AD-752 025

FLOW F'ELD MEASUREMENTS AROUND AN OGIVE-CYLINDER AT ANGLES OF ATTACK UP TO 15 DEGREES FOR MACH NUMBERS 3.5 AND 4

William C. Ragsdale

Naval Ordnance Laboratory White Oak, Maryland

24 August 1972

DISTRIBUTED BY:

RUN 72-198 ares Aller Ì 31 FLOW FIELD MEASUREMENTS AROUND AN OGIVE-CYLINDER AT ANGLES OF ATTACK UP TO 15 DEGREES FOR MACH NUMBERS 3.5 AND 4 2. 2 By W.C.Ragsdale 24 AUGUST 1972 DEC 1 1972 Thenhall E HAVAL ORDHANCE LABORATORY, WHITE OAK, SILVER SPRING, MARYLAND 9 Republice 1 by NATIONAL TECHNICAL INFORMATION SERVICE U.S. Department of Commerce Symmetry Vol. 2233 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED NOLTR 72-198

** * -

NA TRACTOR

「ない」というというないないないないないです。

......

寛

.,•***** r.

Security Classification						
DOCUMENT CONTI	ROL DATA - R	S D	successful successful and successful			
Security classification of fille, body of abstract and indexing a 1. ORIGINATING ACTIVITY (Corporate author)	innotation must be e	28. REPORT SE	CURITY CLASSIFICATION			
Naval Ordnango Laboratory		UNCT	ASSTRTED			
White Oak Silver Enring Maruland 3	26 GROUF	MODIFIED				
white oak, Sliver Spring, Maryland 2						
FLOW FIELD MEASUREMENTS AROUND AN OGIVE-CYLINDER AT ANGLES OF ATTACK UP TO 15 DEGREES FOR MACH NUMBERS 3.5 AND 4						
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)						
5 AUTHOR(5) (First name, middle initial, last name)			***************************************			
William C. Ragsdale						
6 REPORT DATE	70. TOTAL NO O	FPAGES	76. NO OF REFS			
24 AUQUST 1972	94 ORIGINATOR	S REPORT NUMB	L DER(\$)			
b. PHOJECT NO A310-310A/WR02-403-001	NOLTR 72-198					
c.	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)					
d	1					
10 DISTRIBUTION STATEMENT	l					
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED						
11 SUPPLEMENTARY NOTES	12 SPONSORING	MILITARY ACTI	VITY			
	Naval Air Systems Command Washington, D. C. 20360					
13 ABSTRACT	L					
(U) The flow field was surveyed at one station $(X/D = 6.5)$ on an cgive-cylinder having a tangent ogive nose with a fineness ratio of 4. The surveys were performed with Pitot tubes and cone pressure probes at angles of attack of 0, 5, 10 and 15 degrees for Mach numbers 3.52 and 4.07. Surface static pressures were also measured. (U) The results of the tests are presented in tabular and						
plotted form. Comparisons are made with inviscid flow field calculations and with experimental results from other investigations.						
Details of illustrations in this document may be better studied on microfiche						
DD FORM 1473 (PAGE 1)	1	UNCLASSI	FIED			

. . . .

•2

.

,

17 24 1940. "

-- 15 -- 16 18 18 18 18 18 18

くちょう かんか ちゅうちょうちょう ちょうちょう しょうかりょう (前の)

ų

UNCLASSIFIED

Security Classification

14	KEY WORDS LI		LIN	КА	LINK B		LIN	кс
Flow Field Boundary Lawar			ROLE	WT	ROLE	WT	ROLE	w.+
Static Pressure Separation								
Cone Probe								
								,
								ĺ
								,
					ĺ			
DU . Nov 1473 (BACK PAGE 2)	<) ,		UNC		FIED		· · · · · · · · · · · · · · · · · · ·	
		2			, an 17,8()(211		

FLOW FIELD MEASUREMENTS AROUND AN OGIVE-CYLINDER AT ANGLES OF ATTACK UP TO 15 DEGREES FOR MACH NUMBERS 3.5 AND 4

Prepared by: W. C. Ragsdale

ABSTRACT: (U) The flow field was surveyed at one station (X/D = 6.5) on an ogive-cylinder having a tangent ogive nose with a fineness ratio of 4. The surveys were performed with Pitot tubes and cone pressure probes at angles of attack of 0, 5, 10 and 15 degrees for Mach numbers 3.52 and 4.07. Surface static pressures were also measured.

(U) The results of the tests are presented in tabular and plotted form. Comparisons are made with inviscid flow field calculations and with experimental results from other investigations.

> NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND

24 August 1972

FLOW FIELD MEASUREMENTS AROUND AN OGIVE-CYLINDER AT ANGLES OF ATTACK UP TO 15 DEGREES FOR MACH NUMBERS 3.5 AND 4

The flow field at one station on an ogive-cylinder was surveyed with Pitot tubes and cone pressure probes at Mach numbers of 3.5 and 4.07.

This project was performed for the Naval Air Systems Command (Code 310) under Airtask Number A3130/292/69R0100402.

The author wishes to acknowledge the support and assistance of the staff of the Aerodynamics Department of the Naval Ordnarce Laboratory.

> ROBERT WILLIAMSON II Captain, USN Commander

But Bernard, C.

L. H. SCHINDEL By direction

Page

CONTENTS

INTRODUCTION	1
TEST FACILITY	1
TEST EQUIPMENT AND INSTRUMENTATION	1 1 2
TEST CONDITIONS AND PROCEDURE	3
DATA AND RESULTS	4 4 5 5
DISCUSSION OF RESULTS	7
Other Experimental Data	7 9
CONCLUDING REMARKS	12
REFERENCES	13
APPENDIX A	\- 1
APPENDIX B	3-1

ILLUSTRATIONS

Figure

and the second second second to the second secon

ŝ

AND ADDRESS OF THE

そうひかう あいや でき 読みるいろう しょうそう

Title

1	Flow Field Survey Apparatus in Wind Tunnel						
2	Pitot Tube Rake						
3	Cone Probe Rake						
4	Typical Cone Probe Dimensions						
5	Pattern of Pressure Measurements for Flow Field Survey Tests						
6	Flow Direction Conventions						
7	Static Pressure Along Model Surface, A_{∞} =3.52 and $i=0^{\circ}$						
8	Static Pressure Along Model Surface, A_{ω} =3.52 and ϵ =50						

The Alter and the second state of the second s

ILLUSTRATIONS (Cont)

Figure

Construction of the second second

Title

9	Static Pressure Along Model Surface, M_{∞} =3.52 and α =10°
10	Static Pressure Along Model Surface, M_{∞} =3.52 and α =15°
11	Static Pressure Along Model Surface, $M_m=4.07$ and $\alpha=0^{\circ}$
12	Static Pressure Along Model Surface, $M_{m}=4.07$ and $\alpha=5^{\circ}$
13	Static Pressure Along Model Surface, $M_m=4.07$ and $\alpha=10^\circ$
14	Static Pressure Along Model Surface, M.=4.07 and q=15°
15	Surface Static Pressure Distribution at X/D=6.5. Mm=3.52
16	Surface Static Pressure Distribution at X/D=6.5. M_=4.07
17	Pitot Pressure Map. $M_m=3, 52$ and $\alpha=5^{\circ}$
18	Pitot Pressure Map, $M_{\rm e}=3.52$ and $\alpha=10^{\circ}$
19	Pitot Pressure Map. $M_{=3}$, 52 and $\alpha=15^{\circ}$
20	Pitot Pressure Map, $M_{\omega} = 4.07$ and $\alpha = 5^{\circ}$
21	Pitot Pressure Map, $M_{\infty} = 4.07$ and $\alpha = 10^{\circ}$
22	Pitot Pressure Map. $M_{max}=4.07$ and $\alpha=15^{\circ}$
23	Mach Number Map. $M = 3.52$ and $\alpha = 5^{\circ}$
24	Mach Number Map, M_{∞} 3152 and $\alpha=10^{\circ}$
25	Mach Number Map, $M_{\infty}=3.52$ and $\alpha=15^{\circ}$
26	Mach Number Map, $M = 4.07$ and $\alpha = 5^{\circ}$
27	Mach Number Map, $M_{\infty} = 4.07$ and $\alpha = 10^{\circ}$
28	Mach Number Map. $M = 4.07$ and $\alpha = 15^{\circ}$
29	Static Pressure Map, $M_{m}=3.52$ and $\alpha=5^{\circ}$
30	Static Pressure Map. $M_{m=3}$, 52 and $\alpha=10^{\circ}$
31	Static Pressure Map, $M = 3.52$ and $\alpha = 15^{\circ}$
32	Static Pressure Map, $M = 4.07$ and $\alpha = 5^{\circ}$
32	Static Pressure Map, $M_{\infty}=4.07$ and $\alpha=10^{\circ}$
34	Static Pressure Map, $M_{\infty} = 4.07$ and $\alpha = 15^{\circ}$
35	Flow Angle Map $M = 3.52$ and $\alpha = 5^{\circ}$
36	Flow Angle Map, $M \approx 3.52$ and $\alpha = 10^{11}$
37	Flow Angle Map, $M = 3.52$ and $\alpha = 15^{\circ}$
33	Flow Apple Map, $M = 4.07$ and $\alpha = 5^{\circ}$
30	Flow Angle Map, $M_{\infty}=4.07$ and $\alpha=10^{\circ}$
40	Flow Angle Map, $M_{m}=4.07$ and $\alpha=15^{\circ}$
41	Crossflow Direction Man. M.=3.52 and q=5°
42	Crossflow Direction Map, $M_{w}=3.52$ and $\alpha=10^{\circ}$
43	Crossflow Direction Map, $M_{\pi}=3.52$ and $\alpha=15^{\circ}$
44	Crossflow Direction Map, $M = 4.07$ and $\alpha = 5^{\circ}$
45	Crossflow Direction Map, $M_{\omega}=4.07$ and $\alpha=10^{\circ}$
46	Crossflow Direction Map, $M = 4.07$ and $\alpha = 15^{\circ}$
47	(omparison of Pitot Pressure Data, $M_{\rm s}=3.5$
48	Comparison of Pitot Pressure Data, $M = 3.5$, $X/D=6.5$, $\alpha=5^{\circ}$
49	Comparison of Pitot Pressure Data, $M = 3.5$, $X/D=6.5$, $\alpha=10^{\circ}$
50	Comparison of Flow Angle Data, Mu=3.5. X/D=6.5. (=5°
51	Comparison of Flow Angle Data, $M = 3.5$, $X/D=6.5$, $\alpha=10^{\circ}$
52	Comparison of Crossflow Direction Data $M_{m=3}.5 \times 10^{-6}.5 = 0.5^{\circ}$
53	Comparison of Crossflow Direction Data $M = 3.5 \times 1/D=6.5$, $\alpha = 10^{\circ}$
55	comparison of closellow preceton pace, m_{∞} -3.3, $\Lambda/3^{-0}$.3, μ -10

ILLUSTRATIONS (Cont)

Figure	Title
54	Comparison of Mach Number Data, M_{∞} =3.5
55	Comparison of Pitot Pressure Data From Opposite Sides of Model, M_{∞} =4.07 and α =10°
56	Effect of Base Interference On Surface Static Pressure At Flow Field Survey Station (X/D=6.5), α =15°
57	Oil Flow Patterns on Ogive-Cylinder Model, $M_{\infty}{=}4.07$ and $\alpha{=}10^\circ$
58	Oil Flow Patterns on Ogive-Cylinder Model, M_{∞} =4.07 and α = 15°
A-1	Cone Proba Calibration Apparatus In Wind Tunnel
A-2	Flow Direction Convention Used in Cone Probe Calibrations
A-3a,b	Correlation of Cone Probe Calibration Data
A-4a,b,c	Maximum Deviation of Cone Probe Calibration Data From Correlation

7

State Alexander

.....

SYNBOLS

- D model diameter
- M Mach number
- P static pressure
- PP Pitot pressure
- q dynamic pressure
- R radial distance from model axis
- RB body radius
- ReD Reynolds number based on wind tunnel free stream conditions and model diameter
- Re_l Reynolds number based on local conditions and distance along cone probe from probe tip to static pressure tap
- t time
- X axial distance from model nose tip, for a sharp nose
- α angle of attack
- 3 circumferential position, measured from windward meridian (see Figure 6)
- ε total flow angle (see Figure 6)

SYHBOLS (Cont)

χ viscous interaction parameter

subscripts

.

 ∞ wind tunnel free stream

1,2,

3,4,5 cone probe pressure taps (see Figure A-2)

0 stagnation value

INTRODUCTION

The work reported here was part of an investigation of the leeward side performance of aft-entry inlets for ramjet powered missiles. One of the objectives of this investigation was to correlate leeward side aft-inlet performance with the average flow properties in the local flow approaching the inlet.

The problem of correlating leeward side aft-inlet performance with local flow field properties was approached experimentally, by surveying the flow field at one longitudinal station on a typical ogivecylinder body and measuring the performance of an aft-inlet operating in this flow field.

The flow field survey data and surface pressure data obtained during the investigation are of more general interest than the inlet performance data, and should be of use to those concerned with flow fields and aerodynamics of axisymmetric bodies. Consequently, these data are being published here separately from the other results of the investigation. The flow field around the ogive-cylinder configuration used in this investigation has been studied in two previous investigations (references 1 and 2). The three investigations generally supplement each other in spite of some overlap. Some of the results of the three investigations are compared in this report.

A number of similar investigations of flow fields around axisymmetric bodies have been reported. Some of these are listed in references 3 through 8.

TEST FACILITY

Ľ

The experimental work reported here was performed in Naval Ordnance Laboratory (NOL) Supersonic Wind Tunnel No. 2. This tunnel operates in the Mach number range from 1.3 to 5 with either continuous recirculating operation or intermittent blowdown operation, depending on the pressure level desired. Various Mach numbers are obtained by means of interchangeable nozzles. The blowdown mode of operation was used for the tests reported here.

TEST EQUIPMENT AND INSTRUMENTATION

WIND TUNNEL MODEL AND FLOW-FILLD SURVEY EQUIPMENT. The configuration used in the flow field survey tests was an ogive-cylinder

having a tangent ogive nose with a fineness ratio of 4. The flowfield surveys were made in a plane 6.5 diameters aft of the theoretical location of a sharp nose - the wind tunnel model nose being slightly blunted. The total length of the model, based on a sharp nose, was 7 diameters and the model base diameter was 3 inches. The wind tunnel model was instrumented with a single longitudinal row of static pressure taps. The first tap was located 0.5 inches aft of the theoretical sharp nose tip, and taps were spaced one inch apart (axially) aft of this location, with the last tap located at the flow field survey plane.

The flow field survey data were obtained with Pitot tubes and cone pressure probes spaced radially on fixed rakes at the aft end of the model. Four cone probes were mounted on one rake and nine Pitot tubes were mounted on a second rake. The two rakes were spaced 90 degrees apart around the periphery of the model. The wind tunnel model and flow survey rakes were mounted on a sting attached to the wind tunnel carriage - this arrangement is shown in Figure 1. Using the wind tunnel carriage, the model could be pitched to various angles of attack with respect to the wind tunnel flow, and the model and flow survey rakes could be rolled together to obtain surface pressure data and flow field data at various circumferential locations. With the rakes spaced 90 degrees apart, it was possible to survey the entire (symmetrical) leeward or windward flow field with both Pitot tubes and cone probes while rolling the model through an angle of 90 degrees.

1

ţ,

FLOW FIELD SURVEY INSTRUMENTATION. A photograph of the Pitot tube rake is shown in Figure 2. The nine Pitot tubes were spaced 0.2 inch apart along the rake, and the centerline of the innermost tube was 0.1 inch from the model surface with the rake mounted on the model. The centerline of the outermost tube was 1.7 inches from the model surface.

The ends of the Pitot tubes were internally chamfered, with a chamfer angle of 15 degrees. This was done to reduce the sensitivity of the measured pressures to the angle of the approaching flow. The Pitot tubes had an outside diameter of .032 inch and an inside diameter of .020 inch.

A photograph of the cone pressure probe rake is shown in Figure 3. The cone probes were spaced 0.5 inch apart along the rake and the rake could be mounted in two positions so that the center of the innermost probe was either 0.25 inch or 0.5 inch from the surface of the model.

The cone probes had a Pitot pressure port at the probe tip and four static pressure ports spaced equally around the conical face, as shown in Figure 3. The static pressure ports were aligned with the rake as accurately as possible.

The cone pressure probes were old probes which had been constructed for other flow field investigations, and were refurbished for the present investigation. The probes were not identical in size, but all had a total included cone angle of 30 degrees. While the exact dimensions of the probes were not determined, typical dimensions for probes of this type are shown in Figure 4.

The cone pressure probes were used to determine the local Mach number, static pressure and flow direction and had to be calibrated against known values of these quantities in a uniform stream. The probe calibrations and the correlation of the calibration data are discussed in Appendix A.

TEST CONDITIONS AND PROCEDURE

and the family of the states of the

人名阿尔比 建苯乙基化的 医甲基水白素 建铬

Flow field surveys were made at Mach numbers of 3.52 and 4.07, and angles of attack of 0, 5, 10, and 15 degrees. The wind tunnel freestream Reynolds number was approximately 12 million per foot for all tests.

The procedure used to obtain flow field survey data was to pitch the model to the desired angle of attack and then roll the model and probes to a series of roll positions, pausing at each roll position to obtain data from the flow field survey probes and the surface static pressure taps. The response of the pressure taps and lines, particularly those on the cone probes, was too slow to allow continuous rolling of the model and probes.

The reference for determining the roll position of the model and probes was the vertical or pitch plane, as indicated by an accurate clinometer. The roll angle readout potentiometer on the wind tunnel carriage was calibrated by resting the clinometer against the flat side of the cone probe rake and reading both the clinometer and the readout potentiometer at various roll positions. The accuracy of the clinometer was ± 1 to ± 2 minutes of arc. The angle of attack readout potentiometer was calibrated in similar fashion.

The angle between the cone probe rake and Pitot tube rake was also measured with the clinometer and was found to be 90° 50'.

The strain gage pressure transducers used in the investigation were calibrated with an accurate mercury manometer $(\pm .1 \text{ mm})$ and a dead weight calibration apparatus.

Most of the flow field survey data and surface pressure data were taken on the leeward side of the model. The pattern of measurements in the flow field survey plane is shown in Figure 5. Leeward side data at a given angle of attack and Aach number were usually taken in two wind tunnel runs. In one run, the cone probe rake wa mounted in the outer position and data were taken at roll positions 10 degrees apart. In a second run the rake was mounted in the inner position and again data were taken at roll positions 10 degrees apart. The roll positions for the second run were located roughly midway between

the roll positions for the first run so that cone probe data, Pitot pressure data and surface pressure data were obtained at roll increments of roughly 5 degrees. Usually during the first run the windward side data indicated in Figure 5 were obtained by reversing the model pitch angle and also, a set of zero angle of attack data were obtained at one roll position. There were two exceptions to this pattern of measurements. In case of the Mach 3.52, 10-degree angle of attack flow field survey, the windward side data were obtained with the cone probe rake in the inner position ratner than the outer position. In the case of the Mach 4.07, 5-degree angle of attack survey, leeward side data were only obtained with the cone probe rake in the outer position with roll increments of 10 degrees.

DATA AND RESULTS

DATA REDUCTION PROCEDURES. Most of the data reduction procedures were straightforward, but some of the conventions used in reporting the results require explanation.

In reporting the results, circumferential locations around the body have been denoted by the angle β , which is arbitrarily given a value of 0 degree on the windward meridian and 180 degrees on the leeward meridian. The flow field and surface pressure distribution were assumed to be symmetrical with respect to the angle of attack plane and the results are reported for one side of the body. Only Pitot pressures were measured on both sides of the body.

The radial positions of flow field survey data points are reported in terms of a dimensionless radial coordinate, (R-RB)/RB, where RB is the body radius (1.5 inches).

