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ABSTRACT

.In heavily over~consolidated clays there is a marked pé;k in
the ohserved relation between shear stres- and shear strain, As the strain
. increases, the stress falls from a peak to a much émaller residual stress.
Slopes made froﬁ sucli a clay ofteﬁ fail progressively iany years after
construction. Sliding occurs on a concentrated slip surface, and it is found
that the mean résolvéd shear stréss on that surface is markédly less
than the peak shéar stréngth. Concépts f;;m fractuté mechanics, and
in particular the J-intégral, are used to détivé conditions for the
propagatién of a concéﬁtrated shéar.band of this kind. The results indicate the
presence of a strong size effé;t, thch has important implications for the
use of models in soil'meChanicg} An eiééti, analysis makes' it possible
to detérmine the sizé'of the énd zoné in which the shear stress on
the shear band - falls to its residual vaiué. An attémpt is made to
assess the possiblé sourcés of thé timé-dépéndéncé govérhing
propagation 5pééd of the shéar band. Théy include poré-watér diffusion to
the dilating tip of the band (which gdvé;ns the rate at vhich local
stténgth réductions can occur), visco-elastic déformation of the clay

(which allows a gradual build-up of strain concentration at the tip

of the band), and the wéathéring bréak-down of diagénetic bonds.,
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INTRODUCTION

A striking feature of landslides and foundation failures in over-
consolidated clay goils is that most of the deformation is concentrated in

narrow zones which lie between regions which appear hardly to deform at ali.

The concept of a concentrated "slip surface" or "failure surface" appeared

early in the history of soil mechanics, and much of soil mechanicé theory
is based on it. Characteristically, someone analysiﬁg a slove postulates
a mode of failure in which one or more concentrated glip surfaces form,
supposes a.limiting she#r éfrength to act across these surfaces, and
considers the equilibrium of the blocks into which the surfaces divide the
slope. The theory of plasticity gives some support to this approach, and,
indeed, it would be just as valid frem that point of view if slip surfaces

did not actually occur.

Much less attention has been given to problems of the initistion and
development of slip ;urfaces. In this paper we examine the consequences of
a simple model for the growth of these surfaces, which we call "shear bands".
Among other things, we hope to throw light on some apparent paradoxes of
the conventional approach to slope failure, in paiticular the observation
that "pr;gressive failure" (Bjerrum, 1967a) can occur even though the mean
shear stress on the observed failure surface is substantially less than the

shear stvess the clay can withstand.

We take as our starting point an observation nf what happens when
overconsolidated clay is tested in a shear box, as illustrated schematically
in Figure la. It is the simplest apparatus that has been used to study shear
in soils, and the oldest, having been used by Coulomb. The vertical load is
kept constant. The observe! r2lation between the relative horizontal

displacement between the bpper and lower halves of the box and the applird
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shear force is as shown in Figure lb (sce, for example, Skempton, 1964).
A peak force is reached at quite a small displacement. After the peak has
been passed the deformation is concentrated in a relatively narrow shear
band, less than 1 mm thick. The force required to produce further relative
movement then falls ﬁontinuously, and .asymptotically approaches a value

corresponding to a "residual" mean shear stress.

This observation prompts us to consider a model of soil deformation in
which relative shear displacements can occur in concentrated shear bands,
the relation between relative displacement & and shear stress T acrose
the band béing like that shown in Figure lec. Outside the shear band the
soil deforms continuously, -and obeys conventional stress-strain relatiuns.
The peak shear strength is tp, and the residual shear étrength Tpe They will

both deperd on the prevailing effective normal stress across the band.

‘The assumed model of a shear band in soil has much in common with
cohesive~foice models of tensile cracks (Barenblatt, 1962; Dugdale, 1960;
Bilby, Cottrell and Swinden, 1963). 1In particular, we shall follocw the
development by Rice (1968 a,b) of a unified approach to such models based
on the J-integral. Skempton (1964) and Bishop (1968) have suggested that
fracture mechanics concepts might throw light on progressive failure, and
Bjerrum (1967a) has discussed a model of progressive failure in terms of
stress concentrations at the tip of a slip surface. The microstructure of
shear bands has been investigated by Morgenstern and Tchalenko (1967 a,b).
In this paper ve leave aside the question of the detailed structure of real
shear bands, and that of the localisation of deformation into shear bands.
Instead we consider the shear band simply as a surface of discoutinuity on
which there exists a definite relationship between shear stress and

relative displacement.



A SIZE EFFECT

An immediate consequenze of our model is that size effects will occur.

The assumption of a relation between shear stress and shear displacement
introduces a characteristic length into the material descriﬁtion. This
length will necessarily enter a prediction of final failure conditions

in felation to somé characteristic dimension descriting the

geometry of the soil system. Consider, for example, .a natural slope and a
small geometrically similar model of the slope, the model and the natural
slope being made of the same material. Suppose that there are no shear
bands in either. Then, if the model is loaded by an appropriately scaled
gravity field, as in a centrifuge, the.conditions for full similarity of
;;ress and strain fields can be met. If, on the other hand, the model and
the natural sloye have geometrically similar shear bands, then the
similarity conditions are no longer satisfied. If the strain fields were
.indeed similar, then, recalling that displacements are integrals of strain
with respect ;6 distance, we must conclude that at a point on a band the
natural slope would have a ralative displacement § greater than the
relative displacement at the corresponding point on the small model. The
displacements at similar points would be in the ratio of the scale of the
model and the natural slope. However, T is a fixed decreasing function

>

of 6, and this means that 71 at any point along the band in the natural

slope would be less than 1t at the similar point in the model.

