

2 2 -2 -2 1 1 -1 -1
2 2 -2 -2 1 1 -1 -1

16 b2c2.,-2 -2 2 2 -1 -1 1 1 (

-3 -1-1 1 1 -2-2 2 2 yz

1 1 -1 -1 2 2 -2 -2

1 1-i -1 2 2 -2 -2

-1 - 1 1 -2 -2 2 2

2 1 1 2 -2 -1 -1 -2

1 2 2 1 -1 -2 -2 -1
-1 -2 -2 -1 1 2 2 1

-2 -1 -1 -2 2 1 1 2
16 a 2 2 1 1 2 -2 -1 -1 -2 [IZX] (56)

1 2 2 1 -1 -2 -2 -1

-1 -2 -2 -1 1 2 2 1

-2 -1 -1 -2 2 1 1 2

23



The potential energy function given by

Equation (46) is referenced to local gridpoint displacements.

These displacements must first be reordered to be compatible

with the MAGIC III ordering system and then be transformed to

global displacements. The former is accomplished through use of

the transformation given below:

{60)1 = [T] {gCJ)) (57)

where

L6 ) 6 (2) (3) 62 (l 62 (2) 62 (3)

68(1) 68(2) 68(3)j

11

11

[T] :

2 1
1

__ 1

1

1
1

l1

1I i I I I I t I f f l L
12



The transformation from local to global

deformation is derived through the use of Equation (8), thus

ETg,] W (58)

wiiere

IAIT =LUI, V1. W1, U2- V2 . W2.. ... , U8 1 VS, WSJ.

The U, V, W deformations are defined in Figure II-1.

Also,

[Tg j = [TL I

['T Iglo

T g1
€oTg]

I',

[Tgz]

IT]
[Tgz]

The [Tg£i matrix is defined by Equation (8).

25



Use of Equations (57) and (58) in the

potential energy equation, Equation (46), yields

IP=-g7  T 8bI T [K] [T][TgI 1A. (59)

Taking the first variation of the potential energy with

respect to the displacement degrees of freedom {A} (as shown
by the first term in Equation (1))yields the element stiffness

matrix [K]referenced to global gridpoint displacements. This

matrix is depicted by Equation (60).

1 2 T T
[K] = (- . [Tg9] [T] [K] [T] [Tg]g . (60)

5.3 Stress Matrices

The element stress matrix follows as a

direct consequence of the strain-displacement and stress-strain

relationships. Recalling that

{a} [E]t{} - ml (39)

where {1 is a column of either mechanical prestrain or

thermal prestrain or both. Also recalling that

1 ) [D] { 6 ( j ) , (30)8abc

it follows that

(ci1 ) [E] [D] {6(J ) ) - [E] {} - [E]{} (61){o) ( 8abc

Use of Equations (57) and (58) in Equation (61) yields:

S abc [E3 [D] [T] [T] {A} - [E) {'} -CE]{(i(62)

26



The distribution of prestrain throughout

the element is assumed to be of the same functional form as the

displacement mode shapes; i.e., an interpolation between grid iI

point prestrain components. Thus,

e(J) 8 ( ) L[J )k = 1, 2, ..., 8 (63)
8 abc

with j = 1, 2, ..... 6 corresponding to i, Ey, E

£yz ZX

The vector {El now becomes

( 1 =  a e)[B] {90 } (64)

8 abc

where

[B]= [BJ

Ltj

LBJ
L*tJ

LtJ

27



The vector {s-a}, the prestrain due to thermal effects, can

be written as

{1} = 1 ) £B] [a] {ATk) (65)
8 abc

where

a I]

yz]

II

[I] is an (8 x 8) identity matrix and
lTax, ay, 1z are coefficients of thermal expansion,

!i {AT} LT - To]J, k = 1, 2, 3 .. , 8

Tk is the temperature at the kth grid point and T0 is the

element reference temperature.

Equation (62) can now be rewritten as

follows:
£

{au = [S] {A) - {s} - {s) (66)

Each term in Equation (56) has a particular significance.

The matrix (1
tS= a-a-c [E] [D] [T] [Tg£] (67)

yields the element apparent stresses due to displacements

of the element and is referred to as the element stress matrix.

The matrix
{s) = cE] [B] {i (J)) (68)

8abc 8
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yields stresses due to the prest-rain state within the element

and is referred to as the element stress matrix due to pre-

strain. The matrix

1 (A1(9Is = ( abe ) [E] [B] [a] {tTkl (69)

yields stresses due to a temperature gradient within the

element and is referred to as the element thermal stress

matrix.

It is noted that the assumption made in

Equation (63) is invalid for a constanttemperature and prentralnt
distribution throughout the element since this assumption pro-

duces zero prestrain and zero thermal forces. Thus for a

constant prestrain and temperature distribution, the following

equations replace Equations (68) and (69).

{s} = [El {) (68A)

{s1 = AT [E] {c} (68B)

ave.8where AT av.T av.-T;0T ave T1 + T 2 + T.

{a}T = Lax a aj

5.4 Prestrain Load Matrix

The prestrain contribution to the potential

energy function is

= f [cJ [El (} dV (67)

V

Substitution of Equations (30) and (64) into the above yields

) 2 f (j) [D] [E] [B] V (68)
F 5 abc JVL

29



Performing the multiplication and integration gives

S= L6(J~ {)1 (69)

where

F 8 abc ] (EK

Ell [IXB], E12 [IXB], E13 [IYB], E44 [IyB] , 0, E66 [IzB]

[p]= E12 [I, E22 UIYB], E23 [IyB], E44 [IxB 1, E55 [IZB], 0 (69A)

E13 [IZB], E23 [IZB], E33 [IzB] , 0, E55 [IYB], E66 [IXB]

[IxB] = If{D X  []j dV = a [Ixx
V

IIYBI = {D Y BJ dV = c [I Z]
fV

Transformation of L6(J)j to global gridpoint deformations

through use of Equations (57) and (58) and differentiation

of the result with respect to the gridpoint deformations

yields the prestrain load vector

{F-) = [T ]T ET)T{F 1. (70)

r1

30



,1

For a constant prestrain throughout the element

= (8 abc f L6 (J )j [/D]T [E] {} OV (7*-)

Thus:

{F } = [P] {9) (72)

where [P] is given by Equation (69B) and the load vector

is given by Equation (70).

5.5 Thermal Load Matrix

The thermal load matrix is a special case

of the prestrain load matrix. Substitution of the thermal

strain

{e(j)) = [a']{ATj (73)

into Equation (69) defines a load matrix

1 2
{F a = 8c ) [P'] [a] {AT } (74)

where

E11 [1XB], E12 [1XB], E13 [IXB]

[p' 12 LYB] , E22 [IyA, E2 3 [IYB]

E!3 [IZB], E23 [IZB], E33 (IZB]
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The final thermal load matrix is given by

{F a = [TgilT [T]T { } (75)

For a constant temperature distribution

throughout the element, the thermal strains are given by

{e) = ATave. W} (76)

Swhere' = T - T
ATave. ave. T

Tave = T1 + T2 + . + T

8

Thus, substitution of Equation (76) into Equatlon (71)

defines a load matrix

0 a ATave. [P'] {a) (77)

The [P] matrix is obtained by taking only the first three

columns of the [P] matrix.
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5.6 Pressure Load Matrix

' he pressure load matrix is derived on

the basis of constant pressure on each face of the rectangular

prism element. Thus, the total work W due to the pressure
p

loads is the sum of the work done on each face.

Wp = W1234 + W5678 + . . . + W3478 (78)

The subscripts denote a face of the prism (see Figure II-1).

Now

W1234  P1234 6(1) dA (79)

£ A

RecallIng Equation (11), Equation (79) can be written as

1 []{ ( ) dxdy

a b

Performing the indicated integration yields

W24= P1234 bc I k3), 62(i), 63(1), 64 (1  (81)

Additional integrations of the form shown by Equations (79)
and (80) for the remaining faces yields

W3478 = P3478 a b L6 (3), 6 ((3), 3), 6,0 j{l} (82)

W2367 = P2367 a c L62 (2 , 63(, 66(2), 67 (2)j f1 (83)

w = P1458 a c L61(2), 6 (2), 65(2), 68(2j{1) (84)
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I
1256 P1256 ab 6, 62,63, 64 {(1 (85)

W5678 P5678 bc [65 , 6, 67 6, J (i) (86)

Equations (81) to (86) are combined to yield total sork

W = L6,(J~1 {IpC- IAJ [Tg ]TC T]T {Fp) (87)

through use of Equations (57) and (58) and

T

{Fp) = LF, F, Fi F, F2 F2 F2 F 2 F 3 F4 F4 F 3

F3, F4, F4, F3, F5 , Fs, F6 , F6 , F5, F5 , F6 , Fe]

Where:

F 1 = P1234 bc, F2 = Ps67 bc, Fs = P14sa ac

F4 = P2 367 ac, F5 ' P1 25 6 ab, F6 = Pa47 ab

Taking the first variation of W in accordance with

Equation (1) yields the pressure load matrix

{Fp [Tgt]T  {F p (88)
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Vi. Kinetic Energy - Mass Matrix

The kinetic energy for a discrete mechanical
system, assuming a constant mass density p, can be written

4K = P/2 f [cj E1 (41 dV (89)
V

where fiJ is an identity matrix and where {0} are generalized
velocities which, from the assumed displacement modes, are:

f IT = ~ ) (2) .(3I) ( 0

Substituting Equation (90) into Equation (89) yields

OK v/2  j(2) ( (
S3)(91)

or

= p/2 f + ((2 t dV (92)

V

Recalling the displacement mode shapes

6(J) =- LJ {6(J) 
(

8 abc 
ii

and differentiating gives

8 abc LBJ {i(J)i 
(93)
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Thence,
2 1 2

.Q 2} (94)
( ) 8 abc

where

IV, j

[m] -- (Bi [B.

Substituting Equation (94) into Equation (92), for

j = 1, 2, 3, yields

2 C (1) (2)' .(3)

8 a 
dV (95)

[m

, or

L6=~ [M] P (96)
*K -2 L j  )(6

where

[M] = ( - ) m dV (97)

V, ,

37



Performing, as previously, the integration indicated in

Equation (97) gives
1

Em( C m3 dv (8 abc 1/2 1
[8 abc 27 1/4 1/2 1 SYMM.

v 1/2 1/4 1/2 1

1/2 1/4 1/8 1/4 1

1/4 1/2 1/4 1/8 1/2 1

1/8 1/14 1/2 1/4 1/14 1/2 1

1/14 1/8 1/14 1/2 1/2 1/b 1/2 1

(98)
hence

EhM[] =L m], 0, 0
F 0 , [m], (99)

0, 0, [m]

Reordering and transforr' ,. -o global deformations through use

of Equations (57) and (D; permits the kinetic energy to be

written as:
JT

K 2 [Tg IT ET] T [ j [T] [Tg[ ] { ) (100)

Taking the first variation of @K with respect to velocities

and differentiating once with respect to time, as shown in

Equation (1), yields the desired consistent mass matrix

referenced to global gridpoint displacements. Thus,

[M] = ETg]T ET]T [M] ET] [Tgz] (101)
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I

C. TERAHEDRON ELEMENT

I. Introduction

The stiffness matrix for the tetrahedron element was

first derived and presented in References 10 and 11 respectively.

Later these relationships were reviewed and a consistent

mass matrix was reported in Reference 12. These formulations

have been extended in MAGIC III to include stress Is] ,

prestrain load [F) , thermal load (FT), and pressure load I FP)

matrices. These matrices were formulated on the basis of the

variational principles of continuum mechanics. The material that

follows summarizes the derivation of all the element matrices

mentioned above.

A linear polynomial is assumed for each of the

three displacement modes. These mode shapes lead to a total of

twelve undetermined coefficients for the element which are chosen

to correspond to three translational displacement degrees of

freedom at each of the four vertices of the element. The nature

of the assumed displacement modes is such that the strains

throughout the element are constant.

The tetrahedron element can be used to analyze

solid structures such as thick plates and beams. It can also be

used in conjunction with the rectangular prism and triangular

prism solid elements and in fact is used to generate the

triangular prism element.

II. Geometry

Figure 11-2 depicts the geometry of the tetrahedron

element. The local axes system x, y, z, and global system X, Y, Z

are also shown. The local axes are fixed at element gridpoint one

with the positive x axis directed along side one-three as shown.

The global coordinates of each grid point are given as
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input from which the volume of the element is obtained

1 X Y1  Z1

V 1 X2  Y2 Z(2
6 1 x3  Y3 Z3

1 X4  Y 4 Z4

The face areas of the element are given by

A [AYZ )2 + .X (A ,)2 + AX Y ) 2] 1 (2)
431= (A 1) + (A41) + ( 431 (

2 22 1/2YZ XZ (A432) 34 = [32 3 2 ) + (A43 2) +

A Y 2 xz 2 21/2
421+ (A 2 ) + (A422) ] (4)

YZ 2 xZ 2 XY 2 1/2
321= (A ) + (A3 2 ) + (A3 2 1 ) ] (5)

The subscripts refer to an element face and the superscripts

refer to area projection on a global plane. The components of

the face area are given by:

YZ= 3VIB1 I A Z 3VIB IAXY = 3VIB 6e1 (6)
A132 = ll,432 VB4,1 ,432 611

AYZ = 3VIB I  XZ XY (7
431 1,21  A431 = 3VIB4,2 1 A43 1 = 3V1B 6,21 (7)

YZ =3VIB I AXZ = AXY = 3VIB (8)

421 = 1,3 421 B4,3 A421 31

YZ =XZ =V3 1 I AXY = 3VIB (9)
A321 = V1.~iBI A32 1  B4,4 A321 6 ,41
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The terms IB 1  ,1  IBI2 , etc. represent the absolute value

of elements (1,1) and (1.2), etc. in the LB] matrix which relates

strains to displacements aD shown in Equation (19) of thiz Section.

A rotational and translational transformation

matrix from global to local coordinates is formed thru derinition

of position veators emanating from the origin of the global axes

systqm to element grid points l, 2 and 3. This transformation

matrix is

Ti (x(1) T9d t~ )) - (10)(g

where

I- (()), y(')' z()J are the local coordinates.

(X(g))T - Lx(g  g) , Z(9J are the global coordinates.

