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FOREWORD

Central-composite experimental designs for exploring and fitting
response surfaces were developed nearly twenty years ago. In spite
of their successful applications in chemical and engineering research,
these designs have been virtually ignored in human factors engineering
experimentation. This is a serious oversight since these c‘emgns, as
well as the whole concept of response surface methodology, are par-
ticularly suited for research relating human performance to equipment
parameters, A study of the effects of three sensor-display variables
on the ability to recognize targets on a display is used to describe
some of the valuable features of tkc central-composite design and to
illustrate some of its advantages and disadvantages for human factors

engineering research,

This paper was prepared in the Display Systems and Human
Factors Department of Hughes Aircraft Company under Subcontract 2

with the Aviation Research Laboratory, Institute of Aviation, University

of lllinois at Urbana-Champaigne. The research is being supported
by the Life Science Program, Air Force Oifice of Scientific Research,
Air Force Systems Command, United States Air Force, under prime
contract No. F44620-70-C-105 with the University of Illinois.

Dr. Glen Finch of AFOSR is technical monitor of the program.
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INTRODUCTION

Response surface methodology is a procedure and a philosophy
for the design, the conduct, the analysis, and the interprotation of
experiments performed to determine the quantitative relationship
between a dependent variable (the response) and one or more
cuantitative, continuous independent variables.

The basic approach, first suggested by Box and Wilson in 1951,
ingeniously combined elements of multiple regression theory and its
specialized form in analysis of variance with special features of the
factorial designs, including principles of partitioning, confounding, and
fractional replicates.

The central-composite design is one of a number of experimental
designs developed specifically for use in response surface exploration
in order that the data collection phase be performed as completely, as
cheaply, and as efficiently as possible.

‘ T raditionally, most human factors engincers have employed the
factorial, analysis of variance models in the design of their experi-
ments. Resuits from such studies are reported in terms of the mean
performance for the experimental conditions and the reliability of
differences among these means. When the evaluation of differences
between existing equipments or systems is desired, this approach is
useful., However, when one wishes to determine quantitative relation-
ships between human operator performance and a multitude of equip-
ment parameters, these analyses of variance modcels are inadequate.
At best, they result in expensive and wasteful rescarch and fail to
yicld the information desired. Response surface methodology and
central composite designs are more suited for most applicd human

factors cngincering rescarch today,
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The human facters engineer who is preparing a research
program should ask himsclf these questions to deiremine whether

the RSM approach is suitable for his problem:

The more ''yes' answers that are given to the above questions,
the more likely the experimenter could find the response-surface

methodology and a central- composite experimental design useful.

Are the critical variables quaniitative and continuous?

Is the real purpose of this progrz... to discover the
quantitative relationship among performance and equipment

variables?

Am I more interested in understanding the broad, less
precise relationships across a large multi- variate space
than in obtaining highly reliable information about a few

points in a small segment of the experimental region?

Do I believe that the higher-order interactions, three-
factor and above, exert relatively little influence on the

performance in which I am interested?

Am I under some obligation to do the study as quickly and
cheaply as possible,

If I handle all of the variables -vhich are considered
critical, must I become concerned about the size of the

study?

Will many observers be unable to run all or the experi-

mental conditions during a single sessicn?

Is the number of available observers and experimental

materials limited?

Does the experimental eguinment tend to vary and make
constant settings difficult?

Am I more concerned with obtaining answers than per-

forming a well-defined formal experiment?




CENTRAL-COMPOSITE DESIGN

Box and Hunter suggested the characteristics of ¢xperimental
designs for fitting response surfaces., They felt that a good design
should:

1. Utilize a grid of data points of minimum density over a

multi- variate space of greatest practical interest,

2, Allow for approximating a polynomial of an order
tentatively assumed to be representationally adequate to
fit the response surface; when no assumption is made of
the form of the function initially, one starts with a first-

order polynomial model.

3. Allow 2 check on the adequacy of the function by allowing

certain combinations of higher order terms to be examined.

