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1.  Introduction 

I would like to discuss some of the work that has been 

done in designing experiments involving response functions non- 

linear in at least one of the parameters.  Formally, this 

excludes the large volume of work on the planning of factorial 

experiments and on the estimation of multiple regressions, 

including polynomial response functions, although there are 

many similarities in both the methods of attack and the results 

obtained in the linear and non-linear situations. 

This is not an area to which Fisher devoted a great deal 

of attention.  But the first design problem for which he 

published a solution was non-linear.  This was in his 1922 

paper on the mathematical foundations of theoretical statistics, 

before he had published anything on either the analysis of 

variance or on randomization and the design of agricultural 

experiments.  The problem is the estimation of the density of 

small organisms in a liquid by means of a series of dilutions. 

This problem forms a convenient introduction.  It is a one- 

parameter problem, yet illustrates some of the basic features 

of non-linear problems. 

In this review I shall try to concentrate on the issues 

that obviously present themselves, the methods of attack 

adopted, the progress made thus far, and some problems still 

awaiting, so far as I know, published research.  The area is 

an exciting one.  On the technical side, a high degree of both 

mathematical and computing skill is required in the more complex 

problems.  On the practical side, there is the  nportant 
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question:  is the research producing the kinls of results that 

assist the investigator in what he regards as his main problems? 

Equally important and by no means easy, are we able to explain 

the methods in terms that the experimenter can understand and 

use? 

2.  Dilution series experiments 

A volume V of a liquid contains N tiny organisms, thoroughly 

mixed and with no tendency to clumping or mutual rejection.  A 

small volume x is taken out.  The probability that this volume 

contains no organisms is 

P = (l - ^)N = e-Nx/V = e-9x  . 

Here 6, the density per unit volume, is the parameter to be 

estimated, while x corresponds to the level of a factor which 

can be chosen by the experimenter.  In practice a standard 

volume is taken out by pipette, a desired x being obtained by 

diluting the original volume with pure water.  The lab test can 

detect only whether the sample is sterile (contains no organisms) 

or fertile (contains one or more organisms). 

If n samples are drawn for given x, the probability that 

s are sterile is the binomial 

n!    pS^n-s 
s!(n-s5! P Q 

The criterion which Fisher selected can be described in 

two equivalent ways.  One is that he minimized the large-sample 

formula for the coefficient of variation o' the maximum likeli- 

hood (ML) estimate of 9.  Fisher himself described it as 



-3- 

2 
maximizing the sample information about log 6 = 01(9), where 

Klog 8) = n(9x)2/(e9x-l) . (2.1) 

He regarded this criterion as the natural one in small as well 

as large samples, since he used the phrase "without any large- 

sample approximation" in referring to it. 

To maximize Klog 6) in (2.1), the quantity 9x should be 

set at 1.59, giving P=0.20.  To find x such that x9 = 1.59, we 

need to know 9.  This is a standard feature that distinguishes 

non-linear from linear problems.  In a non-linear problem, the 

statistician can say to the experimenter:  "You tell me the 

value of 9 and I promise to design the best experiment for 

estimating 9".  If the experimenter replies, "Who needs you?", 

this is natural but not helpful. 

What can be done in practice? Three possibilities suggest 

themselves.  With a good initial estimate 9  of 9, the experi- 

menter can use Fisher's solution, setting x = 1.59/9 , and 

assuming that he has a good if not an optimum experiment.  In 

Fisher's problem the value of 9 is usually known poorly — 

perhaps within limits 9,, 9» whose ratio is 100 or 1,000 to 1. 

The natural first question here is:  can the experiment be done 

sequentially?  The first experiment has x =1.59/9 , where 9 

is perhaps a poor first guess. The second experiment has 

x = 1.59/§,, where 9. is the M.L. estimate of 9 from the first 

experiment, and so on, creeping up on the best 9x. 

So far as I know, dilution series experiments are routinely 

done non-sequentially in a single operation.  If 9 is thought 
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to lie between 9. and eH, Fisher's approach was not to optimize 

anything, but to try to guarantee a specified expected value 

of Klog 6).  In a series of two-fold dilutions, fox example, 

the percentage of the total information supplied by different 

dilutions is shown in Table 1. 

Table 1.  Klog 6) in percents at different levels of ox 

ex    iB   U     2     1     1/2  I/«*  1/8  11/16 

I(%)   0.9   12.6   26.1+   24.5   16.2   9.3   4.9   5.2 

The five dilutions from ex=U to ex=l/4 provide 89% of the total 

information.  To ensure that these dilutions are covered, we 

want x .„Su < 1/U and x.. 9. > U. This gives x„ /x • >16eu/eT . min n —        max L —        0     max min—  n L 

With 9„/9,sioo, twelve two-fold dilutions suffice to cover this 

range, and 15 when 6
U/0T 

S
 1»000. 

The Rothamsted laboratory which brought the problem to 

Fisher did 38 dilution series daily, and he observed that daily 

calculation of the 38 M.L. estimates would be "exceedingly 

laborious".  Estimating 8 by the method of moments (equating 

the observed total number of sterile plates to the expected 

number) can be done in less than 5 minutes per series by a 

table which he provided, now Table VIII2 in Fisher and Yates. 

