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FOREWORD

Central-composite experimental designs for exploring and fitting

response surfaces were developed nearly twenty years ago. In spite 0

of their successful applications in chemical and engineering research,

these designs have been virtually ignored in human factors engineering

experimentation. This is a serious oversight since these designs, as

well as the whole concept of response surface methoddlo-gy, are par-

ticularly suited for research relating human performance to equipment

parameters. A study of the effects of three sensor-display variables

on the ability to recognize targets on a display is used to describe

some of the valuable features of tkc central-composite design and to

illustrate some of its advantages and disadvantages for human factors

engineering research, i

This paper was prepared in the Display Systems and Human

Factors Department of Hughes Aircraft Company under Subcontract 2

with the Aviation Research Laboratory, Institute of Aviation, University
S! [ of Illinois at Urbana- Champaigne. The research is being supported

by the Life Science Program, Air Force Office of Scientific Research, ii
Air Force Systems Command, United States Air Force, under prime

contract No. F44620-70-C-105 with the University of Illinois.

Dr. Glen Finch of AFOSR is technical monitor of the program.
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INTRODUCTION

Response surface methodology is a procedure and a philosophy

for the design, the conduct, the analysis, and the interpretation of

experiments performed to determine the quantitative r,,lationship

between a dependent variable (the response) and one or more

cuantitative, continuous independent variables.

The basic approach, first suggested by Box and Wilson in 1951,

ingeniously combined elements of multiple regression theory and its

specialized form in analysis of variance with special ffatures of the

factorial designs, including principles of partitioning, confounding, and

fractional replicates.

The central- composite design is one of a number of experimental

designs developed specifically for use in response surface exploration

in order that the data collection phase be performed as completely, as

cheaply, and as efficiently as possible.

Traditionally, most human factors engineers have employed the

factorial, analysis of variance models in the design of their experi-

ments. Results from such studies are reported in terms of the mean

performance for the experimental conditions and the reliability of

differences among these means. When the evaluation of differences

between existing equipments or systems is desired, this approach is

useful. However, wlhen one wishes to determine quantitative relation-

ships between human operator performance and a multitude of equip-

ment parameters, these analyses of variance models are inadequate.

At best, they result in expensive and wasteful research and fail to

yield the information desired. Response surface methodology and

central composite designs are more suited for most applied human

factors engineering research today.

1



The human factors engineer who is preparii a research

program should ask hirmb.lf these questiond to detr,rmine whether

the RSM approach is suitable for his problem:

1. Are the critical variables quar.rwtative and continuous?

F 2. Is the real purpose of this progr-z.. ':o discover the

quantitative relationship among performance and equipment

va riable s?I

3. Am I more interested in understanding the broad, less. i
precise relationships across a large multi-variate space

than in obtaining highly reliable information about a few

points in a small segment of the experimental region?

4. Do I believe that the higher-order interactions, three-

I factor and above, exert relatively little influence on the
4! performance in which I am interested?

5. Am I under some obligation to do the stuidy as quickly and

cheaply as possible.

6. If I handle all of the variablee -:'hich are consideredI

critical, must I become concerned about the size of the

study?

7. Will many observers be unable to run all oi the experi- AA

mental conditions during a single session?

8. Is the number of available observers and experimental

materials limited?

9. Does the experimental equinment tend to vary and make

constant settings difficult?

10. Am I more concerned with obtaining answers than per-

forming a well-defined formal experiment?

The more "yes" answers that are given to the above questions,

the more likely the experimenter cou~ld find -the response- surface

methodology and a central-composite experimental design useful.

2



CENT RAL- COMPOSITE DESIGN

K Box and Hunter suggested the characteristics of (experimental

designs for fitting response surfaces. They felt that a good design

should:

1. Utilize a grid of data points of minimum density o'cr a

multi-variate space of greatest practical interest.

2. Allow for approximating a polynomial of an order

tentatively assumed to be representationally adequate to j
fit the response surface; when no assumption is made ofI • the form of the function initially, one starts with a first-

order polynomial model.

3. Allow a check on the adequacy of the function by allowing

certain combinations of higher order terms to be examined.

4. Permit the already completed design of order d to form the

nucleus from which a design of order d + I may be built, if

the assumed polynomial proves inadequate.

k 5. Lend itself to blocking which

a. helps maintain a steadier experimental environment

when an experimental program is extended over many

data points and time, and

b. permits an experiment to be carried out sequentially,

so that certain changes can be made in the experimental

plan based on information obtained from "he previous

data collection period.

6. Be "rotatable" so that the orthogonal axes of the experi-4 •mental design can take any orientation without changing the

c••onfidence irn the prediction made at any given point.

The original central-composite designs, when completed, satisfy

these criteria.

A -3



Construction

Central- composite designs capable of handling any number of

factors are composed of three parts. They can be built by combining

the vertices of a hypercube (which is the k-dimensional analogue of a I
cube having 2 k vertices) with those of a measure polytope (which is the
k-dimensional analogue of an octahedron having 2k vertices) and with

a specified number of center points. The three-dimensional model

shown in Figure I illustrates the cubic factorial portion, the octahedron

(or star), and the center portions of the design. Examining the

construction of the design reveals a number of their properties and

advantages.

Regression Model

The tendency to rely on factorial designs has limited con-

siderably the nature of research performed by human factors engi-

neers. Because of the horrendous size of an experiment after only

a relatively few factors have been included, many investigators are

forced by practical considerations to limit the number of factors

studied to fewer than they really believe have a critical effect on

performance. When a factorial study is completed, they seldom try

to interpret interactions of three-factors or higher, generally because

they are unable to and often because they recognize that the effects,

though statistically significant, are of little practical importance.

Box recognized these facts in the construction of his central com-

posite designs. He chose the pattern of data collection points in the

designs so that the complete design would permit an approximation

of the response surface with a second-order polynomial of the form:

2+Pixi+ x + p. XiXj0:= 1o 1 i i i j1 j °i
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t I -1
where the 0 coefficients are parameters to be estimat, from the

experimental data. Graduating models such as these are referred to

as empirical models tu distinguish them from theoretical models

since they do not seek to explain underlying fundamental mochanisms I
but merely to describe a relationship which exists. En-ineers will

find the regression model more use.ul than the ANOVA models more -

frequently used in human factot - study. Regression equations can be

used to (1) estimate performance when equipment variables are -

specified; (2) estimate values of equipment variables n4elded to obtain

required performance levels; (3) determine how equipment trade- offs

should be made in order to optimize performance when one or more

system parameters must be constrained; and (4) obtain information

on the relative importance of equipment parameters in order to plan

-future research efforts.

Economy

A major feature of the central composite design lies in its

A= emphasis on economy of data collection. No other consideration

has so limited the quality of human factors research as the inability
• :• to look at large enough pieces of problems. While on an absolute i

• ~~scale. the number of factors which could be considered critical in a •:f• single experiment would probably be less than ten, the traditional human

factors approach to research and the experimental designs have con-

spired to prevent studies of even more modest size from being conducted.

T'i. central composite designs were planned to overcome such limita-

ti•. .s by minimizing redundancy and limiting the data collection only to

that which was really necessary.

Theoretically a minimum of N data collection points are required

to write a polynomial of N coefficients. Thus to write a second order

polynomial (Taylor series expansion) for five factors, at least 21

observations are required; this number is considerably less than theI5243 observations required to complete a 35 factorial design. While

more thar. the minimum are used in central composite designs in order

to make other estimates, the number still is relatively small comparedg to the requirements of a factorial design.