4. Permit the already completed design of order d to form the
nucleus from which a design of order d + 1 may be built, if

the assumed polynomial proves inadequate,

Y R P PR 10 ¢ 15

5. Lend itself to blocking which

a. helps maintain a steadier experimental environment
when an experimental program is extended over many

data points and time, and

b, permits an experiment to be carried out sequentially,
so that certain changes can be made in the experimental
plan based on information obtained from the previous

data collection period,

6. Be ''rotatabie' so that the orthogonal axes of the experi-
mental design can take any orientation without changing the

confidence ir the prediction made at any given point,

The original central-composite designs, when completed, satisfy

these criteria,




Construction

Central-composite designs capable of handling any number of
factors are composed of three parts. They can be built by combining

the vertices of a hypercube (which is the k-dimensional analogue of a

ey g M I b ’lm"'[‘ iy
e i '

cube having Zk vertices) with those of a measure polytope (which is the

SRR
e

z k-dimensional analogue of an octahedron having 2k vertices) and with E é
; a specified number of center points. The three-dimensional model < g—ﬂi
shown in Figure 1 illustrates the cubic factorial portion, the octahedron = 3
» (or star), and the center portions of the design. Examining the «l §

construction of the design reveals a number of their properties and

v

advantages.
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Regression Model -
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The tendency to rely on factorial designs has limited con-

siderably the nature of research performed by human factors engi-
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neers., FEwzcause of the horrendous size of an experiment after only

a relatively few factors have been included, many investigators are
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forced by practical considerations to limit the number of factors
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performance. When a factorial study is completed, they seldom try
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to interpret interactions of three-factors or higher, generally because
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they are unable to and often because they recognize that the effects,
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b
L

though statistically significant, are of little practical importance.

b

Box recognized these facts in the construction of his central com-
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posite designs. He chose the pattern of data collection points in the
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designs so that the complete design would permit an approximation
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of the response surface with a second-order polynomial of the form:
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where the P coefficients are parameters to be estimat. {rom the
experimental data, Graduating models such as these arc referred to
as empirical models to distinguish them from theoretical models
since they do not seek to explain underlying fundamental m«~chanisms
but merely to describe a relationship which exists. Enuineers will
find the regression model more usec.ul than the ANOVA models more
frequently used in human factot : stndy. Regression cquations can be
used to (1) estimate performance when equipment variables are
specified; (2) estimate values of equipment variables necded to obtain
required performance levels; (3) determine how equipment trade-offs
cshould be made in order to optimize performance when one or more
system parameters must be constrained; and (4) obtain information
on the relative importance of equipment parametars in order to plan

future research efforts,

Economy

A major feature of the central composite design lies in its
emphasis on economy of data collection, No other corsideration
has so limited the quality of human factors research as the inability

to look at large enough pieces of problems. While on an absolute

scale, the number of factors which could be considered critical in a

single experiment would probably be less than ten, the traditional human

factors approach to research and the experimental designs have con-

T\ central composite designs were planned to overcome such limita-

t1. .s by minimizing redundancy and limiting the data collection only to

LT

ARy

that which was really necessary.

Theoretically a minimum of N data collection points are required
to write a polynomial of N coefficients. Thus to write a secon'd order
polynomial (Taylor series expansion) for five factors, at least 21
observations are required; this number is considerably less than the
243 observations required to complete a 35 factorial design. While
more thar. the minimum are used in central composite designs in order
to make other estimates, the number still is relatively small compared

1o the requirements of a factorial design.

5

spired to prevent studies of even more modest size from being conducted.
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Obviously, the unequal amount of data collected in the two designs
means that unequal amounts of information will be obtained from
them. The central composite design was planned to provide the
most essential information first and to allow an experimenter to

decide whether he must collect more data, rather than making plans

!

to collect large amounts of data from the beginning. In the five factor

g
i,
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case, the data which is not available from analysis of the 21 data
collection points, but would be available from analysis of the 243 data

Wi

collection points, are all interactions and non-linear terms of greater

L&

than second order. As mentioned earlier, these seldom have much

W

effect on performance and, if they were found statistically significant,

.3

are seldom ever interpreted. Box suggested that one collect enough

data to examiine lower order relationships first, and only if these

a, vy
L
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do not explain the data should more data be collected to estimate the
higher order terms, Therefore, many of the data points eliminated
from the central composite designs reflect this point of view, -

Central composite designs reduce the size of the experiment

e
b
==
£ 1

by eliminating data collection in those parts of the experimental region

which are least interesting. In some cases, this is done completely;

L

| AT |

in others, it is accomplished by reducing the precision of that infor-

mation which is obtained. Box reasoned that normally an experimenter

L3

oA

will know enough about his problem to localize his experiment within

ghn oo

the region of greatest interest, Therefore the central composite

design is planned to collect the most information at the center of the

L E

region and to take less and less data the further one moves from

~ center, The experimental region therefore is in the form of a

4

b0

hypersphere around-the center point. Many human factors experi-
ments, in order to fill every cell of the factorial design, expend

M" My J

considerable time and effort collecting data for corner cells of the
design composed of experimental conditions where the factors are at their