1Xi(s), y1(s), zg)J are the global courdnates

of gridpoint one.

a11  e12 e13
(Tgjt] -,1

e21  e22  e2 3

[-E,1  '-~ - -

e 3 1  e32 e33

42

- $ I



el, - X3-XI, e12 - Y3-Y1, e1 3 - Z3-z1

e2 l - e32 e13  e12 e33, e22 - e1 e33 - e3 1 e 1 3 , e 2 3 e31e12-elle 32

e31 w (Y3-YI)(Z 2-z1 ) - (Y2-yI) (Z3-Z1 )

e32 - (X2-XI) (Z3-ZI ) - (X3-x1) (Z2-Z I )

e33 ' (X3-XI)(Y 2-y1 ) - (X2-XI) (Y3-Y1 )

I 1i E 2 + e2 + e2 1/2

1621 w e2 + e2 + e23 1/2

--Ce 2 , + e 2  + e2 1/2
31 32

43
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III. Assumed Displacement Functions, Strain- it
Displacement

The assumed displacement functions in theI

global coordinate system are

Ux = 01X + C 2 Y + C3Z +c 4  (11)

Uy = C5X + C6Y + C7z + c8 (12)

UZ a C9X + C10Y + C11Z + C12  (13)

where Ux, Uy, Uz are the deformations of the element

along the global X, Y, and Z axes.

Evaluation of Equation (11) at the four gridpoints yields:

{u xi = [r] {ci (14)

where

{UlT

C)T = Lc, C2 , C3 , c4

[r]) "1 X1 YI Z1

1 X2 Y2 Z2

1 X3 Y3 Z3

1 X4 Y,4 Y4

Thus {C} " [ri]- lUx I & Ux  Li ,x, Y, Zi [r]- 1 {Ux (15)

Likewise, Uy = Li, x, Y, zj E]i {uy } (16)

Uz = Ll, x, Y, zJ [r-l{uz } (17)

Equations (15) to (17) are used to derive element matrices.

Note that the displacements functions are written in terms

of global coordinates and displacements.

44

/L



Definition of the assumed displacement

functions permits derivation of the strain-displacement

relations. The element strain components are

Cx i -au x/ax

C y au y/aySy Uy/S

Cz aUz/9z

e= = aux/ay + DUy/ax = [B] {U} (18)

IIyyz auy/az + au z/ay

Yxz au /9 + au /3I Yxz Uz/ x +  U/z

where

U T LUX, Ux2 , Ux3  U Uy Uy Uy Uy 4 '

1 2

The [B] matrix is constructed from the ErT matrix as follows:

Row 2 of [r]- Zeroes

-ZeroesRow 3 of Er]- -Zeroes------

Zeroes ------ ---- Row 4 of [r]-lI
-l I[B] = Row 3 of [r]-, Row 2 of [r] 1  ,Row 3 of [r] i  (19)

Row 4 of [r]- - Zeroes ,- 5Row 2 of [r]-
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IV Potential Energy

The desired form of the potential energy is

U = (1 l.eJ [E] { WJ - L (J [E] {W}) dV (20)

V

which was derived in Section II-B.IV of this report. The matrix

CE] is defined in that section also.

V Element Matrices

5.1 Introduction

To effect the discretization of the

element the assumed displacement functions are introduced into

the potential energy function which in turn is substituted into

the Lagrange equations to yield element matrices with respect

to gridpoint displacement degrees of freedom. An exception is

the element stress matrix which is derived from strain-displace-

ment and stress-strain relationships.

5.2 Stiffness Matrix

The energy contribution to the linear

elastic stiffness is given by

lJL [E] {e) dV. (21)2(21
V

Substitution of the strain-displacement relationship,

Equation (18),in this energy contribution yields

1f LuJ [B]T [E] [B] {U) dV. (22)

V

Since matrix [B] is not a function of the global coordinates

the integration can be performed directly and

(D = V Lu] [B]T [E] [B] {U} (23)
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The displacements {U} must be reordered to be compatible with

the MAGIC III ordering system. Thus, the following transforma-

tion is defined:

{u} = [T] {U} (24)

where

{U}T = LUx u U Ux U U ... u U Uz

{1, Yl, 9 2 , Y2, 2, x4 , Y4 , 4

The IT] matrix is defined by Equation (24A). Substitution of

Equation (24) into Equation (23) yields Equation (25).

J.J

[T]= (24A)
1

1

1 1

= v_ LUJ [T3T [B]T [El [B] [T] {U} (25)
2
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Taking the first variation of the potential energy with respect

to the displacement degrees of freedom (U yields the element

stiffness matrix [K] referenced to global grid point displace-

ments. This matrix is given below:

[K] = V [T]T [B]T [E] [B] [T] (26)

5.3 Stress Matrices

The element stress matrix follows as a direct

consequence of the strain-displacement and stress-strain relation-

ships. Recalling that

(0) = [E] t{c}- {} (27)

where {M1 is a column of either mechanical prestrain or thermal

prestrain or both. Also recalling that

{0 = [B] U} = [B] [T] {U} (28)

it follows that

{a} = [E] [B] [T] {U} - [E] (El - [E] {Efa . (29)

The vector {e}, the prestrain due to thermal effects, can

be written as

{Ec} = AT (a); {a}T = La, , ay ' o, oJ (30)

where

AT = Tave. - To, Tave. = T1 + T2 + T3 + T4
4

and T0 is a reference temperature.

Equation (29) can now be rewritten

{a} = [S] {0}-{s)- {81 (31)
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where:

[S] = [E] [B] [TI

{s} = [E] {}
{s'} = AT [E] {a)

5.4 Prestrain Load Matrix

The prestrain contribution to the potential

energy function is

= LJ [El {T) dV. (32)

Substitution of Equations (18) and (24) into this equation

yields

( PT L J [T]T [B]T [E] IE} -V

or = V LJ [T]T [B]T [E] {?} = L CJ } (33)

Differentiation of Equation (33) with respect to the global

gridpoint deformation yields the prestrain load vector

{F-I = V [T] T [BIT [E] {F) (34)

5.5 Thermal Load Matrix

The thermal load matrix is a special case of

the prestrain load matrix. Substitution of the thermal strain,

Equation (30), into Equation (34) yields:

{F a} = ATV[T]T [B]T [E] {a) * (35)

5.6 Pressure Load Matrix

The pressure load matrix is derived on the
basis of constant pressure on each face of the tetrahedron

element. Thus the total work, Wp, due to the pressure loads

is the sum of the work done on each face.

Wp = W321 + W431 + W432 + W421 (36)
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The subscripts denote a face of the tetrahedron (see Figure

11-2). Each work term is initially derived in a special set of

local coordinates placed in a race of the tetrahedron. The

resulting work term is then transformed to the global coordinate

system. Thus

W42 K I '2 dA (37)
A 321

where the negative sign accounts for direction of the

pressure P 321 and K = sgn z4'

The deformation p can be expressed in terms of the assumed

displacement functions and local coordinates x, y as

L 23 (38)

where ly! =Ix 2y3'41

A 1 = (-y2 z z + (x 2 -X3 ) z~y + (x3y4-x 2y4 + x4Y 2 -x 3y2 )z

+ x 3y2z4) -Y

A2 = (x 3z~y - x3y~z)+t IYI

A 3 =(y2z4 x - x2z~y + (x 2Y4 x~y2) z), IYI

A 4 =(x 3y2z)+ fI
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For purposes of integration, a triangular coordinate system

is defined as shown in Figure 11-3 below:

n=constant

==constant

~~ =1

FIGURE 11-3 TRIANGULAR COORDINATE SYSTEM

The transformation from (x,y) to (C, 1) coordinates is

accomplished by using the following:

x = x2  - (x2-x3) n

y = Y2(l-n)

dxdy = Ij(x,y)Iddn (39)

a~ Y x l=-32I
IJx,y) I - - a as

Substitutions of Equations (39) and setting z = 0 into

Equations (38) yields

PZ LPZl' Pz 2 ' vZ33' 1Z4
] -- -

U-0 E (40)
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Use of this relationship in Equation (37) and performing

the integration yields the result

w321 -.T 321 321 z,, )z z ,r1
P ' P z 41 1 " (41)

1

0

The work due to pressure on face 431 is given by

W431= - P431 iy dA (42)

A431

where py is the deformation parallel to the pressure

vector. (See Figure 11-4 below.)

P431

z 4

1 1,3 ---- "y  ' P

1X X

FIGURE 11-4 PRESSURE LOAD - FACE 431

As above, the deformation I. can be expressed as

=Y 2 LiY 1 % 3 ' 11 4
0 (43)

En)

which is valid for y 0. Thus, substitution of Equation

(43) into Equation (42) and integrating yields
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431-W 431 A'431 L ' P5' Pl 31 VY3

1 (44)

The I = 1, 2, 3, 4 deformations are transformed into

tetrahedron local deformations using

= cos 6 sin 6 (45)

where

z14

x4

Y4 = [Tg[] [ ]

Lz4j -z4j Zl- I

Use of Equation (45) in Equation (44) yields

1 C11
- 3P 431 Y 2 3 Y4

0 (46)
1

+ - P431 sin 8 [pZ 'z3 z 4J i3 1 2 3 Hi0
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The work due to pressure on face 432 is

given by

32= - f P4 3 2 i dA (47)

A4 3 2

where p; is the deformation parallel to the pressure vector.
yI

(See Figure 11-5 below).
Z "z

4 X

432 / 
P432

22,3

FIGURE 11-5 PRESSURE LOAD.FACE 432

The deformation P"i can be expressed again as
y

y y1  y2  Y3 .%Y
-) (48)

which is valid for y = 0. Substitution of this expression

into Equation (47) yields

W~ s 42 _Lp43 A432  Lp-- P

A33  yl Y2 y 3 14 [ 1 19
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The i = 1, 2, 3, 4 deformations are transformed into

tetrahedron local deformations using

[T'- (50){p]= [T1 ] {F (0

where

=j
{y} LYx Y Z x Y2 3 z3

= T Lp , p ,f •i 1 J x2 Y z 2, Ix 3 '  ,Y3s1z3

11x4 ' .1 Iyh' 11z4J

[T e' u 22' 2I'3 0, 0, 0, o, 0, 0, 0, 0, 0
[T]1 e 21' 2 2- 0 '0 '0

l e 2 0 , 0 , 0 , 2 1 3 ' 2 2 ' 1 2 3 ' 0 z 0 ' 0 ' 0 ' 0 1 0

0, , 0, e 210, e 022 e23, 0, 0

0, 0, , 0, 0, 0, 0, 0 e2 1 , e 2 2 , e 2 3

21 -Y2z4

e22 z4(x 3 - x2 )

e23 = Y2(x4 - x3 ) - Y 4 (x2 - x3)

( 12 2 Il 2] 1/2

I 21 = ( + (e22 + (23)
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The local coordinates are obtained from the transformattn

i  "xi . X

Yl = g ] : Yi - l(rOA)

zil z

L,~ 'j 112$314

U.ze of Equation (50) in Equation (49) gives

432- - P432 A432 t17J o 1
Ll

The work due to pressure on face 421 is given

by

W - f p4 2 1 1y.dA (52)
A421

where V is the deformation parallel to the pressure vector.

(See Figure 11-6 below).

4 
'

x

P 4 2 1

3

X0  P IX o Y ,1 y0 
1,2

FIGURE 11-6 PRESSURE LOAD - FACE 421
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The deformation py can be written as

- hs0, Pya: vo , [Jy by ,yz, 3 Y , (53)

which is valid for yO - 0, Substitution of Equation (53)

Into Equation (52) and integrating yields:

wJ~~1 U P431  4~31 LUQ, PYO% VYO$ PY [11
0

the ,so I - b2,3,4 deformations are transformed into

tetrahedron local deformations using

(p.,yo) - T21 i (55)

where f~)T L.yof Y o O, 03 yoij

e21, e2, e 3' 0, 0, 0, 0, 0, 0, 0, , 0

0, 0, 0, e eV22 ; $3 0, 0, 0, 0, 0, 0

ieC 2 0, 0, 0, 0, 0, 0, e;l, e;2 , e 3 , 0, 0

L0, 0, 0, 0, 0, 0, 0, 0, 0, e21, 2, e23

e2l Y2 z4 , e;2 *-x2 z4 , e2 3 ' x 2Y14-x 4 y 2

je21 t(e'Ol) 2 + (e;2)2+ (e ;3)2]1/2

Use of Equation (55) in Equation (54) yields

421 - Pj421  A421  LJ T2)T .

rn-i(56)

0
L1
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The total work done by a uniform normal

pressure on all sides of the tetrahedron is obtained by substi-

tuting Equations (41), (46), (51) and (56) into Equation (36).

Thus:

- gP 4 31 A 431 Cos 0 1

L1 j
p 3 2 1 A32 1K l'+ P 43 1 A 4 31 Si 1

1

-1/3 P432 A 432 L 7V T11]TTL]i- 1/3 P142 1 A1421 L-JIT] [ 2 ]T L1i
The local deformations .i v, ,

must first be reordered to correspond to the MAGIC III ordering

system. Thus:

[I Y ilI L1I 1 JZ L'j =p- I T (58)

In addition, these local deformations are transformed to

global deformations through use of

[iT] = [UJ [IT (59)

58

r 1



Substitution of Equations (58) and (59) into Equation (57)
and taking the first variation of the result with respect to
global deformations yields the final result:

{FpI = [Tg2 ]T H[T]T {Fp} + [T,]T {F P + [T2]T {p2} (60)

where: [Tg,] = [Tgy.]

I[ 1
0

L0J
-1/3 P43 1 A431 cos e 1]

1 1/3 P3 2 1 A3 2 1K[1] + 1/3 P4 3 1 A43 1 sin 0 [1

{F l -1/3 P432 A432  {F I2 -1/3 P42 1 A421 [1
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VI Kinetic Energy - Mass Matrix

The kinetic energy for a discrete mechanical

system assuming a constant mass density, p, can be written:

K 2 f Lj [1 dV (61)

V

where ClJ is an identity matrix and {4} are local velocities
of any point in the element.

