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ABSTRA~T 

The physics of the Gr\ineisen parameter for solids is investigated from 

the view of conceptual and physical contributions. The relatively simple 

physics of a van der Waal's gas is applied to solid densities yielding a 

Griineisen r ::s 2. 

Tbe separate electron and phonon contributions for metals are considered, 

and lt is shov.n that except (or very high and very low temperatures the phonon 

contribution dominates. Procedures for evaluating f1 from shock-Hugoniot 

data for isotropic solids are treated, and the necessity for applying ultrasonic 

data to anisotropic crystals is considered. 

The role of the more exotic thermal excitations of solid state physics in 

determining r is mentioned. 
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I. INTRODUCTION 

Consider a system having total internal energy E, pressure P, volume V, 

and temperature T. The Griineisen parameter, r , for that system is 

defined by 

(l) 

where the derivative is to be evaluated at constant volume. As give'l by the 

macroscopic {operational) definition of Eq. (1), r is a measure of the 

change in pressure produced by a change in system total energy under the 

condition of constant volullle. 

As evidenced from the abc,ve definition r is a thermo (energy)-mechanical 

(pressure) quantity, and as such is expected to be impo1·tant to thermomechanical 

problems. A few examples of such problems are: shock wave effects (e. g. , 

explosively driven shock waves in solids), the thermal expansion of solids, 

and the rapid heating of materials due to their absorbing intense pulses of 

nuclear radiatioo. In the last example r becomes of extreme importance 

since, for radiation pulse duration small compared to relevant times for acoustic 

transport, the induced thermal pressure is directly proportional to r 
In this report we shall consider the physics, sometimes on a microscopic 

scale, responsible for the Grlineisen parameter having its observed values. 

There is good reason for doing so. Presently, in the United States, technology 

has outpaced science to the point where design engineers frequently find them-

selves using materials which have unknown responses to the environments in 

which they are to be placed. This is especially true in the area of military 
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missile technology where very often new exotic materials are required to survive 

radiation environments in which their response is unknown. Knowledge of the 

Grlineisen constant physics would allow an engineer to mak(.; valid estimates for 

those materials for which r has not yet been measured. 

Understanding the physics of r is also quite important to the understanding 

of related physics problems. One such problem area of interest is that of 

electromechn ... 'llical shock effects in metals. If one analyzes shock propagation 

in metalf.: in terms v! a two fluid model of electrons and phonons, then the 

Gr\meisen paramet'3r of t:ach component becomes important. Some of the analysis 

presented in this repor: will be directed to\7ards that problem. 

So that the unini:iat·~d reader may be eased gently into the problem we will 

begin by treating the relatively simvle problem of the Gnmelsen parameter of gases. 

After that we will consider some generalities of r ~ in particular as they apply 

to solids. Finally, calculations will be made of the GrU!leisen parameter fur some 

real systems of interest. 
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n. GASES 

A. Perfect Gases. 

Consider an ideal monatomic gas With equation of state (EOS) and total 

energy E given by 

P V = N~T 
' 

(2) 

.2 
:. PV = ~E. (3) 

From Eqs. (1) and (3) we find 

(4) 

Jn the above N is the number of molecules (atoms for a monatomic gas), k is 
-16 

the Boltzmann constant (1. 38 x 10 ergs/• Kelvin), and 'f is the absolute 

temperature. 
5 

Looklllg now at a gas made up of diatomic molecules With E = 2 Nkt we find 
2 r = s . Consequently, a given amount of energy introduced into a diatomic gas 

produces less of a pressure increase than in the corresponding monatomic gas. 

This result is easy to understand; for the diatomic case some of the energy goes 

into the iDteroal energy associated with molecular vibration. 

While the above example is somewhat trivial there is information of interest 

contained in it because the diatomic gas bas a hint of solid state behavior in 1t by 

virtue of its mternal energy. Suppo~~e that we were able to put the energy into 

the diatomic gas system in a time small compared to that necessary for transitions 
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5 
between the translational states of a di2tomic molecule. Since E = 2 NkT'is 

3 
composed of 2 :fkT kinetic energy associated With translational motion of the 

center of mass of each molecule, and NkT internal energy associated with \Jibra-

tional states, the r for the system would appear as shown in Fig. 1 below. 