As mentioned previously, all the flow field survey measurements were made in a plane 6.5 diameters aft of a sharp nose. The axial location of the surface pressure measurements is reported in terms of station numbers, with station 1 located 0.5 inch aft of the theoretical sharp nose, and station 20 located at the flow field survey plane. The stations were spaced 1 inch apart in the axial direction.

The measured surface pressures were converted to pressure ratios, P/P_{∞} and pressure coefficients, $(P-P_{\infty})/q_{\infty}$, based on the wind tunnel free stream static and dynamic pressures, P_{∞} and q_{∞} . The results are reported in this form.

The measured Pitot pressures were converted to pressure ratios PP/PP_{∞} , based on the wind tunnel free stream Pitot pressure and are reported in this form.

The cone probe pressure measurements were used to determine local values of Mach number, static pressure and flow direction. The details of the calibration of the probes and the data reduction technique are discussed in Appendix A. The local static pressure

measurements were converted to pressure ratios based on the wind tunnel free stream static pressure, $P/P_{\infty},$ and are reported in this form.

S IN TAXABLE

The direction of the local velocity vector, or local flow direction, has been described by two angles, as follows:

1. a total flow angle, ε , defined as the angle between the local velocity vector and the cone probe (or body) axis;

2. a flow direction angle, ϕ , defined as the angle between a reference plane through the cone probe axis and the plane containing the cone probe axis and the local velocity vector.

Sketches illustrating these conventions are shown in Figure 6. The flow direction angle, ϕ , can also be thought of as the flow direction in the plane of the flow field measurements, or crossflow plane. The reference plane for measuring, ϕ , was taken to be the vertical, or pitch plane.

TABULATED RESULTS. A set of tables listing all the flow field survey and surface pressure results are included in Appendix B. The results listed are as follows:

TABLE I:Surface Pressure Ratio, P/P_{ω}
Surface Pressure Coefficient, $(P-P_{\omega})/q_{\omega}$ TABLE II:Pitot Pressure Ratio, PP/PP_{ω} TABLE III:Mach Number, 11
Total Flow Angle, ε
Flow Direction Angle, ϕ
Static Pressure Ratio, P/P_{ω}

Some of the surface static pressure results have been deleted from Table I. The measurements deleted at stations 1, 2, 4 and 12 were in error due to faulty pressure transducer readings. The measurements deleted at stations 18, 19 and 20 were in error due to a base interference effect which is discussed on page 11.

Some values of Mach number and static pressure ratio have been deleted from Table III. Mach numbers were not computed outside the range 1.5 to 5 as it was felt any values outside these limits would be inaccurate. Some values of Mach number and static pressure were obviously out of line with the rest of the data due to base interference or other effects and were also deleted from the table.

PLOTTED RESULTS. Plots of surface pressure ratio, P/P_{∞} , versus axial position (X/D) are shown in Figures 7 through 14. Comparisons are made in some of the figures with pressures computed with a method of characteristics computer program. These comparisons are discussed on page 8. Results are shown for only three values of β : 0°; 90°; and 180°. In some cases, several surface pressure readings were

made at a given location during the course of several flow field survey tests. These replicate readings are indicated in the Figures. Plots of surface pressure ratio versus circumferential position at the flow field survey plane (X/D = 6.5) are shown in Figures 15 and 16.

In order to present the flow field Pito: pressure data in a concise way and to illustrate the features of the flow field on the leeward side of the body, maps were prepared showing a cross section of the body and contours of constant Pitot pressure ratio at the flow field survey plane. These maps are shown in Figures 17 through 22.

In the construction of the Pitot pressure maps, a computer was used to interpolate within the grid of measured values to determine points of constant Pitot pressure ratio in the flow field survey plane. Contours were drawn through these points by hand and consequently, the results are subject to some judgement and/or bias.

In constructing the Pitot pressure ratio map for the Mach 3.52, 15-degree angle of attack flow field it was reasonably clear what part of the flow field had been affected by base interference. The Pitot pressure ratio contours were extrapolated across this region rather than following the interpolated points. The boundaries of this region have been indicated in Figure 19. No clear indication of the extent of base interference could be detected in the Mach 4.07, 15 degree angle of attack Pitot pressure contours and consequently, this map was not edited. The 5 and 10 degree angle of attack data are thought to be free of any pase interference effects.

In the 10 and 15 degree angle of attack flow fields the Pitot pressure data indicated clearly an embedded shock wave in the leeward flow field. The Mach 4.07, 15 degree angle of attack data indicated the presence of two embedded shock waves. The positons of all the embedded shock waves indicated by the data are shown in Figures 18, 19, 21, and 22.

The cone probe results were used to prepare maps similar to the Pitot pressure ratio maps, using the same method of construction. Maps of Mach number, static pressure ratio, total flow angle and flow direction angle are shown in Figures 23 through 46. The flow direction angle has been indicated by small arrows at each measurement point rather than contours.

There was no clear indication of embedded shock waves or of base interference effects in the cone probe results. Consequently, the maps shown in Figures 23 through 46 were not edited and the shock wave positions shown are those obtained from the Pilot pressure data. The second embedded shock indicated by the Mach 4.07, 15 degree angle of attack Pitot pressure data has not been noted on the other maps, as it was not clear how the fairing of the contours would be affected.

It is important to note here that the Pitot pressure ratio maps, Mach number maps and static pressure ratio maps were constructed

individually from the experimental data and the fairing of the contours through the interpolated joints was done by hand with no cross checking for consistency between the maps. As a result, values of Pitot pressure ratio, Mach number and static pressure ratio read from the maps for the same position in the flow field may not be consistent. The maps are intended primarily to give a qualitative look at the flow fields surveyed. Readers desiring quantitative information should refer to the tabulated data in Appendix B.

DISCUSSION OF RESULTS

COMPARISONS WITH CALCULATED VALUES AND OTHER EXPERIMENTAL DATA. The flow field around the ogive-cylinder configuration used in this investigation has been studied in two previous investigations, reported in references 1 and 2. Some of the data from the three investigations overlap, but substantial portions of the data do not. Thus, the three investigations tend to supplement each other.

A summary of the test conditions for the three investigations is given in the table below:

Invest- igation	X D Survey Plane	R-RB RB	. Μ _∞	α deg	^{Re} D x 10 ⁻⁶	Type of Data	
Ref l	7.5	.39 .59, .79	3.5	0,5 10,15	.5	Cone Probe	
⊰ef 2	5.5 6.5	0-1.2	2.49 3.5 4.3	0,5 10	3-4.3	Cone Probe; Pitot Pressure; Surface Pressure	
Pre- sent Invest- igation	6.5	.167- 1.33	3.52 4.07	0,5 10,15	3	Cone Probe; Pitot Pressure; Surface Pressure	

In all three investigations the nose tips of the wind tunnel models were essentially sharp, with nose bluntnesses between one and three percent.

Some comparisons have been made of data from the three investigations to determine roughly whether or not the data are consistent. In addition, the inviscid flow field around the ogive-cylinder configuration was computed using a method of characteristics computer program obtained from NASA (reference 9). The inviscid flow field was

calculated for a Mach number of 3.5 and angles of attack of 0, 5 and 10 degrees. The calculations should be accurate in all portions of the flow field not affected by boundary layer separation and provide a standard of comparison for the experimental results where applicable.

Surface static pressures computed with the method of characteristics program are compared with the experimental values for Mach 3.52 and 0, 5 and 10 degrees angle of attack in Figures 7, 8 and 9. The agreement between the computed and experimental values is generally quite good. The experimental values for the windward meridian ($\beta=0$) at 10 degrees angle of attack are five to ten percent higher than the computed values. It has been found that positive errors of this magnitude can occur when the size of static pressure taps is comparable to the displacement thickness of the boundary layer (reference 10). This would most likely occur on the windward side of the model and may offer an explanation for the observed difference between the calculated and experimental values. The computed values on the leeward meridian at 10 degrees angle of attack are higher than the experimental values toward the end of the body, but in this region the flow field is affected substantially by boundary layer separation.

A comparison of Pitot pressure data from reference 1 and the present investigation is snown in Figure 47. The data from the two investigations are in good agreement, even though the flow field survey stations differed by one body diameter. This result, along with the fact that the axial variation in static pressure toward the end of the body is small, indicates that the flow field develops quite slowly in the axial direction at this distance from the nose (6.5 to 7.5 diameters). The difference in Reynolds number by a factor of five between the two investigations should not have affected the data in the parts of the flow field unaffected by boundary layer separation. It is surprising, however, that the data are in agreement even in regions of the flow fields affected by separation.

A comparison of Pitot pressure data from the present investigation and reference 2 with computed Pitot pressures for Mach 3.5 and angles of attack of 5 and 10 degrees is snown in Figures 48 and 49. This comparison indicates that the experimental data and computed values agree to within ten percent except in the boundary layer and regions of the flow field affected by boundary layer separation. In the outer part of the flow field at β =135 and β =180 degrees and 10 degrees angle of attack good agreement is obtained with the computed values even in the presence of boundary layer separation. The variation of Pitot pressure within the flow fields at 5 and 10 degrees angle of attack appears fairly small except in the attached and separated boundary layer flow.

A comparison of total flow angle and flow direction angle measurements from all three investigations with computed values from the method of characteristics program is shown in Figures 50 through 53.

The measured and computed total flow angles generally agree within 2 degrees in the flow field outside the boundary layer and not affected by separation. At β =135 degrees and 10 degrees angle of attack where an effect of flow separation is expected the computed and experimental values differ by 3 to 4 degrees, but appear to follow the same trend in the radial direction. At β =180 degrees the trends are different.

The measured and computed flow direction angles agree to within 10 to 15 degrees in the regions where comparisons are valid. The experimental values on the leeward meridian at 10 degrees angle of attack were greatly affected by the strong flow divergence in the separated boundary layer flow. The effect of the embedded shock on the flow direction appears fairly substantial.

Finally, measured Mach numbers from reference 1 and the present investigation are compared in Figure 54. The agreement is generally good despite the fact that the measurements were made at different axial and radial locations. The comparison should still be valid as the measurements indicated only a small variation of Mach number in the radial direction in the regions unaffected by separation, and it should be safe to assume small variations in the axial direction also. Computed values of Mach number are shown for the 5 and 10 degree angle of attack flow fields and are in good agreement with the measured values where a comparison is valid.

In summary, the experimental data from the three experimental investigations are in reasonably good agreement and are consistent with computed values for the inviscid flow field in all parts of the flow field where a valid comparison can be made. It should be possible to use the data from all three investigations together in comparisons with theory or in empirical analyses of the flow field.

EXPERIMENTAL PROBLEMS AND SOURCES OF ERROR. The accuracy of the cone probe calibrations is discussed in some detail in Appendix A. A general statement concerning the accuracy of the calibrations is as follows:

1. Mach numbers are accurate to about '5 percent,

2. total flow angles are accurate to about +2 degrees,

3. flow direction angles are accurate to about +7.5 degrees.

The comparisons with other data and with theoretical inviscid values discussed above indicate that these accuracies were achieved in most regions of the flow fields surveyed where there was no effect of boundary layer separation. The comparisons also indicate the measured Pitot pressures were quite accurate.

Since the Pitot rake and cone probe rake surveyed the flow field on opposite sides of the body, the symmetry of the flow field is of some concern. A comparison of Pitot pressure data from the cone probe rake with corresponding data from the Pitot rake is shown in Figure 55. The pressures compared are in good agreement, indicating the flow field was symmetrical to within the accuracy of the data. Comparisons similar to the one shown were made for all the flow fields surveyed and in all cases the Pitot pressures from opposite sides of the body were in good agreement.

Two sources of error could have affected the experimental measurements to a greater extent in the regions of separated flow than in other parts of the flow field. These are: (1) viscous effects; and (2) the effect of Mach number and pressure gradients.

Viscous effects on the cone probe and Pitot pressure readings are thought to be negligible. An estimate of the viscous interaction parameter $\chi = M^3/\sqrt{Re_l}$ was made for the cone pressure probe at the point of minimum Reynolds number in the Aach 4.07, 15 degree angle of attack flow field. Assuming a total flow angle of zero, a value of χ less than 0.1 was obtained. It was concluded that viscous effects on the cone pressure readings were probably negligible (reference 11). A similar estimate was made of the minimum Reynolds number based on Pitot tube diameter and the resulting value was found to be greater than 1000. Accordingly, viscous effects on the Pitot pressure readings should have been negligible (reference 12).

Since the diameter of the Pitot tubes was quite small (.032 inch) compared to the size of the flow field surveyed the effect of Mach number and pressure gradients on the Pitot pressure measurements should have been negligible. This is probably not the case for the cone probes, however, which were much larger in diameter (about .19 inch).

Unfortunately, no accepted method for correcting cone probe readings for the effect of Aach number and pressure gradients is available. Consequently, no attempt has been made to correct the cone probe measurements for this effect.

Two experimental problems were encountered which may have affected some of the experimental measurements in the region of separated flow.

In some cases the pressure in the tubes connecting the cone probes with the pressure transducers had not steadied out during the period when the pressure data were recorded. Nost of the unsteady pressure data recorded occurred in the separated flow regions, where pressures were lowest. Where unsteady readings were encountered, an effort was made to estimate steady values of pressure by curve fitting the following type equation to several successive pressure readings (a number of readings were recorded at each survey point):

$$P = a + be^{-Ct}$$

where: a, b, c = constants determined during the curve fitting process t = time

The estimated steady pressure reading is given by the constant a. The accuracy of the estimated steady values appeared to be good in some cases and poor in others. In some cases the equation above did not appear to describe the trend of the data and could not be used, in which case the final value recorded was used. At any rate, the Mach numbers and flow angles computed from the cone pressure data were related to correlation parameters involving four pressure readings and should not have been highly sensitive to errors in a single reading.

The second experimental problem encountered was a base interference effect which affected some of the surface pressure data and flow field data at 15 degrees angle of attack. The base interference was due to an overly large connecting nut which was used on the two piece sting support used in the tests. Unfortunately, the interference effect was not identified until after the flow field tests had been completed.

The effect of base interference on the surface static pressure at the flow field survey station (X/D = 6.5) is shown in Figure 56. According to these measurements the flow field at the model surface was affected from $\beta \cong 125^{\circ}$ to $\beta \cong 155^{\circ}$, for A = 3.52 and $\beta \cong 125^{\circ}$ to $\beta \cong 165^{\circ}$ for A = 4.07. At 10 degrees angle of attack, the surface static pressures were free of any interference effect.

Oil flow photographs were taken after the flow field survey tests to study the location of boundary layer separation along the model. These photographs were taken at Aach 4.07 and 10 and 15 degrees angle of attack and illustrate clearly the extent of the base interference effect on the model surface. The two photographs are shown in Figures 57 and 58, and confirm that the interference did not quite reach the flow field survey plane at 10 degrees angle of attack, but reached a point well ahead of the flow field survey plane at 15 degrees angle of attack.

As mentioned previously, the effect of the base interference was apparent in the Pitot pressure contours obtained from the A = 3.5215 degree angle of attack Pitot pressure data, and the Pitot pressure map for this case was corrected by extrapolating the data across the region of base interference. The effect of interference was not apparent in any of the other contour plots and no further corrections were made. Individual data points which appeared to be obviously incorrect due to the base interference or otherwise have been deleted from the tabulated data given in Appendix B.

Comparison of the surface static pressure data with static pressures measured in the flow field near the surface indicates agreement is not too good, particularly in the 5 degree angle of attack cases. This should not be too surprising since the static pressure ratios in the flow field were computed from the measured Mach number and Pitot pressure, and the error in static pressure will range from two to seven times the error in the Mach number depending upon the Mach number. It is hoped that the flow field static pressure results at least indicate the correct trends.

" - and is approved to be a set of the set of the set of

CONCLUDING REMARKS

The flow field at one station (X/D = 6.5) on an ogive cylinder of fineness ratio 4 was surveyed at Mach 3.52 and 4.07 and angles of attack of 0, 5, 10 and 15 degrees.

The experimental results have been compared with those of two previous investigations and with theoretical values for the inviscid flow field calculated by the method of characteristics. The experimental results from all three investigations are reasonably consistent and in fairly good agreement with the theoretical results in regions of the flow fields where comparisons are valid.

REFERENCES

- Lankford, J. L., "Preliminary Results of Flow Surveys About an Inclined Body of Revolution at Mach Number 3.5 (Phase 1 of Aft-Entry Program)," NAVORD Report 6708, Jan 1960.
- Karanian, A. J., Gadbois, S. E., and Carlson, P. R., "Investigation of Inlet-Vehicle Installation Interactions for an Air-Launched Advanced Ramjet Missile (ALARM) (U)," Final Report, Vol. II, Contract N00019-68-C-0507, United Aircraft Research Lab Report H910656-22, Nov 1969, Confidential.
- Raney, D. J., "Measurement of the Cross-Flow Around an Inclined Body at a Mach Number of 1.91," RAE TN Aero 2357, Jan 1955.
- Jorgensen, L. H. and Perkins, E. W., "Investigation of Some Wake Vortex Characteristics of an Inclined Ogive-Cylinder Body at Mach Number 2," NACA Report 1371, May 1955.
- 5. Mello, H. F., "Investigation of Normal Force Distributions and Wake Vortex Characteristics of Bodies of Revolution at Supersonic Speeds," APL/JHU Report CM867, McDonnell Aircraft Corp., Apr 1956.
- Tinling, B. E. and Allen, C. Q., "An Investigation of Normal-Force and Vortex Wake Characteristics of an Ogive-Cylinder Body at Subsonic Speeds," NASA TN D-1297, 1962.
- 7. Grosche, F. R., "Wind Tunnel Investigation of the Vortex System Near an Inclined Body of Revolution With and Without Wings," AGARD Conference Proceedings No. 71, presented at a Specialists' Meeting of the Fluid Dyanmics Panel of AGARD held at NOL, Silver Spring, Maryland, 28-30 Sep 1970.
- Rainbird, W. J., "The External Flow Field About Yawed Circular Cones," AGARD Conference Proceedings No. 30, presented at a Specialists' Meeting of the Fluid Dynamics Panel of AGARD held at the Royal Aeronautical Society, London, England, 1-3 May 1968.
- 9. Rakich, J. V., "A Method of Characteristics for Steady Three-Dimensional Supersonic Flow with Application to Inclined Bodies of Revolution," NASA TN D-5341, Oct 1969.
- 10. Rainbird, W. J., "Errors in Measurement of Mean Static Pressure of a Moving Fluid Due to Pressure Holes," Quart. Bulletin, Div. of Mech. Engr. and Natl. Aero. Estab., Canada, Report No. DME/NAE, 1967.

- 11. Talbot, L., et al, "Hypersonic Viscous Flow Over Slender Cones,"
 NACA TN-4327, 1957.
- 12. Schaaf, S. A., "The Pitot Probe in Low-Density Flow," AGARD Report 525, Jan 1966.
- 13. Jones, D. J., "Tables of Inviscid Supersonic Flow About Circular Cones at Incidence $\gamma = 1.4$," AGARDOGRAPH 137, Nov 1969.

Strate a frank a second

14. Karanian, A. J., et al, "Investigation of Air Induction System Technology for an Air-Launched Advanced Ramjet Missile (ALARM) (U)," Test Data Summary Report, Contract N00123-70-C-0693, NWC TP 5184, Dec 1971, Confidential.

FIG. 2 PITOT TUBE RAKE

FIG. 3 CONE PROBE RAKE

•

NOLTR 72-198

FIG. 5 PATTERN OF PRESSURE MEASUREMENTS FOR FLOW-FIELD SURVEY TESTS

^{rr.} 28

 ϕ = FLOW DIRECTION ANGLE

FIG. 6 FLOW DIRECTION CONVENTIONS

م |م⁸

NOLTR 72-198

.

<u>م ام⁸</u>

きょう くじょう

a best were were and a second of the second

(

NOLTR 72-198

間でいたこと・

「「「「「「「」」」」

.....

37

`

FIG. 16 SURFACE STATIC PRESSURE DISTRIBUTION AT $\frac{X}{D}$ =6.5, M_{∞}= 4.07

A CONTRACT OF THE OWNER OWNER

- North States

おうち けんかいはちゅうちょうかん ちちゃ ちちゃく しょうちょう しょうちょう ちょうちょう

.....

