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ABSTRACT 

\ 

In heavily over-consolidated clays there is a marked peak in 

the observed relation between shear stres- and shear strain, As the strain 

increases, the stress falls from a peak to a much smaller residual stress. 

Slopes made from such a clay often fail progressively iwny years after 

construction. Sliding occurs on a concentrated slip surface, and it is found 

thit the mean resolved shear stress on that surface is markedly less 

than the peak shear strength. Concepts from fracture mechanics, and 

in particular the J-integral, are used to derive conditions for the 

propagation of a concentrated shear band of this kind. The results indicate the" 

presence of a strong size effect, which has important implications for the 

use of models in soil mechanics. An elasti analysis makes it possible 

to determine the size of the end zone in which the  shear stress on 

the shear band  falls to its residual wlue. An attempt is made to 

assess the possible sources of the time-dependence governing 

propagation s^eed of the shear band. They include pore-water diffusion to 

the dilating tip of the band (which governs the rate at which local 

strength reductions can occur), visco-elastic deformation of the clay 

(which allows a gradual build-up of strain concentration dit the tip 

of the band), and the weathering break-down of diagenetic bonds. 



INTRODUCTION 

A striking feature of landslides and foundation failures in over- 

consolidated clay soils is  that most of the deformation is concentrated in 

narrow zones which lie between regions which appear hardly to deform at all. 

The concept of a concentrated "slip surface" or "failure surface" appeared 

early in the history of soil mechanics, and much of soil mechanics theory 

is based on it. Characteristically, someone analysing a slope postulates 

a mode of failure in which one or more concentrated slip surfaces form, 

supposes a limiting shear strength to act across these surfaces, and 

considers the equilibrium of the blockj into which the surfaces divide the 

slope. The theory of plasticity gives some support to this approach, and, 

indeed, it would be just as valid from that point of view if slip surfaces 

did not actually occur. 

Much less attention has been given to problems of the initiation and 

development of slip surfaces. In this paper we examine the consequences of 

a simple model for the growth of these surfaces, which we call "shear bands". 

Among other things, we hope to throw light on some apparent paradoxes of 

the conventional approach to slope failure, in particular the observation 

that "progressive failure" (Bjerrum, 1967a) can occur even though the mean 

shear stress on the observed failure surface is substantially less than the 

shear stress the clay can withstand. 

We take as our starting point an observation of what happens when 

overconsolidated clay is tested in a shear box, as illustrated schematically 

in Figure la. It is the simplest apparatus that has been used to study shear 

in soils, and the oldest, having been used by Coulomb. The vertical load is 

kept constant. The observed elation between the relative horizontal 

displacement between the upper and lower halves of the box and the applied 



shear force is as shown in Figure lb (bee, for example, Skempton, 1964). 

A peak force is reached at quite a small displacement. After the peak has 

been passed the deformation is concentrated in a relatively narrow shear 

band, less than 1 mm thick. The force required to produce further relative 

movement then falls continuously, and asymptotically approaches a value 

corresponding to a "residual" mean shear stress. 

This obsezvation prompts us to consider a model of soil deformation in 

which relative shear displacements can occur in concentrated shear bands, 

the relation between relative displacement 6 and shear stress t across 

the band being like that shown in Figure 1c. Outside the shear band the 

soil deforms continuously, and obeys conventional stress-strain relations. 

The peak shear strength is r , and the residual shear strength T . They will 

both depeid on the prevailing effective normal stress across the band. 

The assumed model of a shear band in soil has much in common with 

cohesive-fotce models of tensile cracks (Barenblatt, 1962; Dugdale, 1960; 

Bilby, Cottrell and Swinden, 1963). In particular, we shall follow the 

development by Rice (1968 a,b) of a unified approach to such models based 

on the J-integral.  Skempton (1964) and Bishop (1968) have suggested that 

fracture mechanics concepts might throw light on progressive failure, and 

Bjerrum (1967a) has discussed a model of progressive failure in terms of 

stress concentrations at the tip of a slip surface. The microstructure of 

shear bands has been investigated by Morgenstern and Tchalenko (1967 a,b). 

In this paper we leave aside the question of the detailed structure of real 

bhear bands, and that of the localisation of deformation into shear bands. 

Instead we consider the shear band simply as a surface of discontinuity on 

which there exists a definite relationship between shear stress and 

relative displacement. 



A SIZE EFFECT 

An immediate consequence of our model is that size effects will occur. 

The assumption of a relation between shear stress and shear displacement 

introduces a characteristic length into the material description. This 

length will necessarily enter a prediction of final failure conditions 

in relation to some characteristic dimension describing the 

geometry of the soil system. Consider, for example, a natural slope and a 

small geometrically similar model of the slope, the model and the natural 

slope being made of the same material. Suppose that there are no shear 

bands in either. Then, if the model is loaded by an appropriately scaled 

gravity field, as in a centrifuge, the conditions for full similarity of 

stress and strain fields can be met.  If, on the other hand, the model and 

the natural slope have geometrically similar shear bands, then the 

similarity conditions are no longer satisfied. If the strain fields were 

indeed similar, then, recalling that displacements, are integrals of strain 

with respect to distance, we must conclude that at a point on a band the 

natural slope would have a nlativ« displacement 6 greater than the 

relative displacement at the corresponding point on the small model. The 

displacements at similar points would be in the ratio of the scale of the 

model and the natural slope. However, T is a fixed decreasing function 

of 6, and this means that T at any point along the band in the natural 

slope would be less than T at the similar point in the model. 