Figure 1. Griineisen parameter 
as a function of time for beam 
pulse width time t. The time for 
translation between vibrational 
states is~. 

"'-----

0~--------------~~-----------------.t 
t, 

Fig. 1 shows the r that would be measured as a ftmction of varying deposi-

tion time for the system of diatomic molecules. It is to be tmderstood that we 
-14 

are only talkiDg about a thought experiment here smce t - 10 sec. As an 
1 2 

alternative to the fast energy pulse the same results (i.e. • r = 3 for a 

diatomic gas system) can be achieved by imaginiDg an omnipotent hand reaching 

in and maintaining the pre-radiatiOD separation distance, and thus the pre-

radiation state, between the atoms of each molecule. 
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B. Imperfect Gases. 

A gas is considered to be imperfect when interactions between the gas mole

cules must be considered in order to explain experimental results. One of the 

simplest models of an imperfect gas is that given by the van der Waals' EOS 

(5) 

(6) 

where a and bare constants dependent upon the gas \Dlder observation*. The 

constant b is generally considered as being proportional to the volume occupied 

by a molecule (and thus unavailable to other molecules), while a is proportional 
1 

to the interaction potential energy between the molecules • 

Combining Eqs. (5) and (6), while neglecting terms of higher order than those 

linear in a and b, gives 

PV-~t(l+ ~b)- ~~ · (7) 

Applying Eq. (1) to Eq. (7) gives for the Grimeisen constant (i.e. , energy 

derivative at constant volume) of the van der Waals' gas 

(8) 

Eq. (8) contains the very important result that the intermolecular potential 

*Altematively a and b may be considered as making up the second virial coefficient, 
say B2, with l'lh 

S~-- Nb- kT · 

7 



(other than the e:•pproximately hard sphere interaction responsible for the 

volume exclusion constant b) does .not appear in r . This is simply understood; 

at constant volume the average Intermolecular distance remains unchanged by the 

addition of energy, and thus the potential energy from Intermolecular Interactions 

remains unchanged. We are thus led to expect that the Intermolecular potential 

will not appear in the constant volume GrUneisen constant of a solid. Such is 

indeed the case. 

Suprisingly enough Eq. (8) can be used to estimate the r of a liquid or a 

solid. One simple model for b has b = 4 V 
0 

, where V 
0 

is the volwne of a molecule. 

Applying Eq. (8) to a solid or liquid with half of its available volume occupied by 

the molecules (and half otherwise empty), with the simple model forb mentioned 

abovt, yields 

(9) 

which is a suprisingly acceptable result; with the exception of Zirconium, metals 
2 

have Gr\Dleisen constants which vary between one and three at room temperature 

and atmospheric pressure. 

It is possible to lOlderstand the success of Eq. (9), as applied to a solid or a 
3 

liquid, by considering the shock compression Hugoniot EOS for a condensed 

medium. For volume changes small enough so that only the first nonlinear 

term need be considered we can write 

PHs "'• ( t- •) T B• ( t.- •)• > 

or upon rewriting 

A"' d + a' -.J: + 
" .... "'l 

8 

G~ 
.) 

( lOa) 

(lOb) 



where the subscript zero denotes the undeformed state, the subscript H denotes 

Hugoniot, and A8 , BH are characteristic of the material in question. f 1s the 

mass density, and the primed quantities are the constants associated wltb the 

rearrangement In Eq. (lOb). The point of Interest is that Eqs. (5) and (lOb) have 

the same functional form (AH is a ftmction of temperature). and thus the proper 

interpretation of bIn Eq. (8) should lead to a proper result-- which it does. 
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m. GENERAL THEORY 

There are two ways In which to approach the proolem of the Gruneisen 

parameter. One method involves purely macroscopic thermomechanical 

consideratioos, while the other involves a detailed statistical mechanics investi-

gation of the system in question. We begin with the macroscopic approach. 

