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ABSTRACT

The physics of the Griineisen parameter for solids is investigated from
the view of conceptual and physical contributions. The relatively simple
physics of a van der Waal's gas is applied to solid densities yielding a
Grimeisen "= 2.

The separate electron and phonon contributions for metals are considered,
and it is shown that except for very high and very low temperatures the phonon
contribution dominates. Procedures for evaluating ° from shock-Hugoniot
data for isotropic solids are treated, and the necessity for applying ultrasonic
data to anisotropic crystals is considered.

The role of the more exotic thermal excitations of solid state physics in

determining l" i8 mentioned.



I. INTRODUCTION

Consider a system having total internal energy E, pressure P, volume V,
and temperature T. The Gruneisen parameter, r , for that system is
defined by

A
M= V(:a?v > 0y

where the derivative is to be evaluated at constant volume. As given by the
macroscopic (operational) definition of Eq. (1), r' is a measure of the
change in pressure produced by a change in system total energy under the
condition of constant volume,

As evidenced from the abcve definition [* is a thermo (energy)-mechanical
(pressure) quantity, and as such is expected to be important to thermomechanical
problems. A few examples of such problems are: shock wave effects (e.g.,
explosively driven shock waves in solids), the thermal expansion of solids,
and the rapid heating of materials due to their absorbing intense pulses of
nuclear radiation. In the last example r becomes of extreme importance
since, for radiation pulse duration small compared to relevant times for acoustic
transport, the induced thermal pressure is directly proportional to r .

In this report we shall consider the physics, sometimes on a microscopic
scale, responsible for the Grineisen parameter having its observed values,
There is good reason for doing so. Presently, in the United States, technology
has outpaced science to the point where design engineers frequently find them-
selves using materials which have unknown responses to the environments in

which they are to be placed. This is especially true in the area of military




missile technology where very often new exotic materials are required to survive
radiation environments in which their response is unknown, Knowledge of the
Grimeisen constant physics would allow an engineer to make valid estimates for
those materials for which ' has not yet been measured,

Understanding the physics of M isalso quite important to the understanding
of related physics problems. One such problem area of interest is that of
electromechanical shock effects in metals. I one analyzes shock propagation
in metals in terms of a two fluid model of electrons and phonons, then the
‘3runeisen parameter of each component becomes important, Some of the analysis
presented in this repor. will be directed tovsards that problem.

So that the uniniliat:d reader may be eased gently into the problem we will
begin by treating the relatively simple problem of the Gruneisen parameter of gases.
After that we will consider some generalities of I . in particular as they apply
to solids. Finally, calculations will be made of the Gruneisen parameter for some

real systems of interest,




II. GASES

A, Perfect Gases.,
Consider an ideal monatomic gas with equation of state (EOS) and total

energy E given by

PV=NRT, E=LNuT, (2)

. PV=ZE. @)

From Eqs. (1) and (3) we find

M Gideal aAs)a% . )

In the above N is the number of molecules (atoms for a monatomic gas), k is
the Boltzmann constant (1. 38 x lo-lsergs/'Kelvi.n), and T is the absolute
temperature,

Looking now at a gas made up of diatomic molecules with E = %th we find
r = % . Consequently, a given amount of energy introduced into a diatomic gas

roduces less of a pressure increase than in the corresponding monatomic gas.

This result is easy to understand; for the diatomic case some of the energy goes
into the internal energy associated with molecular vibration.

While the above example is somewhat trivial there is information of interest
contained in it because the diatomic gas has a hint of solid state behavior in it by
virtue of its internal energy. Suppose that we were able to put the energy into

the diatomic gas system in a time small compared to that necessary for transitions



5
between the translational states of a diztomic molecule. Since E = 3 NKTis
3
composed of 3 NKV kinetic energy associated with translational motion of the
center of mass of each molecule, and NKT internal energy associated with wibra-

tional states, the [ for the system would appear as shown in Fig. | below.

