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OPTIMAL DESIGN OF LOCALLY QRTHOTROPIC
ELASTIC FLAT BODIES WITH WEAK BINDING

G. L. Bryzgalin
(Volgograd)

Solved are problems of optimal design for elastic bodies made
from a material such as fiberglass reinforced plastics or metal
reinforced by fibers with a high elasticity modulus [1, 2]. It 1is
assumed that the composite components are in a plaile strain or a
plane stress state and the reinforcement is directed along two
mutually orthogonal families of plane curves. The equations for
these curves, the reinforcement strength at each point, and the

body thickness are determined during the designing for a gilven
boundary profile and conditions on 1i¢.

Let us present a rather small body element cut by planes
normal to the directions of reinforcement. On the two opposite
edges orthogonal to the first direction of reinforcement we will
apply expanding or compressing normal stresses 0y We will assume
that the material is deformed as a monolith, i.e., deformaticns €4
along the stress, on the average, are equal at all polnts. Let
oi be the stress in the reinforcement fibers of the first direction;
s, — cross sectional area of these fibers per unit area of material;
and E' — elastlcity modulus of f{lbers.

FTD-HT-23-1245~-T2 1
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If the edge of the examined element has a unit area, then the
remaining part of materlal, composed of binder layers and fibers
oriented in a transverse direction, will occupy on it area 1 - sl.
The average elasticity modulus of this remaining part is designated

in terms of E", and the average stress - cf. Using the well-known
formula of mechanical mixing we obtain

=0y ro ' (I—0) 0 =Bt of o= E' ( 1 )

Considering that S1 does not equal zero and E" is considerably

less than E', we can write the approximate equality

ay = 0,'s, = E's,0, (2 )

Calculations based on more specific formulas [3] indicate that
if the modulus of elasticity of binder E® is ten times smaller than
the reinforcement modulus, then the replacement of equality (1) with
equality (2), at worst, yilelds an error (contributing to the safety

factor) on the order of 30% of the maximally possible stress in
the material,

The following experimental factors also speak in favor of this
substitution:

a) the elasticity modulus of the binder of flberglass rein-

forced plasticsc 1s 10-20 times lower than the elasticity modulus
of reinforcement;

b) usually, binders are subject to considerable creep, and
coefficient E" in the preceding formulas, in essence, is not a

constant value but an operator, such that with €, = const 1im E"ei =

= 0 when t + » (t — time)., So that for parts working under condi-

tions of prolonged action of slightly changing stresses, relation-
ship (2) can prove to be more acceptable than (1);

¢) the range of the elastic and strength curves of composite
materials is tens of percent from sample tc sample.
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The elasticity modulus of such an element can be considered
as identical during expansion and compression [4], and Poisson
coefficients during deformation along the fibers as small (so small
that they can be disregarded); therefore, we extend the relation-
ship of type (2) to the general case of plane stressed state.

We will 1limit ourselves te¢ the designs in which the main axes
of stress and strain tensors coincide with vhe Piber directions of
reinforcement at every composite point (rational designs [2]).
Then in the curvilinear orthogonal system of coordinates aB along
whose coordinate lines the reinforecing fibers are placed, the

following law governing the connection between strain and stresses

can be written as:
0y = Es,8, as = Egses ( 3 )

Here 015 0y — principle stresses, €15 €5 — principle strains,
E — constant selected on the basis of experiments on the composite
material.

The problem concerning the strength criterion of such hypo-
thetical material, in other words, concerning the limits of appli-
cability of relationships (3) is rather complex and it 1s doubtful
whether 1t can have a unigue answer suitable for description of
all actual materials of a simllar type.

Taking advantage of the fact that tensile strengths of com-~
posite materials durling extension and compression are values of
the same order, we will assume that the permissible state of an
element 1s characterized by deformation values not exceeding a
certain maximum value of

lnl<e le:i e (L‘)
For reinforcement which remains elastic right up tc¢ destruction

(oi = E'ei, i=1, 2), this means that the maximum value of internal
stress in fibers determines the material strengti.