Further, he showed in 1922 that the method of moments has an 

asymptotic efficiency of 88%. Thus, although one of the 

principal points in his 1922 paper was the superiority of M.L. 

over moments, he recommends moments for this problem for what 

seemed to him sound practical reasons. 
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The dilution series example reveals four types of problems 

that recur throughout non-linear experiments.  (1) setting-up 

one or more criteria by which to judge alternative proposed 

designs.  Often, much waight will be given to getting good 

estimates of the parameters, (2) deciding how to proceed when 

initial estimates of the parameters are dubious.  The relative 

feasibility, cost, and performance of sequential and non- 

sequential methods become important here, (3) any biometrician, 

at least, would insist with Fisher that the experiment be capable 

of providing its own internal estimate of C.V.(9).  Dilution 

series can do this if the model is correct and if large-sample 

formulas can be trusted in small samples — a point that could 

stand more checking, (U) checks on the correctness of the model. 

With two-fold dilution, about 7 dilutions should provide P 
2 

values between 5 and 95%, giving some data for X and related 

checks. 

3.  Other work by Fisher 

Fisher's remaining work on non-linear problems mainly 

involved using the concept of amount of information as helpful 

in planning data-collection, as illustrated in the last Chapter 

of his book. The Design of Experiments (1935).  He did much 

work of this kind, which I will not describe, on the estimation 

of linkage in humans, animals and plants.  In plants, for 

instance, the amount of linkage between two genes can be esti- 

mated by forming a double heterozygote and either crossing it 

with itself (selfing) or backcrossing it.  For estimating close 



-6- 

linkage from seifing, he showed that formation of the double 

heterozygote parent in coupling (AABBxaabb) can be 15 times as 

efficient as its formation in repulsion (AAbb*aaBB), and is 

nearly as efficient as backcrossing. 

Fisher's first paper (1923) on the analysis of variance, 

dealt with a 12x6 factorial on potatoes.  He first presents the 

standard ANOVA into main effects and interactions.  He then 

remarks that the preceding analysis is given solely for 

illustration, since the linear model is obviously unsuitable, 

predicting negative expected yields for some of the plots. As 

more reasonable, he proceeds to fit a non-linear product model, 

which can be written 

E(yi.) = wd+ouHl+B.) . 

This requires more work but as anticipated fits better, the 

S.S. deviations being 8U7 against 981.  From the 1923 paper, I 

would not have expected Fisher's later ANOVA work to have con- 

centrated so largely on development of the linear model. I am 

sorry that I never asked him why. 

1.  Quantal bioassay (non-sequential) 

Another earlier ncn-linear problem on which much research 

for practical experiments has been done is quantal bioassay 

under a normal or a logit tolerance distribution — a problem 

again with a 0-1 response.  We are comparing a Standard (S) with 

a Test (T) preparation thought to contain the same active 

ingredient and therefore to act like a dilution or concentration 

of the Standard.  Thus if x is log dose, an amount x of S has 



-7- 

exactly the same effect as an amount x-M of T.  Here M, the 

log relative potency of Test to Standard, is the quantity to 

be estimated. 

To illustrate from the normal model, if n subjects are 

given an amount x of S, the proportion responding is binomial 

with 

(x-us)/a 

i- / exp{- i-(x-M<I)
2/a2}dx = -i- / : P = —i- / exp{- i-(x-y0)Va }dx = -=- / Z(t)dt      («».l) 

O/7IT 

where Z(t) is the ordinate of the Standard normal curve. 

For T, the formula differs only in that uT=Ps-M. Thus the 

problem is a three-parameter one, with one parameter M to be 

estimated and two nuisance parameters. 

For a single agent. Fisher showed that 

Ky) = nZ2/PQo2 

which is maximized at P=0.5, X = IJ. Thus if us, u™ and therefore 

M were known, the optimum experiment would place all subjects 

at the levels of S and T causing 50% response. 

Lacking this knowledge, experimenters use 2 or more levels 

of each agent (hopefully straddling the 50% response) from which 

the M.L. estimates of us, MT can be obtained. 

If Y is the normal deviate corresponding to P in (u.l) 

o  o 

For a single agent, Fisher (193 5) and others — see Finney 

(19U7) — showed that M.L. estimates of y and o could be obtained 

iteratively by a weighted linear regression on x of a transform 
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y  (the working transform) of the observed proportion p - r/n 

of responding subjects. 

This approach gives tvio  fitted  lines 

Ys  =  ys ♦ b(x-xs) (U.2) 

YT s  yT ♦  b(x-xT)   . (U.3) 

To obtain the s^me response, Ys = Y-,, the oifference M between 

the required doses xs and x-,  is, fron (U.?) and («*.3), 

M = xs-xT - (ys-yT)/b, 

where 1/b estimates the assumed common o.  Since b is first 

estimated separately for Test and Standard, a test of signifi- 

cance of (bf-b«) is available and is regarded as an essential 

check on the basic assumptions before the combined estimate I 

is made. 

Since M involves the ratio (y5-yT)/b of two random 

variables, Finney's criterion (196U) for the choice of levels 

of xT and xs and of n is the half-width of Fieller's (19U0) S* 

fiducial interval for M, which is found to be 

1.96 
RTTgT 

/I     1 \   (M-xs*x )2l7 

— 2 2  2 where S  = rnw(x-x)  summed over both agents and g:(1.96) /b S 

is the square of (1.96 times the coefficient of variation of b). 

In designing an experiment, the number of levels k, their 

spacing d, and the sample size n at each level must be chosen. 

From previous work on the Standard, good initial estimates of 
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ß and uc should usually be available and an initial estimate H 

is assumed.  The strategy is to make x- = xs-M0 at any level. 

This should make (M-xs*xT) in (>».<») small and the corresponding 

term in U.u) is often negligible.  In this event, with n 

constant, (U.k) becomes 

(1.96) f  2  17 (u 5) 

where w = Iw over the k levels for one agent.  Regarding the 

quantity multiplying (1.96) in (u.S) as a kind of effective 

standard eiror of M, Finney (196U, U96-7) tabulates b VE(M) for 

k ■ 2,3,U, total number of subjects N ■ 2kn = U8, 2U0, and a 

range of choices of levels which give P values centred about 

S0%. A similar table is given for the logistic model in which 

logit P is assumed linear in x. 

