
CAScENCES-RESEAftCH PAPEPIE. N.

t'AIR FORCE CAMBRIDGE RESEARCH LABORA ltORI
SL. 0. HAHSCOM FIELD, BEOP01tD. MASSACHUSETTS

Thermal Lemi~ng in Infrared Laser
Window Materials

F.D. GIANINO
JRK. JASPiRSE

D DC\

'OCT 13 $

C

Appimved for public releeW distribution unlIied

AIR- FORCE SYSTEMS COMMAND
United-States Air Force,

NATION4AL TECHNICAL
INFO'_JPM'AT ION SERVICE



Wtls N~
134 tiufff f wNr

JflhfICAUU.

Qualified requestors may obtain additional copies from the Defense
Documentation Center. All others should apply to the National
Technical Information Service.

- '



Unclassified
Secutity Classification

"DOCUMENT CONTROL DATA- R&D .
fSecurity etasusficauon of titte, body of abstract and indexing annolaton must be entered ICen thr Ov,..i report is €lassfidj

r 1. ORIGINATING ACTIVITY (Corporate author) Za. REPORT SECURITY CLASSIFICATION

Air Force Cambridge Research Laboratories (LQR) Unclassified
L. G. Hanscom Field Z GROUP
Bedford, Massachusetts 01730

E REPORT TITLE

THERMAL LENSING IN INFRARED LASER WINDOW MATERIALS

4. DESCRIPTIVE NOTES (Type of •epou and wad ave dates,

Scientific. Interim.
S. AUTHOr(S) ("rst rnaw. ,wile sntatb. last none)

P. D. Gianino
J. R. Jasperse

& REPORT OATE 70. TOTAL NO. OF PAGIS Tb. NO. Of REFS

23 March 1972 51 16
-a. CONTRACT OR GRANT NO. 996 ORIGINATOR'S REPORT NUMBCEIWS)

& PROJECT. TASK. WORK UNIT NOS. 3326-05-01 AFCRL-72-0202

c. 0o00ELEMENT 62601F ,b. OTR 1JORTN5 SJ(AV/E.tR,,tiD,,t

, 000 SUBELEMENT S662300 PSRHP No. 483

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES IL SPONSORING MILITARY ACTIVITY

This research was supported by the Air Force Cambridge Research
Air Force Weapons Laboratory, Laboratories (LQR)
Kirtland Air Force Base, L.G. Hanscom Field
Albuquerque, New Mexico Bedford, Massachusetts 01730

I3. ABSTRACT

A theoretical investigation of thermal lensing in infrared windows is
presented which treats aberration effects to all orders in the small angle-of-
deviation approximation. The model is applied to a truncated, Gaussian,
infrared laser beam incident on a semitransparent, isotropic, disc-shaped
window. It is shown that window aberrations limit the time a diffraction-
limited focus can be held in the far-field. This diffraction-limited time td is
computed for some candidate window materials and their relative merits are
discussed. Some approaches to solving the thermal lensing problem from both
an engineering and a materials point of view, as well as some program
research and development needs, are discussed.

. , FORM 14 ..
CNov6 aUnclassified

secut 5 :y ClassifcStion

I/f,

4.



Unclassified
Seciunty aawfication

14. LINK A '.INK a LINK C
KEY WORDS

ROE WT ROLE WT ROLE WY

Thermal lensing in solids

IR Window

IR Window Materials

Laser Window

Laser Window Materials

Diffraction-limited time

1
Unclassified

AL-Security (Omuification

_ - __,_ ----_



-7'

AFCRL..72.0202
23 MARCH 1972
PHYSICAL SCIENCES RESEARCH PAPERS, NO. 483

SOLID STATE SCIENCES LABORATORY PROJECT 3326

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
L. G. HANSCOM FIELD. BEDFORD,1 MASSACHUSETTS

V

Thermal Lensing in Infrared Laser
Window Materials

P.D. GIANINO
J.R. JASPERSE

Approved for public release; distribution unlimIted.

AIR FORCE SYSTEMS COMMAND
United States Air Force



Abstract

A theoretical investigation of thermal lensing in infrared windows is

presented which treats aberration effects to all orders in the small angle-of-

deviation apprroximation. The model is applied to a truncated, G•,ussian, infrared

laser beam incident on a semitransparent, isotropic, disc-shaped window. It is

shown that window aberrations limit the time a diffraction-limited focus can be

held in the far-field. This diffraction-limited time td Is computed for some

candidate window mnaterials and their relative merits are discussed. Some

approaches to solving the thermal lensing problem from both an engineering and a

= materials point of view, as well as some program research and development

needs, are discussed.
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Thermal Lensing in Infrared Laser
Window Materials

1. INTRODUCTION

Recent advances in high-power infrared lasers (Emmett, 1971) suggest the

possibility of focusing large power densities in the far-field. It. however, a laser

beam of mmnuniform intensity passes through a semitraitr, arent window the beam

will be distorted as the window heats up.

Distortion of a laser beam passing through a liquid cell has been observed and

attributed (Gordon et al, 1965; Tien et al, 1965) to a lensing action in the liquid

caused by nonuniform heating. Theoretical treatments of some problems quite

close to the one examined in this paper have also been given (Tien et al, 1965;

Quelle, 1966; Foster et al, 1970). In fact, Sparks (1971) showed that a significant

amount of thermal lensing will occur in an infrared window well before it fails due

to other causes. For a discussion of other modes of failure see Horrigan et al

(1969). Tliese treatments have been restricted to a parabolic dependence of the

index of refraction with position, hence, no aberration of the beam occurs. Ring-

like interference patterns have been observed, however, and attributed to aber-

ration effects produced by thermal lensing in low-loss liquids (Whinnery et al,
1967).

In this paper we extend previous treatments of thermal lensing (Quelle, 1966;

Foster et al, 1970; Sparks, 1971) to include window aberrations to all orders and

(Received for publication 23 March 1972)
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we apply the analysis to .*'e specific problem of calculating the amount of time the

far-field focused spc.,. ri.,iNins diffraction-limited (Jasperse et al, 1972). This

diffraction-limited tin.,: td' turns out to be independent of the beam radius, the

distance . the window to the spot, and the Gaussian focal lengths of the window.
Our analysis provides the laser systems engineer with one criterion for I
choosing among, " 3didate windows and also suggests to the materiais engineer

several possib~.iti.. for designing new materials.

2. A SOLVABLE MIODEL FOR THERMAL LENSING IN ISOTROPIC,
DISC-SIIAPED SINIOI•S

2.1 Outline of the Calcula.ion

In this section we generalize previous treatments of thermal lensing of a

TEMoo laser beam to include all orders of aberration produced by a time-

dependent temperature distribution in an Isotropic, disc-shaped exit window.

