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Section 1

INTRODUCTION

Under Air Force Weapons Laboratory (AFWL) contract AF29 (601)-
5399 IBM developed an automated transient circuit analysis digital computer
program, PREDICT, for analyzing the responses of electronic circuits in
transient radiation environments, and a system of digital computer programs,
TREAT, for processing component radiation effects data. These programs
were subsequently maintained, modified, and distributed to various aero-
space companies throughout the United States. After extensive application
of PREDICT, a number of modifications and improvements were suggested.

Under AFWL contract AF29 (601)-6489 IBM developed and evaluated the
suggested improvements, and recommended that a new circuit analysis pro-
gram incorporating these features be developed. The effort under AFWL
contract AF29 (601)-6852 consisted primarily of formulating and coding this
new circuit analysis program, which was called SCEPTRE. The most recent
contract, F29601-70-C-0038, was awarded for the purpose of implementation
of a series of desirable improvements.



Section II

FORMULATION AND THEORY

2.1 INTRODUCTION

Any automatic transient analysis program is designed to relieve the
user of 'he necessity of writing and programming the differential and algebraic
equations that describe networks. PREDICT and other programs already
perform this basic task, but the degree of flexibility permitted the user varies
widely among programs. SCEPTRE, written as a successor to PREDICT.
incorporates many improvements.

This section presents the formulation and theory that serve as the basis
for SCEPTRE. Therefore, the discussion is mathematically oriented. Those
features of SCEPTRE that are not mathematical are not included here. For
example, the extremely useful features of Rerun and Model Storage are not
described.

2.2 GENERAL SOLUTION

SCEPTRE consists of two separate formulations that combine to pro-
duce the general transient solutions of a given network. One is referred to
as the initial-conditions program. This will determine the network voltages
that prevail before any time-varying forcing function is applied. This program
does not treat time as an independent variable; instead it holds time constant,
and iterates on selected voltages. The output of the initial-conditions pro-
gram may be obtained independently or it may be automatically used as the
starting point for the transient program. Thus, the output of the initial-
conditions program effectively supplies the initial conditions for the system
of differential equations that are solved by the transient program.

The second program is called the transient program. This program
uses time as an independent variable and solves systems of differential equa-
tions as functions of time. The output of this program represents the tran-
sient response of a given network. As implied above, the transient program
may be used in conjunction with the initial-conditions program, or it may be
used by itself if the initial conditions of the network are known.



The general soltion procedure described here concerns tile definilo;.
of the terms, matrices and procedures that are common to both progran-:.
Other parts of this volume will provide the detailed explanatioha, and deri-
vations. The first step in either program is the construction of a tree*
(Ref. 1) according to prescribed rules, which differ for the two programs.
This permits formation of a B matrix that effectively expresses link volt-
ages in terms of tree branch voltages and tree branch currents in terms oi
link currents. Figure 1 shows a composite B matrix that contains all pos-
sible element classifications and submatrices. This matrix is derived in
appendix I. The element classifications are given in table I.

Tree Branches

I II
Class Class Class Class Class

4  51 6 I 7 1 Y

Class 1 B14 B15 B16 B17 B ly

Class 2 B24 B25  B26 B27 B2Y

Class 3 B34 B5 B36 B37 B3Y

Class 8 B84  B B B B
84 85 86 87 8Y

Class 9 B94 B95 B96  B97  B9Y

Class 0 B14 B05 B06 B07 BOy

C lass X BX4 BX5 BX6 BX7 B y

Figure 1. Composite B Matrix in SCEPTRE

: produced fo
b s! vailabl 4l C 0 py.

*A tree is defined as any connected network subgraph that contains all
nodes of the network but no complete loops. All circuit elements that are
members of the tree are Lermed tree branches. All circuit elements ex-
cluded from the tree are termed links. A"C"treeis defined in this repart
as one in which tree members are chosen in the preference order E, C' 12
and L. All current sources (J) must be excluded from the "C" tree. Ther
fore. these sources are links. A cut set is defined as that group el eleiiallat
that would isolate two groups of nodes when removed from a network.
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Table 1

ELEMENT CLASSIFICATIONS IN SCEPTRE

Class Element

1 Capacitor links

2 Resistor links

3 Inductor links

4 Capacitor tree branches

5 Resistor tree branches

6 Inductor tree iches

7 Voltage sources

8 Independent current sources

9 Primary current sources (dependent on voltage across terminals).
This class will appear only in the derivation of the initial-
conditions program.

0 Secondary current sources (dependent on other current
sources). This class will appear only in the derivation of the
initial- conditions program.

Y Voltage sources that are dependent on resistor voltages. This
class will appear only in the derivation of the transient program.

X Current sources that are dependent on resistor currents. This
class will appear only in the derivation of the transient program.

4
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The following matrices ard vectors may also be defined as a result of
the element classification ir 'abile I:

SR22- a diagonal matrix composed only of resistor links

* G2 2 - 22

* R5 5 - a diagonal matrix composed only of resistor tree branches

• G 55 1 55

* C1 - a diagonal matrix composed only of capacitor links

S 11 Cl1

* C4 4 - a diagonal matrix composed only of capacitor tree branches

S S44  C44 1

* L 3 3 - a matrix composed only of inductor links and the mutual
inductance between inductor links

3 1 - a matrix composed only of the mutual indutctance betweeninductor links and inductor tree )ranches

* L - a matrix composed only of inductor tree br..,iches and the
mutual inductance between inductor tree branches

* G9 9 - a diagonal matrix composed only of the voltage derivatives of
primary current sources

0 119 V - vectors composed only of the currents or voltages asso-
ciated with capacitor links

L . . . . . . .. . . . . . . . . ... . . . . . .5



0 12 , V2 - vectors composed only of the currents or voltages asso-
ciated with resistor links

* 13; V3 - vectors composed only of the currents or voltages asso-
ciated with inductor links

• 14, V4 - vectors composed only of the currents or voltages asso-
ciated with capacitor tree branches

0 15, V5 - vectors composed only of the currents or voltages asso-
ciated with resistor tree branches '

SI6, V - vectors composed only of the currents or voltages asso-ciated with inductor tree branches

* Js, V8 - vectors composed only of the currents or voltages asso-ciated with independent current sources

a J9 9 V 9 - vectors composed only of the currents or voltages asso-
ciated with primary current sources

* Jot V0 - vectors composed only of the currents or voltages asso-
ciated with secondary current sources

0 E7 - a vector composed only of voltage sources.

2.3 TRANSIENT SOLUTION

The state variables of any system can be defined as the; minimum set
of quantities that will suffice to determine all other quantities in the system
at any instant. It can be shown that the knowledge of the set of all capacitor
tree branch voltages (V4 ) and inductor tree link currents (13) is sufficient' to
determine all other element currents and voltages, and furthermore, that this
selection of state variables will allow network formulation in terms' of first-
order differential equations. The starting point of the derivation then is that
,uantities V4 and 13 are known and the list of unknowns is made up of V 1 , V2 ,

V3 , V5 , V6, I1, 12, 14, 5, 16, 17 and V8. In addition, the derivatives of the
state variables, V4 and 13, must be obtained in preparation for the numerical
integration routine which produces the updated state variables.that are valid
at the next time increment.

Some o the equations needed to solve the unknown quantities may be
obtained from the transient-solution B matrix (figure 2). The B matrix
itself arises from a "C" tree, which is formed by an E, C, R, L preference
order. Note that the B matrix differs fromthe composite matrix of

6



Tree Branches

I I I

C lass I Class I Class I Class I
4 5 6 7

Class I B14 0 0 B17
Links

Class 2 B B 0 B27
24 25 2

Class 3 B34 B35 B36 B37

Class 8 BB4 B8 5  B86 B8 7

Figure 2. Transient-Solution B Matrix in SCEPTRE

Figure 1 in that some submatrices are zero valued* and that no distinction
is made between types of sources. Since link voltages can be written in
terms of tree branch voltages directly from the B matrix, the following equa-
tions may be written in matrix form:

V 1 = -B 14 V4 -B 1 7 E 7  (1)

V 2 = -B 2 4 V4 - B2 5 V5 - B2 7 E7  (2)

V3 = -B3 4 V4 -B 3 5 V5 - B3 6 V6 -B 3 7 E7  (3)

V 8= -B 8 4 V4 - B8 5 V5 - B8 6 V6 -B 8 7 E7  (4)

Since t'ree branch currents can be written in terms of link currents, there
arises:

14 = BT I +BT I +B I +BT J8  (5)

*For example, B1 5 must be zero since the "C" tree preference prohibits tile
possibility of a capacitor link closing a loop that contains a resistor tree

branch.

