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- FOREWORD

The work described in this report was carried put under the
. sponsorship of the Deputy for Surveillance and Control Systems, Project
i 4510, by The MITRE Corporation, Box 208, Bedford, Massachusetts
! 01730 under Contract No. F19628-71-C-0002.
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%- . SECTION I

% INTRODUCTION
PURPOSE

The theory and applications of Kalman filtering have now been
under development for over a decade. Kalman filtering is currently
being used operationally in numerous applications such as satellite

tracking systems, aircraft navigational systems, and aircraft tracking
systems.

A LAMEYCL

Many individuals are aware of Xalman filtering and are interested
in learning the salient features of the theory. In response, numerous
textbooks and articles have been written on the subject. However, few
if any of these treatises have been completely successful in enunci-
ating a simple explanation of Kalman filtering that appeals to the
reader's intuition. With slight exception, the discussions become
immersed in awesome notation and terminology thereby dampening the
reader's enthusiazsm. Consequently, the system manager or project

. engineer must frequently accept an abstruse set of equations vhile

feeling insufficiently qualified to appreciate their significance
or applicability.

The salient features of Kalman filtering are relatively straight-
forward. In spite of the obscure terminology and associated matrix
notation that typically accompanies any discussion of Kalman filtering,
the subject can be presented in a manner that appeals to intuition.

This paper represents such an attempt with emphasis on applications
to real time tracking systems.

SCOPE

Appendix A presents a derivation of the one dimensional Kalman
filter equations. This derivavion comprises the majority of the
elements of the complete Kalman filter except that it is one dimen-
sional and consequently does not require matrix manipulation, and
there are no dynamics associated with the problem. Section II of

this report discusaes the more significant aspects of the Appendix A
material,

PR L SR BT AT T

sppendix B presents a general form of the Kalman mulci-dimensional
dynamic system equations. Each of the equations is discussed with the
terminology of state-space theory being introduced tc familiarize the
reader with the verbiage and notation associated with the multi-
dimensional, dynamic system equations. 1laen, having hopefully
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lesgened the inscrutibility of the general Kalman filter equations,
they are used to formally derive an algorithm for the real time
tracking of aircraft. This algorfthm 1s similsar to that which is
currently used for tracking in the 407L system and which will be used
in the AWACS system. Furthermore it is anticipated t’.at Kalman fil-
ter tracker designs similar to the derived algorithm will be proposed
for the COMBAT GRANDE System. Section III of this report discusses

the more significant aspects of the material that is presented in
Appendix B.

Section IV concludes this report with some qualitative considera-
tions regarding the Kalman technique.
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SECTION Il

ONE DIMENSIGNAL KALMAN F¥ILTER

INTRODUCTION

A one dimensional Kalman filter is derived in Appendix A. This
derivation comprises the majority of the elements of the complete
Kalman filter except that it is one dimensional and consequently
does not require matrix manipulation, and there is no motion asso-~
ciated with the problem. Salient aspects of the Appendix A material
are discussed in this section of the report.

COMBINATION OF ESTIMATES

The Kalman filtering process consists of combining two estimates
of a variable in order to obtain an improved estimate. One of these
estimates is the initial or the current value of the variable and the
other is a measurement datum. The improved estimate is obtained by
updating the initial or current estimate with an appropriate weighting
coefficient and the measurement datum. The weighting coefficient is
chosen so that the improved estimate has a minimum variance; equiva-
lently, the improved estimate has the maximum probability of being
the true value of the parameter being estimated.

For example, suppose we wish to estimate the range of a staticnary
or point target from a radar gite. Let us assume that our_initial pre-
diction or estimate cf the range of the point target is RE. The
variance associated with the range estimate RP is Var R'. Let us
further assume that the variance assoniated with each range measurement
RM of the point target is Var Y, The Ralman filtering process weighs
the variance of the initial or current estimate of range with the
precision or variance associated with the range measurement datum and
optimally combines the two quantities, thereby obtaining an impgroved
estimate of the range of the point target.

As derived in Appendix A, the weighting coefficient a that is
used to optimally combine the initial or current estimate of range
and the measurement rangesdatum RM to obtain an improved minimum
variance range estimate R~ is defined by

Var R?
Var RP + Var RM

(1)
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Var R? is the variance associated with the initial or
current range estimate, and

Var RM is the variance associated with a measured range
datum.

From Appendix A, an improved rangePestimhte RS is obtained from
the initial or current range estimate R*, the measurement datum rM
and the weighting coefficient o in accordance with

33 M0 BT SN s % NGO

RS = RPdoa @ -8 = (@-0)Rf + o™ (2)

Examination of equation (1) reveals that it possesses attractive
attributes. If the variance of the current or predicted range R* is
much larger than the variance of the measured datum R“, the weighting
coefficient a approaches unity. From equation (2) the improved range
estimate R® becomes approximately equivalent to the measured datum
as o approaches unity. This is of course desirable if one has con-
siderably less confidence in the estimate RP than in the measurement
datum. On the other hand, if the variance of the current or predicted -
range RP is much smaller than the variance of the measured datum RM,
the weighting coefficient a approaches zero. From equation (2), the
improved range estimate RS becomes approximately equivalent to the
current or predicted range RF. 1In this gituation, the measured datum

is essentially ignored and the new range estimate is not appreciably
improved.

In addition to optimally combining two independent estimates of a
parameter in order to obtain an improved range estimate, the Kalman
filtering technique provides the user with a real time measure of
confidence in the current estimate. This measure may be used to deter-
mine whether the current estimate is sufficiently accurate or whether
additional measurements should be obtained to improve the estimate.
From Appendix A, the variance of the improved estimate RS is definad by

A T T ST T e

Var RS = (1-a) Var R? 3)

TIARO!

Replacing o in equation (3) with its definition from equation (1), this
expreseion may be rewritten as

M P -
Var Rs - —Vax g Var k M = ¢ Var Rx (4)
Var R + Var R

B
)
1
]
i
4]
2
i
g
§
Ry
3
g
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Analysis of equations (3) and (4) .reveals that they too possess
attractive characteristics. If the variance of the current or pre-
dfcted range RE is much larger than the variance of the measured
datum RM, we have seen that the weighting coefficient o approaches
unity and that the improved range estimate RS becomes anproximately
equivalent to the measurewent datum. From equation (4) we sée that
the corresponding variance of the improved range estimate becomes ,
approximately equivalent to the variance of the measurement datum in

this sitvation. On the other hand, if the variance of the current or

predicted range R® is much smaller than the variance of the measurement

datum, we have seen that o approaches zero, the wea2guvrement datum is.

essentially ignored, and the new range estimate RS is not appreciably’

improved. From equation (3) we see that the variance of the new
estimate approaches Var RP, the variance of the previous estimate for
this situation. In other words, if the measurement data is imprecise,
relative to the predicted range, neither the new range estimate nor,

the veriance of the new range estimate are much improved by the
measurement. '

Table I shows values for the weighting coefficient, the improved

raage estimate and the variance of the improved range estimate for the

above stated conditions.

L]

Table I b

Initial Improved Estimate and Its Variance.

Weighting Improved

Lo 45 kiR

Condition Coefficient gstimate Variance of Improved Estimate
Var Rf >> Var &7 a=1 =t Var B> = Var KT
Var RP << Var RM a=0 Rs = RP Var RS Var RP

- n

RECURSIVE FEATURE OF THE KALMAN FILTER

When another range measurement is obtained, the recursive feature
of the Kalman filter permits the initial smoothed estimate RS to be
further improved based upon the measurement datum R and a different
weighting coefficient. Like the previous smoothed estimate, the
improved smoothed estimate will have minimum variance and hence maxi-
mum probability of representing the true value of the parameter being

estimated. The recursive feature of the Kalman filter will be shown
via an example.
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9 ! .Let us assume that the initial predicted range of a stationary 3
i target is 100.0 NM. The variance associated with the predicted range .
: is assumed to be 1.0 NM. The variance associated with each range
< neasurement RM is assumed to be 0.04 NM. For this example, the measure- 3
' ' ment datum is precise relative to the predicted range; consequently, the ¢
s weizhting coefficient a will approach uaity and the initial smoothed R
7 estimate of the true range will become approxisately equivalent to the {%
1 measured range. 3
3 2
% ‘ JFrom equation (1) and using the subscript 1 to indicate that this E
t | ’ is the initial iteration, the weighting coefficient @y is fg
. 1
Var R, 1.0 |
E ' a, = 5 vl = 0.961 (5) E
;,: ) , Var R1 + Var Rl 1.0 + .04 %
'; Assuming the initial range measurement is three standard deviations %
e away from the predicted range of the stationary target, RM is 103 M. f
A '  The standard deviation of a variable is defined as the square root of g
4 the; variance of the same variable. Then from equation (2), the :
E smoothed estimate of range RS is %
By - : 1 A
E ! ' R
. R5=R%P+a @¥-rP) =100+ .961(103-100) = 102.88 (6) :
E T T T R : I
:, i ‘E
d LB
2 From equation (4), the variance of the smoothed estimate RS, T ?
3 which indicates a confidence value associated with the current smoothed 'g
3 range estimate of 102.88 NM, is E
E . 2
3 Var 5. a, Var K Moo 961(.04) = ,038 (7) ‘ g
4 Ry =9y p = 0.9 | g
% As expected, since the measurement datum is precise relative to the §
‘ predicted range, the variance associated with the smoothed estimate 3

is reduced to a value slightly below that of the measurement datum
after one measurement.

As a result of the first iteration, we have calculated a; and in

turn obtained an improved estimate of range namely R S and an asso-

ciated confidence factor in R;" namely Var Rls. When the next measure-

ment ig obtained, an analogous situation to the previous iteration

exists except that we have a better estimate of predicted range namely

Rls and a better estimate of the variance of the predicted range

3 namely Var Rls. Therefore, the new weighting coefficient a, becones -

Var Rls .038

a, = = = 0.487 (8) .