Employing cylindrical coordinates (p, 4, z) we assume that the temperature dis-

tribution so generated is independent of 0. Furthermore, we assume a small

angle of deviation for a normally incident ray, allowing us to neglect the tempera-

ture's dependence on z since it will have a negligible effect on the bending of the

ray. This means that, in effect, we are dealing with a lens system wvhich has a

lcng but finite focal length. The total angular deviation ew, of any ray in auch a

window, is the sum of two parts:

0w grad n + 0bulge' (1)

where 0 is the contribu' lon due to a gradient in the refractive index n, andgrad n
0 bulge is the contribution due to a bulging of the originally parallel faces of the

window. Such an equation holds for both the p- and 0-polarized rays.

2.2 Calculation of n

We consider a temperature distribution in the window having the following

particular form when expressed in cylindrical coordinates:

T (p/p , t) T (0, 0) + g(t) T (p/p, (2)

where T(0, 0) is a constant, g(t) is any function of time, p is the radial coordinate,

and p0 is the window radius. The term T(p/po) is any monotonically increa-ing or

decreasing even function of p expressible as the following convergent power" series

in p/Po:
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T(p/po) E T21 (p/po)2 1 
* (3)

1-0

The T21 are dimensionless constants, with To 1

A fundamental theory accurately establishing the index n, in terms of fre-

quency, temperature, and positions of all ions or atoms within the solid, is not

available. In place of such a theory, we develop a phenomenological treatment of

thermal lensing by regarding n at a given frequency as a function of temperature

and the appropriate strain tensor components. For the case of a plane stress in

a disc of isotropic material, the only nonvanishing strain components in

cylindrical coordinates are c, o, and .zz . Thus, in our case, the refractive

index may be determined by specifying the values of three quantities ni, i rep-

resenting p, 0, and z, where

ni n (T. pp Co, zz (4)

For a fixed time, the temperature and the strains depend only on p. Therefore,

for a small change in ni, and following the development given by Quelle (1966) and

Sparks (1971) we write:

-(ni ni

In matrix form, these equations become:

ZAn On6T + 6

"OTAnz n T ry nP , z A / (6)

in which np • and nz are the components of refractive index along the three
orthogonal directions, and J(nbc nomne/p , •zz) is the "Jacobian-like" matrix

C pp Co

of the transformation between e the copanthfefct, defined as:

P-

orthgonl drectons an J ( no nzc Co C isthe Jacbia-lik" mtri
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an an an

pp ~ zz

3n,• an anz
ac ac ac

an an~ an~z __

ar

In an isotropic disc under plane stress and at a fixed temperature the Pockels

elasto-optic constants pij3 also called the strain-optic coefficients, are defined by

(Krishnan, 1958):

1 1

no being the unstrained refractive index. Under the conditions when the n. are not

1 1

too much different than no, each element on the left-hrand side of Eq. (7) can be

apprximaed b -(-n)o3.This allows Eq. (7) to be rewritten as:

3°°o° 'pp/

(7
n2-no = - P 2 P 1 1  P 1 2  (8)

• ~~~~n,_ no Py ~ •/ z-

n o 2 2P 2 p12  p1

SWith the aid of Eqs. (8), one a ce n Ult each an i/a ti. so that the J-m atrix in

Eq. (6) can be replaced by: . T3
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n3nPn1 P12 P 12

,,( o# z) C (9)1~1•~ ~ P 0p cool ezz/ "2 P12 P11 P12(9 n.nn = c -

P 12 PI2 P11i

The thermally induced stress-strain relations are (Boley et al, 1960):

C /1 -v
-= 1 -3' 7) (EE!)+aT( , (10)

•zz -v 1 \zz1

where Y is Young's modulus, the are the three stress components in cylindrical

coordinates, V is Poisson's ratio, and a is the linear expansion coefficient. Now

we can define the initially unstrained "fiducial state" as that for which all . are

zero at zero time and at the uniform temperature T(O, 0). Then, any change in

temperature and/or stresses produces the following change in strains:

aep 1 -V - 1(E) =E1 i + a AT(1.(1

From Eqs. (6) note that each 8ni /aT is measured at constant strain. Since each

Sn is not too much different from no, there would be no loss in generality if each

ani/aT were replaced, by the derivative evaluated in the fiducial condition, namely,

[an/aT] n=no. Substituting this information, together with Eqs. (9) and (11), into

(6), and, using the fact that the An can also be expressed as (ni-no), we get after

simplifying:

I-
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n()-n {(6nii •T 1 - C( Co C (12)

nz-n C1 C1 Co a z

where

/an\ (8' ~ 3 ( +2p' (13)
n = \T 2 -•-l 112)

with n denoting the average index of refraction,

Co- P1 1 "2Vp 1 2  , (14)

C1 = (l-v) P 12 "Vp 1 1 * (15)

and

6T -T (P/Pot0 - T (0, 0). (16)

The C's are related to the parallel and normal components of the stress-optic

coefficients (B and B1 , respectively) via:

_E3
B n C (17)

and

3B n2Y C . (18)

For plane stresses in isotropic materials with disc-type geometry, the
relationship between the stress and the temperature change from the fiducial state

is (Boley et al, 1960):

I



p= aY dx x 6T(x.t) - (p0/p)2  dx x AT(xt) (19a)

ao = a Y dx x 6T(x t) + (p/p)dx x T(xt) - 6T(p/p 0) 0 (19b)

S 0.

Using Eqs. (16) and (3) for 6T(p/p, t)in Eqs. (19). inserting these results
for the into Eqs. (12). and solving for each ni results in:

";•n (P/Po" 0) n (0. 0) + gt (/P )o12(0a

n (p/po.t) = n (O.t) + g(t) E n121 (P/Po)2 ! . (20b)

The quantities n (0, t) and no(0,t) specify the tir e dependence of the index of re-
fraction at the center of the window, while the n. and the n are given by-

21 r ie y

T 2 4T n + an2 [(1-(21+l)v'pll+(21+1-(21+3)v)p 1 2 l (2 la)

n T an + [an3 -~pl r1(13v~l( b2 T2 1 IT -T) 2(21+2) ('I2 ]3) (21b)

S~0=0

The details of this derivation are given in Appendix A.

%A

N I
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The equation for nz is not written out since its effect on the bending of a ray

in the small angle-of-deviation approximation is negligible.

The fact that the indices of refraction are different for each polarization shows

that the window develops a stress-induced birefringence.