S5[



Obviously, the unequal amount of data collected in the two designs

means that unequal amounts of information will be obtained from

them. The central composite design was planned to provide the

most essential information first and to allow an experimenter to

decide whether he must collect more data, rather than making plans I

to collect large amounts of data from the begihning. In the five factor

case, the data which is not available from analysis of the 21 data

collection points, but would be available from analysis of the 243 data
collection points, are all interactions and non-linear terms of greater

than second order. As mentioned earlier, these seldom have much

effect on performance and, if they were found statistically significant,

$a• are seldom ever interpreted. Box suggested that one collect enough

data to examine lowmer order relationships first, and only if these

01 do not explain the data should more data be collected to estimate the

higher order terms. Therefore, mnany of the data points eliminated

from the central composite designs reflect this point of view. -

Central composite designs reduce the size of the experiment t

by eliminating data collection in those parts of the experimental region

which are least interesting. In some cases, this is done completely;

in others, it is accomplished by reducing the precision of that infor-

rmation which is obtained. Box reasoned that normally an experimenter

will know enough about his problem to localize his experiment within • I
the region of greatest interest. Therefore the central composite

design is planned to collect the most information at the center of the -

region and to take less and less data the further one moves from |
center. The experimental region therefore is in the form of a

fI] cerhypersphere around-the center point. Many human factors experi- I

ments, in order to fill every cell of the factorial design, expend
considerable time and effort collecting data for corner cells of the

design composed of experimental conditions where the factors are at their

extreme levels and where performance is either the poorest or the best. I

6 4



' In either case, the experimenter knows full well what the results will

be but must yun the cells in order to complete the factoriali The
spherical space (Figure 1) covered by the central composite design

reduces the problem by eliminating corner cells from the experimental

region, although these data points could be added later if they, indeed,

prove to be of interest.

• ~-When the number of factors reach five or more, not all of the 2k

vertices of the cube need be included, Instead a fractional factorial

U with enough points to keep all main effects and two-factor interactions
unconfounded with one another can be used, The fractional replicates,

-U---- -, (i/ 2)P, of the 2 k cubic -portion of the -central composite designs which
meet the criteria of- unconfounded -main- and- two-factor effects are: _

S k S5, p =--l-; k-" k8, p-•=Z k - 1l0, p -3, etc.

"Considering the above, the number of data points required for an
t 6ireplicated central- composite. design- are: 3- factors, 20 points;

- 4 factors, 30;- 5 factors, 32*; 6 factors 53*; and 7 factors, 90*. Those
S_ ma rked with an asterisk involve a fractional replicate of the cubic

portion of the design. 'If, for example, the complete repircate had

been used wiih the design-for 6 factors, the total number of data col-
lection points would have increased from the 53 to 90.

"Information -Distribution

"Box defines -the "information" at any point- on the response sur-
face as the reciprocal of the variance at that point. This measure relates

to the -reliability of -valwes estimated at any point in the experimental

-_ space. The centralcompo.site designs were planned with two informa-
-tion qualities in mind: 4) rotatability; 2) uniformity.

RotatabilitZ. A rotatable design is one in-which-the "information"
is-equal for all points equadistant from-the center. This quality per-

mits the orthogonal axes of the eicterimental design to be rotated to
& any orientation- without changing the confidence in a prediction made at

-any given point. The value selected for the'-length -of the -axial, arm ofI the star portion of the central composite design determines whether

7
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the quality of rotatability will exist. For rotatability in a k-factor

de.sign, the arm from center should equal 2 k/, I,.:c'.pt when fractional

factorial desimns of (1/2)p are used in plact, of the hyp.rCUht.. In

thos, cases, it should equal 2(k- p) /4

Uniformity. Box proposed that since an expe rinitvnter may not

initially have a clear idea of where the most interesting portion of

the response will lie in the, experimental region, the quality of

info rmation obtained should be relatively equal throut.,li ,ut the space.

Information is considered to be uniform when the reciprocal of the

variances at any point from the center of the design to the vertices of

the citbe are approximately equal. The number of points at the center,

thus, can considerably affect the "information" profile, and must be

taken into consideration in planning central-composite designs.

Orthogonal Blocking

A very useful feature of the central-composite design when

used for research in human factors engineering is that of orthogonal

blocking. Blocking is achieved by dividing the total data collection

points into subsets or blocks of conditions which are studied together.

Blocking is orthogonal when any differences in mean performances

among blocks will not affect the second order regression equation.

The cube and the star portions of a design each represent a natural

block. If the design is large enough, the cube portion can also be

fractioned so that no main effert is confounded with any other.

Blocking is a particularly useful tool in human factors engineering

studies where unwanted changes often occur in the human subjects,

the equipment, and other environmental conditions. It is also helpful

when subject time and experimental materials are limited. Examples

of how blocking can be employed to improve the precision of experi-

mental data from human factors studies are given in a paper by

Simon (1970).

Meeting the criterion for orthogonal blocking affects the selected

length, a, of the arms of the star, and the number of center points in

9



4I
ZG the central compocite design. To guarantee orthogonal blocking in

the central composite designs, it is necessary that

2/22 (N + Nco) (Ns +N) Ni

where N and N are the number of center points to be added to the
A co so

cube and the measure polytope respectively. When additional blocking

occurs within the hypercube, the center points should be divided

equally among the sub-blocks.
-= In. certain cases,- these -relationships can only be approximated. 7

Ftrthermore, iis not-always possible to simultaneously provide for-

rotatability and orthogonal blocking.ýFor~human factors studies of T--

any Size, if a choice must be made, it would app ar atithis-time that

preferenceý shoud-be given to orthogonal blocking.

Sequential Designs
In addition to using blocking to reduce the distortion of experi-

mental results, Box employed it to facilitate response surface

exploration. He correctly pointed out the difficulty of planning a good

experiment beforehand and recommended a plan-look- replan iterative ....

approach. He achieved this sequential plan by breaking his co iplete

second order central-composite designs into blocks which were first r

OR •order rotatable designs. This meant that all main effects were uncon-

V founded with one another. He recommended beginning an experiment

by completing one of the first order blocks and reviewing the data - z-

_before going further. Based on these initial results, the experimenter-

could compare the magnitudes of th, fitted coefficients in the first
order model-and decide whether or not one or more independent I

variables should-be- dropped from further consideration. He could

re- evaluate whether the range of value s being investigated should be

A extended or reduced. He rould evaluate whether a first order model
A was alone sufficient to represent-the unknown function'by-testing for -

Slack of fit-and thereby, decide whether or not to continue the study. -I

10
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The iterativc- procedure of examination and decision could continue

j ~ until the total study was completed.

The ability to test the adequacy of an equation to fit experimental

data (i. e. the "lack of fit" test) is provided in central-composite designs

by adding data collection points beyond the minimum required to fit a

"second order polynomial. Extra data points at the center of a design

not only help create a uniform information surface, but can also supply

an estimate of experimental error. These are the only replicated

points in the basic central- composite design, although later for human

factors studies, other reasons will be suggested for replicating an I
i entire design. Second, the distribution of data collection points in

the basic central- composite design allows enough-degrees of-freedomrn

to write a second order polynomial, to obtain an estimate cf the error,

and to have enough_°left over to estirmate6the-effects of higher order

-factorswhich cannot-be individually, isolated, If the variance associated

- With these higher order effects ar:e significantly greater than the

variance associated_-with the- error, one must reject the -hypothesis

that the equation fits the data and assume that higher-.order effects are-

-present. To identify these effects, more data points must be:added; .