These tables provide estimated optimum spacings and the 

2   * 
corresponding b VE(M) for 2,3,4, levels and N ■ U8, 240. 

Similar tables for other sample sizes and numbers of levels 

could easily be provided. 

The optimum levels assume good initial guesses. The only 

work that I have seen allowing poor guesses is by Brown (1966). 

Using the simpler Spearman-Karber estimates of u., u_, he 

recommends choices of n, d, k. and k_ (which he allows to 

differ), in order to give a desired width of 9S% confidence 

interval for H.  This approach is similar to Fisher's in the 

dilution series.  Naturally, more levels are required to ensure 

coverage of the S0% dose:  Brown's worked example gives k.^iO, 

»^•22. 
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Thus, based on the Fieller criterion, available methods 

furnish 

(1) a near-optimum experiment, assuming good initial 

estimates of o, u,, and M, and using large-sample theory, 

(2) assuming the model correct, Fieller*s limits for the 

sample data, as a measure of the precision of M, 

(3) for more than 2 levels per agent, tests of the 
2 

adequacy of the model.  The x  for deviations from the 

model has (2k-3)d.f.  These split into 1 d.f. for non- 

parallelism, 1 d.f. for combined curvature, and (2k-5) 

d.f. for other sources.  Fortunately, as Finney shows, 

k=U does not demand more subjects than k=2. 

I know of no intensive study of the robustness of the pre- 

sumed optima to poor initial guesses at the parameter values. 

Extensions of Finney*s tables to more spacings and more sample 

sizes would reveal the effects of wrong spacing, through a bad 

2 guess at o, on b V_(M).  For r>l, it looks from his tables that 

the effects are more serious if the guess is o/r than if it is 

ro, and more serious with fewer levels, as would be expected. 

Sample si^e charts by Healy (1950) indicate for k=3 the effects 

of wrong centering of the doses (through a pec" guess at u_). 

More work on robustness and on the small-sample performance of 

the recommended plans and formulas would be useful. 

5.  Quantal bioassay (sequential) 

A well-known method, the Up and Down or Staircase method 

(Dixon and Mood, 19U8, Dixon, 1965, 1970), was devised for 

experiments in which it is convenient to test subjects one at 
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a time, determining the level of the agent for the next subject 

after seeing the result (0 or 1) for the previous subject.  For 

a given dose spacing d, the rule for a single agent (Standard 

or Test) is the very simple one 

x u+1 = xu+d  (if yu=0);   xu+1 = xu-d  (if yu=l) 

The idea is, of course, to concentrate dose levels in the 

neighborhood of W, the median of the response y, which the 

method is designed to estimate.  The nominal sample size N is 

defined as the number of trials, beginning with the first pair 

in which a reversal (0 to 1 or 1 to 0) occurs.  The estimate W 

of M is the mean of the last N values of x , with an adjustment 

(Dixon, 1970) depending on the numbers of O's and I's that were 
A 2 

obtained. The mean square error of W is approximately 20 /N 

when d lies between the limits d = 20/3 and d = 30/2, with 

d = o recommended as the most accurate spacing.  This work is 

based on exact small-sample computations. 

A single sequence provides no usable estimate of o, which 

is undesirable if we wish to attach an estimated r.m.s. error 

Sra/Sfi  to U.  Dixon (197 0) recommends that the experiment be 

run in independent sequences with N(say)=6 in each sequence. 

If there are r of these in parallel under the same operating 

conditions, this speeds up completion of the experiment and 
A     A 

allows V(U)  to be estimated  from J(U .-Ü)2/r(r-l).     Alternatively, 

other relevant variables may be changed  from one  set  to another, 

permitting the effects of  these variables on w  to be  investi- 

gated by analysis of variance  techniques. 
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For a logistic model, when a single (longer) sequence is 

being used« Wetherill (1966) has proposed a change intended 

to make the accuracy of u more robust against a poor initial 

guess and use of a d too large. After 6 changes of response 

type have occurred) estimate V, and restart near y using half 

the original spacing.  Here there remains the problem of an 

estimate of a  from the data. 

Another sequential plan, using the Robbins-Monro stochastic 

approximation process, attempts to do better than the Up and Down 

by steadily shortening the steps as the sequence proceeds. If 

a group of n subjects are tested at each step, the level of x 

for the (u+l)th experiment is 

xu+i = xu " n(Pu- ¥ ' 

When the experiment is terminated, the estimate u is the level 

at which the next experiment would have been conducted (Cochran 

and Davis, 1965). With £ steps, the asymptotic formula for 

♦>      2 
Vtu) is iro /2ng, the value it would have if all trials could 

be conducted at the optimum 50% level. To guard against a poor 

initial guess at W, a 'delayed* version was also suggested in 

which the step size c remains unchanged until both deaths and 

survivals have been obtained. A modification with a similar 

purpose has been proposed by Kesten (1958). 

For srall experiments with N s ng s 12, where T is the 

number of steps = 3, U, 6, or 12, Davis (1971) has compared the 

M.S.E.'s of w for three versions of the Robbins-Monro, two of 

the Up and Down, and a non-sequential experiment using the 

Spearman-Kärber estimate, for normal, logistic, uniform and 
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exponential tolerance distributions.  This is the first broad 

comparison of the performance? of different plans in small 

samples.  It is reasurring that the recommended step size and 

the asymptotic formulas for V(u) both perform well for starts 

within about l.So  — about all that can be expected for N=12. 