This last result is of course inconsistent with the
similarity of strains outside the band. However, the conclusion is clear
that the large slope will have larger § values and hence smaller v values
than does the small model at similar points along the band. Thus, for

example, it is possible that in a natural slope the shear stress could be




near its residual value everyvhere except for a localized zone near the tip
of a band, whereas for a sufficiently small geometrically similar model
the shear stress would have barely decreased from the peak value along the

entire (but small) length of the band.

Bishop (1971) has proposed that the Skempton residual factor, measuring
the amount of fall from peak toward residual strength, should be considered
a function of position along the band. This is consistent with our present
" uodel in that the relative sliding & will generally belan increasing
function, and hence Tt a decreasing function, of dista-ce from the tip of
the band. Bishop pointed out that a size effect‘would result from the
requirement of a certain displacément on a slip surface before the residual

stress 1s reached.

We shall attempt quantitative estimates of these size effects in the
following sections, but only when the simplicity of the shear band geometry
lends confidence to the accompanying analysis. Specifically, the examples
to follow will all deal with straight shear bands propagating in their own
plane. Further, the typically jointed structure of overconsolidated clays
could of itself lead to a size effect as, for example, Marsland (1972) has
proposed. We do not have a way of including this effect in the model, except
to say that the stress-strain relations employed outside the shear band
should be those appropriate to the actual jointed material. Thus the size
effects under consideration here are solely those due to the progressive
degradation, with increasing 6, of the shear strength of material within

the slip surface.

THE J-INTEGRAL S

In the following sections we'derive conditions for the propagation of




a shear band. Our most important analytic tool is the J-integral of crack
mechanics (Riée, 1968 a,b). Define Cartesian axes X and %, (Figure 2)

S0 that a straight shear band lies parallel to the x ~-axis, and suppose

1

plane-strain deformation to occur in the x X, plane. Let the stress-

1’
strain relation of the material outside the band be such that the stress work

integral

W(e_ ) = Ro.. de (1)

0
at any strain epq experienced by the soil is independent of the strain path,
An elastic material cleariy obeys this condition. The material properties,
the body forces, and any prestress existing in the reference state, can
depend on X, but not on X, - Let T be a curve in the X1s x2 plane
vhich starts at a point P on the lower surface of the shear band, goes
round the tip of the band, and ends at a point P* on the upper surface,
vhere P* and P coincide in the unstrained reference state. Let the
outward-pointing unit normal vector to T have components n., let u,

be the components of displacement, and let Ti be the surface tractions

across T, related to the stress components oij by

T. =0¢.. n

0, (2)

Further, let fi be the components of body force per unit volume. The

J-integra) is then defined by

aui
JP = [[(W - f.iui)dx2 = Ti 5;; ds] (3)
v
r

where ds 1is an element of arc length nf T.

Thie integral is useful because its value is independent of the path

e SRR e )
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of integration T, and depends only on the end-points P* and P~. The
dependenée on the end points follows only because siress is transmitted
across the band, and would not occur for a freely slipping band or for an
open tensile crack. A proof of path indepéndence has been given by Rice
(1968 a) in the case where there are no body forces fi; the extension to

the proof to include body forces is trivial.

Sometimes we shall want to apply the integral to inelastic materials
for which the stress work integral w(epq) ‘is not independent of str#in
path. It turns out that J is still independent of the path I, as long
as the difference between the values of W at two points (xi, xé) and

(x;, xé on a line parallel to the x,-axif is defined by

1
x! ]
1 d€. .
aij ox dx1 '
A |
1]
|

the integral along the line between the two points. It is only this

difference that contributes to the J-integral.

We now let the path T' have a particular form. Suppose it to follow
the lower surface of the band from P~ to the tip of the band, and to
return to P* along the upper surface. Then dx, is zero along the whole

path, and so the first terms of the integral vanish. Across the band u,

- is continuous, and therefore 3u2/3x1 is continuous, whereas T2 at a point

on the upper surface is equal and opposite to T2 at the corresponding point
on the lower surface, and so the T23u2/3x1 term makes no contribution to

the integral. Hence, using (2), we have

aul
JP = fan -a—x-i- dx1 (%)

r

. . ' ' , , +
for this choice of TI'. Across the band %9 must be continuous; if u
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and u; are displacements on the upper and lower surfaces, and & is the
telative displacement u{ £ u;, then, since the upper and lower surfaces

are traversed in obposite directions, equation (4) gives

P P
9 + = 96 i
JP = J'OZI 5;"; (u1 ul) dx1 = J T '5;; dx1 (5)
T T | '

the integrals being taken from the band tip T to P, and < .being the

shear stress across the band.