A. Tbermomechallical Considerations. 

We start with the definition of Eq. (1). For V and T independent variables we 

have at constant volwne 

(11) 

4 
It is a simple problem in calculus to show , by alternatively considering V as 

a function of P and T, that 

( ~)~·=- (*)T ( ¥), 
With the result 

(12) 

The derivatives of Eq. (12) each relate to easily performed quasi-static (i.e. , 

non shock) laboratory experiments: 

~.il Thennal expansion coefficient=~ ( ~;),-> (13a) 

p:. Bulk modulus = - " (~G),. ) (13b) 

C~a Heat capacity at constant volume • ( ~). (13c) 
'II 

JD terms of oe , fJ. and Cv• Eq. (12) becomes 

(14) 
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In the absence of rate dependent effects for tbe energy deposition problem 

(e. g. , see tbe discussion relating to Fig. 1) the quasi-static result of Eq. (14) 

theoretically should give the same r as that of the dynamic deposition expert-

ment. In practice such is not alwayu tr·.~e however, as the energy deposition 

experiment measures r by measuring the pressure o! the puopagating shock 

caused by that deposition, and effects such as attenuation and dispersion can easily 

mask the correct induced pressure (and r ). 
There is another macroscopic approach of interest, especially since it is 

related to work done in the next section. It happens that, to a good approximation 
5,6 

, the thermal properties of solid can be represented by its "characteristic 

termperature", e . In that approximation the internal energy can be shown 
5

•
6 

to be of the form 

(15a) 

where f is a flDlction with common form for all solids. Using the first law of 

thermodynamics, and the definition of the free energy, F, of a system 

F=E-TS.> 

where Sis the entropy of the system, one can easily show 

Eq. (17) says that F and E have the same flDlctional form 

where again g is a function with common for , for all solids. 

11 
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(17) 
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Again usiDg the first law of thermodyDamics, along with Eq. (16), leads 

to 

P·-(*)· 
T 

(18) 

U we break up the internal energy into a zero temperature contribution, plus a 

temperature dependent part, then 

F (v.)T) = Eo t ")-+ E.,(.''.> i)-T S('~.;T )!! ~l~) + F
1 

('4.JT .)) (19b) 

f: ('~ ') = E.. {'I), (19c) 

where Eq. (19c) follows from (l9b) and the third law of thermodynamics 

(S -.o ae 1'~0). 

:, P=- ~-(3' =- :lli- (~) (~), 
"a'l ~v J,. 3V ·~~ 4 c.w (20) 

where the second part of Eq. (20) follows from the characteristic temperature 

approximation as given by Eq. (15b). 

(2la) 

and thus 

(2lb) 

And usiDg 

1 ~F ---
T ~(i=) 

(22a) 
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in Eq. (17) gives 

(1f..) - ~. 
~Ci T E) 

(22b) 

Substituting Eq. (22b) into Eq. (20) yields 

P=-- ~E~ -(~ ~Q)..?,. J 
"3\1 @ JV , 

(23) 

where we have applied Eq. (22b) to the temperature dependent contribution alone 

(subscript 1). For characteristic temperature models such as those of Debye 

and Einstein, which have a temperature independent E) , comparing Eqs. (23) 

and (l) gives 

" ~~ r=---. ® -av 
(24) 

When the Debye characteristic €) is used, Eq. (23) becomes the Debye EOS. 

By using the fUllctional details of a given E) model, and experimental 

Hug<niot data in the form of Eq. (lOa), we can thus use Eq. (24) to arrive at 

numerical values for r . Since the experimental Hugoniot data need not be from 

energy deposition experiments (it could be the result of explosive induced shock 

measurements), Eq. (24) turns out to be a very useful reslit. In the next section 

we shall see that 

(25) 

in terms of the coefficients of Eq. (lOa). 

B. Statistical Mechanics Considerations. 

We immediately consider a system made up of two weakly interacting subsystems. 

13 



As such the formalism is applicable to such systems as fluid filled porous 

7 
solids , mechaDical mixtures (e.g., KDNBF with diatomaceous earth- an 

explosive mixture sometimes used in electro-explosives devices), ar d for at 

least conceptual purposes to electrons and phonons in solids. 

Let ~ be the partition function 
8 

for the system. 