-_-
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I
A TARGET R.ECOGNITION EXPERIMENT USINGf A CEN'rRAL-COMPOSITE DESIGN

Srhe experinment presonted below illustratts sonme of the features

of respons, surface methodology and the central-composit,, designs

as they might be applied to human factors engin'erinIz rvsearch. A

target recognition study' aimed at specifying requir.n),.nts for the.

design of a sensor-display system was used to exemplify the special

con sift. rations which must be given when applying the. t,.chnique to

problems where human performance is investigated. Sintce numerous

references describe the three-factor central- composite design and the

rationale for its construction, the emphasis here will be upon its

- appli:ati(;n to human factors ,engineering problems and 1ess on its

mathematical basis.

The Problem

Forward looking infra- red (FLIR) systems are thermal imaging

systems in which a detector array is mechanically scanned across an

infra- red telescope field of view. The detector elements are sampled

and multiplexed, then fed to a CRT for display. Whereas increasing

the multiplexing rate improves system performance, the corresponding

video frequencies become difficult and costly to display. A mathe-

matical model has been developed to effect the trade-off between

multiplexing rates and other display parameters, as well as operator

performance. A laboratory experiment was carried out to supply

empirical data on human performanceý to support the development of

the mathematical model. While several studies were performed, only

one will be described here.

The prime purpose of the experiment was to determine the

functional relationship between the ability of human observers to

"1:B. Mueller and C. W. Simon, Evaluation of Infrared Video High
Speed Commutation. Wright-Paterson AFB, Ohio. Report No.
AFAL-TR-69-48, 13 March 1969.

Precedinl page blank
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recognize armored vehicles on the display as a function of the

vertical spacing of the FLIR sensor elements and the frequency of

multiplexing. Electrical noise was added as a third variable."!

Experimental Procedure 31

The observer was shown a display on which the picture of an

armorad vehicle, a '"-k, was barely visible. His task was to identify

which of ten HO-scale model tanks on a shelf located below his display

represented the displayed vehicle. The image on the display could be

made progressively larger by the observer, stopping intermittently to

study the image and relate it to the model tanks before him. The

process was continued until enough similarities between image and

model could be observed to permit a positive recognition at the

greatest possible range; i. e. -smallest image.

Simulation of Display and Range Closure

A closed-circuit television system was used to simulate the

display subsystem of the FLIR. The TV camera~was pointed toward

a positive, transparent image of an armored vehicle (tank) mounted

before a light box ilixninated from the rear. A pulley and gear

mechanism allowed the light box to be moved by a drive motor toward

the camera, simulating range closure. The observer had a button '

Swhich allowed Kim to stop the closing process at any point. j

Criginally, it was planned to study five variables, the above three plus
S* amplifier bandwidth and CRT spot size. The final study was limited

to three variables because of equipment difficulties and not because
of the possible size of the study. The three factors study would have
required 20 data collection points to complete a single replicate of
a central composite design; a five-factors study would have
required by 33. This would have been -enough to estimate all main

effects and all two-factor, linear x linear interactions.-

14



Imagery

Photographs of 20 tanks were used in the study. The tanks
were highly accurate HO models, reproduced from authentic blue-

L prints and included military equipment of World War II vintage up to

more recent models (Figure 2A). Miniature foliage was placed behind
each tank to obscure its gross outline when viewed from a distance; a
combination of both gross features and finer detail had to be visible
before a tank could be recognized. Large variations in overall tank

U size were removed as an identifying feature in the pictures by

photographing them from different distances so that the vertical
• • dimension of each tank on the film was approximately 2. 5 inches. The

angular direction from which these photographs were taken provided

a view of two sides and the top of the vehicle. A typical scene is
shown in Figure 2B. No effort wac made to authentically simulate

the lights and shadows of an infra. red scene.

Equipment (Independent) Variables -'A

The FLIR sensor consists of an array of vertically spaced

elements which are scanned horizontally across the field of view of
an IR telescope. During scanning, multiplexing occurs at a rapid

rate down through the elements of the vertical array. As seen by
a viewer, this creates an image compoced of parallel horizontal lines
which are being sampled intermittently. Thus, the CRT of the TV

display, while physically different from the FLIR display, provides L
an adequate simulation from an observer's Viewpoint.

Three variables of the FLIR system were simulated in the

experiment:

1. Vertical Spacing of the TV Lines (V)
To simulate the effect of an expanded field of view whichg could be obtained by sevarating the FUR detector array

elements vertically, ti ,- ,ertical deflection of the camera

subsystem was modified to allow an adjustment of the line-I to- space ratio of the display tube without changing the

isI
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size of the vertical image. The vertical spacings oi the

I horizontal raster lines were measured in lines per inch.

Those selected for the study were 30, 48, 75, 102, and
120 lines per inch.

2. Display Multiplexing (H)

To simulate the horizontal characteristics of FLIR display

multiplexing, a pulse was mixed with the video in the

display video amplifier; this pulse provided a variable

frequency sampling that blanked the horizontal raster line A44

of the CRT. The pulse repetition rates selected for the -1

experiment were 0. 5, 0. 42, 0. 3, 0. 18, and 0. 1

microseconds.

3. Random Noise (N)

Random noise was mixed with the video in the CRT video

I amplifier. Noise components up to 5 Mc with varying

amplitudes were injected. The amplitudes selected for tht

experiments provided peak-to-peak rms noise levels of

4.6, 6, 8, 10 and 11.4 volts.

Considerations in Selecting Factor Levels

The selection of experimental factor levels depends on several

things. First, it depends on applied interests. The ranges to be con-

sidered should cover not only the conditions of immediate interest, but

be broad ý-nough to prevent having to do a new study as soon as require-

ments change slightly. Whenever possible, it is desirable to use a

eprange of values which will include on ore end that value at which the

human will barely be able to do the task and on the other end, to

include a value where the human performs about as well as possible.
These points can generally be determined by a small preliminary

study. Second, the use of a central-composite design itself deter-

mines the selection of the other levels. This is one disadvantage of

the central- composite design: all factors must have five levels i. e., 0,

&I, and *ct, There are times when this number is not practical. For

17
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Irki
example, perlormance may not change radically enough to justify five.

levc.ls. Also there will be certain experimental ,actors which can not I
be simulated at five levels. For example, if an experimenter must[ use the imagery already collected on previous flight missions for a

study of radar image qua!ity, he might find that no radar maps were

ever collected at five altitude levels or at the particular altitude,

called for by the experimental design. Third, not only is it necessary

to decide what the range of values should be, but also what the scale

should be. In many human factors studies, classical psychophysical

relations exist between equipment variables and human performance.

Z Under those conditions, if the levels of the independent variable are j
expressed on a log scale before selecting the levels required for the

central-composite design, the subsequent analysis and interpretation j
will be simpler than if the log transformation is made after the levels

are selected and data have been collected. The importance of pre-

liminary trial runs in planning human factors experiments cannot be

W• underestimated.

Coding

One advantageous feature of the central-composite design is its

use of coding to simplify the analysis. The real world levels of the

• •independent variables are converted into a new coordinate system which

materially reduces the calculations required for the analysis. After

the calculations are made with the coded values, the results can then

be translated back to real world values. As an example of coding, the

conversion equation for V, lines per inch, in this study, would be:

V dV (real world) -75~V V(coded) = !
I M 27

which yields the coded values shown in Table 1. The other two con-versio stud ae: Hc 0. f3 •

version equations for H andN in this study are: H = adac .25C 12
Nc = 2 The numbers in the conversion equations are selected so

that the center level will be zero and the levels on either side become

3 N 18

IM!



