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1. Introduction

I would like to discuss some of the work that has been
done in designing experiments involving response functions non-
linear in at least one of the parameters. Formally, this
excludes the large volume of work on the planning of factorial
experiments and on the estimation of multiple regressions,
including polynomial response functions, although there are
many similarities in both the methods of attack and the results
obtained in the linear and non-linear situations.

This is not an area to which Fisher devoted a great deal
of attention. But the first design problem for which he
published a solution was non-linear. This was in his 1922
paper on the mathematical foundations of theoretical statistics,
before he had published anything on either the analysis of
variance or on randomization and the design of agricultural
experiments. The problem is thz estimation of the density of
small organisms in a liquid by means of a series of dilutions.
This problem forms a convenient introduction. It is a one-
parameter problem, yet illustrates some of the basic features
of non-linear problems.

In this review I shall try to concentrate on the issues
that obviously present themselves, the methods of attack
adopted, the progress made thus far, and some problems still
awaiting, so far as I know, published research. The area is
an exciting one. On the technical side, a high degree of both
mathematical and computing skill is required in the more complex

problems. On the practical side, there is the “nportant



question: 1is the research producing the kinds of results that
assist the investigator in what he regards as his main problems?
Equally important and by no means easy, are we able to explain

the methods in terms that the experimenter can understand and

use?

2. Dilution series experiments

A volume V of a liquid contains N tiny organisms, thoroughly
mixed and with no tendency to clumping or mutual rejection. A
small volume x is taken out. The probability that this volume

contains no organisms is
N = =
P = (1 - 5) T e Nx/V _ e~ 0%

Here 8, the density per unit volume, is the parameter to be
estimated, while x corresponds to the level of a factor which
can be chosen by the experimenter. In practice a standard
volume is taken out by pipette, a desired x being obtained by
diluting the original volume with pure water. The lab test can
detect only whether the sample is sterile (contains no organisms)
or fertile (contains one or more organisms).

If n samples are drawn for given x, the probability that

s are sterile is the binomial

The criterion which Fisher selected can be described in
two equivalent ways. One is that he minimized the large-sample
formula for the coefficient of variation o~ the maximum likeli-

hood (ML) estimate of 6. Fisher himself described it as



maximizing the sample information about log 6 = 621(6), where

I(log 8) = n(ex)2/(e%*-1) . (2.1)

He regarded this criterion as the natural one in small as well
as large samples, since he used the phrase "without any large-
sample approximation" in referring to it.

To maximize I(log 8) in (2.1), the quantity 6x should be
set at 1.59, giving P=0.20. To find x such that x6 = 1.59, we
need to know 8. This is a standard feature that distinguishes
non-linear from linear problems. In a non-linear problem, the
statistician can say to the experimenter: "You tell me the
value of 6 and I promise to design the best experiment for
estimating 8". 1If the experimenter replies, "Who needs you?",
this is natural but not helpful.

What can be done in practice? Three possibilities suggest
themselves. With a good initial estimate eo of 6, the experi-
menter can use Fisher's solution, setting x = 1.59/60, and
assuming that he has a good if not an optimum experiment. 1In
Fisher's problem the value of 8 is usually known poorly =--
perhaps within limits GL, BH whose ratio is 100 or 1,000 to 1.
The natural first question here is: can the experiment be done
sequentially? The first experiment has x =1.59/60, where eo
is perhaps a poor first guess. The second experiment has

1
experiment, and so on, creeping up on the best 6x.

X = 1.59/61, where 6, is the M.L. estimate of 8 from the first

So far as I know, dilution series experiments are routinely

done non-sequentially in a single operation. If 6 is thought
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to lie between 8, and By Fisher's approach was not to optimize
anything, but to try to guarantee a specified expected value
of I(log 6). In a series of two-fold dilutions, for example,
the percentage of the total information supplied by different

dilutions is shown in Table 1.

Table 1. I(log ©) in percents at different levels of 6x
0x 22 42 1 /2 1/4 1/8 <1/16

I(%) 0.9 12.6 26.4 24,5 16.2 9.3 4.9 5.2

The five dilutions from Ox=4 to 6x=1/4 provide 89% of the total
information. To ensure that these dilutions are covered, we
want x . 8, < 1/4 and x_ . 6, > 4. This gives x . /x . >166,/6,.
With OH/6L=100, twelve two-fold dilutions suffice to cover this
range, and 15 when OHIOL = 1,000.

The Rothamsted laboratory which brought the problem to
Fisher did 38 dilution series daily, and he observed that daily
calculation of the 38 M.L. estimates would be "exceedingly
laborious". Estimating € by the method of moments (equating
the observed total number of sterile plates tc the expected
number) can be done in less than 5 minutes per series by a
table which he provided, now Table VIII2 in Fisher and Yates.
Further, he showed in 1922 that the method of moments has an
asymptotic efficiency of 88%. Thus, although one of the
principal points in his 1922 paper was the superiority of M.L.

over moments, he recommends moments for this problem for what

seemed to him sound practical reasons.