Overall, delayed versions of the Up and Down and the Robbins- 

Monro performed best, both easily beating the non-sequential 

methods. 

6.  Single continuous-variable response-a criterion 

For the uth observation or trial (u=l,2,...,N) the model 

now becomes 

yu = f<iuje> + eu = f(Cul 5uk; e^...^) ♦ eu .(6.1) 

Here, £ . denotes the level at which the value of the variable 

£. is set by experimenter in the uth trial. There are k such 

factors or variables, while £ is the number of parameters 

involved in the model.  In the simplest models the e  are assumed 
2 

independently N(o,a ). 

The paper that provided the impetus to intensive work is 

that of Box and Lucas (1959).  Much related earlier work, 

dealing primarily with the linear case, had been done by Kiefer 

(1959), Elfving (1952), and Chernoff (1953), who considered the 

choice of a criterion and the finding of the design points 

(levels of the factors ?£„)• 

The criterion proposed by Box and Lucas assumes interest 

in all the parameters.  It maximizes the generalization of 

Fisher's amount of information, or equivalently minimizes the 
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asymptotic formula for Wilks* generalized variance of the M.L. 

estimates of the 9..  From (6.1) the log likelihood is 

L' - ^ Ji^-v2 • 
It follows that the information matrix is 

E ("ircj)= 7 ull^t'^'" 7 (x'x) 

where X is the Nxp matrix 

3fu 
(xuj) = ^T 

The x . are known when the factor levels C . and the 9  are 
U J U X J 

known.  The criterion - choose design points C J to maximize 

IX'Xl-assumes initial guesses 9. for practical use.  Other 

attractive features of this criterion (summarized by M.J. Box 

and Draper (1971)) are as follows. 

(1) It minimizes the volume of the asymptotic confidence 

region for the 9. (Kiefer, 1961). 

(2) For response functions locally linear in the 

neighborhood of the M.L. estimates, it maximizes 

the joint posterior probability of the 9., given a 

non-informative prior nd9..  (Draper and Hunter, 1966). 

(3) It is invariant under changes of scale of the 9.. 

7.  Finding the design points - non-sequentially 

Given a criterion, the next step is the complex one of 

finding design points that satisfy the criterion for a specified 

N trials.  In earlier work, Chernoff (1953) considered the case 
i 
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where our interest is in s £ p of the parameters, the remaining 

(p-s) being nuisance parameters.  His criterion was different - 

minimizing the average of the asymptotic variances of the s 

M.L. estimates.  Following Elfving (1952), he showed that an 

optimum design needs at most s(2p-s+l)/2 points, becoming 

p(p+l)/2 when s=p, and p when s=l. 

As a start. Box and Lucas (1959) assumed initial guesses 

9 and sought an optimum set of levels when N=p, i.e. when there 

are only as many trials as parameters to be estimated.  They 

point out unappealing features of this decision:  no test of 

the fit of the model, no attempt at robustness against poor 

initial guesses, to which might be added no data for an experi- 

2 
mental estimate of o . 

One advantage with Nsp is that (X'X) is square, so that 

Ix'xl = |x|2 and it suffices to maximize |x| = Ix J.  Illus- 

trative examples worked by Box and Lucas include the exponential 

growth or decay curve, the Mit scherlich equation, and the two- 

factor function 

f(C1,Ci,-ei,92) = exp(-81C1e  
Z Z) . 

Depending on the complexity of the problem,  methods 

available  for solution are 

1. Geometric or analytic, 

2. Calculate Ixl for a grid of values of the C. , fit a 

quadratic to this grid and seek a maximum (with trouble 

possible if Ixl has more than one turning value) 

3. Various computer iterative hill-climbing techniques. 
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As a  simple example with an analytic solution,  consider 

the exponential decay curve 

fu " 9ie 

where t     (time)   is used for C  , .     The region feasible for u 

experiments is t(min) £ t f. t(max).  For this f , 

|X| = 

-hh -toe ^1 le 
-e.t, 

e -^h -V2 

ei(tl"t2)e 

-t2eie 

-92(t1+t2) 

This can be written 

|x| = {e1(t1-t2)e 
-e0(t,-t0)  -2e0t 2^1     2 }{. 2^2 

> . 

For given (t.-t«) and with 99
>0, we want t?=t(min).  The first 

curly bracket is maximized when 

tl"t2 = 1/92, Sivin8 ti = t(min)+l/e2 

or t, = t(max), whichever is smaller. 

Coming to the case of a single non-sequential experiment 

with N>p, Atkinson and Hunter (1968) found in several chemical 

examples worked by computer maximizing that with N a multiple 

of p, the optimum plan consisted simply of N/p replications at 

each of the p optimum sets of levels for the case N=p.  This 

result certainly simplifies the finding of optimum plans. 

Although a counter example showed that the result does not hold 

in general, they proved, as a sufficient condition, that the 

result will hold if the region of experimentation lies within 



-17- 

a certain ellipsoid in the x-space (a point that can be checked 

by the experimenter.) 

M.J. Box (1968a,1970a) considered also the case: N not a 

multiple of p.  In some problems he found that replications of 

the N=p solution differing by at most 1 could be proved to be 

optimal.  In others, while this could not be proved, a computer 

search was unable to locate anything superior to the near-equal- 

replication solution.  He also considered a one-factor, two- 

parameter problem with £ , = time = t , where different trials 

cost different amounts.  The problem was to maximize |X:X| 

subject to a fixed cost C = ^c .  The optimum again consisted 

of experiments at only two times t-,, t2, but with the difference 

that t, and t« changed both with N and C and the numbers of 

replications were no longer near-equal, so that more computing 

effort was necessary. 