Our model of shear bands asserts tﬂat there is a fixed relationship
between, T and '3, at least so long 2z *he band does not unload and become
inactive; 1t 1is then a single--valued function 1(§) of. §, and we can
vrite (5) as

%

3 = Irm as e
0
Outside an end region close to the band tip, the relative displacement is
large enough to reduce Tp to the residual stress T (Figure 1lc).
It is then convenient to divide the integral in (6) into a part corresponding
to a residual stress and a remainder contributed by the difference between
the shear stress and the residual stress at small displacements, so that if

P lies outside the end zone

JP - Trsp - f(r - Tr) ds ' ¢))

and Jp - Tr5p is independent of P. The integral in (7) denotes the

cross-hatched area in Figure lc. A characieristic displacement & can

be defiued by

o 2 TN




.Ikr -'tr) d6 = (rp - Tr) I} _ (8)

Shear tests on overconsolidated clay reported by Skempton (1964) and:
Skempton and Petley (1968) are consistent with values of § between 2

and 10 mm,

6
What we shall next do is to exploit the path~independence of the

integral. Equation (7) gives the value of JP

band. If we evaluate JP - rrGP along a different wider path with the same

- rrGP_for an active shear

end points, we find it to be an increasing function of the applied loads.
When the loads become large enough for bp = TrGP to reach its critical
value, the band becomes active, and will propagate if the loads are increased
any further. Eqﬁation (7) can be thought of as an energy bélance 6f the
Griffith type, if the end zone remains.small or-propégates unchanged (in

the sense that an qbserver'moving with zhe band tip always sees the same
distribution of strain). The Jp = TrGP can be interpreted as the energy
surplus made available per unit area of advance of the band, this surplus
being the excess of the work input of the applied forces over the sum of the
net energy absorbed in deforming material outside the band and the frictional
dissipation againct the residual part T of the slip resistance within the
band. Accordingly, equation (7) asserts that for propagation to occur this

net energy surplus must just balance the additional dissipation in the end

region against shear strengths in excess of the residual. This interpretation

is developed in the Appendix.

A SLIP SURFACE IN A LONG SHEAR APPARATUS

Consider a long shear apparatus of the kind shown in fig.3. This
contains a layer of overconsolidated soil of height h between two rigid
boundaries. The lower boundary is fixed while the upper boundary is

displaced horizontally by an amount u . A shear ban: is initiated from
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the left boundary, possibly with the aid of a local stresa concentration

! from a cut orlnotch, and has now extended'into the interior of the

F | specimen. We shall use the J-Lntegral to find the crlterlon for continuing
propagatlon, on the assumpt1on that the apparatus. is very long compared to .
its height and that the end reglon oflthe shear band is far from either the
L right or left boundary of the specimen. Under these conditions h is the
only significant dlmenslon, and the appavatus mav be’ cons1dered of 1nf1n1te

horizontal extent. The weight of the soil may be neglected Note that in

the region far ahead of :he tip of the band (but not too close to the right

hand boundary, where end effects may appear) the soil is in a state of

I ' homogeneous shear strain and stress

v

. may = b =
2“12 Y, £ g and 012 = T, (9)

l
I
where L is the shear stress corresponding to the shear strain Y, and l

we assume of course that To < rp. Likewise, far to the left of the tip,

e e
s
.

b * but not too close to the left-hand boundixy, there will aiso be a homogeneous '

state in the soil above and below the slip surface:

2:12 rYS and 019 = T, (10)

where T, is the residual shear strength which is acting along the band in

that region.

Consider the choice of point P and path T illustrated in fig.3.

The relative displacement at p is

§p = yoh - yrh/Z - yrh/Z = h(Yo - Yr) (11)
where the first term is the imposed boundary displacement and the two
subtracted terms th/Z. represent that portion of the imposed boundary
displacement taken up by soil deformation in the regions above and below

the band. The integrand of JP (eq.3) will vznish all along the rigid

boundaries, because dx2 and aui/axl vanish there. Likewise, aui/ax



vanlshes in the homogeneously strained regions far to the 1eft and right
of the tip, so that for the path T 1
JP--J'wdx =hwcy)-hW(y) (12)
| .
Here ve use the nocarlon W(y) for the energy denslty in a reglon under
homogeneous shear stra1n y. Thus we have obtained the 'drlvxng force"

term in the propagatlon crxterxon (eq 7) as

P h[W(Yo) =Wl ) -y, - le)] . (13)

This result reinforces the energetic'interpretation'of Jp = T p
'given earlier.l Consider the energy changes which result when the slip
surface advances a dlstance AL wh11e the boundary remains fixed. There
- is no work 1nput from boundary forces. The loss in deformation energy can
be comnuted-by notinglthat this slip'surface advance essentially allows an
area of material hA% to reduce its energy density from W(y ) tc W(y ),

. and is |

hae [u(y)) - W(y,)]
The work dissipated in the band against the residual part of the shear

strength is the same as that dissipated in sliding a segment A% of the

band a distance equal to thé uniform slip displacement h(yo - Yr) far from
the tip, namely

T, h(yo - Yr) AL
Thus the net energy surplus, available for work against that part of the

strength in excess of the res1dua1 value, is just the sum of these two terms,

which we see to be (JP L BP) AL  as expected.