This last result is of course inconsistent with the 

similarity of strains outside the band. However, the conclusion is clear 

that the large slope will have larger 6 values and hence smaller T values 

than does the small model at similar points along the band. Thus, for 

example, it is possible that in a natural slope the shear stress could be 



near its residual value everywhere except for a localized zone near the tip 

of a band, whereas for a sufficiently small geometrically similar model 

the shear stress would have barely decreased from the peak value along the 

entire (but small) length of the band. 

Bishop (1971) has proposed that the Skempton residual factor» measuring 

the amount of fall from peak toward residual strength, should be considered 

a f'-.nction of position along the band. This is consistent with our present 

model in that the relative sliding 6 will generally be an Increasing 

function, and hence T a decreasing function, of dista-.ce from the tip of 

the band. Bishop pointed out that a size effect would rea-ilt from the 

requirement ^f a certain displacement on a slip surface before the residual 

stress is reached. 

We shall attempt quantitative estimates of these size effects in the 

following sections, but only when the simplicity of the shear band geometry 

lends confidence to the accompanying analysis. Specifically, the examples 

to follow will all deal wiih straight shear bands propagating in their own 

plane. Further, the typically jointed structure of overconsolidated clays 

could of itself lead to a size effect as, for example, Marsland (1972) has 

proposed. We do not have a way of including this effect in the model, except 

to say that, the stress-strain relations employed outside the shear band 

should be those appropriate to the actual jointed material. Thus the size 

effects under consideration here are solely those due to the progressive 

degradation, with increasing 6, of the shear strength of material within 

the slip surface. 

THE J-INTEGRAL 

In the following sections we derive conditions for the propagation of 



a shear band. Our most important analytic tool is the J-integral of crack 

mechanics (Rice, 1968 a,b). Define Cartesian axes x  and x  (Figure 2) 

so that a straight shear band lies parallel to the x -axis, and suppose 

plane-strain deformation to occur in the x , x. plane. Let the stress- 

strain relation of the material outside the band be such that the stress work 

integral 

!epq 

o.. de.. (1) 

0 

at any strain c   experienced by the soil is independent of the strain path. 

An elastic material clearly obeys this condition. The material properties, 

the body forces, and any prestress existing in the reference state, can 

depend on x2 but not on Xj. Let F be a curve in the ju, x  plane 

which starts at a point P  on the lower surface of the shear band, goes 

round the tip of the band, and ends at a point P  on the upper surface, 

where P  and P  coincide in the unstrained reference state. Let the 

outward-pointing unit normal vector to T have components n.,  let u. 

ions be the components of displacement, and let T. be the surface tract 

across r, related to the stress components a.. by 

T. " o.. n. (2) 

Further, let f^ be the components of body force per unit volume. The 

J-integral is then defined by 

Jp° [[« - Wd*2 - »l 5^ «•] <« 

where ds is an element of arc length of T. 

This integral is useful because its value is independent of the path 
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of integration r, and depends only on the end-points P+ and P". The 

dependence on the end points follows only because stress is transmitted 

across the band, and would not occur for a freely slipping band or for an 

open tensile crack. A proof of path independence has been given by Rice 

(1968 a) in the case where there are no body forces f.; the extension to 

the proof to include body forces is trivial. 

Sometimes we shall want to apply the integral to inelastic materials 

for which the stress work integral W(c ) is not independent of strain 

path. It turns out that J is still independent of the path r, as long 

as the difference between the values of W at two points (x[, x') and 

(xJJ, xp on a line parallel to the Xj-axi? is defined by 

xl 

3e.. 

the integral along the line between the two points. It is only this 

difference that contributes to the J-integral. 

We now let the path r have a particular form. Suppose it to follow 

the lower surface of the band from P" to the tip of the band, and to 

return to P+ along the upper surface. Then dx2 is zero along the whole 

path, and so the first terms of the integral vanish. Across the band u 

is continuous, and therefore 3u2/3x1 is continuous, whereas T  at a point 

on the upper surface is equal and opposite to T2 at the corresponding point 

on the lower surface, and so the T^^^ term makes no contribution to 

the integral. Hence, using (2), we have 

du. r  3ui 
Ja2lä^dxl (A) 

for this choice of r. Across the band o21 must be continuous; if u* 
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JP 

and u- are displacements on the upper and lower surfaces, and 6    is the 

telative displacement u+ - u", then, since the upper and lower surfaces 

are traversed in opposite directions, equation (4) gives 

" ) 021 3^ K " V dxl - j T|^V <5) 
T T 

the integrals being taken from the band tip T to P, and T being the 

shear stress across the band. 

Our model of shear bands asserts that there is a fixed relationship 

between, T and «, at least so lone cs -he band does not unload and become 

inactive; T is then a single-valued function T(6) of 6, and we can 

write (5) as 

?F 
Jp - JT(6) d6 (6) ' 

0 

Outside an end region close to the band tip, the relative displacement is 

large enough to reduce Tp to the residual stress t  (Figure 1c). 