Var Rls + Var RzM .038 + .04
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Similarly, making use of R 1n place of Rl in equation (6), the next
smoothed egtimate of rangelR

kS

. st = Rls + aZ(RZM - Rls) 9) | :

g

2 Finally, making the same substitutions in equation (7), the variance ' %
3 of RZS is E
S

v s _ M _ |

ar R2 =a, Var R2 = ,487(.04) = ,019 (10) g

¢ Comparing equations (&) through (7) with equations (8) through %
3 (10), it is apparent that a recursive procedure is developing. Each )
E time another range measurement is available, a new and smaller A
% weighting coefficient o is calculated. It is applied in conjunction ﬁ
5, with the most recent estimate and the measurement datum to obtain a é
¢ better estimate of the true value of the parameter being measured. 3
4 Thereafter a confidence factor in the most recent estimate is cal- §
< culated. This confidence is expressed in terms of the variance of 4
3 the estimate and may be made as small as desired by processing addi- %
3 - tional measurement data. Precise measurement data cause the improved %
5 estimate to rapidly converge to the true value of the parameter beirg g
3 estimated; stated alternatively, precise measurement data result in a \ kS
3 - small variance of tha estimate which implies that considerable con- ' §
. fidence may be associated with the improved estimate. ‘ §
3 #
% ; The variance of the range estimate that is calculated in any %
o iteration of the recursive formulas must be stored to compute the i
§ weighting coefficient for the following iteration. Similarly, the g
most recently calculated smoothed estimate of range must be stored E

to compute the following range estimate. Beyond storing these two é

) parameters plus the variance associated with each range measurement, Co

1 no past data are required to be saved. §

The general recursive formulas for obtaining successive values
of a, RS and Var RS that may be obtained from examination of equa-
tions (5) through (10) are

(a) Calculate the weighting coefficient

Var RN—ls
Var RN_,S + Var RNM

oy =

4
A
3
3
£
b
:‘1
¥
a
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(b) Use the weighting coefficient to obtain an improved
range estimate

S s M S
Ry =Ryq + Ry - Ryy)

(c) Calculate the variance of the improved range estimate

Var RNS = o Var RNM

Table II shows values for the weighting coefficient a and for the
variance of successive range estimates based upon four iterations of
the general recursive equations, the first two iterations of which
were completed in the example. It will be noted from.an examination
of the recursive formulas thaiv values fcr o and Var R” may be pre-
calculated for any iteration before obtaining any measurements given
only the variance of both the initial predicted range and tke measure-
ment data. It is not necessary to use the general recursive formula
(b) in the process.

Table II

Values for o and Var RS

Iteration a _V:gg;lg_s_
1 .961 .038
2 .487 .019
3 .322 .013
4 .245 .010
INITTALIZATION

In the example, a priori numerical values were assigned to three
parameters to initialize the Kalman filtering procedure. These para-
meters were the predicted value of range or R* = 100, the variance of
the predicted range cr Var RP = 1.0 and the variance of successive
range measurements or Var RM = 0.04 NM. Thereafter the calculation

skl Y 42

e

a3 (U0 Sl 2

ook il KILADIANALA,

Ty

YIS 2 T B A 1 £ DA 0 NPT AT R s Earia PV B P IR ADIE D




T N S A T S R T TR T T T T PR R P RO A i RO F T I X A e WS B e I o
157 A ———
23

of each new estimate of the true value of range was identical to the
previous iteration with a new weighting coefficient being calculated

that considered the new measurement datum and all previous estimates
of range.

In tyrical applications, a priori krowledge of the range ¢Z a
stationary target is inferior to that which is derived from a single
range measuremei.t datum. Consequently it would be desirable to use
the initial range measurement datum as the predicted range and to
employ successive measurement data to obtain improved estimates of
range. Using this teciinique, the variance of the predi-ted range would
be equivaleat to the variance of the initial measurement datum. For

this situaticn, the one dimensional Kalman recursive formulas may be
initialized by setting

al = 1.0
S M
Ry = &
S M
Var Rl = Var Rl

As the variance associated with each range measurement is assumed
to be constant, successive weighting coefficients and the variances
of successive range estimates may be precalculated from the general
recurgive formulas before obtaining any measurements as follows

S M
. - Var R1 _ Var R1 =.l
2 S M by 2
Var R1 4+ Var R2 2Var Rl
S M M
Var R2 ay Var R2 1/2 Var R1
Var st 1/2 Var R1M L
a, = = - =
3 Var R s + Var R M 3/2 Var R ¥ 3
2 3 1
S M M
Var R3 = a, Var R3 1/3 Var Rl

The sequence of weighting factors and the variances of successive
range estimates that will result frgm using the initial range measure-
ment datum as the predicted range R* and frem employing successive

measurement data to obtain {mproved estimates of range are shown in
Table III.
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Table III ‘ \ 3

Weighting Coefficients and Variances of Panee Estimates

Sl
<3 S oty ST LSS

Iteration a V_ai_lf_
1 1.0 Var Rln f
2 172 Var RlM/Z
3 1/3 var R */3 “
4 1/4 Var R."/4
N 1/N Var RlM/N S

Table III shows that the estimated value of range RS becomes more and f
more reliable as successive measuremant data are obtained and processed.
Any desired degree of reliability may be attained by preccessing addi-
tional measurement data. This is of course a well known result from
elementary statistics.

ket fo.

CORRELATION

In estimating the target's range, the general recursive formulas
will employ measurement data that should not be associated with the
target unless a maximum deviation between the predicted and the
measured rarge is imposed. In the example where a priori knowledge
was avajlable, the predicted range of the target was assumed to be
100 miles, the standard deviation of the predicted range was assumed
to be 1.0 NM and the standard deviation of each measurement datum was
assumed to be 0.2 NM. Specifying that the standard deviation of the
measrvement data is 0.2 NM indicates that measurement data associated -
with the target will generally be within three standard deviations or
0.6 N\M of the true range of the target. Likewise, specification that
the standard deviation of the prediction error is 1.0 NM indicates
that true target range is within approximately three standard devia-
tions or 3 NM of the predicted range.
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Making use of these parameters and recalling that the variance
of a variable is the square cf the standard deviation of the variable,
an optimum choice of the maximum deviation between a measurement datum -
and the predicted range may be constructed. Since the variance of the
difference between the predicted and the measured range is the sum of
the variances of the pradicted and measured ranges, an optimum filter
will correlate an initial measurement datum that satisfies

| - RF| < 3(var &' + var RD)® = 3(1.04)* au

Successive measurement data must satisfy the following inequality in
order to be processed

IRNM - RNsllg 3(var RNH + Var RNS)li (12)

As Var RNS decreases with successive iterations as shown in Tables II
and III, the filter employs decreasing correlation bounds as a more
and more reliable estimate of the target's range is obtained.
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SECTIUN III

MULTI-DIMENSIONAL KALMAN FILTER

INTRODUCTION

A grneral form of Kalman's multi-dimensional, dynamic system
equations is presented in Appendix B. The concepts of state variable
or vector, transition matrix, measurement matrix, covariance matrix
and other notation of state-space theory are introduced to familiarize
the reader with the terminology associated with the multi-dimensional,
dynamic system equations. Analogies between the general Kalman equs-
tions and the one dimensional non-dynamic filter are presented.

This section of the report presents the salient aspects of the
materfal that is presented in Appendix B. Analogies between the
multi~dimensional tracking filter and the one dimensional filter are
indicated.

SYSTEM MODELING

Kalman filtering theory as applied to dynamic systems requires
the definition of a mathematical model describing the physical
phenomena associated with the estimation problem. Procedures used in
this process are rather subjective in nature; therefore, some general
considerations and guidelines relative to defining a model that is
applicable to real time Kalman tracking systems will be given. The
tracking systems to be considered use sensors which provide measure-
ments of range and azimuth, The aircraft to be tracked are as3umed
to be capable of maneuvering.

The mathematical model describing the physical process associated
with the estimation problem should express the state variables at one
time as a function of the state variables at a previous time, State
variables may be defined as the minimum set of variables that provides
full knowledge of the system's behavior.
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; A model describing the position, speed and acceleration state
: variables for an aircraft may be expressed as

F ‘ RS =S+ i + 17522

z RF = &5+ 2°Sa

: .!.{p _ 5°S (13)
E oF =5+ 35+ iS22

% R

E .‘l’P - ‘I'.S

where the superscript P denotes the predicted state variables, where
the superacript S denotes the smoothed gtate variables from the pre-
vious iteration and where A is the time since the last smoothing.

Since computer storage and particularly processing requirements
increase alarmingly with the number of state variables, designers are
generzlly motivated to seek simplifications to the modeling equatiomns
that will result in minimal degradation in the estimation of the major
state variables. Concequently, Kalman aircraft tracking filters
usually employ a constant apeed, straight line model of aircraft
motion. Such a model results in a filter that is incapable of track-
ing maneuvering aircraft; therefore the filter,as derived from Kal-
man's equations with a constant velocity straight line model of air-
craft motion, is augmented by a manesuver response logic. The maneuver

regponse logic will be discussed in a subsequent section cf this
report.

The coordinate cystem that is used to define the model of aircraft
motion is another factor to Le considered in applying Xaiman filter
theory. Selection of an inappropriate .oordinate system typically
results in a complex algorithm being derived from the Kalmen equa-
tions which requires inordinate storage and processing requirements.
Furthermore and as noted in Appendix B, the use of a non-judicious

coordinate systen may be incompatibie with tha hypothesized model of
motion.
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Equation (14) may be written in matrix notation as

Equation (l4a) is called the predicted state variable equation with

the dynamics of the system being modeled by the 4 x 4 matrix which is
called the transition matrix.

employing a suitable coordinate system, another teciinique is commonly
employed to further reduce the processing and storage requirements for
thr derived algorithm,
iato several groups; relative to equations (14) or (l4a), the state
variables X and X are treated independently of those for Y and Y.
an X component Kalman filter tracking algorithm is derived with the use
of the X component model of motion as is shown in Appendix B. An
independent but analogous Y component algorithm is similarly derived.
This technique results in reducing the 4 » 4 matrix representation of

the hypothesized model of aircraft motion to the following 2 x 2
formulation.

For these reasons the model of aircraft motion that is generally
used in deriving a Kalman tracking algorithm assumes that the aircraft

is not accelerating, employs a rectilinear coordinate system and may
be expressed by

s us (14)

rel T 7 [.s
X 1 a o ol lx
£l o 1 o o] |8
e s (148)
¥l lo o 1 allvy
La'r? o o o 1] 1%

In addition to decreasing the number of state variables and

This technique partitions the state variables

Then,

2| s as
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This legerdemain results In an identical matrix equation for the
Y state variables. Unccupling X and Y in formulating the predicted
state varieble equation yields independent X and Y tracking algorithms
v that must be solved each iteration. However, the processing and 3
storage requirements for the two algorithms are less than those which P
would result from ccupling the X and Y state variables because the
cross correlations between groups such as XY, XY and XY are ignored.
Another useful aspect of uncoupling the X and Y state variables is
that it will only be necessary to discuss the tracking algorithm in
terms of the X state variables. Replacing X by Y yields the anzlogous
Y component discussion.

A e LA L S AR e Ry

! KALMAN TRACKING FILTER /

Kalman filtering as applied to aircraft tracking consists of com-
bining two estimates of a track's parameters in order to obtain en
4 improved estimate. One of these estimates is the predicted track
2, parameters and the other is a measurement datum.

In the one dimensional filter example that was presented in
Section I, three quantities were required to initialize the recursive
process. They were the expected or predicted value of range prior to
any measurements, the variance ci the predicted range estimate and
the variance of the measurement datum. Similarly, in the multi-
dimensional tracking filter, analogous quantities are required for
initialization.