WIM~i

Table 1. Coded Values Levels ef the Experimental Variables

Variable Coded Values Variable
Symbol -1.63 -1.0 0 +1.0 +1.63 Name

V 30 48 75 102 120 Unes per inch
0. 1 0. 18 0.3 0.42 0.5 nAicroseconds
4. 6 6.0 8.0 10.0 11.4 volts rms

*1. In practice, one works backwards by first selectinii the extrem-e

values of interest in real world terms and setting them equal to*o.

Plus or minus 1. 63 is the appropriate aofor a three factor design with

orthogonal blocking. It differs slightly from the 1. 68 required for -

rotatability, a difference of no practical importance in most studies

involving human performance.

Performance (Depende-nt) Variable

The performance score on each trial run is the distance d that

the target image was from the camera lens at the time of recognition. -j
r For the analysis in the paper, the d was determined by the numbers--

read from a digital counter at the time of recognition.

The score d can be converted into distance D in inches by

means of the equation

E D = 12+0.3d

and D can be expressed as spot size (SS) at the target by the following

-3

•44
t- 46SS =(2. 3 x 10" D 1inches.
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Experimental Design

With three independent variables, the coordinates of the basic Aj:

central composite design are represented by the eight vertices of the

cube, the six vertices of the star, and six center points. The
geometric distribution of these 20 data collection points was shown

earlier in Figure 1. The coded spatial coordinates of these 20 points o4

are listed in Table 2, orthogonally blocked into three groups of 6, 6,
and 8 conditions each. The blocked design is geometrically repre- •---
sented in Figure 3. Note that two of the six center points are in each

cblock.

Data collected from any one of the blocks would permit an

estimate of the linear effects of each of the three variables. Data
collected from the first two blocks would complete the cube portion

of the design and permit an estimate of all linear effects and two-

factor interactions. Data collected from the total 20 points permits an

estimate of all linear effects, all two-factor interactions, and all

quadratic effects for the three variables. In addition, an estimate of •i

experimental error and lack of fit can be made. a
Observers were tested on all conditions in one block twice per -,

day. After the sequence in a block was completed, it was repeated to

provide two trials per condition. Within each block the order was

"perfectly" counterbalanced among observers. This means that among

observers each condition occurred only once at every ordered position

within a block and was preceded or followed once by every other A

u

B1 SLOCK I BLOCKII BLOCK Ifi

Figure 3. Blocking a central composite design
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condition within the block. Figure 4 illustrates how the counterbalancing I
of observers, order- and conditions occurred within~the three blocks. -• !•
Effe~cts of differences-in the-tank targets were -removed by this counter- 1
bala ncing, since every display condition within a block was tested with 7-

every target within the -block.

Blocking

"The value-of blocking -can-be i•lustrated with this experimental

design. The distribution of observers and targets among the blocks 1A

and- the potential of -uknown environmental changes from day to day are-

all likely to -re sult- in-: average per-formnance -differe-nces--frozmiblock to

.block-which are not-due to_ differences-in-the experimental -conditibons.- =AM

"For examý;e, two-more- subjects-were added in the third'blocklto corn - - -

plete the- countdrbalancing procedure. Their-performance could easily - +

have shifted+the -average perforrmace level for that blOck. In addition,

there -are different _sets .of targets-used:-in e ach block, 'Since no-effort A
-had been madeto-equate the-tank,-images -for ease-bf recognition, this -

would be expected to cause differences- in-average performance levels

among blocks. --Finally, in-any study, unspecified diurnal variations

canbe expected-to occur which could- result:in unwa'ted shifts in- "M

performance-among-blocks. By Usirg: orthogonal blocking in this

central composite design, average shifts in performance from block -q

to block for any -reason will not affect-the-estimates of the coefficients

in-the second-order polynomial.

Several features -were added-in this study with-human-observers

-which might not have been-used-had the Same design been employed in

-achemical experiment. First of all,-the counterbalancing and

replication'(withl observers) of the design wais introduced as a

methodological rather than a -statistical tool. its-PUrpose was not to - -

Increase data reliability (which-it•does do indirectly), -but to improve _

-data validity on the assumption that the counterbalancing will offset

the iail.ure to-perform the time-consuming task of e quatingltargets and

to counteract-any learni-ng effects which might possibly occur. As a -

-second precaution, -the order-in which the blocks were presented to -

22
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TA ~ Figure 4. -Order- in which e~ach observer was _tegted on
experimhental conditions within each block.

each--observer was counte rbalanced-among-da ys (see Figure-5)-to-

reduce- possible block differences. Even though theoretically, block

differenc'es are! orthogonal to-the -regression equation, non-linearitiesý
Iiwhich -are -known to exist withý human -performance data Warrants- the
qadded-p-recaution -of- reducing block -differences. Until more experience

--has been -obtained -with these. designs -in experiments with human sub-
jects, the replicati ns and counterbalancing techniques- -should probably

-be emnployd owvrtheprmenter must eventually balance the
advantages incurred-by, running enoug -subjects- to perfectly counter-
-balance condiin wihnablc ginst thee disadvantages -of added

- tme nd ost. Bcoteblnigthe-order.-that observers ran

zon the different blocks'. it-Was not possible- to complete onily one block
and examine--the data to decide -on how -to- run-the remainder -of- t&
ýexperi~ment. The advantages of this -procedure would be -considerably-

W -~greater as the number of factors incre~ase~d. With only three -factors

23 -
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- e~sted-by-block.-

the-degrees of-freedoff available for tests-within_:blo6cks _are too

small- to be -m-eaningful.

-If counterbalancing is -considered- to~be- a primne reuenet -

another -advantage of blocking -can be- shown. pfet-outr

'balancde (mheianing each condition appearih-ong oce In- every colun -in-]

every row,, and precedin~g and followinig eaci~h condition -once) oft-he

twenty experimental conditions unblocked-would_-harve rqieda
20.x 20dsgo 0 aacollection points. By doking. the toa

*numrber- of- data -points are reduced to-136, -by -first coiunterbalancing

wilthin -the three blocks, 6 x 6, 6 x-6, and 8-&x_8, an-d then counter-J
bancnthblcodeatn additional cost. ---Thereforico-

paringeexperimental designs for experimets An which uas-ilb

empoyd s sbjct-and, where- counterbalancing Is4 tb -ised Ats

not enou hlto meely compiare t.he 46o mrrI totalnumber --of data coliecti~on-

points for a -single replicate. Instead, -the -effectsi of -blocking- on .the -

Z4



total-number of data collection -points for the replicated design must be

- taken -into -consideratiom. -

ISV An interesting illustration of this point can be made by comp-aring_--

-two centrali..omposite designs for a five-factor study. A full cenhtral- .