It is then convenient to divide the integral in (6) into a part corresponding 

to a residual stress and a remainder contributed by the difference between 

the shear stress and the residual stress at small displacements, so that if 

P lies outside the end zone 

JP " Vp • |(T - Tr> « (7) 

and Jp - Tr6p is independent of P. ^ integral in (7) denotes the 

cross-hatched area in Figure 1c. A characteristic displacement 6 can 

be defined by 

-'■ 
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J- (x - Tr) dö - (T - T ) 6 (8) 

Shear tests on overconsolidated clay reported by Skempton (1964) and 

Skempton and Petley (1968) are consistent with values of T between 2 

and 10 mm. 

i 

What we shall next do is to exploit the path-independence of the 

integral. Equation (7) gives the value of J - x fi for an active shear 

band. If we evaluate Jp - Tr6p along a different wider path with the same 

end points, we find it to be an increasing function of the applied loads. 

When the loads become large enough for Jp ~ * <Sp to reach its critical 

value, the band becomes active, and will propagate if the loads are increased 

any further. Equation (7) can be thought of as an energy balance of the 

Griffith type, if the end zone remains small or propagates unchanged (in 

the sense that an observer moving with the banJ tip always sees the same 

distribution of strain). The Jp - Tr6p can be interpreted as the energy 

surplus made available per unit area of advance of the band, this surplus 

being the excess of the work input of f.he applied forces over the sum of the 

net energy absorbed in deforming material outside the band and the frictional 

dissipation against the residual part x  of the slip resistance within the 

band. Accordingly, equation (7) asserts that for propagation to occur this 

net energy surplus must just balance the additional dissipation in the end 

region against shear strengths in excess of the residual. This interpretation 

is developed in the Appendix. 

A SLIP SURFACE IN A LONG SHEAR APPARATUS 

Consider a long shear apparatus of the kind shown in fig.3. This 

contains a layer of overconsolidated soil of height h between two rigid 

boundaries. The lower boundary is fixed while the upper boundary is 

displaced horizontally by an amount ub. A shear ban.i is initiated from 



■^;niryjT''.'/"i. ]'"/■ ''ffl1'"".T.,.,'B''^, r:*r7-■n,XT^~?'*''7''*~T,'■'vi~"■'?'Tr^,'' 

the left boundary, possibly with the aid of a local stress concentration 

from a cut or notch, and has now extended into the interior of the 

specimen. We shall use the J-integral to find the criterion for continuing 

propagation, on the assumption that the apparatus is very long compared to 

its height and that the end region of the shear band is far from either the 

right or left boundary of the specimen. Under these conditions h is the 

only significant dimension, and the apparatus mav be considered of infinite 

horizontal extent. The weight of the soil may be neglected. Note that in 

the region far ahead of the tip of the band (but not too close to the right 

hand boundary, where end effects may appear) the soil is in a state of 

homogeneous shear strain and stress 

2li12 " Yo H T   and   012 B To (9) 

where TO is the shear stress corresponding to the shear strain y  , and 
o 

we assume of course that T0 < y Likewise, far to the left of the tip, 

but not too close to the left-hand bound.-.ry. there will also be a homogeneous 

state in the soil above and below the slip surface: 

2e12 " Yr   and   012 ■ Tr (10) 

where Tr is the residual shear strength which is acting along the band in 

that region. 

Consider the choice of point P and path T    illustrated in fig.3. 

The relative displacement at p is 
■ 

6p - Yoh - Yrh/2 - Yrh/2 - h(Yo - Yr) (11) 

where the first term is the imposed boundary displacement and the two 

subtracted terms Yrh/2 represent that portion of the imposed boundary 

displacement taken up by soil deformation in the regions above and below 

the band. The integrand of Jp (eq.3) will vanish all along the rigid 

boundaries, because d^ and 3u./3x1 vanish there. Likewise, 3u./3x 



vanishes in the homogeneously r.trained regions far to the left and right 

of the tip, so that for the path r 

Jp -  JW dx2 - h W(YO) - h W(Yr) (12) 

r 

Here we use the notation W(Y) for the energy density in a region under 

homogeneous shear strain y.    Thus we have obtained the 'driving force" 

term in the propagation criterion (eq.7) as 

JP " Tr 6P ■ h[W<Y0) " W(Yr) - Tr(Yo - ^ im 

This result reinforces the energetic interpretation'of J„ - T 6 
P   r P 

given earlier. Consider the energy changes which result when the slip 

surface advances a distance A£ while the boundary remains fixed. There 

is no work input from boundary forces. The loss in deformation energy can 

be computed by noting that this slip surface advance essentially allows an 

area of material hAA to reduce its energy density from W(Y ) to W(Y ) 

and is 

hA£ [W(YO) -W(Yr)] 

The work dissipated in the band against the residual part of the shear 

strength is the same as that dissipated in sliding a segment A* of the 

band a distance equal to the uniform slip displacement h(Yo - Y ) far from 

the tip, namely 

Trh(Yo - Yr) At 

Thus the net energy surplus, available for work against that part of the 

strength in excess of the residual value, is just the sum of these two terms, 

which we see to be (Jp - ^ 6J  At as expected. 