1

extreme levels and where performance is either the poorest or the best.
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In either case, the experimenter knows full well what the results will

be but must ~un the cells in order to complete the factorial; The
spherical space (Figure 1) covered by the central composite design
reduces the problem by eliminating corner cells from the experimental
region, although these data points could be added later if they, indeed,
prove to be of interest,

When the number of factors .reach five or more, not all of the 2k
vertices of the cube need be included, Instead a fractional factorial
with enough points to keep all main effects and two-factor interactions

unconfounded with one another can be usgd,, The fractional replicates,

a/ 2),p,, of the izk cubic poftion of the central composite designs which

meet the criteria of unconfounded main and two-factor effects are:
k25, p=1; k28, p=2i k210, p=3, etc

Considering thé above, the number of data-;;bi‘ntsr required for an
t.ireplicated central- composite. &esigﬁ-aré: 3 factors, 20 points;
4 factors, 307;;5 factors, 32%; 6 factors 53%; and 7 fégtors, 90*, Those
marked with an asterisk ifivolve a fractional replicate of the cubic
portion of the design, 'If, for éxample, the complete- replicate had
been used with the design for 6 factors, the total number of data col-
lection points would have increased from the 53 to 90,

Information ‘Di stx:i_bufi’on

Box defines the "information" at any point on the response sur-
face as the rec1procal of the varxance at that point. This measure relates

to the reliabxhty of values estxmated ‘at any point in the experimental

‘space, I‘he central--compq.gzte desxg_ns were planned with two informa- -
tion qualities in mind: 1) rotatability; 2) uniformity.

Rotatab_x}gx. A rotatable dﬂngn is one in which the "information
is-equal for all points equadi stant from:the center, This quality per-
mits the orthogonal axes of the experimental design to be rotated to
any orientation without changing the coniidence in a prediction made at

-any given point, The value selected for the length ‘of:the axial arm of

the star portion of the central composite design determines whether
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the quality of rotatability will exist. For rotatability in a k-factor
design, the arm from center should equal Zk/4, except when fractional
factorial designs of (1/2)P are used in place of the hypercube, In
those cases, it should cqual sz-p)/‘i.

Uniformity, Box proposed that since an experimenter may not
initially have a clear idea of where the most interesting portion of
the response will lie in the experimental region, the quality of
information obtained should be relatively equal throughout the space.
Information is considered to be uniform when the reciprocal of the
variances at any point from the center of the design to the vertices of
the cube are approximately equal, The number of points at the center,
thus, can considerably affcct the "information'' profile, and must be

taken into consideration in planning central-composite designs,

Orthogonal Blocking

A very useful feature of the central-composite design when
uscd for research in human factors engincering is that of orthogonal
blocking. Blocking is achieved by dividing the total data collection
points into subsets or blocks of conditions which arc studied together,
Blocking is orthogonal when any differences in mean performances
among blocks will not affect the second order regression cquation.
The cube and the star portions of a design each repr(‘scvnt a natural
block., If the design is large enough, the cube portion can also be
fractioned so that no main effert is confounded with any other, |
Blocking is a particularly useful tool in human factors engincering
studies where unwanted changes often occur in the human subjects,
the equipment, and other environmental conditions. It is also helpful
when subject time and experimental materials are limited. Examples
of how blocking can be employed to improve the precision of expori-
mental data from human factors studics arc given in a paper by
Simon (1970).

Meceting the criterion for orthogonal blocking affects the selected

length, o, of the arms of the star, and the number of center points in



- the central composite designs, it is necessary that

préféx"énce’ should be given to orthogonal blocking.

" approach,

- founded with one another,

the central compocite design, To guarantee orthogonal blocking in

2%/20% - (N_+N_)(N_+N_}

where Nco and Nso are the number of center points to be added to the
-cube and the measure polytope respectively, When additional blocking
occurs within the hypercube, the center points should be divided /
equally among the sub-blocks,

—~-= _In certain cases, these relationships can only be approximated.
&F?;gtggf_r'ngr;, i_??i‘é'i"ipt.alglgzs possible to simultaneously prévﬂl‘e for-
rotatability and ofthogonal tblgzki'ﬁg.“ For_human factors studies of~
any size, if a choice must be made, it would appéar at-this-time that

—

Sequential Qesigné

In addition to using blocking to reduce the distortion of experi-
mental results; Box employed it to facilitate response surface --
exploration, He correctly peinted out the difficulty of planning a good
experiment beforehand and recommended a plan-look- replan iterative
He achievéd this sequential plan by breaking his co. iplete
second order central-composite designs into blocks which were first
order rotatable designs. This meant that all main effects were uncon-

He recommended beginning an experiment

by completing one of the first order blocks and reviewing the data

- could compare the ma‘gnitgéeg—of thr fitted coefficients in the first

6;5de’r model-and decide whether or not one or more ihdependent
variables should be dropped from further consideration, He could
vi'_é‘-é“va,l;uate»whether the range of values being investigated should be
extended or reduced, He rould evaluate whether a first ordér model
‘was-alone sufficient to represent the unknown function by testing for
lack of fit-and-thereby, decide whéther or not to continue-the study.