The dilution series example reveals four types of problems
that recur throughout non-linear experiments. (1) setting-up
one or more criteria by which *to judge alternative proposed
designs. Often, much wa2ight will be given to getting good
estimates of the parameters, (2) deciding how to proceed when
initial estimates of the parameters are dubious. The relative
feasibility, cost, and performance of sequential and non-
éeqﬁential methods become important here, (3) any biometrician,
at least, would insist with Fisher that the experiment be capable
of providing its own internal estimate of c.v.(8). Dilution
series can do this if the model is correct and if large-sample
formulas can be trusted in small samples -- a point that could
stand more checking, (4) checks on the correctness of the model.
With two-fold dilution, about 7 dilutions should provide P

2

values between 5 and 95%, giving some data for X° and related

checks.

3. Other work by Fisher

Fisher's remaining work on non-linear problems mainly
involved using the concept of amount of information as helpful
in planning data-collection, as illustrated in the last Chapter
of his book, The Design of Experiments (1935). He did much
work of this kind, which I will not describe, on the estimation
of linkage in humans, animals and plants. In plants, for
instance, the amount of linkage between two genes can be esti-
mated by forming a double heterozygote and either crossing it

with itself (selfing) or backcrossing it. For estimating close



linkage from selfing, he showed that formation of the double
heterozygote parent in coupling (AABBxaabb) can be 15 times as
efficient as its formation in repulsion (AAbbxaaBB), and is
nearly as efficient as backcrossing.

Fisher's first paper (1923) on the analysis of variance,
dealt with a 12x6 factorial on potatoes. He first presents the
standard ANOVA into main effects and interactions. He then
remarks that the preceding analysis is given solely for
illustration, since the linear model is obviously unsuitable,
predicting negative expected yields for some of the plots. As
more reasonable, he proceeds to fit a non-linear product model,
which can be written

E(yij) = u(1+ai)(1+Bj) :

This requires more work but as anticipated fits better, the
S.S. deviations being 847 against 98l. From the 1923 paper, I
would not have expected Fisher's later ANOVA work to have con-
centrated so largely on development of the linear model. I am

sorry that I never asked him why.

4. Quantal biocassay (non-sequential)

Another earlier ncn-linear problem on which much research
for practical experiments has been done is quantal bioassay
under a normal or a logit tolerance distribution -- a problem
again with a 0-1 response. We are comparing a Standard (S) with
a Test (T) preparation thought to contain the same active
ingredient and therefore to act like a dilution or concentration

of the Standard. Thus if x is log dose, an amount x of S has



exactly the same effect as an amount x-M of T. Here M, the
log relative potency of Test to Standard, is the quantity to
be estimated.

To illustrate from the normal model, if n subjects are
given an amount x of S, the proportion responding is binomial

with

X (x-ug)/ao
1l 2,2 1
exp{- f(x-us) /o“}dx = —— [ Z(t)dt (4.1)
O/TT_I -0 /T'l? -00
where Z(t) is the ordinate of the Standard normal curve.
For T, the formula differs only in that uT=us-M. Thus the
problem is a three-parameter one, with one parameter M to be

estimated and two nuisance parameters.

For a single agent, Fisher showed that
I(u) = nz?/PQo?

which is maximized at P=0.5, x=py. Thus if Hgs My and therefore
M were known, the optimum experiment would place all subjects
at the levels of S and T causing 50% response.

Lacking this knowledge, experimenters use 2 or more levels
of each agent (hopefully straddling the 50% response) from which
the M.L. estimates of Mgy Mp Can be obtained.

If Y is the normal deviate corresponding to P in (y.1)
- =M X
Y-?"’a .

For a single agent, Fisher (1935) and others -- see Finney

(1947) -- showed that M.L. estimates of y and o could be obtained

iteratively by a weighted linear regression on x of a transform



y (the working transform) of the observed proportion p = r/n
of responding subjects.

This approach gives two fitted lines

YS = Vg + b(x-?s) (4.2)
YT = ?T + b(x-xT) s (4.3)

To obtain the same response, 93 = ?T’ the difference M between

the required doses §S and iT is, from (4.2) and (4.3),
M = Xg-%Xp - (Y-¥p)/b,

where 1/b estimates the assumed common ¢. Since b is first
estimated separately for Test and Standard, a test of signifi-
cance of (bT-bS) is available and is regarded as an essential
check on the basic assumptions before the combined estimatc b
is made.

Since M involves the ratio (?S-§T)/b of two random
variables, Finney's criterion (1964) for the choice of levels

of xp and xg and of n is the half-width of Fieller's (1940) 5%

fiducial interval for M, which is found to be
A -— 2 l
(M-xg+x.) " |7
) + (4.4)

1.96 1 1
Bi-gy |8 ( ' =

-g gtnw Ttnu

where S = Enw(x-§)2 summed over both agents and g=(1.96)2/b2

Sxx

is the square of (1.96 times the coefficient of variation of b).
In designing an experiment, the number of levels k, their

spacing d, and the sample size n at each level must be chosen.

From previous work on the Standard, good initial estimates of



8 and bg should usually be available and an initial estimate Ho
is assumed. The strategy is to make Xp = xg-M, at any level.
This should make ‘ﬁ';s’;r’ in (4.4) small and the corresponding
term in (4.4) is often negligible. In this event, with n

constant, (4.4) becomes

1
(1.96) [ 2 ]’z (4.5)
b n{l-gIW

where W = Iw over the k levels for one agent. Regarding the
quantity multiplying (1.96) in (4.5) as a kind of effective
standard error of ﬁ. Finney (1964, 496-7) tabulates bzvs(ﬁ) for
k = 2,3,4, total number of subjects N = 2kn = 48, 240, and a
range of choices of levels which give P values centred about
508. A similar table is given for the logistic model in which
logit P is assumed linear in x.