2.3 Calculation of Ograd n

Consider a ray normally incident at a distance

Pi from the z axis of a parallel-faced disc, having an
R, index n(p/p , t) as shown in Figure 1. A nonlinear,

0
second-order, differential equation for the ray's

RAY I / trajectory (p as a function of z) in the small angle-of-

_ deviation approximation is solved approximately in

Appendix B. Its solution is:

-I ~ I~+Kz 1O1K z I*(22)
where

K M (t) 2l n29 I (pi/Po) . (23)

Figure 1. The Bending
of a Ray as It Passes
Through a Disc-Shaped
Window Applyre, Snell's Law at the exit surface of the window,

we see that:

-- ~ ~refracted angle [ . grad n (4
n(O i t) - ncident angle -(dp/dzL

a z=L0 Z 0

where L, is the initial thickness of the window. From Eq. (22), including up to

second order:

S= 2piK L. (25)
SZ=•0

Utilizing Eqs. (23) and (25) in (24), we obtain a stress-induced birefringence in

9g ngiven for p and # polarizations by:
grad•n



n(0 1  2L ,g(t) pD 2_ -1a

F:gradn pL 0 PO 1=1ý 01 31

**2L.,6g(t) co IP 21-1
gradn 2PiLo n(O0 t)K o 2;1 nl (26b)

Po 1=1 •

Throughout this paper we adopt the convention that the angle that any deviated
ray makes with the horizontal will be positive if the ray bends away from the
z axis and negative if towards the z axis.

2.4 Calculation of Obulge

The equation for the plane curve L associated with one face of the bulging

window is:

L(p/p.t) 13 L +.oL 6 c (27)

Utilizing Eqs. (11) for &cZZ, Eqs. (A-4) and (A-5) for a and , and
Eq. (A-i) for &T, the above equation can be rewritten as:

LOg(t) a ( V+v) Go 2
L~p/po. t) 0 L(O, t) + 2 Z T21 (p/po) (28)

in which, as usual, all the terms independent of p have been collected under the J;
symbol L (0, t). In Appendix C, we show that ebulge can be expressed as:

b 2 (n-i) (29)
pbulge /P=Pi

It Utilizing Eq. (28) results in:

b 2L g(t) n
6 bulge - (l+a')(n-1) E T121 I (P1/Po) 21(30)

Po ~ 1=
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2.5 The lindow Angle of Deviation, Ow

The total angle of deviation due to the window itself, O03, (where j can stand

( (for either p or 0 polarizations) can be obtained by inserting Eqs. (26 a or b) and
S~(30) into (1). It is*

=i 12 L1~t ) nin + a (1+I')(n-I) T2  (P) 1 
. (31)2f

The Gaussian focal lengths R3 are related to the terms of 03 which are linear
l ~in pi. They are _

2

R3 j ' 0 (32)RG-J-ww 2Log(t){ n+ (1+aI)(n-1)T 2 }

We note that all formulas in Section 2 apply for both transient and steady-state

conditions, since g(t) may be any function of time.

3. APPLICATION TO A TRUNCATED GAUSSIAN LASER BEAMt INCIDENT
ON A DISC-SIIAPED. ISOTROPIC WINDOW

3.1 Assumptions

In applying the solvable model given in Section 2 to the specific problem of a

laser pulse** of time t incident on a semitransparent, disc-shaped window, we

make the following assumptions:
-2(1) total angular deviations are less than about 10 radians;

(2) the window material is isotropic;

(3) the thermally induced stresses and the corresponding streins are per-
fectly elastic;

• The first two terms of each of these series have also been derived by a
Raytheon group using a different method, namely, by computing phase differences
between rays traversing the window at different radial distances. Their phase

wangles are related to our Jw via . kOJdp. See F. A. Horrigan and T. F. Deutsch,

Raytheon Research Division, Second Quarterly Report, Contract No. DAAH01-70-
C-1251 (1970).

** The mode of laser operation contemplated here is interrunted cw with
typical values of t on the order of a few seconds.



11

(4) the laser pulse time is less than or comparable to the smallest of the

characteristic times for heat flow;

(5) bulk absorption dominates other loss mechanisms in the calculation of the

radial temperature gradient; and

(6) the power per unit area absorbed in the window PA is given by

PA(POo) =PI (P/Po) (l-R) (l-e AL° )(1-Re A (33)

Here P, is the incident power per unit area, R is the reflectivity of the window

material, and PA is the bulk absorption coefficient.

For ALo << 1, Eq. (33) reduces to:

PA P/Po) -• PI(P/Po) PA Lo" (34)

3.2 Calculation of the Temperature Distribution

The equation of heat flow in the window is:

8T K 2-- -j V2"T +•. (35)
at C C

where K is the thermal conductivity, c' is the specific heat times the density, and

Q, given by PA/Lo, is the rate of heat generated within the window per unit vol-

ume. To give the reader some appreciation of the temperature distribution in

cylindrical geometry, two model problems are presented from Carslaw and

Jaeger (1959).

(1) Consider a disc, infinite along the p dimension and finite in

z (- L0 / 2 z < L 0/2). With zero initial temperature, zero surface temperatures,

and Q constant for t > 0, the solution for T(z, t) is given by Eq. (7), page 130 of

Carslaw et al (1959). Its graph, depicted in our Figure 2, plots normalized

temperature versus normalized distance. with normalized time as parameters.

The dominant term in the infinite series, namely, the first term, is proportional

to I 1-exp(-t/ir) , where 7,z, the characteristic time for heat flow along the

z axis, is given by c Lo2 /KT 2 . Consequently. for t < Iz, we see that to a fair

approximation the temperature varies linearly with time.

(2) Consider the same disc as in (1) above. Besides a zero initial tempera-

ture and constant Q for t > 0, both faces at z = *kL/2 transfer heat into a medium

IN
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1.0

E!

O'- 20 2
SK (AT) L

1.2
Figure 2. Normalized Temperature vs P.-X
Normalized Axial Distance for the Case 0.6 0.8
of a Disc, with Infinite Radius, at
Zero Initial Temperature, Zero Surface OL6
Temperatures, and Constant Rate of
Heat Generation. The numbers on the 04

curves refer to normalized times o4
(8t/r 2zr

z Q.2 O 2.2

0.0 U 0.6 0.8 O O

2ZAO

at zero temperature. The solution for T(z, t, h) is given by Eq. (12), page 132 of

Carslaw et al (1959). Its graphs, labelled in exactly the same fashion as

Figure 2, are depicted in Figure 3 for three different dimensionless radiation

parameters, Loh/2; h is defined as the ratio of the surface heat transfer co-

efficient, or surface conductance, to the conductivity. Since the CGS dimensions

of the surface transfer coefficient are cal/cm2 -OC-sec, then h has dimensions of

reciprocal length. Problem (1) could also be considered as a special case of
problem (2), in which Loh/2 is infinite.