4
Figure . Gruneisen parameter
as a function of time for beam
pulse width time t. The time for
translation between vibrational

§ states is tl .

a— - -\

s

+ - t

Fig. 1 shows the " that would be measured as a function of varying deposi-
tion time for the system of diatomic molecules, It is to be understood that we
are only talking about a thought experiment here since tl-v lo.l4 sec. Asan
alternative to the fast energy pulse the same results (i.e., ' = % for a
diatomic gas system) can be achieved by imagining an omnipotent hand reaching
in and maintaining the pre-radiation separation distance, and thus the pre-

radiation state, between the atoms of each molecule.




B, Imperfect Gases.
A gas is considered to be imperfect when interactions between the gas mole-
cules must be considered in order to explain experimental results. One of the

simplest models of an imperfect gas is that given by the van der Waals' EOS

Nb Na
Pv=NeT(\+ 32— o35 )> ®)

2Na
3RTY

E=3 NRT (1 ®)

where a and b are constants dependent upon the gas under observation*. The
constant b is generally considered as being proportional to the volume occupied
by a molecule (and thus unavailable to other molecules), while a is proportional
to the interaction potential energy between the molecules 1.

Combining Eqgs. (5) and (8), while neglecting terms of higher order than those

linear in a and b, gives

2 Nb N’a
PV"SE(“'T)" EYY )

Applying Eq, (1) to Eq. (7) gives for the Grimneisen constant (i.e., energy

derivative at constant volume) of the van der Waals' gas

F-%‘(""-hlv—b . (8)

Eq. (8) contains the very important result that the intermolecular potential

*Alternatively a and b may be considered as making up the second virial coefficient,

say Bz, with B Nb Na
= -—

2 kT




(other than the upproximately hard sphere interaction responsible for the

volume exclusion constant b) does not appear in [ . Thisis simply understood;
at constant volume the average intermolecular distance remains unchanged by the
addition of energy, and thus the potential energy from intermolecular interactions
remains unchanged. We are thus led to expect that the intermolecular potential
will not appear in the constant volume Gruneisen constant of a solid. Such is
indeed the case.

Suprisingly enough Eq. (8) can be used to estimate the M ofa liquid or a
solid. Ome simple model for bhas b= 4V, , where Vo is the volume of a molecule,
Applying Eq. (8) to a solid or liquid with half of its available volume occupied by
the molecules (and half otherwise empty), with the simple model for b mentioned

above, yields
2/(. .4
r‘: -3-(.l""3>‘2/ (9)

which is a suprisingly acceptable result; with the exception of Zirconium, metals
have Gruneisen const:ants2 which vary between one and three at room temperature
and atmospheric pressure,

It is possible to understand the success of Eq. (9), as applied to a solid or a
liquid, by considering the shock compression Hugoniol;3 EOS for a condensed
medium. For volume changes small enough so that only the first nonlinear

term need be considered we can write

¢ e _.\
PH= A“ (-t;-—\)-rB“(E—l)) ( 10a)
or upon rewriting
iy /




where the subscript zero denotes the undeformed state, the subscript H denotes
Hugoniot, and AH, BH are characteristic of the material in question. f is the
mass density, and the primed quantities are the constants associated with the
rearrangement in Eq. (10b). The point of interest is that Eqs. (5) and (10b) have
the same functional form (AH is a function of temperature), and thus the proper

interpretation of b in Eq. (8) should lead to a proper result -- which it does.



m. GENERAL THEORY

There are two ways in which to approach the problem of the Gruneisen
parameter, One method involves purely macroscopic thermomechanical
considerations, while the other involves a detailed statistical mechanics investi-

gation of the system in question, We begin with the macroscopic approach.

A, Thermomechanical Considerations.

We start with the definition of Eq. (1). For V and T independent variables we

have at constant volume

SR YIC R

It is a simple problem in calculus to show , by alternatively considering V as
a function of P and T, that
cld P il
( F)v' (-w) ( T/p
r‘=-v(§5> (3—1\'-) /(3—5 ) .
T g v

The derivatives of Eq, (12) each relate to easily performed quasi-static (i.e.,

with the result

non shock) laboratory experiments:

d = Thermal expansion coefficient = -( 31.) (13a)
f2 Bulk modulus = - N (" )1' ) (13b)
C ,& Heat capacity at constant volume = (?5‘_‘-') {13¢)

In terms of « , B, and C, Eq.(12) becomes

M= 28 v. (14)
cv

10




In the absence of rate dependent effects for the energy deposition problem
(e.g., see the discussion relating to Fig. 1) the quasi-static result of Eq, (14)
theoretically should give the same (¥ as that of the dynamic deposition experi-
ment. In practice such is not always trie however, as the energy deposition
experiment measures " by measuring the pressure of the propagating shock
caused by that deposition, and effects such as attenuation and dispersion can easily
mask the correct induced pressure (and ™).

