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ABSTPACT

This rvport gives a detailed treatment of the use of linear

prediction in s'veech analysis. New concepts are developed and

more familiar ccncepts ara seen in a new way. The Covariance

and Autocoi.relation methods are derived in the time and frequency

domains. Both methods •re shown to be derivable from a more gen-

eral .oncept, that of generalized analysis-by-synthesis, where a

nonstationary two-dimensional spectrum is approximated by another

model spectrum. Linear prediction analysis is a special case

where the node! spectrum is all-pole. Also, under the assumption

of stationarity the general Covariance method reduces to the

Autocorrelation method. The normalized error is defined. Its

relatiun to the cepstral zero quefrency, its usefulness as a

voicing detector and as a determiner of the optimum number of

predictor coefficients are discussed. The application of linear

preciction to pitch extraction and formant analysis is carefully

examined. Specific issues discussed include the adequacy of an

all-pole model for formant extraction, pitch-synchronous and

pitch-asynchronous analysis, windowing, preemphasis, and formart

extraction by peak picking.
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CHAPTER I

INTRODUCTIOii

1.. •istorical Overview

One of the most im;7ortant methods of speech znalysis has

S been the use of the shc --timý spectrum. This has been accom-

plished in different wi, 'ýnd x, d- "iferent ends curing the past

25 years. The first majc brew!t '" was the invention of the

sound spectrograph (Koenig, DLtnn ,L Iacey, 1946) which is still

used extensively for the spectral analysis of speech. In 1960,

G. Fant published the classic Acoustic Theory of & aec'i Production

which laid the foundations for many of the different methods of

speech analysis that followed. As a direct result of the signifi-

cant advances that occurred in understanding the acoustics of

speech production, and with the aid of high-speed digital compu-

ters, the method of analysis-by-synthesis was given new impetus

at M.IoT. (Bell, Fujisaki, Heinz, Stevens and House, 1961). A

bank of 36 band-pass filters was used in their analysis. Another

landmark was the pitch-synchronous analysis of voiced sound.s as

reported by Mathews, Miller and David (1961) at Bell Labs. They

[ actually used analysis-by-synthesis on the spectrum of a single

pitch period obtained by a Fourier analysis of the sampled wave-

I form. In 1964, A.M. Noll introduced the cepstrum for the purpose

of pitch extraction. The cepstrum was later used as the basis for

a formant tracking system (Schafer and Rabiner, 1970). This very

1
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brief review gives a representative Eample of the ideas ana metho-

dologies that have had a 0- j.nite effect on the types of speech

analysis that many speech researchers have chosen to oursue. A

more complete review can be found in Flanagan (1972).

H 1.2 Linear Prediction

The past two years have witnessed a surge of irterest on the

part of the speech community in a method of analysi.s known alter-

nately as predictive coding, linear prediction, Prony's method,

inverse filtering formulation, etc. This surge of interest has

been also accompanied by an air of confusion. Two main reasons

for this confusion are:

(1) A lack of exposition on the similarities and differen-

ces between different formulations.

(2) A resurfacing of some of the problems (e.g. windowing,

preemphasis, etc.) associated with accepted methods fcr

computation of short-time spectra.

iWe shall attempt, in this report, to deal with these prob-

ley.ls by relatinq a few of these formulations to each other.

Let us first discuss what these formulations have in common.

As far as we can ascertain, all the methods we have inspected have

exactly one thing in cormon: the%. all assume that at a particular

instant in time, a speech sample s(nT) can be approximated by a

linearly weighted summation of the past p samples, where r) is

2
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:I a
I some integer.

s aa r nam f any sm(nThtkeT)

or sn (ai- Snk.k=
-- where T is the sampling interval, n is the sample number, and ak,

,:k5p, are the weights. Equivalently, given p samples of a speech

signal, the following sample can be predicted approximately by a

i linear sunination of the p known samples. Hence the term "linear

prediction". Henceforth we shall use the tern "ylinear prediction"

Sas a generic name for any method that makes an assumption equiva-

lent to that in (1-1) .

I The problem at hand, as put forth by linear p-rediction, is

3 to compute a set of predictor coefficients ak such that (1-1)

holds optimally over a specified period of time. It is in compu-

ting the set of coefficients a k that different formulations of

linear prediction have evolved.

The asswiption in (1-1) could be made for any signal, be it

3 speech or not The reason that this assumvption works well for

speech is that It is based on a model of speech production which

has been shown to work quite well in analysis-synthesis systems

3• (Fant, 1960). Basically, the model assumes an all-pole transfer
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function of the combined effects of the glottal sou-ce, the

vocal tract and radiation. These poles can be ccyTlputed by

solving a polynomial in z with coefficients ak. A more detailed

description of this model is given in Chapter !I.

Theoretically there exist an unlimited number of ways in

which to compute the coefficients ak. However, we shall initially

limit our discussion to three formulations which we feel to be

representative of the possible methods of analysis. and which

raise some interesting issues. We shall describe briefly each of

the formulations and give representative references on each with-

out attempting to give a complete bibliography. The three methods

will be given mnemonic names for ease of reference.

Exact Method

This method assumes that:

(a) The signal is defined for exactly 2 p consecutive valtues.

(b) A speech sample can be predicted exactly from the past

p samples, and that

(c) This holds for the trailing p consecutive samples.

These assumptions are represented by the following set of equations:

-p

E ak = s n n=0,l,...,p-l. (1-2)Z Sn-k Sn

k=1

4



Isolved for the coefficients ak lk_5p.

Covariance Method

This method assumes that:

I (a) The signal is defined for p+N consecutive values,

where N is some integer.

(b) A speech sample can be approximately predicted from

5 the past p samples, and that

(c) This holds for the trailing N consecutive samples.

3 (d) The total-squared error between the real signal and

its predicted value is minimized over th.i N consecu-

tive samples. (Some prefer to use the mean-squared

error instead of total-squared error. 1 ihe difference

in this case is a division by a constant N which does

5 lnot affect the results of minimization.)

The minimization of error results in the following set cf equa-

tions (detailed derivation is shown in Section 3.1)-IktI
Zak 4ik OiO, i=l,2,...,p (1-3)

w =N-I
Shik Sn-i s (1-4)

n=O

•'4 5
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Again we have p equations in p unknowns which can be solved to

obtain the coefficients ak, lk:5p. T'he coefficients 0ik form a

covariance matrix, hence the name "Covariance Method." Equa-

tions such as (1-3) are known in least-squares terminology as the

normal equations of the process (Hildebrand, 1956, p. 260). In

this case we shall call (1-3) the Covariance normal equations,

or alternately the Covariance normal matrix equation.

Autocorrelation Method

The assumptions made in this method are:

(a) The signal is defined for all time such that it is

identically zero outside a portion of the signal N

samples long, whare N1 is sonie integer. This is

equivalent to multiplying the speech signal by a

finite window of length 14.

(b) Each sample can be approximately predicted from the

past p samples, and that

(c) This is true for all time.

(d) The total-squared error between the actual signal

and its predicted value is minimized for all time.

The minimization of error results in the following set of equa-

tions (the derivation is given in Section 3.1):

p

Z ak R 1ikj Ri , i=l,2,...,p 
(1-5)

k=l
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where sn Sn+lil. (1-6)
n=O

I Again (1-5) forms p equaticns with p unknowns to be solved for

the coefficients ak.

The Ri are autocorrelation coefficients of the signal. The

SCQefficients R i kI form a special.matrix which we shall call the

autocorrelation matrix (as opposed to the covariance matrix in

the Covariance method). Also, we shall call equations (1-5) the

Autocorrelation normal equations or alternately the Autocorrela-

tion normal matrix equation.

As we shall see in Chapter IV, there are other possible for-

mulations for the Covariance and Autocorielation methods. The

assumptions made above do not all apply in the other formulations.

However, all Covariance-type formulations have (1-3) in common,
and all Autocorrelation-type formulations have (1-5) in common,

I but (1-4) and (1-6) will not necessarily apply.

f This concludes our brief description of each of three formu-

lations for linear prediction. Now, we shall relate the work of

I some researchers to these three methods. The so-called Prony's

method (Hildebrand, 1956, p. 378) or the exponential approximation

Imethod is equivalent to the Exact method for N = p and to the

I Covariance method for Np. A paper by Atal and Hianauer (1971),

I
7.
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which deals comprehensively with applications of linear predic-

tion in speech "nalysis and synthesis, makes use of the Covariance

method. The Autocorrelation method can be traced back to the

classic work by Wiener on linear prediction (Wiener, 1966).

Itakura and Saito (1970) using a maximum-likelihood method with

a statistical model of speech production, devive a formulation

whici is equivalent to the Autocorrelation method. The digital

inverse filtering formulation given by Markel (1972) is also equi-

valent to the Autocorrelation method. Markel's report contains

early references on the subject and explores formant tracking as

an application. Weinstein and Oppenheim (1971) have used linear

prediction in a homomorphic vocoder, and it seems from their

paper that they used the Autocorrelation method also.

It should be pointed out that linear prediction has had ex-

tensive applicacions in other fields. For example, Flinn (1972)

gives references on seismic and acoustic applications. We quote

from the introduction to the special issue on the M.I.T. Geophysi-

cal Analysis Group Reports in Geophysics (Treitel and Robinson,

1967):

"The applications [of predictive decomposition] to
seismic exploration deal with the model in which
a section of seismic trace is given as the convo-
lution of a random spike series with a minimum-
delay waveform."

As we shall see, the problem in the analysis of voiced speech

is very similar except instead of a random spike series (i.e.

S~8
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impulses) we have a quasi-periodic impulse series. These seismic

SIapplications have used the Autocorrelation method of linear pre-

dictionr.

of In this report we shall investigate in detail the properties

of the Autocorrelation and Covariance methods of linear predic-

tion. The Ex:act method will not be discussed in any detail be-

I cause it does not seem to have wide applicability in speech analy-

sis (see Section 2.2). Of all three methods of linear prediction,

we believe that the Autocorrelation method gives the speech re-

j searcher a more intuitive feel for the properties of linear pre-

diction in terms of traditional concepts such as Fourier trans-

Slformation and analysis.-by-synthesis. On the other hand, the

Covariance method offers new and exciting possibilities in the

I analysis of speech as a nonstationary signal.

1.3 Chapter Sumx~aries

Basic to tie workings of linear prediction in speech analy-

sis is an appreciation for the underlying speech production model.

5 IThe all-pole discrete model is described in Chapter II, with a

critical evaluation of its adequacy for different applicatiohs

5 of speech analysis. The main parameters of the model are the

predictor coefficients. These coefficients can be computed from

I the speech signal by one of the methods of linear prediction.

I The time-domain derivation of the Covariance and Autocorrelation

q9
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methods and methods of computing the predictor coefficients are

the subject of Chapter III. The stability of the resulting linear

predictor is also discussed.

Although linear prediction has become popular as a time-

domain analysis, we show in Chapter IV that linear prediction can

be considered equally validly, and perhaps better understood, as

a frequency-domain analysis. (In reality, linear prediction is

an autocorrelation-domain analysis, which can be approached either

from the time or frequency domain.) The formulations for the

Covariance and Autocorrelation methods given in Section 1.2 are

shown to be as special cases of more general formulations. We

introduce the concept of generalized analysis-by-synthesis where

the 2D-spectrum (two-dimensional spectrum) of a nonstationary

signal (i.e. its statistics change with time) is to be approxima-

ted by another 2D-spectrum, where the error to be minimized is

proportional to the integral of the ratio of the original spec-

trum to the approximate spectrum. In the special case when the

approximate spectrum is all-pole, the generalized method reduces

to the general Covariance method of linear prediction. If, in

addition, the signal is assumed to be stationary, the Covariance

method reduces to the Autocorrelation method. The general Co-

variance and Autocorrelation methods thus derived are each divided

further into a direct and an indirect method, depending on whether

the autocorrelation coefficients are computed from an infinite

10
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but windowed signal, or from a finite and unwindowed portion of

the signal, respectively. The formulations given in Section 1.2

are then relabe1 led as the indirect Covariance and direct Auto-

correlation methods.

In order to better understand the manner in which linear pre-

diction operates, we analyze in Chapter V one of the methods in

detail, namely the direct Autocorrelation method. We examine

the manner in which the all-pole spectrum approximates the signal

spectrum, and the relation between the all-pole transfer function

and the signal transfer function, especially as the number of

poles is increased indefinitely. The remainder of the chapter isIi devoted to a detailed analysis of the normalized error, its re-

lation to the zero quefrency (zero coefficient of the transform

of the log spectrum), and its possible usefulness as a voicing

3 detector and as a determiner of the optimum number of predictor

coefficients to be used for certain applications.

Finally, in Chapter VI, we study how linear prediction can

be useful in pitch extraction and formant analysis. Specific

issues discussed include the adequacy of an all-pole model for

formant extraction, pitch-synchronous and pitch-asychronous analy-

sis, windowing, preemphasis, and formant extraction by peak picking.IJ
In this report we have attempted to be as analytical as pos-

sible, but without losing sight of the applied world. The theov.,

,q 11
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is seen as a solid basis on which to build a better understanding

of how best to apply linear prediction to the analysis of speech.

Thus, instead of flooding the reader with examples of when a par- 1

ticular method works, we have analyzed in detail situations

where that method fails, in order to give a better appreciation

of the processes involved. i i

.Ii

r

12
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CHAPTER II

DISCRETE MODEL OF SPEECH PRODUCTION

We mentioned in Section 1.2 that the reason linear predic-

tion works well in the analysis of the speech signal, is that it

is based on a model of speech production which agrees, to a

large extent, with existing theories of speech production (such

as Fant, 1960), and which has proven to be a good practical model

in speech synthesis. Here we shall describe this model of speech

production (in the discrete domain) and relate it to the three

methods of linear prediction described in Section 1.2.

2.1 Speech Production Model

Speech is produced as a result of the excitation of a time-

i varying vocal tract shape. The speech signal is in general a

nonstationary process, i.e. its statistics change with time. The

I nonstationarity is a result of changes in the excitation as well

as in the vocal tract shape. If both the excitation and the vo-

I cal tract shape remain fixed, the resulting speech signal can be

considered to be staticiary. For example, uttering the vowel [a]

at a constant pitch and intensity level produces a signal that is

stationary. Keeping the vocal tract shape fixed for [a] and chang-

ing the pitch with time (such as going up a musical scale) pro-

-I duces a signal that is nonstationary. In general, given that

some process is the output of a linear system, the process is sta-

I
13
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tionary if the system is time-invariant and the input (or exci-

tation) is stationary. If either the input is nonstationary or

the system is time-varying, or both, the output process is non-

stationary. The importance of the question of stationarity of

the speech signal will become evident later.

For the purposes of modeling speech production, we approxi-

mate the continuously-varying vocal tract shape by a discretely-

varying vocal tract shape, i.e. a vocal tract whose shape changes

at discrete time intervals. Such a time interval shall be called

a "frame". within a frame, the vocal tract shape is considered

to be fixed and can be modeled by a linear time-invariant filter.

This model of speech production has been used effectively in

speech synthesis systems. In linear prediction the linear filter

is restricted to be all-pole.

Thus, the model o' speech production used in linear predic-

tion consists of the followinq three assumptions:

(1) Within a short interval of time (on the order of

10-25 msec) the human vocal tract is assumed co be fixed in shape.

We shall refer to such an interval as a "frame".

(2) Within any frame, we assume that the transfer function

of the combined effects of the glottal flow, the vocal tract (includ-

ing the oral and nasal cavities) and the radiation characteristic,

can be modeled by a linear time-invariant all-pole filter with

either a sequence of impulses or white noise (or a conbination

14
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of both) as input (see Fig. 2-1).

(3) The speech signal can be considered as the output of

such an all-pole filter whose coefficients change at discrete in-

tervals of time (on the order of 10 msec).

Below we shall focus our attention on a single frame where

the all-pole filter is assume,' to be time-invariant. Fig. 2-la
shows a schematic of the model in the frequency domain. The comp-

plex variable z is defined by:

sT (a+jw)T
z e =e

where s a+jw is the Laplace operator,

w= 2rf is the radian frequency in rad/sec,

a is the damping factor in rad/sec, !,

T is the sampling interval in seconds,
f

and fs is the sampling frequency in Hz.

(A brief presentation of z-transforms and their interpretation

in terms of traditional Fourier series is given in Appendix A.)

Figure 2-la is interpreted as follows: Speech is either voiced,

friceted, or both. (Throughout this report we shall assume that

aspiration is a kind of frication.) Voiced speech is produced

by applying a sequence of impulses, spaced at the pitch period,

to a digital filter of the form:

TI
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2(A A ) (2-2)

E a k Z-k

k-1

wher- akM l:5k-p are the filter coefficients,

A is a multiplicative gain factor that controls the signal

amplitude,

and H(z) = - ak z- (2-3)1' k= 1
is the inverse filter.

The output of the filter S(z) is s(nT), the speech samples. Fri-

I •cated speech is produced by applying a sequence of white noise

i samples, spaced T seconds apart, to a filter of the form S(z).

Voiced fricatives are produced by a combination of voicing and
frication. The filter S(z) represents the combined transfer func-

ition of the glottal flow, the vocal tract and radiation. The poles

5 of the filter S(z) can be determined by solving for the roots of

the polynomial in z in the denominator of S(z).

Representing the z-transforms of s(nT) and u(nT) by S(z)

5 iand U(z), respectively, we can write from Fig. 2-1a:

g S(z) = U(z) S(z)

A U(z) (2-4)

I a~kZ

17
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'-tion (2-4) can be rewritten as:

p
S(Z) = S(z) ak z .-A U(z) . (2-5)

k=l i

Taking the inverse z-transform of (2-5) we obtain: (

Sp

s(nT) =• ak s(nT-kT) +A u(nT)

k=l

P,
or S n a ak Sn-k +Aun (2-6

k=l

where T, the sampling interval, has been omitted in (2-6) but

is still implied,

Equation (2-6) is the time-domain counterpart to (2-4), and it

reDresents the speech production model in the discrete time do-

main. tk schematic of the time-domain model is shown in Fig.2-lb.

It should be clear that the systems in Figs. 2-la and 2-lb are

equivalent. I

2.2 Use of the Model in Linear Prediction

Note from (2-6) that except for contributions by the in-

put u(nT), the signal s(nT) is produced by a linear summation of

the past p .- mples. In trying to fit the model of Fig. 2-1 to a

real speech signal we encounter the problem of not knowing what LI
the input signal u(nT) looks like. For example, we don't know

•o
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a criori whether the speech signal is voiced or unvoiced. Even

if we know that the signal s(nT) is likely to be voiced, we do

not know the exact times of occurrence of the impulses in u(nT).

Therefore, in linear prediction we first let u(nT) be an unknown

(actually, the Exact methiod described in Section 1.2 assumes that

u(nT)-0) and assume that (1-1) holds, i.e. we assume that s(nT)

can be approximated by a linear summation of the past p samples.

After the determination of the coefficients ak, l~k'p, we can

then determine A by energy considerations, and we can also make

certain statements about u(nT). (Hormally, u(nT) is of interest

only for voiced sounds since it gives information concerning the

I periodicity (pitch) of the speech signal.) Indeed, after sonie

knowledge of the position of the pitch pulses in time, one could

use that information to get a better estimate of the coefficients

a..

As mentioned above, the Exact method of linear prediction

3 assumes that u(nT)=0 for all n. In general, this is not a good

assumption for speech unless one is sure, for example that there

are no pitch pulses (in a voiced segment) during the time interval

corresponding to the 2p speech samples needed for the analysis.

For this reason one does not expect very good results using the

5 Exact method of analysis. We know of no researcher who has used

this method to analyze speech in any extensive manner.

AX 
19
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On the other hanCd, both the Covariance and the Autocorre-

lation methods of analysis (see Section 1.2) admit that linear

prediction produces an error which they proceed to minimize in

the least-squares sense. The difference between the two method,

lies in the definition of what the signal is and in the region

of error minimization. This difference can be interpreted -n½

terms of the stationarity of the speech signal. In the speech

production model given in Section 2.1 the vocal tract was modeled

by a linear time-invariant system for a single frame of speech.

Within that frame, the signal s(nT) in Fig. 2-1 can still be

either Ptationary or nonstationary depending on the input u(nT).

As we sh:,ll see in Chapter IV, the Autocorrelation method assumes

the signal s(nT) to be stationary, while the Covariance method

assures the signal to be nonstationary within a single frame.

2.3 Adeluac_ of the Model

We have mentioned that methods of linear prediction im-

plicitly rely on the all-pole model of the vocal tract, qlottal

flow and radiation. The question is to what extent this model

is adequate and for what applications. We shall compare this

model with standard models of speech production described in

Fant (1960) and Flanagan (1965).

For nonnasal sonorant sounds, the transfer function of the

vocal tract is generally known to have only poles (resonances)

20
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and no zeros (antiresonances). Therefore, for these sounds an

all-pole model of the vocal tract is adequate. On the other

hand, for nasal and fricative sounds the transfer function of

the vocal tract is considered to have zeros as well as poles.

This means that the zeros are being approximated by poles in the

linear prediction model. Now, these zeros lie within the unit

circle in the z-plane (Atal and Hanauer, 1971, p. 638), and each

zero can be replaced theoretically by an infinity of poles. This

is done by noting that a zero (1-az-1 ) inside the unit circle

(i.e. laI<l), can be expanded (by long division into 1) as:

•-az l 1 (2-7)
1+az-1 +a2 -2la 2z 2-...

Now, one could argue that the effect of a zero can be approxi-

mated by a finite number of poles and, hence, an all-pole model

would also be adequate for nasal and fricative sounds. However,

it is not clear how the poles that are approximating the zeros

•I interact with the genuine poles (formants). What is likely to

happen is that in trying to apply the all-pole model to nasals

and fricatives, the antiresonances in those sounds will have the

effect of shifting the positions and bandwidths of the formants

as computed from the model. (This effect is discussed in Sec-

tion 6.2.) For example, consider a particular all-pole transfer

!I function (computed by some linear prediction method) which appro-

21
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ximates that of the vocal tract for, say, a nasal. Not only is

it unclear how one would go about locating the zeros (if any), but

the computed positions and bandwidths of formants close to those

zeros will be different from the "actual" values. In other words,

if one is interested in locating tae positions of the anti-for-

mants as well as the formants in a nasal or fricative, then linear

H prediction may not be adequate. This can be important for appli-

cations such as speech recognition. On the other hand, if one is

interested in using the results of the analysis for speech syn-

thesis then the all-pole model is quite adequate. The reason for

this lies partly in the fact that the human perceptual system is

much more sensitive to the loc-ation of a pole than to the loca-

tion of a zero (Matsuda, 1966; Flanagan, 1965, p. 215). Another

reason may be that the human ear is sensitive to the general en-

velope of the spectrum, and it does not matter in what manner

that spectrum was generated. As we shall see in Chapter IV, linear

prediction guarantees a good spectral envelope fit to a short-

time spectrum. Speech synthesizers that have used all-pole f il-

ters to generate sounds that normally contain zeros show that an

all-pole model is quite adequate for speech production (Schafer

and Rabiner, 1970; Atal and Hanauer, 1971; Klatt, 1972) although

Mermelstein (1972) reports that an all-pole formulation intro-

duces a noticeable decrease in naturalness. (The adequacy of an

all-pole model for the purpose of speech recognition will be

22
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I1

discussed in Section 6.2.)

j • There remain the effects of radiation and glottal pulse

shape. The effect of the radiation at the mouth and nostrils can

be approximated by a zero at d.c. (Flanagan, 1965, p. 33), or in

z-transform notation: (1-z- ). The spectrum of the glottal vol-

i iume velocity is characterized by a large number of zeros (Flanagan,

I 1965, p. 44; Mathews et al., 1961), but the general shape of the

glottal spectrum can be approximated by two or three poles.

j• Martony (1965) found that the slope of the glottal spectrum be-

tween 500-3000 Hz varies between -12 and -18 dB/octave, depending

on the individual. The net effect of the zero due to radiation

and one of the poles approximating the glottal source can be ap-

proximated (in the z-plane) by a pole on the negative real axis

inside the unit circle (Atal and Hanauer, 1971). (The effect

on the spectrum of such a pole is described in Appendix A.)

SI Hence, roughly speaking, the combined effects of radiation and

glottal source can be approximated by two or three poles. There-|I
fore, the linear prediction model seems to be adequate. It

should be noted that the perceptual effect due to the glottal

source is generally associated with the naturalness of speech

I and the characteristics of the speaker. Its effect on the identi-

fication of speech sounds does not seem to be of major importance

(Flanagan, 1965, p. 199).

2
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2.4 Determination of the Number of Poles p

In the linear prediction model of speech production shown

in Fig. 2-1 the transfer function is assumed to have a certain

number of poles p. Ideally, the value of p should change from

one speech frame to another depending on the number of poles

needed to represent each sound. In order to get an idea on the i
order of magnitude of p we shell take a specific example.

Generally for males, the average number of formants in a

5 kHz bandwidth is five. For example, for the sound [a] the vocal

(oral) tract can be approximated by a tube open at one end and

closed at the other. If the length of the tract is 17 cm then the

natural resonances of the tube will occur at F (2n-l)c wheren 4L

c=340 meters/sec is the velocity of sound in air, and L=17 cm is

the vocal tract length. Therefore in a 5 kHz region we have tie

five formants 500, 1500, 2500, 3500, and 4500 Hz. Since each

formant comprises a pair of complex conjugate poles, the number

of poles necessary to represent such a vocal tract is 10. [Atal

and Hanauer (1971, p.630 ) derive the same number from a different

point of view.] Now, we mentioned in Section 2.3 that two or

three poles are adequate to represent the effects of the glottal

flow and radiation. Therefore, the value of p should be approxi-

mately 12 or 13. However, we have so far neglected one other [

factor which should have an effect on the value of p, and that is

24
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the fact that the poles are realized digitally. This has

a side effect which is discussed below.

Theoretically, the number of resonances of the vocal tract

is infinite. Analog formant synthesizers employing a fixed num-

ber of formants (usually 5) must compensate for higher frequency

formants by what is known as the higher-pole correction (Fant, 1960).

[ However, this highez-pole correction is not necessary in digital

formant synthesizers because of the periodic frequency response

[ of a digital formant network (Gold and Rabiner, 1968). As a re-

[ sult, the 10 poles necessary to represent the vocal tract transfer

function in a 5 kHz bandwid•h can be realized digitally without

I the need for compensation. On the other hand, the above reasoning

cannot be applied validly to digital implementation of the poles

representing the glottal flow and radiation. The periodicity of

the digital network response is equivalent to an aliasing effect

which can cause an error in the response of a single low-frequency

pole by as much as 4 dB at 5 kHz (see Appendix A). On the average,IJ
the error is on the order of 2 dB at 5 kHz (Gold and Rabiner, 1968).

I This is true for each of the two or three poles representing the

glottal flow and radiation. Therefore, in order to compensate

for this cumulative error one must introduce at least one extra

pole. The value of p now becomes approximately 13 to 14.

I
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The above estimate for p assumes that the signal was sam-

pled at 10 kHz. For other sampling frequencies the value of p

I ' is roughly equal to:

p = 2 Nf + Nr (2-8)

where Nf is the number of formants expected in a frequency range
equal to half the sampling frequency, and N is the number of

r

real poles needed to represent the effects of the glottal flow

and radiation. We have seen above that N is approximately equalr

to 3 or 4, independent of the sampling frequency. For nonnasal

sonorants, formants occur at the rate of about one formant per

1 kHz of bandwidth (for male speakers). Therefore, (2-8) reduces

to:

p = fs (kHz) + Nr (nonnasal sonorants) (2-9)

where fs is the sampling frequency in kHz, and Nr is equal to

3 or 4.

Equations (2-8) and (2-9) assume that the vocal tract can

be approximated adequately by a number of poles, In particular,

(2-9) ..s useful mainly for nonnasal sonorants. Other sounds,

such as nasals and fricatives, are best represented by a combina-

tion of zeros and poles. Below, we shall discuss nasals as an

example of sounds with zeros as well as poles.

26
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Nasal poles correspond to the resonances of the nasal tract,

while the zeros are due to the coupling to the mouth cavity. For

an uncoupled nasal tract, there are no zeros and the average spac-

ing of nasal formants is about 800 Hz for a male speaker. (Com-

pare this with 1000 Hz for vowels; the difference is due to the

fact that the nasal tract is longer than the oral tract.) These

formants usually have higher bandwidths than vowel forinants be-

cause of greater losses in the nasal cavity. From (2-8) we con-

Sclude that the number of poles needed to represent the uncoupled

nasal system is approximately:

p = 1.2fs (kllz) + Nr. (2-10)

I The velar nasal [9] can be reasonably approximated by an uncoupled

[ nasal tract up to 5 kHz, and (2-10) would be applicable. on the

other hand, [m] and [n] have important antiformants in that fre-

[ uency range. Each antiformant causes one of the nasal formants

to split into two formants, thus forming what might be called a

"formant cluster" (Fujimura, 1962). A nasal formant cluster, then,

consists of two formants and one antiformant in the same region.