To interpret the driving force in terms of the shear stress~strain

curve 1 = tv(y), fig.4a, note that




Yo
W(Yo) - W(Yr) = j (y) dy (14)
Yt
30 that (13) becomes
Yo
Jp - T GP = h [ [E(Y) - Tr] dy (15)
‘Yr _

The graphical interpretation of this Criving force is as h times the
shaded area in fig.4a. If the material is linear elastic, or approximated

-

by a linear relatior of the form

Lo G(Yo -vy) ; (16)

,in the strain range of interest, where G is a shear modulus, the driving
force may be written as

2

h .
JP T, GP =3¢ %, Tr) (17)

In general, however, the so0il will not be perfectly elastic and will
unload aloag a different curve from that for loading, as in fig.4b. It is
difficult to treat this in the sare precise manner. But, by recalling the

definition of W as an integral in the x, direction for inelastic materials,

1

we see that an approximately correct answer can be obtained if we define
W(Yo) = W(Yr) of eq.14 from the unloading str:ss-strain curve as in

fig.4b. This is because the integral in the x, direction essentially traces

1

deformation states encountered as the material outside the band transforms

from the homogeneous stress state T existing far to the right of the
*ip, to the residual state existing far to the left. Hence it seems

appropriate to adopt eqs.15, 17 for the driving force in this case, provided

that the unloading stress-strain curve is used to identify it as h times the



shaded area in fig.4b, and that in the linear approximation the shear
modulus G is that gové;ni?g unloading. 'This same cholce also seems
appropriate from an energetic viewpoint, in-that it is the energy made
available onn unloading which can contribute to further advance of the
band. Time effects due. to creep or diffusicn may.also play a role in
determining the stress-strain curve to be ¢hosen, and we discuss this

eubsequently after an estimate of the end zone size is available.

In any event, for some suitably chosen G in the linear approximation,

the propagation criterion becomes
h \2 '
E (To .Tr) f(r ‘rr) dé (18)

or, if the additional end region energy absorption it written as in

<EQ-8)9
"o r 2G E:
T =1 T -1 h
P r P r

(19)

This reveals the size-effect on the propagation stress level T} the

greater the height h of the layer the smaller the stress excess L

r
required for propagation. In fact, there is also an abrupt cut-off because ‘
the left side of this equation cannot exceed unity. Thus if

he—26_5§ | (20)
T =T
P r

the propagatior condition cannot be met before the stress T, induced in
the layer reaches the peak strength and more-or-less simultaneous failure of
the layer occurs. That is, for a sufficiently thin layer, the energy which
may be stored by a stress as large as the peak value will still be
insufficient to supply the required energy surplus in a unit advance of the

shear band.

Wroth (1972) has noted that for overconsolidated London clays G/'rp = 50,
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Thus the critical layer height, below which failure occurs at T = Tp.

()
is
. . 26 - \ y - (21
= e JE S Y00 P )
er T - T i I =y
P r P, T

1f Qe take 2 for the stress ratio and 5 mm for &, as typical values, the
critical height tufns out to be 1 m. This is catastrophic from the point of
view of laboratory experimentation, for the hcight is unreasonably large as

a lower limit to the required specimen size for studying.slip surface
extension. Of course, 1 m is not a large dimension in typical field failures.
(It should be noted that Wroth's ratio is Based on the G for loading; the

; pteferrea G governing unloading must be higher and this will increase the

numerical factor in &q.(21) in proportion).

SLIP SURFACE FROM A STEP IN A SLOPE

Referring to fig.5a, we now consider a loﬁg flat slope of inclination
angle o into which a step of height h has been cut. A shear band of
Alength £ emanates from the base of the cut in a direction parallelling
the ground surface. We wish to obtain expressions for the driving force on
the band and, in particular, for the propagation sriterion. It is clear that
this case presents in elementary form some of the factors likely to be
important in failure of a natural slope. Nevertheless, a precise analysis
is difficult and we here present an approximation for the case in which the
band length is large compared to the layer thickness and to the size of the .
end ref lon. Under such conditions most of the energy transfer during shear
band extension will be due to gravitational work on downsiope movements of
the layer and to deformations of the layer from changes in the normal stress

acting parallel to the slope surface.

13 o . i L] * (]
The stress state oij existing before the cut is made is supposed to
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- depend only on depth f:om'the slope surface. The corresponding infinite

slope equatioﬁs for the adopted coordinate system, fig.Sa, are

d o

) 3 o0 e . B _ e : 22
Opp = ~PC fz.cosa,- 999 ﬂ pg *, sina, 011. .f(xz) (22)

where ‘B ié_theﬁaVerage density for depth %, and ‘where the last of these

°  is undertermined by equilibriun

11

congiderations alone. We shall be interested in the average value of %1

is intended to indicate that o

over depth h,

h
6 ll-l— (o] dx (23)
11 h 11 %2
0

and shall write p° = ;%;1 for the average lateral earth pressure existing

prior to introduction of the cut; p° may reflect a normal lateral pressure
effecc, or possibly some augmented p.:ssure due to the weathering break-down
of diagenetic bonds (Bjerrum, 1967a). We shall write the gravitationally

induced shear stress on the prospective failure plane as

T = (0;1) = pg h sina (24)

g xz‘h
All displacements and strains will be measured from zero in the pre-stressed

state existing before the cut is made.