TR N TR RS R

g

The quantities that are analogous to the expected value of range
are the two components of the state wector, namely XS and X5. Cor-
responding to the variance of the gredicted range are the elements of
the covariance matrix namely Var X°, Cov XX% and Var %°. These ele-
ments of the covariance matrix are defined in Appendix B, Finally,
analogous to the variance of the one dimensional range measurement
datum are the cartesian coordinate variances derived from the measure-
ment datum (R, ¢). The Kalman tracking algorithm weighs the variance
of the initial - current estimate of the track's parameters with the
degree of prec: 7in or variance of the measurement datum and optimally
combines these .0 quantities to obtain an improved estimate of the
track's parameters.

it et IR L b A8

ﬁ

Let us assume that the coordinates of an aircraft derivsd from two
scang of a radar are used to initiate a track. The initial operator entry
of the aircraft's positionjat time o is Y ’ Yo and the following opera-
tor entry at time t; is X; , Y3 where Adxq tne time between the two
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operator eafries ngmely ty-t,. The initial smoothed state
variables X° and X°, whic%

correspond to the initial track position
and speed are defined by

m m
X (Xl - Xo )/a

Equations (16) position the track associated with the aircraft
being tracked at the coordinates of the later measurement datum and

estimate the aircraft's speed from the positions of the two measure-~
ment data and thz time interval between the data.

Like the one dimensional exampla of Appendix A, the Kalman track-
ing algorithwm provides a real time measure of confidence in the cur-
rent estimate of the aircraft's state variables. Siace equations (16)
caleculate the initial estimates of the track's parameters from the
two measurement data used in the initiation process, one's confidence
in the initial estimates should be based upon the precision or variance
of the same meagurement data. As derived in Appendix B, the initial

values of the covariance elements associated with the state variables
X and X are defined by

Var XS = Var X®
Var is = 2 Var Xm/A2
Cov Xis = Var Xm/A

Analysis of equations (17) reveals that they possess attractive
characteristics. The first equation states that the variance of the
initial estimate of the track's X position is equal to the variance
of the X component of the measurement datum that is used in the
initiation process. The sccond equation indicates that the variance
of the jinitial estimate of the track's X cormponent of velocity is
determined from the variances of both measurement data used in the
initiation proceas as well as the time interval betwsen the data.

If the variance of the measurement data should increase or if the

tiwe separation between the data used in the initiation process should
decrease, the variance associated with the initial speed estimate will
increase; i.e., the reliability of the estimate decreases. The third
equation is _a measure of the degree of corrclation between the stzre
variables XS and X5. If these variables were completelg inde ndent
and hence uncorrelated, Cov XX° would equal zero. As X° and are

calculated from the same measurement data they are dependent and
their covariance is not zevo.

16
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Equation (17) is a measure of confidence in the initial egtimate
of the track's state variables in terms oi the X component variance
of the measurement data that are used in the initiation process. It
is therefore of interest to determine how the value of Var X® is
obtained from measurement data which provide range and azimuth infor-
mation. From Appendix B, Var X™ is obtained from the relationship

Var X® = Var R Sia%y + R Var O Cos2y (18)

where (R, y) are the coordinates oi the measurement datum and where

Var R and Var @ are based upon a priori knowledge of the sensor's
characteristics.

For measurement data with an azimuth of ¢ = 90 degrees, equation
(18) expresses the fact that the variance of the X component of the
measurement datum equals the variance of range. For measurement data
with an azimuth of ¢ = 0 degrees, equation (18) states that the X
component variance of the measurement datum equals the product of
range squared times the azimuth variance. These results, as well as
the results for intermediate angles, are consistent with intuition.

In the one dimensional eximple of Section I, the smoothed vari-
ance from one iteration was used as the predicted variance for the
following iteration., This technique was satisfactory since there
were no dynamics associated with the problem and consequently the

variance associated with a smoothed estimate was constant from one
jceration to the next.

For the two dimensional tracking example, the analogous smoothed
covariance matrix associated with the initiation process may not be
used in the following iteration as the reliability of the positional
estimate decreases as the time between iterations increases. This
occurs because the error in velocity propagates into a larger posi-
tional error as the time interval between iterations increases. To
compensate for the decreased reliability of the positional estimate
as the time between iterations increases, the initial smoothed covar-
iance elements must be extrapolated to the time of the following
iteration. From Appendix B, the predicted covariance elements are
calculated from the smoothed covariance elements associated with the
initiation process and the time interval A between the initial and the
current iteration accordirg to the relationships

Var XP = Var XS + 2A Cov Xﬁs + A2 Var is
Var iP = Var is (19)

Cov XiP = Cov Xﬁs + A Var is

17
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The superscript P indicates the predicted covariance elements whereas *
the superscript S denotes the smoothed covariance elements associated V3
with the initiation process.

S g

Correlation

LACEPS 2L A TN M MR- A

In most tracking logics, radar measurement data are paired with
: tracks via gross distance checks followed by more precise correlation
: checks. The gross distance check associates all returns that lie

3 within a given area centered at the predicted track position with

that track. This check is intended to eliminate further attempts :
at correlation of data with tracks which repiesent aircraft that could 5
not possibly have produced the data. More exacting correlation tests 4
are then applied to the measurement data and data that pass these 0
: tests are defined as correlated data. :

AR IR IR ot 3

) Non-maneuver and maneuver gates or small and large search areas
f are defined. Presence of a measurement datum within the non-maneuver
! gate centered at the predicted track position constitutes a non- 3
f maneuver correlation. Lack of a measurement datum within the non- P
: maneuver gate and presence of a datum within the maneuver gate that '
! is centered at or behind the predicted track position constitutes
: declaration of an aircraft maneuver. Non-maneuver and maneuver gates A
are typically circles, rectangles or annular wedges.

These concepts are applicable both to the classical aircraft
tracking algorithms that are used in the SAGE and the BUIC systems
and the more recent Kalman filter algorithms which are used in the Y
407L and the AWACS systems. The fundamental distinction between the
Kalman and the classical correlation techniques is that the gate sizes
are dynamically calculated and vary from one iteration to the next in
a Kalman filter. These gate sizes are calculated based upon the variance
of the predicted track position and the variance cf the measurement
datum.

Non-Maneuver Gates

Non-maneuver gates must be of sufficient size to provide a high
probability of correlating measurement data with a track for non- !
maneuvering aircraft. Therefore with a Kalman tracker, a non-maneuver
gate correlation of a measurement datum with a track occurs in the X . 3
dimension when the measurement datum falls within the track's non-
maneuver correlation gates as defined by .

%
IR - xF] < RWar XX +Var XD = ¢ (20)

AR

18

PPNy, e g SoNe L A L oyl itz g [




T T 7 TR ety + 11 - v AR PN uep v . 2 e fy
AR A i e o - T U AR RINEATINLT Dol ol ey S ST mﬁmﬁwmmwmr DI T
3 - . ’ Ve . A

9 - . )

i ! '

1

XM is the cartesian coordinate of the measurement datum and x? is the
predicted X coordinete of the track's position. The term Var xP , .
which is defined by equation (19), represents the variance associated
with the predicted track position. Var XM which is defined by equa-
tion (18), represents the variance in the x component of the measure-
ment datum. The variance of the difference between the two terms on
the left hand side of equation (20), namely the measured and' the pre-
dicted track positions, is the sum of the variance of the predicted
track position and that of the measured track position or Var XP plus
Var X'. Equation (20), therefore, indicates that a méasurement datum
within K standard deviations of the difference betyzen the measured
and the predicted track positions will correlate with the track. K
typically assumes a value of approximately 3.0.

WY o T A R T T T o o W e T T
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~ Maneuver Gates

Maneuver gates must be of sufficient size to provide a high iprob-
ability of correlating measurement data with a track when an aircraft
executes a maneuver. Therefore, with a Kalman tracker, £ maneuver
gate correlation of a measurement datum with a track in the X dimen-
sion occurs when a non-maneuver correlation as defined by equation (20)
has not occurred and when a measurement datum falls within the trdck's'
maneuver gates as defined by

M- 55| < k(c+ar¥2+vn) ’

The rationale for the maneuver gate check as defined by equation
(21) is to impose an upper bound on the X component of a measurement
datum that will be permit:ed to correlate with the track, assuming
that the corresponding aircraft has linearly accelerated or executed
a turn during the intervening time inteérval A. X" is the smoothed
track position from the initial or last iteration; note that %P is
not used in equation (21) as it was in equation (20) since the use
of the predicted cartesian coordinate would tacitly assume straight
line constant speed aircraft motion over the irterval from the time
of the initial or last track smoothing ‘to the curremt cprrelation
time. is the non-maneuver gate tolerance that was used in equa-
tion (20). A is the time interval between the current correlation ‘!
time and the time of the last track smoothing. The term A A/2 pro-
vides for the possibility that the aircraft hus linearly accelerated
since the time of thi last track smoothing. A typical value for A i
would be 13.3 NM/min“ corresponding to a .7g linear acceleration..
The term VA provides for the possibility that the aircraft has turned
since the time of the last track smoothing. Providing for a worst
case situation, it is assumed that the aircraft has’turned almost
instantaneously at the time of last smoothing and, proceeded with a
speed of V that would typically be equivalent to the current track
gpeed plus approximately 3.0 times the current standard deviation of
the track’s speed. 19
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Track Smoothing

In the one dimensional example, a weighting coefficient « was
ugsed to optimally combine the initial estimate of range and a measure~
ment datum. Analogous weighting coefficients are employed in the
tracking algorithm. From Appenaix B, the appropriate positional
weighting coefficient o and speed weighting coefficient B that are
used to optimally combine the initial estimate of the track's para-

, meters and a measurement datum to obtain an improved estimate of the
track's parameters are

o = Var X?

. . ‘ Var XP + Var XM

! 8 = Cov Xi?
. Var XP + Var XM
]

It will be noted that the speed weighting coefficient B as defined
above is in units of inverse time.

1

(22)

s gun ARG Y

1he improved smoothed track parameters designated Xzs and Xzs
are obtained from the initial track parameters that are extrapolated
to the time of the second iteration, the measur:sment datum from the

second iteration and the weighting coefficients in accordance with
the relationships

et b Vet nd e

S S e S m P ., P nm P
X2 = (Xl -+ X1 8) + a(x2 - XZ ) = xz + a.(x2 - X2 )

(23)

c S _2:2 8 m_ PP m_ P
X2 = Xl + B(X2 X2 ) X2 + B(X2 X2 )

Examination of equations (22a) and (23a) reveals that they are iden-
tical to.equations (1) and (2) of the one dimensional exampie. Con-
sequently, all of the discussion relative to equatiors (1) and (2) is
equally appropriate to equations (22a) and (23a). The implications
' of equations (22b) and (23b) are less obvious, hcwever, and will be

discussed via numerical examples when the recursive feature of the
Kalman tracker is considered.

3 ;'A'zmv,"_«u L N o T Ty

In addition to optimally combining two independent estimates of
the track's parameters to obtain improved estimates, the Kalman
tracker provides a real time measure of confidence in the current
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estimates of the track's parameters. From Appendix B, the smoothed
covariance elements associated with the improved estimates of the
track's parameters are defined by

Var Xs = o Var Xm

S 2P

Var X° = Var i? - B Cov

Cov Xis = B Var X

Examination of equatio. (24a) reveals that it is ideantical to equa-
tion (4) of the one dimensional example. Since equations (24b) and
(24c) do not have analogous one dimensional counterparts, these
equations will be discussed via numerical examples when the recursive
feature of the Kalman tracker is considered.