Thus

K)2 + (j )2 + 32] dV)i' 2x

V

The velocities x y and z can be expressed in terms of
local grid point velocities through the use of' the assumed

displacement functions. Thus
+=

ii

6V xl6

Ux 
3

_ I ( 6 5 )zD 3

1z4
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where:

A Y = y32Z 4 x+ x2 3 z4 y + (x4+x~ly 2
+(3y4-x14y.-,x-,Yh+ 1 y

+ x2Y3 - x3Y2 ) z + 6V

A2 = -y 3z 4 x + x z4 y + (x4 y3-x3y 4 ) z

A3  Y2Z 4 x -X 2zy + (x2Y4-Y 2X 4 )

A 4 = (Y2x3 -x 2 Y3 ) z

and Y32  Y3 -Y 2  x2 3 = x2 - x3

Thus the products in Equations (63) are given by

) )2 = { j AI LAJ 6
i i

) 2 = Ny J {A} LAJ {Y } (66)

Gz)2= L z. {AI LAJ z i 1 1,2,3,4

The kinetic energy now becomes

K J ' L~y J Lri j S{A)[AJ dV, 0 0 {;Xi}1
2 [xi

0 ,S {A} LAj dV, 0
V

0, 0 ' {A}[A} dV z }
V

(67)
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or

K 2.LiJ EM] {.(68)

where

EM]J0 ;M, = jf J{A} [A] dV (69)

0, 0,

The local grid point vel6cities in Equation (68) must be

reordered for use in MAGIC III. This is accomplished

using Equation (58) in Equation (68). Thus

S5K 1 j CT] [M] [T] {j} (70)

where

PI = OIX1 l 1 1 2 11: xI'  Pz P2' "' z4"

In addition, these local grid point velocities must be

transformed to global grid point velocities. Equation (58)

in Section B of this report is used. Thus the kinetic energy is

= - L6] [T ]T T]T [M ] [T] T 0] {(71)

Taking the first variation of 4K with respect to velocities

and differentiating the result once with respect to time

yields the desired mass matrix referenced to global grid

point velocities.
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f

[M] = [Tg T [T]T [M [TI] [Tg£] . (72)

It now remains to evaluate the matrix Em11v

of Equation (69). For purposes of integration, a tetrahedral

coordinate system will be used. Let local coordinates x, y,

z be defined by the transformations

x = x4(I-f) + x3%9 - (x3-x2)6'4

y = Y4 (l-Y) + x4fS - (x 3-y 2 )Vt (73)

z = z4 (i-S)

dV = dxdydz = IJ( ')I ddjd = 6V-S 2 deddf .

Using these relationships, the A terms in Equation (69) become

A1 = (l-S)f, A2 = 1, A = (1- )9 , A4 = i-S (74)

Thus the integrations are performed simply and the [m]

matrix is

1 1 21
1 1 1 1
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D. TRIANGULAR PRISM ELEMENT

I. Introduction

Three tetrahedrons are assembled as shown in

Figure 11-7 to form a triangular prism element. When this

approach is taken, element matrices for three tetrahedrons are

computed and assembled automatically within the MAGIC III System.

A considerable reduction in input is realized which leads to a

corresponding reduction in the possibility of input error when

large scale analyses are performed. The input required for one

triangular prism la identical to that for one tetrahedron except

that six node points define the prism instead of four which

would define the tetrahedron.

II. Element Static Matrices

2.1 Stiffness Matrix

The stiffness matrix for each tetrahedron

which makes up the triangular prism element is computed in

accordance with Equation (26) of Section C of this report.

Recalling that

= 1/2 [ii [K] {I} (1)

or for each of the tetrahedrons:

I 1 2A , A -I I I I - - -
p 1/2 LA6 , A2  A, A1J K1 1  K1 2  K1 3 K14 A6

(2)
I I I

K2 2  K2 3 K24 A2

K I A3K33 K34 A

(Symm.) K 44
%-44AL

Where A6 = -x
for example. The superscript I

[y 6
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-1

w0

H.

cy.~f4

koHIE-H

H I
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refers to tetrahedron number one. Also

(DI = 1/2 LA6, A2, AK, A 1 Kn KI KI KI A6
P L 6 1 "., O 1 12 13 114 6

22 23 24 A2
(3)

KII KII A (3

33 34 A1

(Symm.) K"

44 A4

II 1/2 , A A A K III KIII K'III KII -AP LA21 A6 5A41 1ii 12 a13 14 Z 2

KIII KIII III A22 23 24 6

KIII KIII A (4)
33 34 5

(Symm.) K 4 A 4

The total strain energy of the prism will be the sum of the

energies of the tetrahedrons. Thus, assembly of Equations (2)

to (4) yields:

4P = 1/2 LAPJ [KP] {AP } (5)

where {A PT = LA1 , A2 , A3, A 4, A5 ,

and the superscript P refers to prism quantities.

[KP] is the desired stiffness matrix shown in

Equation (6).
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.II. I Ii, I II I II
K 4 + K33, K24 + K23, K34 K34 0 K14 + KI3

K' I I+ K K K +x I II
22 +K22 K23 K2 4 + 11  1 K 2 + KI2

+1 Kil + K12I

! 0 0 K1

[K P] = 13
II II] III II III
K + K K34 K + K (6)

III III

(Symmetric) 33 23

K' + 1(11
11 1

'I'

+ K II22

2.2 Stress Matrices

Recalling that

{o = [S] (Ul - [E] {e} - AT [E] {a} (7)

Equation (7) can be used for each tetrahedron to give

{oI} =[SI] {Ui - LE] {E I} - Ag[E] {a{} (8)

III III III

{o I = ES"!] {UII- EE] { I-} ATI [E]{aII} (9)

{ I} = [SII {UI _ [E] {"} _ ATI' [E]{aIIIj (10)
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Neglecting the prestrain and thermal strain for the moment,

Equations (8) to (10) can be rewritten as:

CT0 [lsS23S 1S3A6 ll

62

ESI  = i s l , $2 i  $311 , $ I I ] - I

A 2
,A, (12)

Ai4

{a = S1  , S2 
1  

S3  , S4 SIA-

A6 (13)
A 5

Assemblying Equations (11) to (13) yields the desired

relationship

I- I I 0 0 SI Al
0 14 ~ 21

S S I I $ I I  0 S I I  0 S I I  A 2

A3 (14)

L a 111 0 SI111 0 $4I  $111 S2

A5]

or, more compactly; A6

P P P
{00) = [S P]  {A . (15)
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The contribution to the stresses from

prestrain and thermal loads can be written as follows:

{a I [El {9I}, {oa II [E](UII, {a II 1= [E] 1III] (16)

or

S [EJ 0 0 {9'}

{oI =0 [E] 0 { II(

I II0 0 [E3 I

P P P(18)

{ = [E-P 3 {3 P .

Likewise

{a a}=AT I  [E] {al} {c la AT I  [E] c (19)
( I AT I l l  E]{ I I I }

{[E3 {a
a

or

cI ATI [E]  0 0 {aI
a

aI 0 0 AT" [E] 0 {(20)

a L 0"TII'E aI

or

{a = [E P] {MP )  (21)a a
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Combining equations (15), (18), and (21) yields:

{a r [Se] {A _ [E] {E1- [E] {a (22)
C a

?.3 Pre-Strain Load

The work energy is

= V tJ [T]T [B]T (E] { } = J (F(23)

where

{F-}= V [TT [B]T [E] {}

Equation (23) can be rewritten as

= LOl 52) 53, UJ -FI, 1

F 2,1 (24)

F3 ,1

F12 1

where, for eyample:

LJ±, "1yl' UzIJ

Then for each tetrahedron

LA(I) = A6, A2, A3 ' AJ F1,1  () (25)

F2 'i

F3,1

F1 2 , 1
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(II) [A6, A2  A (II)

F2,
'2'l

F 3 , 1
• (26)

F12,1

L2 A6 , A5 A 5, -

F2,1

F3,1 
(27)

F1 2 ,1

Assembly of Equations (25) to (27) yields the desired matrix:

(D = LAPJ {F } (28)

where the prestrain load matrix is given by:

F(I) + F (II)
10,1 7,1

F(I) + F (II)
11,1 18,1

F(I) + F (II)
12,1 9"l

F4(I) + F4(II) + FI I I)

F(I) + F (II) + F (III)

5,1 4,1 2,1

F 6I) F (I) + F I)6,1 5,1 3,1

{F P } = F I)
E 7,1

(Continued on next page)
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F8)

F9 ,1

F (II) (III)10,1 + F1 0,1  (29)
(I') +F (III)

Fii +i~
F (II) (III)
12,1 + F12,1

F7,1

F (hI)
8,1F III)i Fs~

9,1

(IT
1,1 + ~4,1

F (3 ) + F(()III)

3,1 3,1  6,1

2.4 Thermal Load Matrix

The prism thermal load matrix {FaP) will beof the same form as {F } in Equation (29). The force entries
in this vector are given by:

{F a = VAT [T]T [B]T [E] (1 (30)

Equation (30) is evaluated for each tetrahedron.
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1.

2.5 Pressure Lcad Matrix

b t s o The prism pressure load, matrix {FP } will
be 6f the-same for as (P 1 in Equation (29), The force entries

in this vector-are given by:

{F} - [Tm)" {TI } + CT1  } + [T5L{ piJ (31)

Equation (31) is evaluated for each tetrahedron.

III. Kinetic Energ and Mass 'Matrix

The kinetic energy for each tetrahedron is given

by:
M - 1/2 LA6, , i, l [M(I)]jLjsa, is ljT (32)

ta1). 1/2 LU,i, ), i ,[M( I ) L,,i,, A,-, AJT (33)

K/ Li -i '[K1(1114 1/2 Li. is's , EM (MI) ] CA2V& isa ,T (34)

written as: The mass matrix for the ith tetrahedron can be

' Nl M1,2 mi,3 mi sA

M2 1 -N2,2  M2,3 N2 ,4CM.i (35)

3,1 N2,3  3s3 3,4

[44 1 N2,j 4  N3 4, M4,4'

The total kinetic energy of the prism will be the sum of the

kinetic energies of each tetrahedron. Assembly of Equations (32)

0- (34) yields:

OP 1/2 LipJ [MP3 {:&P (36)

-where {j} - Lilt i,,i,, j, is, i,.
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where XI, YI3 X2 and Y2 are the global c3ordinates of the two

grid points which define the element.

The transformation from local deformations U, w

to global deformations U, V, W is given by the following:

{ } = [Tgil {U} (2)

where
T

=L , wi, u 2 , w 2

-T= L{u = Lul, V1, W1, u29 V2$ W2j

[T g] cos 0 sin 6 0 0 C 0

0 0 1 0 0 0i0 0 0 c6s 0 sine 0l
0 0 0 0 0

cos 2 , sin e Y2 y
L L

III. Assumed Displacement Functions

The assumed displacement functions in the

local coordinate system are:

u = (a, + a2x) z

w =b 1 + b 2 x 2 + b 4 x3  (3)

dw Wx =b + 2b3X + 3b4x 2
dx x 2 3
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Evaluation of Equatioi,. (3)-e.t gridpoints I and 2 yields:

Ul z 0 0 0 0 0 aI

wi 0 0 1 0 0 0 a2

wx 0 0 0 1 0 0 bI

U2  z2 x2z 2  0 0 0 0 2

w2  0 0 1 x2  x2
2  x23 b3

Wx2 L 0 0 1 2x2  3x2  b4

or
ul - [r' {Al (I)

where

{u)= LuU 2 W 2s Wx21

AIT = Lai, a2 , b bb 2 , 3, b J

zI 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

[r] z x z 0 0 0
2 2 20

0 0 1 x2  x22 x23

2

0 0 0 1 2x2  3x2

Thus {Al = [r -  ul (5)
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Evaluation of Equativi,, (3) &t gridpoints 1 and 2 yields:

u z 0 0 0 0 0 a1 ]

w 0 0 1 0 0 0 a 2

wxl 0 0 0 1 0 0 b1

U.0 0 0 0 bIu2 z2 x202 2 3 b
w2  0 0 1 x2  x2 x3 b3

22 2 2 23

W0 0 1 2x2  3x2  b4 j

or

{u} = Er] {A) (4)

where

= Lu, wl, w., 2 , w2 1 Wx2j

{A)T= Lal, a 2 , b , b 2 , b 3 , b, 41

z 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

z2  x2 z2  0 0 0 0

0 0 1 x2  x22 x23

0 0 0 1 2x2  3x2 2

Thus {A} = []- {u} (5)
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1
where: 0 0 0 0 0

rz 1

-1 2001z0 0
x2zI  xz 2

I 0 1 0 0 0 0

0 0 1 0 0 0

o _0_ -2 0 3 -1

x2 2 2 2 222

x2 x2 x2

22

Definition of the assumed displacement functions

permits derivation of the strain-displacement relationships.

The element strain components are:

{C)= CX £3 P1/ax 0 z 0 0 0 0 a1
a2

-W-z 0 0 0 0 0 0 b (6)

2 (6

b

or {0l [ B] (A) (7)

where
0 z 0 0 0 0

EB=[0 z 0 0 0 (8)

i x p1 w/ x x 0 2x 3x _ 3

8
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4

IV. Potential Energy, Stiffness Matrix

The potential energy is

1 [P] {el dV (9)

V

Now:

{o} - [E] {0} (10)

Where
" Lax, Cy %xzJ

[EJ=. Ex E 0

E E 0

0 0 0 G

Use of Equations (5), (7), and (10) in Equation (9) yields

=1/2 Lu [r-1T BT [E] 1Bi [ - I N dV (11)

V

Lu 1/2 Lu] [K) {u} (12)

where

[K)= f [r 1 ] [B]T [E] [B [] -1 dV.
V

Substituting for the [], [B) and CE) matrices from above

and dropping the bending terms Ex, Ez, Exz in the triple

product (BIT [E] [B) yields Equation (13) after integration.
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The deformations {u) and element stiffness

matrix are now rearranged to give:

where

TJ
, } Lui 4,Wl u2s w2' wxl' Wx 2

21P 2 2~ W 14

tGxz
l T 5_L (3Zl + Z2 Symmetric

-6 (3Zl+2Z2) 36 (Z1 +Z2 )

Z 1  L

5L (Zi+Z2) -6 (2Z1+3Z2) 5L(Z1+3Z2)
SZZ2  Z2

6_ (3z+2Z2) -36 (ZfZ 2) 6(2Z1+3Z2) 3_6 (Z1+Z2)
Z1  L Z2  L

[K21 =K [2T t Gxz. L (Z-Z
21 1 60" - z 6I- 2)  6Z2 I-L (ZI+4 Z2 )  -Zilni

[K22] = [+ 2  =Z -LZ I + 6Z 2 )-( 1 +4 2 ) -Z

Z, z2

4zL (~Z+Z )16Z, -L (Z1-6z 2  -6z 1

LZ1

ttx

[K2 2  = -x 2L O3Z + Z) -L(Zi + Z )7

-LZ+ Z) 2L(Zl +3Z2)1
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The transformation matrix [y] is formed which

eliminates the w and w degrees of freedom

{i} = [TI {00 (15)

where [I] = [I)

[K22]- 1 [K21]

T = Ul, W1 1 u 2 , w2J and [I] is an identity matrix.

Substitution of Equation (15) into Equation (14) yields:

1 LjT [KR] { (16)

The reduced stiffness matrix [KR  is given by

Equation (17).