There 18 another macroscopic approach of interest, especially since it is
related to work done in the next section. It happens that, to a good approximation

5,8
’”, the thermal properties of solid can be represented by its "characteristic

termperature”, @ . In that approximation the internal energy can be shown 5,8
to be of the form
e

E-TE(%)> (15)
where f is a function with common form for all solids, Using the first law of
thermodynamics, and the definition of the free energy, F, of a system

F=E-TS, (16)
where S is the entropy of the system, one can easily show

?
FmE+T ( 31.: . an
v
Eq. (17) says that F and E have the same functional form
@ .
FaT 3(_‘, ) (15b)

where again g is a function with common for n for all solids.

11



Again using the first law of thermodynamics, along with Eq, (16), leads

oF
P-—(— . @18)
N T

If we break up the internal energy into a zero temperature contribution, plus a

temperature dependent part, then

E(vT)=E (V+ E (VT (192)

FOVD=EMTELTI-TSD=RWN)+F (VT (8b)
(D)= E.(V)J (19¢)

where Eq, (19¢) follows from (19b) and the third law of thermodynamics
(S—=>02asT-»0),
where the second part of Eq. (20) follows from the characteristic temperature
approximation as given by Eq. (15b).

Operating upon Eq, (I5b) it is a simple matter to show that

(?ﬁ. = ﬁm (21a)
eL) (87 °
and thus
3 (F/t) =Q (9_5_ . (21b)
2(4) ?
And using v

1 0F 3(F/‘r) _ (22a)

12




in Eq. (17) gives

2F\ . E.. (22b)
2@ /, ®
Substituting Eq. (22b) into Eq, (20) yields
. _(V_ 29_) k., (23)
P=-3v V& 3v/V

where we have applied Eq, (22b) to the temperature dependent contribution alone
(subscript 1). For characteristic temperature models such as those of Debye
and Einstein, which have a temperature independent ® , comparing Eqs. (23)
and (1) gives

= - — (24)

When the Debye characteristic @ is used, Eq. (23) becomes the Debye EOS,

By using the functional details of a given @ model, and experimental
Hugoniot data in the form of Eq. (10a), we can thus use Eq, (24) to arrive at
numerical values for |1 . Since the experimental Hugoniot data need not be from
energy deposition experiments (it could be the result of explosive induced shock
measurements), Eq. (24) turns out to be a very useful resdt. I the next section

we shall see that
i (25)
in terms of the coefficients of Eq. (10a),

B. Statistical Mechanics Considerations.

We immediately consider a system made up of two weakly interacting subsystems.

13



As such the formalism is applicable to such systems as fluid filled porous
solids 7, mechanical mixtures (e.g., KDNBF with diotomaceous earth - an
explosive mixture sometimes used in electro-explosives devices), ard for at
least conceptual purposes to electrons and phonons in solids,

8
Let & be the partition function for the system,

Z = Z e‘PErs =3 e"ﬂ(er*es* Ees)

2 o

5 (26)

where Er is a total energy state of one of the subsystems, and ers is the inter-
action energy between the two subsystems when one subsystem has energy Er

and the other has energy Es' The sum is over all possible energy states consistent
with the total energy of the system being constant, The interaction is assumed
weak in that Er and ES are taken to be the subsystem energies in the absence of any

interaction., The mean energy and entropy of the system are given in terms of Z

by
"._’a:;'t, (27a)
S=k(nZ2+pE). (27b)

Eqs. (26) and (27) are sufficient to find the free energy, and thus the pressure, and
finally the Grineisen parameter,
-1
Using # = (k) , and further defining pers‘< 1 for a weak interaction, Eq. (26)

becomes to first order

7= z’; SPEr PR (1 ey, (28a)
or - pEr - pEs
Zs'z;\?e’péarse e 2 (28b)