10

~ before going further, Based on these initial results, the experimenter =~
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The iterative procedure of examination and decision could continue
until the total study was completed.

The ability to test the adequacy of an equation to fit experimental
data (i. e, the "lack of fit" test) is provided in central-composite designs
by adding data collection points beyond the minimum required to fit a
second order polyncmial, Extra data points at the center of a design

not only help create a uniform information surface, but can also supply

an estimate of experimental error. These are the only replicated
points in the basic central- composite design, although later for human
factors studies, other reasons will be suggested for replicating an
éntire design, Second, the distribution of data collection points in

the basic central- composite design allows enough' degrees of freedom

to write a second order polynomxal ‘to.obtain an -estimate cf the error,

-and to have enough. left-over to estxmate-the effects of hxgher order
_ factors ‘which Cannot be individually isolated, If the variance associated
—= ~-with these higher order effects are s1gmﬁcantly greater than the

variance associated with the érror, one must reject the hypothesis

that the equation fits the data and assume that higher order effects are

present, To identify these effects, more data points must be-added; - |
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e
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A TARGET RECOGNITION EXPERIMENT USING
A CENTRAL-COMPOSITE DESIGN

The experiment presented below illustrates some of the features
of response surface methodology and the central- composite designs
as they might be applied to human factors ehgincering rescarch, A
target recognition study™ aimed at specifying requirements for the
design of a sensor-display system was used to exemplify the special
considerations which must be given when applying the technique to
problems where human performance is investigated, Since numerous
references describe the three-factor central-composite design and the
rationale for its construction, the emphasis here will be upon its
application to human factors cngincering problems and less on its

mathematical basis,

The Problem

Forward looking infra-red {FLIR) systems arc thermal imaging
systems in which a detector array is mechanically scanned across an
infra-red telescope fiecld of view, The detector ¢lements are sampled
and multiplexed, then fed to a CRT for display. Whereas increasing
the multiplexing rate improves system performance, the corresponding
video frequencies become difficult and costly to display. A mathe-
matical model has been developed to effect the trade- off between
multiplexing rates and other display paramcters, as woll as operator
performance, A laboratory experiment was carried out to supply
empirical data on human performanca to support the development of
the mathematical model. While several studies were performed, only
one will be described here,

The prime Ipurpose of the experiment was to determine the

functional relationship betwcen the ability of human obscrvers to

“B, Mucller and C, W, Simon, Evaluation of Infrarcd Video High
Specd Commutation, Wright-Paterson AFB, Ohio, Rcport No,
AFAL-TR-69-48, 13 March 1969.

Preceding page blank
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recognize armored vehicles on the display as a function of the
vertical spacing of the FLIR sensor elements and the frequency of .
multiplexing, Electrical noise was added as a third variable,”®

Experimental Procedure

The observer was shown a display on which the picture of an
armorad vehicle, a *“<k, was barely visible. His task was to identify
which of ten HO-scale model tanks on a shelf located below his display
represented- the displayed vehicle, The image on the display could be
made progressively larger by the observer, stopping intermittently to
stu&yithei image and relate it to the model tanks before him, The
procéss was continued until enough similarities between image and
model could be obsérved to permit a positive recognition at the

greatest possiblé range; i, e; -smallest image.