Symmetric-2Zl 4 "zl 1 2

I -2Z 2  (17)

2 LZ2  z

LZ2

where
C 1 6011Z 2t Gxz2C1  = 60(11Z12 + 38:IZ2+ iiZ22 )

A 38 115L 2 2 i

A 45L (Z1 + Z2 ) (Z12 + 8ZIZ 2+Z 2 )
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I
It is now necessary to transform the local

deformation {iui to global deformations. This is accomplished

by using Equation (2) in Equation (16). Thus fl

' P [K) {U (18)
2

where the final desired stiffness matrix for the symmetric
shear web is

[K] = [T I T [KR) [T g1 (19)

V. STRESS MATRIX

In the absence of prestrain and thermal strain, the
stresses are given simply by Equation (10).!I

{a CE) {c (10)
Use of Equations (5) and (7) yields:

{a) = [E] [B] [I] I {u) (20)

The deformation vector uJ is reordered to be compatible
with Equation (14) through the transformation

ful = ET1) {61 (21)

where

[TI) = 1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 00 0 0 1 0 0
0 0 0 0 0 1
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Use of Equations (21), (15) and (2) in Equation (20) yields:

{01 = CSI [Tg9 ] {U (22)

where for x - L/2 and dropping the bending terms gives:

Gz (6z12 + 48zLZ2 + 6 2 0 0 0 0
(SJ -Z 1 2 2

(lIZ 12 + 38ZIZ2 + liz2 ) 0 0 0 0 (23)

1 -I 1 1

2Z1 L 2Z2  L
L_1.

G. TRIANGULAR RING ELEMENT (Asymmetric Loading)

I. Introduction

The formulation of the triangular cross-section

ring element described herein is derived from, and is mathematically

consistent with, the formulation described in References 13, 14,

and 15. This ring element provides a powerful tool for the analysis

of thick-walled and solid axisymmetric structures of finite length.

It may be used to idealize any axisymmetric structure taking into
account:

1. arbitrary axial variations in geometry,

2. axial variation in orientation of material
axes of orthotropy,

3. radial and axial variations in material
properties,

4. any asymmetric loading system including
pressure and temperature, and

5. degradation of material properties due
to temperature.
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The discrete element technique was first

applied to the analysis of axisymmetric solids by Clough and

Rashid I°6 . The formulation of the triangular cross-section ring

was extended by Wilson (1 7 ) to include nonaxisymmetric as well

as axisymmetric loads.

Wilson's formulation for the asymmetric case

was extended in Reference (18) to include orthotropic material

properties with variable orientation axes. This extended develop-

ment is presented here as well as a more precise means of effect-

li'g the integration of the strain energy over the volume of the

ring. Thermal and pressure load vectors and mass matrices are

also developed.

Thus, the discrete element representation

presented consists of algebraic expression for the following

matrices:

1. Stiffness , [K]

2. Pressure Load , {F p

3. Thermal Load , { T}

4. Gravity Load , { G)

5. Centrifugal Load , {CGa

6. Stress ,IS]

7. Mass , [M]

The matrices arise as coefficient matrices in

the Lagrange equations for the element. The appropriate generalized

form of the Lagrange equation is

a6 + d...( L2 0

Tqr dt aqr

where

qr = rth generalized displacement coordinate

01 a total potential energy

02 - kinetic energy

qr w rth generalized velocity coordinate
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Various quantities i n the following develop-

ment will be expanded in terms of Fourier series. The set of -

unbarred amplitudes which make up these series are referred to

as the A series coefficients and the barred quantities are

referred to as the B series coefficients.

II. DisrAacement Functions for the Triangular.
Element -

The element generalized displacements (see
Figure II-I0), can be expressed in Fourier series form.

Ob

u(r,z,e) = uo(r,z) + £ u(rz) co~s J' +J=1 Uj (r,z:)sinJ (1)i0 J*

V(r,z,e) = Vo(r,z) + V(rz)" sin je + T. V(r,z)cos je (2)=i 0Jl 
-

w(r,z,e) o(r,z)cos ae + Zj=l wir,z)sinJ, (3)

Linear displaczment amplitudes (in the r and Z directions)

are assumed.

u + Bi+2r + 03Z (14)

V =4j + 8 5j r + '6j Z (5)

W a = + 8 r + 8 9 JZ 6)

Note that continuity of displacement across element boundaries

is preserved. A transformation from generalized coordinates to

"i grid point displacement coordinates is effected by writing

uij = ia + 02J ri+ 83J Z i M7

vij - 041 + 5,j ri+ 06, Zi

Wij = a7J + 88j ri + 09J Zi
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I
The generalized coordinates, (0jf, can be expressed (on the

harmonic level) in terms of grid point coordinates {qj } as

{J}=[c {q3 } (8)

where

{qj}T L Uij Vii, W13 , U2 J, V2 J3 W2 J, U3 J, V 3 , W33 ] (

1.

10 11 .{ J J 102J, €2 3J " 04J1' 05J' 863, 87J' 83 , 9JJ (10)

jFrom.Equation (7), with reference to Figure (HI-10)

I r1  Z 1 0 0 0 0 0 0

0 0 0 1 rI  ZI  0 0 0

0 0 0 0 0 0 1 rI  ZI

[r 1 r2 Z 0 0 0 0 0 0 (ii)

Bq
0 0 0 1 r2  Z2 . 0 0 0

0 0 0 0 0 0 1 r 2 Z2

1 r Z 0 0 0 0 0 0

0 0 0 1 r3  Z3  0 0 0

0 0 0 0 0 0 1 r3  Z3

which is non-singular.
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FIGURE 11-l0 TRIANGULAR RING ELEMENT (ASYMMETRIC LOADING)
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Defining {q as follows,

{q;}- LuL J wJ (12)

Equations (4) thru (6) can be expressed in matrix form

as shown below

{q1 = ) 8Crz)] {6} (13)

Substituting Equation (8) into Equation (13), an expression

relating the generalized element displacements to the element

nodal displacements (on the harmonic level) can be obtained.
This relation is given by Equation (14)

{q 3 ) =X [A IqjI (14)

where

[A] = [O(r,z)] [req]• (15)

[A] can be expressed in explicit form as follows,

X1  0 0 AX 0 0 X 0 0-
2 3

IA] 0 X1  0 0. X2  0 0 X3  (16)

0 0 X1  0 0 " 2  0 0 X3

where

XI = (r2z3 -z2 r3 -(z3 -z )r + (r3 -r2 )z)/IAI

A2 = (z1r3-rlz 3+(z3-z 1 )r -(r3-r 1 ) Z)/IAI (17)

X3 = (r1 z2-z1r2-(z2-z1 )r + (r2-r1 )Z)/4IAIt r +rz z r - rl z3

IAI=Ir z3 + rIz2 + z1r3- 2 3 1 r2z
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III. Potential Energy

The total potential energy is derived as the sum of

strain energy and external work contributions.

The strain energy density is defined as

u =fLdej {a) (18)

where

T  L r' r z' ee, cxz , £r es zel (19)

{a)}T = 4 rr, ozz, 0ee, axz, Ore azeJ (20)

Linear elastic material behavior is assumed from

the initial state of strain {Si) to the final state of

stress {a) and strain Wci,

Em) E(m)] i {(m)) - {Cm (21)

where the superscript (m) is used to indicate that the

elastic modulus mlatrix [E m )] is evaluated in a coordinate

system defined for the material that may be different than

the r, z system (see Figure II-10).

The matrix of elastic constants for an orthotropic

body with respect to cylindrical coordinate axes is

Er(lAez ze), Er(Vzr + Vzeer), Er(Ver + V Vez) , 0, 0, 0

Ez (l-Vr8Ver) Ee(vez + Vre vzr) , 0, 0 0

[E(m)]=1 E(1-Vz V 0), 0, 0 (22)

AG rz, 0, 0

Symmetric A

AG ze
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where

A= lvV v V- V V -V v V -V VV
O O-r r-ez ze- zx'rz re Ozvzr rz Orvze (23)

From symmetry

Er =Eeve;Er r =Ez Vrz; EzVez= EeVze (24)

Poisson's ratio, vi , is defined as the ratio of the strain

in the J direction to the strain in the i direction due to a

stress in the i direction.

Equation (22) is more conveniently written in the following

manner:

E(M) E(M) E(M)
11 12 13

E(m) 0 0 (25)

[E(m) 44

E~m 055

(i)

Substitution of the assumed constituitive relations into the

strain energy density, and the integration,yields

S1/ (m)iT EE(m) {(m) (m)iT [E(m)] {(m)) (26)U =12 m aE { r(in)

If the material axes {r m ) are oriented at an angle y
from the element geometric axes (see Figure II-10), a trans-

formation must be introduced

(n) = [TCal {C) (27)

{a(m)} a [TCI] {a} (28)
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cos2y sin2 0 2siny cos y 0 0

sin2y cos2y 0 -2siny cos y 0 0

T0 0 1 0 0 0 (29)

-siny cosy siny cosy 0 cos2 y-sin2y 0 0

0 0 0 0 cosy siny'

0 0 0 0 -slny cosy

Substituting back into Equation (26) and integrating over
the volume of the element, we obtain

U' (1/2 {e}T LE) fc} - {C}T [E] {Ci}) dV (30)

where

(E -CTcc ]Y[ccE a

Equation (30) is the desired form of the potential energy.('0

The strains, Equation (19) are related to displacements
as follows in a cylindrical coordinate system.

{C}T a[Ur, Wz U/r + Ve/r, Uz+Wr, i/r(U8 -V)+Vr,Vz+l/rW0 J (32)

where

U au , Etc. (33)Ur 3 r

IV. Stiffness Matrix for the Triangular Element

In order to effect the discretization of the element,

the assumed displacement functions are introducted into the

potential energy function. Substitution of the total potential

energy function into the Lagrange equations yields the element

matrices with respect to gridpoint displacements. Stiffness

and mass matrices, as well as load vectors, are derived in

this way. The element stress matrix is derived from the strain-

displacement and stress-strain relations.
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The energy contribution of linear elastic stiffness

is, in terms of strains,

1 1/2 [c) T [E] (c) dv (34)

In recognition of the fact that the generalized dis-

placements were described in Fourier series form, the strains

can be described as shown in Equation (35).

d€ = { o j l cjJ (C +-j I~ {gj} (35)
0ic + Jul j=l 1 a

For the A series, j th harmonic {C31 is expressed as follows,

Tf

{ }T " Lcrrj, £zzj ee, rz, r re, (36)

and the Matrix rcJ is a diagonal matrix which appears as

given in Equation (37).

{Ircjj - rcos je, cos je, cos JeO, cos JO, sin JO, sin JOJ (37)

{{Mal-rix lUjJ is given by Equation(3)

cos 8(38

r;Ujj - rsin j e, sin je, sin J6. sin JO, cos JO, cos jej. (38)

Expressing the strains (on the harmonic level) in terms of the

generalized coordinates using Equations 4, 5, 6. and 32 yields

{Ce} [Dj] {Oj} (39)

where

{0 il -01 09
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and

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

1/r I Z/r J/r j jZ/r0 0 0

EDJ 0 0 1 0 0 0 0 1 0 (40)

-J/r -j -JZ/r -1/r 0 -Z/r 0 0 0

0 0 0 0 0 1 -J/r-j - Z/r

where for the B series 3 assumes the value of -J in Equation
(40). The differential volume is

dV - r de dz dr . (41)

Substituting Equations (35) and (41) into Equation (34),

and integrating with respects to e yields

K 2wa 2 LcoJ [E] {o} r dz dr + irE LcjJ[E){cj Irdzdr

r z J=l T a (42)

+jCE {Fj rdzdr
r z

It can be seen that the energy term represented by Equation (34)

uncouples harmonically (Equation 42) due to the orthogonality

conditions which exist mathematically for the triangular ring.

The energy component for the Ath series, jth harmonic is

'kj S S LcjJ CE9 (ca} rdzdr (43)

rz

and by substituting Equation (39) into Equhtion (43)

kj ' S L8jJ [Dj]) E) (Dj] {0,1 r dzdr . (44)
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Noting that the generalized coordinates are not variable

functions of r and Z, we can write

kj3, L83J 1( S r[ E) [D] dzdr] (0845
r5z

where the triple matrix product r[D [ET [D is given by

Equation (46) on the following page.

By inspection of the matrix in Equation (46), we see

that all the integrals in Equatdon (43) are the type

6i- Sri ZJ dzdr . (47)

The integration is carried out over the interior of

the element, shown in Figure 11-10. The integration is

performed in two parts:

1) Between the lines 1-2 and 1-3, i.e. between

z 3x k12 r + m 12 and z = k13 r + m 1 3 from rI to r 3 .

2) Between the lines 1-2 and 3-2, i.e., between z = 12

r + m1 2 and z k3 2 r + m3 2 from r 3 to r 2 .

where

Z2-ZK r 12"2l

KI2 2 1 2

i~ ~ r Z  rZBr3

K a- 1Mr 1Z 3-r 3Z1 . (48)
K1 3  - 31 - r -r

r3-r. 31

K32  Z2-Z3 3 2  - r3Z2-r2Z3
r2-r 3  r 2-r 3
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The potential energy component for the specified harmonic

(A series, Jth harmonic) is related to the stiffness matrix

for that harmonic, EYJ) referred to generalized coordinates

as follows

kJ =  {0}T ') 10.31 (49)

[K i] is recognized as the integral in Equation (45). Its terms

are evaluated by substituting the appropriate 8ij integrals

(see Equation (47))for the powers of r and Z in Equation (46)

as well as the substitution of the appropriate harmonic number J.

The result is presented on the following page in Equation (50).

Introducing the transformation to gridpoint displace-

ments, Equation (8) of Section II, and taking the first variation

with respect to the displacements, we obtain the element

stiffness matrix

EKJ3 = E ]3T EK3 EI3 * (51)

Through a Judicious choice of displacement functions,

the essentially three-dimensional character of the ring changes

to one inherently two-dimensional in nature. Thus, an essentially

three-dimensional problem (asymmetric loading on a solid of

revolution) can be solved by undertaking a series of two-dimen-

sional applications of the stiffness matrix given by Equation (51).