(26) 

where E is a total energy state of one of the subsystems, and £ is the inter-
r rs 

action energy between the two subsystems when one subsystem has energy E 
r 

and the other has energy E 
8

• The swn is over all possible energy states consistent 

with the total energy of the system being constant. The interaction is asswned 

weak in that E and E are taken to be the subsystem energies in the absence of any 
r s 

interaction. The mean energy and entropy of the system are given in terms of Z 

by 

(27a) 

(27b) 

Eqs. (26) and (27) are sufficient to find the free energy, and thus the pressure, and 

finally the Grlineisen paranteter. 
-1 

Ualng fJ = (kT) , and further defin.lng ~ e £<. 1 for a weak interaction, Eq. (26) 
rs 

becomes to first order 

or 

r • ~ e-PEr e~Et. ( \- ~En), 

-pEr- - pE., 
'l = ~A ~ 8 - P ~ E,ts e. e. ) 

t,s 

14 

(28a) 

(28b) 



where the subsystems are now laoeled ,A and B. and Z A is the partttton function 

of subsystem "A" when that subsystem is considered to be an isolated system. 

(29a) 

Thus 
(29b) 

and 
- - - ")J.n. ~A8 E a E • EA + E 8 - ;p (30) 

Performing the last indicated operation in Eq. 

~J"' ~A• ' ~ e - f'l:,. -liEs = 2. ~- ~ c;u e e + 
~p """ ... f;'> 

+ L I EI"SJ' EA+ ~. -Er-EJi \. ~.-~Er e-f'E~~ (31) 
~A J. l'j5 l j 

Similarly applytng Eq. (27b) to Eq. (29b) yields 

and the free energy takes oo. the simple form 

or 

(33b) 

which defines F AB • Although we could have guessed the result Eq. (33b) for two 

weakly interactiDg subsystems, Eq. (33a) allows one to calculate FAB when one has 

a model for the subsystems and their interaction. 

Hi 



c. General Applications. 

Consider the case (e. g. , a mixture of weakly interacting gases) when the sub

systems can be considered as occupying the same volume. Then 

or 

and 

r p v P. " - v ( ~ FA.) ) V = ',._ T B '3'i T 

rE"' rAE~+- r 8 E8 -\J (~F"•) > 
-av r 

(34a) 

(34c) 

where Eq. (1) has been used. The result Eq. (34c) is quite significant in that, even 

for non-interacting subsystems, it says that the Gruneisen parameter is a weighted 

average of the Gr\Dleisen parameters of the subsystems. Eq. (34c) can, for 

example, be applied to problems such as the absorption of a high intensity laser 

beam by the air-vapor mixture in front of an irradiated solid surface 
9

• 

Let us now apply Eq. (33b) to the case of a mechanical mixture, the subsystems 

(components) occupy volume separately. For brevity we neglect the interaction 

energy between the subsystems. Thus 

F = F~ ... F8 ., (35a) 

\1 a V,.. + Va • (35b) 

:, p2' -l.,F2-. -(~) ci'{" -(";)Fa\ cf.J& • (36a) 
:a\1 T "3V" 'T cl·ll '3'1·~ clv 

Eq. (36a) contains the realistic assumption that FA does not depend upon VB' and 

similarly for F B" 

16 



(38b) 

(38c) 

and then 

The result for a mixture of two non-interacting mooatomic gases can be re-

written, from Eq. (34c) and (2), as 

(37) 

an expected result. Eq. (36d) is thuR reasonably explained as Eq. (37) plus a 

volume effect. We note that, for N = liA + NB, r A 

have r varying lfDearly between the extremfJS r A, r . 
E 

r B assumed, we 

For the special case of compOllents A rutd B undergoing equal strain (cootaining 

zero strain in both components as a special case), the solid mixture behaves as 

the gaseous mixture of Eq. (37). For equal st:.."ains 

but 

17 
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Using Eq. (38c) In Eq. (36d) yields 

r c r" ( ~A) .,. r. \ ~) , (39) 

which has r varying linearly bet\\een r A and r B since E = EA +~B. We note 

that if the strains are equal the constant volume definition ,)f Eq. (1) holds even for 

energy deposition pulse duration large compared to the time for acoustic propagation 

across a component particle; if the strains are equal they will be zero until a pres-

sure wave due to inhomogeneous deposition reaches the local observation point. 

Thus for equal strains, which contains a statement concerning elastic constants, 

Eq. (39) appears to hold for energy deposition times both large and small compared 

to acoustic propagation times. 