To interpret the driving force in terms of the shear stress^strain 

curve T - T(Y), fig.4a, note that 



-  I  T(Y) dy W(YO) - W(Yr) =     T(Y) dY (1A) 

Yr 

io  that (13) becomes 

Yo 

h  I  0<Y) " TJ dY Jp - Tr 6p - h 

Y 

The graphical interpref.ation of this uriving force is as h times the 

shaded area in fig.Aa. If the material is linear elastic, or approximated 

by a linear relation of the form 

t0 - t - G(YO " Y) 06) 

in the strain range of interest, where    G    is  a shear modulus,  the driving 

force may be written as 

Jp - Tr 6P = £r ^o" V2 (17> 

In general, however, the soil will not be perfectly elastic and will 

unload along a different curve from that for loading, as in fig.Ab.  It is 

difficult to treat this in the sare precise manner. But, by recalling the 

definition of W as an integral in the x  direction for inelastic materials, 

we see that an approximately correct answer can be obtained if we define 

W(Yo) - W(Yr) of eq.14 from the unloading strvss-strain curve as in 

fig.4b. This is because the integral in the x  direction essentially traces 

deformation states encountered as the material outside the band transforms 

from the homogeneous stress state T , existing far to the right of the 

tip, to the residual state existing far to the left. Hence it seems 

appropriate to adopt eqs.15, 17 for the driving force in this case, provided 

that the unloading stress-strain curve is used to identify it as h times the 
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shaded area in fig.Ab, and that in the linear approximation the shear 

modulus G is that governing unloading. This same choice also seems 

appropriate from an energetic /iewpoint, in that it is the energy made 

available upon unloading which can contribute to further advance of the 

band. Time effects due to creep or diffusion may also play a role in 

determining the stress-strain curve to be chosen, and we discuss this 

pubsequently after an estimate of the end zone size is available. 

In any event, for some suitably chosen G in the linear approximation, 

the propagation criterion becomes 

h ,     .2 
2G <To " V jV- \)  dö (18) 

or, if the additional end region energy absorption i& written as in 

(eq.8). 

To " \ m    I2G  £ 
T-T  "VT  -T  h 
P   r  f p   r 

(19) 

This reveals the size-effect on the propagation stress level T :  the 

greater the height h of the layer the smaller the stress excess T - T or 
required for propagation. In fact, there is also an abrupt cut-off because 

the left side of this equation cannot exceed unity. Thus if 

h < ^6  , 
Tp"Tr 

(20) 

the propagation condition cannot be met before the stress T  induced in 
o 

the layer reaches the peak strength and more-or-less simultaneous failure of 

the layer occurs. That is, for a sufficiently thin layer, the energy which 

may be stored by a stress as large as the peak value will still be 

insufficient to supply the required energy surplus in a unit advance of the 

shear band. 

Wroth (1972) has noted that for overconsolidated London clays G/T « 50. 
P 
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Thus the critical layer height, below which failure occurs at T •» a , 0   P 
is 

6 « 100 i— 6 (21) 
Cr   T  - T T  - T P   r       P . r 

If we take 2 for the stress ratio and 5 mm for 6, as typical values, the 

critical height turns out to be 1 m. This is catastrophic from the point of 

view of laboratory experimentation, for the height is unreasonably large as 

a lower limit to the required specimen size for studying slip surface 

extension. Of course, 1 m is not a large dimension in typical field failures. 

(It should be noted that Wroth's ratio is Based on the G for loading; the 

preferred G governing unloading must be higher and this will increase the 

numerical factor in eq.(21) in proportion). 

SLIP SURFACE FROM A STEP IN A SLOPE 

Referring to fig.5a, we now consider a long flat slope of inclination 

angle o into which a step of height h has been cut. A shear band of 

length I   emanates from the base of the cut in a direction parallelling 

the ground surface. We wish to obtain expressions for the driving force on 

the band and, in particular, for the propagation criterion. It is clear that 

this case presents in elementary form some of the factors likely to be 

important in failure of a natural slope. Nevertheless, a precise analysis 

is difficult end we here present an ipproximation for the case in which the 

band length is large compared to the layer thickness and to the size of the 

end ref Ion. Under such conditions most of the energy transfer during shear 

band extension will be due to gravitational work on downslope movements of 

the layer and to deformations of the layer from changes in the normal stress 

acting parallel to the slope surface. 

T'-.e stress state o.. existing before the cut is made is supposed to 



1A 

depend orJy on depth from the slope surface. The corresponding infinite 

slope equations for the adopted coordinate system, fig.5a, are 

ö22 " "PE X2 C08a* ö21 ' P8 x2 8ina' 011 " f^X2^        ^22^ 

where p is the average density for depth x  and where the last of these 

is intended to indicate that o.. is undertermined by equilibriun* 

considerations alone. We shall be interested in the average value of o 

over depth h, 

h 

Fll " ^ J all dx2 (23) 

0 

,.o 
and shall write p ■ -o   for the average lateral earth pressure existing 

prior to introduction of the cut; p  may reflect a normal lateral pressure 

effect, or possibly some augmented p.jssure due to the weathering break-down 

of diagenetic bonds (Bjerrum, 1967a). We shall write the gravitationally 

induced shear stress on the prospective failure plane as 

Tg " ^n^.-h " P8 h Bina (2A) 

All displacements and strains will be measured from zero in the pre-stressed 

state existing before the cut is made. 