14




where the subsystems are now labeled A and B, and Z A is the partition function
of subsystem "A" when that subsystem i8 considered to be an isolated system.
Rewriting Eq. (28b)
e - PE, -fEg
i’iAt'['- &.eP'e ]! ZAf.iA" (298')

tAt. Vs r
Thus
- = - 24n T
and EaE=E\+Eyp — ';P AP (30)
Performing the last indicated operation in Eq, (30) gives
9!!‘ iA. \ b= - 951- -ﬂEs
Y X Z. e €
o = (31)
+ zf!. Z E"i EatEp - E,-

Similarly applying Eq. (27b) to Eq, (29b) ylelds

hat - - - ~ g€ -BEg
S=S,+Sg + uld 2, E,S{EA* E,-E,—tgse e s, (32)
(A
and the free energy takes on the simple form
' -BE, ~BE
or
F=F +Fr Fgq, (33b)

which defines F AB * Although we could have guessed the result Eq. (33b) for two
weakly interacting subsystems, Eq. (33a) allows one to calculate Fo g when one has

a model for the subsystems and their interaction.

15




C. General Applications,

Consider the case (e.g., a mixture of weakly interacting gases) when the sub-

systems can be considered as occupying the same volume . Then

F 3F,
P=- (W)T= Pat P — Bcs)) (34a)
T

or

Pv= GVt BV -V %}3‘—')1_ > \34b)
and - -

"E = Mg, + Tglkg -V (gF“') 5 (34c)

2V /;

where Eq. (1) has been used. The resuit Eq. (34c¢) is quite significant in that, even
for non-interacting subsystems, it says that the Gruneisen parameter is a weighted
average of the Gruneisen parameters of the subsystems. Eq. (34c) can, for
example, be applied to problems such as the absorption of a high intensity laser
beam by the air-vapor mixture in front of an irradiated solid surfaceg.

Let us now apply Eq. (33b) to the case of a mechanical mixture, the subsystems
(components) occupy volume separately. For brevity we neglect the interaction

energy between the subsystems. Thus

F=F, v F, (35a)

Vs Vo + Vs - {35b)
. P ("a_F o _[PFa\ d¥a _ Fg\ JdVp (36a)
A N A dVp Tdv 2V v

Eq. (36a) contains the realistic assumption that F A does not depend upon VB' and

similarly for FB'

16




dVa dVg

P= £\ ay T T VI (36b)
~ dva dV,
PV=sTE= P v + PaV a3V 0 (36¢)

and then

() (BN ) o

The result for a mixture of two non-interacting monatomic gases can be re-

written, from Eq., (34c) and (2), as

= rA(%) ' r.(%s) (37
an expected result, Eq. (36d) is thus reasonably explained as Eq, (37) plus a
volume effect. We note that, for N =¥, + N, \"A < 0 B assumed, we
have [ varying linearly between the extremes [’ K r 5
For the special case of compoilents A aad B undergoing equal strain (containing
zero strain in both components as a special case), the solid mixture behaves as

the gaseous mixture of Eq. (37). For equal stiains

'.l_vi‘ - c-N—B > (38a)
Vﬂ VI
but
v Y\ Va ViV (38b)
dv _ dVa _ dVs, (38c)

17




Using Eq. (38c) in Eq. (36d) yields

E, [
C=0 (?"-)+ Ca (—{ 3 (39)
which has [! varying linearly betwoen | A and pB gince E = E—A + EB' We note

that if the strains are equal the constant volume definition of Eq, (1) holds even for
energy deposition pulse duration large compared to the time for acoustic propagation
across a component particle; if the strains are equal they will be zero wmtil a pres-
sure wave due to inhomogeneous deposition reaches the local observation point.
Thus for equal strains, which contains a statement concerning elastic constants,
Eq. (39) appears to hold for energy deposition times both large and small compared
to acoustic propagation times,