7



I T T T

1 5 B 25 2+12  B3 5 13 +B 8 5
T J 8 (6)

I6 = B36 T I+BT J8  (7)

TT TT
I7 - B 1 7 T I

1 + B27 T 2+ B3 7  3+ B8 7 T J8  (8)

where the superscript T is used to indicate the transpose of a matrix.
Two additional equations may be obtained from differentiating Equations
(1) and (7) yielding:

1 = -B1 4 r4 - B4" E7  (9)

6 36 3 +86 T (10)

Note that source derivatives E7 and J8 have been introduced in the last two
equatiors. * These equations together with a few fundamental relations will
be used to derive all of the network currents and voltages in terms of known
quantities.

2.3.1 SOLUTION OF RESISTIVE QUANTITIES

The resistive quantities of interest are 12, 15, V2 , and V5 . The funda-
mental voltage current relations for resistors permit:

V2 = R2 2 12  (11)

V= R 1 (12)

5 5515

12 may be explicitly solved for by manipulation of equations (2), (6), (11) and

(12) to get

'2.-MR1{ -B 2 4 V4 -B 2 7 E7 -B 2 5 R5 5 [B 3 5 T 3+85 TJ8]}(13)

where

MR = R2 2 + B2 5 R5 5 B2 5 T (14)

*See section 2. 5 for a discussion on source derivatives.

8



The significance of equation (13) is that the vector of resistor link currents
has been solved in terms of all known quantities since the right side of the
equation is composed entirely of state variables V4 and 13, known sources
E7 and J8, and known incidence submatrices. Once 12 is known, the vectors
I5, V2 , and V5 can be determined from Equations (6f, (11). and (12),
respectively.

An alternate approach may sometimes be preferable. Equations (2),
(6), (11), and (12) may also be manipulated to obtain

V5  MG-1 {-B 2 5 T G2 2 [B24 V4 + B27 E 7 ]+ B35T '3 + BT8J} (15)

where

MG G 5 5 + B25 G2 2 B25 (16)

Equation (15) gives the vector of resistor tree branch voltages in terms of
quantities that are all known. Then, V2 , 12, and 15 can be solved by Equa-
tion (2), yielding

12= G22 V2  (17)

and 15 = G,, V5  (18)

respectively. The two approaches differ in the size of the matrix to be in-
verted. The first approach requires the inversion of a matrix (MR) contain-
ing the number of rows and columns equal to the number of class-2 elements
in the network. The second approach requires the inversion of a matrix (MG)
containing the number of rows and columns equal to the number of class-5
elements in the network. Networks containing resistors that are all constant
require only one matrix inversion. There is no practical difference between
the two approaches. If, however, the network contains at least one variable
resistor, a matrix must be inverted at each solution time increment. Hun-
dreds or even thousands of matrix inversions are necessary, and the size of
the matrix becomes of significant importance. SCEPTRE will automatically
determine which of the two approaches should be taken for each individual
network.

9



2.3.2 SOLUTION OF CAPACITOR QUANTITIES

The capacitor quantities that must be solved at each time step are I,
14, V, and V4 . Vector V4 itself will have been updated by the integration
routine and hence will be known. The fundamental relationships for capacitors
permit

V4 _ S4 4 14  (19)

l $1 (20)

Equations (5), (9), (19), and (20) may be combined to obtain
T T

B1 = M - 1 {-B 1 4 S 4 4  2 4 T I2 34T 1 3 B 8 4  J - B1 7 '71(21)

where

S = l + BI 4 S44 B4T (22)

At this point, vector I1 has been isolated in terms of all known quantities.
There remains to obtain 14, V1 , and i 4 from equations (5), (1), and (19),
respectively.

2.3.3 SOLUTION OF INDUCTIVE QUANTITIES

The inductive quantities that must be solved at each time step are i3,
V3 , V6 , and 16. Vector 13 will have been updated at the start of each time
step and will be known. The fundamental relations for inductors permit

V3 = L3 3 i3 + L36 i6  (23)
U L I+ (24)

6 = L63 i3 + L66 '6

Equations (3), (10), (23), and (24) may be combined to obtain

13 = M L { -B 3 4 V 4 -B 3 5 V 5 -B 3 7 E 7 - [B 3 6 L 66 B 8 6 T

+ L3 6 B86 T] j8} (25)

10



where

ML L 33 1 L 3 6 B3 6
T + B3 6 L6 3 + B36 L66 B36 T  (26)

Now iis written in terms of known quantities. Following this, V3 , V6 , and
16 may be obtained from Equations (10) and (23), (10)and(24), and (7), respectively.

2.3.4 SOLUTION OF VOLTAGE SOURCE CURRENTS AND CURRENT
SOURCE VOLTAGES

A complete list of possible outputs of a network would include the
current through voltage sources and the voltage across current sources.
These can be obtained directly from equations (8) and (4), respectively, since
the right sides of these equations are known at this stage of the computational
sequence. These steps complete the formal derivation of all network currents
and voltages.

2.4 SCANNING PROCEDURE

2.4.1 IDEAL OPERATION (SUBMATRICES B1 4 , B25 , AND B3 6 = 0)

The series of matrix operations described in section 2. 3 could very
well be programmed as they are to produce the solution of the general
transient analysis problem. All of the matrix multiplication, addition, etc.
could be performed at each time step to generate the necessary currents and
voltages. Research completed during the study phase of this contract showed,
however, that a very significant improvement in computer running time could
be achieved by a more efficient utilization of the information contained in the
B matrix.

The study report* indicated that various network voltages and currents
could be read or "scanned" directly from the rows and columns of the B
matrix respectively. This can be put more precisely by

VL =-B VTB (27)

and ITB =B T IL (28)

where ITB, IL, VTB and VL represent the vectors of tree branch currents,
link currents, tree branch voltages, and link voltages, respectively. If the
vectors and the B matrix are partitioned according to the form of figure 2.
equations (27) and (28) lead to the first six equations of section 2.3. Quan-
tities V2 and 15 are exnlicitly written in terms of known quantities of equa-
tions (2) and (6) if submatrix B 2 5 = 0. Once the resistive quantities are

* AFWL-TR-65-101,, Volume I
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determined, equation (5) presents 14 in terms of known quantities if bubmatrix
B1 4 

= 0. In the same manner equation (3) presents V3 in terms of known
quantities if submnatrix B3 6 = 0. Clearly, then, the condition "B 4 , B2 5 ,
B3 6 = 0" permits solution of V2 , 15, 14. V3 , 16, and V1 directly by scanning
and without any matrix manipuration. Quantities 12, V5 , 11, V6 , V4 , and 13
'can then he determined from the operations given or implied in the non zero
portions of equations (11), (12), (21), (24), (19), and (25), respectively.
Once all of these quantities are explicitly obtained in terms of known quantities,
the equations are stored, compiled, and executed at each time increment
without recourse to repeated matrix manipulation.

2.4.2 OPERATION WHEN B2 5  0

In most large networks, submatrix B2 5 does not equal zero. When
this happens, quantities V2 and 15 cannot be "scanned" out and either Equa-
tion (13) or (15) must be solved. Both of these equations require the inver-
sion of a matrix; thus, some matrix manipulation must be done. To illustrate
the procedure, assume that some hypothetical network has given rise to the
B matrix shown in figure 3. The network is fairly typical in that B1 4 , B3 6

= 0, but B2 5  0. The nature of submatrix B 2 5 (outlined in figure 3) is such
that resistors R3 and RD contribute no rows or columns, and the scanning
process immediately yields

VR3 E and I I from which follow

I (E V JRand~ Li

IR3 = (E1  VC2)/R 3 andVRD = RD 'L l

These quantities wil be updated at each time step without matrix manipula-
tion. The rest of the resistive quantities in the network may be solved by
the matrix manipulation implied in equations (13) and (14). Once the resis-
tive quantities are determined, the remaining network quantities may be

scanned out and stored. The only repeated matrix manipulation required will

be for the three resistor link currents (1R1 , IR 2 IR4 ) that cannot be scanned

because B2 5 # 0.