There is another special case which can be treated analytically. If the component 

strains are not equal (thus allowing local pressure relief), then for energy deposi-

tion times large compared to the time for acoust1.c propagation across a particle 

diameter 

r- PA'Pe.) (40a) 

and p" : ~A \j - ·pA V 1\ l ~A) . (40b) 

:. r •- r P.• l ~) (' ..- ~~~) > (4oc) 

where r * .. 10 A indicates the "effective" Gri.Dleisen constant since the constant 

volume cmditions of Eq. (1) are not satistied. Alternatively, Eq.(40a) can be used 

to substitute the compressibility, K, for the volume terms in Eq. (36d). 

. ' Jv K =. - ~ dP • (41) 

18 



When Eqs. (40a) and (41) are used Witb Eq. (36d) oae gets 

U the approximations of Eqs. (38c) or (40a) do not hold, than Eq. (36d) must 

be used along With a model for VA= VA (V) and VB= VB(V). 
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IV. SOLIDS 

In this section we consider the individual contributions to the Gruneisen 

parameter of a solid. We consider only metals because 

a. The results for metals contain the results fol' dielectrics as a special 

case. 

b. As mentioned in the introduction we have a strong interest in electromech-

anlcal effects in metals. 

c. For the most part, aerospace materials are composed of metals, 

dielectrics, or their mixture (e.g., composites). Further, in preOJent technology, 

aerospace applications stand the best chance of seeing an environment where a 

knowledge of the Gr\ineisen parameter is important. 

We break up the problem into electron and phonon* contributions while 

neglecting the volume dependent zero degree Kelvin cohesive energy in keeping 

wlth the constant volume definition of Eq. (1). Thus 

(43) 

where the subscript e denotes electrons, p denotes phonons, and ~p(V, T) the 

contribution to the temperature dependent part of the free energy from electron

phonon interactions. Even though the interaction tenn appears to be crucial to the 

electromechanical problem, for the GrWleisen parameter problem one gets good 

agreement wlth experiment by considering the electrons and phonons to comprise 

non-interacting gases which occupy the same volume. Thus we neglect the inter-

action term and note that Eq. (34c) applies. 

*A phonon is a quantized unit of lal1lce vibration in a normal mode system where 
the vibrations behave as a set of non-interacting osctllators. 

20 



A . Electrons. 

(44a) 

(44b) 

(44c) 

(44d) 

(44e) 

In the above m is the mass of an electron, N is the nwnber of electrons in the 
-27 

system, and h is Planck's constant (h = 6. 63 x 10 erg seconds). Compartng 

Eq. (44e) with Eq, (3) shows that the electrons behave as if they were an ideal gas. 
11 

Eq. (44e) can also be derived on the more general grounds of thermodynamics 

with a Planck distribution, which then gives Eq. (3) as a special case. 

For the phonon contribution we break the problem up into low and high 

temperature regimes, The reason for the separation is the radically different 

functional dependence of the energy and entropy in the two regimes. The formulae 

for both regimes is from reference eleven. 

B, Phonons-Low Temperatures. 

(45a) 

(45b) 

(45c) 
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1l~"' (.._T )"'" ('dC: \ 
v Pp ('V, 'T) s - v~ . lo(~ <: )~ ~ ./.r (45d) 

' r. = - :i._( ~G \ · · r c ·-;,v )_ · 
T 

(45e) 

In arriving at Eq. (45d) we have treated the factor of V in Eq. (45c) as a 

constant. This is because the factor of V tells how much material h~ present 

without saying anything about the structure, while the pressure is determined by 

the structure. The electron subsystem was treated in the same way 1n that the 

number of electrons, N, was taken to be constant. hS.'Zlth • and c is defined by 

:.1 + -) 
c: • c.s Reproduced from 

best available copy. (46) 
}.. t 

where c J is the longitudional sound velocity, and c t is the transverse sound velocity. 

C. Pbonons - High Temperature. 

At high temperatures the sums over the vibrational states become greatly 
11 

simplified with the result 

Er ( v.J T ) = 3lol k T, (47a) 

'5r<v)T)T .. ~Ni\T[~twahT- ~~w- + '], (47b> 

where N is the number of atoms (for brevity we consider a monatomic lattice) and 

ii is some mean vibrational frequency associated with the lattice structure. It is 

obv1.>us from Eqs. (47) that only the entropy contributes to the pressure. 