Returning to our flnite window, we choose to represent the power per unit

area of the incident beam as any monotonically decreasing even function of p ex-

pandable in a convergent power series of the form:

P (P/Po) = P(O) E (-I)2 . (36)
S=0

Assuming time independence, and utilizing Eq. (34), Q can be expressed as:

PA4P/Po)
Q(o/Po) LO PAPI (O/ 0o) (37)

If, in the heat equation, the Laplacian term becomes negligible compared with

Q/c', then direct integration results in T being linearly dependent on t. That is,

T-p- 0 L- t Q/c' + T (0, 0) (38)
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Figure 3. Normalized Temperature vs Normalized Axial Distance for the Case of
a Disc with Infinite Radius, Zero Initial Temperature, Constant Rate of Heat
Generation, and Both Faces Transferring Heat into a Zero Temperature Medium
with Normalized Radiation Parameters (a) Loh/2 = 10; (b) Loh/2 a 1.0; and
(c) Loh/2 = 0. 1. The numbers on the curves refer to normalized times (8t/v 2 r"z)
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Initial uniform temperature has been assumed, and the z dependence has been

neglected because it has negligible effect on the bending of a ray in the small angle-

of-deviation approximation. Substituting Eqs. (37) and (36) into (38) produces:

AtP(0) go ,P[ 2
T/ P \--. t) T(o, 0) + _A ,1), P 2 (39)

PO c( = 1 P2 1 -O

We see that the form of T is the same as that assumed in Eqs. (2) and (3), where

A t P(0)
g(t) = c' (40)

and

T = (1) P2 1  ( (41)

P must also equal unity.

Let us now consider under what conditions the Laplacian term, _ V2 T(p, t)

would be much less than I Q/c'l First, we assume that T has the form depicted

in Eq. (39). T ien, for cylindrical coordinates:

K 2 K 8i (/ 8T )] tKt3 2 (O 2 co 21-2!• •. V T= --- _ - - ( ) 1; (_1)1 12•.141•
VT~c ap 2 P(( ) (ll1P 2 1(.~ (42)c 0 1 = 1 P

From Eqs. (37) and (36): ]
CO 21c AP(0) Z (-I), P2 (4o)

c 7r 1=0 21 PO)

For those cases in which both sums converge over the range of p and have values

comparable in magnitude, it follows that I (K/c') V'2 TI << IQ/c' I when t<<c'p2/4K.
We designate this quantity, c'p0/4K, as -rp, the characteristic time for heat flow

along the p direction. It should be noted that, in general, any characteristic time

for heat flow depends on cooling details.

Thus, we see that temperature will :e approximately a linear function of time

so long as t < T z and T p, respectively. Since the ratio Tp/T"z goes as (Po/Lo)

which is much greater than unity, then Tz is by far the smaller of the two quantities.

-_--L- ----- - -.ý~*-



15

LO - Consequently, we can conclude that the
(d) LINEAR APMROXIMATION temperature behavior given by Eq. (39)

is approximately valid for times less

than z
"_4h .01  Numericai values of 'T for sone

22-'2 materials under consideration will be
I-2 quoted later.

We can get a quantitative estimate0 of just how valid this linear approxima-

tion is by reconsidering problem (2)

mentioned above. Going back to Figures
0 0.5 .0 3(a) through 3(c) we can obtain informa-

St/ 2 tion about how normalized temperature
varies with normalized time for the

Figure 4. Normalized Temperature vs three different radiation parameters at,
Normalized Time at the Center of the

Infinite Disc Referred to in Figure 3. say, the center plane of the disc
Curves (a) through (c) apply to Figures (2z/L = 0). We plot this data from these
3(a) through 3(c), respectively, while
curve (d) is the approximate linear three figures in Figure 4 as curves (a)
solution given by Eq. (39) through (c), respectively. The line (d)

represents the approximate linear solu-

tion given by Eq. (39). F:om Figure 4 we see that as 8t/1" 2 Tz varies from 0 to 1

the approximate linear solution is within about 3% of the exact solution for

Loh/2 = 0. 1, within about 9% of the exact solution for Loh/2 = 1. 0, and within 24%

for Loh/2 = 10.
In the case of a finite disc in which po/Lo is still much larger than unity and

for a given h, we can arrive at a more accurate g(t) function than the approximate

linear solution. From the appropriate normalized temperature vs distance curves,

as shown in Figure 3, for example, we could average each time-curve over the z

coordinate, thereby eliminating the z-dependence of temperature. From this in-

formation, a normalized temperature vs time curve, similar to those shown on

Figure 4, could be plotted and a g(t) function could be curve- fitted from it for use

in Eq. (2).

3.3 Angular Deviations for Truncated Gaussian Beams in the
Quartic Polynomial Approximation

If we choose the incident beam as having a truncated Gaussian power distribu-

tion given by

Pi(p/po) P(O) exp [-W (P/po) 2 ] (44)

-J
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for 0 < p p Po. where W is a dimensionless constant, and make a quartic poly-

nomial approximation to it, we obtain

TP(p/po) -P(0) [1 - P 2 (p/Po)2 + p 4 (P/Oo)4 (45)

Performing a least squares fit to determine P 2 and P 4 o we find that for W = 1,

, = 0. 96 and P 4 = 0. 33, and that Eq. (45) fits Eq. (44) to within 1% everywhere;

whereas for W = 2, P 2 = 1.75 and P 4 -0. 93, and Eq. (45) fits Eq. (44) to within

32% everywhere.
t The formulas for OP and in the quartic polynomial approximation (that is,

I = 1 and 2 only) are given by Eq. (31) in conjunction with Eqs. (21). (40), and

(41).
They are:

i and,

2Lt(0)PA 3

OP / 2LPtP 
+3an1 ( n3

1 '
+w\ P4 c IT 1 ,2 j i+ 5 . 1-(v)p 1 1 + (1-7u)Pa

2 ) + 1 (l+v)(n-1 (

' (7=0

0 0 ot )An + B15\ l+e n (1 -11 u• 1 + a(l +v)(n . 1 4 b
! + 2 :,4 uo

Utilizing the substitutions:

P (t) /P( °)P2 t _
) + 1(l /l in- 31 , p 12)

1 2 8

=0•

+ ct~+Y)(-l)1(t~a



8T +- M
for e 2) (T)n =o ,3 (1-3v)p 1 1 + (3-5v)p12)+a(l+ )4n-l)

for the p polarizations, and,

A [(n an 3.I
F \0 NO +a1V(- (48a)

41 F (P[ ) +AM: ((5-v)pl + (1-1Iv)P 1 2 )+ a(1+V)(n-1)]
0(2P 4 L[5T) or=o *012

~+ - ('(3-.)pl 1 + (1-7v)p1 2 + (1+v)(n-) 1

for the • polarizations, we can rewrite Eqs. (46a and b), for either polarization,

as:

8j, -Fj(t) ~- 1+ FJ (fi) 2  (49)

We note that the F 1 and F 2 are functions of materiai parameters; F 1 may be
of either sign, but, for all materials studied so far, F 2 is always positive and is

typically less than unity. Under these circumstances, the qualitative behavior of
0J will be governed by the sign of F3 . That *,, depending on whether FJ is

positive or negative, the window may act like a converging or diverging lens,
respectively, having spherical aberration for each polarization. If more terms
were kept in the approximation to the beam intensity, higher-orJer aberrations

would appear.