To evéluate the driving force we choose the point P and path T shown
in fig.5a. Further, from what lhas been said above, w: will neglect any
displacement or straining in the base material below thc slip surface |
()& > h) since the dominant deformations and energy transfers may be assumed
to occur in the sliding layer. Hence the J integrand may be assumed to
vanisk along that portion of T tﬁrough the base material. I: alco vanishes
far up the slope where thgre has been no displacement from the prestressed

state. We are left only with the portions of T al~ug the inclined ground
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surface and the-surface of the cut. Since dx2 and the surface traction
vanigh along the former, and the surface traction also vanishes along the
latter, we are left with

h

p
& . 0

J o« j (W + pg sina u, = pg cosa u2)xl-0 d:‘:2 | (25)

Since the reference state for strains is that of the state under pre-stresses
o.j, W. 1s here to be interpreted as the energy recovered during deformation
‘from the prcatressed state to the state of zero transverse stress existing at

the cut surface.

l  When the layer is long in comparison to its height we may assume that
Aits deformatxon is essentxally a one-dimensional d1sp1acement in the negat1ve
'xl d1rect1on, .and that at any po1nt the magnitude of this displacement is

the same as the relative slidiag 6 at the same value of Xty .- 6(x1)

Thus

= -y . - -1 | ’
JP W h + (pg h sina) 8o Wh+ T 8o {26)
“where W is the thickness average energy density at the end of the slope.
This is defined from the stress-strain curve relating the thickness average

stress 511 in the layer to the strain €.

1’

1(511) dell ’ : (27)

and is the negative of the shaded area identified in fig.5b. The driving

force term is therefore
JP -1 GP o (Tg - Tr) GP -hW. ‘ (28)

1f we further recall the assumption that'the end region is small, so that
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91 = T, along nearly the entire length of the shear band, then it is
clear from overall equilibvium in the xl-directien that 511 is given
by '
9, h = ('rg - Tr) X
Thus .
X " L x - L
= = f - \ s = = 0
(r 1) 8p (tg L ey, dx) = h €1y 9914
X = 0 X, = 0
[‘511 =t ~1) i
= h €yq 9999 . (29)
Spnsal

~and the corresponding area is also shaded in fig.5b.

From eq.(28) it is clear that the driving force is just h times the

- sum of the two shaded areas, and the final result is therefore

('rg - Tr) 2/h

Jp - T, GP 2 h J‘ €11 (011) do11 (30)
o .
-p
From the energetic point of view, the lower cross-hatched area represents
the energy which is recovered in a unit advance of tie shear band due to
relief of the transverse pressure po, whereas the upper cros.-hatched area

represents the excess of work input by the gravity forces over the dissipation

against the residual shear strength,

If the stress-strain curve for the layer is represented in the linear

form

[

1 (31)

-_O v <
P +E ),

§ : - my

«
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where E' is an overall elastic modulus for the layer under the assumed
plane strain conditions, then the driving force expression and propagation

cr{terion take the form
Jo~t b=t G =) am+ 2. fr =) as (32)
P r P 2E g r r

Also, with the notation of eq.(8), this may be put in the dimensiohless form

(g -t b+ p® Gt

g ; d \rr - t_h
P r P r

It is perhaps of special interest to note that even if the slope angle is

such that the gravitationally induced shear stress equals the residual

strength (i.e., i - Tr)’ so that Skempton's residual factor is zero, it is

still possible that the energy recovered by relicf of the initial pressure

po could be adequate to drive the shear band. This was suggested by '

Bjerrum (1967) and the corresponding special case of the above formula

gives a quantitative estimate of the required initial pressure.

We shall consider this case a little further in the subsequent
discussion of possible sources of time effects. It must be remembered,
however, that there have been several approximations made in our t;eatment.
They seem to be appropriate wiien the band is indeed long and when the end
regior occupies only a small fraction of the total length. However a more
refined anal 'sis, based perhaps on a finite element analysis of the soil

outside the band, with the =1, & relation as a boundary conditioﬁ, will

be necessary if the exact nature of the approximations is to be exanined,

and if the model is to be extended to other cases involving, say, ron-planar

slip surfaces.

: LINEAR ELASTIC ANALYSIS WITH SMALL END REGION

Henceforth we consider the soil outside the shear band to be homogeneous,
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isotropic, and linear elastic, and we consider only cases for which the end
region length (in which the shear stress falls to its residual value) is
small in comparison to all géometric dimensions such as overall band length,
layer height, etc.. We shall, indeed, first examine the limiting case in
which the end region is.taken to be infinitely small, so that the shear band
carries the residual strength along its entire length. In this idealization
stresses predicted will become infinite at the tip of the band. We shall
identify the dominant terms in this singular stress distribution near the
tip, and then proceed to take the view that an end region of small but
finite size may be considered tc be embedded in a local stress field for
which the dominant terms set the outer field boundary conditions. That is
to say, the dominant stress terms as obtained from the simpler model with
no end region incorporat= the actualleffect of applied loadings and
overall geometry of the failing soil mass on the deformations in the end
region. A similar approach is much used in fracture mechanics and indeed
ﬁrovides the rationale for use of elastically computed crack tip stress
fields in semi-ductile metals failing under conditions of a small plastic
region at the crack tip. The intensity of the singularity is ihen expressed
by 2 stress-intensity factor, calculated from a complete elastic solution
vhich in turn depends on the applied loads and the crack geometry. This
solution is not valid in the plastic region at the crack tip. However, it
is known that when the Plastic region is small compared to other pertinent
geometric dimensions, proper characterization is obtained if the elastic
singularity is seen as setcing outer field boundary conditions. The applied
loads and geometrical dimensions influence the stress state in the crack
tip plastic region only insofar as they enter the expression for the
elastically computed stress intensity factor. This is the "small scale
yielding" formulation of crack tip plasticity as discussed by