· · P v .. - 3 N t-t T 'I ( ~w ) ?J" T > 

... rP .. - ~ f ~). 
w \ ~\1 T 

22 
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If we now use the relationship from lattice dynamics 4 

(49) 

....... 
where 1 is the magnitude of the state vector ~ , then we see that the high and 

low temperature regimes yield the same result 

r. .. - ._. ·-- . "(de:). r c:. ~v T 
(45e) 

A few words are in order regarding the difference between r = 2/3 and the 
e 

result Eq. (45e). The energy of an individual phonon can be written 

(50) 

where pis "momentwn" associated with the phonon state. The fonn of Eq. (50) 

is radically different from that for the energy of a gas molecule in an ideal gas, 

namely, 

(51) 

where m is the molecular mass. Thus the difference between r and r is 
e p 

explained by the non-gas-like behavior of the phonon system. 

From the discussion of section U of this report we can assume that r is of 
p 

order unity (we shall actually detennine it later in this section), and apply Eq. (34c) 

With the interaction term taken as zero to judge the relative importance of the 

electroo and phonon contributions. We need only consider the ratio. E (V, T)/E (V, T). 
e P 

The ratio is calculated below for T = aoo•K (high temperature limit), for the nwnber 

of elec~rons equal to the nwnber of vibrating atoms (i.e., a metal), and an electron 
21 3 

density of 10 per em • The low temperature 1-atio is found to be unity at to•K. 
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High Temp.: Ec('4 .. T) '1"1\~mhT 1 - "'--· 
Ep<.'1')1') !>&..a l~Jh 2C 

(52) 

Low Temp.: Ee l'-1 > T) s 5 m h l ~ J.t C: J .-v I. 

Er<v,T) (:.-,r~("T)a 
(53) 

In Eqs. (52) and (53) we have taken a typical solid acoustic velocity, c, of 5 x 10
5 

em 

per sec, and n is the density of electrons in the conduction band. 

We thus see that at room temperature only the phonon contributicm. is of 

importance, while below lo•K and above 6,ooo•K the electron and phon•m contri-

buttons are of eq;al magnitude. 

Let us now calculate r from experimental shock wave data. To do so we use p 

Eqs. (lOb), (45e), and 

(54) 

In using Eq. (lOb) for calculating r we are assuming that the density variation 
p 

of PH is primarily due to phonon effects. Since for metals the electrcm. "sound" 
5 7 

(i.e., Fermi) velocity is of order 10 em per sec, which is about a factor of 20 
3 

larger than the observed propagation velocity for a weak shock, the assumption 

would appear to be valid. The assumption is also consistent with the discussioo 

accompany:l.og Eq. (52). The arithmetic is straightforward: 

(55a) 

(55b) 

where 
(55c) 
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is assumed, and 

(55d) 

(55e) 

Btt .. r,...-, 
r A..,. (25) 

where we have evaluated Eq. (55e) at V = V 
0

• 

Thus by using shock wave data generated by non-energy deposition experUnents 

(e. g. , flyer experiments), we arrive at a Grlinetsen parameter for use m energy 

deposition induced shock work. 

Table I below compares r p for three metals from Eq. (25) with the Gr\inetsen 

parameter based upon the thermodynamic quantities of Eq. (14). 

a. 

b. 

TABLE I 

COMPARISON OF SHOCK AND THERMODYNAMIC DATA 

Aluminum 

Copper 2.00 

Lead 2. 78 

Hugoniot data fro.m Table IV of referen<:e 2. 

b 
2.09 

I. 98 

2.46 

Values from L. V. Al'tshuler et al, Soviet P~ys. J.E. T.P.l!_, 573 (1960) 

The agreement shown tn Table I is rather good, and ts typical of the agreement 

which one would get for a more extensive list of metals. 
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D. Volume Dependence. 

It ls also possible to include a volume dependence for r in the calculation 

leading to Eq. (25). One need simply not evaluate Eq. (55e) at V = V 
0

, and for 

higher volume terms simply add on additional higher order terms to Eq. (lOb). 