12



I I
Class 4 I Class 5 1 Class 7I I

I I
C1  C2 I RA RB RC RD I EI

R 1 0 1 0 0 0 -1

R2  0 1 0 1 1 0 0

Class 2
R3  0 1 0 0 0 0 -1 /

R4  0 0 1 0 0 0 0

L 0 0 0 0 0 1 0
Class 3

L2  0 0 1 0 0 0 0

Figure 3. B Matrix from Hypothetical Network

2. 5 SEMI-AUTOMATIC SOURCE DERIVATIVES

The need for source time derivatives is established in equations (9) and
(10) where t 7 and J8 are required. In situations where non-zero source time
derivatives are needed, the user must supply them. These situations are
subsequently described.

2.5.1 VOLTAGE SOURCE IS VARIABLE AND B 1 7 /0

If B 1 7  0 and the voltage source is constant, SCEPTRE will automat-
ically supply a zero derivative. In the case where a non-zero derivative is
required and the user fails to supply it, the run will be terminanid with a
diagnostic message. The situation is best recognized by the presence o~f
any circuit loop composed solely of capacitors and at least one vari I e
voltage source.

2.5.2 CURRENT SOURCE IS VARIABLE AND B8 6 / 0

If B8 6 / 0 and the current source is constant, SCEPTRE will automat-
ically supply a zero derivative. In the case where a non-zero derivative is
required and the user fails to supply it, the run will be terminated with a

13



diagnostic message. The situation is best recognized by the presence of any
circuit cut set composed solely of inductors and at least one variable current
source.

2.6 LINEARLY DEPENDENT SOURCES

The ability of SCEPTRE to correctly process linearly dependent sources
permits the user to define current and voltage sources that are linear functions
of resistor currents and vo!tages. This feature is expected to be most useful
for, but not limited to, applications involving families of small-signal tran-
sistor equivalent circuits such as shown in figure 4.

These linearly dependent sources require special treatment becausetheir magnitudes are direct functions of quantities that are not state variables.

Unless these sources are specifically processed, they will be updated at the
nth time step according to the values of their independent variables at the

(n-i) time step (as they would be in PREDICT, for example). This results
in a "computational delay," which can lead to large errors throughout the
entire network.

Linearly dependent sources are provided for in the general B matrix
by the Y and X classification. When these sources exist, SCEPTRE will set
up the B matrix as shown in figure 5. Under these circumstances, equations
(2) and (6) c in be extended to:

V2 = -B 24 V4 - B 25 V5 - B2 7 E 7 - B2y EY (29)

15 = B25 2+ B35 T  + 8 5
T '8 x5 X (30)

h.
IC

hreV hfe 1 h oeV

0 E T

Figure 4. Low-Frequency h-Parameter Equivalent Circuit

14



Class I Class Class CIOss Class
4 5 6 7 y

Clas1 B14 0 0 B17 BIy

Class 2 Bl B 0 BC B
B24  25 27 2

Class 3 B34 B35 B36 B37 B3y

Class 8 B84 B85 B86 B8 7  B8y

Class x Bx4  BX5  Bx6  Bx7 B

Figure 5. B Matrix with Linearly Dependent Sources

Since any resistor-voltage-dependent voltage source must depend on a resis-

tor tree branch voltage or a resistor link voltage, there arises

EY = k1 V 2 + k 2 V5  (31)

where:

0 k1 is a matrix of constants containing the number of rows
equal to the number of class-Y voltage sources and the
number of columns equal to the number of nonscannable
class-2 elements.

* k2 is a matrix of constants containing the number of rows
equal to the number of class-Y voltage sources and the
number of columns equal to the number of nonscannable
class-5 elements.

0 EY is a vector composed of class-Y voltage sources.

Also, since any resistor-current-dependent current source must depend on
a resistor tree branch current or a resistor link current, there arises

JX = k3 12+ k4 15 (32)

where:

0 k 3 is a matrix of constants containing the number of rows
equal to the number of class-X current sources and the
number of columns equal to the number of nonscannable
class-2 elements

15



* k4 is a matrix of constants containing the number of rows
equal to the number of class-X current sources and the number
of columns equal to the number of nonscannable class-5
elements

* JX is a vector composed of class-X current sources.

If Equations (31) and (32), together with V2  R22 12 and G5 5 VS
are substituted into Equations (29) and (30)

R2212+ B25 V5 + B2y [kI R2 2 12+ k 2 V5 ] -B 2 4 V4 - B27 E7  (33)

TT TT

G5 5 V5 - B 2 5 T1 2 - BX5 k3 1'- k4 G55 V5] B3 5  13 + B85 T 8  (34)

The last two equations may be consolidated as

(R 2 2 + B2y k 1 R2 2 ) (B25 + B2y k2 ) 12 -B 2 4 V4 -B 2 7 E 7

25- BT ) (G - x5T 4 5 5) L 5 35 + "85 J8

If the large matrix on the left side is called MRG, then

121 [-24 V4 - 27  71
MR& 1 T

V 5  LB 3 5  13 + B 8 5  18J

and the resistive quantities 12 and V5 can be determined without computation-
al delay. Note that since all four "k" matrices are constrained to be constant,
the linearly dependent source feature itself will not require any more than
one inversion of MRG. If any variable resistors are present in a network,
MRG must of course be inverted at each time step. In addition, the extra
row and column that was added to the B matrix of figure 2 by the linearly
dependent sources will add terms to the equations used in the solution of
capacitive, inductive and some source quantities. Specifically, equations
(5), (3), (4) and (8) become

T T+ T ,

14 B14 TI1 + B24 T 2 B34 T 3 B 8 4
T J8 Bx4 T (5
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V3  -B 3 4 V4 -B 3 5 V5 -B 3 6 V6 -B 37 E 7 -B 3 y EY (s')

V8  -B 8 4 V4 - B8 5 V5 - B8 6 V6 -B 8 7 E 7 - 8 y EY (4')

I 1 BTI+B T *B T JX(811)
17 =B 1 7 T I I +B 2 7 TI 2  B3 7 T I 3 +BTJ 8  Bx7

and the new relations

VX = -Bx4 V4 - X5 V5 - BXX7  - B EY (35)

1Yz 13T I BT I BT i BT (62y 2 3y 3 B T J84 B JX (36)

now exist.

A restriction must be placed on these sources based on the content of
Section 2. 5. The B matrix of figure 5 transforms equations (9) and (10)
into:

V1 = -B14 V4  B 17 1 7- Bly EY (9')

16= B3 6 Ti 3 +B 86 TJ8 + BxAT JX (10')

Now, additional time derivatives EY and JX are required whenever Bly or
Bx6 0.

Differentiation of equations (31) and (32) would involve quantities V2.V,
i 2 , and t5 . The formulation contains no provisions for these quantities and
there is no way the user could know them to supply them as input data.
SCEPTRE will automatically check for the existence of non-zero Bly or BA6
and terminate the run with a diagnostic message when they occur. The situ-
ation can be recognized by the presence of any circuit loop compmoed solely
of capacitors and at least one linearly dependent voltage source, or the pres-
ence of any circuit cut set composed solely of Inductors and at least one
linearly dependent current source.

2.7 INITIAL CONDITIONS SOLUTION

2.7. 1 TECHNIQUE DESCRIPTION

Many practical circuits require computer solution of the Initial eondl-
tinns prevailing at the start of the transient (time - 1o) before the tran.trnm
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solution can begin. These values can always be determined by a separate
transient run ir which all forcing functions are held at the values for time
= to. However, an alternate procedure based on an iteration technique using
independent variables other than time was considered desirable. This pro-
cedure presents the advantage of economy of machine time on all circuits for
which convergence occurs. This section will describe the formulation of this
portion of SCEPTRE, which is completely independent of the transient
formulation.

If an L tree is set up based on the preference order E, L. R, C, a
general B matrix may be set up according to the procedure outlined in
section 2. 2 The zero-valued submatrices arise from the L tree and the
preference order*. The resulting B matrix is shown in table II.

Table I=

GENERAL B MATRIX FROM THE L TREE

4 5 6 7

1 B14  B15 B B17

2 0 B2 5  B2 6  B27

3 0 0 B3 6  B3 7

I B 84 B85 B 6 B 87
8 84 B B B
9 9 4  9 5  9 6  97

0 B FB B B
04 05 06 07

The following equations (among others) arise from this B matrix if
vectors V6 , 14 and submatrix B94 are assumed to be zero. These assump-
tions are based on the known final values of V6 and 14 for the initial condition

*For example, the submatrix B24 must always be zero since non-zero entries

in it could only arise when resistor links close loops containing capacitor tree
branches. The preference order prohibits this possibility.
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problem and the absence of any current-source capacitor cut sets (see the
restrictions in section 2.7.4).