There is another special case which can be treated analytically. If the component
strains are not equal (thus allowing local pressure relief), then for energy deposi-

tion times large compared to the time for acoustic propagation across a particle

diameter
P= Pa=Fs, (403)
. v
and Pv= PaV = PaVa \7;> . (40b)
. * * En . !?_ 40¢c
ol = P“ ('_E_)(.If Vﬂ>) ( )

* . 10
where f'A indicates the "effective" Gruneisen constant since the constant

volume conditions of Eq. (l) are not satistied, Alternatively, Eq,(40a)can be used
to substitute the compressibility, K, for the volume terms in Eq, (36d),

A 1 dv
K "';;' ‘;’F' (41)

U



When Eqgs. (40a) and (41) are used with Eq, (36d) one gets

* ] Kafn * KlEC 42

H the approximations of Eqs. (38c) or (40a) do not hold, then Eq. (36d) must
be used along with a model for VA = VA(V) and VB = VB(V).

19




IV. SOLIDS

In this section we consider the individual contributions to the Gruneisen
parameter of a solid. We consider only metals because

a, The results for metals contain the results for dielectrics as a special
case,

b. As mentioned in the introduction we have a strong interest in electromech-
anical effects in metals.

c. For the most part, aerospace materials are composed of metals,
dielectrics, or their mixture (e.g., composites). Further, in preasent technology,
aerospace applications stand the best chance of seeing an environment where a
knowledge of the Gruneisen parameter is important.

We break up the problem into electron and phonon* contributions while
neglecting the volume dependent zero degree Kelvin cohesive energy in keeping

with the constant volume definition of Eq, (l). Thus

FOUDI= (VT + R yTY+ &, (v, @9

where the subscript e denotes electrons, p denotes phonons, and zep(v, T) the
contribution to the temperature dependent part of the free energy from electron-
phonon interactions. Even though the interaction term appears to be crucial to the
electromechanical problem, for the Gruneisen parameter problem one gets good
agreement with experiment by considering the electrons and phonons to comprise
non-interacting gases which occupy the same volume. Thus we neglect the inter-

action term and note that Eq, (34c) applies.

*A phonon is a quantized unit of lattice vibration in a normal mode system where
the vibrations behave as a set of non-interacting oscillators.

20




A. Electrons,

3
From Zharkov and Kalinin we have for the electron system

3 pag\® va
ElvT)= ;:, m (%‘.N— \ (hT)", (44a)
SV, T)T = :::m (3‘#-)’/3 \;l/’ (kTY, (44b)
L F, N, T)= - %; m («-i—:y, Vzla( RT), (44c)
2P (NTIV = '?:: m (%‘i > e (RTY> (44d)
S % (44e)

In the above m is the mass of an electron, N is the number of electrons in the
system, and h is Planck's constant (h =6.63 x 10-27 erg seconds), Comparing
Eq. (44e) with Eq. (3) shows that the electrons behave as if they were an ideal gas.
Eq. (44e) can also be derived on the more general grounds . of thermodynamics
with a Planck distribution, which then gives Eq, (3) as a special case.

For the phonon contribution we break the problem up into low and high
temperature regimes, The reason for the separation is the radically different
functional dependence of the energy and entropy in the two regimes. The formulae
for both regimes is from reference eleven.

B, Phonons-Low Temperatures.

2 4
Er(v,T)—-- v 11’__“1;'3; > (45a)
10 (R T)
2wt (kT
s (o)
Tk

> (45b)

SV, THT =V

n B (v,TO=-V

21




L TR (RTYY 7 5E
VR W,TI)= -V lolh € D4 'av). (45d)

Lpoe . M(2C

In arriving at Eq. (45d) we have treated the factor of V in Eq. (45c) asa
constant. This is because the factor of V tells how much material iz present
without saying anything about the structure, while the pressure is determined by
the structure. The electron subsystem was treated in the same way in that the

number of electrons, N, was taken to be constant, hzzxh , and ¢ is defined by

> Reproduced f
best avuacileablerogpa (46)

where c 1 is the longitudional sound velocity, and ct is the transverse sound velocity.