V. Load Vectors for the Triangular Element

5.1 Distributed Load Vector

The external Work potential for a system of distrib-

uted loads (see Figure II-10) acting on the element face can

be represented in the most general form as follows:
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Vd - Lq'J [P) re as .S (52)

F~ se

The most general distributed load system which could be

applied to the element is expressed in the following Fourier

series relationships:

Pr (r,z,8) - Pr (r,z) + E1 Pr (r ,z) cos j18

f E P (r,z) sin JO
3=.1 ri

0(rz,O) P P(r,z) + El P03(r,z) sin 3JO53

+ J E P*3(r,z) cos 30

P (r,z,e) -P 0 (x',z) + 7 P (r,z) cos JO

+ E P 3(r,Z) sin 30

If typically for the A series, Jt harmonic

{ T u Lprj'$ P'a 0~

and

rc;J - Fos 30e, sth J 0, cos j(55

-fsin jO, cos JO, sin JeJ (56)

103



Then {P) and {ql} (see Section II, Equation (13)) can be

described as follows

(P - {Po + E rjo {P u + { F (57)
0i

Jl

({q - q*1 ) rc{J +(q + - (58)

Substituting Equations (57) and (58) ifito Equation (52),

the following result is obtained

Vd 21 2S LqoJ {P0 1 r ds + ZS Lqji{Pj1r ds
s. $

(59)

+~ H ~ ajj a r ds

It can be seen that the external work potential due to

the applied distributed loads uncouples harmonically as.

did the internal energy term *k; in Section IV. For the Ath

thseries, J harmonic

11 Ljj {Pa1 r ds (60)djs

Relating generalized element displacements to element nodal

displacements in Equation (60) via Equation 14 of Section II,

Equation (60) can be written as follows:

d - u Lq3J EsT {Pjlr ds (61)
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Noticing that the generalized nodal coordinates are not a

function of ds, Equation (61) can be rewritten as follows:

Vd LqjJISl -3 T{Pj} r ds (62)

s

Substituting Equation (62) into the Lagrange Equation, it can

be shown that genera.Lized equivalent nodal loads {F can be

defined which act on the generalized :nodal coordinat4 s and whlch

represent the mathematical equivalent to the applied distributed

fload system.

{F ) can be defined as follows

{F = H S [X]T {pj r ds (63)

s

where

{Fp 1T Ir iZ Fie 2r F2z 2e 3r 3z F30(F LFp Fpj, pF FpFFp , Fp Fpj, Ipj pj r

P j Ya pa'I pj' PJ P3  P3  P3iP

expressing the following relationships,

Z - K1 2 r + M1 2  - (64)

where
z-zl2 1j (65)

112 r2 - r1

r2zl - r1 z2  (66)

M12  r2 - rI

and whereI\
Sds- dr2 + dz2  d* \ig~(7ds n d '(67)

sin cK
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it can be shown that the matrix of equivalent nodal forces

represented by Equation (63) can be expressed as follows

[pjl Prj{(AI+CIMI2) 61 + (B1 + CIKI2 )62)

iz i P {(AI+CIMI2 )6, + (BI + CI K12 )621

iel 0
pj

K 12 P{(A2 + C2M12 )61 + (B2 + C2 K12 )62 ) (68)
sin-

F2z Pzj{(A 2 + C2M12 )6, + (B2 + C2 K12)62)

pj

F20

PJ P rj{(A 3 + C3M12 )61 + (B3 + C3 K12)621

3r

- P {(A3 + C3 M12 )61 + B3 + C3 KI2) 621

p3 0

F30

The constants Ai and Bi are defined as follows

IAlI= 1 (r2z3-z2r 3) B1  Z2_Z3 (69)SIAI 3

A 2  1A(zr3-rz3 ) B2  (Z-

1 1 3z zJIAI (rzz 2 _zr 2) B3  .AI

lO6

.1



where

1AI =Ir 2 z3 + rlz2 + zlr 3 -z 2 r 3 - rlZ 3 - 2Z3. (70)

61 and 62 represent the following definite integrals (71)
r 2

rdr r2
2 ri1

2
62 r dr r 2-

2
rI

and
rr-

and 2 r23_r13S 2 2 1
62. r dr = 3(72)

3

ri

A special case is obtained when r2 a r1 . In t-his instance

the formulation must be changed. For this special case,

the equivalent nodal load vector IF Pi can be shown to be

equal to Equation (73).

~r ( 2  1 ) r1

PZ U 2 -Z 1 ) r1

{F Pi P r Z 2-Z )r1  (73)

I 0I0

JJ

10



The load vectors represented by Equations (68) and (73)

do not account for a distributed loading acting tangentially

(Pe) to the element face. The loading system has been

specialized from the original complete representation (Equation

(53) to account for varying distributed loads which act parallel

to the r and Z axis (P and P ) respectively. These can be
r z

combined to model a varying pressure load. Both these loading

conditions can admit complete circumferential asymmetry.

5.2 Prestrain and Thermal Load Vectors

The prestrain load vector is constructed assuming

uniform distribution of prestrain across the element. The

prestrain contribution to the total potential energy is

= T[E] {e I dV , (74)

It can be shown that Equation (52) when appropriate substitu-

tions are made and an integratbn with respect to e effected,

takes the following form

Ite= 2ll LeoJ[E] {c, ordzdr + n l] {eI r d z d r

0 ji
rz rz (75)

+ Ie3IE{cl Irdzdr

yz

Typically, for the Ath series, 3 harmonic we have

, LcjJ [E] { } Irdzdr (76)

rz
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Substituting Equation (39) of Section IV into Equation (76) 1 :1
yields

j = {jT JTSS'[D IT rdzdr [E] {Ei (77)

aba~ rz

Let

[D = " EDjIT r dzdr (78)

r z

Which may be written in terms of the 6ij integrals, as

0 0 60,6 0 -J 60,0 0

6 ,0 0 61,o 0 -J 61,0  0

0 0 60,1 61,0 -J 60,1 0

o o J 60,0 0 -o,o 
EDj I

j 0 0 j 61,0  0 0 79)

109iI

0 0 J 60,1 0 -60,1l 6 1,0

iI

0 0 0 0 0 -js o'o

i0 0 0 6 1,0  0 -jd1, 0

L0 81,0  0 0 0 -J60,.ij

tiTransformation of Equation (68) to gridpoint dis-

placement coordinates and substitution into the Lagrange

tequation yields the prestrain load vector.

i {F JCI=E~] [D I [E] {elj (80)
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Where the load components are

{F T LFr , FlZ F1e F2r, F2z 2 F3Y, F3Z, F380 (81)

and the prestrain components are

{L T ej C 0J (82)

The thermal load vector is a special case of the pre-

strain load vector. Define a matrix of thermal expansion

coefficients as

{aL)tT,, Le ,z' oJ (83)

AT is the asymmetric temperature rise above ambient

to which the element is subjected and which represents the

average of adjacent gridpoint temperatures. AT can be

expressed in Fourier series form as follows:

AT= AT + AT cos je + z A sin je (84)

th thThe thermal load vector for the j series, A harmonic

appears as follows

{FT } = [ [rBq]T [D] [E] {a} ATj (85)

5.3 Gravity and Centrifugal Load Vectors

The external work done by the force of gravity on the

displacements can be written as follows:

Vg = Ep GW dv (86)

dV = r dO dr dz

G - Acceleration of Gravity
p = Mass Density

W = Assumed Displacement Function
in Z direction
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Substituting for W into Equation (86) and integrating

with respect to e

Vg W 211 pG .Wr drdz (87)

y z

Express Equation (87) in matrix form as follows,

Vg = L0701 8$6- 090J 2flpG(; rdrdz (88)

The vector of forces. on the generalized coordinate is in

terms of the integrals defined by Equation (47) of Section IV.

Then

{F oT . 2llpg Lt, 0, 0, 0, 0, 0, 61o, 620, alij (89)go

This force is specifically a force which is present only in

the zero th or axisymmetric harmonic. The vector of gravity

forces on gridpoint coordinates is

{F 90 [r T $q (90)
9 0i

The external work done by centrifugal force due to spin about

the axis of symmetry can be written as follows

VS = p w r u dv (91)

where w is the spin rate and p io the mass density, assumed

$ constant throughout the element. Substituting for u into

Equation (91) and integrating with respect to 8 gives

V s  2 pw 0 Ur 2 dzdr (92)

r z

iii
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Expressing Equation (92) in matrix form

V s = G, 02' 211 pW2 { r }r2 dzdr (93)

rz z

The vector of forces as the generalized coordinates appears a

T  2
{FSolT 21 P1 L620, 630, 621, 0, 0, 0, 0, 0, oj (94)

and the vector of centrigugal forces on gridpoint coordinates is

(F s) -Cr 6q]T {so } (95)

Again {Fso} represents a force which acts only on the

zeroth or axisymmetric harmonic.

VI. Stress Matrices For The Triangular Element

The element stresses on the harmonic level for the A

series, j th harmonic are given by

{a 3 }=[E] (ji )- [E] {cilj (96)

The stresses are evaluated at the centroid of the cross-section,

i.e. at

r - 1/3 (r + r2 + r3 ) (97)

Zo - 1/3 (z1 + z2 + z3)
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In Equation (96), substitute for strains in terms of

displacements

{c1= [E)(98) C
{(a [E] CDo Ersq] {qj} - CE] {cjl (98)

where, from Equation (40) of Section IV

0 1 0 0 0 0 0 0 0o

0 0 0 0 0 0 0 0 1

[D 0 = /ro  1 Zo/r o  J/r 0 azO/ro  0 0 0 (99)aI
0 0 1 0 0 0 0 1 0
-J/ro -J -jZo/r o  -/r 0 -Z/r: 0 0 0

0 0/ro0 0 0 0

L o 0 0 0 0 1 -J/r j -JZ/r O

Equation (98) is used to evaluate elastic stresses on the

harmonic level. The matrix {(} represents a set of harmonic

level stress amplitudes. To arrive at actual stresses for any

circumferential position around the element, the various sets

of amplitudes which arise during an analysis must be recombined

in a set of appropriate Fourier series. Thermal. stresses are

obtained by multiplying thermal strains by the matrix of elastic

coefficients, Equation (31) of Section III.

VII. Mass Matrix for the Triangular Element

The kinetic energy of the element is

hv = PI (2 + 2+w2) dV (100)

Where u and are the components of radial, circumferential

and axial velocity. Substituting for a, and w, integrating

with respect to 8 and utilizing Equations (8) from Section II,

can be cast in the following form, i
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V =  [ oJ[r qT [m*] [rq][o

to T
+ 1!" E LFq [rq] ErM' [rqI {q (

2 q H)E~ (101)

+ . L~ji r ]T EM'] [r qj
2 j=l

Where for the A series, Jth harmonic

[M*] P [m] r

Em ] (102)

and

6 5 6
10 20 11

CM] =  Vo 621 (103)

Symmetric 6,1

Then the kinetic energy component for the A series, jth

harmonic can be written in the following Matrix form

0vi a qjJ CMI {qj) (104)

thwhere tor the A series, h harmonic

[MJ) I H EM') (105)

and for the zerot h harmonic

[M] 2H [M'] (106)

The typical harmonic level mass matrix referred to

gridpoint coordinates is

Cmjl - [r q)T EM3) Cr q] 114 (107)
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H. MODIFIED QUADRILATERAL THIN SHELL ELEMENT

I. Introduction

The modified quadrilateral thin shell element (Entry number

38 in the library of finite element representations incorporated

within the MAGIC III System) is described in this section. This
finite element differs from the present finite element (number 21

of the MAGIC II System) only in the approximation of in-plane
behavior. No difference other than the identification number is

evident to the user.

This additional finite element representation, Is included in
the MAGIC III System for use in the idealization of membrances and

plane-strain sections that require elongated finite element shapes.

This circustance is frequently encountered. One important class

of applications requiring high aspect ratio finite elements is

the stress analysis of structural Joints. A rule of thumb that
may be applied to guide the choice of element type for such applica-

tions is to use the modified quadlateral thin shell element for
those finite elements whose aspect ratio exceeds six. This guide-

line derives from experience with the IBM 360/65 computer.

The approximation of in-plane behavior embodied in the modified

quadrilateral thin shell finite element differs from that in the

original finite element in two respects. Firstly, the subdivision

of the finite element into four triangular zones defined by the

diagonals of the quadrilateral is avoided in generating the modified
finite element. This avoids the integrations over triangular zones

that were Judged to be the principal constraint for accurate genera-

tion of finite element number 21 at high aspect ratio. The other

distinguishing feature of the modified finite element is that it
embodies a relatively simple discretization by direct interpolation

of the displacement values of the eight gridpoints. The original
finite element number 21 on the other hand involves the aa3sumption

of polynomials whose coefficients must be determined in terms of

the gridpoint displacements by a matrix inversion. The accuracy

of this operation which is carried out for each of the four

triangular subdivision deteriorates with increasing aspect ratio.

115

I,' ii51



I
The development and evaluation of the original finite

element is presented in Pages 113 to 162 of Reference 1. The

development of the modified finite element, number 38, parallels

that of the original finite element except for the central portion

of the representation of the In-plane behavior. Therefore, the

development reported herein is confined to the representation of

the in-plane behavior. The interface of this development with

that of Reference 1 is clearly defined and a common notation is

employed. All features of finite element number 21 such as

material orthotropy, midpoint node suppression, etc., are main-

tained in modified finite element (number 38).

The implementation into the MAGIC III System leaves the

program-analyst interface unchanged. The user documentation
for finite element number 21 applies to the modified finite

element which is designated finite element number 38. The inter-

face between finite element library and the surrounding framework

of the MAGIC III System is identical for finite element numbers

21 and 38. The new calculations are confined entirely within

that portion of the finite element representation that generates

the basic in-plane behavior representation.

Numerical results are presented that compare the original

and the modified finite element representations at ordinary and

at high aspect ratios. For ordinary aspect ratios, the per-

formance of the modified finite element is found to be satisfac-

tory although generally less accurate than the original finite

element which is constructed as an assemblage of four subelements.

However, for high aspect ratios the performance of finite element

number 38 is shown to be superior to finite element number 21.

This confirms the successful completion of the effort to provide,

in the MAGIC III System, a quadrilateral membrane finite element

with relaxed constraints upon permissible aspect ratio.
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II. Basic Relationships

The geometry of the quadrilateral finite element is

illustrated in Figure 11-11(a). At the branch point from the

original sequence of calculations to the modified computation,

the following information is known:

a. (xg yg) coordinates of each of the eight
gridpoints.

b. tm effective thickness of the membrane.

c. [E g ]) - material stiffness matrix for either

plane stress or plane strain as

appropriate.

d. {W(g)) prestress vector arising from prestrain,

temperature load or direct prestress.

Using the foregoing information, the relations that underlie

the formulation of a representation of the quadrilateral membrane

are given below.

a. Strain-Displacement Relation (Eq. 285, Ref. 1)

((g)}T L u~g) ' V(g) U(g) + J (1)

b. Stress-Strain Relation (Eq. 280, Ref. 1)

_- E(9)]I{e()) - {;(g)i) (2)

c. Potential Energy Functional (Eq. 279, Ref. 1)

A

The construction of the desired finite element representa-

tion consists of the assumption of approximations for u(g ) and

v(g ) and the substitution of these approximations into the above

relations. Then, integration of Equation (3) yields the basic

membrane finite element representations, as:

117

I



(xx)

I Cxg$

FIUR $01() QADIAEA LEETI HYIA PC

g11

-rXg- -

(x g-1 y7 7/



X(O1)=3{3 g% f; '~)=x6 tx (i )=x

y(,) (Osi) 2t21) (1)62 (~)Y

(ox ,J)x =X

(i.f)- (i42

2J 2 5{y (IL=Y

y(0,l)uiy Ct41 2 g5

x (00)=xg 0o. ((,o,)

Y9 (oio)'Ygl 8 1

FIGURE I1-11(b) QUADRILATERALL ELEMENT IN TRANSFORMED-SPACE
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,O 1/2 [6mj K [x(9)j( -
6 ]{ (

(g) CS (g)J{ - (g)
N gm SN

wherein,

(6gm 1 is the vector of in-plane gridpoint displace-
ments in the (xg, yg) coordinate system (Eq. 255,

Ref. 1)

K ) is the element membrane stiffness matrix stated

with respect to the (6 m ) displacement degrees

of freedom.