In the frequency range up to 3000 Hz, [0] has four formants; [m]

3 is obtained when the second formant is replaced by a cluster con-

sisting of two formants and one antiformant, and [1] is obtained

I when the third formant is replaced by a similar cluster (Fujimura,

1962). The position of the antiformant with respect to the two

27
1!



Report No. 2304 Bolt Beranek and Newman Inc.

formants in the cluster is quite variable, depending on the spea-

ker aad the phonetic context. If every antiformant happened to

coincide with one of the two formants in its cluster, then (2-10)

would still apply. However, in general, that is not the case;

indeed the opposite is true. More importantly, a small shift in

the position of a zero with respect to neighboring poles has dras-

tic effects on the shape of the spectrum. This is important since

linear prediction is basically a spectral matching process.

In trying to estimate a theoretical value for p in the case

where zeros (or antiformants) exist, we attempted to approximate

a spectral antiformant (complex conjugate pair of zeros) by a

number of poles. We found that we needed at least 10 poles (10

kHz sampling) to get a rough spectral match to a single anti-

formant that is typical for nasals and fricatives. This nun'.er

would have to be added to (2-10) in order to get a good estimate

for what p should be to represent a nasal whose zero does not

interact with neighboring poles. The number would have to be

decreased with increased interaction. In the limit when the zero

cancels a pole, (2-10) would anply as is. Since there is no a

priori way to determine the position of a zero with respect to

neighboring poles, there is no way of getting a good theoretical

estimate for p. However, practical estimates for p do exist de-

pending on tne application. In Sections 5.6 and 6.2 we shall

argue that, although the "optimum" value for p depends on the

28



Fn
Report No. 2304 Bolt Beranek and Newman Inc.

type of sound as well as the individual speaker, a suboptimalf5  value is usually adequate for many applications.
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CHAPTER III

LINEAR PREDICTION ANALYSIS

In this chapter we shall derive in the time-domain the Covar-

iance and Autocorrelation normal equations (1-3) and (1-5) and

suggest algorithms for computing the predictor parameters. Given

the normal equations, the minimum squared error is defined. The

stability of the linear predictor, an important issue for speech

synthesis, will then be examined for the three foimulations of

linear prediction. We then take a look at some autocorrelation-

domain prcperties of linear prediction. A method for the computa-

tion of the gain factor A in S (z) will be specified.

3.1 Derivation of Covariance and Autocorrelation Normal Equations

Following the linear prediction speech production model des-

cribed in Section 2.1 and represented by (2-6), we shall assume

that a sampled speech signal s(nT) at time t=nT can be approxi-

mately predicted by a linear weighted summation of the past p

samples. Let this approximation to s(nT) be s(nT). We have:

p

n= Z ak Sn-k (3-1)
k=l

where ak, l_<k•_p, is a set of real constants representing the pre-

dictor coefficients, and p is some integer whose value is deter-

mined as described in Sections 2.4 and 5.6.

30
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i Let the error between the actual value and the predicted value

be given by en, where:

en Sn -Sn

p
S- £ ak Sn-k (3-2)

The problem is to find ak, l-,k!-p, such that the error en is mini-

mized in some sense over the desired range of signal samples.

Both the Covariance and Autocorrelation methods employ a least-

squares minimization procedure since it leads to a mathematically

attractive solution. Denote the total-squared error by E, de-

fined as:

n -(s2 (3-3)

n n

The range over which the summation in (3-3) applies and the defi-

nition of sn in that range is of importance. Indeed, this is ex-

i actly where the difference between the Covariance and Autocorrela-

i tion methods lies. However, let us first minimize E without

specification of the range of the summation. Substituting (3-1)

in (3-3) we obtain:

p

E (S n Eak Sn-k)2 (3-4)

n k=l
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The problem reduces to finding the condition that minimizes the

total-squared error E with respect to ak, lk_5p. This condition

is obtained by setting to zero the partial derivative of E with

respect to each ak:

p
.E /2(s - Z ak Sn-k)(-Sni) = 0(3-5)
Da._I n k=l

p
or, 5Sn~ni -naJik Sn-k Sn-i = 0, l_<ip. (3-6)

n

Rearranging terms and interchanging summations we obtain:

pZ ak Sn.k Sni = Sn Sn-i, l_<ip. (3-7)
= n n

Equations (3-7) are known as the normal equations. For any defi-

nition of the signal sn, (3-7) forms a set of p equations with p

unknowns which can be solved for the predictor coefficients ak.

Now, we shall derive the Covariance and Autocorrelation normal

equations from (3-7).

Co -iriance Normal Equations

Referring back to the assumptions of the Covariance method

in Section 1.2, the summation over n in (3-3) and hence in (3-7)

must go over N consecutive signal samples. Without loss of

generality, we let the range of suwiuation over n be: n0,l,...,N-J.
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We can now write (3-7) as:

p

E ak Oik =iO i i=l,2,...,p (3-8)

k=l

N-1

whez-, 4ik 'n-s4  nk .(3-9)

n=0

t Note that (3-8) and (3-9) are identical to (1-3) and (1-4), and

the derivation of the Covariance normal equations is complete.

From (3-8) and (3-9) we note that values of sn for n=-p,...,-l,

F0,1,....,N-l, must be known. Therefore the signal sn must be de-

fined for p+N consecutive values, as stated in Section 1.2.

Autocorrelation Normal Equai.ons

From the assumptions in Section 1.2 we can define the signal

s as follows:

n n =some sampled signal, n=0ol,...,N-l, (3-10)

I {0, otherwise.

The windowed signal sn is defined for all n: -- <n<+-. Equation

1 (3-7) becomes:

3

I • aI Z Sn-k Sn-i Sn l-i~p " (3-1i)
k=l n=-o n=-•
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Substituting m = n-i in (3-11) we obtain:

p G

Zak Esm Sm+i-k Zsm Sm+i, l-5i-<p- (3-12)
S~k= 1 =•m=-00

By definition, the autocorrelation function Ri of the signal sn

is given by

R= Sn Sn+lil" (3-13)

and Ri = R . (3-14)

Therefore, (3-12) reduces to:

P

l ak R, Ri, i=,2,...,p.-15)

k=l

Now, since sn is defined in (3-10) to be identically zero for

n<0 and nt1, (3-13) reduces to:

N-1-I ij

R i E Sn Sn+ji " (3-16)

n=0

Equations (3-15) and (3-161 are identical to (1-5) and (1-6),

and the derivation of the Autocorrelation normal equations is

complete.
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3.2 Computation of Predictor Parameters I
In each of the three formulations of linear prediction pre-

sented in Section 1.2 (oqs. 1-2, 3-8, 3-15), the predictor coef-

ficients ak, l<kp, can be computed by solving a set of p equa-

[ tions with p unknowns. There exist several standard methods for

performing the necessary computations, e.g. the Gauss reduction

I or elimination method and the Crout reduction method (Hildebrand,

1956, pp. 428-434). These methods are general and can be used

with the Exact, Covariance and Autocorrelation formulations. How-

i ever, we note from the Covariance and Autocorrelation normal equa-

tio)ns (3-8) and (3-15) that the matrix of coeffic'9_nts in each

cast is a covariance matrix. The coefficients i in (3-8) form

a typical covariance matrix and the coefficients R i-kj in (3-15)

form a special type of covariance matrix known as an autocorrela-

tion matrix. A covariance matrix is synmietric anc in general

positive semidefinite, but in practice these covariance matrices

are usually positive definite. Therefore, (3-8) and (3-15) can

be solved more efficiently by the square-roit method (Kunz, 1957,

1I pp. 222-225). This method also requires about half the storage

of the general methods. A similar method that does not employ

the square root operation has been reported by Wilkinson and

3 IReinsch (1971, pp. 9-30). Further reduction in storage and com-

putation time is possible in solving the Autocorrelation normal

-I equations because of their special form. Equation (3-15) can be

3 5v
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expanded in matrix form as:

RR R .. R Ia R1R0 1 2 P-1 a 1

R R R •... Rp-2 a 2 R 2

R R R • R a R (3-17)

2 1: zp-3 3a2

P_ p- 'p-3.... 0

Note that the p x p autocorrelation matrix is symmetric and the

elements along any diagonal parallel to the principal diagonal

are identical. This type of matrix is also known as a Toeplitz

matrix (Grenander and Szeg6, 1958). Equation (3-17) can be solved

recursively by Robinson's method (Robinson, 1967b, pp. 274-279)

which is a reformulation of a method by Levinson (1947). A flow

chart for this method is given by Markel (1972). Robinson's meth-

od assumes the column matrix on the right hand side of (3-17) to

be a general column matrix. By making use of the fact that this

column matrix comprises the same elements found in the autocor-

relation matrix, another method emerges which is twice as fast as

Robinson's. This faster method has been derived by several people

and was reported recently by Itakura and Saito (1971). A deriva-

tion and a flow chart of the Fast Autocorrelation method can be
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I f

I found in Appendix B of this report. This derivation employs the

theory of orthogonal polynomials in z, as developed by Grenander
and Szegb (1958).

Figure 3-1 shows a comparison between the Gauss elimination

method, the square-root method, and the Fast Autocorrelation

method, in terms of storage and computation. The computation isI; represented by the total number of multiplications and divisions

needed for the solution. (Each square root in the square-root

method is represented by 3 computations.) The formulas for the

Gauss and square-root methods were taken from Ralston (1965, pp.

401, 410, 452, 462). The formulas for the Fast Autocorrelation

3 method were derived from the flow chart in Appendix B. For p=1 4 ,

the computation comparisons between the Fast Autocorrelation

method, the square-root method and the Gauss elimination method,

are 4n the ratio of 1 : 3.2 : 5.3, while the storage requirements

are in the ratio of 1 ; 3.8 : 7. These values must of course be

taken as approximate. It should be pointed out that the solution

of the normal equations for the predictor coefficients ak is usu-

ally only a small fraction of the total amount of computation

that is involved in the analysis. For example, in order to com-

pute the autocorrelation coefficients from the signal, it takes

on the order of pN computations, where N is the number of samples

in the signal. For a 10 kHz sampled signal, N coald be anywhere

between 100 and 30u depending on the application and the method
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Storage Computation
'I

Gaussian Elimination 2 2p 2 +6p-2)

Square-Root Method 2 (p+l) •(p 2+6p+ll)

Fast Autocorrelation Method 2p p(p+l)

Fig. 3-1. Approximate storage and computational requirements
for three methods of solving p simultaneous linear
equations. The column under computation shows the
total number of multiplications and divisions re-
quired. A square-root is represented by 3 compu-
tations.
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of linear prediction used. If N=150 in the Autocorrelation

method, then it takes 10 times as much computation to compute

the autocorrelation coefficients as to compute the predictor co-

efficients using the Fast Autocorrelation method.

3.3 Minimum Total-Squared Error

The predictor coefficients ak are determined such that the

i total-squared error E in (3-4) is minimized. After computation

n of the coefficients ak using one of the methods mentioned in

Section 3.2, one should be able to compute the minimum total-

j squared error Ep by substituting for the computed coefficients

a k in (3-4). (Note that there is no error criterion associated
with the Exact method.) Thus:

E s ( Zn a kn-k

k=. p /p p

= - 2 SnZ ak Sn-k+ a k aia sn-ksni]
n k=1 k=1 i=1

p p p

n - 21 ak SnSn-k + ak ai Esn-k sn-i"
n k=l n k=1 i=l n

Substituting (3-7), the condition for the minimization of E, and

collecting terms, we obtain the minimum total-squared error Ep:
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2 p
E -= -n a ak sn Sn-ks. (3-18)

n k=l n

In particular, for the Covariance method, n ranges from 0 to N-i.

Thus, substituting (3-9) in (3-18) we obtain the minimum total-

squared error in the Covariance method:

P
Ep 000 - ak 00k " (Coyariance Method) (3-19)

k=l

II the 7 itocorrelation method n ranges from -= to +•. Substitut-

ing (3-13) in (3-18) we have:

p
E = R0 -Z ak R,_ . (Autocorrelation Method)(3-20)

k=l

We rhall have the chance in Chapter V to discuss the be-

havior of this minimum error in the Autocorrelation method as a

function of p and the autocorrelation function. In particular,

we shall be interested in the normalized error V defined by:
p

E ene2eyiri the predictor error samDles
p R0  energy in the speechsgna... (3-21)

P

V= ak rk (3-22a)

k=l

where Rk
r -- 0 for all k (3-22b)
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and the samples rk will be !nown as the normalized autocorrelation

function. (Levinson (1947) uses the notation V, Markel (SCRL Mon.,

1971) uses n, and Atal and Hanauer (1971) use e for the normalized

error. We have chosen the letter V because of the possible use-

fulness of the normalized error in th- indication of voicing.)

Note that dividing (3-15) by R0 and using (3-22b) we obtain:

Ip
Zak r iiki = ri , linp . (3-23)

SI Equation (3-23) says that the predictor coefficients can also be

computed using the normalized autocorrelation samples rk' From

I (3-22b) and the fact that rk is an autocorrelation function we

have:

r= 1

and IrkI 1 1, for all k. (3-24)

I The signal total energy R0 can vary widely for different signals,

SI which might cause round-off problems in trying to solve (3-15) in

a digital computer with only inteqer arithmetic capability.

3 Fcr such cases it would be useful to normalize the autocorrela-

tion coefficients first by using (3-22b), and then solve fcr the

ak's using (3-23).

4



Report No. 2304 Bolt Beranek and Newman Inc.

3.4 Stability of Linear Predictor

Given a frame of speech samples, the coefficients ak of the

linear predictor shown in Fig. 2-1 are determined as described

in Section 1.2, 3.1, and 3.2. The all-pole transfer function

S(z) is then completely specified except for the multiplicative

constant A, which will be discussed in Section 3.5. One impor-

tant question now is the stability of the filter S(z). This

can be crucial if the recursive filter is to be used for speech

synthesis. We know from Fig. 2-lb and (2-6) that S(z) is reali-

zable. Therefore, the condition that S(z) must satisfy for sta-

bility is that all the poles should lie inside the unit circle.

The poles of S(z) are simply the roots of the denominator poly-

nomial 11(z), defined by (2-3), which depend completely on the

values of the coefficients ak. Of the three linear prediction

formulations described in Section 1.2, only the Autocorrelation

method guarantees the stability of S(z), i.e. for any stable

signal, the poles of S(z) always lie inside the unit circle. [This

result is well known from inverse filter theory and from the theory

of orthogonal polynomials (see for example, Grenander and Szeg6,

1958, pp. 40-41).] The implication for using the predictor coef-

ficients in speech synthesis is clear: The coefficients a can

be used directly for Lynthesis without having to check for the

stability of the predictive filter since that is guaranteed in

the Autocorrelation method.
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11In the Exact method and Covariance method the stability of

9(z) cannot, in general, be guaranteed. However, in practical

situations, the stability of S(z) can be improved in the Covari-j ance method by increasing the number of samples in the frame;

this is done by increasing N since p is normally fixed. This can-

not be done in the Exact method since the number of samples is

fixed at 2p samples. Atal and Hanauer (1971) describe a method

for correcting the positions of the poles which lie outside the

j unit circle.

i The above discussion assumes accurate computation of the

predictor coefficients a1.. For a 36-bit computer with floating-

5 point arithmetic, this has proved to be no problem. However,

for computers with half as many bits or less per computer word,

SI and with integer arithmetic capability only, round-off effects

may produce coefficients which result in an unstable S(z), even

with the Autocorrelation method (Markel and Gray, to be published).

3 3.5 Autocorrelation Analysis and Computatic- of Gain Factor A

There are several ways to determine A, the gain factor in

S(z), depending on the application. The criterion we shall use

" I in computing A is the following: The total energy in the impulse

response of S(z) must equal the total energy in the signal in the

I frame of interest. This criterion is good for speech recogni-

tion applications, but may have to be modified for vocoder appli-

I• cations. We shall determine the total energy in the impulse
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A

response of S(z) from the autocorrelation function R, correspond-

ing to the impulse response.

The impulse response is easily specified from (2-6) by set-

ting sn = and un = the input impulse:

Sn =1k Sn-k + A 6n0 ' (3-25)

where 6n {:: (3-26)
0, otherwise

Note from (3-25) that

S= 0, n<0, (3-27)

so = A, (3-28)

p
and s = s nl. (3-29)

S~k=1

By definition, the autocorrelation function Ri is given by:

Ri = Sn Sn+i ' for all i. (3-30)-• ~n__ n[

We know that R-i = Ri ; therefore it is sufficient to compute R-

- for i2_0. From (3-27) and (3-30) we have-:

.44
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R - n n i_0. (3-31)

n=0

M Now, for i-l, n+i•-i in (3-31). Therefore, we can substitute n+i

for n in (3-29) and then substitute for the resulting Sn+i in

II (3-31):

p
R n__n Zlak Sn+i'k , i>-

IIn=O k=l

Zak Z Sn Sn+i-k

kc=l n=0

IP p

I Ri = lak Rfi-kI , •5i<- • (3-32)

* Equation (3-32) is true for all it0. R0 is determined from (3-27)

through (3-30) as follows:

n R 0 s sn
n= 0

CO p

* 2 + Z Zak Sk

k=l k=l

A ~ ~ + nsr+
k=l m=l-k
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Since sm = 0, m<0 ,we have:

Hp i1

0 + ak z m +),k= 1 m= 0

k=l i

Equations (3-32) and (3-33) completely determine the autocorrela-

tion function of the impulse response of S(z).

Now, the total energy in the impulse response of S(z) is
given by R 0. 'f we set R0 equal to the total energy of the sig- i

nal, which we will denote by R0 , then A can be determined fron

(3-33) if R lk-<p, are also known. Atal and Hanauer (1971,

p. 653) describe a recursive method for cornputing R^k' l-k-<p, from

(3-32) with R0 ncormalized to 1. (We assume here that the coeffi-
i-I

cients ak are known.) As we shall see in Section 3.51, there is

a much simpler method for computing Rk in the Autocorrelation

method. The only parameter that has not been specified rathemati- Fl
cally yet is R0 , the total energy in the signal. In the Autocor-

relation method this is done simply by summing the square of the

sample values for all time. The problem in "-he Exact and Covari-

ance methods is to specify the sample range whose total energy

is to be computed. A reasonable specification includes the trailing

p samples in the Exact method and the trailing N samples in the

Covariance method.
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Note that since (3-32) is of the same form as (3-15), the co-

efficients a k can be uniquely determined from Ri, O-i-p. " Actually,

for a given A, there is a one-to-one relationship betwecn the im-

pulse response of S(z) (which is completely determined by ak) and

the corresponding autocorrelation function. We mentioned in

Section 3.4 that the stability of S(z) is guaranteed if the coef-

ficients ak are computed from (3-15). One might conclude that the

stability of S(z) is automatically guaranteed if the coefficients

are ccmnputed from (3-32). This is true under one condition: that

the autocorrelation coefficients be derived from a stable syster.

In other words, let us assume that the coefficients ak were com-

puted using the Exact or the Covariance method, and thz." the re-

sulting S(z) was unstable. Then, one could comf..te the autocor-

relation function Ri as mentioned above. Solving for the coef-

ficients again using (3-32) will give values identical to the

original coefficients and S(z) remains unstable. The reason that

the stability of Sz) is guaranteed in the Autocorrelation method

is that the autocorrelation coefficients Ri were derived from a

3. stable system, namely the windowed speech signal.

3.51 A Suecial Case: The Autocorrelation Method

We already noted that (3-32) and (3-15) are of identical form,

5 except that in (3-15) the range of i is limited. Therefore, both

autocorrelation functions Ri and Ri obey the same matrix equation
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(3-17). From the properties of (3-17) we conclude that PR. and

R. are related by the following equation:

Ri = c Ri , 05i-p , (3-34)

where c is a constant toi be determined.

In order to conserve energy between the impulse response of

S(z) and the actual signal, we must have R= R0 , as mentioned

above. From (3-A4) we conclude that c must equal I, and we have

the important result in the Autocorrelation method that:

Ri = Ri , O-<i-p. (3-35)

This says that the first p coetficients (other than R0 ) of the

autocorrelation function corresponding to the approximate spec-

trum, as computed from S(z), are identica). to the fizst p coef-

ficients ot the autocorrelatilon function £i the actual sicnal.

The rest of the coefficients Ri are determined by (3-32), The

problem of linear przdiction using the AuLocorrelation method

can be stated in a new way as follows: Find a transfer function

such that the first p values of its autocorrelati, n 2unction are

equal to the first p values of the signal autocorrelation function,

and such that (3-32) applies.
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I
Substituting (3-35) in (3-33) we have:

AK = R0 - ak Rk. (3-36)

k=l

The right-hand sides of (3-36) and (3-20) are identical.

Therefore,

j A2 =Ep

=R 0 Vp = R0 1- ak r k 3-37)

and A2 is equal to the minimum total-squared error. From (3-37)

and (2-2) we have:

-% = -~(3-38)

S ( z ) a p
1 -i•ak z-k

[ k 1

where R0 is the total energy in the signal and V is the normal-

ized error defined by (3-22).

The above findings will be very useful in discussing other

properties of the Antocorrelation method in Chapter V, where we

£ shall analyze the properties of the normalized error Vp and the

I behavior of diiforent parameters as the number of predictor co-

efficients p-*-

4I
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CHAPTER IV ,

SPECTRAL ESTIMATION AND ANALYSIS-BY-SYNTTIFSIS

In Chapter III the Covariance and Autocorrelation methods

of linear prediction were derived from a time-domain formulation.-

In this chapter we shall show that the same normal equations can

be derived from a frequency-domain yormulation. It will become

clear that linear prediction can be considered equally validly

as either a time-domain or a frequency-domain type of analysis.

First, the Autocorrelation method in teroradin terms

of an inverse filter fJormuilation. This leads directly to linear

prediction analysis in the frequency domain. The Autocorrela-

tion method is rederived from the spectral domain by approximating

the signal short-time spectrum P(t0) by an all-pole power spectrum ,

P(w•e An ernror criterion between the two spectra is defined and

minimized. The results are interpreted in termE, of traditional

methods of spectral analysis-by-synthesis. The Autocorrelation

method is then reformulated in terms of a direct and an indirect

method by relating to the corresponding methnds of estimation of

[ ~power spectra. .An analogous reformulation of the Covariance

method is derived from a generalized method of analysis-b'.-syn-

thesis where tho signal is assumed to be nonstationary and the

two-dimensional short-time power spectrum Q(w,&,') is to be

approximated by an all-pole t1-wo-dimensional spectrum Q(W'W').
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H] A very brief introduction to nonstationary spectral analysis is

p} included.

4.1 Inverse Filter Formulation

The linear prediction error en was defined by (3-2), and

is repeated here for convenience:

P
e e n Z ak Sn-k" (3-2)

k=l

Since the signal sn is defined for all time, then en is also de-

fined for all time. Therefore, we can take the z-transform of

(3-2) by multiplying both sides of the equation by z-n and sum-

[ ming over all n (see Appendix A for definition of z-transform).

The result is:

E(z) = S(z) (1 - ak -

3 k=l

= S(z) H(z), (4-1)

where E(z) and S(z) are the z-transforms of en and sn, respec-

I tively, and 11(z) = 1- ak z-k was already defined in (2-3) as

the inverse filter.

From (4-1), the error signal en can be interpreted as the output

[ I of a filter H(z) whose input is sn, as shown in Fig. 4-1.
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p

k= 1
- s

Fig. 4-1. The error sequence e as the output of an in-
verse filter H(z). n

Therefore, another way to view the error minimization problem in

Section 3.1 is to solve for the pare-meters ak of the inverse fil-

ter 11(z) which will minimize the energye n in the output error

signal, for a given value of p. This is what Markel calls the

inverse filtei formulation (Wlarkel, 1972).

rquation (4-1) can be solved for S(z) to obtain:

S(7) z(z) (4-2)

H~z) p
1 -L•ai. z-k

k=l

(4-2) is an exact equation. Accordinq to the speech production

model described in Section 2.1, if the signal sn is the vocal

tract response due to a single pitch pulse, then the transfer

function S(z) can be approximated by an all-pole filter F(z) qi-

ven by (2-2) and shown below:

A _A ____(2-2)S(z) = p(z)

1- ak zk

k=l
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I Comparing (2-2) and (4-2) we conclude that E(z) is approximated

by another function

E(z) A

which corresponds to a time-domain approximation en given by:

en = A 6 n0o (4-3)

j where 6n is the Kronecker delta defined by (3-26).

en is just an impulse of magnitude A. Now, in order to conserve

I energy between en and en we must have

e n e n (4-4)C

n=-c n=-co

After the minimization of the total-squared error, the right-

hand side of (4-4) is equal to the minimum total-squared error

I p given by (3-20). The left-hand side of (4-4) is determined

easily from (4-3), and we have:

2 p
A= E = R0 , R

p Okk

k=l

The result is identical to (3-37) which was derived by energy

conservation between the signal s n and the impulse response of

3 S(Z).

The above analysis assumed that the vocal tract was excited

5
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by a sin.,le pulse. The same results would be obtained if one

assumed a white noise source excitation.

4.2 Error Minimization in the Spctrral somainpe- I

In this section we shall show that the Autocorrelation nor-

mal equations (3-15) can also be derived completely in the fre- U
quency domain. Before we proceed, we shall define the power spec- [

trum of a transfer function Y(z) as the magnitude squared of Y(z) -i

evaluats-d on the unit circle, i.e. z = ejwT. Y(z) evaluated at

j wT I
z will be denoted by Y(w), so that the power spectrum is

given by:

Power Spectrum = Y(w) I(w) (4-5)

=IY(W)l 2

where the over-bar denotes complex conjugate.

Let the power spectrum of S(z) be denoted by P(hw), and of S(z) by

P(w), then:

P(wo) = IS(•)I 2  = A2  
,"(-6a

pW 19( (4-6a)U_

l-~e jkwT 2 
L

and P(W) IS(M)l2 (4-6b)

We shall call P(w) the linear prediction or approximate spectrum t

and P(w) the actual or signal spectrum. Methods for computinq
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P(w) and 'Pk) are given in Appendix C.

total-squared error E can be represented by:

2 rT 2

E = •e =-f IE(w)I dw

nT I

=2r [P (w) dw (4-7)I i

where P (M) is the error power spectrum.e

prom linear system theor.-, ,,e have from Fig. 4-1:

! "e (w) = P(w) 111(w)12 -(48)

3 where H(w) is equal to 11(z) evaluated for z = e)'•T.

Substituting (4-8) in (4-7) we have:

U T = ~j (w) H (w) P (w) dwi, p(4-9)

SP(T -) E ak e 1- Zak eiki dw.27r _i T 1 k=! T k=lk I

Following the same procedure in Section 3.1, E is minimized by

setting -a0, l!ifp
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ir/T pp
_ T PMeriT1 ~w iT 1e k dw=O

k• k

-T/ k P= (•) i- ak]k

-rl/ p

or P(W) cos(iwT) - ak cos{ (i-k)wT}jd = 0.
k=l

Interchanging integration and summation we have:

p F WIT I/T
aT PM cosli-k)wT}dw = T P(w) cos(iwT) dw, 15i-p.

k=1 -W/T -7/T (4-10)

We know that the autocorrelation function R(kT) is defined as

the inverse Fourier transform of the power spectrum, i.e.

7T /TRk T_ f PM• e jkwT ew, (4-11a)

/Tr
or R T PM(• cos (kw-T) dw. (4-11bjk ft

.- -Tr/T

(4-11b) follows from (4-11a) because the power spectrum is a

real and even function of frequency. Substituting (4-11b) in

(4-10) and noting that Rk = Rk' we have:

p
-a = 2. , i_5p , (4-12)

~k ji~-k 5
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U which are the same Autocorrelation normal. equations as (3-15).

The minimum total-squared error E can be obtained by usingLU p
(4-10) and (4-11) in (4-9). The answer can be shown to be equal

to

p
Ep 2 =R ak (4-13)

which is identical to that given in (3-20) and (3-37).

The above derivation shows that, in the Autocorrelation

[ method, the predictor parameters ak can be determined if only

the signal power spectrum is known. In fact all that is needed

are the first p coefficients of the autocorrelation function,

which can be computed either from the time signal (Section 3.1)

or from the power spectrum as was shown above. The latter state-

ment will be the basis for other formulations of the Autocorre-

lation method which are based on the idea of estimating the first

I p values of the autocorrelation function (see Section 4.4).