To evaluate the driving force we choose the point P and path r shown 

in fig.5a. Further, from what has been said above, we will neglect any 

displacement or straining, in the base material below the slip surface 

(x, > h) since the dominant deformations and energy transfers may be assumed 

to occur in the sliding layer. Hence the J integrand may be assumed to 

vanish along that portion of r through the base material. It; also vanishes 

far up the slope where there has been no displacement from the prestressed 

state. We are left only with the portions of T    alT.g the inclined ground 
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surface and the surface of the cut. Since dx, and the surface traction 

vanish along the former, and the surface traction aluo vanishes along the 

latter, we are left with 

h 

Jp « - J <W + pg sina u1 - pg cosot u2)x -0 dx2 (25) 

0 

Since the reference titate for strains is that of the state under pre-stresses 

o^, W is here to be interpreted as the energy recovered during deformation 

from the prcatressed state to the state of zero transverse stress existing at 

the cut surface. 

When the layer is long in comparison to it* height we may assume that 

its deformation is essentially a one-dimensional displacement in the negative 

Xj direction, and that at any point the magnitude of this displacement is 

same as the relative slidiag 6 at the same value of x. : u. - - 6(x ) the 

Thus 

Jp - - W h + (pg h sina) 6p - - W h ■• T «p (26) 

where W is the thickness average energy density at the end of the slope. 

This is defined from the strtss-strain curve relating the thickness average 

stress Oj^ in the layer to the strain t    1 
■ 

- 0 

W  1 W d^ll  ' <27> 
""Po 

and is the negative of the shaded area identified in fig.5b. The driving 

force term is therefore 

Jp - \ «p = (Tg - Tr) 6p - h W (28) 

If we further recall the assumption that the end region is small, so that 
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O21 " Tr along nearly the entire length of the shear band, then it is 

clear from overall equilibvium in the x.-direction that o-.  is given 

by 

Thus 

«U h " <^ " V *! 

*u dxim h 1   Fll 
x1 - 0 J Xi - 0 

do .11 

^11 ' (Tg ^ Tr> £/h 

«11 d3ii . (29) 

'5.. =0 
Li. 

and the corresponding area is also shaded in fig.5b. 

From eq.(28) it is clear that the driving force is just h times the 

sum of the tvo shaded areas, and the final result is therefore 

(T - T ) i/h 
g   r' 

- Tr 6p . h j      tn  0n)  da11 Jv- r„ 69*h     I     €„ (o,,) dar,, (jo) 

c 
-P 

From the energetic point of view, the lower cross-hatched area represents 

the energy which is recovered in a unit advance of tt'c shear band due to 

relief of the transverse pressure p , whereas the upfer cros..-hatched area 

represents the excess of work input by tha gravity forces over the dissipation 

against the residual shear strength. 

If the stress-strain curve for the layer is represented in the linear 

form 

o11 - - P
0
 + E' eu (31) 
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where E' is an overall elastic modulus for the layer under the assumed 

plane strain conditions, then the driving force expression and propagation 

criterion take the form 

JP "^ Tr fiP " 2^ [(Tg " Tr) llh  + P0]2 " j(T " \>  d6     (32> 

Also, with the notation of eq.(8), this may be put in the dimensionless form 

(Tg - Tr) a/h ♦ p1 

T  - T 
P   r \TP ' Tr 

(33) 

It is perhaps of special interest to note that even if the slope angle is 

such that the gravitationally induced shear stress equals the residual 

strength (i.e., T - T ), so that Skempton's residual factor is zero, it is 

still possible that the energy recovered by relief of the initial pressure 
o 

p  could be adequate to drive the shear band. This was suggested by 

Bjerrum (1567) and the corresponding special case of the above formula 

gives a quantitative estimate of the required initial pressure. 

We shall consider this case a little further in the subsequent 

discussion of possible sources of time effects.  It must be remembered, 

however, that there have been several approximations made in our treatment. 

They seem to be appropriate when the band is indeed long and when the end 

region occupies only a small fraction of the total length. However a more 

refined anal sis, based perhaps on a finite element analysis of the soil 

outside tht band, with the T, 6 relation as a boundary condition, will 

be necessary if the exact nature of the approximations is to be examined, 

and if the model is to be extended to other cases involving, say, non-planar 

slip surfaces. 

LINEAR ELASTIC ANALYSIS WITH SMALL END REGION 

Henceforth we consider the soil outside the shear band to be homogeneous. 
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Isotropie, and linear elastic, and we consider only cases for which the end 

region length (in which the Fhear stress falls to its residual value) is 

small in comparison to all geometric dimensions such as overall band length, 

layer height, etc.. We shall, indeed, first examine the limiting case in 

which the end region is taken to be infinitely small, so that the shear band 

carries the residual strength along its entire length.  In this idealization 

stresses predicted will become infinite at the tip of the band. We shall 

identify the dominant terms in this singular stress distribution near the 

tip, and then proceed to take the view that an end regiort of small but 

finite size may be considered to be embedded in a local stress field for 

which the dominant terms set the outer field boundary conditions. That is 

to say, the dominant stress terms as obtained from the simpler codel with 

no end region incorporate the actual effect of applied loadings and 

overall geometry of the failing soil mass on the deformations in the end 

region. A similar approach is much used in fracture mechanics and indeed 

provides the rationale for use of elastically computed crack tip stress 

fields in semi-ductile metals failing under conditions of a small plastic 

region at the crack tip. The intensity of the singularity is then expressed 

by a stress-intensity factor, calculated from a complete elastic solution 

which in turn depends on the applied loads and the crack geometry. This 

solution is not valid in the plastic region at the crack tip. However, it 

is known that when the plastic region is small compared to other pertinent 

geometric dimensions, proper characterization is obtained if the elastic 

singularity is seen as setcing outer field boundary conditions. The applied 

loads and geometrical dimensions influence the stress state in the crack 

tip plastic region only insofar as they enter the expression for the 

elastically computed stress intensity factor. This is the "small scale 

yielding" formulation of crack tip plasticity .s discussed by 

Rice (1968a, 1968b). 
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We wish to obtain the form of the stress distribution ueair the tip 

of a shear band which is assumed to carry a constant or smoothly varying 

residual strength Tr along its length. The form is already known for 

a straight slit under plane strain shear loadings relative to the cracklinc. 