-'_2-‘—'0'
PR

FasL

Y

C. Phonons - High Temperature.

At high temperatures the sums over the vibrational states become greatly

11
simplified with the resuit

Ep (V, TY)= 3NKT, (47a)

SpV,TOT = 3NRT[ kT - Wnh@ + 1], «m)

where N is the number of atoms (for brevity we consider a monatomic lattice) and
@ is some mean vibrational frequency associated with the lattice structure. It is

obvious from Egqs, (47) that only the entropy contributes to the pressure.

. —y [ OW
S PY = — 3Nh|V(:a—V—T s (48a)
o7 a——l—(g—m- . (48b)
P W\ v/

22




If we now use the relationship from lattice dynamics 4

-\:)aiz.) (49)

where  is the magnitude of the state vector 7{ , then we see that the high and
low temperature regimes yield the same result
v (2% |
= ‘c.'(w T (45€)
A few words are in order regarding the difference between (" =2/3 and the
e

result Eq. (45e). The energy of an individual phonon can be written

E=¢<, (50)
where p is ""momentum' associated with the phonon state. The form of Eq. (50)
is radically different from that for the energy of a gas molecule in an ideal gas,

namely,
a
€= I:S\- (51)
where m is the molecular mass. Thus the difference between I"e and r’p is
explained by the non-gas-like behavior of the phonon system.

From the discussion of section II of this report we can assume that Pp is of
order unity (we shall actually determine it later in this section), and apply Eq. (34c)
with the interaction term taken as zero to judge the relative importance of the
electron and phonon contributions. We need only consider the ratio. Ee(v, T)/Ep(V,T).
The ratio is calculated below for T = 300°K (high temperature limit), for the number
of elec.rons equal to the number of vibrating atoms (i.e., a metal), and an electron

21 3
density of 10 per cm . The low temperature vatio is found to be unity at 10°K.,

23




-—
High Temp.: Ec (V. T) - 1“‘ m hT' ~d (52)

Low Temp.: Ee (v,T) - Smh (' n) e’ ~ ). (53)
Ep (T w2 (hT)?

In Eqs, (52) and (53) we have taken a typical solid acoustic velocity, ©, of 5 x 105 cm
per sec, and n is the density of electrons in the conduction band.

We thus see that at room temperature only the phonon contribution is of
importance, while below 10°K and above 6,000°K the electron and phonon contri-
butions are of egiial magnitude,

Let us now calculate f'p from experimental shock wave data, To do so we use

N 4
C.(‘): 3p , )

In using Eq. (10b) for calculating |’ , We are assuming that the density variation

Eqs. (10b), (45e), and

of Py is primarily due to phonon effects. Since for metals the electron '""sound"
(1.e., Fermi) velocity 5 is of order 107 cm per sec, which is about a factor of 20
larger than the observed propagation velocity 3 for a weak shock, the assumption
would appear to be valid. The assumption is also consistent with the discussion

accompanying Eq. (52). The arithmetic is straightforward:

AT (—)jl+ 28 -&—IS S (558)

c(()acoil*—-'-" %.")3: (55b)
wh B ¢
ere -i; (-;—-\) << 1 (55¢)
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is assumed, and

o N
Dl B (55d)

SACLPUR R X B_n(&_‘ﬁ,_i{- Bu ¥ 1,
T oV = (‘.W{ A, \V 1% A, V* (35€)
Ba
& l_",’ ‘T“ > (25)

where we have evaluated Eq. (55e) at V = Vo

Thus by using shock wave data generated by non-energy deposition experiments
(e.g., flyer experiments), we arrive at a Grineisen parameter for use in energy
deposition induced shock work,

Table I below compares [ p for three metals from Eq. (25) with the Gruneisen

parameter based upon the thermodynamic quantities of Eq. (14).