I~4.3 The Spectral. Envelope and Analysis-by-Synthesis

We shall now interpret the minimization of error in the

Autocorrelatiun method in terms of the estimation of the spec-

tral envelope and in terms of analysis-by-synthesis.
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Prom (2-2), H(z, can be written as:

H(z) = A

S(z)

A
and H()= A (4-14)S(NO

Substituting (4-14) in (4-9) we obtain:

2 fIT/A2T PM•
E AT ^ ( •(4-15)

-• T IS( )

IS(w)I 2 is the approximate power spectrum P(w) as defined in

(4-6a), and (4-15) reduces to:

2 T/
E = A P(j ) d.. (4-16)

Therefore, minimizing the total-squared error E is equivalent

to the minimization of the integrated ratio of the signal power

spectrum P(w) to its approximation P(w). Another way to look at

this is that if one is interested in anproximating a power spec-

trum P(w) by an all-pole spectrum P(w) then (4-16) is an error

measure that can be used in optimizinq the approximation. We al-

ready know that this error can be minimized analytically resulting

in the Autocorrelation normal equations (4-12) which can be solved

for ak, the parameters of the sought-for approximate spectrum P(W).
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The questioa, then, is what are the properties of the error mea-

sure in (4-16), and are these propert.cs commensurate with our

stated goals? This is discussed below.

~ The model of speech production described in Chapter II

approximates the transfer function of the glottal flow, the vocal

tract and radiation by a single all-pole filter "(P) which is

excited by a combination of sequences of impulses and white noise.

Due to the nature of the excitation we conclude that P(w) attempts

to approximate the envelope of the signal power spectrum P(w).

p One important consideration in estimating the spectral envelope

is the determination of an optimum value for p, the number oi

poles in the all-pole approximate spectrum P(w). This subject is

discussed in Section 5.6. However, assuming that somehow we

know this optimal value of p, there remains the question of whe-

ther the error measure in (4-16) will result in a good estimate

of the spectral envelope. We note from (4-16) that spectral

i values of P(w) that are greater than the corresponding values

in P(M) will contribute to the total error in a significant man-

I ner, while spectral values of P(w) that are m.uch smaller than

the correspond.ng values in P(M) will not affect the total error

significantly. This means that, aftur the minimization of error,

we expect a better fit of P(w) to P(w) where P(w) is greater

than P(M) than where P(M) is smaller. For example, if P(w) is

I
I k
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the power spectrum of a quasi-periodic signal (such as a sonorant),

then most of the energy in P(M) will exist at the harmonics aid

very little energy will reside between harmonicE. The erinr inea-

sure in (4-16) insures that the approximation of ý(w) to P(w) is.

far superior at the harmonics where the energy is greater, than

between the harmonics where there is very little energy. Since

P :) is expected to be a smooth spectrum (this is insured by

choosing an appropriate value for p), we conclude that minimiza-

tion of the error measure in (4-16) results in an approximate

spectrum P(w) that is a good estimate of the spectral envelope

of the signal power spectrum P(w). It should be clear from the

above that the importance of the goodness of the error measure

is much more crucial for voiced sounds than for unvoiced sounds

where the variations of the signal spectrum from the spectral

envelope are much less pronounced.

Another important property of this estimation procedure is

that, because the contribution& to the total error are determined

by the ratio of the two spectra, the matching process should per-

form uniformly over the frequency range of interest, irrespective

of the shaping of the speech spectral envelope. This property is

reminiscent of the analysis-by-synthesis method of spectral re-

duction developed at M.I.T. (Bell, et.al., 1961), and was used

by Paul et al. (1964) for the automatic reduction of vowel spec-

tra, and by Fujimura (1962) for the analysis of nasal consonants.
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A recent improvement in convergence strategy was introduced by

Olive (1971) using a Newton-Raphson technique. Also, a pitch-

synchronous analysis-by-synthesis was developed by Mathews et al.

in D61. The general idea behind the reduction of spectra using

analysis-by-synthesis is that one has a spectral model consisting

of poles and zeros, and the problem is to vary Lhe positions of

these doles and zeros such that some error criterion between the

model spectrum and the signal spectrum is minimized. The error

measure that was normally used is given (in our notation) by:

E E' f (W) og ]d, (4-17)%e"-J

.1)

where W(w) is a weighting function, P(w) is the model spectrum,

0. and the integration is over the frequency range of interest. In

r-.rny cases the weighting function W(w) was set equal to 1, and

"the integration was always approximated by a summation over dis-

crete frequencies. The positions of poles and zeros of P(M)
3

wýze varied ich that the er-ror E' was minimized.

40 It is- -that the Autocorrelation method of linear pre-

diction can .d rs a method of analysis-by-synthesis where

the model spectrum P(w) consists of poles only and the error inea-

I sure is given by 14-IS). The error measures in (4-16) and (A-17)

are similar in that the contributions to the total error are

6
I
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proportional to the ratio of the two specta. We have alre&dy

mentioned that this fact makes the matching process perform uni-

formly over the frequency range of interest (assuming W(w) in

(4-17) to be constant). However, the error measure E in linear

prediction ha-, two advantages over F.: (1) The minimization of

E in (4-16) can be done analytically and the resulting P(w) is

computed simply by solving a set of simultaneous linear equations,

while the minimization of E' has to be done iteratively and also

approximately in that a sumiation is used instead of an integra-

tion. (2) E is a superior error measure to R' if a spectral en-

velope is desired. This is clear if you note from (4-17) that

contributions to the total error E' are made equally whether

P(W)>P(W) or P(Nw)<P(w), which means that energy at the harmonics

(in voiced sounds) and the lack of energy be'ween harmonics con-

tribute equally '-o the total error. This, of course, will not

lead to a good spectral envelope. But then, traditional ana-

lysis-by-synthesis methods have generally used already smoothed

spectra, in which case it is probably of little consequence which

error measure is used. The elegance of the linear prediction

method is that it performs thM smoothing (for a well-chosen p)

as well as the analysis-by-synthesis type of computation all at

once by simply solving a set of simultaneous linear equations.

The price that one has to pay is that the approximate spectrum

P(U) can have only poles.
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S1By virtue of the above properties of linear prediction, it

follows that any smoothing of the signal spectrum before thhe

application of linear prediction is not only e waste of time, but

SjJ may also introduce errors in the estimation of the predictor para-

meters. For example, preprocessing the speech signal by homo-

morphic analysis (Weinstein and Oppenheim, 1971) is unnecessary

if one is interested in using linear prediction; better results

would be obtained by using linear prediction on the original

signal.

Figure 4-2 shows an example of the Autocorrelation method

of analysis performed on a 25 msec portion of the vowel (a] in

the word "potassium". A Hamming w`.ndow was used on the signal
and the predictor had 14 poles. P(M) seems to b• a good esti-

(See Appendix C for methods of computing P(w) and P(w).)

4.4 Reformulation of the Autocorrelation Method

We have shown above that the Autocorrelation method of li-

near prediction can be viewed as a process of spectral matching

or approximation, where the envelope of the signal power spec-

trum P(w) is approximated by an all-pole power spectrum P(M) gi-

ven by (4-6a), and the error measure to be minimized is given

by (4-16). So far in this report we have assumed P(w) to be a

I short-time spectrum obtained by taking the power spectrum of a
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Fig. 4-2. Original spectrum P(e.&) and linear prediction
spectrum .•(m) with p=14 for the s~und [m] in

the word "~potassium°"t
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[ windowed signal. However, there is nothing in this chapter that

restricts P(W) to be defined in that particular manner. in qe-

neral, there are two basic methods for the estimation of the po-

j wer spectrum from a knowledge of a finite portion of a stationary

signal (see Blackman and Tukey, 1958):

1. Direct Method - The power spectrum is estimated by:

1- 1 12
S(W)= Z w(nT) s(nT) e-Jnw•T (4-18)

U n=0

where s(nT) is the original signal whose power spectruiv is desired,

and w(nT) is a window function that is defined to be zero for

n<0 and n:N. (A discussion of window functions is given in Sec-

Lion 6.2.) The spectrum defined by (4-18) is also known as the

L short-time spectrum, and it is the method we have used thus far

to estimate the power spectrum of a short portion of the signal.

2. Indirect Method - The estimated power spectrum is com-

I puted as the Fourier series of a windo,.ed apparent autocorrela-

tion function:

M

I Z D(kT) _,kT)e-jkA)T (4-19)

I where D(kT) is an even window defined to be zero for Ikl>M, and

R(kT) is the apparent autocorrelation function, which is com-

I puted from the signal. The word "apparent" is used to indicate
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that A(kT) is not a true autocorrelation function since it is

defined over a finite portion of the signal. We shall give two

methods for the computation of R(kT), yieldinq functions which

will be labelled k and

N-l-jkf
(a) NkI N

(= F-TT Sn Sn+Ikl JkIjM. (4-20)

n=O

N-1

b 2) = Z Sn Sn+JkJ , k14. (4-21)

n=0

In (4-20) the signal s(nT) is assumed to be known for N consecu-

tive samples while in (4-21) s(nT) is assumed to be known for

•I+MW samples. The signal is undefined outside these ranges. Note

that we must have M<N, and for a stable spectral estimate of a

noisy signal, M is usually taken to be a small fraction of r•. Iee

Blackman and Tukey (1958) for a thorough analysis of this sub-

ject.

Sometimes a single estimate of the power spectrum as des-

cribed above may not be stable enough, i.e. the variability of

the estimate with respect to the "true" spectrum is large. The

stability can be improved (with a corresponding decrease in fre-

quency resolution) by averaging over several estimates of the

power spectrum taken over several (possibly overlapping) portions

of the signal. The averaging can be alternately performed on
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the autocorrelation function. One must be C ful, however,

that the basic assumption of stationarity still holds for the

total signal span who:se power spectrum is being estimated.

In speech research, the direct method of spectral analysis

has been used almost exclusively. The method is computationally

efficient and has proved to be quite adequate for many speech

applications. Using the indirect method for computing the power

spectrum is relatively inefficient, and may not be cost-effec-

tive for many applications.

Having computed the estimated signal power spectrum P(w)

by one of the methods described above, we can compute the para-

meters of the approximate power spectrum P(M) from the Auto:rre-

lation normal equations (4-12), where autocorrelation coeffi-

cients Rk are computed from P(w) by using (4-11). But if the

coefficients Rk can be computed directly from the time signal

there is no need to estimate P(M) in the first place. Indeed,

using the direct method, we have already shown how to compute

Rk from the windowed signal (see (3-16)). In the indirect method,

from (4-19), the coefficients Rk are equal to:

Rk = Dk A k (Indirect Method) (4-22)

where Rk is either equal to Ri in (4-20) _r to j(2) in (4-21).kIF
The introduction of an autocorrela:Dn window Dk may produce

some distortion in est'nating Rk. One method of avoiding the

6
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use of such a window is to let Rk be the average of several

values of R computed from overlapping portions of the signal.

If we replace s(nT) by s(nT+iT) in (4-20) and (4-21), we can say
j~l)and-(2)

that Ri and 2) are functions of time t - iT, and they can
be denoted by R( kiT) and R 2 (iT)o Similarly R at time t = iT

will be denoted by Rk(iT). The index i can be varied and the re- H

sulting values of the apparent autocorrelation can be averaged,

yielding an estimated R. This can be written as:

M-I

S iRk (iT). (4-23)
i=0

Alternatively, the number of values averaged could be made to

depend on the index k of Rk. Thus,

1-1- I k

Rk = .•--TI-T (iT) , r4>k, 0_<k_!p. (4-24)
i=0

In t4-24) more values are used in computing Rk for low values of

k than for large values of k. This is not unreasonable since

the low-order autocorrelation coefficients are more important

in determining the general shape of the spectrum, and therefore

their values should be more "accurate" or stable.

The definitions for Rk given by (4-20) and (4-21) are only

two of several possible definitions. For example, two other
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similar definitions are obtained by inversion of the time axis.

p This is done by substituting the index (n-Ikl) for (n+fkI) in

(4-20) and (4-21). Also, *k(iT) would be obtained L. t.placing

F s(nT) by s(nT-iT) in (4-20) and (4-21). In that case, Rk in

(4-21) becomes equal to

kR = k 0rk<P

Sll where 4ik are the covariance coefficients defined in (3-9). In

fact, if we substitute Rk for Rk in the equation for the minimum

total-squared error in (3-20), then (3-19) and (3-20) become iden-

fl tical. Also, (4-24) for !I = p+l reduces to:

p-ik 1J1l

FloRk p+l-IkI Sn-i Sn-i-IkI

p--I 1 ' * 0<k_<p,
Sp+-ik L i,i+k' (4-25)+l1 i-0 (425

which is the average of the novariance coefficients along each of

the diagonals in the covariance matrix ýik (including the vector

0k). One way to look at the operation in (4-25) is that it is

averaging out the nonstationarity inherent in the covariance ma-

trix •i (see Section 4.6), resulting in a stationary autocorre-

lation matrix. As we shall see below, the Covariance method and

the indirect formulation of the Autocorrelation method share the

property that the stability of the linear predictor cannot be

69
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guaranteed.

Henceforth, we shall talk about the direct or indirect

Autocorrelation method as referring to whether the coefficients

Rk are computed from a windowed signal or from an apparent auto-

correlation function R respectively. Note that although the

indirect method may be inefficient for computation of the power

spectrum, the same is not true for the computation of (p+l)

values of Rk.

4.41 Stability of Linear Predictor

In Section 3.4 we stated that of the different formulations

of linear prediction, only the Autocorrelation method guarantees

the stability of the linear predictor, i.e. all the poles of S(z)

are inside the unit circle. This statement must be amended now

to read: only the direct Autocorrelation method guarantees the

stability of the linear predictor. The reason for this restric-

tion is that the coefficients R are guaranteed to be those of

an autocorrelation function only in the direct method. In t1-2

indirect method, the coefficients Rk are only estimates of some

autocorrelation function, as can be seen from (4-20) to (4-24).

These estimates may or may not form part of an autocorrelation

function. In order for the coefficients Rk to be those of an

autocorrelation function t ,ey must form a set that is positive-

definite (Papoulis, 1965, p. 349). More formally, given an
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! arbitrary set of constants Uk, 0-k-p, the coefficients R,

0flk1J5p, form a "aositive-definite set if and only if the following

condition holds (Papoulis, 1965, p. 349; Grenander and Szego,

[1 1958, pp. 17-19):
i i

T7ZRn.7m n T _ (4-26)

n=0 m=0

where Ti, OSiSp, are known as Toeplitz forms, and the ovei-bar

denotes complex conjugate.

In particular, (4-26) should be true fcr i = p, and for the con-

q stants u. equal to the impulse response of the inverse filter
p -

H(z) = lak z-. Let

1 , k=0,

uk = (4-27)Sa~~~k'l-_p.

Substituting (4-27) in (4-26):
p P P

T R0-L Rmam- an
_m=l n=l m=1

U But the terms in square brackets are zero, due to tlj Autocorre-

lation normal equations (4-12).
Hence,

T = R 0  L a Rk, = p 0, (-8

k=1
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and the Toeplitz form T is equal to the minimum total-squaredP

error E which must be greater or equal to zero. Although (4-28)
p

is a special case of (4-26), it can be shown tnat (4-28) is a

necessary and sufficient condition for the set of coefficients

Rk to be positive-deiinite, and hence result in a '-table S(z)

(see Appendix B). Therefore, in order to test for the stability

of the linear predirctor, given a set of coefficients Rk: Com-

pute the predictor parameters ak from (3-17) and check for the

condition (4-28).

Another method to check for the positive-definiteness of

the coefficients Rk is to make sure that the corresponding power

spectrum is nonnegative for all frequencies (Papoulis, 1965,

p. 349). But in order to do that, Rk must be defined for all k.

Such a definition can be arbitrary for Ikl>p. A convenient way

of extending Rk is to make it periodic with period 2p, i.e.

Rk+2p 2 Rk (4-29)

We can now apply the disciete Fourier transform (Gold and Rader,

1969, p. 162) to Rk and obtain the discrete power spectrum P(nw0 ):

2p-1

P(nwo) =Z Rk e- jknwT (4-30)

k=Q
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Since Rk is discrete, real, even and periodic in 2p, P(nw0 ) is

also discrete, real, even and periodic in 2p. Therefore, it is

only necessary to compute n+l values of P(nw.), e.g. O0nnn. If

pi these values of P(nw.) are all greater or equal to zero, we con-

clude that the set of coefficients ! is positive-definite and

I ~ that _(z) will be stable.

I pSuppose now that we have used one of the above methods (or

any other method) to check for the stability of S(z) and found

it to be unstable. The problem is what to dc about the coeffi-

cients Rk to improve the stability of S(z). One method is to use

a window Dk as shown in (4-22). The narrower the effective win-

dow widch, the more stable S(z) is likely to be. A superior and

highly recommended method is to take the average of Rk for se-

- veral overlapping portions of the signal, as shown in (4-23) and

(4-24). Increasing the value of M in those equations increases

the stability of S(z). A value of w~p is usually sufficient.

Note that the methods that have been suggested for improving

the stability of the linear -,redicLor have the side effect of de-

creasing the frequency resolution in the corresponding power spec-

trum. Indeed, in the direct Autocorrelation method, the stability

of the linear predictor is guaranteed by multiplying the speech

signal s(nT) ' a finite window: a process that results in loss

of resolution in the signal power spectrum. However, for mcst
applications this lcss of resolution is not critical.
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4.5 Nonstationary Spectral Analysis

So far in this chapter we have discussed the spectral ana-

lysis of speech by means of the Autocorrelit;.on method of linear

prediction. The main assumption underlying the whole discussion

was that the predictor coefficients ak, lTknp, are computed from

a portion of the signal that can be considered as stationary. In

the direct method, this stationarity was enforced by windowing

the speech signal and considering the resulting infinite signal

which has a well-defined, time-independent power spectrum and auto-

correlation. In the indirect method, stationarity was enforced

by assuminq first that (3-17) holus, and then proceeding to esti-

mate the autocorrelation coefficients. The averaging operations

in (4-23) and (4-24) are only valid under the assumption of sta-

tionarity.

As we shall sae in this section, the Covariance method as-

sumes that the portion of the signal from which the predictor

parameters are computed is nonstationary. It should be made clear

that we are not discussing the stationarity of the running speech

signal as such, but rather the stationarity of a single frame

from which we wish to compute the predictor parameters. Both the

Covariance and the Autocorrolation methods assume that the run-

ninu speech signal is nonstationary. This is evident 1o, the fact

that the predictor parameters change from one frame to the next,
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I as was assumed in the model for speech L;roduction in Chapter II.

SI lHowever, within a single frame, the Autocorrelation method assumes

that the signal is stationary while the Covariance method assumes

that the signal is nonstationary.£r
Just as in Section 4.2 we derived the Autocorrelati.on nor-

mal equations in the fitequency domain, we shall do the same to

r £ derive the Covariance normal equations. The only difference is

that here we shall assume the signal to be nonstationary, in which

casf- the power spC.Q~rum is a function of time. 1:owever, before we

do the derivation we shall give so'Ae background information on

spectra'. analysis of nonstationary signals. For references on

I the subject see, for example, Papoulis (1965, Ch. 12) and Bendat

aned Pie:s-.n (1966, Ch. 9).

I The autocorrelation R(t,t') of a nonstationary process is

i - J a Zunction of two time variables t and t'. A stationary process

is then a 2pecial case where thu autocorrelai.•on becomes a func-

tion of on±y the time lag t'-t, i.e. R(2'-t). If we let

T t'-t (4-31)

be the time lag. ther R(t'-t) = R.(') for a stationary process,

: aand R(t,t') = R(t,!-+T) fc: a nonstationary pxocess. Here we shal3

j • assume that t, t' and T take on discreei- values only. For example,

if we let T = kT, then R(kT) would be an autocorrelation function
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which we have seen repeatedly in this chapter.

The power spectrum of a nonFtationary discrete process

is defined as the Fourier seriez transform of the autocorrela-

t ion R (t. t+ T)

P(W,t) = [R(t,t+T) e-jWT. (4-32)
T=--

Note that the spectrum P(w,t) is a function of time t. 'or a

stationary process the autocorrelation is a function of T only,

and from (4-32) we see that the power spectrum becomes P(w),

which is time-independent. In speech analysis, P(w,t) can be

viewed as the running short-time spectrum (e.g. such as a spec-

trograph might produce). However, what is important in the Co-

variance method is that we wish to consider the spectrum P(w,t)

to be changing in time within a single frame of the signal, and

that we wish to represent this change in some manner. This can

be done by taking the Fourier transform of P(Nw.t) with respect

to time t. The result is a frequency correl. ., function which

is the generalized (nonstationary) spectrum. It is defined by:

CO

P(W,t)e P (4-33)

r(w(,) is also known as a doubxe frequency spectrum. Since it
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is defined as a two-dimensional transform, we shall call N(w,.)

the 2D-spectrum. (The summation in (4-33) is for all time. How-

ever, we are only interested in t varying over a small range,

namely that corresponding to the frame of interest. Therefore,

just as we are interested in a short-time spectrum P(w,t) we are

"also interested in -• short-time 2D-spectrum r(w,,o). That is, the

short-time analyýi.- to be performed in two dimensionF

From (4-22) and (4-33) we have:

r(w,Q) = Z R(t,t+T) e- (jW+Sft). (4-34)

t=-CD T=-•

It can be shown that R(t,t+T) can be computed from r (,r ) by a

two-dimensional inverse Fourier transform:

ar
IT fT r(a/

JT/tQ( ,T ej (WT+Qt)
oil dw d% (4-35)
I -n/T -1m/T

where T is the sampling interval. :"ote that P((,Q.) is periodic

[ iin w and P with period equal to the sampling radian frequency
2 1T;

sA - Although P(w,t) is real and even with respect to w, r(w,Q)
s T

is in general complex. It has the properties:

r (u.+nws ,P+mws)=r(w,P) , _o<n,m<w, (4-36)

F(-• •) = (•,•) ,(4-37)

and r(w,-Q) =-'(W,'Q) , (4-38)

I
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where the over-bar denotes complex conjugate. Theref.-', F(w,•,2)

is even with respect to w and hermitian with respect

For a stationary process we know that the spectrum is time-

independent, i.e. P(w,t)=P(w). From (q-33) we have

CO

Sr(W,')=P(W) e

CO

=2,P() 7 U0 (Q-nsw ) , (439)
L..J 0 s

n=-co

where u0 (x) is the impulse function defined by:

u0 (x)=O, x;0

and J u 0 (x)dx = 1. (4-40)
-CO

Note that the impulse function u 0 (x) is different from t>, unit

impulse (or unit sample) 6 defined in (3-26). Equation (4-39)

says that for a stationary di. _rete process, the 2D-spectrum

consists of a set of periodic "line masses" with density 2rP(w),

where P(w) is the power spectrum of the process. In the w,.Q

plane these line masses are parallel to the •Q-axis.

In oider to make the analysis below more ctnvenient we

shall redefine the 2D-spectrum so that Q(w,w') is the Oouble
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transform of R(t,t'). We substitute for T from (4-31) into (4-34),

and let

o= W-Q. (4-41)

Then we interchange t and t' and make use of the relation

R(t,t') = R(t',t). (4-42)

Equation (4-34) then reduces to

Q(,')= R(t,t') e (4-43)"" t'=-D t=-w

The inverse relation is:

n/T ir/T
•iR(t,t') = Q(,r' -j(wt-w't') dw dwn'. (4-44)

• _ -1/T -"/T

The 2D-spectrum Q(w,w') is related to the 2D-spectrum r(w,p) bv

the relation

Q(ww') = ' (W,, C -,' ) . (4-45)

Q(w,w') is periodic and hermitian in w and W'. It obeys the re-

i lations

T Q(w+nw so'+mWs) = Q(ww') , -o<n,m<CO, (4-46)
Q(-W,-("') = Q(W,W' ,%'4-47)

I and Q(W',W) = Q(W,W') . (4-48)
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For a stationary process:

Q(ww') = 2TfP(w) Z u0(w- u'-nws). (4-49)

n=-c

Just as for P(u.j) in (4-39), Q(w,w') consists of a set of perio-

dic line masses with density 2wP(w). In the w,,' plane these

lines would be diagonal lines compared to vertical lines in the

w,2 plane.

We have introduced in this section two 2D-spectra, £(w,'2)

and Q(Tw,,'). F(V,) was introduced first as a more intuitive

definition of the 2D-spectrum starting from a time-varying power

spectrum. However, as we shall see in the next section, the Co-

variance normal equations are easily derived by working with

Q(w,w') and R(t,t") directly.

In the Autocorrelation method, P'j) was considered to be

the short-time spectrum for the particular frame of interest.

Several methods for estimating P(w) were mentioned in Section 4.4.

However for the purposes of linear prediction, it was found that

the estimation of a number of autocorrelation coefficients sufficed.

Similarly, in the Covariance method we shall -onsider Q(w,w') to

be the short-time 2D-spectrun for the frame of interest. How-

ever, as we shall see shortly, we nced not estimate C(,,'). All

that is needed for thiŽ computation of the predictor parameters

is the estimation of a set of no-stationary autocorrelation
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coefficients.

4.6 Generalized Analysis-by-Synthesis and the Covariance Method

'jiIn Fig. 4-1 the signal s(nT) is passed through the inverse

filter 11(z) giving as output an error signal e(nT). Both s(nT)

SHand e(nT) are now assumed to be nonstationary. The total energy
E in the error signal is given by R e(0,0), where R (t,t') is the

e , e

nonstationary autocorrelation of the error signal e(nT). From

V •(4-44) we conclude that:

192 Tr /T ffr/T -0

E =.J I I Qe(w•w') dw dw', (4-50)

where Qe (w,w') is the 2D-spectrum of the error signal. Prom li-

near system theory (Panoulis, 1965, p.443), we can write for

Fig. 4-1:

SQe(Ww') = Q(W,'W) H H(W'), (4-51)

where Q(w,w') is the 2D-spectrum of the signal s(nT), and H(M)

has tle same interpretation as before. Therefore, tne total
energy in the error signal is given by:

(1T2'/T n/T
( 2_ Q ( w, w') H( ,) dw' . (4- 52 )

T -/T nT/T

(Compare (4-52) with (4-9) for the stationary case.)
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Replacing the formula for H(w) in (4-52) we obtain:

E (T)12 1nT /Tf 1-ZW ak e-jkw] lZak e~kwIT]d d-TVI iL f--i ZL k=1

(4-53)

In order to minimize E we take =-ai 0, li_<p.

The result of the differentiation is:

7r /T Tr /TT i 2 f f Q(w~w) jw ej1 .- (i~w-i/ -I [e e •ake3 ()

p (-k+el') dw d' -- 0.
k=1 J1

Using (4-44) and the property that R(t,t') = R(t',t) we obtain

P

ak R(-iT,-kT) = R(-iTO), 1:5i-<p. (4-54)

k=l

We shall call (4-54) the generalized normaj equations.

The mininum total-squared error rT can be obtained by usingP

(4-42), (4-44) and (4-45) in (4-53). The answer can be shown

to be equal to:

p

E Ri0,O) ak o.(-kT, 0). (4-55)
k=1
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For the special case when the signal is stationary,

R(t,t') = R(t'-t), (4-54) reduces to the Autocorrelation normal

equations (4-12), and (4-55) reduces to (4-13).

What we shall show later in this section is that the Co-

variance normal equations (3-8) are the same as (4-54) with the

"OW nonstationary autocorrelation coefficients R(iT,kT) being approxi-

mated by the covariance coefficients iik defined in (3-9). First

we shall interpret the above results j.n terms of generalized ana-

lysis-by-synthesis.

4.61 Generalized Analysis-by--Synthesis

Following a procedure analogous to that in Section 4.3, we

can write from (4-52) and (4-14):

E [T (Y T C)w1' Tdw dw'. (4-56)
I_ - /T T/ ýs('W) S (W.)

We shall define the 2D-spectrum of the approximate transfer func-

tion 3(z) as

Q(w,w') = S(W) S(W'). (4-57)

I Substituting in (4-54) we have:

AT~~~ 2 rT /T
QI (I('J)W dw dw'. (4-58)
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"Ahe interpretation of (4-58) is analogous to that of (4-16)

except that here the signal 2D-spectrum Q(W,w') is being approxi-

mated by an all-pole 2D-spectrum Q(WW'). (Note that the 2D-

spectrum is in general complex.) Por a stationary signal, Q(W,w')

is given by (4-49), and

)--(ww) = I= •)I2 = w P(). (4-59)

Substituting (4-59) and (4--49) in (4-58) we obtain:

2 r -/T

which is identical to (4-16). Therefore, (4-16) is a special

case of (4-58) when the signal is stationary. In Section 4.3

we showed that the miaimization of (4-16) can be considered as

a method of analysis-by-synthesis. What we have in the minimi-

zation of (4-58) is a method of generalized analysis-by-synthesis

where th3 signal. is in general nonstationary. The properties

given in Section 4.3 als3 apply to generalized analysis-by-syn-

thesis. We note that th3 minimization of (4-58) results in the

generalized normal equatinns given in (4-54).