42

-2

「「「「」」

and the second se

1.11 ĩ

NOLTR 72-198

•

•

「日本」

Analista .

The state

-

Contractor State

- 18 C

1 N 2

to the set of the set

The very

20.00

いるいちご ちょくない ちょうきしょう

.....

56

*

んちょうちょうちょう

a frank a state a state a state

NOLTR 72-198

. .

<u>،</u>

FIG. 44 CROSSFLOW DIRECTION MAP, M_{co} = 4.07 AND α =5°

NOLTR 72-198

2

FIG. 55 COMPARISON OF PITOT PRESSURE DATA FROM OPPOSITE SIDES OF MODEL, M_{co} = 4.07 AND α =10°

FIG. 57 OIL FLOW PATTERNS ON OGIVE-CYLINDER MODEL, M= 4.07 AND $\alpha = 10^{\circ}$

APPENDIX A

CONE PROBE CALIBRATION AND DATA REDUCTION

CALIBRATION PROCEDURE. The cone probes used in the flow field surveys were calibrated by removing the ogive-cylinder model from the sting support and exposing the probes to the uniform wind tunnel flow at various angles of attack and roll positions. The calibration test setup is shown in Figure A-1. Calibration data were taken at Mach numbers of 2.06, 3.05 and 4.08. The calibration test setup allowed the probes to be rolled through an angle of 180 degrees, starting in the pitch plane as shown in Figure A-1 and ending in the pitch plane opposite the position shown. The sting support could be pitched from -12 degrees downward to 22 degrees upward. This range of pitch and roll allowed calibration data to be taken with flow approaching the probes from each quadrant. The probe rake was rolled in the same direction during the calibration tests as in the flow field survey tests.

In the case of cone probes with four static pressure orifices spaced 90 degrees apart around the cone surface, first order cone flow theory gives the following relations:

$$\left(\frac{P1 + P2 + P3 + P4}{Po}\right) = f_1(M)$$
(A1)

$$\left(\frac{P_1 - P_3}{P_0}\right)^2 + \left(\frac{P_2 - P_4}{P_0}\right)^2 = \varepsilon f_2(M)$$
 (A2)

$$\left(\frac{P1 - P_{3}}{P_{0}}\right) \left/ \left(\frac{P2 - P4}{P_{0}}\right) = \tan \phi'$$
(A3)

Where: Pl, P2, P3, and P4 denote the pressures measured at the four orifices

Po = the local total pressure

The functional relationships are not changed if the local Pitot pressure is used rather than the total pressure. Ignoring flow

A-1

angularity effects, the local Pitot pressure is measured by the fifth orifice located at the tip of the probe. The layout of the cone probe orifices and the definition of the flow direction angle ϕ' is illustrated in Figure A-2.

Examination of the probe calibration data led to the following functional relationships:

$$\left(\frac{P1 + P2 + P3 + P4}{P5}\right) = f_3(\varepsilon, M)$$
 (A4)

$$\left(\frac{P1 - P3}{P5}\right)^2 + \left(\frac{P2 - P4}{P5}\right)^2 = A + B\varepsilon$$
 (A5)

$$\left(\frac{P1 - P3}{P5}\right) / \left(\frac{P2 - P4}{P5}\right) = \tan \phi'$$
(A6)

Where A and B are constants.

Relations (A4) and (A5) were established by curve fitting the experimental calibration data. The range of the calibrations was extended to A=5 by using some previous NOL calibration data for similar probes and some theoretical values from the AGARD cone tables (reference 13). Data from both of these sources were in reasonably good agreement with the A=4.08 calibration data of this investigation. The relationships resulting from curve fitting the data are shown in Figures A-3a and A··3b.

It appeared that no significant improvement in accuracy would be gained by using separate calibrations for each probe. Some influence of ϕ' was noted in Relation (A4) and likewise an influence of both ϕ' and I was noted in Relation (A5). The data indicated, however, that these effects were small and would be very hard to correlate. According to reference 14, some improvement in probe calibration accuracy was achieved in similar probe calibrations by considering the quadrant of the flow direction as an additional parameter. It did not appear that this would significantly improve the accuracy of the calibrations in this investigation.

ACCURACY Accuracy of the probe calibrations was estimated by comparing Relations (A4), (A5) and (A6) with the individual calibration data points. Values of root mean square deviation of the individual data points from the final calibrations are given in the table below:

83

Λ-2

NA ARE TENESSED

Mach No.	∆M (ቄ)	∆c (deg)	Δφ' (deg)
2.06	±1.1	±1.2	±2.7
3.05	1.8	.7	3.2
4.08	2.0	.6	2.7

The maximum (+) and (-) deviations of the data points from the calibrations are shown in Figures A-4a, A-4b and A-4c as functions of Mach number and total flow angle. The rms deviations are indicated on the graphs. In general, it is seen that the overall spread of the data was about 2 to 3 times the rms deviation. Small trends with respect to Mach number and total flow angle can also be seen.

For a general statement as to the accuracy of the probe calibrations it can be said that:

- 1. Mach numbers are accurate to about ±5 percent,
- 2. total flow angles are accurate to about ±2 degrees,
- 3. flow direction angles are accurate to about ±7.5 degrees.

DATA REDUCTION PROCEDURE. Data reduction using Equations (A4), (A5) and (A6) was straightforward, with no iterations required. The procedure was to compute ϕ' and ε first, using Equations (A6) and (A5) and then compute A, using Equation (A4).

8.1

A--3

FIG, A-1 CONE PROSE CALISSATION APPAPATUS IN WIND TUNNEL

FRONT VIEW OF CONE PROBE

FIG. A-2 FLOW DIRECTION CONVECTION USED IN CONE PROBE CALIBRATIONS

- -

9-1, 1935 - 1- 4<u>9</u>4

3

FIG. A-3a CORRELATION OF CONE PROBE CALIBRATION DATA

Contraction of the second second

And a second data with the second second

~ - - -

: 8

ş

. ..

٤.

.

_

.

APPENDIX B

TABULATED RESULTS

B-1

· "" and the seals

TABLE I

SURFACE PRESSURE RATIO

SURFACE PRESSURE COEFFICIENT

93

.

SURFACE STATIC PRESSURE RATIO AND PRESSURE COEFFICIENT Free Siream Mach Number = 3.52 Angle of Attack = 3 degrees

	BETA					STATION	NUMB ER				
	DEG	-4	2	e e	¥	ŝ	æ	1	Ð	œ	U
,	179.2	2.1218	1.9193	55	1.7781	1.5733	1.4524	1.3159	1.2313	1.1182	1.0318
	178.6	0180.2	1.8997	003 1451	0.0897 1.7443	0.0661	0. 3522	0.0354	0.0232	0.0136	1600.0
9	178_0	0.1246	0.1037	0.0859	0.0858	0.0631	0.0529	2.3352	1.1711	1.1087	1.0334 0.0039
).1		1061-0	0.1094	0.0885	1.08010	0.0647	9624 •1 0• 3458	1.3055 0.0353	1.1954 3.7715	1.1095	1-0240
	178.7	2.0990 0.1267	1.8981	1.7404	1.7365	1.5639	1. 4305	1.3365	1.1951	1.1174	1.0279
						00.00.00	0. 10 10	5050.0	322C°C	0.0135	0.0032

B-3

ş

ł

FREE STREAM MACH YUMBER = 3.52 ANGLE OF ATTACK = 3 DEGREES

-

,

•

- ----

Support of the second of

B-4

FREE STREAM MACH NUMBER = 3.52 ANGLE OF ATTACK = 5 DEGREES

2 ø æ 1.00 0.01.0 0.00.0 0.00.0 ø NUMBER STATION **2. 1728 0. 1352 0. 1352 0. 1352 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 1373 1. 2314 1. 2314 1. 2314 1. 2314 1. 2314 1. 2314 1. 2317 1. 2317 1. 1374 1. 1373 1. 2317 1. 1373 1. 2317 1. 1373 1. 2317 1. 1373 1. 2317 1. 1373 1. 2317 1. 1373 1. 1373 1. 1373 1. 1373 1. 1375 1. 1373 1. 1375 1. 1375 1. 1375 1. 1375 1. 1375 1. 1375 1. 1375 1. 1375 1. 1977 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 1017 1. 10** ŝ 2.3619 0.1570 2.1681 0.1347 1.6494 0.0749 1.5152 0.0594 1.4242 0.0489 1.3747 0.0432 1.3120 1.3175 1.3410 1.3167 0.0365 1.3206 1.2931 \$ 2.652 2.675 2.6715 2.6715 2.6715 2.6715 2.6715 2.6775 2.6775 2.6775 1.67862 1.67862 1.67862 1.69866 1.698666 1.696666 1.69679 1.696966 1.696966 1.69696 1.69696 1.69696 1.696966 1.696966 1.69696 m 2.6608 0.1915 1.8636 0.0996 1.8746 0.1008 1.7781 1.7781 1.7318 0.0844 N 2.9080 0.2200 2.7770 2.7770 2.4749 2.4749 0.1259 7.01259 2.0708 2.0708 2.0982 2.0982 0.1171 0.1171 0.1171 0.1256 0.1269 0.12918 1.8028 1.8039 0.0999 0.0999 0.0807 1.6796 1.6796 1.6796 1.6796 1.65996 0.0807 1.65996 0.0807 1.65996 0.0807 1.65996 0.0807 1.65392 0.02897 1.65392 0.05282 1.65392 0.05282 1.65392 0.05282 1.65392 0.05282 1.65392 0.05282 1.65392 0.05282 1.65392 0.05282 1.65392 0.05282 0.0737 1.5850 0.0675 0.0699 0.0699 0.0699 1.5562 0.0653 1.5552 0.0586 1.5450 0.0628 1.5945 0.0685 1.5552 0.0640 2.0919 1.5874 0.0677 1.5474 0.0531 106.6 BETA 8.09 1.16 6.03 4-68 88.5 93.2 98.5 E. E01 113.3 1.1 118.5 123.2 136.6 129.6 133.5 149.7 59.5 6.861 143.7 53.3 173.9 179.0 DEG 163.6 1.8.1 r 96

NOLTR 72-198

FREE STREAM MACH NUMBER = 3.52 ANGLE DF ATTACK = 5 DEGREES

	BETA					STATION	NUMBER				
	DEG	11	12	13	14	15	16	17	19	61	20
		1-2712	1.1080	1.0828	1.1150	1.0852	1.0836	1000.1	1.2825	1820.1	1.0742
	•	6160.0	0.0124	0.0096	0.0133	0.0098	0.0036	2010°C		040010	0.0000
	1.16	1.2053	1.0444	1.0232	1.0546	0 20 20	0.00.0	CEOC C	2100.0	1100.0	0.0014
		0.0237			0.9181	0. HB 75	0.8812	0.8828	2.8674	4698.C	0.9024
	A*10		-0.0086	-0.0123	-0.004	-0.0130	-0.0137	-2.0135	-2.3151	1910.0-	-0.0113
	8.06	0.8882	0.7586	0.7556	0.7767	0. 7534	0.7455	0.7457 0.0000	0.7397	0.7527	0.7319
		-0.0129	-0.0244	-0.0282	-0.0257	-0.0284	-0.0232	C62C°C-	1040.0-	-].] 685	4050-0-
	6 9 . 4	0.8663	0.7644	0.7283	0.7358	0. 7213	-0.1136		1000°C		-0.0191
		+510-0-	-0.0272	-0.0313	-0.00°0-	1760 00-		5 5 5 5 7 C	2 C 8 2 . C	7.984 C	0.6590
	69.5	0.6631	0.7672	0-1283	-0-0307	-0.0324	-0.0335	-0.0351	825C.C-	-0.354	-0.0393
	01.7		0.7493	0.7696	0.7168	0. 7002	J. 6913	0.6836	0.5571	0.6659	0.6498
	3474	E810-0-	-0.0289	-0.0335	-0.0327	-0-0346	-0. 3355	8380.0-		-0-345 0-555	
	99.5	0.8176	0.7279	0.6882	0.6940	0.6794	0.5734	0.5573 2.5573 2.5575			
		-0.0210	-0.0314	-0.0359	-0.0355 5283 0	-0-02-0-	0.6671	555°C	5555°C	0.5538	0.6662
	103.3	0.1958	0.1155	-0-0-	-0.0366	-0-0381	-0- 0334	268C.C-		-0.J399	-0.0385
•		7676*0-		0.559	0.6696	0.6623	0.6639	0.5611	0.5550	3.6660	0. 70 30
,	0*E01		-0.0347	-0-0393	-0.0381	-0.0389	1660.0-	166C°C-	1660.0-	- 2. 2 485	-0.0342
	113.3	0-7665	0.6926	0.6578	0.6725	0. 6666	0.5635	0.5719	0.5814	1201.0	
		-0.0269	-0-0354	-0.0395	-0.0378	-0.0184	-0.0331	-0.57878	7580.0-		
9	119.5	0.7607	0.6926	0.6576	0.6751	0.6736	0.5739	1.5444 5444 5444 5444 5445 544 544 54 54 5		1050.0-	-0.0715
)7		-0.3276	-0.0354	-0.0395	-0-03 C	0160-0-			1647.0	1677-0	0.8561
4	123.2	0.7556	0.6933	0.6650	5 CH9.0	0.0358 -0.0358		-0.0323	9620-0-	-0.2262	- n. OL66
		2820-0-	-0-03 C	-0.4360		0. 7075	0.7232	0.7520	7471°C	2.8J74	0.8945
	129.6	0.727.0	0.0367	-0.0378	-0.0347	-0.0337	-0.0319	-3.3285	-2.1252	- 0. J222	-0.0122
	3 551	0.7595	0.6971	0.6809	0.7133	0.7244	0.7428	1697°C	1161.0	0.8270	
		1720-0-	-0-0349	-0.0368	-0-0331	-0.0318	-0-0237	-0.0255		6610°0-	
	139.6	0.7625	0.7103	0.6884	C. 72 75	0.7474	0.01			7810.0-	-0.0097
		-0-3274	-0.0334	-0.0359	-0-0314	-0.0291	- 1 - 0 - 0 - 1	1430.00		9999.0	0.9212
	143.7	0.7673	0617.0	CEU1.U	-0.0796	-0.0780	-0-0258	-2.225-	-2.3235	-3.3186	- 0. 0091
	149 7	-0-1200	0-7244	0.7119	0.7538	0. 7686	0.7835	0.9153	3234	0.9427	0.9243
		-0-0263	-0.0318	-0.0332	-0.0284	-0.0267	-0-0244	-0.0213	1610.0-	1410-0-	
	153.3	0.7827	0.7260	0.7210	0.7635	0. 7805	0.8034	3.9231	2444°C	-1-2-0	- 0. 00 17
		-0.0251	-0.0316	-0.0322	-0.0273	-0° 02 03				J. R516	0.9408
	159.5	0.7902	0.7407	0.7312	0.1790	-0-0240	7120-0-	-0.0184	1110.0-	0410-0-	8400 * 0 -
		2420-0-	-0.0299	0160.0-	0.7879	0. 79.80	0.8175	0.8459	5638°C	0118.0	1929.0
	c. (c1	0.07.0 0		4050-0-	-0.0250	-0.0233	-0-0210	-0.0179	-3.3152	- J. J I C. C -	-0.0382
	0 91		0.7505	0-7464	76.77	0. 90.82	0.831)	7.9624	0.9793	2.9842	0.9322
		-0.3228	-0.0288	-0.0292	-0-0236	-0.0221	1 S I C * O-	-2.2159		771C.C-	
	6.671	0.8035	0.7443	1947.0	1461.0	0.8114	0-8325	0.9571			5000°0°
		-0.0227	-0.0295	-0.0289	-0.0237	-0.0218	-0, 0193	-3.11.55 2272 C			0.9283
	179.7	0.8327	0.7526	0.7519	0.8004	0.8145	C1 58 .0	2010°C-		1110.0-	-0.0083
		-0.3227	-0.0285	-0.0286	-0-10-0	-120-01-	0.8349	0178.0	1496.0	42C6.C	0.9220
	C. FT	0.8017 -0.0278	1020-0-	-0.0289	-0.0237	-0.0215	CE 1C *0-	-2.3149	1110.6-	£11C.C-	0600 °U -
		こうほうもうし									

NOLTR 72-198

B-6

and a sub-law the state of the

have 12 - 1

:

いったい たいぶ

ł 1 ÷

Viet of a part

5.000

FREE STREAM MACH NUMBER = 3.52 ANGLE OF ATTACK = 13 DEGREES

STATION NUMBER

BETA					STAFFON	NUMBER				
DEG	1	~	m	*	s	Ð	2	đ	3	10
5 •C	£000**		3.4102		3.0320	2.8013	2.5555	2.3335	2.1555	1.9462
	0.3459		0.2779		0.2343	0.2077	Sec1.C	0.1504	0.1332	0.1149
1.4	3.981+	3.5742	3.4063	3.2478 0.3503	3.0343	2518-2	2.5623	1016.2	2.1484	2.0009
1 11	10.5451	0.400	1120	2040 - C	2. 1754	2.5541	5.3283	869C.5	1.9248	1.7804
	1806.0		0.2435	0.2243	0.2047	0.1732	1.1532	0.1255	0.1066	0.0900
1.04	2.8688		5104-2	2.3454	2.1249	1. 3350	1.7423	1.5442	1.4163	1.2796
	0.2155		0-101-0	1	1.474	8/01 °D	(), 15 () () () () () () () () () (
	0-1122		0.0746	0.0497	0.04 49	9160.0	0.0152	6100.0-	1610-0-	- 0. 02 50
1.60	1.9954	1.7741	1-6486	1.6149	1.3947	1.2924	1.1235	85CC.1	1106.0	0.9098
	0.1148	6680.0	0.0748	0.0709	0.0449	0.0337	0.0139		1010-0-	-0.0219
93.6	1968-1			3446.1	104/1	1.1414				
0.00	1.7498	0.00.0	5164.1	1.3475	1.1343	1. 3970	0.9479	2146.0	0.2000	0.6707
	0.3865		0.0497	0.0458	0.0224	5110.0	-3.3353	-0.0183	- 3. 3275	-0.0380
103.7	1.6313		1.3065	1.1386	1.0789	1. 3255	6978.C	21712	2792.C	0.6248
	0.0728		0-0353	0.0160	0.0041	0.0029		-0.0254	646C°C-	
1.601 .	1.5301		1.2476	1.1966	1.0209	0.9314	59C8°C	4 FC / • C -	1.0289 0420	
	1190-0		0.0280	0.0227	0. 12 67	-0-00-73	0242.00		0,5843	0.5191
112.1	167C-0		0-0163	0.0013	-0. 1085	-0.0133	-0.0234	1040.0-	-0.0479	-0.0555
119.8	1.3575		1.1060	1.0554	0. 90.87	0.8270	3.7035	J.5134	10+5*0	0.4666
	21+C-0		0-0124	+900*0	-0-0102	-0.0133	-0.0345	-3,3446	-0.0530	-0.0615
9. 9.	1.2947		1.0315	0.9024	0.8380	0.8034	3.5751	0.5338	3.5249	0.4630
3			1600.0	\$ 110 ° 0 -	- 0° 10 47					
1 2 8 . 6	80C211		6000-0	-0-001	12 10 -0-	-0.0256	-0.0385	61 9 C • C •	8450.0-	-0.0627
133.6	1.2176		0.9950	0.8765	0. 7862	0.7072	2.832	2.5373	9.5604	0.5257
	0-3251		-0.0006	-0-0142	-0-0246	-0.0234	-0.0359	-0.0453	205C-0-	
0.661	1.2054		1.0185	-0-00-0-	-208 -0 -0-10-50					9640-0-
143.7	1.1990		0.9769	0.8576	0.8380	0.8338	0.7351	6182°C	0.6528	0.6258
•	0.0229		-0-0027	-0-0164	-0.0187	-0. 3196	-0-0305	-0.0358	-0*0.0	-0-0431
149.5	1.2084		1.0216	0.9957	0.8969	0.8427	7683	148 C	0.0818 7.45 C	-0-044
2 631	0470.0		6700°0	6000°0-	-0-0119 0-8655	0.8812	7167-0	5367.0	0.7064	0.6725
	0.0232		-0.000	-0.0060	-0.0155	-0-0137	-2.0240	-0.7295	86 E C . 0-	- 0. 0378
158.9	1.2304		1.0420	1.0256	0, 93 30	0.8832	0.9158	J.7556	1922.0	0.6778
	0.3266		0.0048	0.0024	-0-0317	-0. 3129	-1.22.1		-0.3316	-0.0371
163.7	1.2202		1-0146	1.0114	0. 9024	0.9037	3.8253	0.1758 	0.7376	1007 -0
	0,0254		100.0	0.0013	-0-0113				5057°0-	
10, 101	1.5410		0.0048		5E00-0-	3016 - D-			0670-0-	5460.0-
173.5	7152.1		1.0350	1.0216	0-9110	0. 3345	0.8396	2. C	3.7555	0. 7232
	0.0274		0.0040	0.0025	-0. 01 03	-0-0015	-3.3185	€2C°C-	-). ? . ^	918C 20
179.2	1.2523		1.0774	1.0632	0.9699	1616-0	0.8553	1308.0	J. 76%6	ttel .
	1620.0		0.0089	0.0073	-0.0035	-0-00-04	-1.0157	-2.22.6-	-3.7269	
179.9	1.2406		1.0530	1-0405	0. 93 ZZ	-0- 43// -0072		*****	0120.0-	-0.0303
			1000+0)			