FTD-HT-23-1245-72 3
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Of course, during compression or during a compley stressed
state, destruction occurs not necessarily due to a break in fibers;
however, criterion (4) can be used safely if the materials tested
have dif'ferent S1s 8o if we construct families of strength curves
at different stressed states 1in plane €1€0s and select the square

£ of the permissible states such that none of the
'\\\\Q‘ d strength curves should intersect it (Fig. 1).

Since there are no fibers in a direction normal
to the coordinate lines of system af, then within
the accepted permissible limits we can assume that
Fig. 1. the third principal stress is equal to zero 03 = 0,
The stress components with mixed indexes equal zero due to the fact
that this is precisely how the rational designs are constructed;
so that directions o = const and B = const were the principal

4

tensions of stress and strain tensors O1p = 033 = 0Op3 = 0.

In view of this fact there will not be any fundanmental differ-
ence between the plane stress and plane strain states. We will
only note that with a plane strain state the design is for a com-
posite layer with a unitary thickness, while with a plane stress
st:..te — the thickness can be arbitrary and even vary from point to
point; thus, only its minimally possible value 1is selected during
designing. The problems will become wholly identical, if in the
latter case in place of stresses and levels of reinforcement we

introduce values

7 1 Al ! -1 (5)
(h — composite thickness ut a given point)

If we consider that the above examined volume element has
! *ght h and unitary transverse dimensions, then Tl’ 'I‘2 — forces
acting on this element along directions a and B; Sl’ 82 — fiber

volumes of corresponding direction in it. (For simplicity, Tl,
T2 will also be called stresses.)
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The equations of equilibrium of such volume element ([5],
Chapter 2, can be obtained from (8.2), if we assume that, there,

o} =0
12
& N []
—-l”;f.)—’—-f:-o. -_(”,f,)—gif.-o (6)
ou ve op od

(Hl, Hy - Lamé parameters of system oB)

Formula (8.2) in work [6] (Chapter 2), when €, = 0, leads to ;
the following corditions of deformation ccnsistency: ?
-:{J;mﬁu+am—:iuuu~JJ}uwm1¢mnu+ug+ §
op? ou? £
4 é [ ( 7 ) 3:
*{G-Wﬂ1ThMﬁ+—4ﬂﬂl+ﬁnb—Wﬂl—mﬂ}”ﬂiT3ﬂ+ 7
of Ja oy ;’
+{¢:Wm—mﬂ‘1fmwbwnrﬁmm+MM}”m+w)-o
“ - + : ) ."‘. - -7, "p «fy [} -ty

Equations (6), (7) should include boundary conditions on body
profile, conditions (4), and positive conditions of reinforcement
levels Sl > 0, 82 2 0,

Let the problem be solved with regard to the theory of elas-
ticity for an isotropic body whose middle plane occupies area Q
bound by contour L on plane aB. Then for constructing a reinforced
body design with the same boundary profile and same conditions on
it, we can assume that the reinforcement fibers are directed along
the lines of principal stresazes of the isotropic body (theorem on
the existence of rational design [2]). For the selected system of
coordinates aB (whose coordinate lines coincide with the isostatic
grid of the isotropic body) we have nine equations (3), (5)-(7)

and ten functions
Too Too o0 0; Sio Soos r f 6 (8)

The 1nitlal form of these functions and the body thickness are
determined according to the iandicated theorem, and beyond this it
is possible to state a variation problem, i.e., require that
functions (8) yield an extremum to a certair. functional. 1In this
work, the design withstanding given loads and having the smallest
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volume of reinforcement among all rational designs we will consider
as optimum. In other words, for the optimum design, functions (8)

satisfy all the conditions written earlier and yield a minimum for

the following functional:

-~

ym+&nn-mm (9)

In a specific case, when both principal stresses in an iso-
tropic body have the same sign, the design is constructed on the
basis of the corresponding theorem of existence, in this case

= gy = e = CONL ’ (10)

Another specific case corresponding to the following conditions:
= ~0:® =¢ s cunst (ll )

is indicated in work [7]. The possibility of constructing a design
which would satisfy equalities (11) is restricted by the condition
of deformation consistency. Actually, assuming that €, = const,

€5 = const in (6) and using the condition of equality to zero of the
tensor of curvature of space of in the initial state, we find

o'} 1§l - 2 . .
.-' I:_"II':L-“‘ I,'."_’.'-.'_IL‘.“”'-O (12)
uud g g o ) oot)