The counter-example by Atkinson and Hunter is the linear 

fitting of a bivariate regression, f  = ^^lu^o^u' w^'t^ "the 

region of experimentation OfS. <1.  For N=p=2, the optimum 

design is at the levels (1,0) and (0,1), which gives 

■(::)- 
X'X =I    I ; Ix'xl = 1  . 

With N=6, three replications of this plan give 

X'X 
(o a)111"*1 

But two replications of the three-point plan (1,0), (0,1), (1,1) 

give 

-■(::)• 
IX'Xl s 12 . 
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2   2 
The key ellipse in this example is the circle Ci + C« = 1» and 

the point (1,1) in the experimental region lies outside this circle. 

The preceding results on the best set of design points are 

conceptually similar to Fisher's original optimum for the 

dilution series problem, and assume in effect good initial esti- 

mates of the 6.. With poor initial guesses, the resulting plan 

will not be optimal in any real sense.  I have come across no 

work analogous to Fisher's,   where we start with a wider 

spread than p points with the object of guaranteeing a specified 

value of Ix'xl starting from initial 6. assumed known initially 

only to lie within a certain region. 

8.  Firming the design points sequentially 

As would be expected, the methods start with p points, 

determined by first guesses 9 ., and leading to M.L. estimates 

9 . of all the parameters. Box and Hunter (1965a) discuss how 

to add points one at a time.  If (N-l) steps have been completed, 

so that 9.. , . are known, then |X'X| as a function of the x's 
M-l,j 

for the Nth point takes the form 

2 

Ix'xl N 

C11+X1N C12+X1NX2N Clp+XlNXpN 

C12+X1NX2N C22+X2N 

Clp+XlNXpN Cpp+XpN 

where the c.j are known. The criterion is computed for all 

points of a grid of values of the ^ui»«'^uv *nd a quadratic 

fitted to find the maximizing values. 
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M.J. Box (1970a) adds sequential sets of n=p points, each 

put at the best p design points as estimated from the M.L.e 

obtained from the combined trials conducted to date. After a 

time, both the M.L.9 and the indicated set of p design points 

for the rth set begin to change little from those in the 

(r-l)th set.  Box introduces a criterion R, as a guide to the 

time when it is no longer worth changing points. A second 

quantity R- compares the Ix'xl value given by all trials con- 

ducted to date with the value that IX'X] would have if it had 

been possible to use our current estimate of the best design 

points in all trials. Thus R, indicates the amount lost owing 

to poor initial guesses at the 6..  In the simulated example 

(3 parameters, 2 factors), some values of R^ and Rj are as in 

Table 8.1. 

Table 8.1.  Values of R,, R, in sequential plan 

Set      2       3      U        5       6 

Rj^    1.U0    1.09    1.06     l.OU     1.02 

R2    0.78    0.86    0.86     0.88     0.91 

In order to study the effect on the sequential process of 

having initial prior information of different amounts about 

different 8 , Draper and Hunter (1967a) took a multinormal prior 

(2n)  |ß| exp{-ke-e ra-^e-e )) 

where ß is the pxp matrix of variances and covariances and the 

6    are initial guesses.     In the case where N trials had already 

been completed at chosen levels £  ,  they discussed where to put 
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a further n trials.  Their criterion was to maximize the 

posterior distribution of 6 after (N+n) trials with respect 

both to 6^ and to the values ^ (u=N+l N+n). Assuming 

f(£ ,9) to be locally linear, this leads to the approximate 

criterion:  maximize 

jX'X + aV1! (8.1) 

with respect to £ and l     (u=N+l,... ,N+n).  One hurdle is that 

in (8.1) the values of §_ are hidden in X'X and their maximizing 

values after (N+n) trials depend on observations not yet taken. 

The natural suggestion is to use 8N in maximizing (8.1) with 

respect to the levels £ . 

The principal value of this type of prior is likely to be 

the light it throws on how the design would be affected by 

different amounts of prior information about the different 9.. 

As an illustration they work a problem with 8,,8- independent 
2 

normals (0,a.)» N=0, n=2, and a single £ , ^^u* a t^me variable^ 

As o-pOo vary from 0 to », three basic design types predominate: 

(t.jt-) = (1.2,6.9) for little prior information, (t,,t2) = 

(1.2,1.2), where the experiment concentrates on estimating 8,, 

and (tjitj) = (6.9,6.9), where the emphasis is on e». Further 

illustrations of this type would be of interest. 

9.  Tests of fit of the model 

As a dividend, the sequential approach might provide some 
2 

data for a test of fit of the model (at least assuming a known), 

since v will have been determined in general at N>p design 

points. If, however, the successive design points vary over 
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only a restricted part of the experimental region« examination 

of the residuals may tell us little.  Experience with a wider 

range of non-linear models may throw more light on this issue. 

I know of no work in which an N>p experiment was deliber- 

ately planned ab initio with a test of lack of fit as one 

objective. Two suggestions have been made by Box and Lucas 

(1959). 

First, having computed the combinations of levels of the 

I    needed to maximize [X'Xl, the experimenter might examine 

where they occur in the ^ space of interest, and add extra 

points where he is most worried that the model may be incorrect. 

Secondly, the experimenter may sometimes be reasonably 

sure that if the model is incorrect, a more general model with 

say one or two extra parameters gives an adequate fit.  The 

example cited is where the model (with a single C variable) is 

u 

where in fact the more general model 

fu = (6r62) 
{e    " e   } 

might be required. The experiment might be planned to estimate 

6, and 92 and test the N.H.62 = 0, which makes the original model 

correct. 