V +B V +B E= 0 (37)
9 9 5 V5 +B 9 7  7

V 2 iB V 5 +B 2 7 E7  0 (38)

15 B 2 5 T 12 - 8 5 J 8 B 9 5T 9 BT J0 0 (39')

To get all the variables of equation (39') in terms of V9 , V2 , V5 , and
effective sources, the following substitutions are made:

15 G 55 V5

12 G2 2 V2

J0 = a 9

J = G V + Q

where:

h : a is a matrix containing the number of rows equal to the

number of secondary current sources and the number of

columns equal to the number of primary current sources

* G5 5 and G2 2 are diagonal matrices containing only
conductances

0G99 is a diagonal matrix containing only diode and traisistor

junction conductances

* Q terms are described in appendix H1.

Then, equation (39') becomes

G5 5 V5 - B2 5 G2 2 V2 - B 8 5 
J 8  T - [B 999 V9 Q9 =0

1(39)
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Equations (37), (38), and (39) may be designated as F (V9, V, V ),
F2 (V9. V 2 , V5 ) and F3 (V9, V2, V5 ), respectively. f the basic Newton-
Raphson method (see appendix I) is applied to equations (37), (38), and (39):

aF 1

F1 (V9 9 V2 V +5) +
+F1 2V-- 9j,(9' VT V5) 9

dF 2

F2(V' 2'V+- (v9, v2, v) AV2 +

aF 2

v-- (V91 V2 , VS) AV2 +F 2 ( V 2 V 5  F 2 (V 1 vV)A 9

3F2

8F2 1W9 V2 V) AX'2 +

6FF2

aF 2 (V9 , V2 , V5 ) AV 5 = 0

8F3

F 3 (V9 ' 2 V 5) + -- (V9 9 V2 9 V5) AX 9 +

aF3avIN V v2) v 5) AVw2 +

- 6F 3w- (V9, v 2, V5) v5 +

or

F 1 (V99 V 29 V 5) AV 9

F 2 (V9 , V2 V 5 ) + Z LV 2 1 0 (40)

F 3 (V9 , V 2, V5 ) LAV5
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where the Jacobian is

c3V 9 (V9 . V2 , V5 ) -V-(V 9 ' V2 . V5 ) -5(V 9 . V2 , V

F 2  F2  a_ 2  (V

-V (V 9 , V 2 , V5 ) -3V(V 91 V 2 V5 ) V 9' V2 5

d 9  -- V25

aF 3  aF 3 (6F 3V---( V 9 , V2 , V5 ) (V 9 . V2 , V5 ) av VV.V5  )_

a9 9)2 5 *2 5 (V9 21 5

(41)

If

V9  V V9  (, - ) - 9  (n)

AV2  V2 (n+ 1)-V 2 ()

AV.5  V5 (n4-)-V 5 ((n )

where n is used to designate the results of the 1i1i iteration pass, then

equation (40) becomes

F 1 (V 9 , V 2 ' V 5 ) [ v 9 (n4 1)-V 9 (n)

F 2 (V 9 , V2 , V5 ) + Z V2 (n + )- V2 (,) 0 (42)

F 3 (V 9, V 29 V5 ) V5 (n ; I) - V5 ()

leading directly to

V9 (,, 1 ) V9 (n) F I (V 9 , V2 , V5.
V2 1) V 2 () F (V,

V5 (n .) V5 (n) F3 (V 9 , V2 ' V5)

21



Equation (41) may be written more explicitly if the indicated differentiations

are performed on equations (37), (38), and (39) to obtain:

1 B95

Z I B25

r B9 5  T 1] TG

+ B05T a G99  -B 25 G22  G55

so that equation (43) becomes

V9 (n. 1) V9 (n) 1 F1 (V9 V2 , V5)

V2 (n+1) = V2 (n) - F 2 (V9 , V2, V5)

V5 (n + 1) V5 (n) J F3 (V9 , V2 P V5) (44)

Equation (44) may be written in more convenient form as follows (see also
Appendix IV):

-1

V9 (n - 1) 0 B9 5

V2 (n + 1) 0 1 B2 5

T aT T
V5 (n ) [B 9 5

T . B05 G99 -B 25 G2 2  G55

-B 97 E7

-B 27 E7

95
T + B05 Ta ] Q9 + B8 5T J8 (44')

Equation (44') signifies a computational sequence as follows:
Quantities V9 , V2 , and V5 , the vectors of voltages across primary current
sources, resistor link, and resistor tree branches respectively, each have
some assumed value (usually zero) to begin the computation at n - 0. All
members of the right side of equation (44') that may be voltage dependent
are updated. The left side of equation (44') is then computed and the first
Iteration (n=l) Is complete. The right side of equation (44') Is re-evaluated
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onl (he basis of the results of th . first iteration and the left side is again com-
puted, thereby completing the second iteration (n=2). This process is repeated
up to 100 times. After any iteration, if

IV( - - V,,, 1 l5_o.oo 1 VJ (n1 1) 0. 0001 (45)

is saltiSf if(, for (Ih( set of all voltages in equation (44), convrgence is co)I-
sidered to have occurred and the procedure is terminted. If after 100
iterations equation (45) is not satisfied, a diagnostic message will be printed
indicating that convergence has not occurred. Experience t, date has
shown that the Newton-Raphson procedure will converge for most circuits in
less that 30 iterations.

Convergence of the Newton-Raphson method can sometimes be pro-
hibitively delayed if for some reason a large forward bias (V> 0. 8v) is applied
to any diode or transistor junction that has been represented by the user in
the conventional closed form J Is (eeV -1). In this case, the slope of the

dilei ,.urv#,, IIven by (14 - . will rraltrillue a very large Iorist
in G9 9 and consequently In the Z matrix. The practical results of this can be
more easily appreciated by consideration of a one equation system as repre-
sented by the second equation in Appendix MT. A large derivative caused by a
highly forward-biased diode leads to a very small step (AX) in the indepen-
dent variable. Many steps will therefore be required to complete convergence.
This situation is avoided in SCEPTRE by the inclusion of a subroutine called
DISCLF. This subroutine effectively ensures that the true operating poinl on
the diode curve is approached in the iteration process from a lower voltage
rather than a higher voltage. Smaller diode Mlopes are used so that larger
(and fewer) steps can be taken toward convergence. This is described in
reference 2.

If convergence has occurred, quantities V9 , V2 , and V5 are now known.
There remains to compute only capacitor voltages and inductor currents since
capacitor currents and inductor voltages must be zero.

2.7.2 COMPUTING CAPACITOR VOLTAGES

From the B matrix in table II the capacitor link voltages can be written
in terms of the tree branch voltages as

VI -B1 4 V4 - B1 5 V5 - B17 E7  (46)

In addition the principle of conservation of charge permils

-r114
'r C"11 Vl I C4 4 V4  -B 1 4

T 1"11 V1 (0) 1 C4 4 V4 (0) (47)

WI,.re V1 (0) and V4 (0) are initial voltages that may be specified by the user.
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Equations (46) and (47) lead to

V4 = M {-B14T C1 1 B15 V5 - B14T Cl1 B17 ET7 B14 C 1 V 1 (0)

+ C44 V4 (0)} (48)

1T
where M c = B14  C1 1 B 14 + C4 4

Once V4 is determined, V1 may be found from equation (46).

Note that Class-4 elements can occur only if a capacitor cut set exists. (1)

Otherwise equation (48) will be identically zero and all capacitor voltages can
be determined from equation (46).

The use of equation (416) permits solution of a class of networks in
which the final value of capacitor voltage is dependent on an initial value.
Consider the circuit shown in figure 6, which contains a capacitor cut set.

Cl = 9pf

C2 =I pf
I O

Figure 6. Capacitor Cut Set Circuit

If both capacitors are initially uncharged, the final values of the cal- "tor
voltages after the switch is closed must be VC1 = 1 volt, VC2 : 9 volts. If
however, capacitor Cl has an initial charge of 5 volts, the principle of con-
servation of charge (reflected in equation (47)) requires the final result to
be VC I= 5.5 volts, VC2 = 4.5 volts.