These tables provide estimated optimum spacings and the
corresponding bzvg(ﬁ) for 2,3,4, levels and N = 48, 2u0.
Similar tables for other sample sizes and numbers of levels
could easily be provided.

The optimum levels assume good initial guesses. The only
work that I have seen allowing poor guesses is by Brown (1966).
Using the simpler Spearman-KSrber estimates of us, "T' he
recommends choices of n, d, kg and k, (which he allows to
diffar), in order to give a desired width of 95% confidence
interval for M. This approach is similar to Fisher's in the
dilution series. Naturally, more levels are required to eniure

coverage of the 50V dose: Brown's worked example gives ks=10.

le22.
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Thus, based on the Fieller criterion, available methods
furnish

(1) a near-optimum experiment, assuming good initial

estimates of o, Mg and M, and using large-sample theory,

(2) assuming the model correct, Fieller's iimits for the

sample data, as a measure of the precision of ﬁ,

(3) for more than 2 levels per agent, tests of the

adequacy of the model. The x2 for deviations from the

model has (2k-3)d.f. These split into 1 d.f. for non-
parallelism, 1 d.f. for combined curvature, and (2k-5)

d.f. for other sources. Fortunately, as Finney shows,

k=4 does not demand more subjects than k=2.

I know of no intensive study of the robustness of the pre-
sumed optima to poor initial guesses at the parameter values.
Extensions of Finney's tables to more spacings and more sample
sizes would reveal the effects of wrong spacing, through a bad
guess at o, on bzvg(ﬁ). For r>1, it looks from his tables that
the effects are more serious if the guess is o/r than if it is
ro, and more serious with fewer levels, as would be expected.
Sample si.e charts by Healy (1950) indicate for k=3 the effects
of wrong centering of the doses (through a pcor guess at us).
More work on robustness and on the small-sample performance of

the recommended plans and formulas would be useful.

5. Quantal bioassay (sequential)

A well-known method, the Up and Down or Staircase method
(Dixon and Mood, 1948, Dixon, 1965, 1970), was devised for

experiments in which it is convenient to test subjects one at
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a time, determining the level of the agent for the next subject
after seeing the result (0 or 1) for the previous subject. For
a given dose spacing d, the rule for a single agent (Standard

or Test) is the very simple one

X z xu+d (if yu=0); X

utl z xu-d (if yu=l) .

u+l

The idea is, of course, to concentrate dose levels in the
neighborhood of U, the median of the response y, which the
methcd is designed to estimate. The nominal sample size N is
defined as the numnber of trials, beginning with the first pair
in which a reversal (0 to 1 or 1 tuo 0) occurs. The estimate r
of U is the mean of the last N values of L with an adjustment
(Dixon, 1970) depending on the numbers of 0's and 1's that were
obtained. The mean square error of ? is approximately 202/N
when d lies between the limits d = 20/3 and d = 30/2, with

d = 0 recommended as the most accurate spacing. This work is
based on exact small-sample computations.

A single sequence provides no usable estimate of 0, which
is undesirable if we wish to attach an estimated r.m.s. error
/20//N to G. Dixon (1970) recommends that the experiment be
run in independent sequences with N(say)=6 in each sequence.

If there are r of these in parallel under the same operating
conditions, this speeds up completion of the expariment and
allows V(G) to be estimated from z(aj-ﬁ)zlr(r-l). Alternatively,
other relevant variables may be changed from one set to another,
permitting the effects of these variables on u to be investi-

gated by analysis of variance techniques.

> e bl el o
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For a logistic model, when a single (longer) sequence is
being used, Wetherill (1966) has proposed a change intended
to make the accuracy of U more robust against a poor initial
guess and use of a d too large. After 6 changes of response
typé have occurred, estimate ﬁ, and restart near § using half
the original spacing. Here there remains the problem of an
estimate of 0 from the data.

Another sequential plan, using the Robbins-Monro stochastic
approximation process, attempts to do better than the Up and Down
by steadily shortening the steps as the sequence proceeds. If
a group of n subjects are tested at each step, the level of x

for the (u+l)th experiment is
- c 1
Xael T %y Gl ) -

When the experiment is terminated, the estimate G is the level
at which the next experiment would have been conducted (Cochran
and Davis, 1965). With g steps, the asymptotic formula for
V(u) is w02/2ng, the value it would have if all trials could

be conducted at the optimum 50% level. To guard against a poor
initial guess at ¥, a 'delayed' version was also suggested in
which the step size c éemains unchanged until both deaths and
survivals have been obtained. A modification with a similar
purpose has been proposed by Kesten (1958).

For srall experiments with N = ng = 12, where T is the
number of steps = 3, 4, 6, or 12, Davis (1971) has compared the
M.S.E.'s of u for three versions of the Robbins-Monro, two of
the Up and Down, and a non-sequential experiment using the

Spearman-Karber estimate, for normal, logistic, uniform and
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exponential tolerance distributions. This is the first broad
comparison of the performances of different plans in small
samples. It is reasurring that the recommended step size and
the asymptotic formulas for V(ﬁ) both perform well for starts
within about 1.50 -- about all that can be expected for N=12.
Overall, delayed versions of the Up and Down and the Robbins-
Monro performed best, both easily beating the non-sequential

methods.