(F (g) is the element membrane prestrain matrix stated

with respect to the (6 displacement degreesgm
of freedom.

{N(g )}  is the vector of sets of membrane stress resultants

aligned with the (xg, yg) coordinate axes.

is the element stress matrix stated with respect
to the {6g1 displacement degrees of freedom.

gm

{sN (g)) is the vector of sets of membrane prestress
resultants aligned with the (xg., yg) coordinate

axes (Eq. 351, Ref. 1).

Equations (4) and (5) serve to define the information

that the present development must provide at the point of

return into the original sequence of calculations performed

in generating finite element number 21. Specifically, the

matrices EXkg)]$ F(9)} and [SN(9)] must' be provided. The

vector {8 is unchanged by the modified calculations.
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The present objective is to develop explicit definitions

for the [K m)]s {F( } and [SN 3g) . Once these have been

obtained, the original sequence of clJIculations is reentered

and Equations 257, 261, 262, 263 and 265 of Reference 1 are

employed to obtain the elemenet stiffness and load matrices

in terms of the components of displacement employed for

assembly. This sequence of transformations can be denoted

symbolically by:

wherein [qi1 is the final set of gridpoint displacement

:into Equations (14) 5)gm

degrees of freedom. The final form of the finite element

representation is obtained by substitution of Equation (6)

into Equations (4) and (5) and adding to the corresponding

representation of the flexural behavior in the manner described

i Reference.1.

III. Transformation of Coordinates

It is clear from'Equation (3) that the construction

of a finite element representation involves the integration

of functions, (usually polynomials) over the interior region

of the finite element., Because the performance of such

integrations is awkward for the quadrilateral shape defined

in the (xg, yg) coordinates of Figure 11-11(a) a coordinate

transformation is introduced. Specifically, the quadrilateral

element is mapped onto the unit square of Figure II-llb using

mapping transformations defined by Reference 20:

g(1,1) = LH (n,p)J I"g} on, 1 (6)

y g(n,-) = L (n,)J I o09),V 1 (7)
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wherein:

{ x = [xg l, xg22 xg3, xg4 , Xg5- xg6. xg 7 xg8J (8)

{T (9)
g = g1 ' g2' Yg3' Yg4, gg5 ' Yg6' Yg7' Yg8 (

{HI = 7i(1-p) (+2n - 2p - 1)

n (+2n +2p -3)

(1-n) V (-2n + 2p - 1)

(l-n) (1-p) (-2n -2p + 1)

+4 np (1-0) (10)

+4 np (1-n)

+4 -(1-0i

+4n (1-0)(lv

Given the (xg, yg) coordinate values of the eight grid-

points, these relations map the physical (Xg, yg) space,

point-by-point, ontoa unit square in the transformed (r,p)

space. Functions defined in the physical space are expressible

in the transformed space as explicit functions of the trans-

formed coordinates, i.e.,

f (xg yg) = f (x (n,U), yC(,.)) = f (no) 05n,v S 1 (1l)

For example, for the components of displacement aligned with

the (xg, y.) - axes:

u(g) = u(g) (n,v)' v() = v(g ) (n,P) 0 no 1 (12) -
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Derivatives of functions in the (x, yg) coordinates

are expressible in terms of derivatives in terms of the

transformed (n,p) coordinates. Using the chain rule of

differentiation obtain

ax ay
an ELan j axg(3

fXg )y
fp a ay g aY

all a aiij aYg

The inverse relation follows by direct calculation, i.e.,

Sfay ay af
Xg Ip an an (14)

X_= 1 aax aIf -o

ay pg ani
-LJ

in which the coefficient matrix is denoted by [JJ and

i e J) Ig IgIg Ig(15)
0ang ap ax aJo = det ([J)) =__n__ s (5

The elemental area in the physical space is related to that

of the transformed space by:

dA = dxg dyg = Jo dn d (16)

Equations (6) through (16) are sufficient to permit

transformtion of the basic relations of Equations (1) through

(3) Section II to expression in terms of the (n,v) coordinates.

The form of the strain-displacement relation becomes,

{e(g ) }  [T ]  {A mu (17)

whereind
wherin) u)(g) i )  3v(g) (18)

Amu} 8= [-7 -
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and:

CT u  = Jll J12' 0 s O
0

0 , 0 J21  J22  (19)

S21 J J22' Jll J12

Equation (17) is a different mapping than that employed

in deriving finite element number 21 but takes a symbolic

form identical to Equation 299 of Reference 1.

As a direct consequence of Equation (17), the trans-

formed stress-displacement relation of Equation (2), Section II

is given by

{a(g)) = [E(g )] [Tu] IAmu) - {6(g) (20)

The potential energy functional of Equation (3), Section II

is transformed to expression as:

1 I ( iu [1m iu1u muI{ime)ldn di (21)
4m 55 2 mu kI{m ~uJ{m

0 0

wherein

[I mk Tn ° J0 Tu [EI[g) T I u  (22)

UIme}= tJ [Tu]T {e(g) (23)

This result is the symbolic equivalent of Equation 305

of Reference 1 although the mapping employed is different.

The potential energy functional, as given in Equation (21),

is now in a form that readily admits integration over the

area of the element for the limits of integration on rl and p

are constants.
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IV. Discretization

The formulation of the finite element representation is

carried forward by approximating the displacement functions

u(g) and v(g ) and integrating the potential energy over the

interior region of the finite element. Polynomials, defined

in the transformed space, are employed to approximate the dis-

placement functions. The symbolic form of the approximations

is given by:

u(g) (n, ) = LH (n,p)J {f(g)} (24)

v(g) (n,p) - LH (n,1')J {V(g)) (25)

The vector of mode shapes HI is the same as that

employed to transform from (xg, yg) to (N,P) coordinates.

These mode shapes interpolate the displacement functions

within the interior region of the element on the basis of the

associated sets of gridpoint displacement values:
{^(g))T . Ul(g), u 2(g), u 3(g),. u4 (g).1 u 5(g), u6(g), u 7(g),x u 8(g

(25)
(^(g)l T w l(g), 2(g),' v 3(g),2 v4(g), v 5(g), v6(g), v 7(g),. v8 (g

(26)

Discretization of the basic relations is accomplished

in two steps. First, the displacement approximations are

employed to obtain {Amu of Equation (18), Section III as:

{Amu} I EDM] (gm) (27)
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Ii

wherein:

[D]n3 a LHJ , LQ

LHJ Lo]
ap

LoJ , a [HJJ (28)
101 a J.HJ

-- av

{ T = [(g)] L'j (29)

Now, using this extended symbolic notatio, the basic

relations are discretized. The stress-displacement relation

of Equation (20),Section III becomes:

{(g = [(g] [Ta] FD I "gm1 - fi(g)) (30)

The potential energy functional of Equation (21), Section III

is discretized using Equation (27) to obtain:

Om - 1/2 L6gmJ [K(g) {6gm) - L9mJ FC(g)) (31)

wherein the stiffness [K(g )] and prestrain load {F (g))

matrices for the quadrilateral membrane finite element are:

91 1 1T

[K9 -,f I [Dm]T [Imk] [Dm dTd P (32)

0 0

{Fe9 },1 1 1 [Dm]T {Tme} dy1dpj (33)

0 0

126

... . .. . : 11 , _ -/



Two principal steps remain in the development of the

finite element representation. Consideration must be given

to the particularization of Equation (30) to specific points

within the finite element and the integrations indicated in

Equations (32) and (33) must be carried out.

V. Calculation of the Element Matrices

It is convenient to invoke numerical quadrature to obtain

numerical values for the finite element matrices. All quantities,

in the integrals to be evaluated to obtain the element matrices,

are functions of the assumed mode shapes [H) and the gridpoint

values {'X I and C} . Thus, to obtain the values of the inte-
g Z

grands, as is required in the numerical quadrature calculation,

it is necessary to evaluate the mode shapes {HI at the sample

points. Then, with these, numerical values can be calculated

for all terms in the integrands.

Gaussian quadrature is employed. For the interval of

interest (o: § t 1) the set of sample points {p) and weights

{w) for one dimensional quadrature are:

2-point

T

{p) = Lo.21132487, 0.78867483J (34)

-T = L.5 ,0.5 1 (35)

3-point

{pIT = LO.l1270165, 0.5 , 0.88729811j (36)

{wIT - LO.27777777, 0.44444444, 0.27777777] (37)

These one-dimensional sets of sample points and weights

permit the construction of two-dimensional sets. Let I

(n,11), for example, denote an integrand defined on the two-

dimensional domain 0 s TI 1. Furthermore, let the sample

points pr and weights wr along the n - coordinate line be R

in number. Similarly, let there be S sample points ps and

weights ws along the U- coordinate. The Gaussian product
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formula for this two-dimensional integration follows as:

11~
R S

I (NP) dn dyu- E Wr Ws I (n, P) 438)s s=l (PrPs)
con 0 i

The quadrature problems posed by Equations (32) and (33)
Section IV involve integrands expressed in terms of MH, {H,n}

and {H,p}. Therefore, in preparation for quadrature these

vectors are evaluated at the quadrature points. The collective

results are given symbolic definitions as:

{H)T LHJll, LHJ 12, .... , LHIl1,

LHj 21 , LH1J221 .... LHJ25 , (39)

LHJi.L, LHJR2, .... J LHJR5

LHPTlll1 LHtnJ12, .. LH 1J 15,

{H,,IT LH nJ21. LHnJ22, s.. LH !rd2 5 , (40)

LH,nJRl, L's n**2 ..., LHjJ5

LHP_!11 LH, J12, ..., LHUJ15,
{Hp}T LH)iiI21, LHsJ 22, .. , LHJ 25, (41)

LH ,"JR, LHsjR2, ".., $LH,0R5

wherein:

{H} = {H (rld)I (42)rs(Pr Ps)

{H,U)r =2 2-- {H(rn,V))j (44)
rs (Pr$ Ps)
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The foregoing relations specify the quadrature operation

completely. Using the evaluated mode shapes, the element stiff-

ness [Kg)] and prestrain load [F (g)) matrices follow from

Equations (32) and (33), Section IV by direct calculation, i.e.,
HS TD]

m(g)] ls Wr Ws [Dm]T {ImK} ED. H}r,{H,}r

rls-I r rs

(45)
R S

{F (g)} =r I sJ Wr s {IDm)T {'me} (46)
r-1 s-1.

{H,nl rs, {H,}rs

The stress-displacement relation of Equation (30),

Section IV provides the means to recover values for the

stresses at any point within the finite element. This rela-
tion is particularized to a set of five display points similar

to that employed in the original, number 21, membrane finite

element, e.g.,

(N(g) [SN) i {6 } - {sN 1(7)

wherein:

[SN(g)J 1 = [E(g)] [Tu(l,0)] [Dr'(l,0)] (48)

{sN I 1 {i(g)(I,0)} (49)

The stress vectors at the other points (n,,) 1 (1,1), (0,1),

(0,0) and (h,h) follow similarly. The [SN(g)] and {sN(g),

matrices are the matrices of Equation (5). Section II which

complete the specificaAon of the modifications made to the

original thin shell element (number 21) to obtain the modified

thin shell element (number 38).
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A careful calculation of the gridpoint loads that are
equivalent to a specified distribution of boundary loading

should be based upon work equivalence rather than static

equivalence. Such a calculation is not presently provided

within the MAGIC II System for the membrance situation and must

be made manually. An illustrative calculation is included to

encourage the use of work equivalent gridpoint loads.

Consider an element side of Length L. For a coordinate

o s L along the element side, the assumed displacement functions

employed in finite element numbers 21 and 38 are quadratic, i.e.,
= 2L

u(s) -. (s-L) (s- L) u

L

- --4 s (s-L) UL/2 (50)

2 L/

+ s (s_ L)u
L2L

Let the traction component associated with this component
of displacement have a specified distribution, say quadratic,

e.g.,

s 2 (s-L) (s- L) p0

J4
L 2 s (s-L) PL/2 (51)

+ 2__2.s (s- 2)PLL

The external work of associated components of boundary

traction and displacement is given by:

L
w J u(s) p(s) ds (52)
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This energy functional is specialized to the Illustrative

example by.substitution from Equations (50) and (51), i.e.,

J. L. I

- u , -) (1-7(,)), , (Z- Po
4 -1 (S-W)/PL

L P L

2 L

LL

The result of this integration is,

0 L 8' , -2! P

Luo , uL/2, uLJ i LU0,. ! /,I,,L6-" L/2 L/' 49 32, 4 L / (54i)

iL j 2 , 4 8
jLL j

from which the vector of gridpoint loads is obtained, as:

Po 08, 4, -2 PO

L/2 o 32,L/2 (55)

/PL -2, 4$ [2PL

This result permits convenient manual calculation of the

gridpoint loads that correspond to a quadratic distribution of

boundary traction specified by its intensity at the element

gridpoints.
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VI. Convergence

The example chosen to illustrate the convergence

characteristics of finite element number 38 is the parabol-

ically loaded membrane shown in Figure 11-12. This same

problem was considered previously in evaluation of the

original finite element, number 21.

The membrane is constructed of isotropic material and

the distributed loading is replaced by work equivalent grid-

point loads obtained in the manner outlined in Section V.

Only one quadrant of the membrane is considered explicitly

in the analysis. This quadrant is idealized using square

finite elements. The idealization for the case of four

finite elements is shown in Figure 11-13.

This example prolem was analyzed using idealizations

of 1, 4 and 16 finite elements. Finite element types 21 and

38 were considered as well as a bi-cubic element referred to

throughout as the COMEC finite element. Additionally, a

soluthn obtained by an alternative method of analysis is

included in the comparison. The displacement at the point of

maximum load, uq, and the total potential energy * are taken
to characterize the predicted behavior.