10.  Discrimination between specified models 

An approach by D. R. Cox (1961, 1962) for discrimination 

between two models, used a test of significance and was asym- 

metric:  the hypothesis that model 1 is correct was chosen as 
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the null hypothesis.  The test criterion was a modified form 

of the likelihood ratio« maximizing the asymptotic power against 

model 2 as the alternative. Later» in planning an experiment to discrim- 

inate between the probit and the logit models from observations 

confined to 3 log dosages. Chambers and Cox (1967) used a 

compromise symmetric form of this approach.  They first chose a 

criterion asymptotically powerful against A.H « logistic, given 

NH = probit. For this criterion, they determined the optimum 

three dosage levels and the proportions of the observations to 

be put at each level. Then they reversed the procedure, having 

A.H. = probit, N.H. = logistic. Fortunately, the optimum doses 

did not differ greatly in the two cases, so that a good com- 

promise design could be constructed. Unfortunately, as Chambers 

and Cox note, this plan put the majority of the observation» at 

a high dose level with expected percent killed over 99.6%. Thus 

the experiment would require large samples, as will not surprize 

those who have worked with both probits and logits. This 

approach might end, of course, by rejecting neither model, one 

specific model, or both models. 

An alternative approach. Box and Hill (1967), is symmetric 

and extends to more than two specific models.  For two models, 

the approach supposes that n observations have already been 

taken (at least enough to estimate any parameters involved) and 

considers where best to put the (n+l)th for maximum discrimination. 

At first sight one might be inclined to seek the point (levels of 

the factors) for which l^-Yjl is maximized, where Y1 and Y2 are 

estimated from the results for the first n observations. But 
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as Box and Hill note, the precision of estimation of l^-^l ^s 

also relevant. 

Prior probabilities n.  are first assigned to each model. 

With two models, the choice might be 11-  =1/2 and with ra models, 

Tl-     = 1/m.  After n runs, the posterior probability for the ith 

model is 

in   i,n-lKi    i,n-lKx 

where p.   is  the  probability density function of the nth observa- 

tion y^ under model  i. n 
The criterion chosen for discrimination uses  Shannon's 

(19U8)  concept of  entropy,  also known as  the  Kullback-Liebler 

information  (1951).     For m models the entropy  is m 
- E n.inn. . 

i=l1   1 

This has its maximum value when n. = 1/m and becomes steadily 

smaller as the n,- becomes unequal, i.e. as discrimination improves. 

Hence the (n*l)th observation is chosen at levels £ which will 

maximize the expected decrease in entropy from the nth to the 

(n*l)th experiment. 

For two models the resulting discrimination criterion is 

shown to be 

D "  ninn2n(/Pltn(Pl/P2)dynn * A^^Pl^nn)' 

If we can further assume that the models are locally linear, 

2 2 with deviations £  that are N(o,o ), where o  is known, the 

criterion becomes, for two models Y   and Y  , 
2 
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where o. is the approximate variance of * +1 •  For m criteria, 

D is the corresponding expression summed over all pairs of 

models. 

One of the examples worked is a simulated example, with 

•♦ parameters and 2 factors, to distinguish among the first- 

to fourth-order reaction curves.  The experiment starts with a 

grid of U points to estimate all U parameters needed.  The 

results proceed as in Table 10.1. 

Table 10.1.  Example of discrimination among models 

n h ^2 "l n2 "3 \ 

1 2S 575 

2 25 U75 

3 125 575 

•4 125 »♦75 .01 .»♦3 .50 .06 

5 125 600 .00 .56 .US .01 

6 125 600 .00 .86 .13 .00 

7 50 1450 .00 .97 .02 .00 

8 100 600 .00 1.00 .00 .00 

From the beginning, the competition is between the second- 

and third-order curves, the second-order soon establishing itself 

as correct. 

Box and Hill also work an example in which (i) all models 

are generalizations of model 1 and (ii) model 1 is correct so 

that all models are correct.  Here the entropy criterion seems 

to be given an impossible task, but by their largest n(15), it 
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is tending towards selection cf the simplest of the correct 

models - an admirable performance. However, in more recent 

examples of this situation in which n was continued to large 

values« Siddik (197 2) found that the posterior probability of 

the simplest correct model rose to a value 0.85 to 0.95, but 

then fluctuated erratically around that value.  While it still 

can be conjectured that the criterion will operate well in 

practical experiments, its large-sample performance needs 

further study. 

A succeeding paper by Hill, Hunter and Wichern (1968) 

recognizes that the best choice of the £ levels for discrimin- 

ation will not in general be those that give the best parameter 
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estimation for the correct model, and seeks to reconcile these 

conflicting aims. If we knew that model 2. was the correct 

model, we would choose the £ to maximize A. * |X'X|. for model 

j.  Call this value A- _.„ and let A. denote the value of the 3,max        j 

estimation criterion A. for any other choice of levels £. 

Similarly, let D   be the maximum expected decrease in entropy, 

and D the decrease obtained from any other setting of the £. 

The criterion which these authors suggest for choosing the £ 

levels is 
m 

C = w,D/DmjiV ♦ w,  Z 11. A./A. inav  . 1  max   £   • <i ]n 3 3,max 

The w, and w. are weights (w.-t-w^si) which can be changed, as the 

sequence of runs proceeds, to give increasing weight to good 

parameter estimation when it becomes clearer that one model is 

being selected by the discrimination technique.  For w, they 

suggest, as one possibility, 

\i1  ={m(l-nbn)/(m-l)} 

where n.     is the probability assigned to the best model before 

the (n+l)th observation is taken.    The quantity X  is a positive 

power that controls the rate of decrease of w, ,  the weight 

assigned to the discrimination criterion.     Initially,   if all 

n.     s  l/m, w^ is unity and all emphasis is given to good 

discrimination.    As II.     approaches 1,  so does w.,  emphasis 

shifting to estimation for the most likely model. 
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11.  Model building 

It is more difficult to do justice to the work here, since 

the strategies will change as the accumulated data suggest new 

ideas to experimenter and statistician. 