Equations (16), (17), and (18) constitute the initialization
process for the Kalman tracking algorithm. Equations (19) through
(24), with che use of equation (18), constitute the X coordinate
Kalman prediction, correlation, and smoothing filter. Substituting
7 for X in each of these equations results in the Y component filter
equations.

RECURSIVE FEATURE OF THE KALMAN TRACKER

When successive measurement data are obtained, the recursive
feature of the Kalman tracker permits improved estimates of the
track's parameters to be calculated based upon the measurement data
and different weighting coefficients, Like the previous smoothed
estimate, the improved estimate will have minimum variance and, hence,
maximum probability of representing the true value of the track's
parameters. The recursive feature of the Kalman tracker will be
shown via several examples.

Unity Blipscan X Axis Aircraft Motion

-

Let us assume that an aircraft is flying along the X axis of a
rectilinear coordinate system centered at the radsr site at a speed
of 720 knots cr 2.0 NM per 10.0 seconds. Let us further assume that
a track is initiated based upon.two measurement data associated with
the aircraft from consecutive scans of the radar which is turning at
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a rate of 6 RPM, so that the time interval A between the two measure-
ment data is 10.0 seconés., The initial measurement datum at time t=0
and the following measurement at time t=10 seconds are respectively

Kgs Yo = 200.1 NM, 90 degrees or xom = 200.1 NM

Ry, ¥; = 197.9 NM, 90 degrees or xlm = 197.9 WM

A priori knowledge of the radar's characteristics indicates that the
range variance is 0.25 NM squared and the azimuth variance is 3 ACPs
squared, where an ACP is one 4096th part of a circle or 0.088 degrees.

.5 From equation (16) the initial smoothed state variables Xsand
X", which correspond to the initial track position and speed, are

defined by 2
x5 - x," = 197.9 W %
(25) :
x," - x B =
:S 1 0 197.9 - 200.1 -2.2NM ) 3
X ~ 3 = 10 10 sec -792 knots :
The iritial values of the covariance elements associated with )

KPR 0 O

these estimates of track position and speed are determined from
equations (17) and (18) and are defined by,

Var XS = Var X® = Var R = ,06250 since Y = 90 degrees
.S

Var £ = 2 var /4% = .00125 (26)
Cov xis = Var Xm/A = ,00625
From equation (19), the predicted covariance elements are calculated
from these smoothed covariance elements and the time interval-A = 10.0
seconds from the previous to the current measurement datum according
to the relationships
QS -
Var X = Var X° + 2ACov XX + A% Var X° = .31250 5
t
Var % = vVar £ = .00125 @n -

Cov xip = Cov Xis + A Var is = ,01875
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This result may be verified by substituting the values for the smoothed

covariance from equation (17) into equation (19), thereby obtaining the
result that

Var X* = 5 Var X® = 5(.0625) = .31250
Var X = 2 var x%/42 = .00125 (28)
Cov XX¥ = 3 var X/a = .01875

From equation (20), a measurement datum is classified as a non-

maneuver correlation if it falls within C miles of the predicted track
position where C is defined by

C = K(Var XP + Var Xm)% = 3,0 (.3125 + .0625)% = 1,837 NM (29)

From equation (22), the positional weighting factor o and the
speed weighting factor B are defined by

Var XP .3125

aQ = =

Var X + Var X® .3125 + .0625

= .83

(30)
B = Cov xiP - .01875 = .05
25 .
Var X + var X® 3125 + ,0625
Since the aircraft is proceeding at 2.0 NM/10 seconds, its true
coordinates at time t = 20 seconds are Ry = 196 NM and ¥y = 90 degrees.
Assuming that the range measurement is two standard deviations or
0.5 NM away from the true aircraft location, RZM = 196.5 NM and
V9 = 90 degrees. Substituting from 2quation (25) into equation (23),
tﬁe improved estimates of the aircraft's position and speed are
P S * S X
X, = Xl + Xl A =197.9 - (2.2/10) 10 = 195,7NM
kP = %5 = -2.204/10 sec = -792 knots 3
2 1 3
(31) §
s P n P i
X" = X2 + a(X2 - X, ) = 195.7 + .83(196.5 ~ 195.7) = 196.3 3
:S _+ P m Py . 2.2 - - :
X," = X2 + B(x2 - x2 ) 10 + .05(0.8) = -2.16NM/10 sec ==~777.6 knots g :
1 ¢
23 - &
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From equation (24), the measures of confidence in the current
egtimates of the track's parameters are

et Y

: Var X° = o Var X® = .83(.0625) = .05208

3

; var ¥° = var i - 8 cov Xk’ = .C0125 - .05(.01875) = .000313 (32)
5: Cov XX° = B Var X® = .05(.0625) = .003125

Equations (25) and (26) have yielded initial estimates of the
track's parameters along with their associated measures of confidence.
Equations (27) and (28), which represent the start of the first com-
plete iteration, eatrapolate the measures of confidence to the time
, of that iteration and equation (29) employs this data along with the
‘ variance of the measurement data to calculate the X correlation dis-
tance. Equations (30) and (31) calculate the weighting coefficients
and use the coefficients to obtain improved estimates of the track's
parameters. Finally, equation (3Z) computes measures of confidence
associated witl the most recent estimates of the track's parameters.

Each time aznother measurement datum is available, equaticns (27)
through (31) are repeated.

i
3
3
3
a
&
£
¢
%
M
%
b4

The smoothed covariance elements from one iteration must be saved
to calculate the predicted covariance elements for the following itera- ;
tion., Similarly, the current smoothed track parameters must be stored s
to calculate the following improved estimate. Beyond storing these
parameters, no past data is required to be saved.

i

The general recursive formulas for obtaining successive values
of the predicted covariance matrix, the correlation distancas, the
weighting coefficients, the improved estimates of the track's para~
meters and their associated measures of confidence are

(a) Calculate the predicted covariance elements
var X
Var ﬁNP = Var kN-i

Cov XiNP = Cov XiN_i + A Var iN-i

2

Var XN~1S + 24 va Xﬁu_i + A° Var iN-i '

A

.%
;
4
:
3
3
3

24
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(b)

(c)

(d)

(e)

Table IV shows values for the positional weighting coefficient a,
the speed weighting coefficient B and the correlation distance C for
30 iterations of the recursive tracking equations under the assumption
of unity blipscan and constant variance measurement data.
constant since the aircraft is assumed to continue flying along the
X axis, so that Var X equals Var R.
under these assumptions, successive weighting parameters a and f may

Calculate the non-maneuver correlation gate

b
Cy = 3.0 (Var xNP_+ Var X.")

Calculate the weighting coefficients

Var XNP Cov XiNP

(V3 s B o= P
Var XN + Var XNm

N Var XNP + Var XNm ’ N
Calculate 2n improved estimate of the track parameters
S S s S m P
Xy =Xy F g 0oy Gy - %)
s S e S m P
ky =yt 8O - %
Calculate the smoothed covariance elements
Var XNS = aN Var XNm
Var iNS = Var iNP - BN Cov xiNP

$ S

Cov XXN - BN Var XNm

be obtained from the relationships

2 i s Al wady gt

f w2 @N+1)
M +1) (N+2)

for N > 2 = jteration number
B - 0‘6
(N+1) (N+ 2)

Variance is

It is perhaps of interest that

[ PR SRR TY.
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Table IV

Unity Blipscan Constant Variance Parameters

Positional Weighting Speed Weighting Correlation ‘ .

N Coefficient a Ccefficient B Distance C

1 1.0 .1000 -

2 .83 .0500 1.84 ;

3 .70 .0300 1.37

4 .60 .0200 1.19

5 «52 .0143 1.09

6 .46 .0107 1.02 ’

7 A2 .0083 .98 .

8 .38 .0067 .95 .

9 .34 .0054 .93 . %
10 .32 .0045 91 §
11 .29 .0038 .89 §
12 .27 .0033 .88 ¢
13 .26 .0028 .87 :
14 .24 .0025 .86
15 .23 .0022 .85 - 3
20 .18 .0013 .83 %
30 .12 .0006 .80 %

N is the iteration number

A EAE A IR Ay Yo O
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Examination of equations (33) and Table IV reveals that the
positional and speed weighting coefficients converge to zero under
the assumptions of unity blipscan and constant variance. This occurs
because the model of aircraft motion that was used to derive the
Kalman filter equations assumed constant speed, straight line motion.
In turn, the derived algorithm assumes that its estimates of the
track's parameters are improving as each measure— +t datum is pro-
cessed until eventually its estimates achieve , ction, thereby
requiring no further measurement data.

In the real world and for the assumed conditions, a and B would
not converge to zero because the correlation area would become so
small that even measurement data from aircraft which are attempting
to follow the assumed model of motion would fazll outside of the non-
maneuver correlation gates. Upon detecting this condition, as will
later be shown, the Kalman filter would be reinitiated to approxi-
mately its initialized state and the counting down process would
again commence. To prevent the attendant oscillations associated
with this technique, which is more a lack of technique, and to main-
tein a reasonable level of response to measui sment data so that the
tracker may rapidly respond to maneuvers, the usual approach is to

set lower bounds on the dynamically computed weighting coefficients
and correlation distances.

Rather than dynamically calcula*ing weighting coefficients and
the correlation distances, classical tracking algorithms have used
prestored values for these parameters. Typical non-maneuver values
for the positional weighting coefficient a, the speed weighting
coefficient B and the correlation distance C are

o = 0.3
g = 0,004
cC = 1,58

These values of o and B rep:esent suiteble steady state values or
lower bounds for a Kalman filtering algorithm. From Table IV, it is
seen that these parameters are attained by the tenth iteration.
Assuming a ten second iteration interval and a unity blipscan ratio,

steady state parameters for a track are attained after approximately
a minute and a half of tracking.
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Unity Blipscan Y Axis Alrcraft Motion

The previous example was based upon unity blipscan constant
variance measurement data. Let us now coi.~‘der another example where
two aircraft are flying along the Y axis of a rectilinear coordinate
system centered at the radavr site. Both aircraft are assumed to be
initiated 200 NMs from the radar site, with one aircraft proceeding
at a speed of 1,0 NM per 10 second iteratiun or 360 knots and the
other at a rate of 4 NM per 10 second iteration or 1440 knots.

|

From equation (18) and assuming that the measurement data asso-
clated with each aizcraft are reported at an azimuth of ¢ = 0 degrees,
it will be noted that the variance of the X_component of any measure-
ment datum is proportional to the product R Var 8. Therefore, unlike
; the previous example where the standard deviation of each measurement

datum was a constant 0,25 NM, in thig example the standard deviation
of measurement data associated with the aircraft is not constant and
: varies as a function of range from the radar site. The standard
: deviation of azimuth jitter will be assumed to equal 3 ACPs.

s
k)
o
i
i
2
2
E:
E
kS
§
3
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Kl
f
k2
¥,
b
%
¥
P
;

. Rather than presenting the individual computations as was accom-

: ‘ plished for the previous example, Table V shows values for the posi- *
tional weighting coefficient o, the speed weighting coefficient B and
the correlation distance U for 30 iterations of the recursive Kalman
equations for both the 360 and 1440 knot aircraft under the assumption
of unity blipscan and non-constant variance measurement data. The
variance of each measurement datum is based upon the range of the air-
craft with which it associates; i.e., at the tenth iteration, the
range of the measurement datum associated vwith the aircraft proceeding
at 1440 knots or 4 NM per iteration is 160 NM. By way of comparing
the resultant data with the constant variance example of Table IV,
values of o, B and { from Table IV will again be presented in Table V.