6. Single continuous-variable response-a criterion

For the uth observation or trial (u=1,2,...,N) the model
now becomes
y

= FOE50) *ey = FE  uee by 87000s8)) + €y (61D

u u

Here, Eui denotes the level at which the value of the variable
§; is set by experimenter in the uth trial. There are k such
factors or variables, while p is the number of parameters
involved in the model. In the simplest models the €, are assumed
independently N(o,oz).

The paper that provided the impetus to intensive work is
that of Box and Lucas (1959). Much related earlier work,
dealing primarily with the linear case, had been done by Kiefer
(1959), Elfving (1952), and Chernoff (1953), who considered the
choice of a criterion and the finding of the design points
(levels of the factors Eiu).

The criterion proposed by Box and Lucas assumes interest
in all the parameters. It maximizes the generalization of

Fisher's amount of information, or equivalently minimizes the
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asymptotic formula for Wilks' generalized variance of the M.L.
estimates of the 95. From (6.1) the log likelihood is

L= - —15 g (yu-fu)2 .
20° u=l

It follows that the information matrix is

2 N 73f of
-3 L 1 -1 '
e (saast: j)- " z(ro—:)(sr“);’z X'%)

i 0" u=l j

where X is the NXp matrix

afu
(Xuj) ] 3‘6‘5’ .

The xuj are known when the factor levels Eui and the ej are
known. The criterion - choose design points Eui to maximize
|X'X| -assumes initial guesses ej for practical use. Other

attractive features of this criterion (summarized by M.J. Box

and Draper (1971)) are as follows.

(1) It minimizes the volume of the asymptotic confidence

region for the Oj (Kiefer, 1961).
(2) For response functions locally linear in the
neighborhood of the M.L. estimates, it maximizes

the joint posterior probability of the ej’ given a

non-informative prior Hdej. (Draper and Hunter, 1966).

(3) It is invariant under changes of scale of the ej'

7. Finding the design points - non-sequentially

Given a criterion, the next step is the complex one of

finding design points that satisfy the criterion for a specified

N trials. In earlier work, Chernoff (1953) coasidered the case
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where our interest is in s < p of the parameters, the remaining
(p-s) being nuisance parameters. His criterion was different -
minimizing the average of the asymptotic variances of the s
M.L. estimates. Following Elfving (1952), he showed that an
optimum design needs at most s(2p-s+l)/2 points, becoming
p(p*1)/2 when s=p, and p when s=1.

As a start, Box and Lucas (1959) assumed initial guesses
20 and sought an optimum set of levels when N=p, i.e. when there
are only as many trials as parameters to be estimated. They
point out unappealing features of this decision: no test of
the fit of the model, no attempt at robustness against poor
initial guesses, to which might be added no data for an experi-
mental estimate of 02.

One advantage with N=p is that (X'X) is square, so that
Ix'x| = |X|2 and it suffices to maximize [X| = Ixuil' Illus-
trative examples worked by Box and Lucas include the exponential
growth or decay curve, the Mitscherlich equation, and the two-
factor function

-85,
f(El,EZ,'91,92) = exp(-elile A

Depending on the complexity of the problem, methods
available for solution are
l. Geometric or analytic,

2. Calculate |X| for a grid of values of the § fit a

iu?
quadratic to this grid and seek a maximum (with trouble
possible if IX| has more than one turning value)

3. Various computer iterative hill-climbing techniques.

T T e Ty T T T

PR IR ) |
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As a simple example with an analytic solution, consider

the exponential decay curve

where t (time) is used for Eul‘ The region feasible for

experiments is t(min) < t < t(max). -‘For this £,

-85t -9.t
Xl =
9t e e'eztz
= 21
-0, (t +t,)
_ 21 -2
- el(tl-tz)e .
This can be written
-8, (t,-t,) -26 .t
I%] = (8 (t.~t.)e 2 1 27} {e 2%
11 "2

>0, we want t2=t(min). The first

For given (t -t2) and with 6

1 2
curly bracket is maximized when

t,-t, = 1/92, giving t, = t(min)+l/92

1 "2

or tl = t(max), whichever is smaller.

Coming to the case of a single non-sequential experiment
with N>p, Atkinson and Hunter (1968) found in several chemical
examples worked by computer maximizing that with N a multiple
of p, the optimum plan consisted simply of N/p replications at
each of the p optimum sets of levels for the case N=p. This
result certainly simplifies the finding of optimum plans.

Although a counter example showed that the result does not hold

in general, they proved, as a sufficient condition, that the

result will hold if the region of experimentation lies within
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a certain ellipsoid in the x-space (a point that can be checked
by the experimenter.)

M.J. Box (19682,1970a) considered also the case:N not a
multiple of p. In some problems he found that replications of
the N=p solution differing by at most 1 could be proved to be
optimal. In others, while this could not be proved, a computer
search was unable to locate anything superior to the near-equal-
replication solution. He also considered a one-factor, two-
parameter problem with § , = time = t,» where different trials
cost different amounts. The problem was to maximize |X*X]|
subject to a fixed cost C = Zcu. The optimum again consisted
of experiments at only twc times ty, t,, but with the difference
that t

and t, changed both with Nand C and the numbers of

1 2
replications were no longer near-equal, so that more computing
effort was necessary.