As one approach. Box and Hunter (1962, 1965b) consider the 

case where the experimenter has at best a tentative model which 

describes f(^,e^t). If there are k factors ^ which the experi- 

menter can manipulate, they suggest running the reaction, with 
v 

measurements of response at certain fixed times, for a 2 

factorial or fractional factorial in the levels of the g., 

widely separated as far as operating restrictions permit.  For 

each combination of the factor levels they estimate each 6. and 

do a standard factorial analysis into main effects and inter- 

actions for each 9..  There are two objectives in this procedure: 

(i) if the model is correct, the 6. should not change systemati- 

cally with time or with the changes in the levels of the £., 

since the 6. should be constant, and (ii) the way in which the 

3. change may enable the experimenter to specify a vague model 

more completely, or may suggest relations among the 6. and the 

C. that make sense mechanically. 

In their simulated example they use letters A, B, (the 

initial concentrations of two reactants), C (the concentrations 

of a catalyst), and D (the temperature), to denote the factors 

instead of our €.,...,Cu.  The tentative model was 

(B)k.  -k0t   -k.t 
E(y) » JJ-^ (e 2 - e 1 )  . 
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The initial experiment was a 2 factorial in A...D, measured at 

5 times.  The nature of the reaction suggested that 

Pi  ^1  -81/T 

p   q   -6-/T 
k2 = (A) ^(C) ^a2e 

l 

where T is the absolute temperature.  (There are now 8 parameters 

to be estimated).  If this suggestion is correct, a factorial 

analysis of Ink, and fcnk«» which was then carried out, should 

show no effects of B and no interactions involving A, C, and D. 

The analysis confirmed the model, as did careful examination of 

the residuals (y-f) for the 2 runs at the 5 times conducted 

initially.  Finally, the 8 parameters were estimated from the 

combined data.  The second paper (Box and Hunter, 1965) gives 

further discussion of the examination of residuals, contour 

diagrams, and plots of the likelihood function as diagnostic 

aids.  The necessity for repeated interchange of ideas between 

experimenter and statistician is stressed. 

An interesting review of approaches and problems in model- 

building by M.J. Box (1968b) presents his experiences, with 

discussion from the audience. 

12.  More than one measured response 

In some chemical reactions it is possible to measure more 

than one response y , (t:l,2,...tL) which provides information 

about some or all of the parameters 6..  The simplest example 

quoted is the one-parameter exponential 
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yiu =e   u + eiu;   y2u= :L -e   u + e2u 

where the single factor 5    represents time.     Note that ylu» 

y2    do not add to 1 because of the experimental errors e     . 

In a general approach the model  is 

y£u = Viu^ + e 
tu 

It has not been considered realistic to assume e. ,e  indepen- £u mu    r 

dent.  Instead, they are given a multivariate normal distribution 

with variance-covariance matrix o. . Jem 

The first paper on this problem. Box and Draper (1965) did 

not assume the o.  known in advance, and merely assigned a 

'non-informative' prior distribution to the o. .  Later papers 

took the more tractable problem in which the a.    are assumed 

known, and will be considered first. 

With known o, , Draper and Hunter (1966) assigned a Bayesian 

prior Ild9 . and followed the method which led to the IX'XJ 

criterion for a single response, as mentioned in Section 7. It 

helps to write 

vlm = J1
{y£u-flu}{ymu-fmu}  ' (12-1) 

They find that the posterior probability is 

1 L L »m 
p(e|Z) = c exp{- j Z  ^ vtm> • (12.2) 

t  m 

In this approach the 9. would be estimated by minimizing 

tZalmvtm (12.3) 
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that is, by the natural extension of the method of least 

squares to the case of amltivariate normal deviations. 

By an extension of the univariate method, the further 

assumption that the response functions are approximately linear 

in the vicinity of the M.L. estimates leads to the criterion: 

choose the design points to maximize 

L   L  On. 
A = | I   Z (J  XIXJ (12.4) 

1=1 m=l   * m 

where for given t, X is the Nxp matrix 

The matrices X. should strictly be evaluated at the M.L. Q_ 

after the experiment has been completed, which cannot be done 

when the experiment is being planned.  If no trials have been 

conducted, the suggestion is to compute the X. for initial 

guesses 9 ; if N trials have been done and a further n are being 

planned, use the X- at the M.L. estimates after N trials. 

Illustrations were given for a two-response, one-parameter 

problem and by M.J. Box (1970a) for a two-response, two-parameter 

and for a two-response, four-parameter problem.  Draper and 

Hunter's interest was to see how the optimum plan and the value 

of the criterion A in (9.U) varied with o.,, 0-7, and p, while 

Box considered whether replications of the optimum N=p plan were 

still to be recommended.  For N a multiple of p, equal replica- 

tions of this optimum were the best he could find. For N not a 

multiple of p, the best of the near-equal replications was not 
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optimal, but near enough as a good start in a computer search 

for anything better.  M.J. Box conunents that this search may 

not be worth the trouble, though further experience is needed. 

Draper and Hunter (1967b) have also extended to this case 

the single-response work reported in section 8 for a multinormal 

prior.  With two responses, for instance, the criterion to be 

maximized is 

A = |a11X^X1+o
22X2X2+o

12(X^X2+X2X1)+n"
1| 

where fj is the prior covariance matrix of the 6.. 