4. THE DIFFRACTION-LIMITED TIMIE, Id

Diffraction patterns in the scalar (Campbell et al, 1969) or vector (Bendow etal,
1972) Klrchhoff approximations can easily be calculated using modern computers.
Such calculations do not, however, give the materials engineer much insight into
how to design a better window, nor do they give the laser systems engineer a
simple way of assessing the performance of known window materials. The object

~=~s- .~r-~-- ½ - -='=- -~-~v - - - - -4
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of this work is to obtain approximate formulas of use to both types of investigators.

To that end we give an approximate treatment of diffraction effects using a combina-

tion of geometrical optics and scalar Kirchhoff theory applied separately to the

p and polarizations.

Initially, the spot size at focus in the far-field is determined only by diffrac-

tion. Aberrations produced by the window eventually dominate diffraction effects,

however, and rapidly enlarge the spot size. We define the diffraction-limited time

td as the time a laser-window system takes to pass from its diffraction-limited

condition at t = 0 to its window-aberration-limited - )ndition at t = td In this

section we compute td and show that it depends on window aberrations.

The diffraction half-angle 0diff is a convenient approximate measure of the

amount of spreading of a beam due to diffraction effects. We take it as that half-

angle which contains 90% of the total diffracted power at the focused far-field spot.

This can be obtained approximately by resorting to Figure 4 of Olaofe (1970). A

horizontal line drawn from the ordinate 0. 9 (which represents fractional power)

intersects the r) = 1 curve (which corresponds to our W = 1 case) at an abscissa

value of approximately 3. This abscissa is the normalized radial distance,

(21rr1 )Po diff, where X is the wavc,-ength of the radiation. Equating the latter

expression to 3, we obtain:

3A0diff - (50)

In the case of a beam prefocused to have a focal. length Ro0 . the incident angle

of deviation is given by -p/RH. It can be added to 0w Isee Eq. (49)] to obtain the

total angle of deviation:

t= F (t) -F p 2 (51)
to 1 o 2(P J

in which p has replaced pi

Because of the presence of the aberrating terms in Eq. (51), the rays incident

at different p will not all come to a focus at the same range. Instead, the envelope

of these rays will form a circle of least confusion. In Appendix D we calculate the

time dependence of the radius and location of this circle of least confusion using

geometrical optics, as depicted in Figure 5 for the quartic polynomial approxima-

tion.

: I
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PA

p

_ D ir

Figure 5. Two Rays Emanating from Two Different
Radii Within the Window for the Case When y Increases
Monotonically with p. Their intersection (D, r) will
give the distance and radius, respectively, of the
circle of least confusion after r is maximized

The diffraction-limited time occurs when the radius of the circle of least con-

fusion has grown so that it is equal to the radius of the diffraction circle. This

latter radius, subtended by the angle 0 diff of Eq. (50), .an be calculated in the

sman-angle approximation by multiplying 0diff by its distance from the window.

At the diffraction-limited time td thi distance it also equal to Dc (td), as given

in Eq. (D-11) of Appendix D. Thus,

c (td) Odiff Dc(td). (52)

Substituting Eqs. (50), (D-10), and (D-11) into Eq. (52) results in:

FJA( 61. (53)

Depending on the polarization, either Eqs. (47a, b) or (48a, b) can be employed in

the above equation. Solving for the time gives:

d (vL NOW.) 3I (54a)
[ ro
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for the p polarization, and,

= (54b)

d~r f(22L0 ) ((5-.v)pll+(llv- 1 2 +a(1+v,)(n-1)J

for the 0 polarization. Note that tP and t are independent of the quadratic

term Pf. and the Gaussian focal lengths of the window [ see Eqs. (32) and (21)).

The diffraction-limited time td serves as an excellent figure of merit for thermal

lensing since it is independent of these quantities. Note also that the difference

between tP and td for a given material serves as a measure of the importance of

birefringence in determining the true diffraction patterns.

Figure 6 gives a graphical interpretation of td for the cases of De either de-

creasing or increasing with time.

DcMt) DECREASING WITH t

Ag f hdsff

II LOCUS OF rc

Figure 6. The Diffraction Half-
Angle Odiff and the Locus of the DcMt INCREASING WITH t
Radius of the Circle of Least
Confusion r (t) for Two Different
Cases

LOCUS OF r e r(td)

There are two other quantities of interest which are calculated. The first is

the temperature difference between the center of the window and its edge, denoted

by &T(t). Referring back to Eq. (39) and employing only up to quartic terms in

p/poo (that is, 1 2) the temperature difference becomes:

AT(t) M T(0, t) - T(l, t) P(0) (P 2 -P 4 1 t. (55)

(t
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The second quantity of interest is the amount of bulging in one face of the

window, denoted by AL (t). Referring back to Eqs. (28), ('3), and (41), and,

proceeding as in the calculation of AT (t) above, we get:

AL(t) L(0,t) - L(1,t) (-(56

Thus, both AT(t) and ALMt) vary linearly in time in our approximation.
Values of t , td0 characteristic time Irz, as well as those of AT .nd AL

evaluated at the time tP, have been computed for a number of candidate window

materials for which reasonably complete data have been found. They are shown

in Tables 1 and 2. In these computations we considered a Gaussian incident beam

truncated at the e°I power point and chose L6 = 3 cm with P(0) = 500 watts/oe

Note that for times approaching td in the I - VII and II - VII compounds the window

nxperiences radial temperature differentials from center to edge in the tens of

degrees, while the center of each face bulges out by factors several times that of
the wavelength. The corresponding values for the other substances are very

much smaller. *

The material dependent parameters used in these calculations were taken

from the literature and are listed in Tables 3 and 4. These parameters should be

considered as being representative only and are by no means definitive. The

reason for this is that oftentimes the literature will report either many discrepant

values, questionable values (for example, no listing of the wavelength or tempera-

ture at which the data was measured), or no values at all. Data on thermal con-
S~ductivities seems to be especially erroneous. In such instances, one has to guess

which values seem more reasonable compared with those of similar materials,

or, to calculate an average value either from among all the listed data or from

that which seems reasonable, or, to extrapolate from known data.

The value of Poisson's ratio hardly changes from substance to substance and

was taken to be 0. 3 throughout. The only exception to this was found to be TI

No. 20 glass for which V is 0. 19.