TABLE I

COMPARISON OF SHOCK AND THERMODYNAMIC DATA

b
Aluminum 2,172 2,09
Copper 2,00 1,98
Lead 2,78 2.46

a.
Hugoniot data from Table IV of reference 2,

b-
Values from L. V. Al'tshuler et al, Soviet Pkys. J.E. T.P. 11, 573 (1960)

The agreement shown in Table I is rather good, and is typical of the agreement

which one would get for a more extensive list of metals,
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D, Volume Dependence,

It 1s also poasible to include a volume dependence for I’ in the calculation
leading to Eq. (25). One need simply not evaluate Eq, (55e) at V = Vo’ and for
higher volume terms simply add on additional higher order terms to Eq. (10b).
The volume dependence of M is indeed quite importaat as can be seen from the
data for aluminum (from ref. 2) given below

F(V)=1.|3—7.2(%-‘)+ as(g-—l) : (56)

The volume terms of Eq. (56) contribute twenty percent to (¥ (V) for (’/f. =1.2,
and the result would even be more impressive if the second and third terms on the
right of Eq. (56) were not of opposite sign,

We should at this time comment on the physics of such a volume dependence,
namely where it comes from, In Eq., (8) let b have a volume dependence (to be
explained shortly), and expand [ asa function of volume for a small volume

change about an initial volume Vo. Thus

L [88] % av

There are two contributions to Eq, (57). The first involves the volume change
alone (i.e., AV/VO) and is explained by the observation that as the volume
increases the molecular volume becomes less important; since pressure is a
measure of the statistics of particle interactions with the walls of an imaginary
container, the presence of other particles which occupy volume effects those

statistics,




The second contribution to Eq. (57) is proportional to (d®/dV), and says that
the molecular volume is dependent upon the demsity of neighboring molecules. This
is understood by saying that where the volume dependence of the Gruneisen para-
meter is concerned, an exponential repulsive interaction is more approvnriate than
a hard sphere interaction, Indeed, by using such an exponential repulsive term
Sirdeshmukh and Rao12 were able to derive ' (and its volume dep¢ndence) for
some crystals of the fluorite structure.

Before leaving this section we wish to mention another method for arriving at
the volume dependence of the Gruneisen parameter, namely the Dugdale - MacDonald

formula 2’3. That formula is

3,
v (kv )/ 9*v L
2 3 (pvh)/ov 3
Eq. (57) is derived for uwn isotropic solid at 0*K by essentially taking the third

. (58)

F:

derivative with respect to volume of the lattice potential energy (which is assumed

to be only a function of the atomic coordinates). Eq. (58) works because, if 4: is

the potential energy, and if the potential is quadratic in the lattice parametar, then
?3—4- - 2’ > (59)

Av3 IV

(W/27 ) being the vibrational frequency of the 0°K unoccupied vibrational states.

The success of Eq. (58) is understood as the right hand side of the proportionality,

Eq. (59), is the prime ingredient of Eq. (48b).

3
Equation (58) is one of a whole class of relations which utilize macroscopic

PV data to arrive at a Gruneisen constant. All such relations, including Eq. (25)
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and the procedure of this section used in deriving it, assume an isotropic solid.
This means that the Hugoniot data used in arriving at ™ must be in a range
where pressure is large compared to the yield stress (stress for the onset of
plasticity). Tlis is because most of the Hugoniot data is arrived at via one-
dimensional strain experiments (e.g., flyer plate with planar geometry), with the
result that solids are not in an isotropic state in the region of the yield stress 13.
The yield stress of a typical metzal lies between a few kilobars and tens of kilobars,
E., Ultrasonic Data,

It frequently happens that Hugoniot data does not exist for a material. I such a
case ultrasonic data can often be used to evaluate [' . What is needed experimen-
tally is the usual apparatus for measuring elastic constants, and additional equip-
ment which allows for those measurements to be carried out as a function of
pressure (2 maximum pressure of a few kilobars is usually sufficient). The theory
is relatively simple. If U ij is the stress tensor, themn

UTJ - Ci\iht eht + DiJ‘hunn ekl émn > (60)
where € Kl is the strain tensor, and C and D are the second order and third order
elastic constants respectively 5. For a cubic crystal undergoing an isotropic volume

=0 =0T = U
change, P " 29 a3’ and

€t €33 + Exy = %‘,— -1, (61)

©
Thus the constants € and D can be related to the constants AH and BH of Eq. (10a).
The D's are obtained through the pressure variation of the sound velocity. Eqs.