Returning to the case of a 'non-informative' prior that 

leads to the criterion (12.U), M.J. Box (1970b) considered two 

practical complications.  (1) The response variables may not 

be measured directly but computed from other prime variables, 

measured directly, whose values change as the design points 

change,(2) The factor levels £ may be themselves subject to 

error (a familiar problem in experimentation).  Consequences 

are that the a., vary with the design points and that it 

becomes less reasonable to think of 'dependent' variables y. 

and 'independent' variables £. .  Nevertheless, by assuming 

that the basic measurements are independent, with known vari- 

ances, he has developed a computer program (essentially involving 

a known o.. changing with the design points). An example 

illustrates the application of this technique. 

As mentioned. Box and Draper (1965) considered the case 

where the o.  are not known in advance.  They assigned the 

prior Ilde. to the parameters and the prior 
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p(a ) = |o  ! 
- i(L+l) 

which is the multivariate extension of assigning a uniform prior 

to (log o) in the univariate case.  They find the posterior 

where C is a constant.  The 8. would then be estimated by 

minimizing !v. |.  At first sight this criterion seems rather 

different from the criterion (11.3):  minimize 

which emerged when the o, were assumed known.  Box and Draper 

show, however, that there is a natural resemblance.  Let V. 

be the cof actor of v.. Now |v- | can be calculated by multi- 

plying the elements of v.  in any single row or column by their 

cofactors and adding. It follows that 

Km' = "Tvt« ' (11'5) 

Thus the weights a      in (11.3) are replaced by weights propor- 

tional to the M.L. estimates of the o1™. 

The two simulated examples worked both involve only a 

single £ variate (time). One example has two responses, one 

parameter, one has 3 responses, 2 parameters.  It is now necessary 

to take N>p in order to obtain estimates of the weights V,m. 

The values chosen were N-10 for the L«?t p=l example and N=12 for 

the L«3, p=2 example, no attempt being made to find optimum 

values of t (design points). From the worked examples a 

recommendation is made to plot the complete posterior functions 
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for the 8.  obtained  (i) from each individual response function 

(11)  from each pair and  (with L=3)  from the three combined. 

These plots  indicate the type and amount of information supplied 

about the respective 6.  by Individual responses and combinations 

of them.     They can also reveal deficiencies  in the model,  e.g. 

when the posterior from y      has little overlap with that for 

y2u- 

13.     Comments 

From the work on the 0-1 and the continuous-variable 

response, we now have a good grasp of the multiple desirable 

objectives in a non-linear experiment, a body of techniques 

that concentrate on a general-purpose criterion for giving good 

estimates of all the parameters, a method for discriminating 

among specified models, and an attack on the problem of model- 

building.  Since much of the continuous-variable work is recent, 

with simulated examples, I would expect a period of digestion 

by experimenters in Industry, with feedback on features that 

they like and don't like and additional properties desired. 

Further, as the groups at Wisconsin and I.C.I, warn us, the 

industrial workers have still harder problems awaiting attack. 

It is easy to list much additional related work that would 

be relevant.  To mention a few areas: 

(1) Criteria and designs for the estimation of only some 

of the parameters, the others being regarded as 

nuisance parameters. 

(2) Compromise designs, non-optimal by any single 

criterion, that cope with several different objectives. 



-33- 

For instance, a non-sequential plan might deliberately 

start with N>p distinct points, in order to provide 

(i) some robustness against poor initial 8 , (ii) 

either a check on the correctness of the model if an 
2 

outside estimate of o is available, or (iii) an 

2 
internal estimate of o  if the model can be assumed 

correct.  Something to provide both a check and an 
2 

estimate of a might I suppose be possible by a 

development analogous to Tukey's 1 d.f. for non- 

additivity under the linear model. 

(3) Since the approach and formulas are to a large extent 

asymptotic, checks by computer studies on the small 

sample performance of the 'optimum* plans and formulas. 

(4) Finally, and in no invidious sense, I hope that more 

people will enter this field, with a resulting broader 

range of problems attacked, of techniques developed, 

and of viewpoints. The discussion in the Royal 

Statistical Society, following Kiefer's (1959) pre- 

sentation of his work on optimum linear plans, revealed 

doubts about the wisdom of concentrating on optimizing 

any single criterion.  Reasons advanced were that 

optimizing may require mathematical assumptions or 

restrictions found unreasonable in many applications, 

that the experimenter's aims may change when he begins 

to see some results, and that, in sequential experiments, 

rules leaving flexibility of judgment to the experimenter 

and therefore sounding vague to some degree may be better 
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than fixed rules laid down by a statistician's 

criterion. While this part of the discussion was 

somewhat negativistic in tone, it suggested that 

approaches from differing viewpoints have an impor- 

tant role. 

In a paper delivered at these meetings, Wheeler (1972) 

maintains that the experimenter should seek a design that will 

be reasonably efficient under a variety of situations which he 

judges that he may face.  Thus for insurance he may want to fit 

a model more complex than the one that he hopes is correct, he 

may fear some loss of observations from accidents, and may want 

at least a specified number of degrees of freedom for estimation 
2 

of o .  To indicate the inefficiency of any proposed plan, 

relative to a plan that concentrates solely on efficiency of 

estimation. Wheeler uses as criterion the relative maximum 

variance of the predicted response over the experimental region, 

illustrating how the extensive results on optimum design for 

linear models, in particular Wynn (1970), provide computer 

methods for meeting these goals. 

I wish to thank P. Morse, S. M. Siddik, and R. E. Wheeler 

for information about recent work. 
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