For an e-2 truncated Gaussian beam the relative ordering of the materials

by tP and to will not change but all of their values will decrease by a factor of

0. 33/0. 93 or by about 1/3.

We emphasize here that all formulas in this section are valid only for times

less than or comparable to T

We note here that the diffraction patterns for windows used under actual
conditions will be very sensitive to small changes of shape of the window produced
by nonthermal effects, that is, those produced by small vibrations or other
mechanical disturbances.

P
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S. DSCUSSION

5.1 DOffractioen-Liited Time

Equations (54 a, b) show that the material-dependent portion of td is directly

proportional to the ratio ct/A and inversely proportional to the sum of three

terms. The first two terms of this sum are contributions to the spherical aber-

ration coming from the gradient in the refractive index. We will refer to the

second quantity as the "elasto-optical" term. The third term arises from the

window's bulging, and, under the prevailing circumstances, always makes a posi-

tive contribution. With regard to the substances studied, the numerical values

corresponding to each of these terms, including the elasto-optic for both polariza- t

tions, are listed in the last four columns of Tables 1 and 2.

For the I - VII and II - VII compounds, (On/8T)a=° is negative and of com-

parable magnitude to a(1+ 1)(n-l). Therefore, these two terms almost cancel. t

This allows the elasto-optic terms to play a very significant role even though they

are typically an order of magnitude smaller.

For covalent crystals (8n/OT)a. 0 is observed to be positive and larger than

a(l+v)(n-1), which, in turn, is larger than either elasto-optic quantity. Thus,

the elasto-optic terms will have a small effect.

In glasses. (8n/8T)C.=o and a(l+v)(n-1) are both positive, comparable in mag-

nitude, and only slightly greater than the elasto-optic quantities. The only glaring

exception is As 2 S 3 glass, for which the elasto-optic terms at 4u are comparable

to a(l+v)(n-1) and both elasto-optic terms are at least an order of magnitude

greater than (8n/BT)0o 0 .

One should recall that the values of td given in Tables 1 and 2 are accurate

only if the assumptions listed in Section 3 are valid. Actual materials may not

perform as well.

5.2 Relative Merits of Candidate Window Materials

One must also remember that the diffraction-limited time is but one factor

in the selection of a window material for a particular application. In the following

"discussion of the relative performance of materials listed in Tables 1 and 2, we

will include some of these other factors.

For 10. 6-micron operation the alkali halide crystals listed in Table 1 are

much better in their ability to hold a diffraction-limited focus than any other class
of materials studied. Their single-crystalline mechanical properties are, how-

ever, generally poor. They are hygroscopic and they cannot easily be coated for

protective or antireflective purposes. The 1I-VI and III-V crystals have fair

mechanical properties but are, in general, only marginal in terms of beam

i
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distortion. In addition, one expects some difficulty in growing large-size optical-

quality crystals of these materials. From a thermal lensing point of view CdTe

appears to be quite a bit better than ZnSe or the III-V's examined in Table 1. Per- I
haps, as better samples of the other materials are prepared, thereby producing

lower values of P3A. for example, these samples may become more competitive

with CdTe. Germanium has a rather low diffraction-limited time but its other I

properties are good except for its large index of refraction. With an index of 4,

Ge would probably require antireflective coatings. The TI glasses have good

mechanical properties and can be cast in large sizes but have rather low values

for td. In addition, they have characteristic thermal times (rz and r') which are

quite large and would probably require rapid face cooling even for pulsed laser

operation. The polycrystalline materials shown in Table 1 have values of td that

are too low but have good mechanical and thermal properties. In general, poly-

crystalline materials would show more promise if techniques could be found to J
• ~ reduce their bulk absorption coefficients closer" to intrinsic, single-cryatalline

values.

The situation for 3- to 5-micron laser operation is somewhat better. The

1-VII and II-VII compounds shown in Table 2 all appear to be good candidate

windows: they hold a diffraction limited focus for a long time; they have good

mechanical and thermal properties. are not hygroscopic, and, from all indications,

large optical quality crystals can be grown. The remaining materials shown in

Table 2 are, at best, only marginal from a thermal lensing point of view. As

more data becomes available, other materials may also be found which are good

candidates for 3- to 5-micron operation.

6. SOME APPROACHES TO SOLVING THE THERMAL LENSING PROBLEM

6.1 Material-Type Solutions

6. 1. 1 MINIMIZE

One of the most obvious ways to minimize aberration effects is to find a

material with a very small 3A and with negligible beam energy losses by other

mechanisms. This may involve synthesizing a very pure solid or designing a

completely new material..

6.1.2 MUTUAL CANCELLATION OF ABERRATING TERMS

From an inspection of Eq. (54) it is clear that tJ is large if the denominator

in the material dependent term is small. If a substance could be synthesized or

designed such that

-.-
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(AIL) + [elasto-optic term] + a (l+Yz,(n- 1) 0, (57)
U7=0

then there wouli, be no aberration for that polarization in the quartic approximation

to the truncated Gaussian beam. In fact, this effect is quite prominent in the

I - VII and II - VII compounds shown in Tables 1 and 2. This shows that it may be

possible to find or desig~_an ionic material where Eq. (57) is fulfilled. Satisfying

Eq. (57) would not eliminate all aberration, since there would still be a small

amount resulting from the terms that we neglected in Eq. (31).
6.1.3 COMPOSITE WINDOW

It is possible, in principle, to find two different materials, one with a positive
0w and the other with a negative 0 w of the same magnitude, such that when they

act in series as a composite window the aberrations nearly cancel out. If two

such materials could be found, a diffraction-limited focus could be maintained for

a long time.

6.2 Engiueering-Type Solutions

6.2. 1 COOLING

One method of minimizing the thermally-induced aberrations is to cool the

window in such a way as to minimize the temperature gradient in the p direction.

We can imagine several schemes of forced face-cooling below ambient tempera-

ture which may accomplish this, and these, as well as other cooling configurations,

should be thoroughly studied. If one face-cools too rapidly, however, large

temperature gradients in the z direction will be set up which could either per-

manently strain the window or crack it.

6.2.2 MOVING WINDOW OR MOVING BEAM

Another engineering possibility suggested by M. Sparks is to minimize ther-

mal effects by moving a large window with respect to a smaller laser beam. This

would allow the beam to travel through fresher material than if the eutire system

had been fixed. After the exposed portion of the window rotated away from the

beam, it could be cooled.

6.2.3 OPTICAL COMPENSATION

A very appealing solution would ba to compensate fully for window aberrations

by designing a continually changing fore-optical system. This system would have

to change shape in such a manner that it caused the incident angle at the window to

be given by:
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9jcm + FJ (t) -P- (58 -A,2

comp 2(58)

When OJ was added to 0 [ given by Eq. (49)1, the resulting total angle ofcomp
deviation would be:

etot 
(59)

This means that no spherical aberration would occur and that the beam would

remain diffraction-limited for a long time.