As it happens, the loadings induce no opening separations of the crack 

surfaces to that the same model describes a freelv slipping shear band. We 

have only to adjust these known results by adding on terms to represent the 

shear and normal stresses transmitted across the band. Upon adapting the 

crack formulae (e.g. Rice 1968b) in this way, we therefore find that the 

stress distribution at the tip of a shear band takes the characteristic 

form (referred to polar coordinates R,e of fig.6) 

-1/2 v 9ri .     9     .     3C o12 -  (2vR)'1U K cos | [l - sin i sin ^)  + Tr + <  • • 

022  ^  '      sin 2 cos 2 C0S "T + a + •*• O*) 

a11 - - (27rR)"1/2 K sin | [2 ♦ cos | cos f] + ot + ... 

The dots represent other terms, all of which vanish at R = 0,  in a complete 

expansion of the stress field in powers of R; a      is the normal stress 
n 

transmitted across the band and o  is the transverse stress acting along 

the line directly ahead of the band.  In addition to these constant stress 

terms, however, there is a singular part of the stress field which becomes 
~l/2 

infinite as R     and which has a characteristic angular distribution. 

The strength of the singular term is given by the "stress intensity factor" 

K, which will be a function of the loadings and geometrical dimensions of 

the soil mass containing the shear band. For example, the K factor for 

a shear band of length H in a body under the remote shear stress 

Teo  ^ V  aS ^ fi8,7 iS (e•8• RiCe 1968b) 

K = (t^ - T ) AITT (35) 
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Likewise, for tto  shear band in the long shear apparatus of fig.3 

K " (19  - V ^TO-^T (36) 

where v is the Pois.on ratio, and for the shear band emanating from thd 

step in the slope, fig.5a, 

Those assume that the rosideal stress is indeed activated all aloes the 

shear band. 

The displacement field associated with the above stress state results 

U a slip displacement 

6      Ul  Ul =    G  W  +--- 08) 

The J-integral can be evaluated directly , dicing use of the corresponding 

displacement field, and is 

JP  Tr 6P K 5G- K (39) 

which is the well-known Irwin formula for the energy xelease rate. It is 

in fact through this formula and the earlier direct evaluations of 

Jp - Tr Tp that eqs.(36.37) are obtained. The result needs no detailed 

proof here, for it has already been remarked that J - T 6  is 

independent of the location of point P. Further it is clear that if point 

P and the path T    are taken very near the tip, only the R-1/2 singular 

terms can contribute, and in that instance the calclation is the same as 

that of the J-integral in crack theory for raich  eq.(39) is 

the known result. Remembering however that the dominant stress terms of 

this analysis give the outer field boundary conditions for the case of a 

small end zone, we may again assert that the propagation criterion is 

given in terms of the T,6 curve by eq.(7), with the driving force 

expressed as in eq.(39). Hence the propagation criterion is 
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%r*2- $ (T - T ) 66 (40) r 

where K is determined from an analysis which neglects the end zone in 

the manner discussed above. This is a quite ganeral procedure for dealing 

with small end zones, although the proper modifications to account for 

inelasticity outside the band cannot be stated widi any generality. 

In particular, on the assumption of a small end zone compared to band 

length, the propagation criterion becomes 

"^ " Tr  /  A    G  6 ,,,, 
T - T "ytxr^y T^r t (41) 
P   r f      P r 

for the case shown in fig.7, where (eqs.35 and 8) are used. 

i 

ESTIMATE OF SIZE OF END REGION 

The J-integral has led to calculations of the drving force and prooapation 

criterion. It is however not possible to obtain further information such 

as the size of the end region at failure without fairly elaborate 

calculations. This is due in part to the nonlinear T,6 relation which 

must be imposed as a boundary condition. We will therefore estimate the 

size cf the end region approximately by assuming a distribution of T 

with distance from the tip of the shear band, a distribution which contains 

the end region length to as a parameter, and calculating from elasticity 

theory the implied T,6 curve. If the curve is of a reasonable shape 

the size u may then Je determined as that which gives the proper v.-üue of 

J(T ~ Tr) d6. Fortunately, an assumed linear variation of stress within 

the end zone,fig.8a,leads to a reasonable curve for our purposes. We 

assume that the stress intensity factor induced by the applied loadings 

would be K if the residual stress T  alone acted along the band. The 

restraint of the band surfaces by stresses in excess of x  has the 

^ 
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effect of inducing a K factor of opposite sign, and the end zone extent 

u is to be chosen so that there is no net stress singularity at the tip. 