The numerical results are presented in Table II-1. These

numerical results are given graphical interpretation in Figure

11-14. It is clear from Figure 11-14 that the maximum dis-

placement is predicted accurately by all three types of finite

elements. Moreover, the potential energy converges monotoni-

cally for each type of finite element. Specific displacements

need not converge monotonically and indeed they do not for the

case illustrated in Figure 11-14.
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TABLE II-i

PARABOLICALLY LOADED MEMBRANE CONVERGENCE RESULTS

Number of Element Type No. D.O.F. Pot. Energy Displace- Eu%
Elements _ merit u_

EXACT - - O.000o92

Magic Plug #21 10 -0.2138 O.000492 0.0

1 Magic Plug #38 10 -0.2147 0.000496 0.8

COMEC 16 -0.2162 O.000489 o.6

Magic Plug #21 32 -0.2155 O.000492 0.0

4 Magic Plug #38 32 -0.2167 0.000492 0.0

COMEC 50 -0.2169 o.000493 0.2

Magic Plug #21 107 -0.2167 O.000492 0.0

16 Magic Plug #38 112 -0.2169 0.0001192 0.0

COY"t, 162 -0.2169 O.000492 0.

D.O.F. = Degrees of Freedom
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,I
VII. Shape Sensitivity

The parabolically loaded membrane problem of Figure 11-12

is employed to obtain an indication of the sensitivity of finite

element number 38 to distortion of its shape at ordinary aspect

ratios. The baseline idealization is comprised of four square

finite elements as shown in Figure 11-13. Idealizations of elements

of distorted shape are obtained by moving the central gridpoint

(No. 5) to selected positions on the dashed circle shown in

Figure 11-13.,

The displacement u and the potential energy are taken to
q

characterize the predicted behavior. The results obtained using

finite element number 21 are shown in Table 11-2, together with

results obtained using finite element number 38 and the COMEC

finite element. This comparison is portrayed graphically in

Figure 11-15.

Observation of the results of Table 11-2 and Figure 11-15

]f indicates that the considerable distortion imposed does not greatly

affect the accuracy of the behavior predicted by finite element

number 38. It is concluded at this point that the new finite

element number 38 may be used in conjunction with the original

finite element number 21 without significant adverse effects upon

the predicted behavior. Indeed, the performance of the new simpler

finite element is nearly equivalent to that of finite element

number 21.

VIII. Bending At High Aspect Ratio

It is useful to separate the evaluation of the performance

of finite element number 38 at high aspect ratios into two parts.

First, bending is considered. Subsequently, the type of deforma-

tion wnich predominates in structural joints will be examined.

Consideration of bending at high aspect ratios is included

principally to emphasize the need for caution in applications

where shear deformations are relied upon to represent flexural

behavior. The example problem chosen to illustrate the difficulty

of coping with behavior of this type is shown in Figure I-16.
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TABLE 11-2 PARABOLICALLY LOADED MEMBRANE SHAPE STUDY RESULTS

CASE ELEMENT TYPE POT. ENERGY DISPLACEMENT Eu %
I Ui uq

EXACT - 0.000492

Magic Plug #21 -0.2155 0.000492 0.0
1 Magic Plug,#38 -0.2167 0.000492 0.0

Comec -0.2169 0.000493 0.2

Magic Plug #21 0.000492 0.0
2 Magic Plug #38 -0.2164 0.000494 0.4

Comec -0.2168 0.000492 0.0

Magic Plug #21 0.000491 0.2
3 Magic Plug #38 -0.2165 0.000492 0.0

Comec -0.2166 0.000489 0.6

Magic Plug #21 0.000491 0.2
4 Magic Plug #38 -0.2166 0.000490 0.4

Comec -0.2168 0.000492 0.0

Magic Plug #21 0.000491 0.2
5 Magic Plug #38 -0.2166 0.000490 0.4

Comec -0.2162 0.000490 0.4

Magic Plug #21 0.000492 0.0
6 Magic Plug J38 -0.2166 0.000491 0.2

Comec -0.2168 0.000492 0.0

• 4 FINITE ELEMENTS
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1

The cantilever beam of Figure 11-16 is loaded with a

parabolically distributed shear load. Two elements, each extend-

ing over the entire depth are employed to idealize the structure.

A sequence of cases involving increasing aspect ratios of the

finite elements is obtained by holding the depth and number of

finite elements constant while increasing the length of the beam.

The displacements, potential energy and reactions are
taken to characterize the predicted behavior of the cantilever

beam. These results are presented in Table 11-3 for finite

element number 38. Corresponding results obtained from finite

element number 21, the COMEC finite element and beam theory are

also shown in Table 11-3. Dimensional, nondimensional and error

values are included.

Interpretation of these results is accomplished more

conveniently using the graphical representation of Figure 11-17.

At a finite element aspect ratio of unity, the structure is not

a slender beam but the finite element results are in agreement

with each other within a fraction of a percent.

At aspect ratios of two and four, the finite element results

achieve reasonable approximations of beam results and, more
importantly are in satisfactory agreement with each other except

for the anomalous 7.4% error in the reaction predicted using

finite element number 38. The difficulty of representing bending

behavior with membrane elements is more apparent for the increased

aspect ratio of 8.0. While this is not considered to be especially

high, the system stiffness matrix did not admit accurate solution

using single precision arithmetic on the IBM 360/65 computer. The

The reactions obtained using finite elewrut numbers 21 and 38 are

grossly in error. Although not shown, for slightly higher aspect
ratios, the r2action obtained using the COMEC finite element was

also grossly in error.

I
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The point of special interest here is that the source

of the difficulty does not reside in the finite element deriva-

tions themselves. The difficulty is in the conditioning of the

system stiffness matrix. Thus, the above example emphasizes

the inappropriateness of this class of finite elements for bending

applications but does not constitute a meaningful evaluation

of the relative performance of members of this class at high aspect

ratios.

IX. Tension-Shear At High Aspect Ratio

The results presented in' prior sections have examined

considerations that are subordinate to the evaluation of the

finite element number 38 in the present context. In this section

of the report the performance of the modified finite element is

compared to that of finite element number 21 for an idealized

structural Joint. Errors that arise in generating the stiffness

matrix for high aspect ratio shapes of finite element number 21

have severely restricted attempts to analyze structural Joints

using the IBM 360/65 computer. The success of the modification

of the quadrilateral thin shell element hinges upon the analysis

of a structural Joint using finite element shapes of substantially

higher aspect ratio than is possible with the original finite

element.

The highly idealized structural Joint employed in this

evaluation is shown in Figure 11-18. Symmetry permits explicit

consideration of one quadrant. A total of four identical finite

elements arranged as shown in Figure 11-18 is used in each case

considered in this parametric study. The total load, uniformly

distributed over the end, and the length of the Joint are held

constant. The parametric variation of the aspect ratio of the

finite elements is accomplished by varying the thickness of the

Joint.
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The displacement uq on the centerline at the load, the

potential energy and the reaction at the line of symmetry

opposing the load are taken to characterize the behavior of the

joint. Of these, the reaction is the most sensitive measure.

The results obtained using finite element number 38 are compared

with those obtained using the original finite element and the

COMEC finite element. Reference values are calculated consider-

ing the joint as a tensile bar.

Two distinct series are presented corresponding to the

use of isotropic and orthotropic material properties. The

complete set of numerical results for the isotropic series is

presented in Table 11-4. The principal results are portrayed

graphica~ly in Figure 11-19. It is clear from Figure 11-19 that

the various predictions are in agreement at the outset. When

the aspect ratio is increased beyond 8 the original finite

element representation leads to an unsatisfactory error. On the

other hand, the modified element representation performs satis-

factorily up to a value of 64.0. Thus the modified finite

element exhibits an improvement of a factor of 8 over finite

element number 21. The relative accuracy of the COMEC finite

element which involves polynomials of higher order was unexpected.

The same calculations were repeated for the case of an

orthotropic material. Table 11-5 contains the numerical results

and Figure 11-20 presents the corresponding graphical interpre-

tation. The original finite element performs satisfactorily to

an aspect ratio of 16.0 while the modified finite element is

apparently satisfactory even beyond an aspect ratio of 128.0.

These results reinforce the factor of 8 improvement inferred

from the results obtained for the isotropic series.

ii
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II
TABLE 11-14 ISOTROPIC LAP JOINT* - RESULTS

ELEENT ELEMENT DISPLACE. POT. REACTION U de  e * £$($)P-R $ASPECT TYPE MENT ENERGY R g e-  de (w d E)RATIO KET4e
Ug 2l

x i0

ALL BAR - - 100. 0.8333 - 00417 -

MAGIC PLUG #21 0.182 .00091 99.993 1.82 118. .0091 118.2 0.007 0.007
1 MAGIC PLUG 138 0.188 .00094 99.975 1.88 126. .0094 125.4 0.025 0.025

(de-10.) COMEC 0.180 .00091 100.007 1.80 116. .0091 118.2 -.007 -0.007

MAGIC PLUG 521 0.209 .00105 100.006 1.045 25.4 .00525 25.9 -.006 -0.0o6
2 MAGIC PLUG 038 0.212 .00106 99.982 1.060 27.2 .00530 27.1 -.018 -0.018

(de5.) COMEC 0.209 .00105 100.005 1.045 25.4 .00525 25.9 -.005 -0.005

MAGIC PLUG #21 0.354 .00177 99.885 .8850 .20 .0044 5.52 0.115 0.115
4 MAGIC PLUG 038 0.358 .00179 .99.943 .8950 7.4 .00448 7.43 0.057 0.057

(de -2.5 COMEC 0.351 .00179 99.992 .8925 7.1 .00448 7.43 0.008 0.008

MAGIC PLUG #21 0.702 0.0035 106.21 .8775 5.3 .00439 5.27 -6,210 -6.210
8 MAGIC PLUG #38 0.685 0.0034 99.986 .8563 2.8 .00429 2.88 0.014 0.014

(de -1.25) COMEC 0.682 0.0034 99.996 .8530 2.4 .00426 2.16 0.004 0.004

MAGIC PLUG #21 1.89 .00945 178.47 1.1813 41.8 .0059 41.5 -78.48 -78.48
16 MAGIC PLUG 038 1.35 .00675 101.09 .8438 1.3 .0042 .72 - 1.09 -1.09

(dn-0.625) COMEC 1.33 .00666 99.995 .8313 -.24 .0042 .72 0.005 .005

MAGIC PLUG 021
32 MAGIC PLUG #38 2.66 .0133 99.68 .8312 -.25 .0042 .72 0.32 0.32

(de-0.3125) COMEC 2.64 .0132 99.959 .825 -1.0 .0041 -1.7 0.041 0.41

MAGIC PLUG #21
64 MAGIC PLUG #38 4.85 .0243 84.573 .7578 -9.1 .0038 -8.9 5.427 5.427

(de-0.15625) COMEC 5.21 .0260 98.389 .8141 -2.3 .0042 +.72 1.611 1.611

MAGIC PLUG #21

128 MAGIC PLUG #38 4.44 .0222 15.874 .3473 -58.3 .0017 -59.2 84.126 84.126
(de-0.078125) COMEC 10.3 .0519 97.125 .8047 -3.4 .0039 -6.5 2.875 2.875

' 4 FINITE ELEMENTS
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X. Summary and Conclusions

The modification of quadrilateral thin shell element

number 21 was undertaken to relax the aspect ratio constraint

on the in-plane portion of the representation. Attempts to

analyze structural Joints had proved unsuccessful in that.large

residuals (for instance, loss of load throughout the structure)

were obtained that were attributed to the unavoidable high

aspect ratios of the finite elements.

The development of finite element number 21 was examined

and the use of triangular subdivisions was Judged to be the

limiting factor. Even at modest aspect ratios of the quadri-

lateral, the ratios of the sides of the triangular subdivisions

are extreme in comparison. Accordingly, the principal modifica-

tion in constructing finite element number 38 was the elimination

of the use of triangular subdivisions within the finite element.

The modification to obtain finite element number 38 is

presented in subsections I through V. A simple, low order dis-

[' placement approximation was chosen because experience has shown

b that the simpler approximations are-generally better conditioned.

Additionally, the gridpoints and gridpoint degrees of freedom of

the final form of the finite element representation were stipulated

at the outset to be the same as those of finite element number 21.

The resulting membrane representation of finite element 38 is

equivalent to the quadratic "serendipity" isoparametric finite

element representation.

The modified finite element representation is available in

the MAGIC III system as finite element 38. This new finite

element representation maintains all features present in finite

element 21. The program-analyst interface is nnchanged. The

input data is the same. The displays of results have exactly the

same interpretation for the two finite elements.

I
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The results presented for the membrane at different levels

of grid refinement establish that the new membrane representation

is satisfactory although somewhat less accurate than finite ele-

ment number 21. Similarly, the results presented for idealiza-

tions of the membrane using distorted finite element shapes show

that the new element performs satisfactorily at ordinary a3pect

ratios.

The cantilever beam problem emphasizes that this type of

behavior is not predictable using full depth membranes (or shear

panels) regardless of how accurately the element matrices are

generated. The problem class of interest is represented by the

idealized structural Joint in which tension-shear behavior is

dominant.

The idealized isotropic lap Joint suggests an improvement

of a factor of eight in the aspect ratio that can be employed

using the new finite element number 38 in place of the original I
finite element number 21. This factor is substantiated by the

analysis of the same Joint configuration constructed of ortho-

j: tropic materials.

The permissible aspect ratio limit of finite element

number 38 relative to finite element number 21 is considered to

be reasonably well established by the examples presented. How-

ever, the permissible absolute limit on aspect ratio depends

upon computer characteristics, the size of the problem and the

amount of bending present. All results presented herein were

obtained using an IBM 360/65 computer. The problem sizes were

chosen to be small for economic reasons. Clearly, the detri-

mental effects of bending were negligible in the illustrative

lap Joint examples.

The new quadrilateral thin shell element number 38 is re-

commended for use for elongated element shapes on the basis of

the numerical evaluation presented herein. Its relative advan-

tage is clear. Guidance for Just how large finite element aspect

ratios can be in specific applications must evolve from usage in

practical design.
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SECTION III

INCORPORATION OF NEW COMPUTATIONAL PROCEDURES

A. INTRODUCTION

Several new computational modules have been incorporated into

the MAGIC III System to support the structural analysis capability.

The first module is designated as ANALIC (Analysis in Core).

This module can be uzed to perform a complete linear elastic stress

analysis, selected portions of a linearily elastic analysis or as

a general purpose equation solver. Four distinct equation solvers

are available in this module and are described in the following

subsection. The abstraction instructions required forthis module

and detailed instructions for its use are delineated in Volume II

of this document (Reference 7).

In addition to the ANALIC module, an additional out-of-core

equation solver has been added to MAGIC III. A variable bandwidth

solver utilizing the square-root Cholesky technique is available

for the decomposition of symmetric positive-definite matrices.

The theoretical details of the method are presented in a

subsequent subsection while detailed instructions for its use in

the MAGIC III System are given in The User's Manual(7 ), Volume II

of this report.
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B. ANALIC (ANALYSIS IN CORE)

I. Introdgcrion

ANALIC Is a MAGIC III module which can be used to perform

a complete linear elastic stress analysis using in-core routines.