4.62 Reformulation of the Covariance Method

All formulations of the Covariance method must now obey

(4-54), where the nonstationary autocorrelation coefficients

R(t,t') are to be estimated in some fashion from the speech signal.
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I The development here will be anelogous to that given in SectionI4A4 for the Autocorrelation method. We shall define two basic

formulations of the Covariance method: the direct and indirect

method. In the direct method, the coefficients R(t,t') will be

computed from an infinite signal that has been windowed by a mov-

ing window. In the indirect method, R(t,t') will be estimated

from a finite unwindowed portion of +-he signal. (The words "di-

rect" and "indirect" refer to whether -,ie 2D-spectrum is computed

directly from the signal, or indirectly through an estimated auto-

correlation -function. )

1. Direct Method

We shall define a nonstationary (time-varying) short-time

Sspectrum P (w, t) as:

P(W,t) w(T) s(T-t) e (4-60a)

T=-u

I (N-I)T 2

= Z w(T) s(r-t) e-JjW , (4-60b)

where s(t) is the original signal, and w(T) is a window function

that is defined to be zero for T<O and T->NT. This definition of

P(w,t) is consistent with the definition of P(,o) in (4-18) for

the stationary (time-independent) case. P(w,t) can be plotted

8
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as a function of time in a manner similar to a spectrogram.

Equation (4-60a) can be expanded as: •

P(W,t)= w 00 sw(x-t) ey sxt w(y -) ej(y "-)

x---• y=-• i

- • •. •x) wc•, scx-) scy-t) e-•.- (4-61
x=-W y=-W

Setting x-y = T , (4-61) reduces to:

P(W,t) = W(X) w(x-T) s(x-t) s(x--t) (4-62)
T--- X=--•

By comparing (4-62) and (4-32) we conclude that:

CO

R(t,t+T? = W(O) W(X-T) S(x-t) S(X-T-t). (4-63)

In order to obtain R(t,t') we set T = t'-t in (4-63):

CO

R(t,t') W(X) w(x-t'+t) s(x-t), s(x-t'). (4-64)

Since w(x) = 0, x<O and X>_NT, (4-64) can be written as:

(N-I) T

R(t,t') = w(x) w(x-t'+t) s(x-t) s(x-t') . (4-65)

x=0

86



Report No. 2304 Bolt Beranek and Newman Inc.

Setting t = -iT and t' = -kT in (4-55), we obtain:

N-1

R(-iT,-kT) L >wn Wni+k Sn+i Sn4.k (4-66)

n=

Equation (4-66) shows how to compute R(-iT,-kT) for use in the

normal equations (4-54) to solve for the predictor coefficients

ak. The coefficients w represent the sampled window function.k* n

We note from (4-65), (4-66) and (4-54) that t varies between

-pT and -T. From (4-60b) we see that, corresponding to -pTt_-T,
Mt

the time-varying spectrum P(w,t) can be computed p consecutive

times, and after each computation the window is moved one sample

r interval T. While the Autocorrelation method represents the pro-

-- perties of a single spectrum iL each frame, _ Covariance method

represents the properties of p consecutive spectra in each frame.

2. Indirect Method

i I nonstationary autocorrelation function R(t,t') that is computed

from a finite unwindowed portion of the signal. Although several

I formulations could be defined, we shall give only one which is

3 analogous to (4-21) in the indirect Autocorrelation method. Let

us approximate the nonstationary autocorrelation R(iT,kT) by:

S ~N- 1
R(iT,kT) = 4-7

Z n+i Sn+k , _i,k-p. (4-67)

n= 0
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Then R(-iT,-kT) is approximated by:

N-I

R(-,iT,-kT) = LSn-i Sn-k 1ik-p. (4-68)Z n-0 sn
n=o

But the right-hand side of (4-68) is equal to the coefficients

Oik defined by (3-9). Therefore,

R(-iT,-kT) = Oik

(4-69)
and R(-iT, 0) = ýi0.

Substituting (4-69) in (4-54) we obtain:

P

ak ýik =i0,

iwnich is identical to the Covariance normal equations 13-8). Also,

substituting (4-69) in (4-55) results in an expression for E that
p

is identical with (3-19).

Ne rnave shown that the Covariance method can be derived from

a frequenr,,.-domain fnrmulation where the short-time 2D-spectrumx

of a nonstaticnary signal is to be approxir. ed by an all-pole

2D-spectrsam. Under the assun'.ption of a statioacry signal, the

generalized formulation reduces to the Autocorrelation method.

The particular formulations presented in Chapters I and III can

now be seen to be the direct Av'_ocorrelation and indirect Covari-

ance methods.
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CHAPTER V1 ' THE AUTOCORRELATION METHOD AND THE NORMALIZED ERROR

In Chapter IV it was shown that the Autocorrelation and Co-

variance methods of linear prediction can be considered to be

methods of spectral analysis-by-synthesis, where the short-' time spectrum P(w) (or 2D-spectrum Q(w,w')) is approximated by

an all-pole spectrum P(w) (or 2D-spectrum Q(w,w')). We have al-

so seen that in order to determine the parameters a of P(1) or

Q(wc'), it was sufficient to know only a limited number of auto-

correlation coefficients R(kT) or R(iT,kT); it was never neces-

sary to know either P(w) or Q(w,w'). However, in order to study

how P(W) (or Q(w,w')) approximates P(w) (or Q(w,w')), one must

be able to compute the signal spectrum P(w) (or Q(ti,w')). This

is most easily done in the direct method (where the signal is de-

fined for all time) by using (4-18) in the direct Autocorrelation

method and (4-60) in the direct Covariance method. Since it is

simpler to deal with one-dimensional rather than two-divensional

- ,spectra, we have chosen to study the direct Autocorrelation method

in detail. Moreover, in this way we take advantage of the body

I of knowledge that already exists in speech research.

In this chapter we shal3 examine analytically the manner in

which the all-pole spectrum P(w) approximates the signal spectrum

I P(w). For the reasons ctated above, this will be done for the
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direct Autocorrelation method only. We believe that much in-

sight into linear prediction Aii general can be gained by analy-

zi.ng this one method in detail.

First %'e examine the properties of the approximate spec-

trum NP() and the transfer function §(z) when compared to the

signal spectrum P(w) and transfer function S(z). Of particular
interest is the analysis as p-- when s (n%') bj.-comes the minimum- i

phase sequence corresponding to s(nT). Different methods for

computing the minimum-phase sequence for an arbitrary sequence'

are described. Next comes the analysis of the normalized error

and its behavior as a function of different spectral shapes.

The normalized error is related to the zeroth quefrency of the

cepstrurn and is interpreted in terms of the ratio of the geof~et-

tic mean to the arithmetic mean of the spectrum. Properties of

the zeroth quefrency follow from this analysis. Then, the use-

fulness of the normalized error as a voicing detector is dis-

cussed. Of importance are the properties of the first autocorre-

lation coefficient RI. The chapter ends in a brief discussion

on the role of the ncrmalized error in determining the optimum LI

number of predictor coefficients in estimating the spectral

envelope.

5.1 Properties of the Approximate Spectrum P(w)

In Section 3.5 we derived a relation between the autocor-

relation function Rk of the windowed speech 5ignal and the
90
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autocorrelation function Rk of the impulse response of the trans-

I fer function S(z) defined in (2-2). This relation is given by

I (3-35) and is presented here with a change of subscripts:

R Rk , 0_kp (5-1)

We know that the autocorrelation function has a one-to-one rela-I
tionship with the power spectrum via the Fourier transform. Thus,

Rk and Rk are the inverse Fourier transforms of P(M) and P(M), re-

spectively (see 4-11a). From (5-1) we see that as the number of

predictor coefficients (or poles) p increases, Rk and Rk will be

equal over a larger range, resulting in a better fit of P(M) to

P(w'). In the limit, as p, R becomes identical to Rk for all

k, and hence! the power spectra P(w) and P(-) become identical:

S(,w) = P (M), as p . (5-2)

One may not be interested in getting an exact replica of P(w),

but (5-1) and (5-2) give one a better understanding of the approxi-

mation process.

"from (4-13) we have the minimum total-squared error

Ep = A'. Substituting for E in (4-16) we have:I p A Sbtttni p
1T/T

T fP (w) d, 1 (5-3)

Equation ' is independent of p, the order of the linear pre-

dictor. In particular, we know from (5-2) that as p-.o,

p(w) P(to)0 In that case, (5-3) becomes an identity. In
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Appendix B we show that (5-3) is a special case of a more general

result, namely that the polynomials if 0 (z), Hl(z),..., (z),...
0 1p

form a complete set of orthogonal polynomials with weight P(w),

where H (z) = H(z) for p=n, and H(z) is the inverse filter
n

defined in (2-3).

5.2 Properties of the Transfer Function S(z)

From (4-6) we have P() S I , and P( =

where S(z) is the z-transform of the speech signal s(nT) and S(z)

is the corresponding transfer function of the speech production

model according to linear prediction. We wish to explore how

S(z) might relate to S(z). We have the definitions:

N
S(z) = r s z-n (5-4)n

r•-.=O

.1

A

and S p(Z) = - , (5-5)

p-• ak z

where (5-5) is identical to (2-2) except that S(z) and the gain

factor A have been subscripted to indicate the order of the pre-

dictor. The subscripts will be used only when necessary for

disambiguation. Note that the upper limit on n 4n (5-4) is now

N instead of (N-l); this was done here for convenience.

In light of (4-6) and (5-2), it is natural to ask how the
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transfer functions S(z) and S(z) are related as p4-. Since

iS,(w) I•= IS()I2, it might seem that S. 0 (z) will be equal to S(z).

However, this is not true in general. As p4-, SO(z) = S(z) if

j and only if the windowed signal is minimum-phase, i.e. S(z) has

no zeros or poles outside the unit circle. We know in general

that the speech signal is nonminimum-phase; it sometimes has

[ zeros outside the uniC circle due primarily to the glottal wave-

form (Flanagan, 1965, p. 140). We also know that S(z), in the

direct Autocorrelation method, is always minimum-phase: all the

poles are inside the unit circle and there are no zeros. Further-

I move, there is a unique minimum-phase sequence whose spectrum is

identical to P(w). Since S 1 (z) is minimum-phase and its spectrumIA A
P•(w) is identical to P(w), we conclude that Sc(z) is the trans-

j fer function of the minimum-phase sequence corresponding to the
A

signal s(nT). S0 (z) can be written as:I
" A M

S0 (z) -k Sn z (5-6a)

a k z n=O 4

klk=1I M
b z-n = B(z) , (5-6b)

5 n=0

where b(nT) = s(nT) as py÷4, and it is ecual to the minimum-

5 phase sequence corresponding to the signal s (nT), M is an integer

to be determined, and B(z) is the z-transform of b(nT) and is
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equal to (z). Below we shall describe how to comnute the se-

quence b(nT). Of particular interest in Section 5.3 will be the
L.)

computation of A , which from (5-6) is ecual to

A = b0. (5-7)

This is shown by long division of A into 1- lak z

and equating termp in (5-6a) and (5-6b).

The determination of the minimum-phase seauence b(nT)

is equivalent to the classic problem of factorization of the

spectrum P (M) into

P(w) = B(w) t(w) , (5-8) IJ

where b(w) is to 1e minir.tunt-phase. Kolmogorov (1939) gave the

general solution of this factorization problem. Fej6r (1915)

gave another solution for the special case of rational spectra.

We shall give algorithms based on both methods. Our major source

for this analysis is the 1954 Ph.D. thesis of Robinson, which wasI reprinted in Geophysics (Robinson, 1967a). The Fej~r method can

be found also in Grenander and Szeg6 (1958, pp. 20-26). A third

method based on linear prediction will then be described.

A - Fej6r Method i
The Pej6r method assumes only that the expression for P(w) u

is known. However, in our problem we also know S(z). The

method described below is an adaptation of 1ej~r's with S(z) if
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I assumed to be known.

Substituting z for e in P(w), we obtain
If

P(z) = S(z) S(z-1 ) (5-9)

which from (5-8) must also equal:

I P(z) = B(z) B(z-I) (5-10)

Without loss of generality we shall assume that the samples so and

sN of the signal are non-zero. (This can always be insured by

5 defining the signal properly.) The polynomial S(z) in (5-4) has

N zeros, hence it can be written as:

Su v
S(z) = so IT (1-ak z-1) "- (1-k z- 1) , (5-11)

I k=l k=l

where k are the roots inside the unit circle,

k are the roots outside the unit circle,

and u + v = N . (5-12)

(We shall ignore cases with roots exactly on the unit circle,

since they would rarely occur for an actual signal.) It is

Sclear from (5-11) that S (z- ) will have u roots a i outside the

unit circle and v roots BkI inside the unit circle. Therefore,

P(z) in (5-9) has a total of 2N roots, N roots inside the unit

circle, and their reciprocals outside the unit circle. We conclude
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from (5-10) that B(z) must have N roots. Therefore, M=N in (5-6b).

We wish to have all the roots of B(z) be inside the unit

circle, hence

B(z) = n b z-n=0n (5-13)

k=l k=l

The roots of B(z) can be computed from the roots of S(z). There

still remains the computation of b Since the power spectra
01

of B(z) and S(z) are identical, they must also have identical j
autocorrelation functions. In particular PN, the Nth autocorrela-

tion coefficient must be the same for both. From (1-6) (with N-1

replaced by N):

R1 = s0 1 = 1)0b b(-15

By equating the coefficients of z-N in (5-13) and (5-14), we have

N= b0TL akF ok (5-16)

k=l k=l

Substituting for bN in (5-15) we obtain: LI
2 SO S N [

b= 0 u a (5-17)

~I-~kT 1:
k=l k=l

From (5-11), (5-14) and (5-17), the specification of B(z) is
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I complet'> From (5-6), B(z) = S0 (z), and we have now determined

jthe tra,...:.er function S (z) as p-- Note in (5-13) that the

sequence b(nT) is of equal length to s(nT), and b(nT) = 0 for

n<0 and n>L,4

i •:n utational Consi derations

The main problem in linding S (z) is computing the N

ror- . S(z). Fo:. 25 msec of 10 kHz sampled speech, N=250.

Finding the roots of a 250- or even a 100-degree polynomial is

a major undertaking. To say the least, the method we have just

outlined is highly impractical. The main reason for the above

discussion was to show that althouqh S0,(z) has an infinity of

poles, it can be written as a polynomial with a finite number of

zeros. Also, the minimum-phase sequence b(nT) has the same

length as the original sequence s(nT).

B- C1epstral Method - (Kolmogorov Method) I
Although Kolmogoro did not use the word "cepstrum"

to refer to the Fourier transfoxm of the logarithm of the spectrum,

the operation itself was used. A more recent analysis of this

subject can be found in Oppenheim and Schafer (1968). We shall

make use of the latter refer'ence below.

The problem again is to compute the minimum-phase
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sequence b(nT) corresponding to the speech sequence s(nT). The

z-transform of b(nT) is S0 (z). Below we shall drop the subscript U
and simply use S (z) as the minimum-phase transfer function cor-

responding to S (z).

Let the cefPtrum c(nT) of S(z) be defined as:

cn • • logIS(w) 12  ejnw- d ,

-nIT

- log P ejn wT d. (5-18)
-1TIT --

The cepstrum c(nT) of S(z) can be similarly defined. Since

i•(w)I 2 = IS(w)I 2 (the spectra are identical), we conclude that

c Cn We note from the properties of the spectrum and (5-18)

that cn is real and evon.

Let the complex cepstrum c'(nT) of S(z) be defined as:

c n - log S(w) ejnwT dw. (5-19)

S(w) can be written as:

iS() = IS(w)I ejO(w)
I ~ ~= IS(MI ejS() (5-20)

Therefore, log S(w),= logIS(W)I + je(fw). (5-21) lli
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1 LogIlS(ci)I is an even function of frequency and 6(w) is a

continuous odd function of freauency. Therefore, c' is a
S~n

re;il function. Furthermore, since S(z) is minimum-phase we

have (Oppenheim and Schafer, 1968):

c' = 0, n < 0 (5-22)
nL

From (5-21), (5-19) and (5-1?) we conclude that the even part
c n

of v' should be equal to -n

"Even

[cn [ I cIn] = Cn

Sor c'+c' =c (5-23)con + n cn •

From (5-22) and (5-23) we have:

3 (0, n<O,

= 1 CO, n=0, (5-24)

n c n n>0

I The sequence b(nT) is then computed from c' (nT) as follows:

S(w) = exp cn 5-25

3 and bn 7 7 S(w) ejnwT d( 15-26)
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ri
Equations (5-18), (5-24), (5-25) and (5-26) specify the sequence

of computations needed to find the minimum-phase sequence b(nT).

Of particular interest is the value of b0 which from (5-26),

(5-25) and (5-24) is equal to:

c 01 ecrJ /2

or b=e . (5-27)0H
This result will be important in the next section.

Computational Considerations

The power spectrum PM() = ISM(), 2 is a continuous function

of frequency and so is log p(w). The cepstrum c(nT), which is

the inverse transform of log PM(w, is potentially infinite in

extent. In practice, the cepstrum becomes negligibly small at

high cepstral values (or quefrencies). Therefore, P(w) must be

computed to have enough resolution such that no cepstral aliasing

occurs. This criterion is realized by trial and error.

We shall give the whole algorithm in machine-implementable

form. We assume that we are given the sequence s(nT). j
(1) Take the FFT of s(nT) with enough zeros appended to

give sufficient spectral resolution, giving S(w) at

a finite number of equispaced frequencies. Let this

number be M. 3!.
(2) Compute M values of C(uj) = logIS(W)12

100
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1 (3) Take the inverse M-point FFT of C(w) to obtain

M points of c(nT).

(4) Compute cn' frCom cn as follows:

SnC O ,0<n<,

cy = (5-28)[ ~n M•n•

I cM/2 2' M

Note the differences between (5-28) and (5-24). The changes are

necessary in order to deal with a finite instead of the theoreti-

[l cally infinite sequence.

(5) Take the FFT of c' , to obtain log S(W) = log IS(W)I+

jO(w) at M frequency values.

(6) Compute S(w) = IS(w)i cos[8(w)] +j i.3(w)j s.n[8(w)].

1(7) Take the inverse FFT of S(w) to obtain b(nT).

5 M must be greater than N, the number of samples in the sig-

nal. A value of M = 2N gives good results for a windowed signal

with large N(^'250). b(nT) should come out to be zero for n>N,

ibut, in practice it will have small values in that region.

Another occasional source of problems in this method is

I when one of the values of PM) approaches zero, the logarithm

3 approaches -•. For a spaech signal this problem is most likely
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to occur when the d.c. value is zero. This problem will be dis-

cussed further in Section 5.4 in connection with the computation

of coo

C - Linear Prediction Method iJ

From (5-6), the sequence b(nT) can be obtained by long divi-
0,

sion of A. into I- az" . However, one must first know A•

as well as ak for all k. This, of course, is not possible, but
k~

'1 P.Li

one can make an approximation to SW(z) by considering S W(z in
p

(5-5) for a large value of p. The computation of the predictor

parameters ak is then possible by the Fast Autocorrelation maethod
;j

(see Appendix B), and A is computed from (3-36). Dividing A
p p

by l-Xakz gives a polynomial whose coefficients approximate

the minimum-phase sequence b(nT).

Figure 5-la shows a windowed signal s(nT) of duration 25.6

msec (10 kHz sampling rate). The minimum-phase sequence b(nT)

corresponding to s(nT) was computed by two methods: the cepstral

method and the linear prediction method. Figure 5-lb shows the
L,

approximation to b(nT) as computed by the cepstral method using

512-point FFT's (256 zeros were appended to s(nT)). Figure 5-ic
shows the approximation to b(nT) as computed by the linear pre-

diction method with p = 250. All the figures are normalized to ,

the same maximum amplitude. For a given accuracy, the cepstral.

method is more efficient than the linear prediction method.
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s(nT) ,A A

A (a)

IIb(n)

(b) Cepstral M1ethod

(c) Linear Prediction M1ethod

I Fig. 5-1 Computation of the minimum-phase sequence
b(nnT) corresponding to the windowed signal

(a) s(nT) - 25.6 msec, 10 kHz sampled speech.
(b) Cepstral method using 512-point FFT.
(c) Linear Prediction method using p- 2 50.
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5.3 Analysis of the Normalized Error

We mentioned in Section 5.1 that as p÷-, P(M) becomes i-den-

tical to P(w). In this section we shall examine this process of

approximation by analyzing the behavior of the normalized nmini-

mum total-squared error Vp, or simply the normalized error.- i.

The normalized error was defined in Section 3.3 as the Mini-

mum total-squared error divided by the energy of the signal s(nT) :

E A2 f
VP = 0 , (5-29)

4. P
or V = 1 - •a r , (5-30)

where rk R0 (5-31)k 0

are the normalized autocorrr .-tion coefficients, which have the

property that IrkIEl, for all k. The sum _a rk on the right-

hand side of (5-30) cannot be negative since the choice ak=O,

lk<:5, would reduce V This is not possible because V is al-
p . . U

ready a minimum. Therefore, aakrk._0 must always hold and

By an argunent similar to the above one can show that V P+1V ! I
and hence that Vp is a monotonically decreasing function of p. ]
As p÷w, V approaches a minimum value Vo = Vmin>_0. The latter

condition is true because V is a normalized squared error and [I
therefore Vp ?0. Hence,

OV p51 . (5-32)
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This result will be shown in a different way later.

II Figure 5-2 shows normalized error curves as a function of

p for the unvoiced fricative [s) in the word "list" and the vowel

I (a] in the word "potassium". The speech signal was lowpassed at

L4.5 kHz and sampled at 10 kHz. Each of the two error curves de-

creases monotonically towards its own asymptote Vnin as p,,.

The largest single drop in both error curves occurs for p=l.

Thus V1 is indicative of the eventual levels of the error curves.

I It is instructive to exam-ine the behavior of V1 for different

sounds. From the flow chart in Appendix B we note that for p=l,

al=Rl!R0=r!.
1.

Therefore, 2
1 (5-33)

From (4-11b) we have:

T /T
R0= P(M) dw (5-34)

- /T

and RI - f PM() cos(wT) dw . (5-35)

-1T/T

R 0 is the integral of the spectrum, which is equal to the total

* energy in the signal. R, is the integral of the cosine-weighted

spectrum. The cosine weighting is shown in Fig. 5-3. Low frequen-

3• cies are weighted positively, high frequencies are weighted nega-

tively, while mid frequencies do not contribute much to the value

105



Report No. 2304 Bolt Beranek and Newman Inc.

LI

0.5-4

NORMA~iLED UNVOICED_ -

L 7Li

Vmini
0.2

ERROR 0.1 -,•-

Lj

v •.: • - • " • • _'-S

0.02 -- _

!' ~~0.01 ....
0 2 8 10 12 14 16 18 20

NUMBER OF POLES p

Fig. 5-2. Normalized error curves for [s] in the word
"list" and [a] in che word "potassium" .
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o!

i I

L___0____Fig. 5-3. Cosine weighting in computing R V

0.5--

U -1 0 1 ri

Fig. 5-4. A plot of Vl=l-r 2 the normalized

error for p-l.
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of R1 . So, what is important in determining the value of is

the energy balance between low and high frequencies. For ex-

ample, sonorants usually have most of their energy concentrated

at low frequencies, resulting in a value of R1 very close to Roo

Typically r 1 >.85 for sonorants, and from (5-33) V1 <.25. On the

other hand, unvoiced frication has the energy either distributed

over the whole frequency range or is more concentrated at high C

frequencies. Typical values of R1 are such that -. 5<r 1 <.5, With

negative values being more likely for strident fricatives. This

results in a VI>.75. Note that it is the absolute value of r

that is important in determining the value of V1 . Figure 5-4

shows a plot of V1 as a function of r 1 . If most of the energy
1.).

in the spectrum is concentrated at high frequencies then r 1 be-

comes close to -1 and V1 becomes very small. In general, any

particular spectrum and its mirror image (low and high frequen-

cies interchanged) have identical values for VI.

Above we tried to make three points: 1) One can get in- I K
sight into the general level of the normalized error curve by

examining the behavior of V1 . 2) The value of V1 depends on

the absolute value of the normalized first autocorrelation coef-
[ .;

f:cient r1 =R 1 /R 0 . 3) The value of R1 depends on the relative

energy distribution in the spectrum. In order to get more insight

into the behavior of the normalized error curve, we must exam•ine

V as p varies. This requires that we examine the autocorrelation
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function since V is a function of only the autocorrelation co-

efficients Rk, lMk5p. This can be seen from (5-30) and the fact

p that the predictor coefficients are computed from the autocorrela-

tion coefficients by solving (3-17). The expression for V inp

terms of the autocorrelation coefficients becomes very compli.-

cated as p increases, and very little insight can be gained in

U that direction. On tne other band, we know that there is a one-

to-one relationship between the autocorrelation function and the

spectrum. Therefore, an alternate course is to examine Vp as ag function of the spectrum. This relation could be obtained from

the results of Section 5.2 on minimum-phase sequences, but we

shall give a more direct derivation below. The expression for

Vp will be in terms of rO, the zeroth coefficient (quefrency) of
the cepstrum corresponding to P(w). An expression for Vmin then

follows directly.

ASubstituting PM() for PM() and cn for c n in (5-18), and

letting n=0, we obtain:T| T
0 = i- T log P((Ld) . (5-36)

c is just the integral of the logarithm of the approximate spec-

trum P(W). c0 is a function of p since PP() is a function of p.
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The approximate spectrum P(w) in (4-6a) can be rewritten as:

A2 2

k =1 P

k~l (5-37)

jfr '+I zk -2[ zJrcos wT) +Zki s1in(wT) Ll

where zk = Zk + jZki, l_<kp, are the poles of the transfer func-

tion S(z), and Zkr and zi are the real arid imaginary parts of
the poles, respectively. Since the logaritlur of a product is L

equal to the sum of the logarithms of its elements, (5-37) can

be substituted in (5-36) to obtain (after interchanging integra-

tion and suxanation•i:

co 0 log A2 -p _i• r log (l+Izkl 2 -2[zkrcos(wT)+zkisin(wT)J)dc,.

c =g, (5-38)

Since all the poles of S(z) are guaranteed to be inside the unit H

circle, we nave IzkI<l, lnkfp. For this special case, the integral

in (5-38) is equal to zero (Gradshteyn and Ryzhik, 1963, p.542).
(For Izk1Il, the integral multiplied by k1is equal to lcglzkI 2

Therefore:

c log A p log E i (5-39)
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The zeroth coefficient of the approximate cepstrum is equal to

the logarithm of the minimum total-squared error. Substrituting

(5-39) in (5-29) we obtain the desired result3

0 0
o Co

Se _ e •(5-40)v -O R'0 00R

U (Note that R = R for all p.)

A

From (5-2) we know that as p-1, P(M) becomes equal to P(w).

Substituting P(M) for P(M) in (5-36) and the result in (5-40),

1we obtain an expression for the minimum normalized error Vmin=V-:

co

Vmin _ R0 (5-41)

where co is the zeroth coefficient of the siqnal cepstrum, and

S0 is the energy in the signal.

Equation (5-41) can also be derived from the results of

ISection 5.2. From (5-29), (5-7) and (5-27) we have:
2 2 c
A0 _ b 0  e 0

V. =V -=
Vvin =V R0 R0 R0

SAlso , since the impulse response sn corresponding to S (z) is

minimum-phase, and s0= Ap from (3-,28), we have:
2 A2

V A = A S - e 0

-0 R-0 R 0
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It is instructive to write (5-41) as a function of P(&)):

Tr/T

exp flog P(w) dwi

Vmin = TIT (5-42) -

Sf

It is clear from (5-42) that Vmin depends completely on the shape Li

of the signal spectrum. Similarly, from (5-401, V depends com-

pletely on the shape of the approximate spectrum. This fact is

very important in interpreting the behavior of the normalized

error curve for the spectra of different sounds. For example,

in Fig. 5-2 the error curve for the unvoiced fricative (sJ is

much higher than that for the vowel [m]. On the whole, unvoiced

sounds have a high error curve while voiced sounds have a much

lower error curve. This property of voiced 'ersus unvoiced K

sounds has been observed before (Atal and Hanauer, 1971; Markel,

SCRL Mon. 1971), and V has been suggested as a possible para-P

meter for the detection of voicing. However, with our result

showing that the error curves are dependent only on the shape of

the spectrum, it is clear that what makes this apparent dichotomy

between voiced and unvoiced sounds has nothing to do with the fact

of voicing itself, but rather with the shapes of the spectra cor-

responding to these sounds.
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By examining the behavior of V in '5-42) one gains insi %\c

into how the error curves change for different shapes of the

trum. For example, it _s easy to show that if the spectrum is pet-

fectly flat, then Vmin = 1, and the error curve is the highest

possible. On the other hand, if all the energy is concentrated

in certain regions of the spectrum and the rest of the spectrum

contains zero energy, then Vmin = 0, and the error curve is the

lowest possible. Speech sounds lie somewhere between these two

extremes. In general, voiced sounds (especially sonorants) have

most of the energy ccncentrated in one region at low frequencies,

I resulting in low error curves. Unvoiced sounds, on the other hand,

have the energy more evenly distributed across the spectrum, re-

sulting in higher error curves. However, this property cannot be

relied upon all the tinme. As an example, Fig. 5-5a shows t~ie error

curve for the burst [k] in the word "concentration". The er.ror

U curve is low although the sound is unvoiced. In this case, this was

due to the fact that the [k] spectrum had a single sharp peak where

most of the energy was concentrated (see Fig. 5-5b).