The counter-example by Atkinson and Hunter is the linear

fitting of a bivariate regression, f = 6,&, +6,E, , with the

u
region of experimentation OiEiuil. For N=p=2, the optimum

design is at the levels (1,0) and (0,1), which gives

10
X'X = s Ix'x] =1 .
0 1

With N=6, three replications of this plan give

3 0
X'X = s |x'x| =9 .
0 3

But two replications of the three-point plan (1,0), (0,1), (1,1)

give y 2
X'X = s IxX'x| = 12 .

2 4
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The key ellipse in this example is the circle Ei + Eg = 1, and
the point (1,1) in the experimental region lies outside this circle.

The preceding results on the best set of design points are
conceptually similar to Fisher's original optimum for the
dilution series problem, and assume in effect good initial esti-
mates of the ej' With poor initial guesses, the resulting plan
will not be optimal in any real sense. I have come across no
work analogous to Fisher's, where we start with a wider
spread than p points with the object of guaranteeing a specified
value of |X'x]| starting from initial 6. assumed known initially

J
only to lie within a certain region.

8. Firding the design points sequentially

As would be expected, the methods start with p points,
determined by first guesses eoj’ and leading to M.L. estimates

815 of all the parameters. Box and Hunter (1965a) discuss how
to add points one at a time. If (N-1) steps have been completed,

A

so that ON 1,3 are known, then [X'X| as a function of the x's
=4
for the Nth point takes the form
c +x2 CqptX, X Cq X, \yX
11 "IN 12 ®1N"2N °*°°° 1p "1N“pN
CqA+X, gX c +x2
Ix'x|. = 12 "1NT2N T22 72N b
N
Cq X, X cess c +x2
lp "1N"pN pp “pN

i
points of a grid of values of the Eul"'zuk and a quadratic

where the cjy are known. The criterion is computed for all

fitted to find the maximizing values.

R - = Chmmls de. e g

S
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M.J. Box (1970a) adds sequential sets of n=p points, each
put at the best p design points as estimated from the M.L.®
obtained from the combined trials conducted to date. After a
time, both the M.L.8 and the indicated set of p design points
for the rth set begin to change little from those in the
(r-1)th set. Box introduces a criterion R1 as a guide to the
time when it is no longer worth changing points. A second
quantity R, compares the |X*X| value given by all trials con-
ducted to date with the value that |X'X| would have if it had
been possible to use our current estimate of the best design
points in all trials. Thus R2 indicates the amount lost owing
to poor initial guesses at the Oj. In the simulated example
(3 parameters, 2 factors), some values of R; and R, are as in

Table 8.1.

Table 8.1. Values of Rl’ R2 in sequential plan

Set 2 3 4 S 6
R, 1.40 1.09 1.06 1.04 1.02
R2 0.78 0.86 0.86 0.88 0.91

In order to study the effect on the sequential process of

having initial prior information of different amounts about

different Oj, Draper and Hunter (1967a) took a multinormal prior

1

(2m) * |8] “expl- 3(8-8_)'a~1(e-5 ))

where 1 is the pxp matrix of variances and covariances and the

e L

eSSk i, Mo Rl MR AR D el

£ SUOVSES Sy Sy Y.

8, are initial guesses. In the case where N trials had already

been completed at chosen levels Eu’ they discussed where to put
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a further n trials. Their criterion was to maximize the
posterior distribution of & after (N+n) trials with respect
both to 8 and to the values § (u=N+l1l,...,N+n). Assuming
£(g,28) to be locally linear, this leads to the approximate
criterion: maximize

2

|X'X + o2a7%| (8.1)

with respect to @ and §u (u=N+1,...,N+n). One hurdle is that
in (8.1) the values of § are hidden in X'X and their maximizing
values after (N+n) trials depend on observations not yet taken.
The natural suggestion is to use §N in maximizing (8.1) with
respect to the levels gu'

The principal value of this type of prior is likely to be
the light it throws on how the design would be affected by
different amounts of prior information about the different ej.
As an illustration they work a problem with 91,92 independent
normals (0,0%), N=0, n=2, and a single £u1 (=tu, a time variable).
As g)»0, vary from 0 to =, three basic design types predominate:
(tl’tz) = (1.2,6.9) for little prior information, (tl’tz) =
(1.2,1.2), where the experiment concentrates on estimating 6,,
and (tl’tz) = (6,9,6.9), where the emphasis is on 62. Further

illustrations of this type would be of interest.

9, Tests of fit of the model

As a dividend, the sequential approach might provide some
data for a test of fit of the model (at least assuming 02 known),
since A will have been determined in general at N>p design

points. If, however, the successive design points vary over
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only a restricted part of the experimental region, examination
of the residuals may tell us little. Experience with a wider
range of non-linear models may throw more light on this issue.

I krow of no work in which an N>p experiment was deliber-
ately planned ab initio with a test of lack of fit as omne
objective. Two suggestions have been made by Box and Lucas
(1959).

First, having computed the combinations of levels of the
g, needed to maximize |X'X|, the experimenter might examine
where they occur in the & space of interest, and add extra
points where he is most worried that the model may be incorrect.

Secondly, the experimenter may sometimes be reasonably
sure that if the model is incorrect, a more general model with
say one or two extra parameters gives an adequate fit. The

example cited is where the model (with a single { variable) is

-0,&
£ = l-e 17V
u

where in fact the more general model

f. = ! {e-92£u - e-elE
u " 76,-8,)

4}

might be required. The experiment might be planned to estimate

and 6

0 and test the N.H.02=0, which makes the original model

1
correct.