The magnitude of the stress intensity factor induced by the excess shear 

stresses is (Rice 1968b) 

0) 

v?! T(R) - Tj 

/R 
dR 

where we use the formula for the effect of surface loadings on a semi- 

infinite shear band or crack.  Writing 

Rv 
T - T  ^ (T  - T ) (1 ) 

r    p   r v   ü) 
(0 < R < u))        (42) 

from the assumed linear variation, we therefore wish to choose u so that 

to 

K JTo -T)   fiLiS!s2.«.i(T -oJS- 
TiprJ ^ ipr'lir (A3) 

Hence 

9* / K N2 
-32<^ (44) 

But we already know from eq.(40)how K must relate to the area under 

whatever T,<S curve is implied. Thus the estimated size of the end zone 

is 

u  TTTi^y T=r6 

P r 
(45) 

Further, by standard calculations of crack elasticity under the loading 

depicted in fig.8a, one finds that the slip displacements implied by 

eq.(A2) for T - T 
r 

.  9r( 6 J (1 + R/u)) /Rft. - |- (1 - R/u))2 log 1 + 0i \ (46) 
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This may be plotted as a function of (x - tj/b    ~  Tp after elimination 

of R/ö with eq.(42). The resulting T.6 curve is plotted in fig.Bb. 

It  has the expected form, and is not inconsistent with the model. 

If we accept this estimate and put v ■ 1/4 and G/T » 50 as 
P 

earlier, then 

w ' 125 , _PT 6 (47) 
p   r 

If the stress ratio is taken as 2, then the estimated sisie of the end 

region ranges from 0.5 m to 2.5 m as 6 ranges from 2 to 10 run. Hence 

it seems quite conceivable that the assumption of a small end zone in 

comparison to pertinent geometric dimensions may frequently be valid in 

natural soil failures, although the condition seems almost impossible to 

attain in laboratory experiments. Again we see the implication of a size 

effect in soil mass failures, for the size of the end region u at 

failure is set by the material parameter 6 more or less independently 

of the actual size of the mass. 

TIME EFFECTS 

In the preceding analyses we have imagined that a shear band of a certain 

length already exists, and have determined a propagation criterion which tells, 

us how large the applied loads have to be if a shear band of that length is 

to propagate.  In the problems which typically arise in soil mechanics, such 

as slope analysis, the external loads are gravitational and remain more or 

less constant, though sometimes geometry changes occur, as when the toe of a 

slope is cut or progressively eroded. We can conjecture that what happens 

is that a shear band is initiated at a stress concentration, grows slowly 

until it reaches a critical length, and then propagates rapidly. Our analysis 

has not explained how the band can grow slowly, or what time effects control 

how fast this happens. 
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The simplest and moat obvious time effects in soil mechanics are those 

controlled by tlu* diffusion of pore water within the soil, which allows 

change of water content and effective stress.  In this paper we have examined 

the consequences of a relationship between T and 6 on a shear band, and 

of simple stress-strain relations for the soil outside the band, such as the 

equation relating o,.  to z..     in the slope analysis case. What these 

relationships are muut naturally depend on the drainage conditions, and on 

whether or not there is time for water content and pore pressure changes to 

diffuse.  Three cases can be distinguished;  the model we have studied can 

be applied to all of them, but the relations between T and 6 and between 

Oy.     and e.. will be different. The discuspion is restricted Lo the case 

of a shear band parallel to a uniform slope (Figure 5); closely similar 

conclusions apply to other cases. 

Consider as the first case that the sheai: band advances rapidly in 

comparison to the time scales for diffusion.  The soil deformation is 

"undrained".  Under such conditions the shearing of heavily overconsolidated 

clay creates negative pressure or suction in the pore fluid. This increases 

the effective compressive stress transmitted to the soil particles, and 

would have the effect of increasing the resistance against sliding at the 

tip of a shear band.  In addition, the soil in the overhanging layer above 

the band responds as a stiffer material than it would be under drained 

conditions. Hence, from the point of view of the propagation criterion 

h 
2E1 

[(Tg - Tr) £/h + p
0]2 =  J(T - 

r    ' 
(32) bis 

the shorter the time available for diffusion, the more the resistance term 

on the right is increased and the more the driving force term is decreased. 

However, there wouV seem to be two time scales for diffusion, and as 

a second case we consider that the speed of propagation is still too rapid 

to allow drained behaviour of the overhanging layer, but is nevertheless 
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sufficiently slow that negligible excess suctions are generated in the 

heavily sheared material near the tip of the band.  In this case E1  is 

the same as for the first case, but now the resistance term has settled to 

a fixed lower value appropriate to drained behaviour on the small size scale 

of the band thickness.  Indeed, it is possible to make estimates of the 

elevation of the T,6 curve induced by a given speed of advance, and hence 

to determine from (32) a propagation speed governed by pore water diffupion. 

We intend to describe this in a subsequent paper. 

In the third case the deformation is wholly drained, and the relation 

between o^ and e   is that for a drained material, so that E' is 

reduced below its value for the tirst and second cases, while the value of 

I(T - T ) d6 is the same as in the second case.  This correcponds to much 

slower propagation: pore-pressure changes in clay diffuse so slowly over 

distances of the order of several meters (a typical depth to a shear band) 

2 
that they may require time of the order of 10 years. 

We may consider this time scale for bulk drainage In relation to the 

propagation speed by noting that the stress ö...  in the layer changes from 

~P to (T - T ) £/h over a distance of the ordar of the end zone size u. 

Hence the time scale over which the material responds is u divided by the 

speed of advance, and material properties such as E', which appear in the 

propagation criterion should be chosen as appropriate to this time scale. 

This becomes clear when we note that for inelastic behaviour it is the 

integral of o^. 3E. ./3y:. over the deforming region which enters the J 

integral as a difference in W. 