B-7

NOLTR 72-198

- -- ---

> ţ ÷

- North Contrast - Annual - An

FREE STREAN MACH NUMBER = 3.52 ANGLE OF ATTACK = 10 DEGREES

	BETA					STATEON	NUMBER				
	DEG	11	12	13	14	15	16	17	15	19	20
	0.5	1.6079	1.5364	11+5-1	1.5646	1.5168	1.5034	1.5183	1869-1	1.4846	1.4768
	•	1660.0	0.0618	0.0624	100000	0, 00 40	1.5055	1.5128	1.4356	1.4807	0.0000
		0.0928	0.0553	0.0623	0.0651	0.0596	0.0594	1650.0	1120.0	0.3554	0. 0546
	7.05	1.6156	1.3230	1.3716	1.4022	1.3418	1.3235	1.3339	1.3175	1.3080	1.2916
	I	0.0710	0.0372	0.0428	0.0464	0.0394	0.0379	0.0335	3.356	0.3355	0.0336
	1.03	1.1660	-0-0041	0.00.0-	+100°0-	-0.0068	7600.0-	-0.0096	-2.12.0-	-0.0135	10.0158
	E. Ce	0.7126	0.6264	0.5770	0.5679	0. 53 32	0. 5036	8+6+°C	9.4739 C	0.4576	0.4510
	1	1660.0-	-0.0431	- C. 04 88	-0-0498	-0-0538	-0- 3557	-3.3582	-2.35.7	- 3. 3625	-0.0633
	68.2	0.7245	0.6369	0.5727	0.5531	0.5397	0.5135	0.4902 0.5555	1474.0	0.4506	0.4457
	¥ . C Q	-0-0318	-0.0419	-0.0493	c1c0*0-	0.4761	-0-05-0-		0101°1-	0-4020	- 7- 05 55
	0.04	1660.0-	-0.0471	-0.0566	-0.0583	-0-0604	-0-0623	-3.0656	-J. J573	-0-3689	-0.0708
	6.86	0.5981	0.5485	0.4620	0.44.00	0.4223	0.4045	7.97.S.C	3.3649	0.3602	0.3854
		-0-0463	-0.0521	-0-0620	-0.0646	-0.0666	-0.0637	-0.715	-2.132	8670.0-	-0*010-
,	103.7	0.5413	0.5197	0.4) 32	0.3931	0.3729	0.3536	0.3331	J.3351	0.3952 7407	0.4854
	1.601	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	-0-0-	0.3684	0.3436	0. 3265	0-3155	1926-0-	0.4158	0.5015	0.5924
		-0.0594	-0.0615	-0.0728	-0.0757	-0.0777	-0.0738	-2.742	+120.0-	-0.3575	- 0. 04 70
9	1.611	*****0	0.4667	0.3288	2116.0	0.3212	0.3691	0.4364	6689°C	0.5393	0.6077
9		1990-0-	-0-0615	-0.0774	-0-0194	-0.0783	-0.0729	-3.3653	-0-0589	-3.3511	-0.0452
)	116.6	0.4068	0.4112	0.3127	0.3473	0.4007	0.4451	2684°C-	7415°C	0.9445	0.0458
			4100*0-	1236 0		0, 45,49			8005.0	0.5520	0.5891
	0• (71	-0.010-	+690-0-	-0.0746	-0.0676	-0.0629	-0.0601	-0.3575	-0.0550	91:C-C-	-0.0474
	128.8	0.4109	0.4553	0.4254	0.4598	0.4723	0.4876	2115.0	3.5275	1642.0	0.5938
		-0-3679	-0.0628	-0.0663	-0-0623	-0-0608	-0-0591	-0.0553	-0.0545	-0.3515	- 0. 0468
	133.5	-0-5550-	0.5261	104-0	0-0402					.51.1555	-0-05030
	139.0	U-5504	0.5473	0-4855	0.4768	0.4753	0.4635	0.495	0.4955	4994.0	0.5417
		-0.0518	-0.0522	-0.0593	-0-0603	-0.06.05	-0.0612	-0.5595	-0.3532	-0.3577	- 0.0528
	143.7	0.5872	0.5787	0.5104	0.4907	0.46 33	0.4543	3.4552	8424°C	0.4625	0.5081
		-0-0476	-0.0486	-0.0565	-0-0587	-0-0619	-3, 3629	5625	-3.3626	-0.0619	-0-0567
		040040	4686°N	0°2318	0.5664						-0-0474
	153.7	0.6310	0.6051	0.5489	0.5399	0.4924	0 - 4 - C	3.4362	8076.0	6016.C	0.3338
		-0-3425	-0-0455	-0.0520	-0.0530	-0.0585	-0- 36 43	-7.2685	-2.725	2010°C	-0.0768
	156.9	0.6448	0.6100	0.5683	0.5596	0. 52 38	0.4835	2.4373	9.3729	0.3289	0.3346
		-0.40.0-	-0-0450	-0-0498	-0.0508	-0-0544	-0- 35 33	- 3. 3643	-3.2723	422C.0-	-0.0767
	103.1	0.00.0	0.6245	0.5854	0.5872	0.5585	0.5413	3.5128	0.4873	J. 4551	1026.0
	169.0	2420-0- 2424-0	-0.0433		-0-0476	-0-0510	-0-0523	-0.1552		0.44C.0-	
		1160-0-	0-0418	C140.0-							-0.0329
	173.5	0.6915	0.6575		0140°0-						0.8121
		-0.3356	-0.0395	-0.0397	-0-0343	16 60 -0-	1620-0-			-0.0193	* 0.0217
	119.2	0.7083	0.6782	0.6824	0.7445	0. 7736	2418-0	0.9653	C648.C	3.8914	0.8467
	178.0	-0-0336	1/ 60 -0-	-0.0366	-0-0295	-0-0261	-0. 02 JA	-2.2154	511C.C-	-0.0125	-0.0177
	A + D + 7	0001-0-	U. 6143	0.6806	0.7428	0. 77 09	+616 °C	9098.0	C646.C	3. A843	0.0170
			01 57 * 7 -	-0.0508	-0,0291	-0.0264	-0. 3233	-2.2151	-).)123	-0.3135	- 0.0117

NOLTR 72-198

......

•

ĺ

- 10 mg

8-8

•)

FREE STREAM MACH NUMBER = 3.52 ANGLE OF ATTACK = 15 DEGREES

	BETA					STATION	NUMBER				
	DEG	1	2	~	•	ŝ	so.	~	30	6	10
	6°C	1166.2		4.6123	4.5260	4.1917	3.8641	3.5111	3.2372	3.0822	2.8695
		4664-0		0.4165	0.4065	0.3680	0. 3325	010E-C	0.2549	10+2*0	0.2156
	8.06	4.7810		4.0497	3.9163	3.6495	3.3926	3,1544	2.9515	2.6593	2.4576
		0.4359		0.3516	0.3362	0.3055	0.2756	3.2484	3.2135	0.1913	0.1561
	6.04	3.3529		2.7864	2.6569	2.4309	2.2347	2.3632	1.9448	1.7020	1.5309
		0.6713		0002.0	014100	UC 91 • U		1. 1234	*/*/. * 1914 t	5080°C	2100.0
	7 1			0.0564	1010 - 0		0.0156				0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
	9-60	1.9122		1.5466	1.4352	1.073	1993	1690.1		0238.0	1000-0-
		0.1052		0.0630	0.0502	0. 0354	0. 3213	1900.0	2700-0-	0210-0-	-0.0270
	93.6	1.7318		1.3700	1.2523	1.1566	1.0423	2126.0	0.9129	0.7390	0.6567
		448C*0		0.0427	0.0291	0.01.81	0.0048	1600.0-	-3.3216	1060.0-	-0.0396
	9.86	1.5348		1.2186	1.1040	1.0028	0.9118	5.7933	5.77.5	2.6415	0.5663
		190.0		2420-0	0.0124	0,0003	2010-0-	9620.0-	-3.335	£1+C*0-	-0.0500
	9.601	1.3445		1.0079	2216.0	0. 6765	0.7878	J.5882	7.5344 	0.5463	0.4779
	A. 801			0.00.0		0.17.20	1 2 0 4 0 - C			6367°0-	00000
		0.0262		-0.0039	-0.0152	-0-0262	-3.0356	2222-C-C-			-1
	113.8	1,1119		0.6318	1822.0	0.6659	0.5835		1.6638		0.3496
•		0.0129		-0.0194	-0.0319	-0.0385	619C -0-	-0.0553	1490-0-	-0-J69C	- 0. 0750
1	119.1	0.9957		0.7596	0.5572	0.5840	0. 5255	3.4422	9065.0	3433	0.3006
Ũ		-0.0205		-0-0277	-0.0395	- 0- 04 HO	-0-0547	-3.3643	-3.3732	-0.0757	- 0. 0806
4	123.5	0.9259		0.6553	0.5493	0.5013	6164°C	3.3757	0.325.0	0.3087	0.3204
•		-0.0085		-0.0397	-0.0520	-0-05 75	-0.0655		777C.C-	797 C.0-	-0-0784
	128.2	0.8592		0.5936	0.4876	0.4274	0.3852	3482	0.3539	0.3647	0.3644
		291(-0-		-0.0469	1650.0-	-0-0460	-0.0738	1510.0-	-5.737	-0.3732	-0.0733
	1.551	0168-0		1/55.0			0. 4237	161910	0666.0	1868.0	0.3812
	138.4	0.8600		0765-0-	0.5257	0-5141		- 1 6 7 ° C	5 6 C 7 - C		- 0- 0113
		1910-0-		-0.0468	-0.0547	-0.0560	-0-0535	-3.3625	-0.1659	-0-3684	- 0- 0700
	143.4	0.8953		0.6289	0.5524	0. 54 90	0.5155	0.4823	J-4371	J. 42.54	0. 3992
		1210-0-		-0-0428	-0.0516	-0.0520	-0° 3559	-0-35-0-	c99C*C-	· · • 3673	- 0. 0693
	1+6.2	0-88-0		0.6790	0.6073	0.5862	0.5329	3.4825	3.4574	1912.0	0.3897
		-0-0128		-0.6370	-0-0453	-0-06 77	-0. 35 39	-0.0537	-J.J534	-0.0669	-0-0704
	C* 5C1	1606°0		C 2 2 1 - D	0.5500	0.1840	6145 O		7689.0	070400	0. 5539
	159.7			- 0.0319		67 60 °D -		10000 10000 10000	1007*/-	7007°C-	
		0010-0-		-0.0260	-0-0379	- 0 - 0444	-0-0535		000000-	4420-0-	-0-0787
	163.7	0.9549		0.7964	0.6905	C. 6343	0.5657	0.4723	9.39.28	0.3316	0.2892
		-0.3052		-0.0235	-0.0357	-0.0422	-0, 0, 01	- J. 3638	2010-0-	1176.6-	-0.3819
	168.8	0.4730		0.8129	0.7475	0. 7006	0.5335	3.5744	3.5132	0.4826	0.4473
		1600-0-		-0.0216	-0.0291	-0.7345	-0. J423	1690.0-		7926.0-	-0-0637
	173.8	1.0295		0.8129	0.7541	0.7366	0. 7301	3.5934	0.5470	2.6187	0.5581
		460C°J		-0-0216	-0-0284	-0-0304	-0.3511	-3.359	1090.0-	0440-0-	-0.0510
	0-611			-0-0171		-0-0-	-0-27 U				0.0456
								F= 7 7 • 71			-0-0-0-

NOLTR 72-198

FREE STREAM MACH NUMBER = 3.52 ANGLE DF ATTACK = 15 DEGREES

	Bet 2					STATION -	NUMBER				
	930	11	12	61	•1	15	16	11	19	61	20
	(1907 5	2 2612	2.2559	2,3054	2.2120	C102.5	2.2136	2.1936	2.1626	2.1508
	•••		0.1441	0.1448	0.1505	0.1397	0.1335	6661.C	1961.0	3.1340	0.1321
		2.2379	1.9319	1.9374	1.9782	1.8911	1.5589	1.8746	1.9448	0142-1	1.0110
		0-1427	0.1074	0.1081	0.1128	0.1027	C6 60 .0	800 1°C	+/f(· (
	6.64	1.4022	1.2053	1.1872	1.2021	1.1425	2/01-1	9611.1	925C. C		0.0065
	•	494C*O	0.0237	0.0216	0.0233	•• 10 •0			9113-0	0.4072	0.4089
	1.19	0.6319	0.5790	0.5147	0.5018			CS 9C - C-	-0.3678	-0.7683	- 0. 0682
		4240.0-	-0-0463			0- 50 41	0.4856	1654.0	6533.6	J.4338	0.4252
	9-68		0.0537	0.00.00	-0.0560	-0.0573	-0.0533	-3.3623	-3.3642	-0.3653	-0.0663
			2003-0-	0.4539	0.4338	6.4239	0.4030	J. 3843	3638	0.3595	0.3491
	0		-0.0484	-0-0630	-0.0653	-0.0564	-0. 3693	0120-0-	8210.0-	-0.00 	
	9-66	0-+965	0.5076	0.3838	0.3631	0. 3532	0.3373	7616.C	2475°C	0*647 C-	7770-0-
		1850.0-	-0.0568	-0"0110	-0-0734	-0.0746	-0.0754		1/6/./-		0.3774
ı"	9.601	0.4161		0.3195	0.3019	0.2914	0.2513	J. 65 55		-0-2772-0-	-0.0718
•		E19C.0-		-0.0785	-0.5309	-0.0010	0515.0	0.3422	35552	0.3789	0.4343
	173 -4	0.3578		1.12.0			0.11.0	-2.2758	-3.7142	-0.3716	-0.0652
		0410-0-				0.16.05	0.3513	0.3743	3.3932	0.4036	0.4524
1	123.8				-0.0788	-0-0760	-0. 3747	-3°,5721	1176.6-	-0.3688	-0.0631
0				0.3139	0.335.0	0.3638	3.3732	J. 34 72	3.3937	J. 4034	
ŗ		EENC.O-		-0.0791	-0.0766	-0.0734	-0.0723	-0.775	-1.1599	- J. JO56	- 11- U030
	23.55	0.3242		0.3380	0.3513	0.3630	0.3757	3953		0.15.0	- 0. 06 30
		-0.0179		-0.0763	-0.0748	-0.0734	-1.0.07-	CFC7.C-		0-00-00-0	
	125.2	0.3492		0.3470	0.3768	-0-3700	-0-0719	-0.0684	-7.1595	-3.3669	
		-0*20*0-			1021-0-0-	0.3769	1695.0	J. 3935	3.3335		
	133.1			-0.0757	-0.0726	-0.0718	-0.0728	-3.3533	-3.3532	0669 6	
	1 2.0 . 6	0.3727		0.3509	0.3712	0.3879	0.3872	E1 C4 * C			
		-0.7723		-0.0748	-0.0725	-0.0776	1010-0-	1, 1000 - C-		0.4023	
	1.13.4	0.3814		0.3486	0.3704	0. 3057	-0 0715		1010.0-	-0.3689	
		-0-0713		1010-0-	0710*0-	-0	0.3745	3.3895	6966°C	17C4.C	
	149.2	6146-0			-0.0756	-0.0147	1270.0-	-3.3735	-3.3538	- 7.3683	
	2 621			0.3172	0.3529	0.3529	0.3716	3.3855	0.33933	1604-0	
		1110-0-		-0.0790	9-0746	-0.0746	-0- 3724	1010-0-			0.4049
	159.7	0. 2945		0-2140	D. 3227	0. 33 14	3495	1656.0	0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1046-0	- 0- 0680
	•	-0013		-0.0831	1970.0-	·0. 769	-0-1/20			0.3821	0.5891
	1.53.7	0.2711		0.2685	0.2995	50.	0. 3374 7			-2170-0-	-0.0704
		0+80-0-		-0-0643	-0-0408		10010 'S'		3.3394	2112°C	0.4128
	169.8	0.4088		0.3539	0.3614	0.025			4641.1-	-7.9C.C-	-0.0677
		-0.3682		-0-0745	-0.0136			7.6751	1669.0	0.4352	0.4329
	173.8	0.4952	0.5312	0-4114	0.4130		-0-0436	-7.7653	-2.2554	-0.0651	- 0. 0654
		-0-0562	1400-0-	-0-00-7		0.4369	0.4294	3.4523	3.4437	0.4567	0.4469
	175.5	0.7540	-0-053L	6490-0-	-0.0649	-0.0649	-0* 2654	-3, 3ñ 32	-3.3541	-3-3626	- 0* 06 38
		トナヘンチント									

B-10

NOLTR 72-198

Carrier Southern and the second

FREE STREAM MACH NUMBER = 4.07 ANGLE OF ATTACK = 3 DEGREES

	BETA					STATION	NUMBER				
	DEG	1	~	£	4	Ś	Ŷ	1	en	0°	10
	179.5	2.4260		2.0011	1169.1	1.7173	1.5232	1.3643	1.2378	1.1185	1.0387
,	179.5	2.2910		2.1210	0.0503 1.6611	0.0619 1.7228	0- 0451 1-5021	31915 1-3626	1610-0	2010-0	0.0033
	1 70 6	0-1113		0.0967	0.0760	0.0623	16+0-0	6180.0	3110.0	5010-0	0.0029
10		0.11.0		0.0858	0.0784	0.0619	1490-0	1.3629	0.52.1 0.0190	2911-1 001C-C	1.0365 0.0032
<u>م</u> ز (

- .

ţ

1

.....