7. PROGRAM RESEARCH AND DEVELOPMENT NEEDS

In this section, we list some laser window program needs in the area of
materials research and development. * We divide them into three areas: irm
mediate R and D objectives as well as longer-term experimental and theoretical

studies. **

7.1 Some Specific Immediate R and D Objectives

7.1. 1 TO OBTAIN DATA

More and better data on key material parameters are needed at both 10. 6A
and 3 to 5m so that prospective window candidates may be properly evaluated.
These important parameters are:

(a) bulk absorption coefficient

(b) specific heat c'
(c) linear expansion coefficient a:

(d) index of refraction n

(e) temperature coefficient of index of refraction ( -

(f) Poisson's ratio V;

(g) Pockel's elasto-optic constants pij; and,

(h) thermal conductivity K.

* A brief discussion of some of these needs was presented by Dr. J. R.
Jasperse at the ARPA-sponsored meeting on laser window materials at Wood's
Hole, Mass. in July, 1971.

•* This list should not be considered as exhaustive or as representative of
the current laser window program at AFCRL. It gives the authors' thoughts on
some of the more important program needs as of July 1971.

"5 
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For many materials of interest, data are just not available; whereas in other

cases they are not reliable.

7.1.2 TO IMPROVE AND DEVELOP SOME SPECIFIC CANDIDATEMATERIALS

(a) Alkali Halides

Here, work in the immediate future should be centered around

the two objectives of improving the mechanical properties of the I - VII's

and reducing their propensity to pick up water.

(b) II - VI's and III - V's

Two aspects of research and development should be emphasized

here: (1) growth of crystals of increased purity and improved optical

quality, so as to produce materials that achieve a PA approaching its

intrinsic value; and, (2) development of large-size growth techniques

since difficulties are anticipated in growing large crystals of these

materials.

(c) Glasses

Research and development on glasses should be geared toward

solving the problem of designing a glass with a small PA and with an

increased thermal conductivity. Large-size window fabrication should

not be a major problem for the glasses, since modest-sized castings

are currently available with present technology.

(d) Polycrystalline Materials

The important objective here is to make polycrystalline aggregates

with PAclose to intrinsic values. This would provide window materials

which could be formed in large sizes and yet have small values for PA

7.2 Some Specific Experimental Studies Needed

(1) The optical properties of polycrystalline materials as a function of grain

size. These studies should be carried out for both a cubic and a noncubic ma-

terial chosen such that grain sizes can be varied over a wide range compared

with the wavelength of the light.

k (2) The influence of impurities and defect structure on the optical properties

of candidate crystals.

(3) The surface and bulk scattering properties of rea.l candidate materials.

(4) The surface and bulk absorption properties of real candidate materials.

(5) Determination of the intrinsic dielectric breakdown limit in real candidate

materials as power densities are increased over those currently anticipated.

t
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(6) The development of coating technology for all candidate materials,
especially for the alkali halides where difficulties are known to exist.

(7) Energy-loss mechanisms studies.

7.3 Some Specific Theoretical Studies Needed

(1) A fundamental theory for n and PA in dielectric crystals which is accurate

in the vicinity of 10. 6 microns.

(2) A fundamental study of why (an___ is negative for ionic crystals and

positive for covalent crystals.

(3) A fundamental model for the elasto-optic coefficients accurate in the
vicinity of 10. 6 microns.

(4) A study of the effect of coherent light on the absorption of power in a
disc-shaped laser window.

(5) A study of the effect of surface absorption on thermal lensing and on

localized heating.
(6) A study of the effect of surface and bulk scattering on the temperature

distribution in the laser window.

(7) Studies on how to design a new material with a maximum diffraction-
limited time and witn other desirable physical properties.

(8) Calculations of w versus k in prospective window materials to include
some ternary compounds.

..... . . . . -
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Appendix A

Derivation of the Poroization-Dependent Refractive Indices
as Power Series in p/po

In order Wo evaluate the two integrals in Eqs. (19a and b), we must first
determine &T. Substituting Eqs. (2) and (3) into (16) and replacing p/Po by q, we

get:

2f2

dT(q,t) =g(t) E T) q (A-1)q2
I =o

Sdx x &T(x,t) g(t) E T2f dx x tlg(t) E 1+ q (A-2

0 1=2 (A-=

and

00 T
• • 

T21
dx x 6T(x, t) g(t) E 21+-* (A-3)

I =0

When these integrals are inserted into Eqs. (19). there results:

a = Cf Y g (t) E I T2 1 q 2 , (A -4)

I i
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and

a=o

From Eq. (12):

nO 3nn n o - n k - - - a o g lt) E : T 2 1 q -2 Y - oa P P C 1 • (A - 6 )

0=0 o =0

Upon substituting Eqs. (14). (15), (A-4), and (A-5) into the above and solving for

n :

p0 3 00 T
O/n~l] o q21 n3 21

nPn+glt) E T21 q --- a gl)E

)On 1=0 2 a 1~)I=0 2f +2

P -2vP1 1-q 2! 1 -Il- 1-(21+11q21]. (A-7)

This can be rearranged to:

33 /a n q21 an ~ l1
no nn+g(t) T2 1  q 2(21+21 V1=0 21U5 0~= 2(1+).•

+(1-3)p 12 -q 21 (121+1') p1 1 +(21+1-(21+3)v)p 1 2 }] (A-8)

We now partition the summation into two terms: one being the summand evaluated

at I = o, the other being the sum from one to infinity. When this is done, one can

easily see that there will be some terms that do not contain q. These are collected

under the symbol n (0, t). leaving:

CO%3n 3
n, nP (0 t) + g(t) 2= 1 T2 1 q1 -n + an

1}=1
+ (21+ 1 (A-9)(1-(2+l))pl 121+ (21+3)P 12 ]A9

2 17:
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This can be rewritten as:

21l
no anp(0,t0I+ gt) E; n)! q2(-!0

which is Eq. (20al and where

nP tn an 1-(2+)~l 1 (A-li)3v~S21 - T21 2(1,+)o +' 22t2) V

which is Eq. (2 la).
.1 The same line of reasoning pertains to n,(q, t). In its counterpart to Eq. (A-6),

the np is replaced by no. and the CO and C1 are interchanged. Thus, the counter-
part to what is inside the braced term in Eq. (A-7) becomes:

S{•I'}l "I•1][l-q 21] + [Pl, "2vp,2] 1 ('" +1÷"q"'t}

which can be rearranged to:

[-v)Pll + (l'3V)p12 q21 J(21+l-1)Pll (l'(41+3)v)P12l]

Again, partitioning the sum into two terms and collecting all terms not containing
q under the symbol n#(O, t), this leaves:

nThe n#(0 ln + g(t) 2 n+ : : q2! E.(A-12)

which is Eq. (20b), where

no T (118A + 2a2n+- - (2t+ lP + (l(41+3)v)P , (A- 13)

which is E-q. (2 lb).
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Appendix B

Appioximeae Solution to Ray Trace Equation

According to the ray-trace formulas, the radius of curvature R at any point

on the ray trajectory is (Born et al, 1964):

Slu9-V (inn) -I(Inn)l coso , (B-1)
R o

where V is the unit normal along H c and n represents either nO or n (See Figure 1).