-composite design would require 54 data collection points for a single

r-eplicatidn. A design in which-a fractional half of -the cube portion is

-used (which would, stilR keep main effects and two factor interactions-

a e-ar)wobid require only- 33 data collection points. However if

:replýcation and counterbalancing are employed, the 33 point- dsign is R

--A !0not-the m-ore economical. The difference lies in the- blocking which is_
pq4sible-with the two designs. The 33 point designhcanbe-divided i -to-

-ig -- di i --

-|two-blockso 22 and 11- points each. The 54 ppint desig -an be divided

Sinito fiveý-bloc-ks of 10, 10,-10, -10,- and 14 -points-each. Thu, a per-fect
-- counterbalan•e othe _33 point design would requi ce 22x-22-_plus TWAd-

•-- I -• - -- or :-i-£605-data--collection p~ints and a-minimum of -Z2 subjects. -A p er-fect- -

A- -counte rbaance 6f the 54-point design W ould- re q ire 4 x{ lxi) plus -

th

i4-.x -i_4,, odr-596,-.d'ata •ii- ol -ec••on pvints--and a•,mn ninaumn of o6hl -fburteefi -t :2

-i~i•i:•-•i • s~bjiti• •Furherrore -th-e addition --I three- biocks-in -the i oit:•

@1•! :: o-design- povide a greater opportunity for €nriiguine evin

i •- mentaI Variations. Given the -requirement for perfect counterbalancing,

e-larger basic design--Wouldactually be better. The experimenter

working with human-observers Will have to decide whether 'he extra

replications required for counterbalancing are desirable or necessary.

Observers. Eight observers were used in this study. Each were

allowed three practice trials before beginning a block of trials. -Six--• Of the Observers were used on1all ýonditions in all-blocks. Two of the---

•Iobservers were used on!)v on the -,third block -ot conditions- for reasons

-indricfated preVibusly.

ii5
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-erf6ian Measre -- The- d on the two--trials percodtn

corrlatd4085. -Tetwo-tria-lser avrgd to obtain-i-single -

erfrman ed scoe per -condition-pr bere. h median d -score

among theý observersI for-each c onditi on -w-as -then -obtained -to -rep res6ent

the -average distance, d, -at which all targets8 in each -block- were

recozni~zed-by the o-bservers-Iin-hat -block -on 'each experimental

Condition., Thies-ev-tet _d sdo r es-, each representing -perf ormance on-one of thIwent isly co0iios were4 used rinthe -data analyisis
Byuigth- -niýýdiibz-pý-erf-o~rm~ance sc-pres f-or ea-ch diilay any

variailit due o oberve s wsessentially remoiqved -from the eges
sia-n -,anls. Th Ar~duei j'~ptified- on -the- ground~ that

1.Te td ias ~efrid- todtermine--the -relationship
be enequipiet vaibe-nd.ptr-for-manceie.th
re-ps srae gpBya iilsepaatgeuien ~fe tshI

__ -- - 2~~~ Test osf sigificanc sh;l be~i baedotherrtrm f
the replcate ceie -ns ah~~taio ariablilt

t~-i txeim a conditions

3 Iftheýre Iis an icnteres~it I -td -hn--n the- variabc mn ni idulsty

--- - itz can-be. calculated separaitely. However, in-this study,

s6ince--the_ observers could -not be considered representative

a1pilua rukoldeo ow their performance

- - - vari 6 '(d-hiV ad little. g~feneality.-

- 4 i b~ ere-willinhgI te a-lifiear -relationship, the

suject variability could be combined wihthe original

analysis obf-varIance.

-M1
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RESULTS-OF TARGET RECOGNITION EXPERIMENT

The purpost of this section is pri marily to show the -types of

qu-estions which can-be asked of the experimental data, to illustrate4

--some of the -features available when using- the central-compositej

de.signs, And--to indicate- conside rations necessary in-the interpretation --I
-- ofresults. W-hile-the re sults -of-th prSen -study will be used to

~exenilify hese-the calculations- requii e4 -to -analyzýe -thedaawlnt

bedescribed; -such- info rm ation is explicitl provided- in a number of

oher pubiataioiii

The edia pe~6rmnceY, xrssedj inzterm-rs o6f do-aho

-th twntyexerientl cndtios i shwnin~~ 3. -The first three --

oun fX -va-riable,-4-.ýVi- H, .and-N, replicate the- code-d value s -of the -

orgia dsin TheL additiona1-'l- counsrpesent the ýrerfainihgz t-erms
of th secod-order polyn---iaL. The valuies for the-secolumns are

dAerived by pe-rforming the -indicated operation on the values of the first

-three columrn-s. For -example, if for -an experimnacodtnVeul

12 +1and H--equals -1, then-for-that samne condition, VH would equal (+l-)(;-l)
-or -land -H -Wouldeqa(l)l)o+.-

Regreission Analysis

A least-square -fit perfo-rm4ed on the coded data matrix yielded the

-following, Multipl regressionvi eqato

Y. 116. 14 + I O.-54V- -14. 95H - 15. 34N - 6.62VFI - 1. 31VN

2 -c

36 +l.36 -7i-75 Vý!L-.5 3W 0.20ON

__- ---- where- Y c s-and all vilites -of Y,--H, -and N 4--are-coded.-

27
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To express-the relationship of Equation I in real world values

i _insteadiof coded; values-.the following substitutions should -be made in

Equation 1-I:

V- 75- H -0_3 N N--_8
- 27 - 0.12 2

where V, H, -and N are the terms of the coded equations, and the primed

Stermsi are -in real-world measurement. iMA

When this substitution is made and the equation simplified, the

real world -regreisioný_e euAtion-- i s_:

ZO 7r 1207.I9 -+ 2.79V 487. 2OH- 21.99N

S II t -A - 1 1
-2.04 V'H 0.-024 V N +-56.51 11-N (Equation 2)

-0.01- V •106.4 H' -o0.05 N

where Y.. = d and all -values of V, H, and N'are in terms of real world

meas-urements.

•iven the latteir equation, an engineer can:

--I. Estifmate performance for values of V1, H#, and N'not

-indluded in the original study.

-2. Estimate equipment-design requirements for specified

performance level.

3. Studylthe effects of trade-offs among two or more

variables.

4. ,Determine the combination of variables which yield best

performance.

S5. Compare the effect of different factors on performance in

order to better plan future research.

29



6. Determine -the direction of silope of the response surface

for.planning the~-region in which subsequent experiments 3
should be carried out.

As With any polynomial, it is dangerous to extrapolate beyond the 3
region of -the origial experimental design, The curve which is obtained

by a least square fit approximatis- the existing data; but beyond that

point, the curve may-be completely inaccurate.

Analysis of Variance

Before using the-equation, the experimenter should adk:

41. How-well does the-eqiuation estimate- the:performance in --

Mths study ?

Z. How weiifwoilid _this equation be oexpected-to predict new

-3. Doeathe: second o6rer polyn"omial adequately describe the I
empirical data?

4. Was the introduction of blocking into the experimental

design justified?-

5. What are the confidence limt~its for the predicted performance?

The first step toward understanding the data is to perform an
-Analysis of variance. The results of the- analysis of Table 3 are shown

in- Table 4.

Table-4 shows how the total variance was partitioned into that

portion which can be accounted for by the regression equation and that

which cannot-(residual). The total variance is merely the variance of J

the performance obtained empirically from the experiment (i. e. , the

Y 0olumn of Table 3-a-nd-the A column in Table 5). If we had estimated

performance for each of the 20 experimental conditions using the coded

regression equation, #I, we would have obtained the-values inA

Column B of Table 5 (i. e., Y). The variance of this coluni. is the

30
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-4

S!Regression .74 9 1143. 5.63 <.05, =-4

A _V

First Order Terms .55 3 2533. 12.47 <.005

•I

Second Order Terms . 19 6 448. 2.21 >.10 •

A
TResidual 26 A0 363. f C D

Block .14 2 1002. 4.94 <.05 I
Error .12 8 203.