2.7.3 COMPUTING INDUCTOR CURRENTS

Since V2 is known,

I = R V (49)

The inductor tree branch currents then can be written from the B matrix
in terms of link currents as

[ B2T I2 B 3 6 T I3 B 8 6 T J + BT J + B0 6 T J (50)
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In addition, the flux relations around an inductor loop permit

B L I+ L I B8 L I ±
B 36 L 6 6 16 33 3 = 36 66 6 (0) + 33 3 (0) (51)

where 16 (0) and 13 (0) are initial currents that may be specified by the user.
Equations (50) and (51) lead to

-l
13 M L {L33 13 (0) B 36 L66 16 (0)

-B 3 6 L6 6 B2 T I + B TJ8, B6 + B0 T J 0 1 (52)
B2 6T2 86 96 0

Twhere M ~B L B L
L 36 66 36 + 33

Once 13 is determined. 16 may be found from equation (50). Note that Class-3
elements can occur only if an inductor loop exists. * Otherwise, equation
(52) will be identically zero and all inductor currents can be determined from
equation (50).

The use of equation (52) permits the solution of a class of networks in
which the final values of inductor currents are dependent on the sizes of the
respective inductances. Consider the circuit shown in figure 7, which con-
tains an inductor loop. If both inductors are initially relaxed, the final values
of the inductor currents after the switch is closed must be ILl = 1 amp.
IL2 = 9 amps.

R 1S],

A

i OV T I=9h L2= lh

II
Figure 7. Inductor Loop Circuit

',See paragraph (subsequent section 2. 7. 4) on network restrictions for quali-
fication of this.
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The task of computing the capacitor voltages and inductor currents com- I
plete the initial-conditions problem. These quantities may then be trans-
ferred to the transient program to serve as initial conditions.

2. 7.4 RESTRICTIONS

Since the initial-conditions program is formulated differently and for a
different purpose than is the transient program, certain restrictions apply
to the initial-conditions program that do not apply to the transient program.
These restrictions and the practical considerations that lead to them are as
follows:

1. No circuit containing a loop composed entirely of voltage
sources and inductors will be accommodated. This situation
would cause an infinite inductor current and is obviously of
no practical importance. The presence of an E-L loop is
disclosed by the condition B37 & 0.

2. No circuit containing a cut set composed entirely of current
sources and capacitors will be accommodated (see figure 8).
This situation would invalidate equation (37) and complicate
the solution process by requiring that V4 be carried along in
the Newton-Raphson procedure. This cut set situation can
always be removed by arbitrarily connecting a large resistor
from note A to the ground. Note that the configuration of
figure 8 could be handled by the transient portion of SCEPTRE
if a Newton-Raphson solution was not desired. The pres-
ence of a J-C cut set is disclosed by the condition that
either B 84, B9 4 , or B0 4  0.

C J C2

ii J2

Tc
Figure 8. A Current-Source Capacitor Cut Set
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3. The chtui'e of independvnt variables will be somewha;i ri ' 4,-d.
No resistor or inductor curret may be useld as ;in inhide)etndel
variable. Furtlhermore, a capacitor volt4. nlav b, l.st.d ;i.s ;111

in(hpendent variable only if it is in parallel with a resisfor or

current source (Vc = VR, Vc - Vj ). The objective here is ito ;void

the need for any auxiliary computation between passes of Ihe
iteration procedure.

4. Networks containing entirely capacitor cut sets can be accomino-
dated only if the members of the cut set are constant.

5. Networks containing only inductor loops can be acconmnmodaled only

if the members of the loop are constant.

2.8 INTEGRATION ROUTINE

Three integration routines will be optionally available for use in
SCEPTRE. 'I\Vo of these, RUK and TRAP, were available in PREDICT
and have been only slightly modified. The third routine, called XPO. was
developed at the IBM Scientific Center in Palo Alto, California. by Dr. It.
Warren and Mr. M. Fowler and adapted for use in SCEPTRE. Studies
to date indicate that XPO is usually, although not always, faster than the
other methods. For that reason, this routine will always be used unless
the user explicitly requests otherwise in the RUN CONTROL section of an',
run.

2.8. 1 RUK FORMULAS AND VARIABLE STEP SIZE CONTROL

The well-known Runge-Kutta fourth-order-accuracy formulas (Ref. 2)
for the numerical solution of the differential equation

y f (t, y)

are g.iven by

V (I h) y (I) 1/rk I  2k 2  , 2k 3  k4 1

where

k h 1 1 , 2" V (1) , 2 I
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hI

3= 2

k3  h hf t +h, y (t) + k =
k4 =hf t4 h, y (t)3+

Variable step size control (Ref. 3) is achieved by computing

k5  h f [t + h, y (t + h)]

and

E =k 1 - 2k3 - 2k4 + 3k5  (54) 1

The above formulas easily generalize to systems of differential equations, I
in which case y and E become

y (t) = Yl y (t

E (e I ,... e)

Now let I

U u 119 12 0

Set
k  2  Y(t+h)I

Lk 11- 12 yk(t+h)

If ek I > 1.5 Uk for some k, the integration step h is halved, the in- I
dependent variable is restored from t + h to t, and the values of y and y are
restored t0 the values at time t.

If JekI >0.75 Uk for some k, and Iek[I.5 U for allk, the current
integration step is accepted, but the step size is halved for succeeding steps.

If Lk :5 ek j5 0. 75 Uk for all k, the step size is unaltered.
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If Ieki < Uk for all k, and lekd < Lk for at least one k, a doubling in-
dicator is activated. Actual doubling is delayed for seven time steps. Halving
always takes precedence over doubling; thus anytime a halving signal is re-
ceived, the step size is halved and doubling is delayed for at least seven steps.
Similarly, after successful doubling, another seven steps must elapse before
the step size can be doubled again.

Recommended choices for ul, u2, 11; and 12 are as follows. If
absolute error control is desired,

set

u= : 0.0075 u2 - 0

11 = 0.00005 12 = 0.

If relative error control is desired,

set

uI -=0.005 u2 = 0.005

11 = 0.00005 12 = 0.00005.

If smaller step sizes are desired than the ones yielded by the above
settings, the 0. 0075 and 0. 00005 settings should be reduced by a factor of 32.
This will yield half the previous step sizes.

2.8.2 MODIFIED TRAPEZOIDAL INTEGRATION (TRAP)

2. 8. 2. 1 Method

Given the differential equation

S(t) = f (t, y (t)), y (0) = YO.

Consider the following numerical integration scheme,

(t +3 h)= y (t) + h (t) (55)
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, (t +3 h) f t +3 h, yp (t 3 h

=- f[t+ h, y(t) +(t)] (56)

y C (t + h) =y (t) + I- 2 (t)+

3 1
Sc (t + h) f It + h, Yc (t 4 h)] (58) 1

Step-size control is achieved by computing

E h t ) - 59

The magnitude ofI E I indicates any changes to be made in the step size.

2.8.2.2 Truncation Error

Inasmuch as f + S/ fy and the true solution YT is approximated by
t* y

• h2

YT (t + h) y (t) + h y (t) + 2 (t). *1

one obtains,

h 
2

YT(t + h) y (t)+hy (t) + -(ft4 fy). (60)

On the other hand

r 3h h(t) + (ti = f (t, y (t)) + ft + ft (6 )
4- y(t)+ 2 t T 2 y(61)

I [t .13

whence Equation (57) becomes

ye (t+ h) y (t) + S [2 (t) + ] (t) ± ft + 2 ]
I

Subtracting Equation (57) from (60) yields

Yh 2  h2  2 2

Y(t +h) yc(t +h) Kw -~ ;f~ ~-f
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which in turn yields the approximate local truncation error.
A

From equations (56) and (61) one gets

3h W 3h f ijp(t + T) - (t- Y t f2 y

whence

T 2 (t+ )Y (t) h2 ft + - f (62)3 LT t T y

One notes that if ft = 0, then equation (62) is a good representation of
the local truncation error, neglecting higher order terms.

Experience indicates that for systems of equations of the form Y =
A (Y) Y + B, where A is piecewise constant, the method as well as step-size
control is adequate.

2. 8. 2. 3 Stability

Consider the differential equation

y = -ay, y(O) = y0, a> 0

The numerical integration scheme given by equations (55) through (58)
yields

Yc (nh) = 1- ah + -- ) n y (0) (63)

This is easily established by induction. Thus, for numerical stability

it is necessary and sufficient that I I - ah + ( < 1. This yields0 <

ah < 6 as shown in Figure 9.