I An interesting way to look at Vimin in (5-42) is to view it as

the ratio of the geometric mean to the arithmetic mean of the

spectrum, where the notions of the geometric and arithmetic means

have been extended to the continuous case. This becomes clear if

one assumes that the spectrum P(w) is approximated by a staircase

spectrum with N distinct values P. over the frequency range -t
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Fig. 5-5. (a) Normalized error curve for the (k) burst
in the word "concentration".

(b) Burst spectrum.
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and I . In that case, (5-42) reduces to:

exP~.log P] (j Pk)
= t k=l ---- 1~ 5-43)

14 N

k=l k=l

Iwhich is the ratio of a geometric mean to an aritlhmetic mean.

Such a ratio has been useful in acoustic signal Drocessing in

getting bounds on the difference between averaging logarithms

versus taking the logarithm of the average of measured data samp-

les (Cox, 1966; Hershey, 1972). (This difference is simply the

logarithm of Vmin in our case.) It is well known that the ratio

irn (5-43) is equal to I if all the data are equal, and the value

decreases as the spread of the data increases. A larger spread

is eguivalent to heavy concentrations in certain regions and a

simultaneous lack of energy in the other regions of the spectrum,

SI i.e. the spectrum has a large dynamic range.

In order to get a better feel on how Vmin varies with dif-

ferent spectral shapes, we shall compute the ratio in (5-42) for

j three models of the spectrum: (a) a two-level model, (b) a

single-pole model, and (n) a double-pole model. Below, we shall

I refer to the ratio in (5-42) simply as V; it is the ratio of the

geometric mean of a function to its arithmetic mean.

11
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A. Two-Level Model

SThe two-level model is shown in Fig . 5-6a. The spectrum

consists of two levels: a high level labeled H, and a low level

labeled L. In Fig. 5-6a, for y = 0 or y = , the spectrum is

flat and from (5-42), V = 1. For 0<y<l, O<V<l. Therefore, for

fixed H and L, there must exist some ym for which V has a minimum

value V We shall find this value of V as a function of H and L. Um m

From (5-42) and Fig. 5-6a: {J
eY log H + (l-y) log L]V =e (5-44) '

yH + (l-y) L

Ym can be shown to be equal to:

1 :iYm -(5-45)
log d d-l

where (5--46)

will be known as the dynamic range.

Substituting (5-45) and (5-46) in (5-44) we obtain Vm, the lower

bound on V:

Vm e , (5-47)m

where y (5-48)

(5-47) is the expression for the lower bound on V for a particular 4

value of the dynamic range d. Figure 5-6b shows a plot of V verzus

the dynamic range D in dB, where
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~II 1.0
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0.01____ ______j_"_b
0 10 20 30

DYNAMIC RANGE, D= 10 logl0 -- (dB)I L
Fig. 5-6. (a) Two-level spectral model.

(b) A plot of V , the lower bound on the ratio
V, versus tWe dynamic range of the spectrum.
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D 10 logl 0 d =10 log 0  (5-49)

,.2

or example, -for a dynamic range ) = 20 dr, we read from Fig. 5-6b

that the lower bound on the value of V for any two-level spectrum

with dynamic range of 20 dD is 0.12.

In terms of the value of V, it is clear from the properties Li

of the integrals in (5-42) that the two-level model in rig. 5-6a

also applies to any other spectral shape that has only two values

(levels). The importance of the two-level. godel to other multi-

valued spectral shapes is in providing a lower bound on V for all

other shapes. This is made explicit by the following lemma and Li

theorem.

Lemma : Let H and L be the highest and lowest spectral values

for any spectrum with total energy R,. There exists a

unique two-level spectrum, such as shown by Fig. 5-6a,

whose two levels are H and L and whose total energy is

equal to P0. This two-level spectrum has:

y 0 (5-50)
H -L

Theorem 1; For a given H, L and R0 , the value of V for the two-

level spectrum determined by (5-50) is a lower bound

on the value of V for any spectrum with maximum and

minimum values H and L, ana total energy no.

The derivation of (5-50) is straightforward. However, the proof

of the theorem is more involved and will not be given here. The
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U method of preof is to make a perturbation to the shape in Fig. 5-6a,

jJ keeping R0 constant, and proving that the resultant spectrum has a

higher V than that for the original two-level spectrum.

iAnother way to state Theorem 1 is to say that for a

certain dynamic range D and energy R0 , the two-level spectrum

gives the minimum, value for V. Moreover, we have seen that for a

(Iparticular dynamic range D there is a particular two-level spectrum
U

determined by (5-45) which gives a value Vm that is a lower bound

II for all two-level spectra with dynamic range D. This leads us to

the following theorem:

Theorem 2: The ',alue given by Vm in (5-47) is an absolute lower

IIbound on the value of V for any spectrum with a given

dynamic range D.

By equating the value of y in (5-50) and (5-45) one can solve for

R0 , resulting in the following corollary:

Corollary : A spectrum with maximum and minimum values, H and L,

ifand total energy R0 given by

R H-L (5-51)log

I has an equivalent two-level spectrum as determined by

1 (5-50) whose value for V is given by Vm in (5-47).

How close the value of V for a particular spectrum comes to Vm

depends on how well that spectrum can be approximated by a two-level

I spectrum and how close R is to the value given by (5-51). As

an example of the latter condition, if the dynamic range D = 20

I to 30 dB, then the total energy R0 must be approximately 7-8 dB
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below H fox (5-51) to apply. For actual speech spectra, if H and

L are those of the spectral envelope then the general shape of the

curve in Fig. 5-6b applies, though the actual values of V are

usually higher than those in the figure. As a general statemernt

one can say that the value of the normalized error decreases as the
spectral dynamic range increases.

B. Single and Double-Pole Models

The two-level model concentrated on the effect of the spec-

tral, dynamic range on the value of V. Here we shall exa;,ine the

effect of the general slope of the spectrum on the value of V.
First we shall derive V for an arbitrary pair of poles, then

we deal with special cases. Let the two poles be at z=a and z=b,

both inside the unit circle. The transfer function for the two

poles can be represented by

X(z) - (-) ' IaI<l,IbI<l. (5-52)(l-az )(l-bz-i

The impulse response corresponding to X(z) is given by x(nT),

the inverse z-transform of X(z). It can be shown tnat:

0, n<O
= (5-53)

n 1 n+l n+l)S-b n?0.

The total energy R can be obtained from (5-53) as:
0

SP2R0 = • n
: n=0 (5-54)

l+ab

(1-ab)(1-a )(1-b
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In computing V from (5-42) we also need the numerator, which is

equal to e . Following a derivation similar to that in Section 5.2

(equations 5-36 to 5-39) we conclude that co = 0 for X(z), andSeC0

hence e 1. Therefore,

2 )1b2
=1 = (1-ab) (1-a) (1-b)

0 1 + ab

(5-55) is true for any pair of poles inside the unit circle.

Complex-Conjugate Pair of Poles: Here b is the complex conjugate

of a, b = U. Therefore,

2
V 1-r [i r - 2r 2 cos(2.T)] (5-56)

where r = lal = Ibi

and wT = angular position of a or b.

U
Double Real Poles: a = b, both real.

V = (1-b) (5-57)
l+b

Single Real Pole * a = 0, b is real.

U2
V = (5-58)

iNote that b could be either positive or negative. Recall that a

positive real pole corresponds to the usual real pole in the analog

domain, while a negative real pole in the z-plane behaves like a

J pair ol complex conjugate poles at half the sampling frequency (s-e
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L *1

Appendix A). The spectrum of a negative real pole is just the

mirror image of the spectrum of a positive real pole. While the L
spectrum of a positive real pole slopes down at approximately

6 dB/octave, that of a negative real pole slopes up at the same

rate. Note, however, that the value of V in (5-58) is the same 13

whether the pole is positive or negative. The same goes for the

double real poles in (5-57).

Using linear prediction we approximated the spectra of

several sounds from a single male speaker by single and two-pole

spectra. The speech signal was low-pass filtered at 4.5 kHz and

sampled at 10 kHz. The results showed that most sonorants were

well approximated by a complex pair of poles with a Q (ratio of ,

frequency to bandwidth of resonance) of between .5 and 2. The

frequency of the resonance ranged from about 200 to 700 Hz for

different sonorants. [t] bursts were approximated by a complex

pair of poles at around 2 kliz with a Q of 1.5. (Most of the high

"frequency energy in the burst had been filtered out.) The frica-

tive [.] was also modeled by a complex pair at about 2700 liz with

a Q of 2. On the other hand, the fricative [s] was approximated

by two real poles: ona negative and one posit~ve. When the ap-

proximation was restricted to a single pole, the pole was nega-

tive and positioned around the real frequency 1000 Hz (i.e. the

-ile is at 5 kHz with a half bandwidth of 1000 Hz).
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The values of V in (5-56) for complex pairs of poles with

•f • low Q is quite close to that for a double pole in (5-57) at the

same frequency. ThereforE we shall give the values of V in

(5-57) for different frequencies. This is shown as a graph in

Fig. 5-7. For sonorants, values of V are seen to range from about

.. 01 to .1. Also shown in Fig. 5-7 is a graph of V in (5-58) for

Sla single real pole (positive or negative) with real frequency as

the abscissa. The value for [s] would be on that graph around

1000 Hz. In order to convert between real frequency and the value i
of b in (5-57) and (5-58) use the formula

JbI = e = e 2  fr T

where fr is the real frequency and T is the sampling interval

(in this case T = 100 Psec).

These graphs have two main properties. First, at any one

frequency, V is less for a double pole than for a single pole.

This is to be expected since the spectrum of the double pole has

IIa larger dynamic range than that of the single pole, and we have

jI learned that, other things being equal, a larger dynamic range
results in a lower V. Second, for each of the two curves, as the

Sfrequency of the pole increases, V increases. Again, this is to

be expected since as the pole frequency increases the dynamic

range of the corresponding spectrum decreases which causes an

increase in V.
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Fig. 5-7. The ratio V for single and double pole models
of the spectrum.
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5 This concludes our exposition of the behavior of Vmin as

a function of different spectral models. For real speech spectra

Vmin must be computed from (5-42) in an approximate manner. This

is discussed in the next section where we deduce properties of

the zeroth quefrency cO.

5.4 The Zeroth Quefrency
c e0

It is clear from (5-41) that V = e depends completely on
0

the zeroth quefrency c. and the total energy R0 of the signal.

d Therefore, all the properties of V that were discussed in Section

5.3 are actually a reflection on the properties of co. We shall

not repeat these properties here, but we would like to examine

Sanother possible usefulness of co in speech analysis.

Given two signals such that one is a constant multiple of the

other, their cepstra are identical except at the origin (i.e. at

I c0) This prer*erty led Mersereau and Oppenheim (1972) to suggest
the possibility of using c0 as a measure of signal amplitude. They

presented plots of c0 for several utterances and compared them with

plots of log RO. They noticed that the two curves had similar gross

features except that for some fricatives c0 had definite peaks

while log R0 did not. These differences between c0 and log R0 can

be easily explained from the properties of V. Indeed, the differ-

ence between c. and log R0 is simply given by

log V c•0 log R0 . (5-59)
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This difference can be measured in dB if we take 10 logl 0 V in

which case: I

10 log1 0 V = 4.34 co - 10 logl 0 R0

or V(dB) = c0 (dB)' - R0 (dB) , (5-60)

where V(dB) is V measured in dB, R0 (dB) is the energy measured in

dB, and c 0 (dB)= 4ý34c 0 . Since V_5l must always hold, log V is I
always negative (or equal to zero). Therefore,

c 0 %dB) _! R0 (dB) . (5-61)

How much c 0 (dB) is less than R0 (dD) depends on the shape of the

spectrum. From the analysis in Section 5.3 it is clear that

co(dB) could be as much as 20 dB less than R0 (dB) for certain

sonorants. On the other hand, for some fricatives that differ-nce

could be as low as 3 or 4 dB. This is why, relative to the gen-

eral trend of c0 versus log R0 , some fricatives were marked by

sharp peaks. From our experience, even within the sonorants -hem-

selves V(dB) varied by as much as 10 dB.

Our conclusion is that the zeroth quefrency cO indeed does

carry information concerning the energy in the signal, but that

information is coupled with other information about the general

shape of the signal spectrum. The energy information can be
~co

factored out by dividing a by R0 , leaving the information on the
Co

spectral shape, and that is simply V. co (more accurately e 0 is
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Sa measure of the geometric mean of the spectrumn, while R0 is a

measure of the arithmetic mean. Thus, the information that co

carries about R0 is the came information that a geormatric mean

carries about the corresponding acithmetic mean, no less and no

more. The relation between the two means is represented by V.

Computational Considerations

SIf c0 is to be computed for a speech signal using a digital

computer, then the integral of the log spectrum must be approxi-

mated by a summation. This is usually no problem, unless one of

Sthe spectral values happens to be zero. This is rost likely to

happen at d.c. especially since many people remove the d.c. com-

LI ponent from the signal before computing the spectrum. The prob-

U lem, of course, is that the logarithm of zero is normally consid-

ered to be -w. Anything added tc -- keeps the sum at -- and c 0

will have the value --. This result is incorrect since we know

that the integral of the log spectrum for any signal with finite

I non-zero energy must always be finite. The fact that the spectrum

P(w) is zero at one point (causing log P(w)•--) does not mean that

the integral of log P(w) is also infinite. As a simple illustra-

tion, it can be ;_rz fied that
C

f log w dw= e log c - C . (5-62)
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Note that at w=0, log w---, but the integral in (5-62) is finite

for an arbitrarily small e. In particular, as c0, the integral

approaches zero, and thus the fact that the logarithm is infinite

at w=0 did not contribute to ithe integral at that point.

It should be clear that the above problem in computing co

arose only because we are approximatinq the integration by a

summation. Indeed, if the integral in (5-62) is to be approxi-

mated by a stunmation and the value at w=0 is used, the same pro-

blem would occur. If we assume that this problem is likely to

arise only at d.c., then a good solution is to remove the d.c.

from the signal and then ignore the spectrum at d.c. in computing

coo

5.5 Detection of Voicing

In Section 5.3 we pointed out the possible usefulness of

the normalized error V as a voicing detector. This could be
p

implemented by setting a threshold on the normalized error f:r

a particular value of p. If V is less than the threshold, the
p

sound is judg.,d to be voiced; otherwise it is judged to be un-

voiced. For speech recorded in a quiet room using a high quality

system, we have found that the normalized error can be used in

this manner a large portion of the time for the detection of

voicing. (!lore precisely, it is useful in differentiating sono-

rants from nonsonorants. In the cases of stops and fricatives, |
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the normalized error does not work particularly well as a

voicing detector.) It should be reiterated that this behavior

of the normalized error has nothing to do with the fact of

a voicing itself, but rather with the shapes of the spectra cor-

respondin9 to voiced vs. unvoiced (or sonorant vs. nonsonorant)

sounds. We will point out some of the common conditions under

V which the normalized error works less than ideally as a voicing

detector.

l Background IJoise - During stop gaps and other periods of silence,

the signal being analyzed is the background noise. During thesehi
periods, irrespective of how low the noise level is, the normal-

Fized error curve could be low or high, depending on the shape of

the noise spectrum. If the noise spectrum is rather flat, the

SI error curve will be high and the spectrum will be judged to be

unvoiced. However, in many real life situations there is a

heavy energy concentration at very low frequencies, which causes

the error curve to be low and may cause the spectrum to be

judged as voiced. A possible solution is to high-pass the speech

signal to get rid of these low frequency components (which are

usi:ally below 250 Hz), but this filtering would also filter out

the low frequency components in all other sounds co an undesirable

extent. A better solution would be to detect periods of silence

from energy considerations (e.g. R0 ) and then avoid making a

voicing decision based on V during these periods.
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Telhone Speech - The telephone is an example of a medium for

extnsive vocal communication which distorts the speech signal

in many ways. For example, the energy below 300 1Iz and above 3

kliz is filtered out. This keeps iAuch of the formant structure

relatively untouched, but it filters out nuch of the energy for

sonorants and fricatives. This, in addition to other important

factors (such as noise), reduces the spectral dynamic range of j
the signal. The overall effect on the normalized error is that

it becomes higher. For some vowels the normalized error can be LI
as much as an order of magnitude higher. The result, of course,

is that it becontes more difficult to use the normalized error

to differentiate between voiced and unvoiced sounds.

Effects of Preemphasis - Preemphasis is often used in speech ana-

lysis to compensate for the spectral slope of voiced sounds, which

falls at 6 dB/octave or more. In the digital domain, preemphas-is

is conveniently accomplished by differencing the signal (i.e. sub-

tracting adjacent samples). We shall go into some detail on the )

properties 3f differencing and its effects on the normalized error.

Some of tl.ese properties will be useful in the next chapter on -

formant extraction.

Let the first difference of the signal s n be defined by:

S' =Sn -s d(sn) (5-63)
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S where s' is the differenced signal and d is an operator that

takes the ith difference of its argument.

Taking the z-transform of (5-63) we obtain:

S'(z) = (1-z-) S(z) -D(z) S(z) (5-64)

where D(z) = l-z- (5-65)

is the differencinc operator in the frequency domain. It intro-

duces a digital zero at z=l, which corresponds to zero frequency.

The power spectrum of the differenced signal is:I ,2
p, () = IS '(w)1 2  = ID()I2 P(w)

I = l- e-JwT, 2 P(w)

=4 sin 2 (T) PMw (5-66)

where JD(w)I = 2 snw1(5- 657)

I is the magnitude of the frequency response of tiue differencing

operator. Therefore, the effect of differencing in the time do-

I main is to multiply the power spectrum by 4 sin2' which is

SI the spectral response of the zero z=l. Figure 5-8 shows a plot

of ID()I in (5-67) versus wT. (wT = ii corresponds to half the

3 sampling frequency, which would be 5 kHz for a 10 kHz sampled

signal.) Also shown in Fig. 5-8 is a plot of the transfer func-

tion for the analog zero at zero frequency. The analog zero

3I corresponds to differentiation in the continuous time domain.
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LA

.Li

Analor',j
Zero 2

Dirital

1.. Zero

it 27rrL

Fig. 5-8 The frequency response of a diital zero at z=l
as compared to the correspondinr, analor zero
at zero frequency.

The response of the analog zero climbs at 6 dB/octave for all
frequencies. The response of the digital zero climbs at 6 dB/ H
octave at low frequencies, but becomes flat at wT = i. Between

WT = r and wT = r (which corresponds to the octave 2.5 kHz to

5 kHz) there is a rise of only 3 dB. At wT = r, the digital re-

sponse is 3.92 dB lower than the analog response.

Therefore, differencing greatly attenuates the energy at

very low frequencies and enhances the energy at high frequencies.

These major effects on the shape of the spectrum have strong

effects on the normalized error curves. As an example, Fig. 5-9

shows the error curves for the same two signals shown in Fig. 5-2,

except that in this case the signals were preemphasized by
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1.0 -- -

0.2

NORMALIZED UNVOICED

ERROR 0.1 Vmin[s]
Vp__ _ . . . . . . .

0.05

! -
WITH PREEMPHASIS

0.02__-

0.01-
0 2 6 8 10 12 14 16 18 20

NUMBER OF POLES p

j Fig. 5-9. Normalized error curves for the sa two sounds
as in Fig. 5-2, except that the speech signals
were preemphacized by simple differencing."

I
133



Report No. 2304 Bolt Beranek and Newman Inc.

differencing° The error curve for the unvoiced fricative [s] L
became lower while that for the vowel (w] became much higher, so

much so that the (m] curve starts higher than the [s] curve, but

as p-*, Vmin for [w] becomes lower than Vmin for [s]. (This nteans Li
that the two curves must have crossed at some point. In this

case the curves cross at p = 122.) In general, preemphasis causes

a marked increase in the value of the normalized error for sono- [
rants. The effects of preemphasis on unvoiced sounds such as

stop bursts and fricatives are less predictable; the normalized

error could go either up or down depending on the particular

spectrum. These effects can be understood better by examining

how the autocorrelation coefficient R1 is affected by differencing

the signal, and then using Fig. 5-4 to make statements about the

behavior of V1 , which, as we have argued before, is a good indi-

cation of the general level of the error curve.

As we pointed out in Section 5.3, R1 is the result of a co-

sine weighting on the spectrum which weights low frequencies posi- f
tively and high frequencies negatively. Since preemphasis attenu-

ates low frequencies and emphasizes high frequencies, the effect

is to lower the value of R1 relative to R0 , i.e. to lower rI.

From Fig. 5-4, decreasing rI could either increase or decrease V,

depending on the value of rI and how much it decreases. Most

sonorants have rl>.9, and differencing causes a decrease of between

.1 and .7 so that the resulting rI is still greater than zero. V
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[i IFrom Fig. 5-4 we see that V1 always increases for this case. For

sounds such as [s] where rl<0, decreasing rI decreases VI. How-

ever, for other unvoiced sounds where Q<r 1 <.5, decreasing r1 could

I either increase or decrease V1 depending on how much r is de-

creased. The general impression that one gets upon monitoring the

I normalized error is that preemphasis by differencing makes the

normalized error an unreliable measure of voicing.

Computing the values of the autocorrelation function for the

3 differenced signal (e.g. in order to see the effect of differencing

on rI) is possible from the autocorrelation of the undifferenced

signal. Let R' be the autocorrelation function of the differenced

signal. Then, by definition:

Rpk son s' s' (5-68)

Substituting (5-63) in (5-68) we obtain:

Rk (s n - SnI)(.(n+k - sn+kI)

n=-w- s - s +O

E (s n s n+k -Sn Sn+k-l n-l sn+k sn-l sn+k-l)

Rk -Rkl - + Rk

and Rk 2Rk Rkl Rk+l , (5-69)

I 1
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k or = =-[k+l -k)-(Rk - k-))I

=-rda(Rk+l,)-d (Rk 01•
!J

2and R,,=-d(R) . (5-70)
k)4

(5-70) says that the autocorrelation of a lifferenced signal is
equa.l to the negative of the second difference of the autocorrela-

tion of the original signal. This result is analogous to the
analog domain property that the autocorrelation of a differenti-

ated continuous signal is equal to the negative of the second

derivative of the autocorrelation of the original signal (see for

example, Papoulis, 1965, p. 317). As an example, ri f.1

ferenced signal is equal to:

S1 (-[rl-r2 )5rI -r 1- • •r _ -1

(Remember ti'at Rk = Rk, for all k.)

5.51 Using r, as a Voicing Detector

It has become clear that what makes the normalized error a

good voicing detector for high quality speech is the fact that

most voiced sounds have a high energy couicentration at low fre-

quencies while unvoiced sounds have the energy more spread out

or partly concentrated at high frequencies. This spectral bal-

ance, when disturbed (e.g. by preemphasis) causes the normalized
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error to be an unreliable voicing detector. We have explained

S~some of the reasons for this above, where we appealed to an analy-

sis in terms of r and its effect on V1 . In particular, we ob-
[~1

served that for a differenced signal r <ri, while the value for

V1 had no such consistent relation. This suggests the use of r"

as a voici .g detector.

11 . For an unpreprocessed signal, rI should work as well as the

normalized error. From the limited data we have examined for a

L single male speaker, rl>.8 for voiced sounds and rl<.6 for unvoiced

u sounds worked very well as a voicing detactor. Furthermore, when

the speech signal was preemphasized by differencing we noted that

[ r was always less than rl, but the amount changed with the particu-

lar sound. Front vowels exhibited a large drop as might be expec-

ted. (For example, one [i] sound had r1 = .95 and ri = .2.) How-

ever, most sounds remained separabi.e between voiced and unvoiced,

[1 although we do not expect the reliability to be as high as with

LI r1 . If preemphasis is performed before the signal is digitized

then one could just use rj. However, if the signal is to be dif-

ferenced digitally, one need not use rj; r1 would still be avail-

able and relatively cheap computationally; all that is needed is

to compute R0 and R1 frcm the original signal before it is dif-

ferenced.

There is nothing sacred or magical about using the normalized

Ii error or rI as a voicing detector, especially if the signal was
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processed in some special way. In that case one could oerform a

suitable weighting on the spectrum and get a measure that would

correlate well with voiced or unvoiced sounds. rI uses a cosine

weighting; this is only one of an infinite number of different

weightings that could be used. Furthermore, no single method for

the detection of voicing will work all the time. It is normally

advisable to have at least two methods at hand, and the two should
be based on different properties of the signal. LI

5.6 Optimum Number of Predictor Coefficients

It was stated in Section 4.3 that for certain applications we

wish to approximate the envelone of the signal spectrum P(w) by

an all-pole spectrum P(w) whose parameters are the predictor coef-

ficients ak, i-<k_<p. Also, we were assured that by minimizing the

error in (4-16) we obtain a spectrum P(M) which (for some p) is a

good estimate of the spectral envelope of P(w). The question that

remains is for what value(s) of p will P(w) indeed be a good spec-

tral envelope. We know that such a value of p (or range of values) i
must exist, because for very low values of p, P(w) is a very crude 4
fit to P(w), while as p-*, P(w) becomes identical to P(w). Some-

where in between there should be a value of p that would be satis-

factory for a good envelope fit. In Section 2.4 we obtained a

rough idea of what p should equal for some sounds from theoretical

considerations. Here we shall give an empirical method to determine
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I the optimum value of p for each soun,

3 Figures 5-2, 5-5 and 5-9 show error curves corresponding

to different spectra. Each of the error curves starts at 1 for

3 p=O and monotonically decreases to -ts own Vmin as p,-. Also,

each of the curves exhz.its what might be called the "knee" of

the curve. This is a region of the curve after which the curve

slopes very slowly towards its asymptote. For example, in

Fig. 5-2, starting at p=7 for (s] and at p=ll for [a], the error

3 curve falls off gently. Our physical explanation ft. ,("-s "knee"

is that around that value of p the approximate spe :-0,, P(P) is

I the optimum approximation to the envelope of the signal spectrum,

P(W). A lower value of p results in a grosser approximation to
the spectral envelope while a larger value of p will superimpose

fine structure information on the spectral envelope. This ex-

planation is based on the properties of the error measure (4-16)

I which were discussed in Section 4.3.

3 Therefore, for each frame of the signal one could find the

knee of the error curve and choose the optimal value of p as that

•i place where the error curve begins to fall off slowly towards its

asymptote. This method is, of course, quite approxin.ate. It

should be clear that the optimal value of p will vary a gocd deal

depending on the particular sound. For many applications this

process is cumbersome and a fixed value of p would be more desir-

able. In general, increasing p beyond its optimal value has a

139



Report No. 2304 Bolt Beranek and Newman Inc.

i I

a less drastic effect than if p is decreased. Therefore it is

usually sufficient to set p to a fixed value that is the upper

limit necessary to describe the spectral envelopes of the dif-

ferent sounds in the signal. For speech signals bandliimited to

5 kliz and sampl- at 10 kllz, a value of p between 10-2.4 is chosen

depending on the application. This agrees with the speech pro-

duction considerations of Section 2.4.

In Sectiun 6.2 the above results will be extended to other U
linear prediction methods, and will be useful in determining the f)

value of p which leads to accurate formant inform.ation.

I1

Li

L°i

f)!

~[!,
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CHAPTER !VI

FORMA14T ANALYSIS

AND PITCH E92RACTION

In an analysis-synthesis system based on linear prediction,

3 Ithe synthesis part of the system is normally based on the speech

production model shown in Fig. 2-1. We have discussed in Chapters

3 III and IV several methods for the computation of the predictor

parameters. In Chapter V we discussed methods for the detection

of voicing. One important remaining parameter is the pitch T,

for those sounds judged to be voiced. We define pitch to be the

time interval between consecutive glottal pulses. The instanta-

neous fundamental frequency F0 is then defined as the inverse of10
the pitch, F0 = The first section in this chapter discussesI0
briefly methods of pitch extraction (estimation) based on linear

prediction. It should be emphasized that the discussion in this

chapter applies to both the Covariance and Autocorrelation methods

3. of linear prediction.