Rice (1968a, 1968b).
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We'wish to obtain the form of the stress distribution uear the ‘tip
of a shear band which is assumed to carry a constant or smoothly varying
residual strength T along its length. The form is alrzady known for
a straight slit uader plane strain shear loadings relative to the crackline.
As it happens, the loadings induce no opening separations of the crack
surfaces to that the same model describes a freely slipping shear band. We
have only to adjust these known results by adding on. terms tq represent the
shear and normal stresses transmitted across the band. Upon adapting the
crack formulae (e.g. Rice 1968b) in this way, we therefo;e find that the
stress distribution at the tip of a shear band takes the characteristic

form (referred to polar coordinates R,8 of fig.6j

(ZnR)—l/2 K cos g-[l - sin %-sin %;] + T + ..

ap T
-1/2 . 8 9 36
99y (27R) K sin 7 €Os 3 cos 7ri+ O * e (34)
- -1/2 . B 8 36-
911 = (27R) Ksm2 [2+co.;2cos 2] +ot+

The dots represent other terms, all of which vanish at R = 0, 1in a complete
expansion of the stress field in powers of R; o is the normal stress
transmitted across the band and o, is the transverse stress acting along
the line directly ahead of the band; In addition to these constant stress

terms, however, there is a singular part of the stress field which becomes
-1/2
R

infinite as and which has a characteristic angular distribution.
The strength of the singular term is given by the "stress intensity factor"
K, which wiil be a function of the loadings and geometrical dimensions of
the soil mass containing the shear band. For example, the K factor for

a shear band of length £ in a body under the remote shear stress

L (6 Tr) as in fig.7 is (e.g. Rice 1968L)

K= (x, - 1) AilT (35)
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Likewise, for the shear band in the long shear apparatus of fig.3
K = (r = 18 ) /57?T_:7:5- - (36)
vhere v is the Poisson ratio, and for the shear band emanating from the
step in the slcpe, -fig.5a, .
el b1

These assume that ‘the residual stress is indeed activated all along the

ghear band.

The displacement field associared wvith the above stress state results

in a slip displacement

s 24 (1+v) K Rl/2
S =uy ~u = =% Il 21!3

R . (38)
The J-integral can Ye avaluated directly , making use of the corresponding
displacement field, and is

1- 2
P r 2Gv (39)

which is the well-known Irwin formula for the energy 1elease rate. It is
in fact through this formula and the earlier direct evaluations of

p - T, Tp that eqs.(36,37) are obtained. The result needs no detailed
proof here, for it has already been remarked that JP =i GP. is
independent of the location of point P. Further it is clear that if point
P and the path T are taken very near the tip, only the Rul/2 s1ngu1ar
terms can contribute, and in that instance the calcnlation is the same as
that of the J-integral in crack theory for vhich eq.(39) is

the known result. Remembering however that the dominant stress terms of
this analysis give the outer field boundary conditions for the case of a
small end zone, we may again assert that the propagation criterion is
given in terms of the 1,8 curve by eq.(7), with the driving force

expressed as in eq.(39). Hence the Fropagation criterion is
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lc-;v KZ " J'-(Tv . Tr) 46 40)
where K is determined from ar analysis whicli neglects the end zone in
the manner discussed above. This is a quite general procedure for dealing

with small end zones, although the proper modifications to account for

inelasticity outside the band cannot be stated with any generality.

In particular, on the assumption of a small end zone compared to band

length, the propagation criterion becomes

T =R T i
o 5 4 G_§ : (41)
T, J‘n(l-—v ) Tp"‘Tr [) :

P

for the case shown in fig.7, where (eqé.35 and 8) are used.

ESTIMATE OF SIZE OF END REGION

The J-integral has led to calculations of the drving force and propagation
criterion. It is however not possible to obtain further information such
as the size of the end region at failure without fairly elaborate
calculations. This is due in part to the nonlinear <, relation which
must be imposed as a boundary condition. We will therefore estimate the
size of the end region approximately by EEEE&iﬂ& a distribution of 1
vith distance from the tip of the shear band, a distribution which contains
the end region length w as a parameter, and calculating from elasticity
theory the implied 1,8 curve, If the curve is of a reasonable shape
the size w may then Ve determined as that which gives the proper value of
j(r - Tr) dé. Fortunately, an assumed linear variation of stress withkin
the end zone,fig.8a,leads to a reasonable curve for our purposes, We
assume that the stress intensity factor induced by the applied loadings
would be K if the residual stress T alone acted along the band. The .

restraint of the band surfaces by stresses in excess of T has the
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effect of inducing a K factor of opposite sign, aud the end zone extent
w is to be chosen so that there is no net stress singularity at the tip.
The magnitude of the stress intensity factor induced by the excess shear

i

stresses ié (Rice 1968b)

w
T(R) - 1
3 j L 4r
m /R
0

where we use the formula for the effect of surface loadings on a semi-

infinite shear band or crack. Writing
te s (-~ )-8 (0<R<w (42)
r P r w

from the assumed linear variation, we therefore wish to choose w so that

i ,
_Jz 1 I -Rw) o _ & - 2w
K Jﬂ_(Tp Tr) j = dR = 3 o ‘rr) : (43)
0
Hence
O K (2
©“T3z T -Tr) s