P Ts Pk s

Examination of the three columns of data under ¢ indicates that

the positional weighting coefficient is essentially independent of
4 the aircraft's location and of whether the variance of the measure-
ment data is constant or not. Examining the three columns of -data
under the speed weighting coefficient B indicates that a similar
statement may be made for this parameter. Table V also shows that
for a unity blipscan ratio and for any of the three examples given,
the weighting coefficients attain steady state values corresponding
to the non-maneuver weighting coefficients of classical tracking
algorithms in approximately ten iterations.
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Table V

Unity Biipscan, Non-Congtant Variance Parameters

Positional Weighting Speed Weighting Correlation
Coefficient a Coefficient § Distance C
N cv Vi V2 cv Vi V2 cv Vi V2 .
1 1.0 1.0 1.0 .1000 .1000 ,1000 - - = :
2 .83 .83 .84 .0500 .0501 .0503 1.84 6.76 6.74
3 3 70 © .70 .71 .0300 .0301 .0306 1.37 5.01 4.93
4 4 .60 .60 .61 .0200 .0202 ,0207 1.19 4.32 4.18
i 5 .52 .53 .54 ,0143 .0144 .0150 1.09 3.94 3.76
2 6 46 47 48 .0107 .0109 .0114 +.02 3.70 3.47
] 7 A2 42 44 .0083 .0085 .0090 .98 3.52 3.25 :
z - 8 .38 .38 .40 .0067 ,0068 ,0073 .95 3.39 3.08
; 9 34 .35 .37 .0054 .0056¢ .0061 .93 3.29 2,93
3 - 10 .32 .32 .35 .0045 .0047 .0052 91 3.21 2.81
1 11 29 .30 .33 .0038 .0040 .0044 .89 3.14 2.69
; 12 27 .28 .31 .0033 .0034 .0039 .88 3.08 2.59
i 13 .26 .26 .29 .0028 .0030 .0034 .87 3.03 2,50
14 24 .25 .28 .0025 ,0026 .0030 .86 2,98 2,41
15 23 .24 27 .0022 .0023 ,0027 .85 2,94 2.32
20 .18 .19 .22 .0013 .0014 .0018 83 2.77 1.9
: 30 A2 .13 .19 .0006 .0007 .0011 .80 2,53 1.29
N is the iteration number. g
CV is the constant variance example of X axis aircraft motion. %
8
V1 is the non-constant variance 360 knot example of Y axis aircraft motion. g
Y
V2 is the non-constant variance 1440 knot example of Y axis aircraft motion. ;
i
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Examination of the first column of data under the correlation
distance C shows non-maneuver gates that are smaller than those of
classical tracking algorithms., This occurs because the aircraft is
assumed to be proceeding along the X axis, where the variance of the
associated measurement data is only affected by the data's range
jitter, the standard deviation of which is assumed to be .25 NM.

Examination of the last two columns of data under the correlation
distance C reveals non-maneuver gates that are generally larger than
those of classical tracking algorithms with the last column of data
decreasing more rapidly than the preceding column. The values are
larger because the two aircraft are assumed to be proceading along
the Y axis, where the standard deviation of the associated measure-
ment data is affected by the product of range times the data's azimuth
jitter, the standard deviation of which is assumed to be 3 ACPs,
Furthermore, the two aircraft are at a considerable range from the
radar site. If the two aircraft were initiated 100 NM from the site
rather than 200 NM, each of the correlation distances in the last two
columns of data would be reduced by a factor of two; similarly, a
50 NM initiation process would decrease the data by a factor of four.
The correlation distances in the last column of data under C decrease
more rapidly chan the correlation distances in the preceding column

¢f data because the aircraft is approaching the radar site more rapidly )
thereby generating smaller range measurements.
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Noan~Unity Blipscan Ratio

Esch of the previous examples has considered unity blipscan ratio
situa'icns where a measurement datum is available each iteration of
the tr-cking algorithm. Although this situation may be approximated
in netted rader systems where multiple radars provide measurement

data on airusuf®, lesser blipscan ratios are the norm in single radar
systems.

Examinaticn of eguations (20) and (22) indicates that the correla-
tion distance C and the position and speed weighting coefficients o
and B_are based upcn the variance of the predicted track position
Var x¥. From equation (19), we see that Var XP increases as the time
interval A between smoothings increases. Thersfore, we should expect
that a, B and C will increase whenever data are missed in a radar
scan. This is reasonable because the reliability of the positional
estimate of an aircraft decreases as the time between smwoothing
increases. In turn, the weighting coefficients should increase so
the measurement datum will more strongly affect the new estimate of
the aircraft's parameters. Similarly, the correlation distance should
increase to ensure that measurement data associated with the aircraft
correlates in the following radar scan. To verify this intuitive judg-
ment, several examples of the effect of non-unity blipscan ratios on
the weighting coefficients and correlation distances will be presented.

30




Table VI shows the effect of missing data in the fifth scan on
the weighting coefficients a and 8 and the correlation distance C.
For this and the following examples within this section, the X vari-
ance of the measurement dzta is assumed to be 1.0 NM. When data is
missing in a radar scan, no iteration of the recursive formulas occurs.

Table Vi

Effect of Non-Unity Blipscan Ratio - Case I

Scan N o] B c
4 4 .60 .020 4.7
5 5 «52 014 4.3
Unity Blipscan Ratio
6 6 46 .011 4.1
7 7 42 .008 3.9
_ 4 4 .60 .020 4.7
Miss in Scan 5 6 5 .64 .028 5.0
7 6 .49 .009 4.2

N is the iter - ion number

31

N egiie o AL gL
Yo g on o i o faend Y 35 AT ” $ P N

DA s St R RS RIS 1l SR AT e R DR P KA T e £ B SR TR

e A EY MTa%a it SECLIDER

—— - ——r i PPN LT
N R




. e R G T S T TAY

g vy s e . B o o e RN L A ek T PR B e A S "'”"Tf*‘ RS
{4\“:«_:2', R L RN e v IR B

w T i !

—

Table VII shows the effect of missing data in the thirteenth scan
on ¢, B8 and C.

Table VII

Effect of Non-Unity Blipscan Ratio - Case II

Sean N @ 8 c

12 12 .27 .003 3.5
13 13 .26 .003 3.5

Unity Blipscan Ratio
) 14 14 24 .003 3.4

15 15 .23 .002 3.4
12 12 .27 .003 3.5

Miss in Scan 13 14 13 .30 .006 3.6

15 14 .27 .003 3.5
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Table VIII shows the effect of nicsing data in four scans on the
computation of a, 8 and C.

Table VIII ‘ - S

Effect of Non‘Unity Blipscan Ratio - Case 11X ‘ N

7 42 . .008 ' 3.9 o :

Unity Blipscan Ratio 8 »38 007 . 3.8 %
' 9 .34 .005 3.7 , : | *‘

1 10 .32 .006. 3.6,

11 . .29 o+ .00 3.6 |

5 5 .52 . .0l 43

Mics in Scans 6 to 9 10 6 J7 0 .049 6.3 ;
w7 .49 . .006 42 : P

Examinstion of the data in Lables VI tarough VIII reveals that ° . '
the correlation distances and weighting factors as calculated by a

Kalman filter are appreciably affected by the blipscau ratio.of the
system's sensors.
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MANEUVER RESPONSE

TFor any class of aircraft maneuver, = Kalman filter that will
track the aircraft while it executes the postulated maneuver may be
dgsigned. However, such designs usually result in complex algorithms
involving many state variables with extraordinary computer processing
and storage requirem-nts., Consequently, aircraft tracking algoritims
are typically desigi._d based upon a constant speed straight line
model of aircraft motion as has previously been stated. To provide
for situations where the aircraft motion deviates from this model,
maneuver response logic. are included in the algorithm.

The uscal procedure upon detectirg a maneuver in a Kalman tracking
filter is to approximate the initialization of the filter; upon cor-
relating a return and identifying an aircraft maneuver, the smoothed
track position is relocated to approximately the coordinates of the
radar report that stimulated the maneuver resgponse. Similarly, the
elements of the smoothed covariance matrix PS are increased to values
that approximate their initialized values as prcsented in equation (17).
The effect of this reinitialization is to place greater credibility in

the ‘measurement data so that the filter will adequately track the
maneuvering aircraft.

A more sophisticated maneuver response logic would examine the
relationship between consecutive predicted track locations and the
associated measurement data to determine whether the aircraft is
turning at a constant speed or changing speed. Based upon this deter-

menation, some or all of the elements of the smoothed covariance matrix
would be set to larger values.

Independent of whether the approach 1s rudimental or sophisticated,
maneyver response in a Kalman filter is accomplished by resetting the
weighting coefficients a and B to values thatr approximate unity and by
resetting some or all components of the smoothed covariance matrix to
larger values. The intended effect is to place less credibility in
the predicted track parameters and more credibility in the data that

triggered the maneuver response so that the track will adequately
follow the aircraft maneuvers.

Possible users are cautioned tha: the doctrinaire implementation
of the above described maneuver logic may well lead to severe velocity
transients in a real world tracking situation. In a noise free environ-
ment and with error free measurement data, the above described maneuver
logic will result in a track that responds to maneuvers quite rapicly.
In a real world tracking environment and with a radar that provides a
noisy R, ¥ measurement of an aircraft less than once per radar scan,
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this logic will not follow maneuvers in the steady, smooth manner of
classical algorithms. Instead, violent chaunges in the track's para-

meters will occur as the track responds to the maneuver returns. e
Similarly, as the positional and velocity maneuver weighting coeffi-" '
cients approxinate unity, excessive track instabilities will result
« when noise returns are erroneously correlated with a track.
3
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SECTION IV

KAILMAN F1LTERING CONSIDERATIONS

SYSTEM MODELING

The application of Kalman filtering theory requires the definition
of a linear mathematical model of the system. In many cases, highly
complex models may be derived to accurately describe a system even
though only a few of the state variables are of primary interest.
Since computer storage and processing requirements increase substan-
tively with the complexity of the system model, designers should be
motivated to seek simplifications to the modeling equations that will
result in minimal degradation in the estimation of the major state
variables. Choice of coordinate systems and state variables should be
heavily influenced by the simplicity of the resultant formulation. In
summary, judicious modeling that is sufficiently complex to satisfy

system requirements while minimizing the associated processing and
storage requirements is the goal.