As well as time effects associated with water diffusion, there can be 

expected to be viscoelastic deformations, especially creep, which occur 

even if there are no pore pressure changes (Bjerrum, 1967b; Bishop, 1968b). 

In this event the material properties are again to be chosen as those 
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appropriate to the time scale u (propagation speed) so that, for example, 

E' can be approximately regarded as the viscoelastic modulus ut this 

deformsiion tfme, Thd modulus reduces with increasing time,, ultimately to zero 

for a Maxwell model, and this means that the effective driving force term 

will be increased. It is possible that creep-like effects could affect the 

resistance term as well by progressive degradation of the strength at a 

given 6. There is also the possibiHty of aging effects, such as the 

weathering break-down of soil bonds (Bjerrum, 1967a), which may be considered 

to increase the energy made available by release of lateral pressure. 
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Appendix;  Enerpy Rate Interpretation 

This section follows the lines of Rice's (]9G8b) proof that J is the 

energy release rate for crack extension in elastic bodies, an interpretation 

which relates closely to Eshelby's (1956) earlier use of the integral in the 

computation of energetic 'forces1 on point or line defects in solids. 

We assume for the present that the material outside the shear hand  is 

elastic. Let I  be the shear band length in fig.2, as measured from the 

origin of the x1 axis. Define G' as the energy surplus made available per 

unit of quasi-static band advance, this being defined as the excess of the 

work of external forces over the energy stored in deformation and the 

dissipation against the residual part of the shear strength in the band. 

Hence if point P lies outside the end region. 

Here A is the area enclosed by r. The choice of P and T  is arbitrary, for 

the virtual work theorem assures cancellation of the contributions from the 

annular region between any two T  choices both lying outside the end zone. 

By the s>me theorem it is obvious that for a quasi-static advance of the band 

01 = Ip 
(T - V zr dxi . (A-2) 

the latter being the dissipation against shear resistance in excess of the 

residual strength. 

Now any field variable f = f(Xj, x^  I)  can equally well be written in 

the form fCxJ, x^  i)t  with *{ «- Xj - *, as seen by a moving observer. R ence 

df _  it     . 8f 
31    9^" + 3? (A-3) 
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the notation 3/3Ä being the derivative computed by the moving observer. In 

this notation 

dA 

du. 

f. —- dA 
A —     - r ^ *  '  "A ' 3A 

du.       ,    8u.     /.    fti,. (A-*) f    du.       r au      r    3u. 

J Tidrds--J Ti^ds+j \Frds 

r        'r 

T T 

| 'taf^-'A*) 36 

p r 3t  1 

P 

where it is assumed that the material properties and body forces are 

independent of x . Thus upon recalling (A-l) 

3u. 

G'-Jp-xr5p* Jr hiT***  f 'in1*'/!! A-L 'rt*! »"« 

All of the terms containing 3/3Ä vanish whe-. the deformations as viewed by 

the moving observer are fixed and hence G1 = J - T 6 in that case. 

The same result is also true in the model appropriate to a small end 

zone, for which it is assumed that T = T all along the saear band, with a 

singularity resulting in the elastic field at its tip.  In that case the 

virtual work theorem (which could not be applied to the virtual displacement 

du.AU, because the integral of dW/d* is then divergent) requires that 

all the terms involving 3/3)1 sum to zero, so that again G' = J - T 6 . 
P   r P 

More generally, with a finite end zone, the 3/3£ terms would sum to 

zero if T rather than Tr appeared in the last. Henca 

^i 
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On the other hand, the fcrmalism of (A-3) changes (A-2) to 

»••fft-V «♦}'(.-»,> ft««, (A-7) 

We thus see from the first of these that Jp - Tr 6p is not always equal to 

the energy surplus. But the second makes it clear that in the same 

circumstances the required energy surplus is not just simply f (T - T ) d6. 
* r 

The identical additional term appearing in each equation means that 

JP ' Tr 6P =,  1 (T " V d6 (A"8) J 

- 

always, regardless of the validity or not of the energy interpretations for 

the separate terms. Indeed, this result was derived in the text independently 

of these interpretations. 

When the material outside the shear band is inelastic, the rate of 

change of strain energy in (A-l) may be replaced with 

f de.. 

which is the net rate of energy storage and/or dissipation by deformation, 

and the same interpretation of G' as an energy surplus remains. Then the 

first member of (A~l) becomes 

JA "ij dF
1 O* ■ -/r " »^ * JA o^ ^Ü dA (A-9) 

provided that M is defined by integrating SW/äXj » o  3c../3x,. This leads 

directly to (A-5) with W as here defined in the formula for J, and with 

BW/M replaced by o... tt^/H.    Hence, whenever the end-region deformations 

appear unchanged to the moving observer, Jp - Tr 6p is the energy surplus 

for dissipation against strengths in excess of the residual value even if 

the material behaviour is inelastic outside the band.  It is difficult to 

pursue this interpretation for the model in vliich T = T all along the band 

wm ■ 
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and a singularity appears in the continuum field at the tip. Then the 

necessary term f o..(de../dJO dA for an inelastic material» in contras«: 

to W/d*) JA WdA for an elastic material, involves an integral which may 

be at least formally divergent at the shear band tip. An analogous 

difficulty in interpretation would arise for an inelastic tensile crack 

model which included no cohesive zone at the tip. 
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