But we already know from eq. (40)how K2 must relate to the area under

whatever 1T,8 curve is implied. Thus the estimated size of the end zone

1S

9 G
Y3 (146)

Oy

W

(45)

Further, by standard calculations of crack elasticity under the loading
depicted in fig.8a, one finds that the slip displacements implied by

eq. (42) for T - T

% ((1 + R/w) Rlw - = (1 - R/w) log ——i— L+ Ry } (46)
l 1 - A
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This may be plotted as a function of (r - Tr)/(Tp - Tr) after elimination
of R/w with eq.(42). The resulting 1,8 curve is plotted in fig.8b.

it has the expected form, and is not inconsistent with the model,

If we accept this estimate and put v = 1/4 and G/rp = 50 as

earlier, then
]
=125 —P_73 (47)
P r :

If the stress ratio is taken as 2, then the estimated size of the end
region ranges from 0.5 m to 2.5 m as 6 ranges from 2 to 10 mn. Hence
it seems quite conceivable that the assumption of a small end zone in
comparison to pertinent geometric dimensions may frgquently be valid in
natural soil failures, although tﬂe condition seems almost impossible to
attain in laboratory experiments. Again we see the implicatica of a size
effect in soil mass failures, for the size of the end region w at
failure is set by the material parameter & more or less independently

of the actual size of the mass.

TIME EFFECTS

In the preceding analyses we have imagined that a shear band of a certain
length already exists, and have determined a propagation criterion which tells
us how large the applied loads have to be if a shear band of that lengtn is
to propagate. In the problems which typically arise in soil mechaﬁics, such
4s slope analysis, the external loads are gravitational and remain more or
less constant, though sometimes geometcy changes occur, as when the toe of a
slope is cut or progressively eroded. We can conjecture that what happens
is that a shear band is initiated at a stress concentration, grows slowly
until it reaches a critical length, and then propagates rapidly. Our analysis
has not explained how the band can grow slowly, or what time effects control

how fast this happens,




24

The simplest and most ubvious time effects in soil mechanics are tﬁose
controlled by‘tha diffusion of pore water within the soil, which allows
chaﬂge of water content and effective stress. In this paper we have examined
the consequeaces of a relationship between < and. § on a shear band, and
of simple sgress-strain relations for the soil outside the band, such as the
equation relating 311 to Eil in the slope analysis case, Vhat these
felationships are must naturally depend on the drainage conditions, and on
whether or not there is time for water content and pore preééure changes to
diffuse. Three cases can be distinguished; the model we have studied can
be applied to all of them, but the relations between 1 and & and between
611 and Ell will be different. The discuseion is restricted to the case
of a shear band parallel to a uniform slope (FigureIS); closely similar

conclusions apply to other cases.

Consider as the first case that the shear band advances rapidly inm
comparison tu the time scales for diffusion. The soil deformation is
"undrained". Under such conditions the shearing of heavily overconsolidated
clay creates negative pressure or suction in the pore fluid. This increases
the effective compressive stress transmitted to the soil particles, and
would have the effect of increasing the resistance against sliding at the
tip of a shear band. In addition, the soil in the overhanging layer above
the tand responds as a stiffer material than it would be under drained

conditions. Hence, from the point of view of the propagation crilerion

[(-rg - rr) 2/h + po]Z = I(r ~ rr) dé , (32) bis

(o]
&=

the shorter the time available for diffusion, the more the resistance term

on the right is increased and the more the driving force term is decreased.

However, there would seem to be two time scales for diffusion, and as

a second case we consider that the spred of propagation is still too rapid

to allow drained behaviour of the overhanging layer, but is nevertheless

B e e ' e aneme
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sufficiently slow that negligible excess suctions are generated in the
'heavily sheared material near the tip of the band. In this case E' is’
the same as for the first case, but now the resistance term has settled to

a fixed lower value appropriate to drained behaviour on the small size scale
of the band thickness. Indeed, it is possible to make estimates of the
elevation of the 1,8 curve induced by a given speed of advance, and hence
to determine from (32) a propagation speed governed by pore water diffusion.

We intend to describe this in a subsequent paper.

In the third case the deformation is wholly drained, and the relation

between 011 and €

reduced below its value for the iirst and second cases, while the value of

11 is that for a drained material, so that E' is

‘}T - Tr) d§ is the same as in the second case. This correcponds to much
J .
slower propagation: pore-pressure changes in clay diffuse so slowly over
distances of the order of several meters (a typical depth to a shear band)

that they may require time of the order of 102 years,

We may consider this time scale for bulk drainage in relation to the

propagation speed by noting that the stress in the layer changes from

G11
-po to (Tg - rr) 2/h over a distance of the ordar of the end zone size w.
Hence the time scale over which the material responds is w divided by the
speed of advance, and material properties such as E', which appear in the
propagation criterion should be chosen as abpropriate to this time scale.
This becomes clear when we note that for inelastic behaviour it is the

integral of oij aeij/axl over the deforming region which enters the J

integral as a difference in W.

As well as time effects associated with water diffusion, there can be
expected to be viscoelastic deformations, especially creep, which occur
even if there are no pore pressure changes (Bjerrum, 1967b; Bishop, 1968b).