2

10. Discrimination between specified models

An approach by D. R. Cox (1961, 1962) for discrimination
between two models, used a test of significance and was asym-

metric: the hypothesis that model 1 is correct was chosen as
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the null hypothesis. The test criterion was a modified form
of the likelihood ratio, maximizing the asymptotic power against
model 2 as the alternative. Later, in planning an experirent to discrim-
inate between the probit and the logit models from observations
confined to 3 log dosages, Chambers and Cox (1967) used a
compromise symmetric form of this approach. They first chose a
criterion asymptotically powerful against A.H = logistic, given
NH = probit. For this criterion, they determined the optimum
three dosage levels and the proportions of the observations to
be put at each level. Then they reversed the procedure, having
A.H. = probit, N.H. = logistic. Fortunately, the optimum doses
did not differ greatly in the two cases, so that a good com-
promise design could be constructed. Unfortunately, as Chambers
and Cox note, this plan put the majority of the observations at
a high dose level with expected percent killed over 99.6%V. Thus
the experiment would require large samples, as will not surprize
those who have worked with both probits and logits. This
approach might end, of course, by rejecting neither model, one
specific model, or both models.

An alternative approach, Box and Hill (1967), is symmetric
and extends to more than two specific models. For two models,
the approach supposes that n observations have already been
taken (at least enough to estimate any parameters involved) and
considers where bLest to put the (n+tl)th for maximum discrimination.
At first sight one might be inclined to seek the point (levels of
the factors) for which |91-?2| is maximized, where ?1 and ?2 are

estimated from the results for the first n observations. But
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as Box and Hill note, the precision of estimation of |?l-§2| is

also relevant.

Prior probabilities n;, are first assigned to each model.
With two models, the choice might be NI,/ = 1/2 and with m models,
Rip ? 1/m. After n runs, the posterior probability for the ith
model is

n. =1

where P; is the probability density function of the nth observa-
tion ¥ under model 1i.
The criterion chosen for discrimination uses Shannon's

(1948) concept of entropy, also known as the Kullback-Liebler

information (1951). For m models the entropy is m
ileiLnni .

This has its maximum value when ni = 1/m and becomes steadily

smaller as the n; becomes unequal, i.e. as discrimination improves.

Hence the (n+l)th observation is chosen at levels § which will
maximize the expected decrease in entropy from the nth to the
(n+l)th experiment.

For two models the resulting discrimination criterion is

shown to be
D = l!,.nllm(./']:01!.1'1(pl/p2)dym1 0ﬁ21n(p2/pl)dyn*l).

If we can further assume that the models are locally linear,

with deviations €u that are N(o,o2), where ol is known, the

1) (2)

criterion becomes, for two models Y and Y 5

2

2 .2
S P (9,79 0(;{(1)&(2))2 ( 1, _1 )}
21ln 2n (020031)(02”‘5 n+l "n+l oﬁoz ozmg ’

3

i
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2

where o is the approximate variance of ?(1)

n+l’

D is the corresponding expression summed over all pairs of

For m criteria,

models.
One of the examples worked is a simulated example, with
4 parameters and 2 factors, to distinguish among the first-
to fourth-order reaction curves. The experiment starts with a
grid of 4 points to estimate all 4 parameters needed. The

results proceed as in Table 10.1.

Table 10.1. Example of discrimination among models

n £ £, ny n, n, m,
1 25 5§75
2 25 475

3 125 575

4 125 475 .01 W43 .50 .06
5 12¢% 600 .00 +56 U3 .01
6 1258 600 .00 .86 .13 .00
7 50 450 .00 .97 .02 .00
8 100 600 .00 1.00 .00 .00

From the beginning, the competition is between the second-
and third-order curves, the second-order soon establishing itself
as correct.

Box and Hill also work an example in which (i) all models
are generalizations of model 1 and (ii) model 1 is correct so
that all models are correct. Here the entropy criterion seems

to be given an impossible task, but by their largest n(15), it
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is tending towards selection cf the simplest of the correct
models - an admirable performance. However, in more recent
examples of this situation in which n was continued to large
values, Siddik (1972) found that the posterior probability of
the simplest correct model rose to a value 0.85 to 0.95, but
then fluctuated erratically around that value. While it still
can be conjectured that the criterion will operate well in
practical experiments, its large-sample performance needs
further study.

A succeeding paper by Hill, Hunter and Wichern (1968)
recognizes that the best choice of the § levels for discrimin-

ation will not in general be those that give the best parameter
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estimation for the correct model, and seeks to reconcile these
conflicting aims. If we knew that model j was the correct
model, we would choose the £ to maximize A; = |%'X| 5 for model

ax
estimation criterion Aj for any other choice of levels .

j. Call this value Aj o and let Aj denote the value of the

»
Similarly, let D ax be the maximum expected decrease in entropy,
and D the decrease obtained from any other setting of the .
The criterion which these authors suggest for choosing the {
levels is

m

C = wlD/Dma 3

X

The w, and w, are weights (wl+w2=1) which can be changed, as the
sequence of runs proceeds, to give increasing weight to good
parameter estimation when it becomes clearer that one model is
being selected by the discrimination technique. For w, they

Buggest’ as One pOSSIbllity,
VI -{m(l-“ )/(m-l)]
1 bn

where II.  is the probability assigned to the best model before

bn
the (n+l)th observation is taken. The quantity A is a positive
power that controls the rate of decrease of Wy the weight
assigned to the discrimination criterion. Initially, if all
Do ® 1/m, vy is unity and all emphasis is given to good
discriminatior. As nbn approaches 1, so does Wy emphasis

shifting to estimation for the most likely model.
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11. Model building

It is more difficult to do justice to the work here, since
the strategies will change as the accumulated data suggest new
ideas to experimenter and statistician.

