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TRIANGULAR FACTORIZATION AND INVERSION

BY FAST MATRIX MULTIPLICATION

James R. Bunch
and
John E. Hopcroft

1. INTRODUCTION

Strassen [3] has given an algorithm using non-commutative
multiplication which computes the product of two matrices of
Thus the product

could be computed by m37k multi-

order 2 by 7 multiplications and 18 additions.
of two matrices of order m2k

plications and (5+m)m27k

- 6(m2k)2 additions.
Strassen uses block LDU factorization (Householder [2],

p. 126) recursively to compute the inverse of a matrix of order

m2k by mzk divisions, < -65--m37k - m2k multiplications, and
< g-(5+m)m27k - 7(m2k)2 additions. The inverse of a matrix of
order n could then be computed by < 5.64n%°927 arithmetic
operations. - - - - = -1
Ay e . olf21 olfT At
Let A = =
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21 22 21711 ()
L - - o - - J
-1
p= p 08 -1 - pe _1 - -~
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if All and A are non-singular.

Since the algorithm is applied recursively, it will fail
whenever the inversion of a singular principal submatrix in any
of the reduced matrices is required.

For example, the block LDU factorization fails to exist

for a matrix as simple as

f000 17
0010
0100 .
(1000 ] '

Every principal submatrix in every reduced matrix is non-
singular if A is symmetric positive definite, strictly diagonally
dominant, or irreducibly diagonally dominant (Varga [4], p. 23).
However, if A is only non-singular, then we must, in general,
pivot (i.e., interchange rows or columns) in order to obtain a
(point or block) LDU factorization. If A 1is non-singular, then
there exist permutation matrices Pl' P2, Ql’ Q2 such that
APl, QlA, QZAP2 have (point or block) LDU factorizations (cf.
Forsythe and Moler [1], p. 36).

In Sections 2 and 3 we show that by employing pivoting
we can use Strassen's fast matrix multiplication algorithm to

obtain the LU, or LDU, decomposition of any non-singular matrix

s o
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of order n = 2k in <« (3.64)n"°g27 operations, and hence its

inverse in < (10.18)n"°927 operation, where an operation is .
defined to be a multiplication, division, addition, or subtrac-
tion.

In Section 4 we modify the algorithm :0 that we can find
triangular factorizations in < (2.04)n2°g27 operations and

fog27 operations when n = 2k, Then,

inverses in < (5.70)n
for arbitrary n, we can find triangular factorizations in
< (3.07)n*0927 operations and inverses in < (7.46)n*0927

operations.
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2. THE BASIC ALGORITHM

For simplicity, let M be of order n = 2k

with detM#0.

Let Mo = M. We shall construct a sequence Pl, 2, 500G Pn-1
of permutation matrices so that M = LUP, i.e. !le"1 = LU, where
P = P1 P2 e Pn-1 is a permutation matrix, L = Ll L2 SISHe Ln-1
is unit lower triangular, U is upper triangular, and
n x .
det M = (det P) det U = + I u, Since (PJ')"l = pt here,
i=1
p~l o pnl | p2 pl
ML= p‘lu‘J L = ...P2P l( — 1)'1 o (Lz)—l(Ll)"l,
where (L4)7t = 21 - L.
We define the algorithm sequentially for 1 < i < n-l
as follows.
T s k-1,. k-2 S I O
t if s#t

let t = max{j:j € Bi} , S

min{j:j € Bi}, and r =

J J

[, l i lq

1— -

My, M)

Then Mi~1 =
0O ol
22
1 -1

| M31 J

upper triangular matrix of order i-1, M

0 is the (2F*!

1 -1
22

is (n-i+l)x(n-i+l), and Mi

i=
, Where M11

i-1
12
1 -1

1

-1 .
is non-singular.

-i+l)x(i-1l) zero matrix, M 21 is (n-2

t-1 if s=t °

is a non-singular

is (i-1)x(n-i+l1),

T+l x (i-1),

GG B
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Since 2F7"-i+1 > 0 and M'™" is non-singular, there

exists a non-zero element in the first row of M;EI . Hence

1-1P1

there exists a permutation matrix p* such that N* = M 5

n;i # 0 , and Ni can be partitioned as:

i U": vt

R e
| 1 h

i SER N R i Sy i 28y i
N- = (o) r i) i , where U~ is (i-27)x(i-2%), Vv~ is

}_Q_-L___H--
|

| xt vt

(i-Zs)x(n-—i+25),El and G are stzs, F* and H' are st(n-i),

r+l

0 is the (2 -i+2s)x(i-25) zero matrix, xt is (n-2r+1)x(i-23),

and ¥Y! is (n-i-zs)x(n-i+28). Further,'U1 and E' are non-

singular upper triangular. - -
o . . . Ii-zs o
tet 2z =il ana Lt = - o ,
28
i
Z
c> I
- o n-l—

where Ij is the identity matrix of order j.

pefine M' = (1)”! N'. Then

I’ Ui}_ vi
------ T--—--—-lq
Mi = b os : , where Ji = Hi - zi Fi .
i i

(o) %E-im-E--_.
O e
- Xf} Yl o

At the last step VU = Mn-l is non-singular and upper tri-

angular.



3. OPERATION COUNT.

Finding the permutation Pi requires at most n-i compari-
sons, and if Pii = 0 then the permutation involves n element
interchanges. Hence at most n(n-1)/2 comparisons and at most
n(n-1) element interchanges are required to obtain M = LUP.

The computation of M-1 would require at most an additional
n(n-1l) element interchanges.