Bias (Lack of Fit) .10 5 286. 4.32* >.10
Random (Center Points) .02 3 66.

TOTAL 1. 0 19 732.

j (*Tested by Random error; all others tested by Error variance.)

Table 5. Derivation of Residual Values --n

A B cI Experimental Observed Estimated CReida
Condition Performance Perfo ance esidual

__(Y)_..... .. (Y-Y) -17

1 113.25 111.62 1.62
2 94.00 101.76 - 7.76
3 115.50 116.14 - 0.64 A
4 115.25 116.14 - 0.89 AV5 81.50 90.39 - 8.89
6 142.00 135.10 6.89 A
7 125.25 116.14 9.10
8 116.25 116.14 0.108
9 107.00 91.31 15.68 I

10 105.00 79.92 25.07
11 198.25 172.05 26.19
12 106.00 95.59 10.40
13 107.75 116.14 - 8.39
14 125.50 116. 14 9.3515 62.75 78.26 -15.51 A
16 116.25 144.64 -28.39 1
17 123.75 140.64 -16.8918 102.25 112.68 -10.43
19 98.25 95.80 2.441 20 81.50 90.55 - 9.05

1 ~314



variance associated with Regression in Table 3. If we calculated the

differences between the obtained performance (Y) and the estimated 3A
perfor:mance (Y), we would have the residual values shown in ColurnnC

A
of Table 5 (i. e. , Y-Y,. The variance of these numbers provides the 5
variance for the Residual in Table 4.

Equation Strength. Each value in the proportion column in I
Table 4 indicates that proportion of the total variance which can be

accounted for by each of the sources of variance. It is obtained by

dividing the sum of squares (i, e., variance multiplied by degrees of

freedom) for the particular source by the total sum of squares. Thus, j
the regression equation in this study accounted for 0. 74 of the total

variance. This proportion, R is referred to as the Coefficient of

Multiple Determination. The square root of this value, 0. 86, repre- I
sents the Multiple Regression Coefficient, R, for the equation which

is equivalent to the simple correlation between the observed (Y) and
AN

the estimated (Y) performance scores. This relationship is plotted

in Figure 6.

Equation Fit. Some explanation must be provided for the 0. 26 of

the variance not accounted for by the regression equation. In Table 4,

we see that 0. 14 of the 0. 26 was due to different performance among

~ the blocks. The remaining 0. 12 is attributable to Error of which two

possible sources can be determined. The Random err6r represents

the variability in performance among the replicated center points

within blocks. The Bias error is actually that which is left over after

all other sources of variance have been accounted for. This latter

source, not being a result of random variation, or block differences,

or any term in the second order polynomial, must represent the

presence of higher-than-second order effects which cannot be isolated

with the amount of data collected in the present experiment. A com-

parison Of the two error sources yield an F-ratio of 4. 32, which for

Div 5 and 3 degrees of freedom could happen by chance more than ten times

in one hundred. With so few degrees of freedom, a conservative

32
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Figure 6. Scatter diagram showing the relationshipf between estimated and observed performance.

significance test (p : 0. 10) is recommended. We therefore assumed

that the B as variance was not reliably larger than the chance variance

and that the second order polynomial is an adequate fit,

IS Block Effects. Combining the two "not significantly different"

error sources into a single Error term provides more degrees of

freedom for future tests of significance. Mean performances among

blocks did vary significantly (Table 4) at the 0. 05 probability level;

14 however, with the central-composite design, these differences will

not affect the coefficients of the regression equation. The use of

blocking in this experiment, therefore,prevented unwanted sources of

variance from distorting the results.
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Equation Reliability. We can also test the reliability of the
regression equation by calculating the ratio between the Regression and 3
the Error variance. The F of 5. 63 was statistically significant at the

0.05 probability level (Table 4). However, Box has suggested that this 3
test is a relatively insensitive one and that to be of practical significance,

the F-ratio should be four times greater than the F required for statisti-

cal significance. While this is an arbitrary value, the F test combined
P_`,with the proportional contribution of the Regression equation to total

variance together are the best indicators of the equations usefulness.

Equation Predictiveness. An equation which accounts for a
high proportion of the variance of experimental date is not necessarily

a good predictor of future data. Any set of data can be fitted by a

polynomial with enough terms. Since the equation can be expected to
M • account for some chance effects wh.ch are not likely to occur in a

second data sample, the Coefficient of Determination will prove to be

an overestimation when applied to a new sample. To estimate how well

the equation might predict future data, corrections must be made for

the number of terms in the equation relative to the number of observa-
S• tions from which the equation was derived. The following equation

L relates the 2 .vo:

= I - (I - R ) (n-l)/(n-t-1)

where n is the number of observations and t is the total number of terms

in the equation. For %he equation in this study, the estimated predictive

strength would drop from 0. 74 to O. 50.

Of course the value, 0. 74, was obtained in an analysis in which

0. 14 of the total variance was due to differences among blocks. We

could have included blocks as still another linear term of the equation
ana raised the strength of the equation to 0. 88. However, since the
blocking effect is an artifact of the methodology, it should not be

included in the regression equation. However, iU we assume that the
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effects due to Regression and Error represent the total sources of

variability, the Regression equation would then explain 0. 86 of the

variability of the present data (not due to blocking) and the predictive

SI coefficient becomes 0. 73.

Equation Order. Table 4 shows a partitioning of the Regression

variance into that which can be accounted for by the'First Order terms

and by the Second Order terms. The effect of the Second Order terms

in this analysis was not significantly greater than chance, implying

that the response surface was essentially planar. -L Let us digress at this point and remind the reader of one of the

features of the central-composite. design -- the sequential approach.

This study was actually conducted without examining the results of first

order effects after one block of data had been collected. There were
several reasons why. First, the counterbalancing of blocks among

1 days prevented a single block from being completed before the entire

study was completed. Second, because of the rumber of degrees of

freedom in a single block, any-test of fit would have been relatively

insensitive. Had a First Order Regression equation been written for a

single block of data, only one degree of freedom would have been

available each for the Bias and the Random Error. It would not have

been possible to have made a meaningful test of Lack of Fit. (On the

othei hand, in fact, had the performance scores of each individual been

used as replicates of the first block of the design, a suitable test might

- have been made.) Third, the use of the sequential approach is more

appropriate when searching for an optimum or when the number of

factors are greater than the three studied here. The inclusion of the

second order terms do improve the fit of the present experimental

"data - increasing the proportion of variance accounted for by 0. 19.

Confidence Limits. The Error variance -n be used to provide

-I an estimate of the confidence limits for the equation as a whole. For

the 8 degrees of freedom, 95 percent of the estimated responses will
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fall between *3, 65 (in terms of d). In practice, the confidence limits.

at any point in the space will vary slightly at different distances from

the center of the experimental region.

Interpreting the Equation 7

Our analysis has shown that the equation does in fact describe

the response surface. How can it be used? 7)

By substituting values for the independent variables V', H: and N' A

in the equation, we can obtain performance estimates useful for .i

evaluating capabilities of future systems or for judging the effects of N

trade-offs among the independent variables.

By examining the equation itself, a better understanding of the

relationships among the dependent and independ•t;- factors can be

gained.