For other applications, such as formant-based synthesis and

speech recognition, it is desired to estimate the formants of the

3 vocal tract as well. The formants are estimated from the poles

of S(z) in the speech production model. The extent to which the

I formant values thus obtained reflect the actual resonances of the i

vocal tract depends on several factors. We discuss the adequacy
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of the all-pole model for formant extraction (estimation), the 'j

effect of the number of poles p in S(z), the dependency on the

specific method of linear prediction used, and the importance of

the signal frame width and frame positioning. The last factor

is discussed in terms of pitch-synchronous and pitch-asynchro-

nous analysis. A discussion of windowing is included in pitch-

asynchronous analysis.

Finally, we discuss peal: picking of the linear prediction

spectrum as a means of formant extraction. Preemphasis of the

speech signal and computing the spectrum alonq a contour inside

the unit circle are suggested as two efficient and effective me-

thods to improve the performance of peak picking in formant i

6extraction.

6.1 Pitch Extraction

If we assume that the model in Fig. 2-1 is accurate for the

production of voiced speech, then by passing the speech signal

s(nT) into a filter that is the inverse of S(z), we should ob-

tain i signal that is close to u(nT), which consists of a se-

quence of impulses. Except for the gain factor A, the filter

H(z) defined in (2-3) is the inverse filter to S(z). From Fig. 4-1 i
we see that passing the signal s(nT) through the filter 11(z) pro- i I
duces the error signal e(nT). Therefore, e(nT) should be related

to u(nT) by a multiplicative constant for any one frame of speech, 1
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i.e. e(nT) 4 A u(nT), The error signal, then, should e:;hibit

impulses corresponding to the pitch pulses. The separation of

these pulses in time would then be the pitch period, whose in-

verse is the instantaneous fundamental frequency F0.

After the predictor coefficients ak are computed by any de-

sired method, the error signal e(nT) is obtained from the original

ji signal by using (3-2), which is repeated here:

p
e n - Žak Snk (6-1)n -

en is simply the difference between tha original signal and thena

predicted signal. It is a measure of the inaccuracy in assuming

a linear prediction model. In the direct Autocorrelation raiethod

the original signal is usually windcwed before the coefficients

p •are computed. In that case (6-1) could be applied either to the

windowed signal or to the original signal. In the direct Auto-

correlation methcz windowing is necessary in order to obtain better

estimates of the coefficients ak. However, once this is done, the

H computed coefficients ak are supposed to apply to th) original

signal as well.

Although the coefficients ak are computed from a specific

frame of the signal., one could compute (6-1) for a time interval

F that is larger than that used for computing the coefficients ak-

143

I



I
Report No. 2304 Bolt Beran~ek and Newman Inc.

In a quasi-steady-state situation, the same coefficients ak

should continue to apply to a portion larger than the frame used

for the analysis.

Figure 6-1 shows examples of error signal analysis using

the direct Autocorrelation method for four types of voiced speech
L;

segments. Each example shows three signals, each 25.6 msec long.

s(nT) is the original signal. The predictor coefficients ak are

computed from a Hamming-windowed s(nT), then the error signal e(nT)

in the figure is obtained by applying (6-1) to the original un-

windowed signal s(nT). R (nT) is the autocorrelation of e(nT).

In Fig. 6-1, e(nT) is normalized with respect to the maximum

error in the frame. Also, the first p values of e(nT) have been

set to zero since e(pT) is the first value we compute. Re (nT) is

normalized with respect to the maximune value in the frame other

than R e(0), which is known to be greater than all other autocorre-

latiort coefficients. In fact, R e(0) -5 not shown in the examples

in Fig. 6-1.

In comparison with Fig. 6-1, Fig. 6-2 shows the error auto-

correlation functions for the same four frames except that the

e:ror signal is obtained frcm the windowed signal. The colnputa-

tions were performed in the freqcency dor-ain as follows:

R6 (nT) F, '(J 2 inwT d( (6-2)
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Re (nT)
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nT ___
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R (nT')

e (nT) -. ,(b) ., :

s (nT)

nT L _
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3 Fig. 6-1. Analysis of error signal for pitch extraction,
(a) The vowoel [a) in "potassium".
(b) The liquid [r: in "rubidium".
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Fig. 6-1. (Cont'd) Error sicgnal analysis for pitch
(c) The ([]-[s] transition ii, "potassium".

(d) The voicing in the voiced stop (b] in
"rubidium". H]
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and E(.)2 II2 (w) 12

= A , (6-3)

A PMw

where P(M) is the power spectrum of the windowed signal, PM() is

2the power spectrum corresponding to S (N), and A is the minimum

error in (3-37). P(M) and P(U) are computed via the FFT, as des-

cribed in Appendix C. Then, (6-2) is computed by an inverse FFT.

(Note that if the speech signal is N samples long, then one should

append at least an equal number of zeros and compute 2N-point FFT's,

in order to obtain the complete autocorrelation function.)

We mentioned earlier that the error signal e(nT) for a voiced

sound should exhibit impulses that correspond to the pitch pulses.

The error signal in Fig. 6-la shows a typical case where the pro-

minent peaks can be associated with pitch pulses. The correspond-

ing error autocorrelation function shows a sharp peak at a lag

equal to the pitch period. Although Fig. 6-la is quite typical

for many voiced sounds, there exist a number of important excep-

tions. Fig. 6-lb shows an error signal with more than one peak

within a single pitch period. (The prominent peak is associated

with excitation due to closing of the glottic while the secondary J
peak in the middle of the pitch period can be associated with ex-

citation due to the opening of the glottis.) The error autocorre- J

lation in Fig. 6-lb still shows a prominent peak at the pitch

period.
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An important case is shown in Fig. 6-ic during a vowel-con-

sonant transition. As the voicing decays, the pitch pulses seer,

to disappear. The same is true during consonant-vowel transitions.

During both types of transitions the sound is clearly voiced, yet

the error signal does not show any prominent peaks that could be

associated with pitch pulses. Fig. 6-1d shows the same phenomenon

during the voicing in a voiced stop. (Note that e(nT) in each ex-

ample has been normalized to the maximum error in that frame. That

is why e(nT) in Fig. 6-ld seems to be excessively large compared

to the other examples; in reality it is not.) The above-mentioned

cases have in common the fact that the signal is not rich in har-

monics as is normally the case during sustained vowels. Another

way of stating this is that the signal tends to become sinusoidal

in nature in those cases. This is very evident for s(nT) in

Fig. 6-1d. Now, the linear prediction model works very well for

I sinusoidal signals. In fact, a pure sine wave can be generated

I digitally with each sample being equal to a linearly weighted

summation of the preceeding two samples, and this can qo on inde-

finitely in time. Therefore, for a sine wave, the linear predic-

tion error signal would be zero for all time (except for the very

IL first sample), and there would exist no pulses to delineate pitch

periods. The implication for cases such as in Figs. 6-Ic and

6-1d is that the error signal ceases to be a good source for mea-

suring pitch. All is not lost, however, because pitch can now be
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estimated from the signal s(nT) itseif, since it is quasi-sinusoi-

dal. This can be done by any number of ways, including peak

picking of the signal itself or its autocorrelation. (Note in

Fig. 6-ld that although e(nT) is very erratic, the autocorrolation

R (nT) still exhibits a peak at the pitch period.) It is cleare
from Fig. 6-2 that the autocorrelation of the error signal ob-

trained from the windowed speech signal can also be used for pitch

extraction.

In summary, pitch can be extracted in most cases from either

the error signal or its autocorrelation. In cases where the speech

signal is not rich in harmonics, pitch can be extracted directly

from the speech signal or its autocorrelation. The combination

of methods to use depends on the properties of the signal as well

as on the specific application.

The examples shown in Fig. 6-1 were obtained using the Auto-

correlation method. The same sounds when analyzed using the Co-

variance method did not show any significant deviation in the

error signal or its autocorrelation. This was also true for all

the sounds we have examined thus far.

6.2 Formnant Analysis

In an analysis-synthesis system using linear prediction, where

the synthesizer is of the form shown in Fig. 2-lb, it is necessary

to know the values of the predictor coefficients ak, but it is
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" .. not necessary to know the poles of the filter S(z) which is shown

in F'g. 2-la and given below (except perhaps to check for possible

instability of the filter):

S(z) = A . (6-4)

a I- akz-

k=l

However, for applications such as speech recognition and formant

H synthesis, it is necessary to compute the poles of A(z) in order

to be able to deduce the formants of the vocal tract. The poles

[Iof S (z) can be computed by setting the denominator of S(z) in

(6-4) to zero and solving the resultant polynomial equation in

z for its roots. (We have successfully used a variation on the

fj POLRT routine in the IBM Scientific Subroutine Package, 1968. The

variations included elimination of all double precision computa-

,I tions, raising error tolerances, and modifyinq the starting point

for each root to be a random point on the unit circle.) Since

the coefficients ak are real, some or none of the roots are real

and the rest are complex conjugate pairs. Conversion to the s-plane
Sk T

can be achieved by setting each root zk = e ,where sk = + jWk

Uis the corresponding pole in the s-plane. If the root zk = Zkr +

JZki, then:
Zki

= fs arctan k(6-5)

Sfs 2 + 2(6 )I Uk = log (Zkr + Zk) (6-6)
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where fs is the sampling frequency. I

In the s-plane the poles will also be either real or in complex

conjugate pairs.

If the speech spectrum can be approximated by poles only,

then the formants can be obtained fror.t the poles of S(z) by noting

that:

a) A formant consists of a pair of complex conjugate poles.

b) A formant normally has a high ratio between its frequency

and bandwidth. Complex conjugate poles with very wide .i

bandwidths can be regarded as contributina to general

spectral shaping only.

c) The frequency range of a particular formant is usually

known.

d) Peak picking can be performed on the approximate spectrum

as a double check on the formant values.

e) Continuity of formant values from one spectral frame to

ancther can always be invoked, keeping in mind that very

fast formant transitions do exist in speech.

The extent to which the formant values thus obtained reflect the

actual resonances of the vocal tract depends on at least the

following factors:

a) Adequacy of the all-pole model.

b) Number of poles p.
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c) Method of analysis (e.g. Autocorrelation or Covariance

method).

d) Frame width: number of samples in one frame of the sig-

nal; and frame positioning (e.g. whether pitch synchro-

nilnous or asynchronous, etc.).

Ideally, these factors would be taken into consideration separately

for each frame of interest. However, this can be very expensive

ill computationally, so in practice, tradeoffs are made between cost

and reliability of the desired results. We shall discuss briefly
i!• the above--mentioned factors and point out some of these tradeoffs.

We wish to emphasize here that the discussion below applies

to the Covariance as well as the Autocorrelation method, unless spe-

cifically stated otherwise.

6.21 Adequacy of the All-Pole Model

This issue has already been discussed in Section 2.3. We

have argued there that the all-pole model seems be quite ade-

quate for speech synthesis. The question here is the adequacy of

the model for formant extraction. For the purposes of speech re-

cognition, for example, one would ideally want to be able to com-

S3 pute the transfer function of the vocal tract. This means that

the antiformants as well as the formants may be needed. It is

reasonable to assume that the all-pole model would be adequate for

formant extraction of vowels. (This assumption is based on another

153

._ _ _ _ I



JA

Report No. 2304 Bolt Beranek and Newman Inc.

assumption, namely that the glottal spectrum and radiation can be

approximated by poles only.) However, for sounds such as nasals

and fricatives, whose spectra are known to have antiformants, the

all-pole model might not yield accurate results for the resonances Li

of the vocal tract. Figure 6-3 shows the signal spectrum and the

linear prediction spectrum (p=14) for the second [n] in the word U

"anyone" for a male speaker. The problem in lookinq at a spectrum

like this is in deciding where the formants and antiformants are. -

There is no good way of making this decision in general, unless
Li

one has some knowledge about the system that produced the signal

whose spectrum. is under analysis. In fact, the spectral fit in

Fig. 6-3 is very adequate, and it is quite reasonable to assume

that some all-pole system has those characteristics. However,

from our knowledge of the acoustics of the human speech production

system, we know that if the spectrum in Fig. 6-3 is that of the

sound [n], it must have zeros as well as poles. But even if we

knew this, how would the linear prediction all-pole approximation

help us in determining the values of the formants and antiformants?

So;me of the poles will correspond approximately to nasal formants,

which can be obtained as described earlier in this section, but we

know of no simple manner in which the antiformants can be determined

from the poles of the linear prediction spectrum. The problem is

that the same poles must approximate the effects of both the for-

mants and the antiformants. This is clear trom the fact that the
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Fig. 6-3. Signal spectrum and linear prediction spectrum
(p-1 4 ) for the second [n] in the word "anyone".
Period of analysis is 25 msec.
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linear prediction spectral matching process performs equally well

at all frequencies irrespective of the shape of the speech spec-

tral envelope (see Section 4.3). Another consequence is that the

positions and more so the bandwidths of the extracted formants .

will often be very diffe-ent from their "actual" values, depending

on the position of each formant with respect to the antiformants. i

Formants that are far from the nearest antiformant are well appro-

ximated, while those that are close to an antiformant are often
poorly approximated. A formant that is close to an antiformant

can appear as a very wide-bandwidth peak which might go undetected.

With nasals, the first formant is normally well approximated since 4

it is separated from the nearest antiformant by at least one other

formant. Other extracted formants may or may not be reliable de-

pending on the speaker and the particular sound (i.e. in generai

unreliable). For example, in Fig. 6-3 the first and second for-

mants seem to be adequatel-y approximated. The third peak at 2.6 klz

is probably the fourth nasal formant. Between the second and

* fourth formants there should be a formant cluster, i.e. a cluster

of two formants and one antiformant (see Section 2.4). The anti-

formant may be around 1.8 kliz, but it is no% ;lear where the two

formants are exactly.

Analysis of fricatives run into the same problems as nasals,

if one is interested in determining the zeros as well as poles.

At least the first two formants are heavily damped for all frica-

tives, due to neighboring antiformants. Pronounced formant peaks
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at mid to high frequencies (2.5 - 6 kIlz) occur for [s] and [•1

only (Heinz and Stevens, 1961); these forrmants are usually attain-

able by linear prediction. Also, certain stop bursts, especially

that of [k], are well represented. However, there is always the

problem of pairing the formant peaks with the formant numbers,

i.e. whether a particular peak corresponds to the third formant

or the fourth formant, etc. This problem can be particularly

important in speech recognition.

We have assumed in much of the above that one is interested

in extracting most of the formants and antiformants for a parti-

cular sound. However, for speech recognition, all of this might

nct be necessary. For example, given a relatively weak voiced

sound with a formant structure, such that the first formant is

very low, and the spectral transitions to and from this sound are

abrupt, one can safely recognize that as a nasal much of the time.

Formant transitions to or from this nasal could then be used to

determine the place of articulation of the iasal. All this can

be done without knowing whether there are zeros or not in the

spectrum under analysis. Similar considerations exist for the re-

cognition of fricatives. However, a major problem arises with

nasalized vowels. The intioduction of zeros into a vowel spectrum

can be disastrous. The reason is that we depend heavily on the

exact positions and the bandwidths of the extracted formants for

the recognition of the vowel, and the introduction of zeros plays

havoc with the real formant frequencies and bandwidths. We know
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of no good solution for this problem using! the linear prediction

wodel.

In the above we VIve seen that the linear prediction model

is inadequate for the extraction of foimants and antiformants

from a spectrum containing zeros as well as poles. In these cases

one could use other imethods such as analysis-by-synthesis that

includes zeros as well as poles in the approximate spectrum. Of

course, one must first know whether the spectrum 3 likely to have

zeros or not. This can be done from separate considerations, such

as we have suggested above for the recognition of nasals. There-

fore, one must first perfor.a some form of class recognition on

the sound under analysis. If that sound is recognized to be, say,

a nasal or a fricative, then the alternate analysis-by-synthesis

method can be used. Similarly, if a vowel is next to a nasal, one

can assume that the vowel might be nasalized, then resort to the

other method to determine formant positions more accurately.

6.22 Optimum Number of Poles

Assuming that the all-pole model is adequate for a parti-

cular speech segment, the confidence and accuracy in relating cer-

tain poles of the linear prediction model to actual resonances of

the vocal tract depends to a good extent on the total number of

poles p. If the value of p is too small, there may not be enough

poles to represent all the resonances in the frequency range of
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11 interest. On the other hand, if p is too large, there will be

extraneous poles which might be mistaken for formants of the vo-

cal tract. It is clear that between the two extremes, there must

Sexist some value (or range of values) of p which is optimal for

the accurate extraction of formants. In fact, the value of p1
,should be set such that the linear prediction transfer function

S(z) approximates the transfer function of the vocal tract (in-

eluding the effects of the glottal flow and radiation). We have

seen from the last two chapters that this approximation occurs in

the power spectral domain. Namely, the linear prediction spectrum

i P (P) (or 2D-spectrur, QN(:,w')) approximates the signal spectrum PM(&)

S(or 2D-spectrum Q(w,w')). In particular, we want tiile linear pre-

diction spectrum to approximate the envelope of the signal spec-

trum. (Hereafter, the word "spectrum" will refer to both the one-

dimensional stationary spectrum used in the Autocorrelation r.ýethod,

U and the two-dimensional nonstationary spectrum used in the Cova-

riance method.) What we are claiminq is the following:

A value of p that results in an optimal spectral
envelope fit, also results in an optimal number
of poles many of which can be related, with good (6-7)
confidence and accuracy, to the resonances of the
vocal tract.

That is, the optimal value of p gives the best confidence and ac-

I curacy relative to that obtained by other values of p. The remaining

question is how to find this optimal. value for p.
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The reader is referred to Section 5.6 where the optimal p

is deduced from the normalized er-ror curve. There, the discussion

was restricted to the Autocorrelation method, Here we shall ex-

tend the results of Section 5.6 to the Covariance method as well.

We shall define the normalized error V in the Covariance method

as equal to "

V= 14ka (Covariance Method) (6-8) k.Vpk~ = k 000 [

where E is the minimum total-squared error in (3-19), and €00

is the energy in N samples of the signal. We have found that the

behavior of Vp in the Covariance method is very simiilar to that

in the Autocorrelation method. In both methods the error curve

exhibits a "knee" after which the curve slopes down at a slow

rate. The optimal value of p is that poiiit where the error curve

begins to fall off slowly. This method has been corroborated by

informal observations. However, we have seen that the bandwidths

of the resulting forrmants were less acv-urate and more variable

than the formant frequencies.

Statement (6-7) and the above procedure for finding the op-

timal value for p are correct only if the all-pole model is ade-

quate. For purposes of speech synthesis this is generally the

case. However, as we have seen above, if relatively accurate

formant (or antiformant) information is needed, then the all-

pole model is not adequate for sounds with antiformants, such as
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nasals and fricatives. In these cases it is not clear how one

would choose an optimal value for p, if such a value exists. We

shall illustrate this problem by an example. Figure 6-4 shows

the normalized error curve for the nasal [n) in the word "nickel"

by the same speaker associated with Fig. 6-3. (The analysis was

done using the direct Autocorrelation method, but the discussion

here also applies to the Covariance method.) The point after which

the error curve slopes down slowly is around p=12. For this value

of p we show the approximate and signal spectra in Fig. 6-5. Only

the first and fourth formants appear in the approximate spectrum.

[j In the signal spectrum one can clearly see in addition two other

formants between the first and fourth. In order for these two

other formants to appear in the approximate spectrum we must in-

fi crease the value of p. From Fig. 6-4 we see that at p=18 there

is a noticeable decrease in the error curve fror, the value at p=12.

W'e interpret such a change in the error curve as reflecting a

correspondingly noticeable change in the approximate spectrum.

This change is evident in Fig. 6-6 where the two formants between

I• the first and fourth are now evident in the approximate spectrum.

Unfortunately, this caused side effects around the first formant

j and at high frequencies. The position of the first peak moved

closer to that of the first harmonic and another wide bandwidth

pole was introduced next to it; it is no longer clear where the

5 first formant really is. At frequencies higher than 3 ki~z it

,16
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Fig. 6-4. Normalized error curve for (n] in the word
"nickel". Window width is 25 msec, 10 kHz'
sampling. L
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Fig. 6-5. Approximate spectrum (p-12) and signal spectrum
for [n] in the word "nickel".
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Fig. 6-6. Approximate spectrum (p=18) and signal spectrum
for [n] in the word "nickel".
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Fig. 6-7. Line&- prediction spectrum (p=18) using the
Covarianc"' method for [n] in the word *nickel".
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looks as if we have three extra peaks, which most probably do not

correspond to actual resonances of the nasal tract, since that

region of the spectrum is at the noise level. In summary, in or-

der to have the linear prediction spectrum show the formiants evi-

dent on the signal spectrum, there are two problems: (a) one must

somehow determine the necessary value of p, and (b) even if that

value of p is known, the results of the formant extraction may or

may not correspond to resonances of the speech production rechanism,

depending on the particular sound.

6.23 Ilethod of Analysis

From a purely theoretical point of view, the assumptions un-

derlying the Covariance method are superior to those underlying iI
the Autocorrelation method. The Covariance method assumes that

the signal in the frame of interest is nonstationary, while the ii
Autocorrelation method assumes that the signal is stationary.

Speech is a nonstationary process and therefore the assumption

of nonstationarity is superior to that of stationarity. However,

in any single frame of interest, the signal can be considered to

be quasi-stationary. In that case, the assumption of stationarity Li

is not a bad one, but the assunption of nonstationarity is still

a better one.

It can be shown that if a signal is generated from an all-

pole source, the Covariance method can recover these poles exactly

164



Report No. 2304 Bolt Beranek and Newman Inc.

by using only a finite numb)er of samples of the signal (Portnoff,

Zue and Oppenheim, 1972). The same is not true for the Autocorre-

lation method unless the nite signal is considered. However,

fivery good approximations to the poles can be obtained from only

a finite portion of the signal. Our experience with real speech

has been that if the period of analysis is on the order of a pitch

period or greater, the poles resulting from both methods are very

close to each other. For example, Fiq. 6-7 shows the linear pre-

fl diction spectrum (using the Covariance method) for the same con-

ditions as those of Fig. 6-6.

Another point of comparison is in how the two methods compare

in an analysis-synthesis system. Thus far we have not made such

a comparison,. However, Atal (personal conanunication) claims that

the Covariance method produces hiqher quality speech in an analysis-

synthesis system.

6.24 Frame Width and Position

In the speech production model in Section 2.1, we defined a

frame as an interval of time within which the human vocal tract

can be assumed to be fixed. This interval is usually on the order

-•f 10-25 msec. A specific choice for a frame width and position

depends on several factors:

I (a) The type of signal to be analyzed.

(b) The application for the analysis.

(c) Whether one uses the direct or indirect methoi of analysis.
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We shall be discussing the above three factors interchangeably,

but first we must explain what we mean by the direct and indirect

method of analysis. In Section 4.4 the terms "direct" and "indi-

rect" were applied to the Autocorrelation miethod to refer to whe-

t-her the autocorrelation coefficients were computed from a windowed

signal, or from an apparent autocorrelation function which was com-

puted from a finite portion of an unwindowed siqnal, respectively.

In Section 4.6, the Covariance method was reformulated in an ana-

logous manner into a direct and an indirect method. Therefore, the K
term "direct" implies that the signal has been appropriately win-

dowed, i.e. the resulting signal is infinite in extent but is zero

outside the frame of interest, while the term "indirect" refers

to the fact that a finite unwindowed frame of the signal is used

in the analysis without making any assumptions about the signal

outside that frame. It so happens that the two popular methods

defined in Chapter I are the direct Autoccrrelation and indirect

Covariance .-.ethods. However, we wish to 'iupl,',ize here that the

issue of direct versus indirect analysis i independent of the issue

of Autocorrelation versus the Covariance meuhod which we have al-

ready discussed. One important issue that faces the direct method

is a proper choice of the window to be used in each case.

There are instances during the analysis of a speech utterance

when the frame position and width are critical factors and must be

chosen judiciously. For example, in analyzing a stop burst, it
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I is best to have the frame positioned to include the burst and

l nothing wore. During rapid transitions (such as certain vowel-

nasal transitions), the frame width should be small enough so that

the sharp transition can be detected. In general, the frame width

and position should be chosen such that the assumption that the vo-

cal tract is fixed during that time interval remains valid.

I For fricatives, the frame width and position are not critical

factors in the analysis. Thus, any "effective" frame width on

the irder of 10-z5 msec can be used with generally similar results.

(The effective frame width is discussed in Section 6.242.) On the

other hand, for sonorants, the frame width and position can be in-

portant factors, dependinq on the particular application for the

analysis. Below, we shall restrict the discussion to the analysis

I of sonorants, It is hoped that from the method of presentation

one can extrapolate the results to other situations. We shall

differentiate between two major types of analysis: pitch-synchro-

3 nous and pitch-asynchronous.

6.241 Pitch-3ynchronous Ainalysis

Pitcn-synchronous dnalysis implies that one is somehow able

3 to detect pitch, and then delineate each pitch period for analysis.

(For example, one could perform a pitch-asynchronous analysis and

detect pitch pulses, as in Fig. 6-la, then reanalyze intervals

3 between adjacent pitch pulses.) Let us assume for the moment that

I
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the frame of analysis is defined to be the whole pitch period.

This case is of special interest because a pitch period represents

(approximately) the impulse response of the combined effects of

the qlottal source, the vocal tract and radiation. The word

"approximately'" was uced because the signal in a pitch period in-

cludes contributions (though small) from past vocal tract exci-

tations whose effects have not completely decayed as yet. These

contributions increase with increased pitch (i.e. shorter pitch

period, as for females and children) causing the approximation

to be worse. This is a basic loss of information that cannot be

recovered without adding some compensatozy infornation. We shall

resort to the frequency domain to explain what we mean by the last

statement. The impulse response under discussion is theoretically

infinite (though practically it dies within 30 Psec), and its

power spectrum is a continuous function of frequency. The power

spectrum of the response due to a periodic train of unit pulses,

at a rate of F0 pulses per second, contains energy only at multi-

ples of the fundamental, i.e. at f=nF0. This discrete spectrum

has an infinity of possible envelopes. Two of these envelopes are

the impulse response spectrum and the spectrum of a single pitch

period. In other words, the pitch period spectrum is guaranteed

to be equal to the impulse response spectrum only at multiples of

F0 . To the extent that the pitch period spectrum is not equal to

the impulse response spectrum for frnF0 , we say that information
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I has been lost. It is easy to see that as F0 increases, the loss

j of information is likely to increase. It is in this sense that

fesucle or children's speech (with higher pitch), relatively speaking,

I contains less information about the response of the articulatory

mechanism than does male speech (with lower pitch). This loss of

I information is irrecoverable unless extra information is supplied

I from an indepeneant source. We shall argue that linear prediction

supplies extra information which hopefully recovers part of the

information lost.

Given the spectrum of a single pitch period, the probler.i is

to estimate the spectrum of the impulse response. In linear pre-

5 diction the information takes the forr of an assumption about the

nature of the impulse response spectrum, namely that it is all-pole.

I To the extent that the all-pole model is correct, we have succeeded

in adding the needed compensatory information. Thus, recovery of

lost information is bound to be more successful with vowels (which

are well modelled by poles) than with nasals (which are best mo-

delled 1-y a combination of poles and zeros). Supplying additional

information by judiciously assuming a model is the basic idea and

power behind the general method of spectral analysis-by-synthesis.

Linear prediction is a special case of analysis-by-synthesis where

the assumed model is restricted to be all-pole.

We conclude from the above discussion that if one wishes to

I use the direct method of analysis over a pitch period, then the
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window to be used should be rectangular and should roincide in

position and width with the pitch period under analysis. In

other worJg, the samples over a pitch period should be left in-

tact. Any window other than rectangular will introduce unwanted I
distortion in the signal spectrum and consequently in the li-

near prediction spectrum approximating the impulse response spec-

trum.

Thus far we have assumed that the frame for analysis consists

of the whole pitch period. There are applications for which it I

is desirable to perform the analysis on only a portion of the'

pitch period. The portion of the signal during which the glottis

is closed is of particular interest. It is well known that the

major excitation of the vocal tract occurs at the closing of the

glottis. Thus, during the first portion of a pitch period the

glottis is closed. The vocal tract is excited again as the glottis

opens, but to a lesser degree. The vocal tract resonances are

different in the closed- and open-glottis conditions. When the

glottis is closed, the subglottal tract is decoup]ed from the

system and the resonances are those of the vocal tract proper.

When the glottis is open, there is coupling to the subglottal

tract, thus causing changes in the over-all system resonances.