The volume dependence of r is indeed quite importa.1t as can be seen from the 

data for aluminum (from ref. 2) given below 

(56) 

The volume terms of Eq. (56) contribute twenty percent to r (V) for f I f. = 1. 2, 

and the result would even be more impressive if the second and third terms on the 

right of Eq. (56) were not of opposite sign. 

We should at this time comment on the physics of such a volume dependence, 

namely where it comes from. In Eq. (8) let b have a volume dependence (to be 

explaiDE:d shortly). and expand r as a flDlction of volume for a small volume 

change about an Initial volume V 
0

• Thus 

r( "'-+ .w>. rt•.) + j [ !~l ~"z'(.) -•] 
• 

6V 
(57) 

There are two contributions to Eq. (57). The first involves the volume change 

alone (i.e. , 6. V /V ) and is explained by the observation that as the volume 
0 

increases the molecular volume becomes less important; since pressure is a 

measure of the statistics of particle interactions with the walls of an imaginary 

container, the presence of other particles which occupy volume effects those 

statistics. 
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The second contribution to Eq. (57) is proportional to (dbjdV), and says that 

the molecular volume is dependent upon the density of noighboriDg molecules. This 

is understood by saying that where the volume dependence of the Grtmeisen para-

meter is concerned, an exponential repulsive interaction is more appro!)riate than 

a hard sphere interaction. Indeed, by using such an exponential repulsive term 

12 
Sirdeshmukh and Rao were able to derive r (and its volume dep( ndence) for 

some crystals of the fluorite structure. 

Before leaving this section we wish to mention another method for arriving at 

the volume dependence of the Gnm.eisen parameter, namely the Dugdale - MacDonald 

2 3 
formula ' • That formula is 

l... 
3 

(58) 

Eq. (57) is derived for au isotropic solid at o•K by essentially taking the third 

derivative with respect to volume of the lattice potential energy (which is assumed 

to be only a function of the atomic coordinates). Eq. (58) works because, if + is 

the potential energy, and if the potential is quadratic in the lattice parametar, then 

(59) 

(UI/21f) being the vibrational frequency of the o•K unoccupied vibrational states. 

The success of Eq. (58) is understood as the right hand side of the proportionality, 

Eq. (59), is the prime ingredient of Eq. (48b). 
3 

Equation (58) is one of a whole class of relations which utilize macroscopic 

PV data to arrive at a Gnmeisen constant. All such relations, including Eq. (25) 
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and the procedure of this section used in deriving it, assume an isotropic solid. 

This means that the Hugoniot data used in arriving at r must be in a raDge 

where pressure is large compared to the yield stress (stress for the onset of 

plasticity). This is because most of the Hugoniot data is arrived at via one-

dimensional strain experiments (e.g •. , fiyer plate with planar geometry), with the 
13 

result that solids are not in an isotropic state In the region of the yield stress 

The yield stress of a typical metd lies between a few kilobars and tens of ld.lobars. 

E. tntrasonic Data. 

It frequently happens that Hugoniot data does not exist for a material. In such a 

case ultrasonic data can often be used to evaluate r . What is needed experimen

tally is the usual apparatus for measuring elastic constants, and additional equip-

ment which allows for those measurements to be carried out as a function of 

pressure (a maximum pressure of a few kilobars is usually sufficient). The theory 

is relatively simple. If 0'" ij is the stress tensor, then 

where l k1 is the strain tensor, and C and D are the second order and third order 

elastic constants respectively 5• For a cubic crystal undergoing an isotropic volume 

change P = tr = V" 
' 11 22 

fT' and 
33

1 

(61) 

Thus the constants c and D can be related to the constants A and B of Eq. (lOa). 
H H 

The D's are obtained through the pressure variation of the sound velocity. Eqs. 

(60) and (61) when combined are of the same form as Eq. (lOb). 
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.. 
While the Hugonlot EOS approach to the Gnmelsen constant is valid for 

:i.sotropic materials (e. g. , polycrystallfne metals) it is not valid for anisotropic 
u h 

single crystals • This is because the Gnmeisen parameter is really a second 

rank tensor and should be defined by 

r .. s v(~)- · 
'J ~E 'I 

(62) 

Eq. (1) ts then seen to be Eq. (62) applied to isotropic solids. Since the C's and 

D's of Eq. (60) give all of the necessary information for evaluating the various ele

ments of r . the ultrasonic method is the superior tool. Indeed application of the 

hydrostatic Hugontot method to an anisotropic crystal such as Zirconium (hexagonal 
15 

close packed) is DOW known to give r values incc:msistent with thermomechanical 

results because of anisotropic strain effects. 