1

6-11

FAEE STREAM MACH NUMBER = 4.07 ANGLE DP ATTACK = 3 DEGREES

11 12 13 9287 0.8966 0.8043 0067 -0.0089 -0.0169	11 12 13 13 14 9287 0.8966 0.8043 0.8321 0061 -0.0089 -0.0269 -0.0145	11 12 13 14 15 9287 0.8966 0.8043 0.8321 0.6376 0061 -0.0089 -0.0269 -0.0145 -0.0140	11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	11 12 13 14 15 16 17 9287 0.8966 0.8043 0.6321 0.6374 0.6522 0.6767 0067 -0.0145 -0.0145 -0.0126 -0.0127 -0.0126	II I2 I3 I4 I5 I6 I7 I8 9287 0.8966 0.8043 0.6321 0.6376 0.6522 0.6767 7.8697 0061 -0.0049 -0.0145 -0.0140 -0.0127 -0.0126 -7.2236	11 12 13 14 15 16 17 18 19 9287 0.8966 0.8043 0.6321 0.6376 0.6522 0.8767 0.8695 0267 -0.0089 -0.0145 -0.0140 -0.0127 -0.0126 -0.0095
13 0.8043 -0.0169	13 14 0.8043 0.8321 -0.0169 -0.0145	574710N 13 14 15 0.8043 0.8321 0.6374 -0.0169 -0.0145 -0.0140	STATION NUMBER 13 14 15 16 0.8043 0.8321 0.6374 0.8522 -0.0169 -0.0145 -0.0140 -0.0127	STATION NUMBER 13 14 15 16 17 0.8043 0.8321 0.6374 0.8522 0.8767 -0.0169 -0.0145 -0.0140 -0.0127 -0.0126	STATION NUMBER. 13 14 15 16 17 18 0.8043 0.8321 0.6374 0.8522 0.8767 7.8897 -0.0169 -0.0145 -0.0140 -0.0127 -0.0126 -0.00336	STATION NUMBER 13 14 15 16 17 18 14 14 0.8043 0.8321 0.8374 0.8522 0.8767 7.8897 0.8894 -0.0169 -0.0145 -0.0140 -0.0127 -0.0136 -0.03095
	14 0.8321 -0.0145	574710N 14 15 0.6321 0.6374 -0.0145 -0.0140	STATION NUMBER 14 15 16 0.6321 0.6374 0.6522 -0.0145 -0.0140 -0.0127	STATION NUMBER 14 15 16 17 0.6321 0.6374 0.6522 0.6767 -0.0145 -0.0140 -0.0127 -0.0126	STATION NUMBER 14 15 16 17 18 0.6321 0.6374 0.6522 0.6767 7.8897 -0.0145 -0.0140 -0.0127 -0.0126 -0.00376	STATION NUNDER. 14 15 16 17 18 19 0.6321 0.6374 0.6522 0.6767 7.8897 0.8894 -0.0145 -0.0140 -0.0127 -0.0126 -0.0035

4

ANGLE OF ATTACK = 5 DEGREES SUMFACE STATIC PRESSURE RATIO AND PRESSURE COEFFICIENT FREE STREAM MACH NUMBER = 4.07

W. K. S.Y

1

2

ŗ

A STATE

Contraction of the local division of the loc

ł

	BETA					STATION	NUMBER				
	DEG	-	~	•	•	Ś	Ð	2	æ	œ	01
	9°C	3.5456		2.8642		2.4926	2.2177	1.9977	1.7528	1.6014	1.4631
	2.16	2512-0		0.1605 2.7609	2.6892	0-1287 2-1576	0.1050	C98C°C	0,0649 1,6443	0.3519	0.0399
		0.2032		0.1519	0.1.57	0.1171	0. 3958	0-0766	519C-C	8999C °C	0.0333
	61.5	1460.5		2.4310	2.3426	2.0461	1.8278	1.6284	1.4357	1.3051	1.1845
		0.1668		0.1234	0.1158	0. 0902	0.0714	2+20.0	7750.0	0.0263	0.0159
79	6.19	2.4809		2.0477	1.9728	1.7170	1.5335	1.3567	1.2358	1.0943	0.9864
1		0.1271		9060-0	0.0839	0.0619	85%0"0	3CEC-C	771C.C	1800-0	-0.0012
	•• • •	2.4343		2.0311	1-9444	1.6995	1.5192	1.3446	1.1550	1.0772	0.9837
		0.1237		0.0869	0.0814	0.0603	0.0447	762C.C	2,11,2	1.0067	-0.0014
1	1.69	2.3093		1.9061	1.8161	1.5832	1.4139	1.2526	8901.1	1.3052	0.9161
0		0.1129		0.0781	0.0704	0.0503	0.0357	3,3216	0400.0	9000°°C	-0.0072
).	1.601	2.1360		1.7895	1.6962	1.4667	1.3239	1.1652	1.3333	0.3384	0.8506
1		0890.0		0.0661	0.0500	0.0403	0.0277	2+16-6	92rC.C	-0.3053	-0.0120
	119.2	1.9861		1.6795	1.5859	1.3876	1.2350	1.0963	3.9722	0.8876	0. A168
		0-0850		0.0586	0.0505	0. 03 54	9 C 20 °0	0.0083	+20C*C-	1900.0-	-0.0156
	129.4	1.8994		1.5672	1.5256	1.3313	1.1726	1.0550	3.9336	0.8609	0.7963
		9110.0		69+C-0	0-0453	0. 02 86	69 IC "0	6+0C*C	-3.3353	-0.3120	-0-0176
	139.6	1.0428		1.5152	1.4701	1.2840	1.1432	1.0297	112¢°C	0.8546	0. 7979
		0.0727		9++30	0-0405	0. 02 45	0- JI 26	0-0026	-3.3358	-3.3125	-0.0174
	149.6	1.6176		1.4862	1.4229	1-2591	1.1336	\$21C*1	\$\$16°C	0.8559	0.8058
		0.0705		0.0415	0.0365	0. 02 73	0.0115	3100°C	+1 CC.C-	-0.3124	-0-0168
	159.8	1.7878		1-4821	1.4063	1.2430	1.1122	421C-1	3.9152	J.8571	0.8121
		0.3679		0.0416	0.0350	0.0210	7400.0	1100.0		-0.0123	-0.0162
	169.5	1.7928		1.4542	1.4063	1.2356	L.1155	1.2159	3.3222	0.8596	0.8209
		0.0684		0.0392	0-0350	0. 02 03	0.0100	+100.0	7300.0-	-0.0121	-0.0154
	179.3	1.7928		1.4556	1.4121	1.2446	9C11-1	2710.1	3.3249	0.6589 C	0.8201
		0.3684		0.0393	0.0355	0.0211	9600-0	2100.0	-3.0355	-0, Jì 22	-6.0155

NOLTR 72-198

......

2

5 4

;

8-13

FREE STREAM MACH NUMBER = 4.0? ANGLE OF ATTACK = 5 DEGREES

	BETA					STATION	NUMBER				
	n£G	11	12	11	*	15	16	17	18	19	20
	9°C	1.3164	1.1545	1-0440	1.1135	1. 0912	1.0925	5001.1	1.3835	1.0813	1.0709
		0.0273	6610-0	1800-0	0.0098	0.0079	0.0030	1900.0	2100.0	0400*0	0.0061
	31.2	1.2378	1.0868	1.0325	1.0519	1.0265	\$12C -1	1.0350	641C-1	641C-1	cc10.1
		0.0205	0.0075	0.0028	0.0045	0.0023	0-0024	0,00,0	EICC.C	E10C*C	0.0013
	61.5	+170.1	0.9556	0.0451	0.9042	0.8769	0.8751	3.8751	3.5631	0.8579	0.8652
		0.0062	-0-0038	-0-0044	-0.0083	-0.0106	BC 10 -0-	-0.0105	811C.C-	-0.JI23	-0.0113
ī	5.15	0-6921	0-8416	0.739 Å	0.7506	0.7310	0.7296	0.7333	3.7258	0.7163	0. 7075
•		6600-0-	-0.0137	- 9.0225	-0.0215	-0.0232	-0.0234	-0.0233	-3.3236	-0-3245	-0.0252
	88 . 4	0.8647	0.7884	0.7050	0.7025	0.6918	0.5830	J.6 655	1652.0	0.6338	0.6311
	•	-0.0117	-0.0182	- 3.0254	-0.0257	-0.0266	-0- 0273	-3.0287	+ESC.C-	-0.0316	-0.0318
1	1.99	0.6079	0-7603	0.6605	0.6566	0.6421	0.6376	0.5255	0.5203	0.5930	0.5980
	•	-0.0166	-0.0207	-0.0293	-0.0296	-0.0309	-0. 0312	-3.3322	73EC.C-	1360.0-	-0.0347
)	109.1	0.7556	0.7320	0.6253	0.6213	0.6152	0. 5033	0.6025	3.5352	0.5913	0.6328
5		-0-0210	-0-0231	-0.0323	-0.0327	-0.0333	-0.0337	-0-0343	14EC.C-	-0.3352	-0.0317
	119.2	0-7230	0.7176	0.6102	0.6127	0.6093	0.5153	3.6336	0.5536	0.6620	0.7459
		-0.0239	-0.0244	-0.0336	-0.0334	-0.0337	1660.0-	-J.J313	1080.0-	-0.3292	-0.0219
	3.551	0.7153	0.7241	0.6182	1663.0	0- 64 26	0.56.00	9.5913	2.7135	0.7295	0.9218
		-0-0246	-0.0238	-0-0329	-0.0316	-0-0308	-0. 02 33	-3.3256	-3.3243	-0.0233	-0.0154
	139.6	0-7230	0.7496	0.6411	0.6648	0.6786	0. 7050	J.7361	3.7536	0.7666	0.8453
		-0-0239	-0-0216	-0.0309	-0.0289	-0.0277	-0- 3254	822C*C-	7020.C-	-0-3201	-0.0133
	149.6	0.7365	0.7734	0.6660	0.6915	0.1103	0.7336	3.7533	5487.0	0.7839	0.8519
		-0-0227	-0.0195	-0.0288	- 0, 0266	-0.0250	-0- 32 30	-0.0204	-2.0195	-3.5166-	-0.0128
	159.8	0-7548	0. 7903	0.6838	0.7168	0. 7341	0. 7554	3-35	44C8"C	0.8016	0.8562
		-0-0211	-0-0181	-0.0273	-0.0244	-0.0229	-0. 3211	181C.C-	-2.2159	1/10-0-	-0.0124
	169.5	0.7631	0.8031	C169.0 .	1167.0	0.7516	0. 7758	3.513 5	J.3271	3.9266	0.8569
		-0.0204	-0.0170	-0.0261	-0.0232	-0.0214	-0.0173	-0.0163	691C-C-	-3.3150	-0.0123
	179.3	0.7631	0.6019	0.6990	0.7373	0. 75 83	0. 7853	3.6263	J-9441	36498°C	0.8716
		+02C-0-	-0.0171	-0.0260	-0.0227	-0-0208	-0- JI 33	e+1c-c-	+EIC.C-	-0.1130	-0.0111

NOLTR 72-198

B-14

and the second s

a sillean

1

ANGLE OF ATTACK = 10 DEGREES FREE STREAM MACH NUMBER = 4.07

õ	ETA					STATION	NUMBER				
ō	EG	~4	2	m	•	S	¢	1	6	6	10
.,	•• C	4.8352	4.5520	4.0105	4.0571	3. 5956	3. 2857	19842	2.5559	2.4476	2.2377
		0.3308	0.3063	0.2596	0.2637	0.2238	0.1971	1171.0	3.1428	0.1248	0.1067
m	1.0		3.9288 0.2526	3-1412	3.0373 D.2274	3.2327 0.1928	784CV-2	C116-2	2.3073	£1C1 0	0.0839
4	3.5			2.8208	2.7442	2.3810	2.1527	1-9478	1.7126	1.5542	1.3353
1				0.1570	0-1504	0.1191	9660.0	1190-0	J.J615	0.0478	0.0332
õ	3-6			1.8245	1.7562	1.5307	1.3176	1.2063	1.0230	0.9271	0.8036
ä	د	0162-2	4040.1	11/0.0	1.7895	0.0567	1-3571	1.2186	1.1595	-0.9650	0.8686
5		0.1062	0.0819	0.0723	0.0681	0.0480	0.0338	681C°C	1500.0	0200-0-	-0-0113
0	3.7	2.3294	1.7528	1.6552	1.6272	1.3721	1.2575	1.0915	1.9547	0.8722	0.7701
č	c	0.0888 1 804 1	0.0649	0.0565	0.0541	0.0321	0. 3222	670C°C	-0.035 2525	0110-0-	-0-0198
*		1.5701	0-0572	0-0487	0.0447	0.0248	0.0125	0.0013	+CIC.C-	*LIC-C-	- 0. 0249
ČI	C- 4			1.4093	1.3969	1.1715	1.0517	16C6°C	J.7956	0.7190	0.6296
Г				0.0353	0.0342	0.0148	0.0045	-0.0078	-2.1176	-0.7242	-0.0319
10	c.e	1.5862	1.4286	1.3249	1.2763	1.0637	0.9552	0.8319	0.7193	J.6486	0.5695
	•	0.0506	0.0370	0.0280	0.0238	<pre>c+00.0</pre>	-0-00.98		-).JC45		
= 1	1.4			0-0209	1.10/2	500 °0-	100 °0-	C12C-C	9620-1-	-2.5560-0	- 0. 0423
	1.6	1.3438	1.2546	1-1313	1.1015	0. 9064	0.8116	0.5950	9665°C	0.5313	0.4580
:){		0.0296	0.0220	0.0113	0.0088	-0.0081	-3. 3152	-3.3263	-3.2346	+0+0-0-	-0.0467
<u>, 12</u>	4.l	1.2263	1.1713	1.0910	1.0134	0.8747	0.7614	0.5556	3.5628	6165.0%	0.4220
		0.0195	0.0148	0.0078	0.0012	-0. 11 08	-0.0236	-0.0297	-7.50.0-	-0.3438	-0.0498
12	3.2	1.1963	1.1515	1.0629	0.9837	0.8453	0.7251	0.5310	0.5437	0.4777	0.4077
	(0.0169	0.0131	0.004	-0-0014	-0-0135	1620-0-	5150°0-		0647°0-	
•	7	6161•7 6110-0	0-00-0	0.0076	-0-0042	-0-0136	-0-0240	618C-C-	0680.0-	0440-	-0.0481
13	1.6	1.1330	1.0853	1.0019	0.9780	0.8439	0.7236	0.5551	0.5775	0.5417	0.5025
		0.0115	0.0074	0.0002	-0-0019	-0.01 35	-0.0238	7620-0-	-3.354	-0.0395	-0.0429
÷1	6. 3	1.1375	1.0664	1.0297	0.9547	0.8614	0.7473	0.6320 0.0366	J. 5236	0.5905	0.5587
71	0	6110.0	1.00.0	9700°1	-0-0039	-0-0120	-0- 3218	10270.0C	0.5533	0.6301	0.5930
•			0.0072	0.000	-0.0016	-0.0112	-0. 22 32		+650.0-	-0.JJ19	-0.0351
15	4.5	1.161	1.0627	1.0010	0.9809	0.9047	0.734B	J.7578	3.593B	0.6538	0.6160
		0.0139	0.0054	0.0001	-0.0016	-0.0082	-0. 31 77	-3.3279	-0.0758	-0-3299	18 60 "0 -
15	4.6		1.0863	1.0030	0.9947	0.8946	0.5123	0.1759	5101.0	J.6/65	6160 U
	1		0.0074	0.0003	-0.000.0-	-0-0047	2510.0-	2610-0-		612C*C	0 44.05
2 1		1.1763	1.0697	1.0005	1.0109	0.9242	1268 °C			100001	2020-0-
4	4	2610.0	0.0000	0,000	0.000	- U. BO 77	0.8536		9287.0	102.021	0.6616
1		1610-0	6.0091	0100-0	0.0018	-0-0088	-0.0125	1810.0-	-3.7226	-0.0256	-0.0292
17	· • 5	1.1913	1.1057	1.0530	1.0412	0. 92 52	0.8755	0.8019	0.7453	3.7118	0.6745
		0.0165	0.0091	0.0046	0.0036	-0-0064	-0° 01 35	1110-0-	-3.3220	-0.0249	-0.0281
17	.9.3		1.1045	1.0585	1.0397	0.9516	0.8755	6908°C	0.7529	0-1120	0.6810
			0.0040	0.0050	0.0034	-0*0042	10.00-	-3.3158	412C.C-	-0-3248	

NOLTR 72-198

B-15
SUMFACE STATIC PRESSURE RATIO AND PRESSURE COEFFICIENT

1

FREE STREAM MACH YUMBER = 4.07 ANGLE DF ATTACK = 13 DEGREES

	DETA					STATION	NUMBER				
	DEG	11	12	13	1	15	16	k 7	• 1	61	20
	•• C	1.9894	1.6912	1.6597	1.6912	1.6354	1.6235	1.6235	1.625.1	1.5947	1-5499
		0.0653	0.0596	0.0569	0.0596	0.0548	0.0538		525C.C	616C ° O	1640.0
	1.00	1.7695	1.4954	1.4734	1-4927	1.4367	1. 1150	2624-1		0166.1	1.3713
		0.0664	0.0427		0.0425	22 60 °O					
	6. [9	1.2495	1.0712								
				1200-0							
	0.04										
		-0.0222	-0.0287	-0.0358	-0.0377	-0.0390	-0.0437	7240-0-	CS+C - C -	-0.0459	- 0. 04 70
	93.7	0.6630	0.6155	0.5125		0.4742	0.4624	0.4299	2.4125	4644 0	1161.0
		-0-20-0-	-0.0332	-0.0420	-0.0436	-0.0453	-0.0454	-0.0492	-2.2527	814C.O-	-0.0525
	6°66	0.6057	0.5023	0.4637	0.4429	0.4274	0.4120	0.985	4494.0	4456.0	0.3497
		-0-0340	-0.0360	-0.0463	-0.0480	-0.044	-0.0507	-0.0530	-2.2549	-0.0557	4460-0-
I	104 .0	0.5422	0.5490	0.4075	7884 ° 0	0.3692	0. 3559	1636.0			
ŗ	0 601										
÷	0.401		-0-0425		-0.0570	-0.0587	-0.0523	625C-C-	1950.0-	616C . 0 -	- 0- 04 32
	1.4.1	1000		0.3212	1406.0	1016.0	9045 0	6876 °C	\$ (] \$ " C		0.5320
1		884C-0-		-0.0585	-0.0600	-0.0595	-0. 05 59	-0.3535	-0.353A	-0.2476	-0.0404
.0	1.9.1	0.3826		0.3666	0.3357	0. 3584	0.3839	0.4155	2144°C	0.4680	0.5368
)7		-0.0532		-0.0598	-0.0573	-0.0553	1650.0-	-0.0503	62 4 C . C -	- 0 - 3454	-0.0199
7	124.1	0.3521		0.3367	0.3639	0. 3924	0.4154	0.4370	2.555	0.4775	0. 5322
		-0.0559		-0.0572	-0.0549	-0.0524	-0.05.04	-0.040	C2 + C • C -	1640-0-	-0.040
	129.2	0-3586		0.3671	0.3901	0.4097	0.4297	64440	0.4525	0.4887	0.5330
		-0.0553		9450*0-	0250-0-	-0-0504	564C *O-				
	2.461	0.000				0.4142					
	1.661			1767-0-		0.42.0					0.475
		494C-0-		-0.0511	-0.0505	-0-0498	6640.0-	61 4C ° C-	C64C . C-	644C - 0-	-0.0432
	144.3	0.5113		0.4192	0.4105	0.4145	0.4177	0.4337	0.4235	0.4319	0.4210
		1240-0-		-0.0501	-0.0508	-0.0505	-0. 25 32	684C*C-	764C.C-	0646.0-	-0.0444
	149.2	2465.0		0= 44 30	0.4139	0. 39 32	0.3895	3.3954	1992.0	0.7802	0.4140
		-0.0397		-0-0480	-0-0505	-0.0526	-0. 0527	1250.0-			
	154.5	0.5623		0.4644		0. 59 52	0. 55 5				
		11EC-0-		-0-0457		-0-0523			2/50°0-		
	137.9										- 0 - 0 -
	144.5					0.4745		2029-0		1045.0	0.4229
		9460-0-		-0-0418	-0-0424	- 0- 14 53	7790-0-	CC fC .C -		-0.0526	-0.0498
	169.5	0.6098		0.5450	0.5625	0.5418	0.5420	2 * * * C		0.5600	0.5753
		966C.O-		-0.0392	-0.0377	-0-0345	-0.0335	6 H f C ° C -	1480.0-	-7.5 J 79	-0.0365
	174.6	0.6346		0.5868	0.6341	0. 63 80	0.5173	0.7123	5617.C	J. 7098	0.6830
		-0.0315		-0-0356	-0.0316	-0.0112	-0. 32 79			-0-25-0-	-0.0273
	173.3	0.4450		0.6100	0.6593	0.6840	0. 74 34	0.7853	8041.0	E192 • 7	
		-0.0305		-0.0336	-0.0294	-0-0263	•22C •0-	-D. JI R.	-2.2150	-020-0-	3630.0-