Inasmuch as I ah I < 6 is necessary and sufficient for numerical stability.
we say that the modified trapezoidal method has a stability radius, r, equal to
6. Moreover, from equations (55) and.(56) we see that the method requires
two derivative evaluations (passes) per integration step. Thus, the pass num-
ber p associated with the method is 2.

The ratio r/p is a measure of a method's efficiency in (lw sense of
minimum number of integration steps per given time interval.
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r r

0 -I

"2
-112

Flgcrc R. Root Locus of TRAP Characteristic Equation

The higher r/p, the fewer steps are required for a given a.

The following list shows r, p and r/p for a few representative methods:

METHOD r p r/p

Moified Trap. 6 2 3

Euler (Ref. 4) 2 1 2

Trapezoidal (Ref. 5) 2 2 1

NIDE (1PASS) (Ref. 6) 0.8 1 0. 8

Runge-Kutta (Fourth-order) 2. 78 4 0. 7

MEDE (2 PASS) 1 2 0.5

Hamming (Ref. 7) 0.85 2 0.425
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2. 8.2.4 Step-Size Control

.As mentioned previously, the quantity

2h [jp't+ ) t]

is used for step-size control.

(1) The method is essentially the same as for RUK. Let u1 , u2 , 11,
12 be real numbers 0.

Compute U u +u 2  y, (t) ' L + 121 y, (t+ h)

If E > 0.75 U, the step size is reduced.

If j E2  < L, the step size is increased.

If L 5 1 2 j < 0.75 U, the step size is not altered.

(2) Choice of ul, u2 , 1 1
1' 20

Recall that E2 attempts to represent the local truncation error. For

absolute error control set

u = 0.01 , u2 = 0

11 = 0.0005, 12 = 0

For relative error control set

u1  0.001 , u2 =0.01

1 1 0.00005 , l 2  0. 0005

The above values work well in practice.

Reducing the above settings by a factor of 4 will reduce the step size
by a factor of 2.
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2.8.3 EXPONENTIAL INTEGRATION (XPO)

2.8.3.1 Method

Given the differential equation

( f It, y (t) I y (0) = y0,

this integration routine gives the computed solution

I eXhi

except for two cases that will be covered later. In equation (64)

y (t)-y(t- h0 )
0

where t -h 0 is the last point computed: I
,p (t) = ? (t) -YA (t); (65) i

= (t) / Yp (t) (66) A

Since y (t) cannot be computed explicitly by the program, we take a small 41

Euler integration step and approximate y (t) by y" (t): I
Y'; (t +. ) y (L) + S ¢ t)*

y (t+ t+(t ) (67)

"Y's (t)= '  (t +-8) -' (t)h

8 , 0<8

The first exception occurs if' (t) and yp (t) have the same sign.

Then set

YA (t) =0,

which results in equations (65) and (66) becoming

Yp (t) y (t) (68)

X=y8 (t)/y(t).
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This provides a belter approxination to the solution of the equation y )y , h
without decreasing the overall effectiveness of the method.

The second exception occurs if X, computed either by equations (66)
or (68) is non-negative. Then the term

eXh -1

in Equation (64) is replaced by 1 -, thus cha ng equation (64) to

y(t + h) = y (t)+ YA (t) h +(1 + )hyp (t (69)

It can be shown with some effort that equation (69) is equivalent to a trape-

zoidal type integration method.

2. 8. 3. 2 Truncation Error

Noting that e when expanded in a Taylor series, becomes

xx
-x- I x + AI2

Equation (64) can be written

Yh2  h3 X2 yp(t) 4 )
y(t+h)=(t)+YA(t)h+y (t)h+ Xyp (t)+-- (h

(70)
( h2 * h3
=y~)+~th2'y'8 (t) + - X'Y' (t) +0 (h4 )

Referring to equation (67), note that

-i (t) (t) + A -(t) Y(t) Li j+0(82 (71)
2 Jr,

y ~~~~ ~ ~~~ F)- [€- ] o8



Substituting equatio" (71) into equation (70) yields

' ~ ~h h2 'f]+O( 3

,iy (t + h) =y (t) + y, (t) h + ""(t) -- + -8 [y '(t) -'y 0t (0)

(72)

It is noted that the use of either exception to the principal equation (64) still
yields the truncated expression, equation (72).

hSince 8 S- , the method is second order exact, i. e., the error is of

order h 3 . This characteristic will be used in equation (73) in the next
section.

2.8.3.3 Step-Size Control

For t<t - _t h, let YT (t + ) be the true solution to the differential

equation, let Yc (t + ) be the computed solution, let Ye (t ) be an ex-

pression obtained by differentiation of Yc (t + ), i. e.

tYA (t) + (1 X k yp (t), > 0

Ye (t +C)=
eA (t) + e < (t) , x<0

ajnd let vc (t - ) be obtained by substituting Yc (t +) into the differential
equation.

Ideally, step control should be based on the expression

i:Eo : YT (t + ) -ie (t + )d

however, y (t +,) is not available except at = 0.

T

Making use of the fact that

YC (t + ) f{t +, YT(t + )+ L(t (73)

YT (t )+ (3)
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We) obitain

=Jh["y(t ~~et~1~Oh t) (

E h . h

0 0

h4

iyc (t + ) -y' (t + ) does not change sign for 0 S _h,

Eo hl,(t 1t h+ hh)_ (t + h) i'_t , c (t h) - e (t + h)1l o (,4) 1
T e(tI

Thus for small h,

A
hE ,~hy (t h) Ye(t h)

yields ai, estimate of the truncation error.

Let ul, u2, 11, 12be real numbers 20. Compute

u -Ul + U21yc (t+h)l

L = 11 + 12 l Yc (t+h)l

if IEl >U, the step size is reduced. If E < L, the step size is increased.

If L < E < U, the step size is not altered.

For absolute error control set

U = 0.0075 u2 
= 0

1 I 0.0002 12 = 0

For relative error control set

u 0.005 u 2 0.005

11 - 0.0001 12 0.0002
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2.8.4 GENERAL ABSOLUTE AND RELATIVE ERROR CRITERIA

All three numerical integration methods described in this section are
approximate methods that are used to integrate differential equations and
thereby update the state variables at each time step. Each of these methods
has an automatic control that allows step size to be increased and decreased
during the transient problem. The r..,thod of control used compares some
function of the step size and the derivatives of the state variables to a
quantity that serves as a standard as. for example, in equation (59). The
standard may be a consta~nt or a variable function of the state variable. If
the former is used, it is termed an absolute error criterion; if the latter is
used, it is termed a relative error criterion.

Consider the situation in which two state variables are very different
in size. Let yl (t) = I and Y2 (t) = 100. For all practical purposes, it is
usually unnecessary to integrate the derivatives of these state variables to
the same accuracy. If an absolute error criterion is used, this is just what
is done, and the step size may be unnecessarily inhibited. If, however, a
relative error criteria is used, effectively a larger error will be tolerated
for the integration of Y2 (t) and a larger step size will be permitted. In
general, then, it would be best for the user to use relative error control
when large values of state variables (capacitor voltages and inductor cur-
rents) are expected.

Relative error control is programmed with all three integration methods,
but the user may easily modify the relative controls or enter absolute controls
(section 2. 2. 9 of Volume I). If larger numbers are used for the uI or u2
entries, the solution process will be less likely to halve any partictilar solu-
tion step size; smaller numbers would increase the likelihood of reduced
step sizes. If larger numbers are used for the 11 and 12 entries, the solution
process is more likely to increase any particular solution step size; smaller
numbers make increased step sizes less likely. The user should realize that
any increase in solution speed that may result from adjustment of these num-
bers must necessarily come at the expense of integration accuracy.