We are essentially makiDg two points here. First, that in addition to the usual 

Hugoniot data, shock wave physicists have relevant ultrasonic data at their disposal. 

Second, that for anisotropic media, only the ultrasonic data is applicable. 
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V. DISCUSSION AND SUMMARY 

The main Intent of this report has been to give the shock wave physicist. the 

prime applled user of the Gnmeisen parameter • an understandiDg of the physics 

Involved In that parameter as well as the teclmiques in calculating lt from related 

data. 

In this closing section we make a few points which we hope will serve to tie up 

any loose strings. We also menti.:m some relatively esoteric physics cc:mtributions 

to which at this time although interestiDg in their own right are relatively 

unimportant in applications. 

Within the main text of this report we failed to mention the connectic:m between 

the characteristic @ Gnmeisen parameter 

" J® r----) 
® ~" 

and that arrived at through phonon cOD.siderations 

(24) 

(48b) 

The connectlcn is that the characteristic temperature E) allows a characteristic 

frequency. W /21f • to be defined by 
m 

(63) 

Thus if W has the same volume dependence as w the two approaches will give 
m 

the same resulL 

At high temperatures the detailed deflnltloa of • for a monatomic lattice Is 
11 

given by 

(64) 
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where 0( is an index over the possible vibratiODal states of the solid. The 

3 
allowed number of W. increase as we (a relationship known as the density of 

11 --states ) so that we expect w ~ Wm as Wm is associated with the highest possible 

energy state for a characteristic E) model. Thus we are led to expect equality 

in the two approaches at high temperatures. 

At low temperatures a probability factor is present (relating to the probablltly 

that a given state is occupied 11) in the equivalent of Eq. (63). This probability 

factor serves .to reduce the ratio w/w"' to zero as the temperature goes to zero. 

Since w is no longer close toW they do n"Jt necessarily have the same volume 
m 

dependence - and indeed for many materials they do not have the same volume 

dependence. 

Germanium offers a good example of the complications :Introduced by low 

temperatures. Experimentally the thermomechanical GrUDeisen parameter, Eq. (14), 

14 l1!1e.. 
of Germanium is negative in the region between 1o•K and 4o•K. Yet l\1 is 

determined only by the crystal structure and remains positive in that same region. 

That low temperatures present diffi,"ulties should not be suprising as we have 

already seen that electron contribution to r is equal to the phonon contribution at 

about 10•K. Those interested in further details of the electronic contributions to 

are referred to the work of Wallace 
16

• 

There is another conceptual approach to the physics of the Griineisen parameter 

which is very much worth mentioning. It is correct to think of phODons and electrons 

as representing thermally excited states of a crystal lattice in the same sense as 

kinetic energy is the thermal excitaticm of an ideal gas. But there are a host of 

other possible excited states in a crystal lattice which are more or less important 
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dependmg upon temperature, volume, and the types of atoms makiDg up the crystal 

in question. Some of these thermal excitatiODs are listed below. 

MAGNONS
5 

elementary propagatfDg magnetic 
waves in paramagnetic materials. 

EXCITONS
5 

ROTONsi7 

coupled alectrOD-hole pair states. 

elementary rotational states in a 
superfiuid. 

ELECTRON- 5 
ELECTRON PAIRS -the elementary excitations responsible 

for supercODductivity. 

HELICONS lS an electromagnetic excitation In a 
solid state plasma. 

The point is tbat each type of thermal excitation represents a mechanism for 

storiDg energy. Like electrons and phonODs the energy dependence of the partial 

pressures contributed by those more exotic excitations must be considered in 

evaluating the Gnmeisen parameter. 

The effect of the more exotic excitaticms is presenUy not a serious questi<m for 

the applied shock wave physicist. However, as environments change and previously 

stl"8Dg8 materials are introduced into technology ••••• 
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