This module may also be used to perform selected portions of a

linear elastic analysis or as a general purpose equation solver.

The ANALIC module is capable of solving problems of approximately

175 reduced degrees of freedom with 18,000 words of working

storage. This module features "dynamic" storage which allows the

maximum-size problem to fit in core.

II. Equation Solvers In ANALIC

2.1 Method of Bordering

The procedure described herein determines the

inverse of a symmetric matrix by the bordering method. The given

matrix A is regarded as the result of bordering a matrix of order

(M-I), the inverse of which is assumed known. Thus let

a
An = = .22.. (1)

a a

n - --------
31 a 32 v n ' nn

a a _j
an-l,l -- - - - - -n:1 ! _ i -- - -- -

n,l 8 n,2 8 n,n-1 , nn

-1
Then, by seeking A in the same form, we finally arrive at

-1 -1 T -1

A1II + nn- nnn-l
n--------------- --------- -------- (2)

-v 1  1°n n-

an 4,n

where An = anVnAn 1 T
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The algorithm used is a method of inverting a matrix

by successive borderings. The system loops on the order of the

desired- matrix inverse and computes the inverse of a (1 x 1),

(2 x 2), (3 x 3), ..., (n x n) in turn by using the preceding com-

puted inverse. Each step of the process is accomplished on the

basis of Equation (2).

The following operations are to be carrcod out in

order to find A-:

(a) The computation of the row -vnAn -1 with elements

Ynl * Yn2' ''s Yn,n-I

(b) The computation of the number

n-1

Zn uann in ni

i-i

(c) The determination of the elements aik of the

inverse matrix by the relationships

I Y2ni
aik -aik a < n-l, k < i)

- nk (k < n-l)ak =an

1
ann n

nn

Storage for the subroutine used, consists of n (---) locations

for matrix A (symmetric stored in the lower half by rows) and one

column of length n. The solution for displacements is computed

by multiplying the total load column by the computed inverse.
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I
2.2 Gauss Elimination

The s,.broutine presented in this section solves a

system of simultaneous linear equations with symmetric coefficient

matrix by Gauss elimination. Consider the system of simultaneous
linear equations

A * X =R ()

with symmetric m by m coefficient matrix, the upper triangular

part of which is stored by column in m* (m+l)/2 successive storage

locations, and an m by n right-hand side matrix R stored by column

in m * n successive storage locati~as. Solution is done by Gauss

Elimination with pivoting in the main diagonal of matrix A. If

matrix R is the identity matrix, solution X is the inverse of matrix

A. Solution matrix X is placed in positions of the right-hand

side matrix R and is stored by coltmn also. Thus, the computation

of the solution requires no extra m by n array of storage. Only

an auxiliary storage array named AUX with (m-l) storage locations

is necessary.

Explicitly, the given system,(l) is of the form:+

a11 a12 a 3  ... alm X11 x12 ... xln

a21  22 23 ... 2m x21 x22  X2n

a31 a32 a33 ... a 3m x31 x32  ... x3n

aml m2 am3 ... a Xml Xm2 . mn

r11  r1 2  ... rn

r21  r2 2  " 2n (2)

r31 r3 2  ... r3n

rml rm2 ... r

+ Note that subroutine GELS requires only the upper triangular
part of matrix A; that is, the elements a a a; a
a33 ; "..; a a2 2m '. a m m  These ee t e Zneled in
Equation (21 i
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The first step is to search the main diagonal of matrix A for the

element of greatest absolute value, say a and to select it as

first pivot (p = a). The reason for pivoting only in the main

diagonal of A is that rest-matrices of A(k) (k = 1,2,...,m-l) must

remain symmetrical during the whole algorithm. With ajj,

generate the internal absolute tolerance for testing usefulness

of the symmetric algorithm in the following way:

tol = laji . (3)

with a given relative tolerance .

Suppose that pivot element ajj is equal to a1 l. If

it is not, interchange the first rows of matrices A and R with the
th and the first column of matrix A with the jth and'save column

interchange information by storing the difference (J-l) of pivot

column index J and step counter k - 1 [interchanging column 1

with column J means interchanging variables x 1 1 with X j (1 =

Now transform the elements of pivot rows in matrices A

and R by division with p, and the other elements by adding -aV 1 times
the new first rows of these two matrices to the other* rows,

obtaining:++

af)= all (1 =,2,...,m) (4)

r(l) = r1 1  (1 = 1,2,...,n) (5)

a a rl- 1 a . a(') (1 2,3, ::, n; (6)

2m)

++ Note that transformation of pivot row in matrix A destroys
pivot column, which is, due to symmetry, stored in the same
location. As pivot column is used unchanged for transforma-
tion of rest of A and R, it has to be saved in auxiliary array
AUX before transforming pivot row.
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As column interchange information is saved in the first position '1
of the main diagonal, the result of the first step is the two

matrices:

o a' a( )  aA(11) 12 13 -sn

22 23 ndo a) a) a(')32 _j' 3"

*.0 .* ..... * .. .. ........ 000-4-0

o a() a() ... (')

rl) r) r(I)

m . mn

It is easily seen from equations (4) - (7) that the rest of the
matrix A() -- that is, matrix A() without the first row and first

column -- is symmetric and that actually only the underlined

elements must be calculated and stored. Therefore, the range of
index 1 in formula (6) reduces to 1 =9, )+ 1, .. , m.

This procedure is now repeated m-2 times, starting
at each step with the matrix A(k) of the step before without the
first k rows and first k columnG, and the matrix R(k) without the first
k rows. The total result after m-l steps is the matrices:
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(j1-l) aj~ a~)J 2

W2r-l = -2) a 3 ... a) 4
0 0 0J3-3) ... a3 and

0 0 0 (Jmrn)

r(2) r(2) r(2)

R(m-l) 21 22 2n

r~m) r~m) r~m)

Now work backward and set:

rn-rn ( - a(rn1) r(m) (1=12,...,pn)

M.L~ I %*. M-2 *.* (1

rjm) nil) -a(') .r~m) - a(') - r~m)

-*. a(') .r~m) (1=1,2,...,n)
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After each step of back substitution, rows of solution matrix

X = R( m ) have to be back-interchanged according to interchange

information in the corresponding main diagonal element of matrix
A(m - ," in order to get the correct sequence of right-hand side

column elements corresponding to the sequence of left-hand side

row elements.

The only case in which the procedure described above can

fail to give a solution occurs when at any step all elements in

the main diagonal of the rest-matrix of A(k) become zero, and no

pivot element can be found. In this case, the procedure is by-

passed and the error message ier = -1 is given. This may --but

not necessarily--mean, that matrix A is singular. Possibly
subroutines GELG or DGELG (which are working with complete pivoting)
will be able to find a solution in cases where subroutines GELS

or DGELS fail. Actually, because of rounding errors, a further
check of the absolute values of pivot elements is performed by

the procedure. If at elimination step k this absolute value

becomes less than tol (see Equation 3), it is likely that there
was loss of significance in the computation of the diagonal

elements. But as this may not necessarily be the case, and as

this test depends highly on the choice of the relative tolerance

E . the procedure gives only the warning ier = k-l, which indicates

that there is a possible loss of significance in the results

computed by the algorithm. But here it is also possible that

subroutines GELG or DGELG will give better results. If there

is only one equation to solve (m=l), the test on loss of significance

is suppressed.

+ For subroutine GELS, a relative tolerance between 10-6 and
lO1 is suggeqped; and for subroutine DGELS, between 10
l0-  and 10- u .

++ For example, = lO-5 and warning ier = 3 mean that there is a
possible loss of about five or more significant digits in the
initial values of elimination step 4.
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2.3 Cholesky Triangularization

Given an n by n symmetric positive definite matrix

A, compute an upper triangular matrix R such that

A = RTR

The elements r i of R are computed using the

following recursive relationships:

rlk = alk/rll k=l,2,3,...,nJ-i

rjk = (I/rjj) (ajk - 2 rijrik) J=2,3,...,n

i=l k=J,J+l,...,n

The determinant of A is det(A) = ( i) r

The given matrix A is assumed stored columnwise in

compressed form, that is upper triangular part only. MFSD

stores the solution R in the same locations as A.

If any calculated radicand rkk (k =,2,.,.,n) is

not positive, further calculation is bypassed, and the error

parameter IER is set to -1. This means that A is not

positive definite, possibly due to roundoff errors. IER is also

set to -1 if the input parameter n is less than 1.

Let all radicands be positive and let r kbe the

first radicand which is no longer greater than the internal

tolerance TOL = IEPS akkl . The subroutine then gives the

warning IER = k-l; however, calculation is continued. The

warning indicates that there may be loss of significance

at factorization step k due to loss of significant digits in2
the calculation of rkk. 4
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Given a general matrix A and a nonsingular upper

triangular matrix T, the subroutine MTDS will perform one of the

following six operations, depending-on the value of an input

parameter lOP:

IOP=I: A is replaced by T- A.

IOP=-I: A is replaced by AT -I

IOP=2: A is replaced by (T' )TA.

IOP=-2: A is replaced by A(T-1 T

IOP=3; A is replaced by (TTT)-1A.

IOP=-3: A is replaced by A(TTT) "l .

With the above information available:

(i) Calculation of X- 1 A is done using backward

substitution to obtain X from TX=A.

(ii) Calculation of Y=(T-)TA is done using forward

substitution to obtain Y from TTY=A.

(iii) Calculation of Z=(TTT)-IA is done by first

solving T Y=A-and then solving TZ=Y.

The remaining three operations are reducible to the

above three.

This particular module may also be used to compute
the soiution of a system of equations BX=A with symmetric positive

definite coefficient matrix B. The first step towards the solution

is the triangular factorization of B. The second step, which may

be repeated for different sets of righthand sides A, is the

calculation of (TTT)-lA. Another useful application is the

computation of the product ATBlA with symmetric positive definite

B and arbitrary A in only three steps and without additional

storage requirements:
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(i) Replace B to T where B=TTT.

(ii) Replace A by C=(TT)-IA.

(iii) Replace B by cTc.

2.4 Gauss Wavefront

This method uses a modified Gauss solution algorithm.

A wavefront approach is used to manipulate the data and solve

the symmetrix matrix of linear equations. The routine is a

modified version of the method described in Reference 20.

Given:

K 1  Kl ~ [u

K12  K22  2. P

where U2  are prescribed displacements and P1 are given forces.

From (1) we can write:

KIU 1  + KI2U2  = P1  (2)

, We can decompose K11 as
K11  = 

(3)

where is lower triangular

D is diagonal with dii =

|1. is L transpose

and the elements of LII are given by

i-l tnJt ni!i = kij F- An (i IJ) (4)

I
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Substituting into (2) we can write:
I

L 1 L TU - -K(5lip 11 1 l 1202

Now setting

y = DLIU (6)

we write

Lily = P1 - K12U2  (7)

and solve for y by forward substitution. Finally we obtain the

unknown displacements U1 by using backward substitution in

Equation (7).

The stiffness matrix is stored in wavefront format which

contains-columns consisting of the first non-zero row to the

diagonal element. The subroutines in ANALIC operate on the data i
in this format. Subroutines are called in turn to convert the

symmetric matrix to wavefront format, decompose the matrix, perform

forward substitution, and finally back substitution.
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IV CONCLUSIONS

It is concluded that the MAGIC III System is a logical and

consistent extension of the MAGIC I and II Systems, and that

the additional capabilities realized with MAGIC III have met

or exceeded the requirements of Contract No. F33615-71-C-1390.

The satisfactory achievement of the overall objectives is

given substantiation by a number of subsidiary conclusions.

Specifically, it is concluded that:

(1) The addition of the solid finite element represen-

tations to the MAGIC III System provides enhanced

capability to predict general three dimensional

states of stress in structures of arbitrary profile.

(2) The addition of the triangular cross-section ring

finite element which accommodates asymmetric

mechanical and thermal loading on axisymmetric

structures provides capability for the analysis of

thick-walled and solid axisymmetric structures of

finite length.

(3) The addition of the modified quadrilateral thin shell

element provides enhanced capability for the

prediction of structural response of membranes and

plane-strain sections that require elongated finite

element shapes.

(4) The addition of the ANALIC (Analysis In Core) Module

provides an in-core equation solution capability

designed for "moderate-sized" applications. Four

equation solution techniques are provided.

(5) The out-of-core variable bandwidth equation solver

utilizirg the square root Cholesky technique has

been provided for the decomposi'tion of "large order"

positive definite symmetric matrices.
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(6) The MAGIC III Agendum Library has been expanded and

includes computational procedures for the following:

a. STATICSASYM (Linear Elastic Displacement and

Stress Analysis, Triangular Ring -

Asymmetric Loading)

b. STATICS (Linear Elastic Displacement and

Stress Analysis)

c. STATICSC (Linear Elastic Displacement and

Stress Analysis with Condensation)

d. STATICS2 (Linear Elastic Displacement and

Stress Analysis With Prescribed

Displacements)

e. STABILITY (Linear Elastic Instability Analysis

Using Cholesky Triangularization)

f. STABILITYA (Linear Elastic Instability Analysis

Using Matrix Inversion)

g. DYNAMICS (Vibration Frequeacies, Mode Shapes,

Generalized Mass and Stiffness for

Supported Structures)

h. DYNAMICSF (Free-Free Vibration Frequencies,

Mode Shapes, Generalized Mass and

Generalized Stiffness for Unsupported

Structures)

i. DYNAMICSC (Vibration Frequencies, Mode Shapes,

Generalized Mass and Generalized

Stiffness with Condensation for

Supported Structures)

J. DYNAMICSCF (Free-Free Vibration Frequencies,

Mode Shapes, Generalized Mass and

Generalized Stiffness with Condensa-

tion for Unsupported Structures)

These computational procedures listed above enable

the conduct of linear displacement, stress, and

stability analyses in the presence of general prestrain
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and thermal loading as well as distributed and

concentrated mechanical loading. Additionally,

vibration analyses for free-free or supported

s+ructures can be employed with or without the

use of condensation techniques.

(7) The versatile MAGIC III System finite element

library, which is composed of sixteen finite

elements, enables effective idealization of most

linear structures.

(8) The stability analysis procedure provided in the
MAGIC III System enables the prediction of

critical load levels for general built-up shell

structures.

(9) The preprinted input data forms facilitate the rapid

I:' and reliable specification of problem data as

evidenced by their wide acceptance with the

original MAGIC I and II Systems.

(10) The output provided by the MAGIC III System is

oriented to the engineering user, is consistent with

MAGIC II, and facilitates clear and concise

interpretation of output parameters.

(11) The computer program organization of the MAGIC III

Systei is logical in design and is well suited to

generalization.
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