Individual Terms. Mathematically, each coefficient of the equa- 3

tion represents how much change occurs in d for each unit of change in
Forexaple inthereal worldthe particular term being studied. ITr exmli hera ol

regression equation, No. 2, the coefficient for the V term indicates

that when a new line per inch is added to the display, the recognition i

range increases 2. 79 d's. Unfortunately, to understand the effect of
a particular variable is not that simple for two reasons. i

First of all, this V term represents only the linear component of•

the effect of V. To estimate the total effect of changing lines per inch,

all of the terms which include the V must be considered. Second, the#-

terms of the real world regression equation (No. 2) are not independent.

This was determined by examining the correlation matrix used to derive

the equation. Therefore, for this equation it is not even possible to

determine from the coefficient the effect of any single terni. If one

were to examine the table of intercorrelations among the 20 conditions

of the nine terms of the equation, one would find, for example, that V ;

correlates 0.65 with VH, 0. 81 with VN, and 0. 98 with V2 . Thus a

change in performance due to the linear interaction between V and H

cannot be determined in isolation from the effects of V separately
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Ti
because these terms are rnot independent of one another. Similar

] !intercorrelations can be found among other terms of the equation. All

this means is that while the real world regression equation as a whole

represents an expression which will represent the response surface

with the least average error, the effect of any term cannot be

determined individually.

The table of intercorrelations for the coded independent variables,

however, would show all but the quadratic terms independent of one

another. The points of the central-composite design were selected

with that goal in mind. The three quadratic terms were correlated M

-0. 07. With the coded equation, the effect on d for unit changes in the i

isolated terms can be determined from the coefficients with only a

slight error for the-quadratic terms.

The significance of the coefficients of each of the terms in the

equation can be tested. However, when the purpose of a study is to A

describe the response surface, Box and Hunter did not regard such a

test with much favor. They wrote:

"It should be noted here that the individual coefficients of I
the model have not been separately tested for significant

departure from zero. If this has been done, and one
coefficient was found to be not significantly different from
zero, we would not be entitled to replace the given estimate

with a zero, for regardless of its magnitude, it is still the

best estimate of the unknown coefficient. To replace this

estimate by a zero would in effeCt be replacing a best esti-

mate by a biased one. The important test concerns the

order of the model- i.e., whether a model of first order,

or of second order, adequately represents the unknown
4

function. Another test that could be ruri would be to deter-

mine whether a particular variable xi contributed signifi-

cantly to the response. In this case the sums of squares of

all the coefficients bearing an i subscript would be pooled

and then tested."
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=• While an engineer might be interested in the relative effects of

certain variables in order to decide where best to distribute time,

money, and effort in improving a system, this might better be deter- ijj
mined by a more direct approach in which changes in equipment

factors are related to their cost, then seeing how much improvement

in d is possible for differences in dollars. A 7Z
Graphic Analysis. When an experimental region consists of

only three 'dimensions or if an equation were reduced to only three 1
factors (including their interactions and quadratic forms), it is A

possible to represent the response surface graphically. Figures 7-A,

B, and C illustrate how this was done for the present study. The sur- Ii
face appears the same for either the Coded or the Real World regres-

sion equations provided the scales of the axes are equated. The solid |
contour lines represent equal performance levels (i. e., recognition

ranges in terms of d) in the same way that lines on a contour map repre- -
sent equal terrain altitudes. The three parts of Figure 7 represent

three levels of the RMS noise; the size of the plotted area at each level

characterizes the spherical shape of the experimental space.

An examination of these figuree can provide some insight

into the relative effects of variables and their interactions upon per-

formance. These figures can be used to evaluate the effects of trade-

offs among variables, the shape of the response surface, the direction-

in which the optimum performance will be found and which combinations

of the variables are required to optimize performance, if the optimum

lies is within the experimental space.

To illustrate how Figures 7A, B, and C can be used, scan across

the three figures and determine performance at the center, The d

values are approximately 95, 110, and 135. This suggests that within

the experimental region, the effect of RMS noise on performance was

essentially linear, a fact supported by the very small coefficient for

-the NZ term in the equation.
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What is the effect of sampling rate on performance? From the

Figure 7, the strong interaction between H (sampling rate) and N is

evident. When the noise level is high (Figure 7-C) changing the

sampling rate (or for that matter changing lines per inch) has essen.-

tially no effect on performance. When the noise level is low (Fig- -4

ure 7-A), increasing the sampling rate results is a rather extensive -

reduction in recognition range. On the other hand, at this high noise

level, the effect of changing the number of lines per inch on the display

is practically insignificant.

At the center of the experimental space (Figure 7-B), both V

and H affect performance. Performance is best (i. e. , recognition

occurs at the greatest distance) when the greatest number of lines per

inch and the slowest sampling rate are used. That is not surprising;

however, the graph also shows that if V and H are decreased together, k l

recognition range will remain relatively constant. -'I

Multiple Criteria. Plotting the data also facilitates the examin- -
ation of multiple criteria. It is not enough for an engineer to know

which combinations of V, H, and N would result in the greatest recog-

nition range; it's equally important that he take into consideration the

costs. To illustrate, the experimental conditions in Table 3 were

related to dollars as well as to recognition distance. Estimates were

made of the relative costs of the different combinations of sampling

rates, lifies per inch on the display, and noise levels for each Af the

15 different experimental conditiohs. These relative values are shown

in Table 6. A second order polynomial was derived from this data as

it had been done for the performance measurements. The equation

for the coded data which w as obtained was:

$= I0.49+ 3.49 V+ .L01 H+ 0.58N+2.64VH+ 1.26VN

(Equation 3)

+ 1.20HN+ 0.412 V+ 0.303 H+ 0.622N2
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LP Table 6. Dependent and Independent Variables Related to Cost

r DesgDependent(Y) Independent(X)
• Design

Condition ReltiA
Relative- Ni•V H N

Costs

3).6

6) 7.60 -1 1 -
3' ) I.10.8 -0 -0 -0

7) 7.7 -1 -1 1

8) 11.41 1 1 1

9) 19.49 1 1 1

10) 4.28 -1.63 0 0

11) 8.10 0 -1.63 0

12) 10.25 0 0 -1.63

11 13) 17.81 1.63 0 0

14) 13.41 0 1.63 0

15) 12.96 0 0 1.63

This equation, plotted for the N = 0 condition, is shown as the dashed

contours overlaying the performance contours in Figure 7-B. Given

this information, the engineer can make trade-oils between performance

and costs for different display designs. The combined information in

Figure 7-B could be interpreted, for examiple, as follows: reducing the

I number of lines per inch on the dirplay from approximately 125 to 90

will not materially affect the detection range of 135 d, but would reduce

costs from approximately $14x to $1 Ix. Or, it will be necessary to

spend at-least $1 Ix to achieve maximum recognition range.
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Optimization. Once the equation for the response surface has_=

been derived, it can be used to seek the optimum combination of vari-

ables to produce the greatest yie'.d. In the present study, the position (
of the maximum recognition range in the three dimensional coordinate

system was found by differentiating the coded regression equation #1

with respect to V, H, and N in turn. The coordinates of the stationary

point (maximum or minimum) are obtained by making these differen-

tiated equations equal to zero, and arriving at the unique, solution. In -J

this example, the coordinates (coded) of the maximuim point are:

J-)
V = -0. 106 H = -1.17 N = -0. 891( 2.3' 0.16 (vlt ZZ I
lines/inch) (micro- sec (volts RMS noise)

The numbers in parentheses represent the coordinates expressed in t S

real world measurements. The approximate location of this optimum

combination is shown by a star in Figure 7A (although that noise slice

was - 1.25 rather than the required -0. 89).