A related consideration in applying Kalman filter theory is the
impact of the lack of a precise knowledge of an exact model of the
system's behavior. For example, in determining the orbit of a satel-
lite, various unknown forces such as solar pressure, fuel leakage, etc.
may be affecting the true path of the satellite. If only the initial
injection positional and velocity uncertainties are modeled, the
estimated orbit will diverge from the true path of the satellite.
This results because the filter that is derived from an imprecise
model assumes that the estimated orbital parameters are converging
to their true values as successive measurement data are processed.
Based upon the erroneous assumption of convergence, weighting coeffi-
cients are chosen so that successive measurement data have lessened
impact on the estimated orbital parameters, the correlation area is
diminished and eventually measurement data fails to correlate. Some

techniques that are typically employed to compensate for inadequacies
in the system model are:

(a) To introduce pseudo-errors which cause an increase

in the values of the a priori covariance matrix to
account for non-modeled errors.

(b) Recognizing that the values of the a priori covari-

ance matrix are optimistic or too small, overweight
the more recent data relative to an optimal filter.
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(c) To prevent the elements of the covariance matrix
and in turn the derived weighting coefficients
and correlation distance from decreasing below
some pre-established lower bound,

The use of a lower bound is particularly appropriate to an application
of Kalman filtering such as aircraft tracking when the filter is
derived from a model of constant speed straight line motion. For
unlike a spacecraft or terrestrial satellite, which can generally be
accurately predicted for weeks, the future position of an aircraft
can only be predicted accurately for a few seconds. Consequently, an
aircraft tracking filter must consistently remain relatively respon-
sive to the measurement data which implies that the elements of the
covariance matrix and the weighting coefficients should be prevented
from approaching zero.

A final modeling consideration in applying Kalman filter theory
is that a precise knowledge of the a priori statistics associated with
the predicted state variables may not be known. In such cases, con-
servative error estimates that are larger than the true errors are
typically used. The effect of employing excessive error estimates
with the initial predicted state variables is to increase the errors
associated with successive estimates of the state variables which in
turn lengthens the convergence interval. On the other hand, the use
of optimistic or small error estimates associated with the initial
predicted state variables prevents the filter from using adequate
weighting coefficients, which are sometimes referred to as the Kalman
gain, during the important initial period of estimation.

PROCESSING AND STORAGE REQUIREMENTS

Kalman filtering algorithms derived from complex system models
can impose extraordinary storage and processing requirements. There-
fore, various schemes which provide the essential benefits of Kalman's
approach but which minimize demands upon the processor should be
explored. In addition to simplifying the modeling equaticas, which
has already been discussed, other compromises are possible.

One such technique is to partition the state variables into
several groups. The Kalman theory is then independently applied to
the state variables of the lower dimensional groups and the estimate
of the entire set of state variables is reconstructed from the lower
dimensional groups. A caveat relative to such partitioning is to
assign state variables that are highly correlated to the same group
since partitioning essentially assumes a lack of correlation between
elements of different groups. For example, in the tracking example
that was discussed in both Section IIT and Appendix B, a sufficient
set of state variables which entirely described the system was X, X,
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Y and Y. These state variables were partitioned into a group X, X *
and into another group Y, ¥. An X component filter algorithm and a

Y component filter algorithm were then derived according to the Kal-

man theory. Having derived the algorithms, a measurement datum was -
used with the X component filter equations to obtain an improved

estimate of X and X. Thereafter, the same measurement datum was

used with the Y component filter equations to obtain an improved |

estimate of Y and Y. Then, the entire set of state variables X, X,

Y and Y were reconstructed from the lower dimensional groups X, X and

Y, Y. Partitioning in this manner results in two similar Kalman

problems that must be solved each iteration but it may be shown that

this approach is more conservative in processing and storage require-

ments because the cross correlations between groups are ignored.

zg
?

Another technique that should be explored to decrease processing
demands is the precalculation and storage of the weighting coefficieunts
and correlation distances or areas. This technique has practical
importance in that it is possible to trade a small amount of storage

space for considerable process ng time. The technique is particularly
well suited to applications where:

Lyt ity

(a) The random noise that is superimposed upon the :
measurement data is relatively constant, and

(b) The lower bound, that is imposed upon the elements
of the covariance matrix and in turn the weighting
coefficients and correlation distances, is attained
in a few iterations.

AR TN N R 3 e 2yl

KALMAN VERSUS CONVENTIONAL FILTERING
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The essential difference between Kalman's and more conventional
filtering techniques is the real time propagation of statistical error
measures of the gta“e variables. These rrror measures are used in
conjunction with the measurement datum's erroir measures to deteriine
whether the datum should be correlated; if correlated, the error
measures are used to calculate the gain to be applied to the measure-
ment datum in determining an improved estimate of the parameters of

interest. Conventional approaches generally involve the use of pre-
stored correlation limits and gains.

Kalman filtering theory is described in precise mathematical
terms and as such is perhaps more intellectually rewarding than
applying more conventional techniques. However, possible users are
cautioned that considerable experience is required in developing an
effective filter because of the difficulties in defining the major
stata variables. obtaining knowledge of their statistical parameters,
adequately modeling the system and striking a reasonable compromise
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between performance, storage and processing requirements. Relative

to real~time afrcraft tracking applications, the model of motion

becomes egpecially difficult to formulate and typical Kalman trackers X
therefore assume constant speed straight line aircraft motion., Since ;
such a filter is incapable of tracking a maneuvering aircraft, Kalman

trackers are sugmented with maneuver response logics that approximate
coriventional maneuver logics.

Upon developing a Kalman tracker, users are farther cautioned
that its implementation in an operational system is not a precise
science. Doctrinaire implementations will generally result in prac-
tical difficulties, the resolution of which will tend to revert the
process to more conventional techniques. Consequently, careful
reflection on Kalman filters and their resultant performance and
effectiveness relative to more classical filters is suggested prior
to their implementation. Although well suited to extra-terrestrial
tracking problems where equations of motion are readily formulated,
the Kalman filter is not nor was it ever intended to be a panacea
for any filtering application.
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APPENDIX A

ONE DIMENSIONAL KALMAN FILTER

INTRODUCTION

This Appendix presents a derivation of the one dimensional Kalman
filter equations based only upon the concepts of the mean value and
standard deviation of a random variable. This derivation comprises
the majority of the elements of the complete Kalman filter except
that it is a one dimensional, which does not require matrix manipula-
tion, and there are no dynamics associated with the problem. Having
derived the one dimensional filter equations for the initial iteratiom,
the recursive feature of the filter equations will then be shown.

OPTIMAL COMBINATION OF INDEPENDENT ESTIMATES

The Kalman filtering process consists of combining two independent
estimates of a variable in order to obtain an improved estimate. The
improved estimate or weighted mean is obtained by updating the previous
estimate hased upon measurement data and the vaviances of both the pre-
vious estimate and the measured datum. The weighting factor that is
chosen to yield an improved estimate with minimum variance and hence
maximum probability is derived below.

Given the predicted range value of a point target RP with variance
op and an associated range measurement R™ with variance OR“, these two
estimates may be optimally combined to yield a minimum variance smoothed
estimate of the point target's range.

The general form of a smoothed estimate RS of R? and RM, where
the value of a must be determined, is

RS =R +a@® - RD) = @ - a) RF + oR'Y (1)
The expected or mezan value of RS, written E(RS), is
ER) = 1 - o) ERD) + «@®Y) (2)
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The variance of RS, written Var Rs is defined by

S

2
var RS = (RS - E@®S)}

2

B{@ -~ o)RY + o’ - (1 - 0)E@E) - «2@®M))

2
E(Q - o) R - E®RD)) + oY - 2@®h)) 3)

Var Rs = (1 - u)z Var RP + az Var RH

since E{®F - 2(®®)) &' - @)} = 0 as RF and R are independent
estimates.

To determine the value of o for which Var Rs is a minimum, the
expression for Var RS will be partially differentiated with respect
to o« and set to zero.

3 Var RS

9a

-2(1 - a) Var R? + 2 a Var Ru =0

o(Var RP + Var RM) = Var RP

yielding the optimum value of a for a weighting coefficient as

P
Var R* + Var R

Substituting this value of o in equation (3) yields

P M
Var R° = —Y&T g Var R 5 = (1-a) Var RP (5)
Var R* + Var R

Equations (1), (4) and (5) constitute the one dimensional Valman filter
equations. To initialize these equations, it is necessary to assign

a priori numerical values to_the predicted range R*, to the variance

of the predicted range Var R° and to the variance of each measurement
datum Var RM. With values for these parameters and an initial measure-
ment datum, equation (4) may be solved to determine the appropriate
weighting coefficient, equation (1) may be solved to determine the
smoothed estimate of the point target’s vange and equation (5) may be
solved to determine the variance of the smoothed range estimate. This
process is described in Section II of the report.
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P In the absence of any a priori knowledge ofPthe predicted range s
R* and the variance of the predicted range Var R*, the Kalman filter
equations may be initialized by setting

a, = 1.0 5
s M ’
R R
S M 4
Var R;° = Var R; {
RECURSIVE FEATURE OF THE KALMAN FILTER J

When another range measurement is obtained, the recursive feature
of the Kalman filter allows the initial smoothed estimate RS to be I
improved based upon the measurement data R™ and a different welghting
coefficient. Like the previous smoothed estimate, this iuproved esti-
mate will have minimum variance and hence maximum probability of
representing the true range value. From the previous paragraph and
with the subscript 1 added to indicate the firet iteration, the

" o
D51 B G kb S R 5

initial set of recursive equations is °
Var R P i
% 7 P - M (6) °
Var Rl + Var R1 %
S )4 M__P 3
R, = R +0a;(R;" =Ry ¢))] g
S P g
Var R;” = (1 - @) Var R; (8) g
3 Since the target is assumed to be stationary, the smoothed vari- é
i ance from the first computation becomes the predicted variance for a
the next ccmputation. Similarly the smoothed range estimate from the ;

first computation becomes the predicted range estimate for the fol-

lowing computation. Therefore, the recursive equations for the fol-
lowing computation become

dres

|4

Var Rls %

Var R1 + Var R2 ! %
4

b
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R = R +a,@0 - Rls)

S

Var R2 = (1 - az) Var R S

1

Each time another range measurement is obtained, a new weighting
coefficient o is computed., It is applied against both the most recent
range estimate and the measured datum to obtain an improved range
estimate., Thereafter, the variance associated with the improved esti-
mate is computed. This variance is required to calculate the weighting
coefficient that will be used in the following iteration.