As one approach, Box and Hunter (1962, 1965b) consider the
case where the experimenter has at best a tentative model which
describes f(f,0,t). If there are k factors g which the experi-
menter can manipulate, they suggest running the reaction, with
measurements of response at certain fixed times, for a 2k
factorial or fractional factorial in the levels of the €59
widely separated as far as operating restrictions permit. For

each combination of the factor levels they =stimate each ej and

do a standard factorial analysis into main effects and inter-

actions for each 65' There are two objectives in this procedure:

(i) if the model is correct, the 65 should not change systemati-
cally with time or with the changes in the levels of the Ei’
since the Oj should be constant, and (ii) the way in which the
55 change may enable the experimenter to specify a vague model
more completely, or may suggest relations among the ej and the
Ei that make sense mechanically.

In their simulated example they use letters A, B, (the
initial concentrations of two reactants), C (the concentrations

of a catalyst), and D (the temperature), to denote the factors

instead of our El,...,Eu. The tentative model was

(B)k -k2t -klt

E(Y):rl:r;(e - e ) .



-27-

4

The initial experiment was a 2 factorial in A...D, measured at

5 times. The nature of the reaction suggested that

Py q -BllT

where T is the absolute temperature. (There are now 8 parameters
to be estimated). If this suggecstion is correct, a factorial
analysis of lnkl and lnkz, which was then carried out, should
show no effects of B and no interactions involving A, C, and D.
The analysis confirmed the model, as did careful examination of
the residuals (y-f) for the 2“ runs at the 5 times conducted
initially. Finally, the 8 parameters were estimated from the
combined data. The second paper (Box and Hunter, 1965) gives
further discussion of the examination of residuals, contour
diagrams, and plots of the likelihood function as diagnostic
aids. The necessity for repeated interchange of ideas between
experimenter and statistician is stressed.

An interesting review of approaches and problems in model-
building by M.J. Box (1968b) presents his experiences, with

discussion from the audience.

12. More than one measured response

In some chemical reactions it is possible to measure more
than one response Yus (2=1,2,...,L) which provides information
about some or all of the parameters Gj. The simplest example

quoted is the one-parameter exponential
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-9€u -8¢,
Yiu = © Y ey Yy l-e * €94

where the single factor Eu represents time. Note that Yiu?
You do not add to 1 because of the experimental errors €ou’

In a general approach the model is

You = FplEyi8) * e -

It has not been considered realistic to assume €ou’® Emu indepen-
dent. Instead, they are given a multivariate normal distribution
with variance-covariance matrix Oom’

The first paper on this problem, Box and Draper {1965) did
not assume the ¢ - known in advance, and merely assigned a

L

'non-informative' prior distribution to the o Later papers

&m’
took the more tractable problem in which the Oym are assumed
known, and will be considered first.

With known Tom® Draper and Hunter (1966) assigned a Bayesian
prior Hdej and followed the method which led to the |X'X]
criterion for a single response, as mentioned in Section 7. It

helps to write

v

H~M=

om - {ylu-fzu}{ymu-fmu) . (12.1)

uzl

They find that the posterior probability is

_ 1 &m
p(8|y) = c exp{- 3 L Lo v, } . (12.2)

o~
I

In this approach the ej would be estimated by minimizing

tLot?y (12.3)

oAm
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that is, by the natural extension of the method of least
squares to the case cf multivariate normal deviations.

By an extension of the univariate method, the further

assumption that the response functions are approximately linear

in the vicinity of the M.L. estimates leads to the criterion:

choose the design points to maximize

L L
A=|I o
221 m=1

lmx,

Xl (12.4)

.

where for given 2, Xz is the Nxp matrix

f
wy’ = 5, Gw®

(-3}

X2 = (x

The matrices Xz should strictly be evaluated at the M.L. §
after the experiment has been completed, which cannot be done
when the experiment is being planned. If no trials have been
conducted, the suggestion is to compute the X2 for initial
guesses 6 ; if N trials have been done and a further n are being
planned, use the Xl at the M.L. estimates after N trials.

Illustrations were given for a two-response, one-parameter
problem and by M.J. Box (1970a) for a two-response, two-parameter
and for a two-response, four-parameter problem. Draper and {
Hunter's interest was to see how the optimum plan and the value
of the criterion A in (9.4) varied with G113 Oy and p, while
Box considered whether replications of the optimum Nzp plan were !
still to be recommended. For N a multiple of p, equal replica- i
tions of this optimum were the bect he could find. For N not e -

multiple of p, the best of the near-equal replications was not
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optimal, but near enough as a good start in a computer search
for anything better. M.J. Box comments that this search may
not be worth the trouble, though further experience is reeded.

Draper and Hunter (1967b) have also extended to this case
the single-response work reported in section 8 for a multinormal
prior. With two responses, for instance, the criterion to be
maximized is

11, 22 12 ¢

' ' -
B = JaTTX X 40 X Xt T TR X+ X X )40

g
where Q@ is the prior covariance matrix of the ej.