In particular, bandwidths te'-' to be larger when the glottis is

open. Coupling to the subglottal tract could also introduce extra

zeros and pcles in the signal spectrum. By analyzing the whole
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U pitch period, nnc is actually averaging out the closed- and

open-glottis characteristics. The result is often reflected in

varidbility of the formant bandwidths and, to a lesser extent,

jthe formant frequencies. Therefore, in order to obtain accurate

formant information for the vocal tract, it is best to perform

the analysis on the portion of the signal when the glottis is

[ closed (see Pinson, 1963). The problem here is to know •;fen

the glottis is closed in relation to the signal. The only thing

we are sure of is that the glo:-tis is closed during tlhe first

portion of the pitch period. This interval can be anv-,hcre be-

* tween zero to a few milliseconds, depending on the condition of

"phonation. Although we cannot be sure of the glottis condition

it would still be more accurate, on the average, to analyze the

•I first portion of the pitch period than to analyze the whole pitch

period.

Analyzing a portion c.,f the pitch period is best done using

I the indirect method. The direct method is bound to give gross

errors (see the discussion on windowinc below). We note here

that the indirect Cov..riance method as well as one oi the indirect

Autocorrelation nmcthods require a minimum interva'. of analysis

I equal to 2p samples, where p is the number of predictor coeffi-

cients.
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6.242 Pitch-Asynchronous Analysis and Windowing

As "pitch-asynchronous" suggests, the frame width and posi-

tior are here independent of pitch information. This poses no

serious problems if the indircct method is used, and the results

would vary little from those obtained using pitch-synchronous

analysis, especially if the frame width is on the order of a

pitch period or larger. However, if the d:i.rect method is to be

used, the results could vary a great deal depending on the frame

width and the window shape used. We shall now discuss the problem

of windowing in the direct method of analysis. The discussion

will be detailed and rigorous because we feel that the subject of

windowing has not been treated with enough rigor in the past,

when applied to speech analysis.

In discussing pitch-synchronous analysis with the direct

method, we saw that a rectangular window over the whole pitch

period is best, because we are then certain that the signal spec-

* trurm-would equal the impulse response spectrum at least at mul-

tiples of the fundamental frequency F 0. The best we can hope for
.I

in pitch-asynchronous analysis is that the signal spectrum appro-

ximate, as well a7 , -'sible, the spectral values of the impulse

response spectrum at f=nF 0. This is the purpose of windowing.

We shall again resort to the frequency domain to show how our

objective can be accomplished by proper wiidowing. For sim-

plicity, the discussion will be carried on for continuous time
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I
signals, but the results will apply also to discrete or sampled

signals.

Let x(t) be a periodic signal with period T = and Fourier

integral transform X(f). Let s(t) be the signal obtained by

multiplying x(t) by a window function w(t):

s(t) = w(t) x(t). (6-9)

Then the Fourier transform of s(t) is the convolution of the

transforms of w(t) and x(t):

SMf) = W(f) x(f)

CO

= fW(f-X) X(X) dX, (6-10)

Flawhere S(f) and W(f) are the Fourier Transforms of sit) and w(t),

respectively, and the symbol ® represents convolution.

Since x(t) is a periodic signal, its Fourier transform X(f) is a

line spectruri that can be represented by

CO

X(f) = Z(f) u0(f-nF (6-11)

n=-C

where u 0 (f) is the unit impulse tunction defined in (4-40),

and Z(f) is sume envelope function whose values are specified

at f = nF0 , but can be arbitrary otherwise. (For example, one.
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can think of Z(f) as the transform of the impulse response of the i i
vocal tract, or as the tra7-sform of a single pitch period. The

two transforms are equal ..- f=nF0 ,) -

Substituting (6-11) in (6-... 2rforming the integration, and re- ]
placing n by ir, we obtain:

L;I

S(f) = W(f-mF0 ) Z(mF 0 ), (6-12)

COI
and S(nF0 ) = WknF0 -m7 0 ) Z(mF0 ). (6-13)

Our objective is to specify possible window functions such that [

SS(nF 0 ) = Z(nF0 ), for all n, (6-14) ,

or as nearly so as possihle. This is eauivalent to our earlier 1

statement saying that the signal spectrum should equal the impulse

response spectrum at f=nF0 . A

If s(t) consists of an integral number of pitch periods, '1, j
thcn it is well known that S(f) satisfies (6-14). This can he

seen by noting that s(t) in that case is equivalent to multiplying j
, !,

x(t) by a rectangular window, whose widlth is equal to M1 pitch -,

periods. The rectangular window is given by:

M 2

W(t) (6-15)

0, otherwise ,

-{ t 1 7 4
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sin (T Mf/F 0 )
and W(f) = iMfiF0  (6-16)

I Su.stituting (6-16) in (6-13), we obtain:

Sn = sin[nM(n-m) ]

-- 0n (nI-m) Z (mF0 ). (6-17)

Note that the window term in (6-17) is equal to zero for all

values of in except for m=n, when it is equal to 1.

Therefore, (6-17) reduces toI
S(nF) = Z(rtF0) , (6-18)

U which is identical to (6-14). Therefore, (6-14) is exactly sa-

I tisfied fcr a rectangular window whose width is equal to an in-

%tegral nu. ..-r of pitch periods. In particular, it is true for

a single pitch period, a result that we already know. 1

3 The above result clearly satisfies (6-14), which is o..r o,-

jective, but it suffers from one major drawback, rnamely ti-at tb•

window depends on the exact length of a pitch period. Th'h, it is

really a pitch-dependent window, which is of little use I.r: -.itch-

asynchronous analysis. We need a pitch-asynchronous windc',l onx

whose width does not depend on the exact length of the pitch

period, and which satisfies (6-14) as well as possible...

17
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7

We note again that what allowed us to reduce (6-17) to (6-18) J
was the important fact that the window term was equal to zero for 1
all values of m except for m=n, when it was equal to 1. In other

words, we have W(0)=l, and W(nF 0 )=0 for all n. If we could find j
window functions such that W(O)=l and IW(nF 0 )I<c for all n, where

c<<1, then (6-14) would be approximately satisfied. Coinq further, U i

if IW(f)I<E for all ftF0 , then clearly 11,(nF 0 )I<E is satisfied, j
and our objective is also achieved. A value of W(0) different

from 1 merely introduces a multiplicative constant to (6-14), which .1

can be easily corrected for. What is important in specifying a

window is the relative amplitude of W(f) with respect to W(0).

Therefore, our only condition that a window function must satisfy

is:

<E f, >IF , &<<l (6-19)W (0) I i

One often oicks c._0.02 for good results. This is equivalent to

W(f) being at least 34 d5, below the peak W(0) for f>F 0 . We shall

now give a few examples ot window functions that have been sug-

gested. These functions have the property that they are even

functions of time. Although this property is not required for

our application, it clearly does no harm.

There are two major families of window functions that are

in use today. The first is what we shall call the Cosine family.
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U These functions are raised cosines or convolutions of raised co-

3 Isines. The two most popular Cosine window functions are the

Hanning anO Hamminc' windows (2llackman and Tukey, 1958, pp. 95-99).

These are given Ly:

IHanning: wH(t) = (-coz ,1 (60cosni I,+o (6-20)
g: w WT

Ilammincq. %;, (t) = 0.54 + 0.46 cos Ulklt± 1 (6-21)

* where T = 2T (6-22)

I is the window 5.5 or yi=, and ul(x) is the unit-step .'unction

I defined by:

u- l(x) = (6-23)

Both windows in (6-20) and (6-21) have been normalized such that

W(0)=l.

The other major family of window functions is what we shall

call the SINCn family, because their Fourier transforms are of

the form sin 71X n ,' and the function sin Tx is often referred to

as sinc x. This family is generated in the time domain by (n-i)

convolutions of the rectangular window, with the appropriate nor-1!
malization to keep the window size equal to tV. This family is
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" jI

represented in the frequency domain by: it

Esin (2rrfT W/n)]InJ
W 2fw/ (6-24)

where n is the order of the window. Thus, W1 (f) is the rectan- i

gular window, W2(fU is the triangular, etc. It has been shown L

that the corresponding time domain window Wn (t) is given by

(Makhoul, 1970a): I
Wnt) T(n/2)• •(-)kn/1k Tt~w n-I w
S()=. k( )12 k,, n )fk n T U-I 1- - tw (6-25) }!

k=0 W,,

where n is any positive integer, J

= k! (n-k)-!

and = integer portion of n-i2

A window that is of particular interest is w4 (t), which is some-

times called the Parzen windo.i, given by: I

wi)= _(i _L~ - L+L) - 4( - L.)u - ¶w•"1W T w -wf -•T"
(6-26)

In order to see how (6-19) might apply, we shall discuss J

three windows: the rectangular, Parzen, and Hamming windows.

"ii
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The three windows are shcwn in Fig. 6-8, along with a summary

of their spectral characteristicP4  A plot of the power spectrum

for each window is shown in Fig. 6-9. We shall first discuss

the Hamming window spectrum shown in Fig. 6-9b. We note that

for ft2f 0 , IWh(f) I is at least 40 dB, below Wh(0), and hence (6-19)

will apply with c = .01 if the following condition holds:

2fo FO (6-27)

where f 0  1 • =

(6-28)3 and F0 =0 1

(T is the pitch period and 0' is the window size.)

From (6-27) and (6-28) we obtain the desired relation:

"T' >- 2 t . (Hamming) (6-29)

(6-29) says that in order to quarantee that the signal spectrum

3 be very nearly equal to the impulse response spectrum for f = nF0 ,

the window size T' must be at least twice the pitch period. Since

5 we know the general ranqe of pitch periods for human voices, it

is easy to satisfy (6-29) most of the time. As a rule of thumb, i
when using a ilamming window, a window size of at least 20 msec

should give good results (this corresponds to T = 10 msec).

The same analysis can be applied to the Parzen window spectrum

""1 179
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4 11

wlt) w4 (t) WhO)

3Tw 1.O8Tw

-Tw 0 -Tw 0 Tw -Tw 0 Tw Lb
(a) (b) (c)

WINDOW 3dB LARGEST SIDELOBE HIGH-FREQUENCY 1BANDWIDTH RELATIVE TO ROLL- OFFMAIN LOBE

-13.3 d B-6dB/C ,
RECTANGULAR 0.9 o st SIDELOBE) -6dB/OCT

PARZEN 1.8 fo -53.1 dB -24 dB/OCT
(let SIDELOBE)

HAMMING 1.33fo -43dB -6 dB/OCT
(4th SIDELOBE)

(d)

Fig. 6-8. (a) Rectangular window.
(b) Parzen window.
(c) Hamming window
(d) Summary of spectral aracteristics for the

three windows. f 1 1

180

180



Report No. 2304 Bolt Beranek and Newman Inc..1 r
(a)1 ~~~~~-10 - ___ ___

-20 --

(dB)

I -30 -

ý40
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I0
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I ~-20 -

IWh (f)m2 
3 0 -

(dB)

r -40

j -50

--60L. l1 1v 1.• 0 2 4 Ai 8 "10

I Fig. 6-9. (a) Power spectrum of rectangular window.
(b) Power spectrum of Hamming window.
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Fig. 6-9. (Cont'd)
(c) Power spectrum of Parzen window.
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S
in Fig. 6-9c, and we obtain the relation:

ST' -3T , (Parzen) (6-30)

E with c = .01 (40 dB). This means that if the Parzen window is

used, the window should equal At least three pitch periods if

very good results are desired. Conditions (6-29) and (6-30) can

be relaxed by about 20% with generally adequate results.

Returning to the power spectrum of the rectangular window in

Fig. 6-9a, we see that (6-19) cannot apply with e = .02 (34 dB)

for •fI0. In fact, the beEt that can be achieved is an e .03
f 0

for-{-,10o This is had 4or two reasons: a) c is on the high side,
0

and therefore the aoppoximation will be worse, and b) -L>_10 means

that T'>_10T, i.e. the window size is 10 times the iitch period,
which is far greater than the framne size that cur model allows (for

good results). The best compromise is z = 0.1 (20 dB) for{ Rt4.
0But this c is quite high. The ccnclusion is that the rectangular

window is not a good window for pitch--asynichronous analysis.

One conclusion we can draw from the abovre discussion is that

the frame width should be on the order of at least 2 pitch periods

if one is to obtain good results with pitch-asynchronous analysis

using the direct method. This explains why analyzirng a portion of

a pitch period using the direct method is not recommended.

Below we shall make use of the notion of the "effective" width
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of a window. Although an actual window width is eryual to T' its

effective width is generally less than that, because the signal

samples are weighted by the window. (We are assuming here that

the area under the window is always constant and is equal to 1,
i.e. W(0) = 1.) gt is reasonable to assume that the effective

width of a rectangular window is equal to its actual width T'.

We shall assume further that the effective width of any window is

inversely proportional to its bandwidth. From the last two assump-

t:,ons, we can define the effective width, z"e' of a window to be

equal to :

T (6-31)

where B 1 is the bandwidth of the rectangular window, and B is

the bandwidth of the window whose effective width is desirea. J

0.9From Fig. 6-8d we see that B1  G.9f 0 - " Substituting for

B1 in (6-31), we obtain:

T .= 9 0e B'

where B is measured in Ilz and T' in sec.

For example, the b~nd'-.dth of the Ilamminq window from Fig. 6-8&
is B = 1 33fT 1.3 (' = O.68T', and the effec-

s •-, = ere
tive width of a Hanuning window is about two-thirds its actual

width. We must stress here that (6-31) is but one of man", other

.1
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reasonable definitions.

We have thus far discussed methods of windcwing that would

lead to good results when using the direct method. The question

now is how the direct method compares with the indirect method

in pitch-asynchionous analysis. In order to do the comperison

fairly, the "effective" frame width for both types of analysis

should be the same. We have already discussed above how to find

the effective frame width in the direct method. In many formula-

tions of the indirect method, the signal samples are weighted

equally, hence the effective frame width is equal to the actual

frame width. Therefore, if a Hamming window is used, for example,

on a 20 msec frame, the effective frame width is 20 x 0.68 =

13.6 msec. Therefore, the frame width corresponding to the N'

samples in the indirect method should be 13.6 rnsec. It i.S rea-

sonable to assume that the 13.6 msec frame would be centered with-

in the 20 msec frame.

Given the above basis for comparison we have found that the

direct Autocorrelation method and the indirect Covariance method

gave practically the same results for the poles of S(z) for effec-

tive frame widths larger than a pitch period.

As a general rule of thurib, the indirect method works well

for almost any frame size, but the direct method works well only

for a frame size of at least one pitch period, with a prcper choice

of window shape.
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6.25 Formant Extraction by Peak Picking

in the beginning of Section 6.2 we indicated how one might

deduce formant values from the poles of S(z) in (6-4). We mentioned

then that peak picking could be performed on the approximate spec-

trum P(M) as a double check on the formant values. In this section

we shall discuss briefly the possibility of formant extraction by
peak picking alone, avoiding the co'.1putation necessary to solve a

p-th degree polynomial (where p is usually greater than 1-')).

Most formants show up as peaks in the approximate spectrum

because they usually have a high Q (ratio of frequency to band-

width). However, there are cases when peaks don't show up very

well, usually because the formant has low Q, and in addition may

be close to another formant with a dominating peak. Below, we

shall discuss two methods for improving the shape of the approxi-

mate spectrum so that peak picking will give good results for most

cases. We should point out here that peak picking has one inher-

ent drawback, namely that the formant values obtained are only

approximately equal to those that would be obtained by finding the

poles of S(z). This is due to the fact that the formant peak does

not occur exactly at the formant frequency. That difference be-

comes smaller as the formant bandwidth decreases. In addition, the

position of a formant peak is also dependent on the positions of

neighboring formants. However, for many applications,, peak picking

186
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can give adequate accuracy for formant values.

6.251 Preem5phasis

One method that usually improves the effectiveness of peak

picking is preemphasis. We have already discussed some of the

properties of preemphasis by differencing in Section 5.5. We saw

that differencing attenuates the energy at ver, low frequencies

and enhances the energy at high frequencies at the rate of approxi-

mately +6dB/octave. The positive effect of this type of pre-

emphasis on peak picking is two-fold: a) Attenuation of the

energy at low frequencies eliminates peaks due to the glottal

source, peaks that otnerwise might be mistaken for vocal tract

formants, and b) because of the resulting increase in the spec-

j tral slope, formants that are overshadowed by neighboring higher

amplitude formants would now appear as peaks. One disadvantage

of px.eemphasis is that it causes shifts in computed formant fre-

quencies and bandwidths. This effect is most noticeable with the
first formant. However, these shifts are not significant in

general, and can be disregarded for many applications.

We saw in Section 5.5 that preemphasis by differencing is

equivalent to introducing a zero at zero frequency (z=l) in the

signal spectrum. This zero should approximately cancel one of

the low frequency poles, and hence one less pole would be needed

I in the linear prediction all-pole apprcximation. We have
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found that if a certain value of p is optimal (in the sense given

by (6-7)) for some signal, then a value of (p-l) is optimal tar

the differenced signal.

We shall demonstrate some of the above properties by an ex-

ample. Figure 6-10a shows the original and linear prediction

spectra for [w] in the word "anyone" [eniWAn]. The analysis was

done using the direct Autocorrelation method on a 25 msec Hamming-

windowed signal, with p=12. The corresponding analysis for the

differenced signal is shown in Fig. 6-10b with p=ll (p was re-

duced by 1 according to the above discussion). The low frequency

effect due to the glottal source is evident in Fig. 6-10a but

disappears in Fig. 6-10b. The second formant does not form a

peak in Fig. 6-10a but its peak is quite clear in Fig. 6-10b.

In order to see the differences in computed formant frequencies

we refer to Fig. 6-11. Figure 6-11a shows the formant frequencies

obtained by peak picking from 256-point FFT-computed spectra

(i.e. 128 spectral values over 5 kHz). The value of the frequency

at which a peak occurred was refined by using a parabolic fit to

the three points around the peak. Figure 6-12 shows an example

of such curve fitting. Given three points around the peak, the

position of the peak can be shown to be ai.:

I 1 •i + A2

Xm 1 2 (6-32)
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A
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(a? 40 _
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ENERGY 30

(d B) 2

20 Ilk .:--
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FREQUENCY
L (kHz)

30 -r

[ ~~~~~RELATIVE i[I ____

-, (d8)ENERGY::0

0 I 2 3 4 5

FREOUENCY
(kHz)

Fig. 6-10.(a) Analysis of [w] in the word "anyone", using
the Autocorrelation method. Window size is
25 msec, p=12.

rp (b) Analysis of the differenced signal, p=ll.
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original )ifferenced

Signal Signal

Original Differ- n B F B
enced n n n n

F 1  346 421 1 387 220 420 173

F2 980 2 1008 273 1013 233

F3 2383 2382 3 2385 75 2382 74

F4 3389 3388 4 3396 225 3393 232

(a) (b

.i,. 6-li Formant values for the si.rnal associated :•vtL, !'icr.6-]0.
(a) Formant frenuencies obtained by neak rickinr with

parabolic internolation.
(b) Formant freouencles and bandwldths obtatne, -ore

the noles of J(z).

"]1

Vx

Fig.6-1x i

Fig. 6-12 iHefininr, of peal, estimation by narabolic curve

fitt in.. (x MYm) are the coordinates of the

hypothesized peak.
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where i1 Y -I '

and A2 Y - YO

11 The peak-picked formant frequencies shown in Fig. 6-11a are to be

I' compared with those obtained from the poles of S(z) and shown in

Fig. 6-1ib, where the formant bandwidths are shown in addition.

1.1 These formant values are computed from the poles of S(z) as

follows:
i; •nL] Fn=.-

liwhere wn and an are computed from (6-5J' and (6-6) . (The definition
fl (6-33)n B

of bandwidth in (6-33) is not exactly 'equivalent to the 3-dB defi'-
AJ

nition, but it gives similar results for high-Q formants.)

• We note from Fig. 6-11a that a peak-picked formant frequency is

closer to the computed frequency in Fig. 6-11b when the formant

bandwidth is small, as is the case with the third formant in this

example. We also note that the largest relative change in fre-

quency between the formant values for the original signal and

those of the differenced signal occurs for the first formant.

Although we have not done so here, it is also possible to es-

5 timate the formant bandwidths from the approximate spectrum by

I simply measuring (with interpolation) the frequency interval between
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the -3 dB points below each peak. Accu-ate values would result

only for high-Q formants.

Although the application of preemphasis to the speech sign,

might improve the results of formant extraction by peak picking,

it involves a distortion of the signal (by differencing in our

case) which has some bad side effects, e.g. the normalized error

beccomes useless as a voicing detector 'see Section 5.5). We shall

now describe a second method that improves the r:-sults of peak

picking without affecting the signal in any way.

6.252 Off-Axis Spectrum

We know that formants with small bandwidths show up very well

as peaks in the approximate spectrum P (w) because the poles cor-

responding to these formants lie close to the contour along which

the spectrum is computed (the unit circle in the z-plane or the

jw-axis in the s-plane). Therefore, for those formants whose peaks

do not show up in the spectrum, one could enhance the peaks by

moving the contour along which the spectrum is cc.nputed closer to

these formant poles. In order to see how this might be done ef-

ficiently and effectively, we shall first define a more general

linear prediction "spectrum" P(oc,0) given by:

2 = e (+jw)T
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A2

Li (F W) A2  T

TI

j 1.- k -k (3+jw)

k-1

A2
2 (6-34)

J f~ E (a Z ae) ej-~
k-i I

Sa 0, P(ci,w) reduces to P(ui) defined in (4-6a). If a is a

=onstant (a 00), then (6-34) reduces to:

So( 0,W) Ae (6-35)

kl

Lwhere dk = a k l~k5 (6-36)

and g a o 1 -GOT, for Ja~'<l (6-37)

[N P j w) in (6-35) has the form of a regular spectrum (see Appen-

dix C on how to compute such a spectrum) computed from a new

sequence of coefficients dk which are obtained by multiplying

the coefficients ak by an exponential, as shown in (6-36) and

(6-37). Since a = a dejines a line parallel to the jui-axis in

the s-plane, we call P(o,0 W) an off-axis spectrum. It is equiva-

lent to computing the spectrum in the z-plane along a circle of

radius r conetric with the unit circle. An illustration

of the peak enhancing ability of the off-axis spectrum is presented
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below.

The locations in the s-plane of the first four formants of

the original signal 4n Fig. 6-11b are shown in Fig. 6-13. The

off-axis spectrum I-ir a - -2n x 75 (g = 1.048) is shown in

Fig. 6-14. "rhis is to be compared with the regular spectrum,

shown in Fig. 'Oa. The second formant now shows up as a defi-

nite peak in the off-axis spectrum, Also, the peaks correspond-

-:1 ing to F1 and F 4 have become sharper (more peaked), while the F3

peak remained about the" sc'me. Sharper pzaks, of course, mean that

the new peak-picked formant frequencies are closer to the actual

formant locations.

One should be able to estimate the formant bandwidths by
-0

adding 2 to the 3 dB bandwidths of the peaks in the off-axis

spectrum. This indeed gives correct results for F 1 , F2 and F4 in

this case, but not for F 3 , because P3 now lies to the right of

"the ao-axis. For such poles, the estimated bandwidth is obtained
by subtracting the measured 3 dB bandwidth from o Uaiortunately,

there is no way to tell whether a formant lies to the right or to

the left of the ao-axis from the off-axis magnitude spectrum. (Note

that the same is also true for the regular spectrum, except in

Sthat case we already know that all poles must lie to the left of

the jw-axis.) Now we see why the F3 peak was about the same in

Figs. 6-10a and 6-14: F3 is equally distant from the jw-axis and
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Fig. 6-13. Location in the s-plane of the formants shown
in Fig. 6-11b for the original signal.
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Fig. 6-14. The same linear prediction spectrum shown in
Fig. 6-10a except that here the spectrum was
computed inside the unit circle (a 0 -- 2wx75).
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the ao -axis, as shown in Fig. 6-13. Therefore, the off-axis-

spectrum method has the disadvantage that some bandwidth informa-

tion might be lost. However, it is easy to see that such band-

width information can be retained by also computing the regular

magnitude apectrtun or a phase spectrum.

For formant peak enhancement, we wish to use a value of a
0

which is closer to the poles of interest, on the average, than is

the jw-ax.4.,, Since we expect the first four formants to have band-

widths in the range 0-300 liz, a value of a0 ccrresponding to a

for.,tant bandwidth of 150 Hz (i.e. co = -2w x 75) should work well.

We have found this value to be effective.

A line parallel, to the jw-axis is only one of many possible

contours that would be cffective in improving the results of for-

mant extraction by peak ?icking. Another possibility is to compute

the spectrum along an arbitrary straight line in the s-plane. (The

corresponding contour in the z-plane is a spiral.) Such a spectrum

can be computed using the chirp z-transform (CZT) (Rabiner, Schafer
and Rader, 1969). This type of contour makes sense in speech ana-

lysis because, generally speaking, formant bandwidths increase

with frequency. Unfortunately, computing the CZT is quite expen-

sive, and it is not clear that it would be cost-effective. We

would like to point out here that the cff-axis spectrum would

be a special case where the arbitrary line happens to be parallel

Nto the jw-axis. However, in that case, the method described in

L9
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Si equations (6-35) through (6-37) is much more efficient than

h: computing the CZT.
t.

6.26 Comparison with the Cepstral Smoothing Method
I;

Schafer and Rabiner (1970) have developed a system for for-

mant analysis by a peak-picking algorithm applied to a cepstrally-

smoothed spectrum (i.e. a low-pass filtered log spects-um), and in

* cas;s where formants were believed to be very close to each other,

they applied the CZT to the cepstrun in order to enhance the

formant peaks and separate the formants. It i s of interest to

compare that method to linear prediction.

First, it should be pointed out that applying the CZT to

the cepstrum corresponding to the approximate spectrun, P(M) is
equivalent to computing P(a,w) in '6-34) using the CZT, because

S(z) is minimum-phase (Schafer and Rabiner, 1970, Appendix B).

We have seen that the enhanced peaks in the resulting spectrum

correspond to the formant frequencies which could be obtained

1: more accurately by solving for the poles of S(z). Therefore, nn-.

like the method with a cepstrally-smoothed spectrum where the

CZT is useful in obtaining extra information about formant loca-

S* tions, applying the CZT in linear prediction adds no information.

Another point of comparison is that both types of spectra are

smoothed versions of the original signal spectrum. One method does

it by actually low-pass filtering the log spectrum, and the other

19
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by reducing the number of poles of an all-pole approximate spec-

trum. The two types of smoothing are not equivalent, however, be-

cause in linear prediction the spectral fitting is based on an

all-pole model of speech which, for non-nasal sonorants, cor-

responds to the usual model of the vocal tract tzansfer function.

For those sounds, we would expect linear prediction to give a

better spectral fit. Figure 6-15a shows a spectrum of a Hamming

weighted 25 msec of the vowel [a] obtained from 10 k~qz sampled

telephone speech, and superimposed on it is the smoothed spectrum

obtained by linear prediction with p = 14. Figure 6-15b shows

the corresponding cepstrally-smoothed spectrum. (The cepstrum has

unity weighting up to 1.5 msec and cosine weighting up to 3.0

msec.) Note that a simple peak picking algorithm in Fig. 6-15b

would result in a false third formant at 2 kIaz. Because we know

the spectral characteristics of the vowel [a], the third formant

is more likely at 2.8 kHz as shown in Fig. 6-15a.

High-pitched speech normally gives rise to problems in for-

S.mant tracking due to the fact that for voiced sounds the spectral

N harmonics are widely separated. We have seen in Section 6.2 that

this results in a basic loss of information about the formant

structure, a loss that cannot be recovered even by pitch-synchronous

analysis, unless new information is added. We have also suggested

that the method of linear prediction should perform quite well

(with nonnasal sonorants) because of the fact that we assume an
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rig. 6-15. Spectral smoothing of a spectrum of the vowel
(a] obtained from 10 kHz sampled telephone
"speech (a) by linear prediction with p=1 4 , and
(b) by cepstral smoothing with unity weighting
up to 1.5 msec and a cosine weighting up to
3.0 msec.
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all-pole model, which amounts to additional information. In

cepstral smoothing the cut-off point of the low-pass filter is JV

placed below the pitch peak, which for high-pitched speech can

mean a further loss of information about the formant structure.

In linear prediction, the formant locations are less affected by

the pitch because the harmonics are forced to fit the all-pole

model. This is a well-known property of analysis-by--ynthesis

methods. (Mermelstein (1967) has suggezted a method Zor smooth-

ing the spectrum by subtracting an approximation to the effects

of the fine structure from the spectrum, thus bypassi.ng the

problems that arise from low-pass filtering the spectrum.)

Although for nonnasal sonorants linear prediction is expec-

ted to give more accurate formant values than the cepstral smooth-

ing method, the same is not necessarily true for other sounds -.

such as nasals and fricatives, whose spectra are known to have

antiformants as well as fc,:*ants. The problems involved have Lbeen discussed in Section 6.21.

_A
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(i CHAPTER VII

V CONCLUSIONS

Linear prediction is an autocorrelation-domain analysis.