٠

•

÷

NOLTR 72-178

SURFACE STATIC PRESSURE RATIO AND PRESSURE CORFFICIENT

FREE STREAM MACH NUMBER = 4.07 ANGLE OF ATTACK = 15 DEGREES

	BETA					STAT, ON					
	DEG	7	2	•	*	•	Ð	~	•	ø	01
	0.2	6.5381	6.0399	5.7067	5.7450	5.1502	4.6586	1116.4	3.9772	3.6106	3. 1407
		0.4776	0.4346	0.4059	0.4092	0. 15 79	0.3155	3.2852	3645.0	0.2251	0.2019
	C. CE	5.7750		5.0019	5.0269	4 . 4 . 87	1240.4	3.7425	3.3357	9.36.6	2.8175
		8114-0		0.3451	0.3473	0.2974	8 292 • 0	0.2363	41C2°C	0.1799	0.1545
	6.CO	5.4<30		4/66°C	3.2107	2.8775	2. 52 76	9285 .2	4960"2	1.9261	1.7195
	4.05	22020		010200	1 4 7 4 6	0. 10 1 4		24110			0290 0
		0.0906		0.0625							
	6. 6			1.8028	1.7745	1.5241	1.3241	1.1906	1.3337	9110-0-	
				0.0692	0.0668	0.0456	0.0230	9910.0	+ C C - C	0400-7-	-0-0116
	e. Ee	1.8411		1.6014	1.5594	1.3334	SC~1 *1	1.0149	5168°C	1009.0	0.7266
		0.3725		0.0519	0.0482	0. 02 88	0. 21 38	0.0013	*****		- 0. 02 36
	6 * 86	1.6812	1.4464	1.3863	1.3246	1.1563	0.9990	0.000	0.7544	1994.C	. 6295
	4.601		0.000		0920.0		2000-0 ×			652C*C-	- 0.0320
-4		1960.0	0.0251	0.0199	0-0126		-0-0110	1010-C-			
•	1.901	1.2630	1.1980	1.0585	0.8919	0. 8646	1442	0.6550	2.5612	9405 °C	0000
		4420-0	1110.0	0.0050	E 600 ° 0 -	-0.0112	-0.0221	8420.0-		9240-0-	-0.047-
4	113.8	1.1030	1.0372	0.9389	0.6231	0. 74 RL	0. 65 45	0.5505	0114-0	0-4260	0.3739
1		0.0089	0.0032	-0.0053	-0.0153	- 0. 72 17	-0.0236	786C.C-	154C.C-	564C*C-	- 0 - 0340
0	1.9.1	0.010	0.9517	0.8248	0.6348	0.6233	0.5470	6594 °C	2.5374	91 35 . 0	0.3167
S		-0-3018	-0+00+2	-0.0151	-0-0315	-0-0325	1660.0-		-0.522	-0.3554	-0.0589
}	0-471	0.6254	0.8069	0.7355	1289"0	0.5392	0.4530	1166.0	0.3439	0.3211	0. 31.29
					*****			6260.0-	9560-0-	-0-22-0-	-0-0243
	0. 121	-0.0174		0.020-0-	2610.0-	6674°0			0.3521	0.3647	0.3546
	1.461	0.7348	0.6761	0.5902	0.6065						-0.0337
		-0-3229	-0-0279	-0.0353	-0.0339	-0-0443	-0- 05 25	5050-0-		2,90.0.	-0.0550
	C. 661	0.7614	0.7008	0.5585	0.5628	0. 5049	0-4794	C C	1995.0	7175.0	0. 1992
	•	-0-0206	-0.0258	-0.0381	-0.0377	-0-0427	-0- 2450	657C*C-		1120-0-	-0.0553
	[++.3	0.7554	0.8298	0.6490	0.5665	0.5687	0.4810	0.4457	2,52,5	0.3724	0. 1612
	149.7	1020-0-		- 0.40 B	-0°08/40	- 0. 05 72					-0.01
		1110-0-	-0-0204	-0.0303	-0.0355	0.01.00-					
	153.9	0.7964	0.7841	0.6786	0.5815	0.5647	0.4932	0.4524	000000	0.3654	0.3359
		-0.0176	-0.0186	-0.0277	-0.0361	-0.0372	-0. 3437	-7.90.0-	-0.0513	-0.0547	-0.0173
	159.6	0.7981	0.8101	0.7376	0.6560	0.5415	0.5037	2.423S	1.1.1.0	01110	0.3179
		-0-0174	-0.0164	-0.0226	-0.0297	-0-0395	-0.0428	1640-0-	-3.3536	-0.3566	-0.0564
	164.4	0.8281	0-65 dl	0.7663	0.7015	0.5647	0.4412	5104.0	0.9454	7116.C	J. 2933
		871C°0-	-0.0122	-0.0202	-0.0257	-0.0372	-0° 3447	-0.0511	-1,3554	-0.3592	- 3.0618
	2.631	0.8597	0.8604	0.7973	0.8048	0.6520	0.5920	7.4335	9.4749	0.3969	0. 3641
		1210-0-	-0-0120	-0.0175	-0.0168	-0.0300	-0. 3352	-2.90.0-		0450*7+	- 0. 0546
	1.4.1		0.8343	0.6031		0.7328	0. 7033	a. 2. a. c	0.5473	J. 5412	0.4819
	3 64 1		5 + 10 • 0 -	0/10.0-		-0* 02 30	-0-0258	2140.0-	-2.2356		A440 *0 -
							4177 · 0	U.5715	0.5132	20000	0.512
			7.1.1.1				>+>	~~~~~	*****		

B-17

ē,

1

SURFACE STATIC PRESSURE RATIO AND PRESSURE COEFFICIENT

FREE STREAM MACH NUMBER = 4.07 ANGLE OF ATTACK = 15 DEGREES

	BETA					STATION	NUMBER				
	DEG	11	12	13	41	[5	16	17	61	19	20
	2.6	2.9825	2.4659	2.5309	2.5759	2.4776	2.4526	2.4759	2.4233	2.4260	2.3843
		0.1710	0.1264	0-1320	0.1359	0.12/4	0.1233	5/21°C	2621.0	0 • 1 • 5 0 7 • 3 • 6	
	C• C\$			7001 0							
		1.5542	1-3136	1.3020	1.3076	1.2466	1.2076	901211	1.176	1.1772	1.1567
		8740.0	0.0271	0.0260	0.0265	0.0213	0.0191	2010.0	0.0153	6510.0	0.0135
	6.06	0.6801		0.5490	0.5340	0.4887	0.4679	6C94°C	0544.0	0164.0	0.4267
	1	-0.0276		-0.0389	-0-0402	-0-0441	-0. 04 59	-3.3465	-0.JC.C-	1640.0-	- 0- 0494
	88. 6	1967.0		0.5798	0.5562	0.5437	0.5245	0.5039	3.4822	0.4754	0.4579
		-0.3225		-0.0362	-0.03RJ	-0-0344	-0.0410	-3.3430	-2.2447	-0.2452	-0.0468
	93.9	0.6288		0.4872	0.4594	0.4494	0. 4277	3-4032	33352	0.3847	0.3731
		-0.0320		-0.0442	-0.0466	-0° 07 22	-0.0434	6CS0*C-	-2.2522	1640.0-	- 0. 0541
	6.86	0.5343		0.4077	0-3842	0. 3717	0.3551	0.3326	3.3242	0.3151	0.3222
		-0,0402		-0.0511	-0.0531	-0.0542	-0. 35 55	-0.3576	-7.3583	-0.3591	-0.0565
	103.6	0.4567		0.3466	0.3232	0. 31 14	0.2997	0.2859	0.2951	0.2432	0.3599
ł		-0.0469		-0.0564	-0.0584	-0.0594	-0.0634	-2.3615	-1.51.6	-0.3610	- 0, 0552
	1.901	0.3776		0.2821	0.2701	0.2683	0.2859	3.3116	3.3257	0.3394	0. 3902
		-0.0537		-0.0619	-0.0629	-0.0631	-0.0613	+65C*C-	-3.1531	-0.46.6-	-0.0526
	8.611	0.3201		0.2813	1692.0	0.3121	0.3224	0.3346	9696°C	0.3522	0.4199
1		-0.0586		-0.0620	-0.0610	-0.0593	-0.0534	-0.0574	-3.3552	-0.3559	- 0- 0200
	1.911	0.2773		0.2999	0.3117	D. 1241	0.3336	9696"0	0.3474	0.3584	0+4339
){		-0.0623		-0.0604	-0.0594	-0.0583	-0.0575	-3.3555	1450.0-	-0.3553	- 0 - 0465
9	124.0	0.3192		0.3107	0.3159	0.3286	0.3391	0.3432	0.3591	0.3574	
		-0.0587		-0-0594	-0.0590	-0.0519	-0.0571	-0.0566	-0-0553	-0.3554	
	C- 621	1266.0		0.3122	0.3289	0.3246	0.3387	3436	0.3599	0.3767	
		-0.3576		-0.0593	-0.0579	-0.0582	-0- 05 73	-0.0551	-3.3552	9650.0-	
	134.1	1266.0		0.3062	1166.0	46 66 .0	9626.0	0.3549	0.3594		
		-0.0576		-0.0598	-0.0576	-0.0575	-0-0219	-0.0555	-3,353		
	C. 461	0.3306		0,3041	0.3302	0. 33 34	0.3371	3.3477	3.3967		
		-0.0577		-0*0600	-0.0578	-0.0575	-0.0572	-0.2553	1196.6-		
	144.3	4866.0		0.3116	0.3371	0.3351	0.3399	3464			
		-0.0571		-0-0504	-0.0572	-0.0573	-0.3570	-0.0564			
	149.2	0.3382		0.2959	0.3216	0.3126	0.3331	J.3384	J.3551		
		-0-0571		-0*0607	-0.0585	-0.0543	-0- 3575	1/ 40*0-			
	153.9	0.3089		0.2982	0.3159	0.3147	0.3336	0.3349	3.55.5		
		-0-0596		-0-0605	-0-0589	-0-0591	-0- 2575	-1.2572	-3.3553		
	159.6	1206.0		0.2823	0.3069	0.3021	0.3229	7526-C	142.0	0.3442	
		2090-0-		-0.0619	-0.0598	- 0. 06 (12	-0-0594	-3.2584	-7.3574	- 3. 2566	
	154.4	0.2711		0.2641	+162-0	0.2962	0.3124	5.3273	0.3334	0.3426	
		-0.3629		-0.0635	-0.3611	-0.0607	-0.0533	-3.2582	-7.50.0-	-3.3567	1
	169.2	0.3344		0.2946	0.3054	0.3136	0.3292	5636.C	3.3556	0.3649	0.3742
		-0-0574		-0.0608	-0-0599	-0.0592	-0.0579	-3.3551	-3.3546	- 3. 354R	- 0. 0540
	174.7	0.4242		0.3389	0.3392	0.3449	0.3551	J. 3822	1.4004 C	9696 °C	0. 3431
		1640-0-		-0.0570	-0.0570	-0.0565	-0.0555	-0.0533	-3.3517	-0.3523	-0.0523
	179.5	0.4469		0.3522	0.3524	0.3519	0.3639	J.3 855	2.62.6	+10+-0	0.3980
		772C.0-		-0.0559	-0.0558	-0.0559	-0, 3551	-2.252-	-1.26.0-	-0.3516	-0.0519

NOLTR 72-198

فتنقط والمتحد والمتحد فتحادث والمتحد والمتعاد والمتعاد ومعتر المتحدة والمحادث والمحادث والمحد والمحادث والمحاد

and the second second

and the second second second second second second

.

- - -

.

and a set of the set

····· ····· · ···· · ·

.

TABLE II

PITOT PRESSURE RATIO

PITOT PRESSURE PATTO

8

FREE STRFAM MACH NIMAFR . 3.52 ANGLE OF ATTACK . O NEGREES

NOLTR 72-198

0.9351 0.9264 0.9265 0.9312

0.9441 0.9370 0.9351 0.9408

0.9532 0.9484 0.9408 0.9480

0.9308 0.9241 0.9217 0.9217

0,9499 (,944] 0,944] 0,9403 0,9470

0,9494 0,9427 0,9408 0,9408

0,9224 1,427 1,9224 1,9224 1,9224

U.9484 U.9427 U.9408 U.94808

0,5695 0,5628 0,5533 0,5800

1.1333

1.0000

0.8667

0.7333

0.004 .0

0.4667

0.33333

0002*0

0.0667

SURFACE. (R-RA)/RB

PISTANCE FROM ROUY

PITUT PRESSURE RATIO

Q::::->

FREE STRFAM MACH NUMBER . 3.52 ANGLE DF ATTACK . 5 DEGREES

	RF 1 A				DISTANCE	FROM HODY	SURFACE, IN	-R8)/R8		
	0.FG	0.0667	006 2 *0	FE1E.0	().4667	0.6004	0.7333	0,8667	1.0000	1.133
	1.1	6422.0	1.0287	2466.0	1,0096	1,0263	1.0206	1.0320	1.0148	1,023
	1.16	1848 °	9948	0.9490	6499.0	1,0019	1.0125	1,0129	0.9961	1.005
	6°04	D. 78U7	6626°0	0.9136	0.9454	0.9537	0.9542	0.9709	n.968n	0.968
	90. R	2614.0	0.4541	0,8519	0.4877	0.4987	0.8947	0.4274	0.9174	0.918
	88.4	0.5929	4232	0.8404	D. 8667	0484.0	0.4930	0.9212	0.9179	0.912
	88.5	0.5953	0,H22A	0.4309	0.8653	0. AR44	0.8935	0,9202	0,9193	0.914
	43.2	0.5667	F518.U	0.8290	0.858A	L.R764	0. AE34	AB 06.0	0.9078	00 ,905
- 747	98°.	046.2.0	O, ROOR	0.8175	(1 . 8486	U.AA5A	0.8739	0,847B	0.8978	0.897
	103.3	0.5151	0.4017	0.9275	0.8457	U,AA14	0.8705	0.8949	0.8921	0.892
	104.6	1:4436	U.RON&	11.8223	2954.0	0.8575	0.8667	0,8892	0.8882	0.491
	113.7	1544.0	0.4223	(1. R4HA	0.8510	U. 8662	0.870]	0,8892	n.8887	068.0
L	114.5	0.4235	0.8347	0.A610	0.4629	0.4701	0.8753	5988.n	0.8877	0.894
चे	123.2	0.3780	U.R467	0.8758	0.8744	U. ARBY	0.8A6A	0.8935	0.8964	0.896
с С	129.6	0.3151	0.851n	0.8746	0.8849	0.8910	0.8916	0.9030	n .902 1	0.897
	133.5	0.2647	(),R47]	4444 ()	0,8949	0. A46A	1006-0	6709.0	0.9059	0.499
	134.4	0.2217	U.An41	1198.0	0.8973	0.9021	0.9116	0.9116	0.9050	0.906
	143.7	0.1975	0.7353	0.4050	1206.0	0.9126	0,9159	0,9140	0.9107	0.911
	144.7	0.1A67	0.4594	1909.0	0.901A	6519.0	0,919A	1619.0	0.9164	0.915
	153.3	0.1974	C.6192	0.9241	0*16*0	5460.0	0,926.0	0.9168	0°9241	0.918
5	154.5	0.2182	0.5824	0.9126	0.9202	11,9437	0.9437	0.9322	0.9346	969. 0
R P	163.6	0.2589	U.5A05	0.9265	0.9201	AEE0.1	0.9355	0.9265	0.9298	0.929
PI	168.9	n.3063	1065 ° 0	1169.0	0.9365	0.9465	0.94A4	0.9351	4666.0	769.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	173.9	0.3566	014.06	0.4403	(1.9417	0,9460	6.9470	9456.0	0.9379	0.936
NC.	179.7	0.4106	(; <b>*</b> 4 4 4	0.9265	1.94R4	(1,9513	1,9527	0.9374	0.9422	98600
ed	179.0	0.4125	0.6517	HUE5 0	1,24441	0276*0	0.9475	0.9346	0.9374	0.934
tro ble										
PI	/									
	We									

NOLTR 72-198

0

£

·~ · ··

····

-----

-

PITUT PRESSURE RATIU

# FRFE STRFAM MACH NUMBER = 3.52 ANGLE UF ATTACK = 10 DEGREES

AFTA				III STANCF	FROM RODY	SURFACE. (R	-R81/R8		
DFG	U <b>•</b> 0667	v()u2*()	FEEE.0	0.4667	0,600	0.7333	0.8667	1.0000	1.1
	7721 1	1 20184	1.1826	4491.1	1,2098	1.2074	1.2088	1.1926	1.1
	1.1407		1 1864	1.1854	1.2041	1.2021	1.2074	1.1878	1.1
				1.1515	1.1401	1.1542	1.1859	1.1663	1.1
	7678 I	0.477	ALAU.	1.0244	1.0364	1.0416	1.0417	1.0660	1.0
		107.074	0.7707	0.8247	U. R505	0.8791	0.9164	0.9164	6.0
	0.5076	0.7033	1011 0	0.8213	U. 8624	0,8935	0.9236	4966.0	0
	0.4375	0.654	135R	0,7769	0.R713	0.8543	0.8863	0.9026	6.0
0.30	0.3866	0.6168	0.6828	0.7458	0.7917	0.8261	0.8572	0.8777	
	0.3809	0.5767	0.6555	0.7048	0.7525	0.7879	0.8232	0.8443	
.001	FIOF O	6645-0	4595.0	0.6637	0.1148	0.7535	0.7854	0.8127	
	1284	0.6613	0.5719	0.6240	0.4775	0.7167	0.7544	0,7812	ð 0
	0.1250	0.6197	U. ARRS	0.5A72	144.0	0.6842	0.7243	0.7525	0
	11.1800	0.4103	0.6985	0.7134	0.6364	0.6522	0.6985	0.7282	0.1
		1977	0.6894	0.724R	0.740]	0.7841	0.6799	0.7129	0
	0.1928	0.2530	0.5667	0.7549	0.1726	n. 7989	0.8242	0.8223	
	0.2306	0175.0	0.2621	2962.0	1212.0	0.7745	0.8080	0.6189	0.8
1 2 2 1		1914	U. 1 AH 1	0.6254	0.704H	0.7559	6108.0	0.8218	.0
	1011	0.1750	0.1443	0.5079	0.4890	0.7616	0.8127	0.6352	
	5640 0	DCF1 0	1741 0	0.4260	0, 7067	0.7869	0.8409	0.8581	ě.
	C NC O	01110	0.1204	0.4797	0.7640	0.8275	0.8744	0.8863	8°0
		0041 0	1.2244	0.1100	0.4400	0.8734	0.9088	0.9126	<b>6</b> .0
		542B	2479°0	0.8395	0.8782	0.9059	5269.0	0.9250	6.0
	1 5077	2140	C. R. J. J.	O. AAAA	0.4035	0.9126	0,9451	E0+6*0	6.0
	0.5532	0, 7739	0.7769	U.RRSA	1460.0	0.9445	0.9714	0.9714	0.0
			O. 7ARR	U. RABO	0.9322	0.9422	9649.0	0.9675	6. 0
7°217	· · • • • • • •		•					I	

NOLTR 72-198

B-22

PITUT PRESSURE RATIO

1.1333

والمتكر فتحقق والمتحالية والمحادين والمتحرية المتحادية والمحالية والمتحال والمتحال والمتحادة