In this case the second equallty proves to be a symmetrical
substitution of indexes and coordinates; furthermore, from it we

can easily obtain

olly 1 ofs - pruyily (13)
where f(a) — arbitrary function. Using the known expressions for
the curvatures of familles of plane curves

{ ofl, 1 oH,
METTwA T T
we rewrite (13) thus
—,fs = [(a) (14)
6
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Condition (1l4) was shown in [7); geometrically it means that
the increase in the inclination'angle 6f a tangent to line a pen
single increase of coordinate a does not depend on B. . :

Generally, we have to solve the variation proélem; moreover,
we should assume that functions T2, 82 can have 3@ break along line
o = const, and functions Tl’ Sl along line B = const. After we
determine functions 3,, Sss thickness h can be'found in the
following manner. Let ‘ !

s max Sy by o+ Sola. fa) BV
a
At point (ao, Bo), where this maximum is achie&edz we ‘will
assume that S, * 5, = Sy (sy — greatest posdible, reinforcement a
density, sy < 1). Then ' '

B N/ae e Si N b= S/ ' (15)

There are ~ther possibilities for selecting the thickness and
level of reinforcement, since addition or, removal of excess binder
does not (within the framework of, this system) affect the carrying
ability of the design.

[
H
}

Further, we are presenting examphes illustrat;ng varlous possi-
bilities of spatial optimum designs. :

A. Half-plane loaded on the edge section by a' normal uniform
force of intensity P, First of all let us investigate a stressed
state in the corresponding isotropic body. From' formulas (4, 4',

5) of work [8], (page 352) we can obtain the following expression
for the tensor components of stresses in an elastic,isotropic ’
half-plane loaded in the same way (there is an error in the corre-
sponding equalities [8]) . :

Tom b x a1 + 2oy con (0 + 0,) / nnsj

i
Ty = 0)h a3 W=ty — 8y) ~ 2oy con (Y, + 82, [ 1iny] ' . (1 6 )
Too v 0k m =2x="Payain (8 4 ) ey

(notations are in Fig. 2). 1in this case it turns out that the
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3 principal direction a forms angle vy = 1/2(6l + 92) with axis x, and

5 'Ehe principal stresses are
‘ ) Tym a-'Pl~t+ 20y i1, Ty = xP[—0 —lay [ rirs) (17 )
Here
Om0 —8; O omarcigl—y/(z—e)l 6= orcigf—y/(z+a)] (18)

. FExpression (17) can be presented in the form

Toma-tP[=0—sind], Ty a-'P =N+ s 0] (19)

. It 1s obvious from (19) that both principal stresses are
always negatlive. Cocnsequently, 1t 1s possible to construct a
design with a reinforcement which is uniformly stressed and with
identical principal strains

»

1, =" -/::' (20)

~ The trajectories of principal stresses, along which the rein-
' forcement fibers are oriented, in thils case, are families of co-
focal ellipses and hyperbolae with foci at points
ITwa gyl &t —a, s i

' here, the hyperbolae determine direction c.

On the x~-axis segment [-a, a) the principal stresses are
maximum, under condition (20) this indicates the maximality of
value 8; + &, then, according to (15), we find that

FRESS S PYIES ” (21 )

DU S U ST * SR S-S PT THt Jt o v
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It is interesting to note that if the load on segment [-a 6 al s
is not constant and the constant displacement vZ = const (smooth ;
rigid stamp) with the same total force 2Pa, then the optimum design ;
coincides with the constructed. Actually, the found deformatiocn
field permits us to satisfy condition

. ) = (€, = ot ;04 = —p, ¢ =yt )

It is evident from (19), (21) that when rys Po > @, Sy S5 %
+ 0, consequently, at the sufficient distance from the loaded

segment the reinforcement can be terminated (when the contribution
of depleted reinforcement to the total material strength proves to

be small in comparison with the actual strength of the binder).