In certain cases, the optimum point may not fall anywhere near

the experimental region. The same caution expressed elsewhere,

apply to this situation: beware of extrapolating too far beyond the
region from which the original data were collected. One might use this

estimated optimum (plus an observation of the rate and direction of change

of the response surface) to suggest where a second experimental study

might be located which hopefully would encompass the optimum point.

On the other hand, for some human factors studies, knowing the t
coordinates where performance is optimum may be of little interest.

In certain cases, the experimental region is the only one of any con- j
cern because of other constraints outside of the experiment. For

example,. where range itself is an experimental variable in a target

acquisition study, the knowledge that target recognition would be

improved at closer ranges than were studied in the experiment may
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be irrelevant if that range were too small to allow an adequate time for

j Imissile launch. In other cases, the nature of the variables would per-

mit the experimenter to guess the optimum combinations without need

of experimentation. For example, an experiment is not needed to know

that air-to-air detection ranges will increase as the size of the target

increases, the contrast between target and sky increases, the cone of A
uncertainty as to target location becomes smaller, and so forth. Studies

g involving such variables are generally performed to obtain response

surfaces from which to make quantified estimates of performance or

from which the effects of trade-offs among certain variables can be

determined.

Canonical Equations. When a polynomial involves more than

three factors, simplified graphic representations are no longer possible

and interpretation becomes difficult. Box suggested that second order
polynomials be transformed to canonical form. Essentially, this trans- =

formation shifts the response surface around so the stationary points A

are shifted Lo the center of coordinate system (thereby eliminating the I
linear terms from the equation) and the axes are rotated so the cross-

product terms are eliminated. This leaves a simplified equation com-

posed of only the quadratic terms in a new coordinate system. While

SI relating t.,e new equation directly to the real world may be difficult,

it does facilitate a visualization of the shape of the response surface of

the complex, multivariate space. For each variable then, the sign of

the quadratic term will indicate the direction of change in the response

surface for each unit change of that variable to one side of center or

the other. This information can be useful for estimating the approxi-

mate direction out of the experimental region in which further improve.-

ment in performance might be expected if sequential studies were to

I Supplementing the Basic Study

There are relatively few experiments which really provide all of

the required answers. If we were interested in mapping a response
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MR •surface and had successfully picked th.- correct area of greatestt practical interest, we might still wish to make additional measure-
ments to supplement the original data.

One may wish to supplement a basic study in a number of ways.

One might collect additional data at points adjoining the original design

to see how the surface changes in that expanded area. One might wish

to replicate within the design, possibly in the region of optimum per-

formance, in order to obtain more precise information about that part

of the space. One might Wish to study the effect on the response sur-

FS face when new factors were added.

With human observers, running additional conditions later than

"the original runs creates the same types of problems that can occur

when a study is blocked. Relatively little experience has been accumu-

lated as to the best way to proceed for running additional points. Over-

lapping data points with the original design can provide a basis for

fitting the parts of the experiment together. When it can be anticipated

that some additional data will be wanted (such as certain corners of a
rectangular space which were omitted with the spherical shape of the .4

central composite designs), these might best be run along with the

points of the original data. The basic analysis of the central composite

design can be made first, and the effects u; the additional points can
be examined later.

Box and others have warned of the dangers of attempting to

examine too large a space (not in terms of the number of variables,

but in the range covered by each variable). This warning is based on

the assumption that the further apart the data collection points are,

the less likely the second order polynomial will make an adequate fit.
What wo.ld happen if the second order polynomial had not

adequately represented the observed data? The data might be trans-.

formed in order to simplify the relationship (much as a log transfor-

mation may linearize what was originally a curved relationship between

subjective judgements of brightness and light intensity in foot lamberts).

Or one might add additional data points to the original design in a
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number and location sufficient to isolate the third order effects. There

are some experimental designs which permit this to be done sequentially

10 • much as the original central-composite design is built from first order
to second order models.
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H SUMMARY AND CONCLUSIONS

three-factor target recognition study was carried out using

the central-composite design for selecting the coordinates of the
experimental data collection points. This study was used to illustrate

some of the advantages and some of the limitations of response surface

methodology for human factors engineering research.

Some advantages are:

I. It provides information in a form which an engineer can

use best. Results are expressed quantitatively as multi-

variate functions approximated by second order polynomials.

Linear, quadratic, and interaction effects are determined.

2. It collects the information economically, permitting more

comprehensive studies to be performed. The minimum

number of data points are used to express the functional

relationship, to provide some estimate of error, and to

provide some additional data from which the fit of the

equation can be evaluated. By collecting data in a spherical

"region, the center of the space is emphasized and certain

irrelevant conditions at the corners of the experimental

space are eliminated.

"3. It lends itself to collecting the data in incomplete blocks.

This permits a large multi- rariate experiment to be broken

into manageable size, it reduces unwanted sources of

variability, and it permits the more efficient utilization of

subjects and materials when these are limited in number.

Blocking enables a study to be carried out in a series of

sequential steps which enable the experimenter to change the

characteristics of the experimental design after the study

has begun and even terminate the study with meaningful

data before the originally planned design has been completed.

4. It facilitates both the analysis and the interpretation of

results. With the results presented in equation form rather

Preceding page blank
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than as an acceptance or rejection of a hypothesis, ma~iy

questions can be asked of the same data. Coding the

independent variables simplifies both the analysis and

the interpretation of the results. Interpretation is further

simplifier] when the results are presented graphically or

in canonical form.

I!!Som. disadvantages are:

-1. The central-composite design requires a rather rigid

pattern of data collection points which do not always fit the

needs of human factors engineering studies. Five levels of

each factors are required. They must be spaced sym-

metrically about the center at particular locations on a

scale, which changes as the number of factors in the

study change.
bN

2. Existing designs are limited primarily to studying first and

L second order response surfaces. They were never intended

for use with qualitative variables, and they do not lend
Sthemselves to the investigation of the effects of single terms.

This paper attempted to show, however, that the advantages

override the limitations. Furthermore, since the original central-

composite designs were introduced, other designs suitable for response

surface exploration have been developed. What Box did was to provide

a total methodology, a philosophy of applied research, of which the

pattern of tht data collection design is only one part. He has demon-

strated an approach which will permit more facto-s to be included

economically and reasonably into a single experiment, enabling the

human factors investigator to obtain an overview rather than a piece-

meal examination of a problem. It represents a systems approach to

become involv,,d in his experiment and to make decisions for improving

his data, rather than allowing the all too common situation to exist in

which studies are carried out in cookbook fashion.
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Central-composite designs were planned originally for

chemical research. It is natural that certain modifications of the

method should be expected in research involving human observers.

Problems of presentation order, the need for counterbalancing among
observers, the economical us-- of re pli cation,' the special problems

of data transformation, and the separation of observer effects from

equipment effects must all be considered for human factors engineering

experimentation. The pioblems arise less from the technique and

methodology and more from the lack of experience in using them. The

paucity 2f attempts to make full use of these designs makes it difficult

to ant:icipate what must be done to maintain their positive qualities and -A
at the same time fit them to studies involving human subjects.

Kempthorne, at the Tenth Conference on the Design of Experiments in
Army Research Development and Testing, 1965, stated it best: "What

we really lack are accounts of actual experiences with the various

methods. Perhaps a good practical strategy is to use the 'deterministic'

schemes at first, and then turn to the stochastic sch-rier when the

iormer ceases to give advances."

I !
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