The general recursive formulas are:

(a) Calculate the weighting coefficient

Var RN-ls
Var RN—ls + Var RN“

QNI
(b) Use the weighting coefficient to obtain an improved estimate

Ry = Ryt eyt - Ry D)

(¢) Calculate the variance of the improved estimate

Var RNS = (1 - uN) Var RN-ls

To commence or initialize this cyclic process three a priori
numerical quantities are required. They are the predicted value of
the range prior to taking any measurements, the variance of the pre-
dicted range, and the variance of the range measurement. In the
absence of a priori knowledge of the predicted range and its asso-
ciated variance, values for a4, Rls and Var RS may be assigned based
upon the initial measurement &atum. Thereafter, improved estimates
are obtained as successive measurements are processad.
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APPENDIX B

MULTI-DIMENSIONAL KALMAN FILTER

3

INTRODUCTION

Appendix A has derived one dimensional Kalman filter equations
for a problem that includes no dynamics. This Appendix augments that
material by extending the one dimensional filter theory to a multi-
dimensional system that includes dynamics.

A general form of Kalman's multi-dimensional, dynamic system
equations is stated. Each equation is then discussed in order to
provide a simple interpretation of its intent. Analogies between
the general Kalman equations and the one dimensional non-dynamic
filter that was derived in Appendix A are presented. No derivations
of the general Kalman filter equations are included since the deriva-
tions are either directly analogous to the development in Appendix A,
except that matrices are employed in place of scalars, or the deriva-
tions are readily accessible in most estimation theory textbooks that
have been written since 1960, Furthermore, lengthy matrix manipula-
tions ¢ ‘e avoided in this manner and little comprehension of the
importa. aspects of the theory is sacrificed. 4

- o e * g, 543 W 2 A, d
oty ot sbF e LRSISER W R SRS S fuh B

To adequately discuss the multi-dimensional, dynamic system
equations, the concepts of state variable or vector, transition
matrix, measurement matrix, covariance matrix and other notation of
state-gpace theory are introduced. However, rigorous definitions of
these terms, which most readers would in any event ignorc, are avoided
as they too are readily available in numerous textbooks. In addition,
matrix derivations though elegant and efficient are suprisingly iaef-
ficient in conveying an intuitive grasp of the salient features of the
: theory. Therefore, the requisite state-space concepts associated
i with the Kalman theory are presented via examples and in a manner

3 ‘ that is intended to reveal the important principles underlying Kalman's
e estimation technique.

Having provided a discussion of the salient concepts associated
with each of the general Kalman equations, these equations are then

used to derive an algorithm for the real time tracking of piloted
aircraft.

—_—
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- GENERAL KAIMAN FILTER EQUATIONS3

; A general form cf the Kalman filter equations which are to be
: ; discussed and relatel to the one-dimensional filter equations ave:

Predicted State Variabhle z - 925 ¢))
Predicted Covariance P - gpoe” (2) ‘
Measurement Equation 2" = MZ+N 3) ,
Weighting Coefficient S = P'M?(HP'M? + Q)-l 4) |
Smoothed State Variable % -z 45 (Zm-MZ') (5)
"Smoothed Covariance P° - (I—SM)P' (6)

where:

v
Z, ZS and Z are the true, smoothed and predicted state variable
column matrices

PS and P' are the smoothed and predicted covariance matrices
¥ is the measurement matrix

S is the smoothing coefficient matrix

) is the transition matrix

z" is the miz<urement column matrix

N is the measurement error column matrix

Q is .e measurement error covariance matrix

I is the identity matrix

Predicted State Variable Equation

State variables may be defined as the minimum set of variables
that provides full knowledge of a system's behavior. The position

45
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and speed state variables for a constant speed straight liwse aircraft
may be expressed in cartesian coordinates as

= x5+%5,
2 .
. &)
¥ o= YS+i5a
?P = is
where the superscript P indicates the predicted state variables, where
the superscript S indicates the smcothed state variables from the pre-
vious iteration and where A is the time .ince last smoothing., Equa-~
tion (7) may be written in matrix notation as
D-P- —— ey P‘S—\
X 1 A 0 0} :X
o o 1 o of(5 v
ol = g| orz =92 (8)
Y 0 0 1 AL TY
e P *S
@ ¥ 0 0 0 1jjY ]
H
; Equation (8), the predicted state variable equation, is equivalent to
; equation (1) with the dynamics of the system being modeled by the ;
matrix @ which is called the transitiom matrix. 3
The position, spead, and zcceleration state variables for an air-
craft may be expressed ir cartesian coordinates as 5
E e EaiBa+ 2%
o« 2%+ %% Z
esP - '}.{S ?z
) ) 2
¥ o= B+ 1%+ 15 A%
ﬁP - QS + S A ]
. e q E:
YP = Y
46
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Equation (9) may be expressed in matrix notation'as : ' '

Xt 1 a4 8%2 0 o o |5 !

K o 1 a4 o o o |[x . .

"%P o 0o 1 o0 o o |[% . .

= 9 g| oxrz = pz° i (10)

el 0o 0 0o 1 a a¥2lly : A

el o 0.0 ¢ 1 & |]|f

¥ o 0 0 0 0 1 WSJ

b ol -

i

Equation (8) represents a suitable one dimensional mathematical
model for constant speed straight line aircraft motion and contains a
4 x 4 transition matrix because there are four state variables. Equa~-
tion (10) represents an appropriate mathematical model for accelerating
aircraft and contains a 6 x 6 transition matrix because of the addi~-
ticr of the acceleration state.variable, As computer storage and
purticularly -vocessing requirements increase rapidly with the number
of state var. *g or equivalently with the size of the transition
matrix for Ka. . filters, designers are generally motivated to seek
simplifications tc the modeling equations that will result in minjmum ‘
degradation in the estimation of the major state variables. For this ' '
reason, real time gircraft tracking filters usually employ a constant
speed straight iine model of aircraft motion as defined by equations (7),
and (8) supplemented by a maneuver response logic.

In addition to simplifying the ﬁodeling equations by reducing the
number of state variables other compromises, which further reduce the
storage and processing requirements, are possible, One such technique
is to partition the state variables into several groups aa was dis-
cussed in Section III of this report. ' '

A partitioned formulation of the X position and speed state

variables for a constant speed straight line aircraft may be expressed
in cartesian coordinates as
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This may be written in mairix notation as

.
xE: 1 al x5
l ' s
| or Z = @z
x‘] 0 1 [x5

, With the use of the transition matrix -3 defined above and
employing the general Kalman multi-dimensional equations, aun X com-~
ponent tracking algorithm may be derived as will be shown. An
independent but analogous Y component filter algorithm may similarly
be derived. Use of independent, partitioned models of aircraft motion
resultg in two analogous X and Y tracking algorithms that must be
solved each iteration. However, it may be shown that this approach
is more conservative in processing and storage requirements than
simultaneously processing the four state variables because the cross
correlations between groups such as XY, XY and XY are ignored. The
implications of these statements will become clearer wvhen the X com-
ponent Kalman tracking algorithm is formally derived.

Each of the aforementioned examples of equation (1), which is
called the predicted state variable equation, has employed cartesian
coordinates with X and Y as the state variables. Before proceeding
to a discussion of another of the general Kalman equations, a final
example of the predicted state variable equation will be presented
that uses-range and azimuth as the state variables. Selection of
this coordinate system results in a predicted state variable equation
that is similar to equation (8) and is described by

REK
E 1 A o0 o] |r
RE o 1 o o |& . .
P = .S or Z = ¢Z
¥ o o 1 &l ¥
oF o o o 1} i
A O I

This polar formulation of the predicted state variable equetion
is generally incompatible with a constant speed straight line model
of aircraft mocion. Except for radial flight or constant speed
circular flight about a radar site, an aircraft accelerates in a

_ polar coordinate system even if it is flying in a straight linc and

at a constant speed. Therefore, polar formulations of the predicted

state variable equation are generally avoided in applying Kalman
filtering theory.
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. Predicted Covariance Equation

In the one dimensional static filter equations that were derived
. in Appendix A, a fundamental input to ths filter was the expected or
predicted variance of range called Var R°. A similar quantity called
the covariance matrix is required for the multi-aimensional dynamic
filter.

For the partitioned constant speed straight line cartesian coordi-
nate formulation of aircraft motion, the smoothed covariance matrix pS
for the X component. state variables has the following four elements

Var Xs Cov Xis
P - (12)
Cov xis Var is

These elements are calculated each i’.eration after improved estimates
of the state variables X and X have been obtained and are a measure
of confidence in the current estimates of the state variables. The
elements of the smoothed covariance matrix must be extrapolated to
the time of the following iteration via equation (2), the predicted

Y covariance equation, in order to calculate weighting coefficients for
e that iteration.

The variance of Xs and is written Var xs and Var ﬁs are respec-
tively defined as

3 2
‘ var X = E{(X° - EG®) &5 - e@®)) = B (x5 (%) = E(ex5)

2
var © = B - EE5) &5 - e@®))) = E (25 (25 = E(eXD)

The covariance of Xis written Cov Xﬁs is defined as

cov X555 = B - ExD) & - @) = E (x5 (eX5)

T TR T T W PR
oy P

The terms EXS and eis represent the errors in the variables Xs and is;
- £ stated alternatively, eX° represents the difference between the
3 variable X5 and the mean of the variable XS.
. As with the one dimensional example, les for the elements of

the covariance matrix must be known to ini‘ :11i. the filter. These
values may be determined by experimental data. trom the measurement
datum, by error amalysis or by engineering jud »-t. The usual
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procedure in a tracking filter is to initialize the elements of the

covariance matrix based upon the measurement data that determines
the track's initial position and velocity.

The initial value of the variance of xs is set equal to the
variance of the X component of the measurement datum that is used in
the initiation process. The variance of the X compon-at of the meas-
urement datum called Var XT is based upon the measurement datum (R, V),

a priori knowledge of both the variance in range Var R and the variance
in azimuth Var 0, and is calculated from the following equation:

X" =R Sin ¢
X" 4 €X' = (R+ €R) (Sin ¢ + € )
= (R+ €R) (Sin ¢ Cos € ¢ + Cos ¥ Sin ¢ ¥)
= (R+ €R) (Sin ¢y + € ¢ Cos ¢) for small e ¢
=RSiny+RePCos ¢y+¢eR Siny + €Re y Cos ¢
Disregarding second order terms
ex™” =eRSin Yy + R € ¥ Cos ¥
(exm)2 = (eR)2 Sin 2 v+ R2 (ew)2 0032 ¢ + 2(eR)(ey) R Sin ¢ Cos ¢
As R and ¢y are independent
Var X© = E(ex‘“)2 = Var R Sin® ¢ + R? Var O Cos> ¥

The initial value of the smoothed variance in X, given the X com-
ponents of the two measurement data X @ and X,™ used in the initiation
process and the time difference A betweazn the receipt of the two
measurements, is obtained by noting that

m m
$.2 "0
A
m m
.5
€ A
2 2
2 (X 7 ex,™ - 2(ex,™ (ex,™
(eis) - 2 1 2 1
AZ
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As X, and X, are independent . ,

Var is 2 Va; y

A

oq 2
= E(ck5) =

The initial value: of Cov Xis. given the X components of the two
measurement data X, and X;™ used in the initiation process and the
time interval A, is obtained from

S

x5 %5

m m nm, ;
=X, & =%/

R o axz“‘ (exz'“ - exl"‘)/A (13c)

2
n oty W m
= (€, = (X, (ex,™)
A

As X1 and XZ are independent

Cov x&° = E(ex®) (e£%) = TEEE X

In the one dimensional example of Appendix A, the smoothed
variance from one iteration was used as the predicted variance for
the following iteration. This was perfectly reasonable since the
error in range which ultimately determines the variance in range
was only affected by the a priori initial conditions and the number
of range measurement data that had been processed.