(i (OB

PR

B. Circular plate loaded with a uniform tangential forece along
the internal and external contour. We construct a design which
satisfies conditions (11). As a matter of course we introduce
polar coordinates r0 and accept for the reinforcement directions
condition

y=0zYa
(plus for o and minus for B)
specifying that direction o forms angle 1/4m with the radius-vector,
and angle y with axis x. In this case the equation of line o in
system xy has the form

yreErn/e--

A soluticn of the latter, written in polar coordinates 6 = ln cr
(logarithmic spiral), is ¢ = const. Equation of lines B: 6 =
= ~1ln cr,

Familles of such curves s sfy ~eormtion (14). The tensor
components of stresses

- o o

Tiam Fat) T.om Ty .

Here FF - force per unit length of the internal contour, a -
internal plate radius, the external radius can be arbitrary.
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The principal stresses, thickness, and reinforcement levels
are expressed by formulas

T T:nbal/b, A= Frhtse,, 1= maedfpn

From conditions (11) we can also determine the displacements
along the radius and in the circumferential direction

-0, u* = 2rinir/e)
C. Cirecular plate under internal pressure. The radial and
circumferential directions we take to be the reinforcement direc-
tions, then the equations of equilibrium and compatibility will

assume the form
(22)

Trem (rTY). o, m (rey)’
Here subscript 1 pertains to the radlial conditions and sub-
seript 2 — to the circumferential; the prime indicates differentia-

tion with respect to r.

It is shown in [1] that in the absence of external pressure
the construction of a design with €) = &, = censt 1is impossible
according to (10). It is readily seen that construction of a
design which satisfies conditions (11) is also impossible due to
the fact that the second condition (22) is not satisfied.

We willl assume that the reinforcement fibers are oriented,
this leads to the following condition concerning the reinforcement
level in radial direction [1]:

(23)

Sy p/r (1t = const)

Boundary conditions

Tvu =P when raa, Toxr guen o2 b

Expressing all variables Ifi*terms of €,, we [ind specifically

that
(24)

A SR W

FTD-HT-23-1245-72 10
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We select 82 such that volume (9) of reinforcement is the
smallest, 1.e.,
E M riry” + 2!(:'

e

dr = win (25)

-»,
@ Somemy

' The Fuler variation equation has the form

rese;’’ + Qesty’ = r(e) w0

; Its general solution is €5, = ¢y exp (c2/r); where T1 =0, Sl #
b # 0 when r = b} consequently (see (3), (5)), we have sl(b) = 0.
: From this e, = b. With aid of (22) we obtain

e -z ey exp(b/r) eywm (8 —b/r)expid/r) (26)

Let b < 2a (for b > 2a the investigation is similar but the
expression for constant ¢, is different).

E Functions (26) have the greatest values when r = a, here

mux {[e,], |21} = e:(e)

We will assume that thlis maximum 1s equal to the maximum
deformation value € and thus determine the constant

cy=ecxp(~b/e)

Now, from (24) we determine the level of reinforcement Sz(r),
which yields the extremum to the examined functional

S:(r) = pb* /12

The remaining boundary condition we use to find constant u
finally,

S) = Pat ! Ee(b—a)r, 83 = Pa*b? | E¢ (b — a)r*
Ao Plat 4+ 3) [ Eesa(d —s)e

W

.. The design 1s constructed. We can show that the second
variation of functional (25) is an extremely positive functional

W e oy S 7 TS

FTD-HT-23-1245-72 11




at "point" €, ® 0, exp (b/r); consequently, the found extremum 1o
a minimum.

For reinforcement volume (9) we obtain the following formula:

V* e 2nPg(s + b) /1 Re

In conclusion, we will examine the behavior of representative
point (cl, ez) describing the stressed state of the body elements
along a certain plate radius. For this we will express € in terms
of 52(b = 2a) with the aid of (26)

8w =y + 1o (83 /¢)]

A corresponding curve is shown in Fig. 2. When r changes from
a to 2a the representing point travels the curve from B to Q.

As we can see, there is no analogy here with the coptimum
design of the rigidly elastic bodies, where it 1is most convenient
and always possible to use the points on a restricting surface.

In the examined case, the points at which the limiting curve inter-
sects the axes of coordinates (for example) are less suitable than
many internal points, since one of the reinforcement directions

for them 1is not loaded.

The author expresses his appreciation to Yu. N. Rabotnova
for his valuable suggestions,
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