In this event the material properties are again to be chosen as those




appropriate to the time scalg mﬁ(propagatién speed) so that, for example,

E' can be approximately regarded as the viscoelastic modulus at this
deforms:ion time. The modulus reduces with increasing time, uitimgtelx to zero
£o¥ a Maxwell model, and this means £hat the effective driving force term .
will be increased. Tt is possible that creep-liie effects could affect the
resistancg term as well,by progressive degradation of the streﬁgth at a

| giveﬁ 8. There is also the possibility of aging effects, such as the

" weathering break-down of soil bonds (Bjerrum, 1967a), which may te considered

to increase the enargy made available by release of lateral pressure.
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Appendix: Enerpy Rate Interpretation

This section follows the lines of Rice's (1968b) proof that J is the
energy release rate for crack extension in elastic bodies, an interpretation
vhich relates closely to Eshelby's (1956) earlier use of the integral in the

computation of energetic 'forces' on point or line defects in solids.

We assume for the present that the material outside *he shear band is
elastic. Let £ be the shear band length in fig.2, as measured from the
origin of the X, axis. Define G' as the energy surplus made.available per
unit of quasi-static band advance, this being defined as the excess of the
work of external forces over the cnergy stored in deformation and the
dissipation against the residual part of the shear strength in the band.
Hence if point P lies outside the end region,

J' sl f gl d J i ds
' = . = [y - == =
G : Ti 97 ds + A fi r) dA 7 | WdA. .I; T 91 dx1 (A-1)

Here A is the area enclosed by T'. The choice of P and I is arbitrary, for
the virtual work theorem assures cancellation of the contributions from the
annular region between any two I' choices both lying outside the end zone.

By the same theorem it is obvious that for a quasi-static advance of the band
T
dé
1 - = =
G IP (t Tr) ) dx1 . (A-2)

the latter being the dissipation against shear resistance in excess of the

residual strength.

Now any field variable f = f(xl, Xos £) can equally well be written in

the form f(Xi, Xy 2), with xi =X, - L, as seen by a moving observer. Hence

- Tt (A-3)
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A-2

the notation 3/3% being the derivative computed by the moving observer. 1In

this notation

d oW
e WdA = - J. Wdx, -rf- — dA
dL 1 r 2 35

A
J'f-(-lidls--ffu dx +ff ijidA
g ide r ii 72 A i 9L
du du, r du, (A-4)
S Ti;frds -f T1-3->?1—ds +J 'T.‘i-a—[- ds
k il iy
T T
I Trg‘gdﬁ:‘}‘sp +SP ! g%d"l
P

where it is assumed that the material properties and body forces are

independent of X, Thus upon recalling (A-1)

T
ou, ou,
A N P e VO - O D
P o Piaf. Ai'd!; AB!. Pr32 1

All of the terms containing 3/32 vanish whe-. the deformations as viewed by

the moving observer are fixed and hence G' = JP T GP in that case.

The same result is also true in the mwodel appropriate to a small end
zone, for which it is assumed that T = iy all along the siear band, with a
singularity resulting in the elastic field at its tip. In that case the

virtual work theorem (which could not be applied to the virtual displacement

dui/dl, because the integral of dW/di is then divergent) requires that

all the terms involving 3/3% sum to zero, so that again G' = JP =V GP.

More generally, with a finite end zone, the 3/3% terms would sum to

zero 1f T rather than T appeared in the last. Hencz

. ‘ A s _
G JP T GP +S.p (x Tr) 3 dxl (A-6)




A-3
On the other hand, the fermalism of (A-3) changes (A-Z) to

T 26
= - & /) -
G f(*r 'rr) ds +.‘-p (t -rr) m lel (A-7)
We thus see from the first of these that JP - T GP 18 not always equal to
the energy surplus. But the second makes it clear that in the same
circumstances the required energy surplus is not just simply I. (r - Tr) ds.

The identical additional term appearing in each equaticn means that

JP -1, GP = ;f(r - Tr) ds | (A-8)

always, regardless of the validity or not of the energy interpretations for
the separate terms. Indeed, this result was derived in the text independently

of these interpretations.

When the material outside the shear band is inelastic, the rate of

change of strain energy in (A-1) may be replaced with

which is the net rate of energy gtorage and/or dissipation by deformatien,
and the same interpretation of G' ac an energy surplus remains. Then the

first member of (A1) becomes
dei. J’ f aei. '
IA oij —_‘]'dy, dA = - ! Wdx, + | o —J'az dA (A-9)

provided that W is defined byv integrating 3W/8x1 = oij aeij/axl. This leads
directly to (A-5) with W as here defined in the formula for J, and with
3W/32 replaced by oij aeij/az. Hence, whenever the end-region deformations
appear unchanged to the moving observer, JP - T GP is the energy surplus
for dissipation against strengths in excess of the residual value even if
the material behaviour is inelastic outside the band. It is difficult to

pursue this interpretation for the model in which t = T all along the band
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and a singularity appears in the continuum field at the tip. Then the

necessary tcrm‘1; oij(deij/dz) dA for an inélastig material, in contrast
to (d/dJL)IA WdA for an elastic material, involves an integral which may
be at least formally divergent at the shear bapd tip. An analogous
difficulty in interpreﬁation would arise for an inelastic tensile crack

model which included no cohesive zone at the tip.
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