2.8.5 IMPLICIT METHOD

The integration methods described in subsections 2.8.1, 2.8.2 and
2.8. 3 are all explicit in form and can be used interchangeably within the
mathematical formulation of SCEPTRE without difficulty. If, however, any
implicit method is to be used, whether single step or multistep, an addi-
tional computational step is necessary.
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2. 8. 5. 1 Basic Implicit Format

A generalized form of all implicit integration methods can be written
as P p

y(n+1) = I aI Y(n-i) + h I b i'(n-i) (74)

1=0 i=-1

where Y is the vector of system state variables, Y" is the vector of state
variable derivatives, n is the step number, h is the step size and the ai,
b are suitably chosen constants. Multistep methods are introduced If
P> o. The simplest derivative form of equation (74) is

Y(n+l) = Y(n) + h Y(n+l)

which is commonly referred to as the implicit or backward Euler technique.
If an mth order system of differential equations is to be solved by this meth-
od, the following generalized matrix equation will result:

1 -hg ay (Y1,...Ym, t) . . . -hg 6Y- -(Y1,•.. .Ym, t) AY k

hg M (Yl,...Ym,t) . . . 1-hg ( m (Y1...Ym, t) AY k
6y 6Ym

1 m

-F 1 (Y1,..Ym, 0 (75)

-Fro(Y1,. Ym, t)

The iteration implied in equation (75) is carried out to convergence at each
time step. The k superscripts here indicate the kth approximation to the
final value at convergence at each step, g is a constant that depends on the
order of Integration, and Fi is a function of the ith differential equation,
the step size and past values of the mth state variable. Sparse matrix tech-
niques will be applied to the operation implied by equation (75) when large
problems are encountered.
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2.8.5.2 TheJacobian

The Y, terms in equation (75) are readily available from the basic
program formulation; but the general partial derivative term

- I i 5 1i, - -

is not. To determine what is real h, needed, it is desirable to frame the:I
entire derivation of the sumbolic Jacobian in terms of the general matrix
equation

AY + BU + NU (76)

Since the desired quantities are the generalI ~Y.
3

it can be seen from partial differentiation of equation (76) that these are

contained in the matrix A. Hence the convenience of the general notation
given in equation (76).

What now follows is the construction in symbolic form of the general ma-
trix A in terms of the mathematical formulation that was derived in sub-
section 2. 3. Begin with

*T TTTC4 4V 4 =I 4 B1 4
T 1+B 2 4  I+B I+BTJ (5)

444 4 4 1 4 2 34 3 84 8

and i
V 3 = B34 V4 - B3 5 V5 - B3 6 V6 -B 3 7 E7  (4)

Substitute equation (9) and (13) into equation (5) for i

CBT (_BI4 4BITk ) _ (-B24V4 B E

C4 4 V4 = B14  C1 1  1 4 24 - 1 7 R 1 _227 i
TT T8 T3J

B B 1 3 R i B MR (B i4 B2 E
B2 5 R5 5 B3 5 T I3 B 2 5 R5 5 B8 5  +BT B T 84 8 (77)
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Use equations (24), (10) (23) and (15) into equation (4) for

T T

33 3 + 36 (B36T 13 +B (7)

-B 34V4 B3 5 M 1 B2 G2 2 (B2 4 V4 + B 2 7 ET) 7 B 3 5  13 B 8 I
T I

B3c (L6 3 + L6 6 B3 6 ) 13 - B3 6 L6 6 BG6 J 8  1337 E7  i

Equation (74) can be manipulated to yield I
(C 4 4 + B1 4 T CB 1 4  T C B B T M 1(B24 V4

44 14 11 1 4 -B 1 4  C1 1  17 7 24 RM4B

-B7E-B5R5B 5TI5B5J)
SB25 55 35 3 - 25 8 8

T T

+B 3 4  13 +B84 T J8 (77')

Equation (78) yields jT
IL 3 3 + L 3 6 B 3 6  +B B3 6 L 6 3 1 B33 6 L 6 6 B 3 6T 1 3 (78')

-B 3 4 V4 - B35MG -B 2 5 T G2 2 B2 4 V4 -B2 5T G22B27 + B35TI3 +

B8 5 "J 8 ) - B3 7 E7 - L 3 6 B8 6 J 8 - B3 6 L6 6 B8 6
I J 8  I
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If only the coefficients of V4 , 13, V4 and 13 (the state variables
and the state variable derivatives) are retained, equations (77') and (78')
become considerably simplified and can be written in matrix notation as

lM o (79)

(B35MG- B25
T G22 B24 -B 24) (-B 3 5MG B 54R B 4  B3  2  IB5 55 B) V4 g

T -1

where Mc =C4+ BIT C1 B1 4  I

anML +L B AB ~ B

L363 3 3 366636

(-B M L  - B3 (B B B36L63B

The matrix appearing on the right side of equation (79) is now in a form
corresponding to the first term on the right side of equation (7G). Tis
matrix is the symbolic form of the general A matrix that is needed to use

implicit integration (Ref. 8, 9) with the basic program formulation.
Another method is available to construct the Jacobian that is based

on a numerical rather than a symbolic approach. Each time that the Ja-
cobian is to be reevaluated, mn calls are made to SIMUL 8 to compute

Yi : (Y1'-.... Y'm,t)

Approximations to the desired partials are then obtained by

1 (80)
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Section III

SYSTEM OPERATION

3.1 INTRODUCTION

The SCEPTRE System is a Fortran IV computer program written for
the IBM 7090/94 Data Processing System. It consists of two major phases.
The first, called the Program Generator, creates (on magnetic tape) another
FORTRAN IV computer program containing circuit equations for electrical
networks. SCEPTRE does this automatically, using the input data describing
the circuit to be analyzed. Both d-c steady-state and transient equations for
non-linear circuits can be generated. The second phase, the Circuit Solution
Executive, computes the circuit response by solving these equations generated
in the FORTRAN IV program.

Operation of the SCEPTRE System depends upon the monitor system
-- IBSYS--which controls its execution on the IBM 7090/94. Under control
of IBSYS, SCEPTRE executes in two phases as separate job steps that are
loaded and executed sequentially. Prior to loading, however, the monitor
system performs any required FORTRAN compilation. Programs to be com-
piled do not have to reside on the standard input tape upon which the input
data are stored. Instead, the system can be instructed, via system control
cards, to compile and load programs from an alternate input tape. SCEPTRE
uses this feature of IBSYS as a means of linking its two job steps. This
is illustrated in the System Flow Diagram, figure 10.

3.2 PROGRAM GENERATOR

The Program Generator is an executive program that controls the in-
putting of circuit description data, generation of a FORTRAN IV subprogram
for calculating circuit response, generation of circuit parameter data, stor-
age of circuit models on library tapes, restart of discontinued runs, and re-
outputting of computed results. Each of these six program tasks as well as
the Program Generator (EXEC1) are described in the flow diagrams, figures
11 through 16.

3.2.1 CIRCUIT DESCRIPTION PROCESSOR

The SCEPTRE circuit description language is used to describe elec-
trical networks. This application-oriented language is powerful, easy to
learn and use, and nearly format free. With it, circuits composed of funda-
mental circuit elements and prestored circuit models can be described. The
types of fundamental electrical characteristics allowed are resistance.
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capacitance, inductance, current and voltage sources, and mutual inductance.
Using the same components and circuit description langauge, equivalent cir-
cuit models of devices such as transistors and diodes can be described and
stored on magnetic tape for future use. When a stored model is referenced
in a circuit description, it is located on the specified library tape and its
elements appropriately substituted into the circuit being described.

Often, when a model is called out in describing a circuit, the desired
parameter values are different from those originally specified. Rather than
permanently change the model stored on tape, the SCEPTRE circuit descrip-
tion language allows n 'ndel parameter values to be changed when model ele-
ment substitution takes place.

3.2.2 MODEL EDITOR

Using the SCEPTRE circuit description language, circuit models con-
structed by the user can be stored on a model library tape by the Model
Editor program. One permanent library tape and one temporary library tape
are provided for storing models. Circuit models may be any arbitrary n-
terminal configuration of the allowed fundamental circuit elements. Any
model so described can be stored on either library tape using the Model Edi-
tor program.

3.2.3 CIRCUIT EQUATION GENERATOR

After the description of the circuit to be analyzed has been reconstructed
in memory by the Circuit Description Processor, the FORTRAN IV sub-
program called SIMUL8 is created. It contains either d-c steady-state equa-
tions, transient solution equations, or both, depending on the type of analysis
requested by the user. These equations are based on the formulation pre-
sented in Section II of this report. The SIMUL8 program is written on mag-
netic tape (PROGRAM SAVE TAPE) and stored until the second phase of
SCEPTRE operaion, when it will be compiled and executed. The manner in
which the circuit ecquations are written provides a very efficient computation
of the circuit response during execution, thus allowing the response of a
large circuit to be calculated rapidly.