Therefore, it can be approached either from the time or frequency

U domain, Although the actual computations are performed in the

time domain, we chose to derive the most general formulations for

linear prediction from the frequency domain because of tLe domi-

nance of spectral analysis in speech research. We have shown4i

that all least-squares methods of linear prediction can be derived

U from a single general concept, namely that of generalized analysis-

_. l. by-synthesis. Here the 2D-spectrum (two dimensional spectrum) of

a nonstationary signal (such as speech) is to be approximated by

H another 2D-spectrum, where the error to be minimized is proportional

to the integral of the ratio of the signal spectrum to the approxi-

U mate spectrum. This error criterion was shown to be very desirable

for a good spectral envelope fit. In the special case when the

approximate spectrum consists of poles only, the generalized

method reduces to the general Covariance method of linear predic-

tion. If, in addition, the signal is assumed to be stationary,

the 2D-spectrum is replaced by the ordinary power spectrum, and

the Covariance method reduces to the Autocorrelation method of

linear prediction.

The linear prediction speech production model assumes the

vocal tract to be fixed in shape within a portion of the speech
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signal (a frame) on the order of 10-25 msec. Within each frame,

the speech signal is assumted to be nonstationary in the Covari-

ance method and stationary in the Autocorrelation method. In

general, the assumption of nonstationarity is a better assumption

for speech signals. However, within a frame, the speech signal

can be considered to be quasi-stationary, so the ass umption of

stationarity in the Autocorrelation method is not a bad one. In

general, one would expect the Covariance methvd to give better

results than the Autocorrelation method, especially with analysis-

synthesis systems. However, for other speech applications , the

advantages of one method over the other do not seem to be sig-

ni ficant.

In computing the predictor coefficients from a single frareie

we defined two basic methods: the direct and indirect methods. -

In the direct method, the signal is weighted by a window that is I
zero outside the frame, and the resulting signal is considered to

be infinite. In the indirect method, an unwindowed finite portion
,)

of the signal is used. The most popular and useful methods are

the direct Autocorrelation and indirect Covariance methods. As a

general rule of thumb, the indirect method works well for alkyost

any frame size, but the direct method works well only for a frame

size of at least one pitch period, with a proper choice of window

shape. We have developed criteria that a window function must

satisfy in order to give good results.
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The direct Autocorrelation method was discussed in detail

because, with this method, it was possible to examine in what

manner the all-pole linear prediction spectrum approximated the

4l signal spectrum. For example, from the normalized error curve

it was possible to set general guidelines to help determine the

number of poles in the linear prediction spectrum that would best

approximate the envelope of the signal spectrum. As the number

of poles approached infinity, the linear prediction spectrum

became identical to the signal spectrum, while the linear pre-

diction transfer function became the minimwm-phase counterpart

to the signal transfer function. Several methods were suggested

7 for computing the minimum-phase sequence corresponding to the

original signal.

i The study of the normalized error in the direct Autocorrela-

tion method led to some interesting and important results. First,

we showed that the normalized error was equal to the ratio of

the geometric mean of the linear prediction spectrum to its

arithmetic mean. The arithmetic mean of the spectrum is equal

to the energy in the signal, while the geometric mean is equal

to the exponential of the zero quefrency component, co, of the

cepstrum. Thus, the normalized error measure is a form of nor-

malization of c0 with respect to the energy in the signal, and

the resulting ratio is a function of only the shape of the spec-

trum. The properties of the normalized error are a reflection

2
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of the properties of c 0o One such property is the usefulness of

the normalized error in the detection of voicing. it was shown

that such usefulness depended completely on the, spectral shapes

of the sounds. Any processing of the grnil that changed its

spectral characteristics was seen to have a possible detrimental

effect on the usefulness of the normalized error as a voicing

detector. Speech preemphasized by dif~ferencing, and telephone .1
speech, were given as examples of such p:cocessing. Under these

circumstances, it was suggested that the first autocorrelation

coefficient would be a better voicing detector.

Filtering the speech signal by the linear prediction inverse

filter results in an error signal. For voiced sounds, this error

signal often shows distinct pulses at the start of each pitch

period. These "pitch pulses" can be used for pitch extraction.

In cases where t'.e signal is not rich in harmonics, e.g. during -

sonorant-nonsonorant transitions and for voicing of stops and

fricatives, pitch pulses are likely not to be prominent, and

therefore pitch would have to be estimated by some other means,

such as peak picking of the speech signal itself.

Another application of linear prediction is in the estimation i

of formants of the vocal tract. These formants are estimated

from the poles of the linear prediction transfer function. We

discussed several factors that influence the extent to which I
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extracted formant values correspond to actual resonances of the

jj vocal tract. We concluded that formant extraction by linear pre-

diction works ell with nonnasal sonorants. However, if the trans-

I• fer function of the vocal tract contains antiresonances as wqell as

resonances, as is the case for nasals and fricatives, then linear

prediction is inadequate for the extraction of the formants and

[L! antiformants.

Because computing the poles of the linear prediction trans-

fer function is expensive, we discussed formant tracking by peak

picking of the linear prediction spectrum as an alternate inex-

pensive method. Unfortunately, not all formants are represented

by peaks in the spectrum. Two methods were discussed to render

peak picking more effective. The first method involves preproces-Li
sing the speech signal by preemphasis. Preemphasis by differencing

was seen to be effective, except that it had some undesirable side

effects, such as shifts in formant positions, especially the first

formant. The second method did not involve any preprocessing of

the signal. One merely computes the linear prediction spectrum

along a circle inside the unit circle (which corresponds to a

line parallel and to the left of the jw-axis). The resulting "off-

axis spectrum" has proven to be both efficient and effective.

1One issue of importance to most types of speech analysis is

the choice of frame width and position. This issue was discussed
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in terms of pitch-synchronous and pitch-asynchronous analysis.
The latter type of analysis included a detailed discussion of

windownig.

i,

U I

20I
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APPENDIX A

ON THE z-TRANSFORM AND FOURIER SERIES

[jIn this appendix we shall define the z-transform, its in-

verse, and their relation to Fourier series and the Laplace trans-

11 form.

A.1 Definition and Properties of z-Transforms

jjGiven a sampled sequence x(nT), defined for all n, where n

is an integer and T is the sampling interval, the z-transform of

Sx(nT) is defined as:

Sx(z) = x(nT) z-n. (A-l)

n--o

The operator z is, in general, complex and is defined in terms of

the Laplace operator s as follows:
Ii

z esT = (o+jw)T (A-2)

where N = 2rf is the radian frequency in rad/sec,

a is the damping factor in rid/sec,

T is the sampling interval in seconds,

and fs is the sampling frequency in liz.

x(nT) could in general be complex but is often real in actual

applications.

207
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The inverse z-transform of Xlz) is then x(nT) and can be

shown to be equal to (Gold and Rader, 1969, pp. 26-27):

x(nT) 1 • Xlz zn-l dz ,(A-3)

where the path of integration encloses the region of convergence

of X(z).

The relation between s arid z in (A-2) defines a mapping

between the s-plane and the z-plane. It is very important to

understand the nature of this mapping for a thorough understand- LY

ing of z-transforms. The s-plane shown in Fig. A-la has been

divided by horizontal dashed lines into strips of width w-r - 2rfs.

There are, of course, an infinite number of these strips in the

s-plane. According to (A-2), each strip of width 2nfs, as shown

in Fig, A-l, maps into the entire z-plane. Therefore, the mapping

from the s-plane to the z-plane is an infinity-to-one mapping.

SFor a particular configuration in the z-plane (see Fig. A-lb), the

s-plane consists of an infinity of repeating strips of identical

configurations. Each pole (or zero) in the z-plane maps into an

infinite number of poles (or zeros) in the s-plapa separated by
S= 21Tfs This is shown in Fig. A-1 for the poles a, b, b, and c,

where the over-bar denotes complex conjugate. As can be seen

from (A-2) and Fig. A-i, the jw-axis (0=0) maps into the unit

circle z=jT in the z-plane. The left half of the s-plane maps

into the region inside the unit circle, while the right half of i}
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(a) s- plane 1 -

b 
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(b) z- plane •i

[I

'11

Fig. A-i. Mapping of the z-plane onto the s-plane.
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the s-plane maps into the region outside the unit circle. A

V,;tical line at a=o in the s-plane maps into a circle defined
b o T jwT

bi zme e . A horizontal line at w=w•' as well as lines at

• 0 +- in the s-plane, map into a radial half-line emanating

trom the origin of the z-plane and defined by z - e Te •

In particular, the real-axis (w-0) in the s-plane maps into the

positive real half-line (z real and >0) in the z-plane. The

negative real half-line (z real and <(; of the z-plane maps into

horizontal lines at w = (2k+l) in the s-plane. These horizon-

tal lines form the boundary lines between strips in the ti-plane.

This latter mapping is quite unique in the context of z to s map-

ping. This can be seen by examining how the poles in the z-plane

shown in Fig, A-lb map into corresponding poles in the s-plane.

Also, we shall concentrate on the center strip in the s-plane

ranging from to 7. The positive real-axis pole a in the z-

plane maps into a real-axis pole in the s-plane. The complex

poles b and B in the z-plane map into corresponding coml•ex

poles in the g-plane. However, the negative real pole c in the

z-plane maps into complex ptles in the s-plane. Figure A-2c shows

* ~a single period of the amplitude frequency response for a single

negative real pole in the z-plane (zc = -0.6). Compare that with

Fig. A-2a for a positive real pole (z 1.7), and with Fig. A-2ba

for a complex conjugate pair of poles (zb 0.4(l+jr3), Eb - 0.4(l-jV-)).
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Fig. A-2. Amplitude frequency responses for the poles

shown in Fig. A-1.
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Also, compare the digital frequency response in each case with

the corresponding analog (s-plane) response which is the response
of the poles that are in the center strip 4 _ in Fig. A-la.

A.2 z-Transform and Fourier Series

In order to relate z-transforms to Fourier series we let

0=0 in (A-2), resulting in z = ejWT Substituting for z in (A-l)

we obtain: 'J

X(M) = x(nT) e jnwT (A-4)
n=-oo

where X(w) stands for X(e .I

The inverse transform of X(M) is obtained by substituting

z = ejwT in (A-3) and taking the path of integration around

the unit circle. The result can be easily shown to be:

1T/T

x(nT) = • X() e dw. (A-5)

-Tr/T "

Equations (A-4) and (A-5) can be viewed simply as the ordinary

Fourier series transform pair, but with time and frequency inter-

changed. In traditional Fourier series analysis the time function

is normally continuous and periodic while the frequency domain is

"discrete (i.e., the transform exists only at multiples of the fun- 3
damental); in other words, the frequency function is sampled. On

the other hand, in z-transform analysis, the time function is 5
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sampled while the frequency function is continuous and periodic.

Therefore, we can make the general assertion that sampling in one

domain corresponds to periodicity in the transform domain. We

'11 have, as a corollary, that if a function in one domain is both

yi sampled and periodic, then the transform function must also be

both sampled and periodic. Another way of stating this is that

Vi if a time function is sampled and its frequency transform is also

sampled, then both functions must also be periodic. Indeed, this

is one of the principal properties of the discrete Fourier trans-

form (Gold and Rader, 1969, Ch. 61.

We have seen above that the z-transform with a = 0 reduces to

L the Fourier series transform. We also know that the Laplace trans-

form with a = 0 reduces to the Fourier integral transform. There-
Sfore, we can say that the z-transform is to Fourier series what the

Laplace transform is to Fourier integrals. This analogy can be

very useful in understanding the workings of the z-transform.

* We shall give one example where the result is obtained by

analogy to Fourier series. Consider a continuous and periodic

function of time x(t) with period T, having a transform in the

frequency domain X{!). Then, the energy in one period of the

signal can be obtained from the time domain as well as the fre-

quency domain as follows:

21
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T/2 00

Energy Ix(t) l dt T I . (A-6)

-T/2 n=-O

This is a special case of Parseval's theorem (Lee, 1960, p. 11). J

Now, by carefully interchanging time and frequency in (A-6) we

have:

Tw/T CO

T frXw 12 i~T1
Energy = j Xw) dw =LInT 2*(A-7)

This says that the total energy in a 2ampled signal x(nT) can be

obtained by integrating over a period of the power spectrum.

Equation (A-7) can be, of course, also derived directly from (A-4)

and (A-5), but we wanted to demonstrate how one might use the

analogy with Fourier series.

214
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APPENDIX b

i THE AUTOCORRELATION METHOD

i AND ORTHOGONAL POLYNOMIALS

The inverse filter H(z) defined in (2-3) is a function of p,

the number of predictor coefficients. Here we shall make this

dependence explicit by writing:

p
H(Z) =1 - ak zk. (B-i)

j k-i

In this appendix we shall use the results of Grenander and Szeg6

(1950, to show that H0 (z), Hl(z), ... , H (z),.,. form a unique

j set of polynomials that is orthogonal oa the unit circle with re-

spect to the signal power spectrum P(w). This will lead us to

certain properties of 1p (z), and to a derivation of the solution

to the autocorrelation normal equations (3-17). le call this so-

lution the Fast Autocorrelation method.

3 B.1 Orthogonal Polynomials on the Unit Circle

Let P(x) be a nonnegative and Lebesque-integrable function,

I i.e.
P(x) >_ 0, all x, (B-2a)

and fP(x) dx _ C, (B-2b)

'7I
where C is some finite constant.

I
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Also, let the inverse Fourier transform of P(x) be given by:

R (x)e ejkx dx . (B-3) 2
We form a system of polynomials

•: ¢0(z)' e (Z)' "''' n(Z)" '""
LI

of the complex variable z which are orthonormal on the unit circle

ze jX, with the weight 1 P~x). These polynomials satisfy the

following two conditions:

(i) 4n(z) is a polynomial of degree n in which the coef-

ficient of zn is real and positive;

(ii) the inner product (0n(Z),Om(z)) with respect to P(x)

is given by: I
0 n(Z) ,er(z))=

T17_Prx dx =nz 6 ,z z ejx; n, mnO,,lr2,...
7nm

(B-4)

where the over-bar denotes complex conjugate.

Grenander and Szeg6 (1958, pp. 12-14, 35-42) have shown that the

set of polynomials {n (z)} is uniquely determined by conditions

(i) and (ii).
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I Each polynomial n (z) is given by:

R R R •. R Rn

RR R RR

-22 -l 0

gn(z) - (DniDn 2 0 n-3 n-2 (B-5)

* . ... .R R R R
Rl-n 2-n 3-n -.. R0  1

1 z zn-I z

R0 R1 R n

R-1 R 0 %-1
where Dn= det(R ji)0 (B-6)

"R -n Rl1-n R' R0

If we let

O n (z) = kn zn + ... + In (B-7)

where kn is the coefficient of zn and £n is the constant term,

then the polynomial n (z) is shown to obey the recurrence relation:

kn n+l (z) =kn+1 z n(Z) + z n (Z-) (B-8)

nn n n+z On
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where we have assumed that the coefficients of n (z) are real.

From (B-8) one can compute n (z) recursively given the followingn

additional properties:

,(z) = R0  (B9)0 0j
k 2n = = Z -. i 2 (B-10)

n i=O

B.2 Application to Linear Prediction ii

If we let x = wT in P(x), and let P(w) be the power spectrum

of a signal with finite energy, then conditions (B-2) are satis-

Sfied and R are the autocorrelation coefficients, which are real

and even. From (B-5) we see that n (z) must have real coefficients.

Furthermore, by comparing (B-5) and (3-17), the autocorrelation 'I
normal equations, it can be shown that:

n !1
(n(Z) = A H. (z) (B-Il)

n
where H n(z) is the inverse filter defined in (B-i) and An is the

gain factor defined in (2-3) and given by (3-37):

An = En = R0 - ak R k (B-12)

A2 is equal to the minimum total-squared error En. From (B-1),
n n

(B-11) and (B-7) it is clear that;

A n •-- •(B-13)
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Substituting (B-13) in (B-l1) and the result in (B-8) we have:

kkn k zn+ l Wz=k 1 kn+l zn+ (ZW+Ln+l kn Hn(Z-). (B-14)

n+1Dividing (B-14) by (kn k n+ ) we obtain the recurrence relation:

Hn+l(Z) = Hn W + Kn z-(n+l) H n (Z-1 (B-15)

£n+1
where Kn = 7-. (B-16)

From (B-10) we have:

2 =k 2 + 2
n+l n n+l

2 2 X2
or kn =n+ n+l

y2
k2 kn+l (B-17)
n+l k

Substituting (B-16) and (B-13) in (B-17) we obtain a recurrence

relation for An:

A2  =A 2 1i-K n . (B-18)n+l n ~n

We now show how to compute Kn (Markel and Gray, to be published).

Take the inner product of Hn+(z) in (B-) with (The

definition of the inner product of two polynomials is given by
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the left-hand side of (B-4).)

(Hn (z), zn-(n+l)) 1 n+l() e (n+l)T P dwT "
nz (n-la n= 1f ~ j n l

= -e-Jk ej (n+!)T PM() dwT Ikb

n+l
uRn+i - Z ak Rn+lk . (B19)

k=1

If we let i=p=n+l in the autocorrelation normal equations (3-15),

then (B-19) is equal to zero:

(n-l(H ~(z) Z_0(B-20) i

Therefore, from (B-15) and (B-20) we have:

Z ,-(n+l)

~H n(z) , z
K (B21)n (z-(n+l) Hn(z-l), z -(n+l)1(-)

By derivations similar to that given above, and making use of

(B-12), it can be shown that:

n
Rn+1 - Rn+l-k

:{ k=1
K kl,(B-22)
n A 2'

(n) (
where ak are the predictor coefficients corresponding to Hn (z).
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d Equations (B-15), (B-18) and (B-22) in addition to the initial

conditions

10 (z) *= 1 (~3

(B-23)

and A02 R0

give a complete recursive solution for the polynomials Hn (z), and

hence a solution to the autocorrelation normal equations (3-17).

Equation (B-15) can be expressed as a recurrence relation

in terms of the predictor coefficients ak. Substituting from

(B-1) in (B-15) we have:

n+1 n n 1
1 _Z n+l)zsk - E a 1(n)z -k + Kn z (n+l) - -a (n)k

k-i kl k=l

n+l nk-~ n
or Za(n+l) •,2 n) z-k Z-(n+l) n) k-n-ii or kal z-k z nz n~

k=l k-i k=1

n n
= (ann) -k (n) z-k - (n+l).(B-24)k•l+ n Ln+l-kkz n- . B2),:

k=1 k=l

By equating the coefficients of equal power of z on both sides of

(B-24), we have:

an(n+l) -K

(B-25)

a (n+l) a(n) + Kn a(n . k=(2n)n.• •~k =k nan+l-k ''
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Therefore, the solution for (3-17) is given recursively by (B-23),

(B-22), (B-:.) and (B-25). A flow chart is given in Fig. B-I.

I.ý the computations in (B-25) are to be done in place, one must

be careful not to destroy newly computed values as others are

computed. One solution is to compute ak and an+l-k at the same

time since

(n+l) (n) +K (n)n+l-k = nlk nak "

Another method is to use an extra array bk where

bk= aflk 1:5k~n,
bk = n+i'Lk'l-kn

(n+l) (n) (n)then ak =ak +K n b n

In Fig. B-I, AA is equal to A 2, the minimum total-squared er-

ror, at every stage of the computation. Therefore, AA is equal

to the normalized error Vn, which is discussed in Chapter V. If

the autocorrelation coefficients are normalized with respect to -'

R0 before applying the algorithm in Fig. B-l, then AA will be

equal to the normalized error at every stage. Normalization of

the autocorrelation coefficients is especially recommended for i
those who are using a computer with only integer arithmetic cap-

ability. 41

The coefficients Kn in (B-22) are the same as the partial

autocorrelation (PARCOR) coefficients of Itakura and Saito (1972).
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III

S AA -R0

K -- -R 1 /R 0

In a 1--

n = p ?is the solution

•-n+l

5 AA - AA(l - K**2)

n-i (n- 1) n- k
IB -i- •l Rn~k

I- k1l

5 K -- (B - Rn )/AA

a (n),- -K

• I a(n) (n-l)+ K a(n-1 ) l-k-n-I
ak .4...k n-k ; '

3 Fig. B-I Flow chart for the solution of the autocor-
relation normal equations (3-17). This is
called the Fast Autocorrelatien method.

I
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2,i
Since the minimum total-squared error (En= A2n is always posi-

n
tive, we conclude from (B-18) that K must obey th3 relation:n

B.3 Properties of H W,

(a) From (B-ll) and (B-4) we have:

m P(M) dw- 6 , n,m 0,1,2,... (B-27)
~7r 4 A~ Am nm

n{H l(z)} is a complete set of polynomials orthogonal on the unit j

circle with An as the normalizing factor for Hn (z). It should be

remembered that (B-27) holds if and only if the coefficients R.

in (B-3) are positive-definite (see Section 4.4). This is guaran-

teed in the direct Autocorrelation method.

For n = m = p, (B-26) reduces to

wi/T
T f P() d , (B-28)

-WIT PM1)• 5

where PM() - A2  = 2 is the approximate spectrum.

Note that (B-28) is identical to (5-3) which was derived in a

different manner.
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(b) The zeros of the orthogonal poly.iomials H p (z) all lie

inside the unit circle (Grenander and SzegS, 1958, p. 40). In

other words, the inverse filter Hp (z) is minimum-phase and the

all-pole filter S(z) is stable, as we have observed in Section 3.4.

[ Again, this is true iff the coefficients R are positive-definite.

.%i equivalent necessary and sufficient condition is given by

[ (B-26). Another equivalent condition is that the minimum total-

squared error be positive.

(c) Since the system of orthogonal polynomials Hp (z) is

I complete, any polynomial in z 1 of degree p can be represented

as a linear summation of the polynomials H0 (z), H1 (Z),...0,1p(Z).

Si In other words, any recursive filter of degree p can be realized

as a linear summation of minimum-phase recursive filters ifn(z)

with degrees :5p.

I
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APPENDIX C

COMPUTATION OF SIGNAL AND APPROXIMATE SPECTRA

The signal power spectrum in the direct Autocorrelation method

is given by:

P(W) = n e-j1WT (C-i)
| n=O

where s(nT) is the windowed signal.

The approximate or linear prediction spectrum PW() can be

defined for all methods of linear prediction as:

A~ A 2
P(W) = (p 2 C-2)

eak W,

where ak , l5kp, are the predictor coefficients and A is the gain

factor.

PM() and PM() are both continuous, periodic, real and even -]

functions of frequency. The periodicity is equal to = fs, the

sampling frequency. Therefore, it is only necessary to compute
5f

the spectra from zero frequency to a frequency of S--. Also, it

is practical to compute the spectral values at only a finite num-

ber of frequencies. One method of doing this is to use the dis-

crete Fourier transform (DFT) (Gold and Rader, 1969, Ch. 6) which
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can be computed efficiently by fast Fourier transform tecnniques

(FFT) (Cochran, et al., 1967). Computation times for the FFT can

L be cut approximately into half by using the fact that the signal

s(nT) is real (see, for example, Makhoul, 1970b, Appendix B).

Therefore, P(w) is computed at discrete frequency intervals by

taking the magnitude squared of the FFT of the signal s(nT).
A 2
PM) can be computed by dividing A by the magnitude squared of

the FFT of the seauence: 1, -a,, -a 2 , ... , -ap. Arbitrary reso-

lution in the frequercy domain can be obtained by simply append-

ing an appropriate number of zeros to the sequence whose FFT is

to be t&ken. If the number of zeros is large compared to the

length of the original sequence (as is normally the case in com-

puting P(w), where the number of frequency values desired is

much larger than t,-, the FFT algorithm can be pruned (Markel,

1971) resulting in a saving in computation. (Markel's algorithm

is based on a radix-2 FFT. We have implemented a radix-8 pruned

FFT widi'h saves time only if th'e number of points in the FFT is

at least E times tha length of the original sequence. For exam-

ple, we have realized a saving of 32% over the regular radix-8

algorithm by computing a 256-point pruned FFT with p = 15.)

A more direct method of computing P(w) is obtained by noting

that (C-2) can be rewritten as follows:
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p L
,ej(i-k) =A- A aý a! e

and P(W) ( C-3)
b 0 + 2ýbk cos lkwT)

1_ , k=0 i

Li

where aý a=thrws (C-4)

k
pf A

and b = a' a' k=0 1,p (C-5)k n nk c ' .kwT. i
k=0

,i
The coefficients bk are just the auatocorrelation coefficients cor- LI

responding to the inverse filter 11(z) = l-,lakZk.

These coefficients need be computed only once for use in (C-3).

If for every frequency of interest we know cos(wT), then cos(kwT)

can be computed recursively as follows:

cos[(k+l)wT] = 2 cos(wT) cos(kwT) - cos[(k-l)wT].

Another way of looking at this is to note that if cos(wT) =x,

then cos(kwT) = Tk(x), the Chebyshev polynomials. These polyno-

mials obey the recurrence relation:
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ii
T k+l W• 2x Tk(x) - Tk l(x),

with T0 (x) = 1. Therefore, given 2x, Tk+1 (x) can be computed by

a single multiplication and subtraction. If we define a single

computation as equal to a multiplication and an addition (or
subtraction), then if we desire P(w) at M values of frequency,

the total number of computations C needed is equal to:

Cd = • (p+3) + 2pM. (Direct Method)

This is to be compared with
I.

Cf = 2M(log 2 M+l) (Simple FFT)

for the base-2 regular FFT. For p = 14 and M = 128, Cd/Cf = 1.9.

SCd can be cut approximately in half if each cos(kwT) is already

stored. However, we know that there exist algorithms which cut

[Cf by at least half. So, on the whole, the FFT is approximately

twice as fast as the direct method. But, the efficient FFT al-

gorithms compute the transform at M equidistant frequency points,

f where M is a power of 2. These restrictions do not apply to the

direct method. If one is interested in computing P(w) along a

[I nonlinear scale of frequencies, the direct method may prove to

"be "ore ef2ic9ent.
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SYMBOL .L, ýE

This is a list of most of the symbols used in this report
along with the page number where that symbol is first used or

defined.

PAGE

ak Linear predictor coefficient 3
A,A Gain factor of linear prediction transferfunction §(z) 17
bnb(nT ) minimum-phase sequence corresponding to s(nT) 93

Bn Bandwidth of formant n 191

SB(z) z-transform of b(nT) 93
cn ,c(nT) Cepstrum of s(nT) 98
an,8(nT) Cepstrum of s (nT) 98
c',c'(nT) Complex cepstrum of A(nT) 98
n
i Differencing operator 131j~di

D(z) z-transform of differencing operator 131

e ,e(nT) Linear prediction error sequence 31
n

E,Ep Total-squared error 31
f 0  Inverse of window width r' 179

fs Sampling frequency 16
F0  Fundamental frequency 141

Fn Frequency of form.ant n 191
H(z),H (z) z-tr. -sform of linear prediction inverse filter 17

p
p Order of linear predictor 3

P(W) Signal spectrum 54

P(W) Linear prediction or approximate spectrum 54

P(ao,vw) Off-axis spectrum 193
P (W) Error p-awer spectrum 55e
P(W,t) Time-varying power spectrum 76

Q(W,W') Two-dimensional signal spectrum 79

Qe(w,&) Two-dimensional spectrum of error signal 81

e
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rk Normalized autocorrelation of signal 40
SAutocorrelation of signal 34

Autocorrelation of differenced signal 135

Rk Autocorrelation of impulse response of S(z) 44
* j,(kT) Apparent autocorrelation function 65
R(t,t+T) Nonstationary autocorrelation function 76
s Laplace operator 16

s nS(nT) Signal to be analyzed 2

sn,s'(nT) First difference of s(nT) 130

Sn,Sa(nT) Impulse response of S(z) 44
S(z) z-transform of s (nT) 17

S(z),9p (z) Transfer function of discrete p-pole linear
prediction speech production model 17

n ,S(nT) Linear prediction approximation to s(nT) 30

T Sampling interval 3

T Toeplitz form 71

u0 (x) Impulse function 78
U_1 (x) Step function 177

U ,U(nT) Excitation sequence for speech production model 17
U(z) z-transform of u(nT) 17
V Ratio of spectral geometric mean to arithmetic

mean 115

Vm Lower bound on V 116

Vmin V for p- 104
Vmin p

V Normalized error 40
wn ,w(nT) Discrete window function 65

w(t) Continuous window function 173

W(f) Fourier transform of w(t) 173
z Complex variable of sampled-data frequency

domain 16

6 Kronecker delta 44

r(wj,) Alternate two-dimensional spectrum 76
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I
a Damping factor (real part of s) 16
T (1) Time lag for autocorrelation 75

(2) Pitch period 141

• T' Window width 177
Te Effective window width 184

S•ik Covariance coefficient 5

n(Z Polynomials orthogonal on the unit circle 216
SRadian frequency (imaginary part of s) 16

Radian sampling frequency 77
Radian frequency in 2D-spectrum 79

I Radian frequency in alternate 2D-spectrum 77
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