From elementary calculus the radius of curvature of a simple plane curve is

2÷ 2

Consider an index of refraction which depends only on p, and which is either

monotonically increasing or monotonically decreasing, so that the algebraic sign

of Hc does not change. If we equate the right-hand side of the two equations above,

and replace cos 9 by [ I + ian2e|-/2, where tan O = dp/dz. then we obtain the

following nonlinear, second-order differential equation for the ray trajectory:
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•2- "[I +/do \2](.I"d A n o55

dz jn

For small angles of deviation, is negligible compared to unity. *

Since ,ve are assuming refractive indices of the form shown in Eqs. (20a) or

(20b), the dn/dp are calculable as power series and the n in the denominator of

Eq. (B-2) can be approximated by n(0. t). The nonlinear equation becomes:

d 2g()t)o 21-1T
2; n 0(B-3)

dz n(0. '1 n2 1 1 (iPr0) 0

Looking for a solution of the form

p(z) . Pj [1+ y(z) I

where jyl << 1, we obtain

221-1 2(B)
O_, 21 (p 1 )1:

"\n0'tP l- n2 I-o (I +Y)2-= 0. (B-4)

21-1Expanding (I + y) up to first-order in y, the differential equation can be
written as:

2 K(t) - 2 K'(t) y :0, (B-5)
dz

where

K~t) - 2; n o(B-6)

n(0.t)Popi 11 n2 1

and

_______ 21-1

(t t)p E n I (21-1)(pi/po') (B-7)K Wt) n0t~po~ __p n21

Employing the boundary conditions that y = dy/dz = 0 at z 0, we can get

2 possible solutions for y. depending on the sign of K'. For K' > 0,

*This is equivalent to the paraxial-ray approximation.

S.. .[ . . . . . . __
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A
K mgcoshvr2K-' z - 1.

Or, expanding up to order K3 6z remembering that K and K' have the same order

of magnitude:

Vz 6f2+KK'z4+03 6)
•y •K~z +-• -z4+O 1 K~z6 .

whereas, for K' < 0 ,

y - T{cos N2 IK'I z - l.

Again, expanding.

2 - II z4 13z6}.

Thus, for either case, the solution can be expressed as:

p(z) zPi[1+Kz 2 + IKI IK'I z 4 +O{K33z6}]o $8)

14

where K can be either positive or negative.

"I



45

Appendix C

Derivation of Equation (29)

Figure C I depicts a ray, incident at p =Pi, being refracted at each surface of

the bulging window. All anglev are exaggerated for clarity. The i's represent

aincident angles at each surface, the r's refracted angles, and the #'s the angles

which the surface tangents make with the vertical. The 0b represents Obulge.

£of a Ray as It Passes Through
a Bugn Wno

a S
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From the inner triangle, we see that

6+ 62 (C-i)

['• 

O~~~~b = ~1) +(2 -2•(-)

which can be replaced by:

-(-r)+ (-1).(C -2)

Now, Snell's law at each interface is approximated by:

i•n 

M rI M r1C-3)

-• l / - 2 / '2-•

Substituting this information into (C-2), it becormes:

b =(n-l) r, + (n-1) 2 . (C-4)

In the small angle-of-deviation approximation, however,

r 1 *N

and

i2 02 • 01•

When these replacements are inserted into Eq. (C-4), the net result is:

bulge 2(n-d- (C-5)

' ti
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Appendix D

The Circle of Least Confusion From Geometric Optics

In this Appendix we calculate the radius of the circle of least confusion and its

distance from the window using geometric optics for either polarization. We

define the distance from the window to the point where the ray crosses the z axis

by:

R(p) " (D-1)

where,

•p/po) - t (D-2)

in the small angle-of-deviation approximation. Employing Eq. (51) in the above:

-yo ( .oLo+ F(.oL[ I (D-3) ZQ

and,

F10 __+ (D-4)

)2

IF

0' P0

h
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Since R0 is always in front of the window (i. e., positive), we will confine our

attention only to those circumstances in which R(p) also remains positive.

Regardless of the magnitudes and signs of F 1 and F 2 , this condition can always

be satisfied provided 1 - F 2 (p/p0o)2 is always greater than - po/F 1 Ro . Then R, ]
and henct 0 tot, remain monotonic with p

In Figure 5, we depict two of the rays for the case in which R increases

monotonically with p. The ray emanating from p po makes an angle of -t with

the horizontal and has an equation given by:

P -V z + P (D-5)
.0 0

A second ray, emanating from p -p', is shown coming from the bottom half of
the window for reasons that will soon become obvious. It makes an angle of ."

with the horizontal so that its equation is:

p z -p' ,D-6)

The two rays intersect at a distance r from the origin given by:

r o [ P - p -]. (D-7)

The ma:.inum value of r, which we call rc, is the radius of the circle of least
confusion. To obtain rc, we first maximize r in Eq. (D-7) with respect to pP'

C 0
and get a corresponding value for p'. This particular p', together with po, are all

that is necessary to prescribe those two rays which are sufficient to determine the

circle of least confusion.

Taking the derivative of Eq. (D-7) with respect to p'/po results in:

=o' + 'y' - ,P , d (D-8)
d(pp) d(p'/PO) 0 d(p'/po)

Setting this equal to zero yields:

-Po + -- = + o"(D)-9)
Po d(p-/Po) Y

00

Now utilizing Eq. (D-3) at both p0 and p', the above reduces to:

2 +3( - 1=0. (D-10)
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Of the three solutions, namely, 1/2, -1, and -1, only pI/P o  1/2 is the phys:ctlly

acceptable solution. Substituting this into (D-7) and changing r to rc, the radius

of the circle of least confusion, for either polarization, is now given as:
"-Pol Fj (t) FJ

0

The distance of the circle of least confusion from the window, DJ can be

obtained from either Eqs. (D-5) or (D-6) if z is replaced by DJ and p by r3

Solving for Dic results in:

Sc"

SO O

When R(p) is a monotonically decreasing function of p, we find that the same

equations as given above hold and that r and Di have the same forms as in

Eqs. (D-11 and 12). The signs of the F- functions may differ, however, and only

the magnitude of r3 is of consequence.

J
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