3.2.4 DATA GENERATOR AND RERUN PROCESSOR

Essentially the SIMUL8 program contains only the circuit equations for
the network under investigation. The parameter or component values of tihe
network are stored separately as input data to the SIMUL8 program. The
Data Generator program organizes and stores the circuit data on the PRO-
GRAM SAVE TAPE.
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Once a circuit has been described to SCEPTRE, multiple or repeated
circuit solutions can be run by changing parameter values between runs.
The circuit description language is used to specify the number of repeated
runs, each known as a rerun, and the changes in parameter values desired
for each rerun. The Rerun Processor interprets and processes this informa-
tion. The Data Generator then creates and stores one block of circuit d.ta
for each rerun on the PROGRAM SAVE TAPE. Since only parameter values
are changed between reruns (i. e.. no topological changes). the SIMUL8 pro-
gram containing the original circuit equations is simply re-executed during
the solution phase using the data created for each rerun.

3.2.5 CONTINUE PROCESSOR

The Continue Processor allows previously terminated transient solution
runs to be restarted and continued. In addition, it is necessary that the
PROGRAM SAVE TAPE from the original transient solution run be available.
This tape contains, in addition to the SIMUL8 program, all of the parameLer
values and data required to continue the transient solution. The Continue
Processor also allows certain run control parameters to be changed and used
for the continuation of the original transient run.

3.2.6 RE-OUTPUT PROCESSOR

The SCEPTRE user may wish to re-create both the printed and plotted
outputs for a particular transient analysis run. This can be done, providing
the OUTPUT SAVE TAPE is saved from the original solution run.by using the
Re-Output Processor. Several changes in the output can be made during a
Re-Output run. For example.

* OLttput labels can be changed

* New quantities can be plotted

* The order in which output quantities are printed out and plotted
can be changed

* Printing and plotting of output quantities can be suppressed.

3.3 SOLUTION EXECUTIVE

In the second phase of SCEPTRE operation, the FORTRAN IV subpro-
gram SIMUL8 is compiled and executed. During the loading of this job step.
the IBSYS system is instructed to read the SINIUL8 prog-ram from the PRO-
GRAM SAVE TAPE, compile it, and then load it along with the other pro-
grams being loaded.
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Fxecution commences, as shown in figure 16, with the reading of the
I'Lin control parameters from the PROGRAM SAVE TAPE. Then the SIMUL8
program is called. It reads the remaining circuit parameter values stored
onl the PROGRAM SAVE TAPE and then enters the circuit solution equations.
The circuit eqaiations are solved, thus computing the state-variable deriva-
t yes. Calling the selected numerical integration routine then :,roduces new
values of the state variables for the next time step. At the conclusion of each
successful integration step, the requested output quantities are buffered in
memory. When the buffer is full, it is written on the OUTPUT SAVE TAPE
in FORTRAN IV binary format. After the circuit solution is complete, con-
trol is returned to the Solution Executive Program, whereupon the contents
of the OUTPUT SAVE TAPE (computed results) are re-formatted in lists and
graphs and stored on the SYSTEM OUTPUT TAPE for peripheral processing.

If any reruns were requested, control is tien returned to SIMUL8 for
re-execution of the solution phase and subsequent outputting. This re-
cycling is continued until all circuit reruns have been processed.

At the conclusion of each transient solution, the critical parameter
values and data are stored on the PROGRAM SAVE TAPE. Thus, if the tape
is saved at the end of the run, the soluti a can be continued at some future
time. Use of the Continue Processor allows previously terminated solution
runs to be restarted and continued with changes in the run control parameters.

Transient solution runs may be terminated or simply saved by the com-
puter operator by depressing sense switch No. 6 on the 7090/94 console.
Using this feature, a PROGRAM SAVE TAPE could, for example, be gener-
ated every 15 minutes on long running transient solutions, eliminating the
need for repeating previous calculations in the event of an abnormal run
termination.

If, at the conclusion of a transient analysis run, the OUTPUT SAVE
TAPE is saved, the Re-Output Processor may be used to reproduce lists and
graphs of any of the circuit quantities originally requested for output. In
addition, graphs of variables plotted against variables other than time which
may not have been requested originally can be conveniently produced.
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Appendix I

B MATRIX DERIVATION

The derivation of the general B matrix that expresses link voltages in
terms of tree branch voltages and tree branch currents in tirms of link
currents is as follows:

Two fundamental incidence matrices that arise from network topology
theory will be called the Q and T matrices here. The fundamental cut set
matrix, Q = [qij] is a matrix containing (n-l) rows and L columns for a net-
work containing n nodes and b elements, where:

q ij +1 if the ith fundamental cut set direction coincides with the refer-
ence direction of the jth element

:i -1 if the ith fundamental cut set direction is in opposition to the
reference direction of the ith element

qij= 0 if the ith fundamental cut set does not include the jth element

If the elements are properly ordered, it is always true that

Q = [- BT U]

where the columns of the unit matrix U correspond to the tree branch ele-
ments.

The fundamental circuit matrix, T = [tii ] is a matrix containing in
rows and b columns for a network containing m independent loops and b ele-
ments, where:

t. +1 if the ith independent loop direction coincides with the refer-
ence direction of the jth element

tij =-1 if the ith independent loop direction opposes (ho' 'efer-
ence direction of the jth element

t ... 0 if the ith independent loop does not include the jth element

55



If the elements are properly ordtred, it is always true that

T = [U B]

where the columns of the unit matrix U correspond to the network links.

Since it is always true that

Qib=O. TVb O

direct substitution yields

BIL 0 F U B VLl

BTI I ITBJ n L LVTBJ

Expansion of these relations gets

ITB B I IL and VL -B VTB

so that the tree branch currents may be expressed in terms of the link cur-
rents and the link voltages may be expressed in terms of thc- tree branch
voltages through the B matrix.
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Appendix TJ

DIODE REPRESENTATION IN THE INITIAL-CONDITIONS PROGRAM

The current in a diode or transistor junction at a point on its voltage vs.
current (V/I) characteristic may be separated into two components as
J = GjVjtQ. Consider the typical diode curve below.

I

CURRENT, J

I ,4

IVOLTAGE, E, V

Angle a 1  angle a 2 is enclosed by the slope of the diode characteristic
at any point and the horizontal at that point. E' is an offset voltage that marks
the intersection of a continuation of the slope Gj and the line J 0.

From the figure:

tan a 1 = tan a 2 = Gj Vj E'

or J G. Vi - G E

or J G', V.! Q if Q is defined as -GjE'
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Appendix IU

BASTC NEWTON-RAPHSON METHOD

Given a single algebraic or transcendental equation of the form F(x) 0,
that is single valued and differentiable in the domain of interest, a Newton-
Raphson procedure can be constructed using

F(x) + aF(x) Lx = 0
dx

a F(x0 )
An initial x - x0 may be assumed and F(x0 ), 8 determined.

-F(x O)

Then Ax =- and x, x0 -Ax

ax

The procedure is repetitive until
F(xnl F F(x, ) l< Z

where z is some specified convergence criteria. When this last relation is
satisfied, the process is said to have converged. Extension to systems of
equations adds no complications.

4
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Appendix IV

EQUIVALENCE OF EQUATIONS (44) AND (44')

To show the equivalence of equations (44) and x (44'). it will be
sufficient to show that I

VE F1 (V9, V2, V5)- -B97 E7
V [Z -1327 E7

V5  F 3 (V9 , V2 , V 5 )  B95 B05'F Q9 + L85'J8

or j
V9  B 9 7 E7  F 1 (V 9. V2 , V5 )

V 2  [z] -B 2 7 E7  F 2 (V 9 , V 2 , V5 )

V5  39 5T+ B0 5 T0  Q9 + B 5 j 8  F3 (V 9 , V2 , V5 )j

or

V9  -B97 E7  F, (V9 , V2 . V5 )

[Z] V2  B27 E7  F 2 V9 V2, V5 )

T T

The left side of the atbove equation expands into

V9 +B 95 V5  1 i

V2 + B2 5 V 5

131195 B05Ta I G9 9 V9 - B2 5 TG2 2 V2  G55V 5 j
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£ and the right side, upon subttitu'hi) Of k-q)a')ions (37) t'hr gh (3) he-cni s

I V

2 25
jT T

5 + 5 Oa]G9g9 UG. 5 5 V
t

which shows the equivaleaci

3
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