(60) and (61) when combined are of the same form as Eq, (10b),




While the Hugonint EOS approach to the Gruneisen constant is valid for
18otropic materials (e.g., polycrystalline metals) it is not valid for anisotropic

14 1
single crystals . This i3 because the Gruneisen parameter is really a second

rank tensor and should be defined by

ru=V(¥J)v' (62)

Eq. (1) is then seen to be Eq, (62) applied to isotropic solids. Since the C's and

D's of Eq, (60) give all of the necessary information for evaluating the various ele-
ments of [ , the ultrasonic method is the superior tool, Indeed application of the
hydrostatic Hugoniot method to an anisotropic crystal such as Zirconium (hexagonal

15
close packed) is now known to give " values inconsistent with thermomechanical

results because of anisotropic strain effects.

We are essentially making two points here, First, that in addition to the usual
Hugoniot data, shock wave physicists have relevant ultrasonic data at their disposal.
Second, that for anisotropic media, only the ultrasonic data is applicable,




V. DISCUSSION AND SUMMARY

The main intent of this report has been to give the shock wave physicist, the
prime applied user of the Gruneisen parameter, an understanding of the physics
involved in that parameter as well as the techniques in calculating it from related
data,

In this closing section we make a few points which we hope will serve to tie up
any loose strings. We also mention some relatively esoteric physics contributions
to which at this time although interesting in their own right are relatively
unimportant in applications.

Within the main text of this report we failed to mention the connection between
the characteristic & Grimeisen parameter

vV 3®
- — 24
Te v’ 4
and that arrived at through phonon considerations
N W
PTTF v (48b)

The connection is that the characteristic temperature € allows a characteristic
frequency, wm/zw , to be defined by

Fug= RO, (63)
Thus if wm has the same volume dependence as w the two approaches will give
the same result.
At high temperatures the detailed definition of @ for a monatomic lattice is
given by n
‘ﬂ;“"ﬁ??“ﬂ"’“ (64)
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where ofis an index over the possible vibrational states of the solid. The
allowed number of W,, increase as wi (a relationship known as the density of
states ll) so that we expect W W = asW_ is associated with the highest possible
energy state for a characteristic @ model. Thus we are led to expect equality
in the two approaches at high temperatures.

At low temperatures a probability factor is present (relating to the probabiltly
that a given state is occupied ll) in the equivalent of Eq. (63). This probability
factor serves to reduce the ratio ﬁ/w.‘ to zero as the temperature goes to zero,
Since W 1is no longer close to wm they do not necessarlily have the same volume
dependence - and indeed for many materials they do not have the same volume
dependence.

Germanium offers a good example of the complications introduced by low
temperatures. Experimentally the thermomechanical Gruneisen parameter, Eq, (14),

Wa
oYY is
determined only by the crystal structure and remains positive in that same region.

14
of Germanium is negative in the region between 10°K and 40°K. Yet

That low temperatures present difficulties should not be suprising as we have
already seen that electron contribution to T is equal to the phonon contribution at
about 10°K. Those interested in further details of the electronic contributions to
are referred to the work of Wallace 16.

There is another conceptual approach to the physics of the Grimeisen parameter
which is very much worth mentioning, It is correct to think of phonons and electrons
as representing thermally excited states of a crystal lattice in the same sense as
kinetic energy is the thermal excitation of an ideal gas. But there are a host of

other possible excited states in a crystal lattice which are more or less important
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depending upon temperature, volume, and the types of atoms making up the crystal
in question. Some of these thermal excitations are listed below,

5
MAGNONS - elementary propagating magnetic
waves in paramagnetic materials,
5
EXCITONS - coupled olectron-hole pair states.
ROTONS" -  elementary rotational states in a
superfluid.
ELECTRON-

ELECTRON PAIRS5 - the elementary excitations responsible
for superconductivity.

HELICONS ® -  an electromagnetic excitation in a

solid state plasma,

The point is that each type of thermal excitation represents a mechanism for
storing energy. Like electrons and phonons the energy dependence of the partial
pressures contributed by those more exotic excitations must be considered in
evaluating the Gruneisen parameter,

The effect of the more exotic excitations is presently not a serious question for
the applied shock wave physicist. However, as environments change and previously
strange materials are introduced into technology .....
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