## 1.400 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.240 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.0000 IS DEGREES 1.4539 1.5509 1.5239 1.5239 1.5239 1.5259 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.779 1.7799 1.779 1.779 1.779 1.779 0.6667 (R-R8)/RB 0.7333 ATTACK FRAM RUDY SURFACE. ANGLE OF 1.4458 1.84727 1.84727 0.47349 0.7454 0.7454 0.7455 0.5791 0.5791 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.71244 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.7124 0.71244 0.71244 0.71244 0.71244 0.71244 0.71244 0.71244 0.71244 0.71244 0.7 0.004.0 FREE STRFAM MACH HUMBER . 3.52 DISTANCE 0.4667 1.3303 1.1750 1.1750 1.1750 1.1754 1.1754 1.2774 1.2774 1.2774 1.2774 1.2774 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.2775 1.27755 1.27755 1.27755 1.27755 1.277555 1.277555 1.27755555555555555555 0.7333 1. 3640 4 1. 3640 4 1. 3640 4 1. 3640 4 1. 3640 4 1. 3640 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 1. 560 4 0.2000 0.0667 0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0. HFTA 010 Reproduced from basi available copy. 10 111

i

- even entre

NOLTR 72-198

PITOT PRESSINE HAFLI

-----

ł

FRFF STRFAM MACH "LIMRFR = 4,07 ANGLE OF ATTACK = 0 DFGREES

	1.1333	0.9097 0.9120 0.9105
	1,0000	0.4090 0.9120 0.9097
-41)/48	n <b>.</b> 8667	0 <b>.9265</b> 0 <b>.9</b> 204 0 <b>.9</b> 212
URFACE, IR	6667.0	0.9151 0.9215 0.9158
AUM MUR	00¥0	\$\$£6°0 \$2£6°0 \$\$£6°0
MISTANCE F	n.4667	1516°n 1516°n
	1.3334	0.4005 0.4005 0.4921 0.4761
	0.2000	0.9227 0.9273 0.9227
	0.0467	0.4449 U.4747 U.4654
AF TA	040	170.5 20.5 170.5

115

5 negrees ANGLE OF ATTACK . FRFE STRFAM MACH NIMHFR . 4.117

## PITUT PRESSURE GATIO

MF TA				I STANCE	FRIM MUDY	SIMFACE. (1	1-RA)/RH		
940	1.0447	0.2000	U.3333	(	0.04.0	0.7333	0.8467	1,0001	1.1333
<b>*</b> " u	0.9474	1.0123	1.0114	1.0143	1.900.1	1.0147	1,0290	1.0259	1.0290
5.16	0.A317	0000 0	1686.0	9986° I)	LENP.O	1,0037	1.0175	1.0105	0.9969
61	5694.0	10.9097	10.9047	0469.:)	C. 47RH	0.9524	0.9709	0.9602	0.9793
6. I v	0.5467	0.N2A6	115 H 3	CAR II	CLTN.0	1264.0	0606.0	0000	0.9189
88.4	1944	U. 7874	050X U	R478.0	0.4654	0.986.0	1204.0	0.075	0.9151
99.1	11,4329	0.7525	U. IIAT	0.4214	1.461	0.4570	0.8807	0.0745	0.8929
1(19.)	(I. 38H7	1941.0	0.7546	0. NO12	0.8.	1454°1	U.4616	0.0562	0.8707
5.011	2166.0	1136	0511.0	( NI14,2	0.MIA/	0.8264	0.4516	1.8447	0.8524
129.4	1).23H4	(1912)	2014°D	CUFN.U	ILEN.O	0.8346	0.6523	0.6501	0.8447
139.6	0.1616	0.1942	45EN.U	DESN.J	C. P5R5	n.8493	0.8707	0.4585	5448.0
149.6	0.131A	1582.0	C-15H-1	(: "HAA4	1014.0	0.A730	ESS.	0.8746	4646.0
154.8	154K	U.41AQ	11.84]5	5 F M N = 3	12PA.U	1.899n	0.9051	16937	0. 4645
169.5	5465.11	10.4 4 9 M	0.4419	<b>vE</b> 06*0	15n4.0	1510.0	0.9141	0.9026	0.8967
174.3	5465.0	11.52AA	11.1767	いち くひょい	42[n".)	1459.n	0.9235	0.0067	0.6996

B-25

116

Reproduced from best available copy.

Ó.

-- ----

PITOT PRESSURE NATIO

# FREE STREAM MACH NUMBER + 4.07 ANGLE OF ATTACK + 30 DEGREES

1.1335 0000 0.8467 (1-4)/AB 0.7333 SURFACE. FROM MODY 0.000.0 DISTANCE 0.4667 1. 2441 1. 1442 0. 5777 0. 7577 0. 55779 0. 5777 0. 5777 0. 5777 0. 5777 0. 5777 0. 5777 0. 5777 0. 5777 0. 1151 0. 1151 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 1171 0. 11710000000000000000000000 EEEE. ā 0.2000 1.202 1.11 1.11 1.11 1.12 1.12 1.12 1.12 1.22 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 0.0647 DETA OFG

NOLTR 72-198

B-26

PITUE PRESSURE RATIO

كالثقية فسيعط والمترك سترجي المسرورين

and the second second

1. 1. 1. 1. 1. 1. 1. North Martin Martin Station of Station Station

## ANGLE OF ATTACK = 15 NEGREFS FREE STREAM MACH WIMBER = 4.07

4F 1 A				II STANCE	FROM RUDY	SUPFACF. (1	2-23)/FB		
Dŗ i	1.0AN.0	0 <b>002</b> *0	1416.0	0.4667	U.6A0U)	FFET.0	n <b>. 8</b> 467	1,0000	1.1333
2.1	1.4.570	1.5454	1.5205	1.5442	1.5234	1.5484	1.5542	1.5366	1.5519
с <b>.</b> ж	1. 4076	1.4487	1552,1	1674.1	1.4594	1.4949	1.5192	1.4976	1.4777
60.3	1	1.1284	1.1005	1./11	1674.1	1.2904	1.3279	5666.1	1,3554
4 <del>.</del>		<b>シ</b> ムシイ、ロ	1111	1.4454	N519.U	0°4602	1,0041	1.0242	1.0596
4.1X	11.4533		くこうし こ	11 BU	1440.0	7.9945	1,0366	1.0680	1,0924
9.19		****	4121.0	[[[ <b>u</b> ])	U.A /61	0.9265	0,9724	1,0060	1.0282
7.13	W102	1 1 2 S	C#44"C	1052.0	0.A144	0.8661	06060	0.5479	0.9709
1:3.4		4725":1	4214°0	1294.0	0.7580	0.8103	0.4570	0.8929	0.9143
1.4.1	4044.1	****	1.5647	5124.0	1004.0	0.7419	0.7889	0.8256	0.8516
111.0		**:**	1005.1	~ * * * * * *	1164.0	0.6615	0.7297	0.7633	0.7928
	1660.00		****	0105.0	U. 54AH	0.6175	0.6627	0.6995	0.7299
C	1040°	こう うへ きょう	5. 4 4 V S	4944.2	(115.)	r. 55AA	0.6064	0.6402	0.6707
1.0.1	416	-12	1.444.0	1515.0	0.4585	ELUS"I)	0.5474	11.5844	0.6132
1.41.1	<b>~ * * * * *</b>			14243	C. LANG	0.52AJ	0.4960	0.5293	0.5605
1.94.1		~~~~	1410.0	5840°C	0.4945	9.6774	1909°u	0.5126	0.5065
1			SU22 "11	19An.(1	0,0790	10,4493	0.6428	0.6603	0.5659
~ ~ ~ ~ -	154		1744	<b>C. LINS</b>	0.0812	n. 4506	0.6256	0.6362	0.5436
2.1.4	[ 7.]			0. JA74	0.1005	0.3119	0.5111	0.5074	0.5047
4.760	1. 1476	04 ···	[/"""	1311.1	ENT 1 "1)	1, 128A	0,3241	0.3824	0.4120
1.00	1474			UNNU"D	16110	1,17AR	0,169R	0*52*0	0,3394
1.941			1441.0	11. 10 SM	0.1050	1,1195	0.1400	(:,2042	0.6248
1.4.1	···· · · · · · · · · · · · · · · · · ·	0 f n f	0.1947		21v2.0	1.1793	0.1757	0,2625	0.6620
	1040.1		#122.0	イントレー	11 CE .11	40[4°u	0.5747	0.1326	0.9241



B-27

NOLTR 72-198

e saade

State Terrore

NOLT. 72-198

, 12

• hanc -

TABLE III

MACH NUMBER

TOTAL FLOW ANGLE

FLOW DIRECTION ANGLE

STATIC PRESSURE RATIO

## 119

. ••

MACH 0.1667 3.83 3.83 3.83 3.65 3.65 0.7841	MACH NUMBER, FLOW FREL STRFAM 1 6.1667 0.3333 3.72 3.72 3.72 3.72 13. 13. 13. 13. 13. 14. 0.8459 18. 0.8459 18. 0.8459	MACH NUMBER, FLOW ANGLF, CHIIS FREE STRFAM MACH HIJMATE 0.1667 0.3333 0.5000 3.72 0.9 13.83 3.72 0.8488 3.65 13.65 13.65 13.65 13.65 13.65 13.65 13.65 13.65 13.65 13.65 14.7 0.8768 3.77 0.8459 3.72 0.8459 3.72	MACH NUMBER, FLOW ANGLE, CHIISSFLIIJ DIRECT   FREE STRFAM MACH HUJMAFR = 3.52 AIG   FREE STRFAM MACH HUJMAFR = 3.52 AIG   0.1667 0.3333   0.1667 0.3333   0.1667 0.3333   0.1667 0.3333   0.1667 0.3333   0.1667 0.3333   0.1667 0.3333   0.1667 0.3333   0.1667 0.3333   0.1667 0.5000   0.1667 0.5000   0.1667 0.5000   0.1667 0.5000   0.1667 0.5000   0.1667 0.6933   13.65 0.8488   3.83 0.8488   3.83 0.8468   3.15. 0.8168   3.15. 0.8168   0.7841 0.8168   3.72 0.8459   3.65 0.8459	MACH NUMBER, FLOW ANGLF, CHINSFLUIZ DIRECTION ANGLE (IF ATTACK   FREE STRFAM MACH TUJMAFR = 3.52 ANGLE (IF ATTACK   FREE STRFAM MACH TUJMAFR = 3.52 ANGLE (IF ATTACK   0.1667 0.3333 0.5000 0.66667 0.83333   0.1667 0.3333 0.5000 0.66667 0.83333   0.1667 0.3333 0.5000 0.66667 0.83333   3.72 0.95000 0.66667 0.83333   3.72 0.8488 0.80330 0.83330   3.83 0.8488 0.80330 0.80330   3.83 0.8488 0.80330 0.80330   3.83 0.8468 0.80330 0.8330   3.83 0.8476 0.80330 0.8330   3.83 0.8476 0.80330 0.8330   3.83 0.8168 0.8168 0.8330   3.83 0.8459 0.8168 0.8330   3.73 0.8459 0.8754 0.8392	MACH NUMBER, FLOW ANGLF, CHINSFLUI DIRECTION STATIC PRESSIVE   FAEE STRFAM MACH INJARPR = 3.52 AIGLL GF AITACK = 0 CFGRE   FAEE STRFAM MACH INJARPR = 3.52 AIGLL GF AITACK = 0 CFGRE   0.1667 0.3333 0.5000 0.6667 0.8333 1.0000   0.1667 0.3333 0.5000 0.6667 0.8333 1.0000   0.1667 0.3333 0.5000 0.6667 0.8333 1.0000   0.1667 0.3333 0.5000 0.6667 0.8333 1.0000   0.1667 0.3333 0.5000 0.6667 0.8333 1.0000   0.1667 0.3333 0.5000 0.6667 0.8333 1.0000   0.8488 0.8488 0.68340 0.88340 0.5455   0.7841 3.65 3.73 0.55   315. 3.71 0.8168 0.55   0.7841 3.65 0.8392 3.72   0.8459 0.8754 0.8392 3.74   0.8459 0.8754 0.8452 0.8453	MACH NUMBER, FLOW ANGLF, CHISSFLUI DIRETTION STATIC PRESSIVE RATIC   FREE STRFAW MACH NUMMER = 1.52 AIGLE GF ATTACK = 0 FGREES   FREE STRFAW MACH NUMMER = 1.52 AIGLE GF ATTACK = 0 FGREES   0.1667 0.3333 0.5000 0.6667 0.8333 1.0000 1.1667   0.1667 0.3333 0.5000 0.6667 0.8333 1.0000 1.1667   3.72 0.3333 0.5000 0.6667 0.83333 1.0000 1.1667   3.72 0.3333 0.5000 0.6667 0.83333 1.0000 1.1667   3.72 0.9333 0.5000 0.6691 0.83333 1.0000 1.1667   3.83 0.5000 0.68830 0.88830 0.4452 3.73 0.56   1.66 3.83 3.65 0.5392 0.565 0.565 0.565   315. 0.7841 0.68392 0.58392 0.5669 0.565 0.565   1.86 0.8459 0.8754 0.58392 0.565 0.565 0.565   18. 0.8459 0.8459 0.8754 0.56392 0.565 0.565   0.8459 0.84
	NUMBER. FLOW FREL STRFAM 1 0.3333 3.72 0.9 13.72 0.8488 3.71 0.8459 0.8459 0.8459	NUMBER, FLOW ANGLE, CHIIS FREE STRFAM MACH HUMALE 0.3333 0.5000 3.72 0.9 13. 0.8488 3.65 0.8488 3.65 0.8458 3.71 0.8459 18. 0.8459 3.72 0.8459 3.72	NUMBER, FLOW ANGLE, CHIISSFLIIJ DIRECT FREE STRFAM MACH DUMAFR = 3.52 ANG 0.3333 0.5000 0.6667 3.72 0.800 0.6667 3.72 0.800 0.8488 3.65 0.8488 3.65 0.8475 3.71 0.8168 3.65 0.9 18. 0.8459 0.8754 3.72 3.62 0.8754	NUMBER, FLOW ANGLE, CHUSSFLUIZINRECTION ANGLE, STAT FREE STRFAM MACH FULARE 3,52 ANGLE GF ATTACK 0.3333 0.5000 0.66667 0.8333 3.72 0.8333 3.72 0.8488 3.65 0.9 13. 0.8488 3.65 0.8488 3.65 0.8488 3.65 0.8479 0.83768 3.65 0.9 3.71 0.83768 3.65 0.8459 0.83768 3.65 0.8459 0.83754 0.83392 3.72 3.62 3.62 3.72 3.62 3.62 3.72 3.62 3.62 3.72 3.62 3.62 3.72 3.62 3.62 3.72 3.62 3.62	NUMBER, FLOW ANGLF, CHINSSFLID DIRECTION ANG STATIC PRESSIVE FREE STRFAM MACH HUMAFP = 3.52 AIGLE OF AITACK = 0 CFGREE 0.3333 0.5000 0.66667 0.8333 1.0000 3.72 0.99 0.5000 0.6667 0.8333 1.0000 3.72 0.8488 0.68930 0.88330 0.3 13. 0.8488 0.88930 0.88390 0.5 0.8488 0.88768 0.88392 0.5 0.9 0.9 18. 0.8459 0.8754 0.8392 0.5 18. 0.8459 0.8076 0.8076 0.5 0.9 0.9 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.8076 0.	NUMBER, FLOW ANGLF, CHINSFLUIDINECTION AND STATIC PRESSIVE RATIC FREE STRFAM MACH HUMMER = 3.52 AUGLE (IF ATTACK = 0 EFGREES 0.3333 0.5000 0.66667 0.8333 1.0000 1.1667 3.72 0.99 0.8830 0.6000 1.1667 3.72 0.8830 0.6900 0.6933 1.0000 1.1667 3.72 0.8830 0.6933 1.0000 1.1667 3.72 0.8830 0.6933 1.0000 1.1667 3.65 0.8333 1.0000 1.1667 3.65 0.8333 1.0000 1.1667 3.65 0.8333 1.0000 1.1667 3.65 0.53 3.73 0.8392 3.71 0.88768 3.65 0.65 0.88768 3.72 0.88392 0.68392 3.71 0.88768 3.75 0.68392 0.8459 0.8754 0.8392 3.72 0.8768 0.83754 0.4432 3.72 0.8768 0.83754 0.83754 0.4432 3.72 0.8768 0.83754 0.83754 0.83754 0.8432 3.72 0.8768 0.83754 0.83754 0.83754 0.8432 3.72 0.8768 0.8459 0.8453 3.72 0.8768 0.8459 0.8453 3.72 0.8768 0.8459 3.72 0.8768 0.8459 3.72 0.8768 0.8459 3.72 0.83754 0.83754 0.83754 3.74 0.8768 0.83754 0.83754 3.74 0.8768 0.8459 3.72 0.8459 3.72 0.8459 3.72 0.8459 3.72 0.8459 3.74 0.8459 3.72 0.83758 3.74 0.8459 3.74 0.8459 3.74 0.8459 3.74 0.8459 3.74 0.8459 3.75 0.83758 3.75 0.958758 3.75 0.958758

....

-----

÷

- -

. . .

Succession States

1, 70 8, 7 593, 6, 7945 3.36 6.6 395. 6.6727 3.04 743 305, 0.3042 3,49 36,7 357, 6,6386 3.46 9.1 754, 6,6135 3.01 7.1 3. 8,7843 5.06 9.5 3. 8.7005 3.96 10.7 372, 6.6313 1.00 7.0 1. 3.an 6.0 333. 6.0453 3.72 8,8 990, 0,7726 3.62 7.4 252. 6.7640 3.70 6.2 932. 0.1927 3.485 9.4 316, 0.4895 3.62 7.1 396. 9.768] 3.67 6.4 957, 6.6274 3, 10 8, 5 143, 8, 7940 3.9r 10,6 14,6 14,5 17 17 1.=3 7.3 3=1. -..7=31 103.1 3,84 4,8 34, 4,7011 3.64 8.8 9.8 9.6 . 9.6 . 9.7928 1.43 7.1 951. 9.7547 3..7* 4.8 333. 6.4666 118.7 1,7. 7.9 317, 0,7014 9.70 4.4 944. 0.0000 4,000 9,7 332, 0,4376 1,84 8,8 942, 8,7472 115.0 3.44 7.4 9.7. 6.7795 3.44 6.9 339, 6.4213 3,75 4,5 549, 8,7876 3.42 4.4 347, 0.7571 3.00 8.6 345, 0,7365 3.67 7.2 334, 4.6333 9.47 6,4 338, 9.4247 3.81 6.4 339, 9,7474 3.71 6.0 361. 8.0977 3,40 6,8 320, 0,6457 125.5 3.41 6.6 343. 6.77<del>6</del> 3.76 6.2 347, 0.7676 3,77 7,7 340, 6,7643 130.4 3.00 5.7 337, 0.7791 3,40 9,4 304. 9,6838 3.09 5.4 344, 6.3272 135.7 3.67 6.7 335. 6.8426 3.74 7.0 333. 0.7894 3.79 5.8 342, 6,7007 3,76 3,7 343, 0,7764 3.80 7.0 335. 9.7846 3.64 5.6 323, 6.6470 3.49 4.9 339, 6.6313 2,75 8,6 294, 0,7586 145,9 3,64 5,3 333. 0,0419 3.78 5.1 341, 0.7479 3.15 5.2 345. 8.6667 3.78 5.9 325. 0,7682 150.6 3.00 4.1 334. 0.7462 3.66 4.4 319, 8,8544 3.75 4.1 347. 0.0179 2,44 6,1 272, 6,7675 155.9 3,63 4,4 737 0,4745 3,78 4,4 314, 0,7953 3,76 6,6 346, 8,866) 3 75 4.6 347, 0.8]47 140.5 3,78 1,3 341, 0,8152 3.45 3.0 317, 0.0723 3.04 3.6 244. 0.8393 2.51 4.0 237. 0.7855 165.9 3,62 3,4 337, 0,8928 3.75 3.9 349. 0.8255 3.79 2.2 302, 0.5032 3,74 4,2 152, 0,4238 178.7 8,70 2,7 394, 0,8307 3,30 2,7 3, 0,8219 3.63 1.7 336. 0.8914 3.48 9.2 949. 0.4440 174.0 2.69 2.5 195, 7,8169 3.47 2.9 353. 0.8968 3,44 0,4 334, 0,8304 3.76 3.6 349. 11.8766 2,76 4,0 558, 7,827, 387.7 2,87 2,5 179, 0,7974 3.A2 1.5 3' 4, n,A477 1,14 1,2 2, 1,8522 140.4