In the two dimensional tracking filter, the smoothed covariance
elements from one iteration may not be used in the following itera-
tion since the predicted error in the track's X position is affected
by the previous error in the X position and the previous error in the
X component of the track's speed multiplied by the time interval A.
Equation 2, the predicted covariance equation, therefore calculates
the predicted covariance matrix from the previously smoothed covari-
ance matrix and the time interval from the previous to the current
iteration. The predicted covariance matrix is obtained via the fol~
lowing relationship -

P = 059" (14)

T it o A S omet s  al RBN Ni W gl
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This equation indicates that the predicted covgriance matrix P
is propagated from the smoothed covariance matrix P° and @ squared.
Equation (14), although not derived herein, appears reasonable; i.e.,
if @ propagates the state variables as stated in equation (1), then
it 18 reasonable for @ squared_to propagate the covariance of the
state variables. The symbol ¢T in equation (14) means the transpose
of @ and designates that the rows and columns of the matrix should be

interchanged. Equation (14) is discussed via numerical examples in
Section III of this report.

Measurement Equation

In the one dimensional example of Appendix A, each range measure-

ment R® was related to the true range R which was being estimated by
the relationship

R® = MR + eR

where M was 1 and €R was the error in range."In a multi~dimensional
problem, an analogous equation relate the measurement data to the

true value of the state variables. Equation (3), the measurement
equation 1is

2" = MZ+N

where Z™ and Z are the measurement column matrix and the true value(s)
of the gtate variables respectively, and N is the measurement noise
vector. Using the 2 x 2 partitioned cartesian coordinate formulation
of the Kalman aircraft tracking filter, the X component equation
corresponding to equation (16) is

™ = X + €X

In matrix notation, equation (17) may be expressed as

X
Xt = N1 0] + €X
X

The matrix M = [1 0] is called the measurement matrix and simply
indicates the component of the state variable that is being measured.
The measurement matrix is [1 0] since the measured datum is a
positional raport; if the measured datum was a Doppler report, the
measurement matrix would assume the form {0 11,
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(17)

(18)
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Considering the implications of the measurement equation further,
if a 4 x 4 range and azimuth formulation of the Kalman filter is
employed where each measurement datum is a positional report con-

sisting of the parameters R® and Y™, equation (16) would be equivalent
to 1

R® = R + ¢R

(19)
' o= oy toe
In matrix notation, equation (19) may be expressed as
P po— - e
R
'l |1 0o o off, eR
R
= -
L
V'l o o 1 ofl. ev
w -l
s el b —L-
As 1s evident, the measurement equation (16) relates any form of the
measurement Jata to the state variables via the appropriate measure-
ment matrix,
Weighting Coefficient Equation
o In the one dimensional example of Appendix A, the measured range
R~ was weighted with a smoothed estimate by . weighting coefficient
oy which was defined by .
s
Var RN—l
Gy = 3 = (20)
“ vVar Ry *+ Var Ry
An analogous express is employed In the multi-dimensional
tracking problem, where the weighting coefficient S is defined from
equation (4) by
t 1 “»
S=?PM MT+Q)1 (21)

Equation (21) will not be derived herein since its development
exactly follows the derivation in Appendix A except that matrices are
required in place of the scalars. The matrix manipulations are tedious
but straightforward and may be found in most estimation theory textbooks.
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In equation (21), Q is the measurement error covariance matrix
and is analogous to Var R™ in equation (20). For the tracking example
that we are considering Q is equal to Var X®. M is the measurement
matrix as has previously been stated and is analogous to the factor
unity in equation (20). P is the predicted covariance matrix and is
analogous to Var Ry_;”. The superscript -1 indicates matrix inversion
and is analogous to division. Ignoring the differences in notation
between equations (20) and (21) and making use of the above stated
analogies, it is apparent that equations (20) and (21) are identical.
Congequently, understanding the implications of equation (20) for the
simpler one dimensional filter example will yield a corresponding
grasp of the implications of the multi-dimensional weighting cceffi-~
cient S.

Smoothed State Variable and Covariance Equation

In the one dimensional example of Appenidx A, an improved estimate
of range or RNS was obtained from the expression

Ry’ = Ry + oy Ry = Ry y) (22

Furthermore, the variance of the improved estimate was calculated
from the expression

var R° = (1 - o) Var R, ° (23)

Analogous expressions to equatioas (22) and (23) for the multi-
dimensional problem from equations (5) and (6) are

S

25=2 +s@®-m2) (24)

and

P = (-5 p' (25)

The analogies between equations (22) and (24) as well as between (23)
and (25) are sufficiently obvious so that no discussion is warranted.
Again, an understanding of the implications of the one dimensional
equations (22) and (23) will yield a correspoading level of compre-
hension for the matrix formulaticns of equations (24) and (25).
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TRACKING ALGORITHM

This section uses the general Kalman equations that have pre-
viously been presented and the transition matrix based upon a con-
stant speed straight line model of aircraft motion to derive an
algorithm for tracking aircraft. The derived Kalman filter algorithm
is used for track smoothing, prediction and correlation. In addition
to providing smocthed and predicted state variables which define the
track's position and velocity, the Kalman filter algorithm provides
estimates of the errors associated with the state variables.

Kalman Non-Maneuver Smoothing and Prediction

. The tragk's state vector will be defined in terms of the variarles
X, X, Y and Y. The variables X and X will be partitioned from the
variables Y and Y. The covariance matrix for the X variables consists
of the terms Var X, Var X and Cov XX. Since the X and Y filters are
partitioned and hence completely uncoupled, it will only be necessary
to derive the tracking algorithm for the X component. Rerlacing X by
Y will yield an analogous Y component filter,

As previously indicated the state vaﬁiable Z, the measurement
matrix M, the measurement column matrix 2 and the measurement covari-
ance matrix Q are defined by

X
Z= : M=[1 0] ; 2" = X" and Q = Var X"

X

From equation (8), the transition matrix corresponding to a con-
stant speed straight line model of aircreft motion is defimed by

-1

A

0 1

where A is defined as the time interval cince las{ track smoothing.
The elements of the_predicted covariance matrix P and the smoothed
covariance matrix P° are defined by

Var XP Cov Xﬁp Var xs Cov Xis

Cov Xﬁp Var i? Cov xis Var is
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The elements of the weighting coefficient S which will become the
positional and velocity smoothing coefficients are defined by

o

w
L}

B

S
From equation (2) and the definitions ,of #, P and ¢ , the ele-
ments of the predicted covariance matrix P’ are determined as follows

,Vav' Cov ﬁp 1 A ':lar XS Cov XI.{S 1 ;]
lgov Var X° 0 1 lEPv %> var X° A iJ

Performiag the requisite matrjx multiplications, the elements of the
predicted covariance matrix P are determined to be

Var ¥ = Var £° + 28 Cov x%° + A% var &5
Var ip = Var is
Cov xip = Cov Xis + 4 Var is

Equations (26) are used to extrapolate the smoothed covariance matrix

from one iteration to the time of the next track smoothing in the
following iteration.

From equation (4) and the approp. iate definitions, the elements
of the weighting coefficient S are determined as follows

' T
S = P M {MP M + Q)
1
o Var XP Cov X}.(P 1 Var XP Cov J_G:’.P 1
= P .p (l O) .P P + Var
8 Cov XX Var X 0 Lf:ov XX Var X 0

Solving for o and B, the elements of the weighting coefficient S are
determined to be

} 4 *P
o = Var X. 8 = Cov XX

Ver X? + Var XM Var xp + Var x“

we

(26)

27)
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From equatign (5) and the appropriate definitions,
state variable 2°, the components of which are X5 and xS
mined as follows

the smoothed
, 18 deter~

S

25 = 2 4+s@®-m")

xs [x? a XP
sl = lep| ¥ -0 o0,
X [x 8| 1

Performing the required matrix arithmetic, the elements of the smoothed
state variables are determined to be

2 e Xra @5

s . (28)
P - Lrst-xH
Finally, from equation §6) and the appropriate definitions, the
smootpgd covariagge matrix P°, the components of which are Var X°,
Cov XX° and Var X", is determined as follows
P° = (1-swp
r S os 7 P &
Var X Cov XX 1 0 v} Var X Cov XX?
S »S = = [l 0] oM *P
Cov Var X 0 1l B Cov XX , Var X
Performing the matrix manipulations, the elements of the smoothed
covariance matrix are determined to be
S
Var X* = o Var Xm
Cov XX° = 8 Var X® (29)

Var is = Var iP -~ B Cov xF

Equations (26) through (29) constitute the X coordinate Kalman
smoothing and prediction filter. Substituting Y for X in each of

thece equations results in the corresponding Y componcat filter
equations.
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Tracker Initialization

For the one dimensional filter equations that were derived in
Appendix A, three quantities were 1equired in order to commence the
iterative process. They were the expected or predicted value of the
range prior to any measurement, the variance associated with the pre-
dicted range and the variance associated with the range measurement.
As should be expected, analogous quantities are required in order to
initialize the multi-dimensional tracking filter.

The quantities that are analogous to the expegted value of range
are the components of the sgtate vector z8 namely X° and XS, Corre-
spondingly to the variance of thg predicted range are the elements of
the smoothed covariance matrix P namely Var XS, Cov xxs and Var XS,
Finally, analogous to the variance of the range measurement Var R are
the cartesian coordinate variances associated with the (R, ) measure-
ment datum.

Assuming a two point ini:iation process, the X components of the
multi-dimensional quantitizs described above are defined as

where le, sz are the X coordinates of the first and secord measure-
ment data associated with the two point initiotion process. 4 is the
time difference between the initial and the second R, ¥ measurement
datum.

Setting the initial value of Var XS to the variance of the X com-
; Mnent of the measurement datum used in the initiation process and from
equations (13b) and (13c), the elements of the smoothed covariance
matrix PS are defined by

DR R n

Var XS = Var )

il b

Var %5 = u—‘?—’%—}-{-‘l (31)
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Cov xis VarAxm
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used in the initiation process.
mined from the relationship

Equation (31) states that the initial value of the variance of XS
is the variance of the X component of the measurement datum that is

From equation (13a), Var X® is deter-

Var ® = Var R Sin® ¢ + R

where (R, ¥) are the coordinates of the meast .ecment datum and where
Var R and Var @ are based upon .a prio:ri knowledge of the sensor's
charactecistics.
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