Let an operation be a multiplication, division, addition,
or subtraction. Let M(n), MT(n), and IT(n) be the number
of operations required to multiply two nxn matrices, to multiply

an nxn matrix by an upper triangular nxn matrix, and to invert

an nxn non-singular upper triangular matrix (we shall ignore

lower order terms). Then M(l) =1 and M(2k) = 7k+1 for
k>l. Since Ny (25) = amy2*7h + 2m2*7h) + 2271 ang ;
k-1 . . i
Ky, _ k-1 k-1 Kk, _ S pak=j=1
IT(Z ) = 2 IT(2 ) + 2 MT(Z s MT(z ) = jio 4'M(2 ) -
k-1 . 3
< (%)7k and 1,025 =2 1 2J Mg (257371 < (1.5) 7K. :

j=0

Inverting all the ui for 1 < i < n-1 requires

k=l k-1
k-1 $~ 1 3 k-1 T 7.3 _ (28,.k
2 L. 53 ) < 27 @) L P < 2" ‘5’-12 (7507
J:.‘ J:

operations. Forming all the multipliers Zi for 1 < i < n-1

k-1
. k-
requires 2 1 2: iu My (Zj) < (%%) s operations., Forming all
3=0

the reduced matrices Ji for 1<i<n-1 requires



n—Zj i
k-1 I+T E=LE

S k ] M(29) 2 (k-1) M2))

EE: [2°-(22+41)27) L L T 223

23 - 20
3=0 2=0 J=
k=1

7 .2k 7.5 _ 7 .2k 7.k ,4, _ ,7, -k
7 2 (;1") < 7 2 (z') (3) = ('3—) 7.

Hence, for n = 2k , triangular factorization requires

< (%%)7k = 3,64n%0927 operations.

Inverting U requires < (%§)7k operations and u~l -1
k-1 3 k-1
. 2k T M(27) _ 7 ) SN 7,3
requires 2 2M ;73;1 = (7) 2 ZL, (Z) <
j=0 j=0

2k (1)k (%) = (l%)7k operations.

Hence, for n = 2k , inversion requires (Z%%)7k < (lO.lt))n‘Q'ng7

operations.

If M is a non-singular matrix of order n, where
2k <n < 2k+l, then let M= M ® I x+1 . We can find the
2 -n
triangular factorization of a permutation of A, and hence of a

permutation of M, by < (%%)7k+l = (9%%)7k < (25.48)n2'°g27
763, k+1 _

and the inverse ofody, and hence of M, by < (—73)7

234475 < (71.22)n"0977,

T e
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4. A MODIFIED ALGORITHM

We can modify the algorithm in Section 2 so that the

10927

coefficient of n is smaller in the operation counts

of Section 3, In particular, we find m and k such that

the number of operations is minimized subject to the con-

straint n < m 2k,

First, let n = 2f = m Zk. Then m = 2r-k z 29 .

and M(2 ) < (5+2m)m27k = f(s)7r , where f£(s) = (5+2m)m27-s =
(5+25%1)22%97%  gince min f£(s) = £(3) = 2%, ve take
0§§§;

m= 8, k = r-3, and use reqular multiplication and inversion

192

for 8x8 matrices. Then M(Z ) < (~ )7r for r >0 {rather

than M(Zr) < (7)7r in Section 3). Hence each coefficient

in Section 3 is multiplied by 7(1?2).

Triaagular factorization requires < AT K]
’
operations, and inversion requires < (---9-%)(192)7r < (5.70)n2°gz7.

Now let n be arbitrary. Taking k = [fog2n-4] and

n o= [n2°k]+1 (cf. [3]), we have n < mzk and (5+2m)m27k <
(4.7)n*0927,
Now MT(mZk) ¢ 2(5+2m)m?7¥"1 )f )J < --(5+2m)m2 k
i=0
k-
k 2,k-1 2,3 2.k

and I,(m2") < 57(5+2m)m EE; (57 < ~15(5+2m)m

j:

2.k

Triangular factorization thus requires < %%(5+2m)m 7" <
(3.07)n£°g’7 operations, and inversion requires < l%--g-(s+2m)m27k <

(7.46)n*0927 operations.
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S. REMARKS.

As seen above, the coefficient of n*°927 jg very
sensitive to the implementation of the algorithm. Another
modification of the algorithm might reduce the coefficient.
Further, the bounds we have given on the coefficient are
pessimistic.

The algorithm as stated in Section 2 and 4 may not
be numerically stable since we cannot guarantee that the
elements in the reduced matrices are bounded. However,
there may be a modification of our algorithm which guarantees
stability; this question deserves further investigation.

If a fast matrix multiplication algorithm were given
for multiplying two matrices of order u in v multiplica-
tions, then algorithms similar to those in Sections 2 and 4

could find the triangular factorization of a permutation

o =

of any non-singular matrix, and hence the inverse of any {
non-singular matrix, in < ¢ nloguv operations. The algorithms
would be expressed in terms of the expansions of integers

modulo u,




1)

(2]

(3]

(4]

- 10 -

REFERENCES

Forsythe, G.E. and C.B. Moler, Computer Solution of

Linear Algebraic Equations, Prentice-Hall, 1967.

Householder, A.S., The Theory of Matrices in Numerical

Analysis, Blaisdell, 1964,

Strassen, V., "Gaussian elimination is not optimal",

Numerische Mathematik, 13, 1969, pp. 354-356.

Varga, R.S., Matrix Iterative Analysis, Prentice-Hall,

1962.

S

hiex

il 8ot bl