NOLTR 72-19

-31/22

			• •		.C2 **** ***	<b>* 300FACE</b> . #	\$-a\$1/98	•	
	685	0.3067	6.3888	6.5***	0.4467	a.#338	1-0000	1.1007	1.9999
	6,5	3,37 3,8 . 382, 1,3845		3.30 3.7 300, 1.3072		5,48 5.8 6. 1.2539		3,40 5,3 2, 1,3002	
	30,1	9,44 8,4 42,		3.42 6.2 31.		5.47 7.1 23.		3,46 7,0 19,	
	ee.1	1,1795		3,3942		1.1847 3.56		3.94	
		12,0 24, 0,0017		30.0 31. 1.0174		4.4 36. 1.644		9,2 17, 1,9411	
	<b>68,</b> 4	3,69 37,1 360,		3,74 14,0 8,		:.%6 12.9 8.		3.67 13.7 6.	
	98,3		3.08 25.0 4.	0,1370	3.10 13.1 11.	••••	3.64 32.3 9.	40.17	9.69 31.3 9.
	10.3	4.86	0.0700	9.71	0.775	3.70	0,1010	3.63	
		10,0 L. 0,4963		17.4 2. 0.7345		13.1 5. 0.0135		12.3 5. 0.0147	
	98,0		3.98 36.8		3.72 14.4		3.70 12.7		3,42 11,9
			T. 0,5100		6. 8.7781		*. *.***7		9. 8.9185
	98,7	4,23 38.0 394, 9,4236		3,44 16.3 379. 0,6518		3.74 13.4 2. 8.7627		3.43 32.6 2. 0.8327	
	300.1		4,17 18,4		3.84		3.78 13.9		3.70 12.9
	-		350. 0.4017		379. 8-8463		9.7504		6,8246
	205.4	3.87 21.0 352. 6.4338		3.94 17.5 351. 6.5578		3.03 14.9 334. 0.4724		3.75 13.7 357. 0.7579	
	130.2		4,30 39,8 330, 0,3763		3.96 17.1 951. 0.5490		3.04 14.9 394. 0.4448		3.70 13.7 357. 0.7991
	115.5	3.71 22.4 351. 0.4440		4,87 16,9 343, 8,4484		3.9) 15.9 %**, 0,5##4		4.83 j4.4 350. 8.6742	
	120,1		4,63 38,4 354, 0,5300		4,03 18.0 343, 0,4937		3,45 15.5 348. 0,4882		3.85 14.2 358, 0.4796
	125,4	1.69 18.9 346,		3,48 17.3 349,	•••••	4,01 14,5 340.	•••••	3,88 14.5 343,	
	130,2	e*2414	4,43 17,4 347,	0,3674	3.05 15.3 347,	•,3167	15.0 346.		3,60 13,6 344,
	135.4	2.01	9,4479	3.84	9,4646	3.88	0,7843	3.03	0,4+39
		7,7 121, 0,4901		17,0 344, 0,4217		14,3 343. 0,4449		13,0 344, 0,7095	
	140,3		2,59 26,2 331, 0,3990		3.4) 36.2 339. 8.4074		3,93 13.0 343. 0.+592		3.44 12.0 345. 0.494)
	145,5	2.74 13.7 40, 0.3770		4,42 17,7 321, 0,3465		3.90 13.7 335. 0.63A3		3.85 12.2 339. 0,7071	
	350,4		2,10 22,0 243, 0,3460		3.90 14.5 324. 6.4027		3,47 12,2 334, 0.6984		3.86 11.5 342. 0.7222
	159,4	2.59 17.8 95.		4.18 1'-1 290.	•	3,82 .]n,7 .456 .4904		3.80 10.2 334. 0.7604	
1224	160,1		2.14 10.2 242.	•	3.77 9,4 31	••••	3.77 9.3 333.		3,76 9,6 342,
	163.3	2.44 15.3 135.	0,3157	5.87 7.5 767.	0.1270	3,72 6,7 324,	<b>₽,178</b> ₽	3.72 7.7 314.	(* <b>† 484</b>
	170.1	0,5049	\$,6\$ \$,9	0.4470	3.63 4.9 315.	n, Br46	3,70 4,7 340,	0.8308	3.71 7.# 347.
	174.4	1. 14	31 + 4 , 1	3.42	n.8520	3.64	n. #456	١	e.4519
	,	4,5 17], 0,7758		1+A 270- 0+4371		6+0 362,- 0, 1561		A.II 349. 0.8679	_
	e0,4		8,52 1,3 780, 0,7643		3.64 2.9 354. 0.8837		4,71 5,6 1. 0,8709		8,49 7,5 6. 6.2745

at To			015TA		•	d-24)/5a		
DEC	0,1447	0,3333	8.39uf	U. M 67	v.* \$\$\$	8 a. ar 142	1-1401	• 1. • • • •
-0,3		2,42 3,2 354, 1,7370		3.04 5.2 357. 1.4377		1,13 0,5 39%, 1,7/61		3.17 7.3 750. 1.7762
29.4		3,00 7,8 30.		3.14 7.8 31.		3.17 9.9 73.		1.19 9.2 21.
<b>60,</b> 1		3.20 14.0 34.		3.27 17.4 31.		3.22		3.20 11.4 24.
<b>69,9</b>		1.2052 3.71 20.9 9		1.3799 9.41 18.4 14.		3,4374 3,48 17,4 14,		1.47 14.5 15.
<b>**.</b> *		0,6797 4,01 21,4 10,		8,8644 3.6A 19.2 10.		3.54 17.5 13.		3,92 3,92 34.4 14.
45.4	4,67 25,8 259,	0,6034	3,84 21,2 3, 0,4450	0.8370	3.64 18.4 7. 0.8276	P <b>.4348</b>	3.57 17.9 4. 0.9451	1.0516
100.4		4,28 23,7 1, 0,4473		3.86 21.0 3. 0.6876		3.75 19.3 7. 0.7879		3,64 14.2 9, 0,8935
103.4	27.4 349,		4,09 23.0 355. 0,5006	•	3.83 20,4 0, 0,4634		9.70 19.4 3. 0.7842	
110.4		4,65 25,4 353, 0,3127		4,04 22,8 354, 0,4223	č	3,88 20,7 0, 0,6467		3.75 19.4 3. 0.7494
115,7	32.0 339,		4,36 24,9 347, 0,3640		4,83 22,0 353. 0,5386		3,84 26 7 336. 0.4371	
121.0		31.A 9.		6,12 76,2 347, 0,4173		3,95 21,4 152, 0,5349		5.8A 2117 355. 11.6197
129.7	25.2 29.		3,83 24,5 354, 0,44°5		4,17 23,5 345, 0,4082		9,94 27,0 349, 0,9124	
130.8		32,4 3,		4.33 30.3 0. 0.3968		4,19 23,3 345, (1,41154		4,03 22,1 348, 0,4924
135,5	1,92 3,3 123, 0,4498		2,20 22,0 337, 0,3034		6,20 27,7 359, 0,4834		4.14 29,0 341, 0,4038	
141.0		1,49 12,0 6,		4,44 27,7 355, 0,3880		4,15 23,5 344, 0,4238		4.09 22.1 347. 0,4561
343.6	2.13 2.8 103.		1,47 32.0 340,		4,29 26,6 351, 0,4309		4,17 27,6 349, 0,4521	
191.1		2,71 13.0 11. 0,4076		36,4 324,		4,74 26,8 342, 0,2979		4.13 21.6 343. 0.4921
135.4	3,8] 31,6 84, 0,3634		2,17 17,6 320. 0,2104		24.5 322.		4,29 22.0 335, 0,3575	
100.6		2,63 4,9 105,		3,28 20,4 370, 0,1725		4,3A 25,9 723, 0,2248		4.13 14.6 329. 0.5087
145.4	3,93 9,2 120, 0,3531		2,40 8,2 134, 0,206]		2,96 19,6 327, 0,2276		3+87 13+4 333+ 0+6023	
170.6		2,88 13,1 165, 0,3056		2.49 11.3 142. (1.250)		2+49 10+5 275+ 0+4434		3.63 13.0 328. 0.8106
175.4	4,09 4,0 154, 0,3915		4,49 36,3 366, 0,1991		3+73 32.6 167. 0,3476		3+57 5+0 301+ 0,#317	
10.5		1,95 12,4 1#2, 0,2301		6.72 10.* 177. 0.3007		8,89 11,8 864, 11,7197		8,85 8,1 8 7, 1,9 123

HACH MINHERS FRUM ANALES FRUSSIANS STATES AN STATES STATES OF BALLO FREE STOTAM MACH MUMBER & 1,57 - 4 (1) - 4 (1) - 4 (1) - 4 (1)

-35/36

MACH NUMBER. FLOW ANGLE. CROSSFLOW DIRECTION AND STATIC PRESSURE RATIO

.

۰.

FREE STREAM MACH NUMBER = 4.07 ANGLE DF ATTACH = 0 DEGREES

	1.3333	4.22 0.8 353. 0.4603	4.28 0.5 34]. 7.8382	4.26 U.6 346. 0.8445
	],]667			
(R-RH)/RU	00.00	4.28 1.0 352, 0.8320	4,32 0.4 351, 0.8190	4.31 0.6 353. 0.8213
Y SURFACE.	0.8333			
ANCE FROM BOD	0.6667	4.14 1.1 3. 0.8895	4.16 0.8 12. 0.8826	4.15 0.9 9. 0.8845
DIST	0 • 5000			
	0.3333	4.22 1.2 14. 0.8475	4,25 1.0 11. 0.8365	4.27 1.0 12. 0.8295
	0.1667			
B€TA	DFG	69.7	89.6	89.7
			B-37	

124

NOLTR 72-198

and the survey of the state

ŗ

## MACH NUMBER, FLOW ANGLE, CROSSFLOW DIRECTION AND STATIC PRESSURE RATIO FREE STREAM MACH NUMBER = 4.07 ANGLE OF ATTACK = 5 DEGREES

BETA	DISTANCE FROM BODY SURFACE, (R+RB)/RB										
DEG	0.1667	0,3333	0.5000	0.6667	0.8333	1.0000	1,1667	1.3333			
-0.5		4.08		4.04		4.17		4.08			
		1.0		1.8		2.3		1.9			
		342.		353,		357.		356.			
		1,0096		1.0347		0.9805		1.0674			
29.3		4.14		4.08		4.18		4.11			
		2.0		2.7		3.0		2.6			
		0,9627		1.0005		18. 0.9628		21.			
59.7		4.17		4.14		4. 21		4 17			
		5,2		4.5		4.2		3.0			
		23,		22.		15.		17.			
		0.8814		0.9198		0,9101		0.9543			
90.2		4.29		4.20		4.22		4.24			
		6.8		5.8		5.3		4.8			
		1.		6.		0,		3.			
		0.7034		C.8310		0.8453		0.6567			
89.8		4,31		4.22		4.34		4.21			
		9.5		8.0		7.1		6.4			
		4.		1.		2.		3.			
		0+7154		0.8076		D.7920		0.8650			
99,6		4.37		4.23		4.36		4,25			
		9,6		8.4		7.4		6.8			
		0,6690		354. 0.7783		356. 0.7682		357.			
109.4		4 37									
10714		9,57		4.27		4.39		4,27			
		349.		348.		7+3		5:9			
		0,6585		0.7508		9,7342		554+ 0+7961			
119.6		4,31		4.25		4.40		4.28			
		8.7		7.9		7.3		6.8			
		345.		343.		345.		349.			
		0,6997		0.7487		0.7218		0.7752			
129.5		4,32		4.25		4.41		4.25			
		8.0		7.4		7.0		<b>6</b> •			
		0,7333		340. 0.7712		341. 0.7257		345.			
139.4		4 38		4 94		4					
13740		7.4		4.20		4.57		4.25			
		335.		337.		338.		342.			
		0,7606		0.7865		0,741		0.7717			
150.0		4.30		4.26		4.40		4.29			
		5.4		6.0		5.5		5+6			
		0,7681		0.8019		338. 0.7552		342. 7587.0			
140.0		4 40		4 99							
10010		4.6		<b>*•</b> 22		4.37		4,27			
		308.		332		339.		343.			
		0.7342		0.8304		0.7781		0.7982			
170.1		4,03		4,19		4.35		4.25			
		2.6		3.9		4.0		4.3			
		287,		336.		344.		349.			
		U.1542		0.6580		0.7932		0.8126			
180.8		3.89		4.20		4.36		4.25			
		338.		346		3.3		4+1 354			
		0.8265		0.8561		0.7896		0.8161			
								~ ~ ~			

^{B-38} 17 5

	68 T.A	DESTANCE FRUM WIDY SURFACE, (P-28)/HB							
·	046	0.1447	0,3333	0.9000	0.0+67	0.8343	1.0000	1.1007	1.1313
			3,84		3.41		3.92		1.86
			347,		3.7				319.
			1,4027		1.4280		1.3010		1.4442
	3943		5.2		5.3		3,96		3.44
			1,2938		1,3337		23. 1.2941		21.
	40,7		4.03		3.95		4.03		4,03
			24,7		20,		21.		19.
			1.0144		1.1445		1.1437		1,1699
	40.3		13.7		4,13		4,34 31,4		4.10
			3. 0. 7032		12.		30.0072		1,4
	87,8		4,38		4.14		4,14		4.08
			19.4		13.3		11.4		11.1
			0,6562		0,8466		0,8483		0,9891
	94.6	4,56		34.6		4,22		4-11	
		359. 0,4817		2. 0.7241		7. 0.8218		6. 0.9225	
		• •	4.53		4.25		4.26		4.15
			16.0		14.6		12.0		12.1
			0,9339		0.7311		0.0012		0,4904
	194.4	4,76		4,40		4,29		4.22	
		349,		354,		359.		0.	
		•••••		•••••		•••••	4 94	•••••	4 94
	10.00		17.9		15.7		13.4		13.1
			0.4384		n.6075		0.6943		0.7816
	114.4	4.24		6.48		4,43		~-31	
		352.		344.		352.		13.3	
		0,4878		0,4993		U * 91949		0.7059	
	150.0		14.40		14147		14.44		11.10
			370, 0, 4972		0.5232		370.		9.484]
	124.9	2.84		4,29		4.47		4,39	
		328.		349,		15,1		344.	
		4,3488		0,3404		0,5347		0,6248	
	130.1		4,63		4.31		4,92		4,45
			348. 0.4692		347. 0.5572		342.		345. 0.6158
	134.9	2.54		4,36		4,37		4.41	
		131.		16,4 346,		14.2		334.	
		0,5060		0,5555		0.5922		n.5893	
	140.0		3,53		4,43		4,52		4.47 12.7
			325. 0,3476		342.		344. 0.4111		343.
	145.1	3,14		4.86		4,53		4,47	
		12.4		14,2		13.6		12.1	
		0,3704		0,4159		0.5815		0.6393	
	150.1		2,50 }9,8		4,44		4,50		4,53
			349.		329.		338, 0,6276		341.
<b>I-39/40</b>	155.1	2.47		4.15		4.40		4.41	
		16.7		20.1		11.5		10.3	
		0,2859		0,2438		P. 4457		0.6996	
	140.2		2,27		4,10		4,34		4.41
			300,		314.		334, 0.7315		340, 0.7323
	145.2	2.34		4.22	•••	4.30		4.27	
	••	17.4		10.0		7.3		8.0	
		0,4193		0.4544		0.7554		0.7989	
	170.2		4.07		4.17		4,27		4.24
			180.		111.		135		345.
	1/6-6	3.44		4. 80			and a first		
		5,1		2.0		4.3		•• či •• l	
		0.4146		0,7612		0.0185		0.4572	
	180+6		3.62		4.15		4.30		4.25
			175.		356.		360.		358.
			******		V+0*11		V-8181		0.2303

MACH NUMBERS FLOW ANUTES FRUSSELOW DIRECTION AND STATIC PRESSURE RATIO FREE STAFAM MACH NUMBER + 4.07 ANGLE OF AFTACK + 10 DEGREES

بالمراجدة المراجع المحمد

----.

÷

H

İİ

NOL 18 72-198

126

.....

.

. ... 1 mm

-

86 T.A DEG 0.1661 0.3333 0.5000 ....... 1.0000 1.113 Lines 3,50 3,0 352, 2,0040 0,2 3,92 6,8 357, 2,0243 3,60 6.0 1. 1.9638 3.58 6.2 359. 2.11539 3.60 7.0 30, 1.8502 30,9 3,47 7,7 30, 1,9141 3.6n 8.2 23. 1.8537 3.71 8.2 27. 1.8424 3,48 11,3 31, 1,5512 4,00 14,3 16, 0,9914 3,75 12.4 29, 1,3059 60.8 3.71 18.4 25. 1.5445 1.69 11.0 24. 1.6440 4.15 18.4 8. 0.772L ¥0.4 3.91 15.6 14. 1.1220 3.94 14.9 35. 1.1767 4.32 17.9 10. 0.7101 4.00 17.5 12. 0.9783 3,95 16.0 15. 1.1096 89.6 3.48 15.4 14. 1.223# 4,74 21,2 2>9, 0,4278 94,9 4.13 19.3 0.7889 4.02 17.1 9. 0.9657 9,95 14.1 11. 1.0861 4,51 21,7 2, 0,5340 99.9 4.15 19.3 4. 0.7459 4.09 17.3 9, 0,911A 4.00 34.7 10, 1.0244 104.7 4,34 21.2 357, 0,5918 4,17 18,7 2, 0,7771 4.07 37.5 5. 0.649A 25,5 109.4 4,75 23,3 354, 0,3923 4.24 21.4 357, 257, 4.13 17.4 4. 0.4548 4.23 19.0 2. 0.749# 115.3 4.56 22.7 348. 0.4141 4,31 20,1 454, U,4044 4.39 18.4 398. 0.775) 28.2 9,93 20,0 0,4514 120.0 22.2 22.2 20.4714 20.1 20.1 15... 4,34 19,2 357, 0,4928 124.9 4,13A 25.1 349, 0,4389 4,34 21,2 347, 0,4873 4.35 14.4 351. 0.5737 25.7 2,53 26,5 334, 0,4045 3,94 27,5 357, 0,4825 130.2 4,44 21.3 344, 0,4706 4,36 20,2 350, U.5543 4,13 24,7 258, 0,5623 139.1 4,73 25,3 325, 4,40 71,8 344, 0,4848 128.4 1.71 21.4 41. 4.79 24.0 349. 0.4411 4,29 23.0 349, 0,4748 140.2 4,45 21.1 342, 0,445h 2.30 1.3 243, 0,4781 4,53 24,8 353, 0,5113 145.2 4,28 22,7 347, 0,4788 34.2 150.1 3,42 15,2 30, 3.97 19.9 319, 4,42 21,5 347, 0,4558 4.34 22.0 344, 0,4326 4.51 5.6 95. 0.3661 2.99 21.6 327. 0.3203 4.77 27.2 333. 0.2745 155.3 4.48 22.2 339. 0.3745 2,31 27,4 314, 0,3424 2.55 5.8 92. 0.2240 160.0 4,97 24,0 371, 0,2771 4,46 20,3 313, 0,6080 3,96 9,3 113, 0,3198 2.67 6.9 160. 0.1960 2455 23,3 22,5 25,0 24+2 7,72 34,2 327, 11,7656 165.0 2,91 31,4 362, 0,2884 2,59 4.2 144, 0,2554 170.3 2,84 14,3 307, 0,3922 4,08 11.2 333, 0,7642 4,54 4,9 152. 0,35:6 4.21 18.3 167, 0,2049 3.20 14.7 154. 0.3530 175.3 4,01 4,9 305, 0,7404 1,50 9,3 143, 0,3014 4.44 1.2 160. 0.6594 4,11 4,1 1, 1,400 180.5 11.1

MACH NUMBERS FICH ANGLES CROSSELOW DISECTION AND STATIC PLESSURE PATTO PREE STREAM MACH NUMMER & 4-07 - ANGLE OF ATTACK & IS (BEGING 1 | 1

į. 11 11

ć

۴

•

NOLTR 72-198

Shiking and they

8-41/42

127

.