Returning to the case of a 'non-informative' prior that
leads to the criterion (12.4), M.J. Box (1970b) considered two
practical complications. (1) The response variables may not
be measured directly but computed from other prime variables,
measured directly, whose values change as the design points
change, (2) The factor levels { may be themselves subject to
error (a familiar problem in experimentation). Consequences
are that the cij vary with the design points and that it
becomes less reasonable to think of 'dependent' variables You
and 'independent' variables €50 Nevertheless, by assuming
that the basic measurements are independent, with known vari-
ances, he has developed a computer program (essentially involving
a known oij changing with the design points). An example
illustrates the application of this technique.

As mentioned, Box and Draper (1965) considered the case

where the Oym are not known in advance. They assigned the

prior Hdej to the parameters and the prior
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1
- x(L+1)
which is the multivariate extension of assigning a uniform prior
to (log 0) in the univariate case. They find the postericr
1

- 2N
p(8ly) = clv, | <

where C is a constant. The Gj would then be estimated by
minimizing Ivzml. At first sight this criterion seems rather

different from the criterion (11.3): minimize

m
ILo Vom

which emmerged when the Oym Were assumed known. Box and Draper
show, however, that there is a natural resemblance. let Vzm

be the cofactor of Vom® Now Ivzml can be calculated by multi-
plying the elements of Vom in any single row or column by their

cofactors and adding. It follows that

v
vyl = SR v, . (11.5)

m

Thus the weights 6™ in (11.3) are replaced by weights propor-

tional to the M.L. estimates of the o*™,

The two simulated examples worked both involve only a
single Eu variate (time). One example has two responses, one
parameter, one has 3 responses, 2 parameters. It is now necessary
to take N>p in order to obtain estimates of the weights Vlm.
The values chosen were N=10 for the L=?, p=1 example and N=12 for
the L=3, p=2 example, no attempt being made to find optimum

values of t (design pointy). From the worked examples a

recommendation is made to plot the complete posterior functions
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for the ej obtained (i) from each individual response function
(ii) from each pair and (with L=3) from the three combined.
These plots indicate the type and amount of information supplied
about the respective ej by individual responses and combinations
of them. They can also reveal deficiencies in the mcdel, e.g.

when the posterior from Yiu has little overlap with that for
Y2u*
13. Comments

From the work on the 0-1 and the continuous-variable
response, we now have a good grasp of the multiple desirable
objectives in a non-linear experiment, a body of techniques
that concentrate on a general-purpose criterion for giving good
estimates of all the parameters, a method for discriminating
among specified models, and an attack on the problem of model-
building. Since much of the continuous-variable work is recent,
with simulated examples, I would expect a period of digestion
by experimenters in industry, with feedback on features that
they like and don't like and additional properties desired.
Further, as the groups at Wisconsin and I.C.I. warn us, the
industrial workers have still harder problems awaiting attack.

It is easy to list much additional related work that would
be relevant. To mention a few areas:

(1) Criteria and designs for the estimation of only some
of the parameters, the others being regarded as
nuisance parameters.

(2) Compromise designs, non-optimal by any single

criterion, that cope with several different objectives.
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For instance, a non-sequential plan might deliberately
start with N>p distinct points, in order to provide
(i) some robustness against poor initial 8,0 (ii)
either a check on the correctness of the model if an

2

outside estimate of 0 is available, or (iii) an

2 if the model can be assumed

internal estimate of ¢
correct. Something to provide both a check and an
estimate of o2 might I suppose be possible by a
development analogous to Tukey's 1 d.f. for non-
additivity under the linear model.

Since the approach and formulas are to a large extent
asymptotic, checks by computer studies on the small
sample performance of the 'optimum' plans and formulas.
Finally, and in no invidious sense, I hope that more
people will enter this field, with a resulting broader
range of problems attacked, of techniques developed,

and of viewpoints. The discussion in the Royal
Statistical Society, following Kiefer's (1959) pre-
sentation of his work on optimum linear plans, revealed
doubts about the wisdom of concentrating on optimizing
any single criterion. Reasons advanced were that
optimizing may require mathematical assumptions or
restrictions found unreasonable in many applications,
that the experimenter's aims may change when he begins

to see some results, and that, in sequential experiments,
rules leaving flexibility of judgment to the experimenter

and therefore sounding vague to some degree may be better

B T e s
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than fixed rules laid down by a statistician's
criterion. While this part of the discussion was
somewhat negativistic in tone, it suggested that
approaches from differing viewpoints have an impor-
tant role.

In a paper delivered at these meetings, Wheeler (1972)
maintains that the experimenter should seek a design that will
be reasonably efficient under a variety of situations which he
judges that he may face. Thus for insurance he may want to fit
a model more complex than the one that he hopes is correct, he
may fear some loss of observations from accidents, and may want
at least a specified number of degrees of freedom for estimation
of 02. To indicate the inefficiency of any proposed plan,
relative to a plan that concentrates solely on efficiency of
estimation, Wheeler uses as criterion the relative maximum
variance of the predicted response over the experimental region,
illustrating how the extensive results on optimum design for
linear models, in particular Wynn (1970), provide computer
methods for meeting these goals.

I wish to thank P. Morse, S. M. Siddik, and R. E. Wheeler

for information about recent work.
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