Simulation of Display and Range Closure

A closed-circuit television system was used to simulate the
display subsystem of the FLIR, The TV camera was pointed toward
a positive, transparent image of an armored vehicle (tank) mounted
before a light box iliuminated from the rear., A pulley and gear
mechanism allowed the light box to be moved by a drive motor toward
the camera, simulating range closure. The observer had a button
which allowed him to stop the closing process at any point,

* Criginally, it was planned-to study five variables, the above three plus
amplifier bandwidth and CRT spot.size, The final study was limited
to three variables because of equipment difficulties and not because
of the possiblé size of the study, The three factors study would have
required 20 data collection points to complete a single replicate of
a central composite design; a five-factors study would have
required by 33. This would have been enough to estimate all main
effects and all two-factor, linear x linear interactions.
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Photographs of 20 tanks were used in the study. The tanks
were highly accurate HO models, reproduced from authentic blue-
prints and included military equipment of World War II vintage up to
more recent models (Figure 2A). Miniature foiiage was placed belind
each tank to obscure its gross outline when viewed from a distance; a
combination of both gross features and finer detail had to be visible
before a tank could be recognized, Large variations in overall tank
size were removed as an identifying feature in the pictures by
photographing them from different distances so that the vertical
dimension of each tank on the film was approximately 2. 5 inches. The
angular direction from which these photographs were taken provided
a view of two sides and the top of the vehicle. A typical scene is
shown in Figure 2B, No effort wat made to authentically simulate

the lights and shadows of an infra. red scene.

Equipment (Independent) Variables

The FLIR senscr consists of an array of vertically spaced
elements which are scanned horizontally across the field of view of
an IR telescope, During scanning, multiplexing occurs at a rapid
rate down through the elements of the vertical array. As seen by
a viewer, this creates an image compoced of parallel horizontal lines
which are being sampled intermittently., Thus, the CRT of the TV
display, while physically different from the FLIR display, provides
an adequate simulation from an observer's viewpoint.

Three variables of the FLIR system were simulated in the
experiment:

l. Vertical SEcigg of the TV Lines (V)
To simulate the effect of an expanded field of view which
could be obtained by separating the FLIR detector array

elements vertically, tl < ‘rertical deflection of the camera
subsystem was modified to allow an adjustment of the line-
to-space ratio of the display tube without changing the
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Figurc 2A, Dattery of tank models.

Figure 2B, Closc-up of a tank model,
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size of the vertical image, The vertical spacings of the
horizontal raster lines were measured in lines per inch,
Those selected for the study were 30, 48, 75, 102, and

120 lines per inch,

2, Display Multiplexing (H)
To simulate the horizontal characteristics of FLIR display
multiplexing, a pulse was mixed with the vidco in the
display video amplifier; this pulse provided a variable
frequency sampling that blanked the horizontal racster line
of the CRT. The pulse repetition rates sclectcd for the
experiment were 0,5, 0.42, 0.3, 0.18, and 0,1

microseconds,

3. Random Noise (N)

‘Random noise was mixed with the video in the CRT video

amplifier, Noise components up to 5 Mc with varying
amplitudes were injected. The amplitudes selected for the
experiments provided peak-to-peak rms noise levels of
4,6, 6, 8, 10 and 11,4 volts,

Considerations in Selecting Factor Levels

The Selection of experimental factor levels depends on several
things. First, it depends on applied interests. The ranges to be con-
sidered should cover not only the conditions of immediate interest, but
be broad ~nough to prevent having to do a new study as soon as require-
ments change slightly, Whenever possible, it is desirable to use a
range of values which will include on ore end that value at which the
human will barely be able to do the task and on the other end, to
include a value where the human performs about as well as possible.
These points can generally be determined by a small preliminary
study. Second, the use of a central-composite design itself deter-
mines the selection of the other levels. This is one disadvantage of
the central- composite design: all factors must have five levelsi.e., 0,

%1, and #a, There are times when this number is not practical, For

17
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example, performance may not change radically enough to justify five
levcls. Also there will be certain experimental .actors which can not
be simulated at five levels. For example, if an experimenter must
use the imagery already collected on previous flight missions for a
study of radar image quality, he might find that no radar maps were
ever collected at five altitude levels or at the particular altitudes
called for by the experimental design. Third, not only is it necessary
to decide what the range of values should be, but also what the scale
should be, In many hvman factors studies, classical psychophysical
relations exist between equipment variables and human performance.
Under those conditions, if the levels of the independent variable are
expressed on a log scale before selecting the levels required for the
central-composite design, the subsequent analysis and interpretation
will be simpler than if the log transformation is made after the lecvels
are selected and data have been collected. The importance of pre-

liminary trial runs in planning human factors experiments cannot be
underestimated,

Codin

One advantageous feature of the central-composite design is its
use of coding to simplify the analysis. The real world levels of the
independent variables are converted into a new coordinate system which
materially reduces the calculations required for the analysis, After
the calculations are made with the coded values, the results can then
be translated back to real world values. As an example of coding, the

conversion equation for V, lines per inch, in this study, would be:

V (coded) = V("ea;;‘lorlc_]) .75

which yields the coded values shown in Table 1. The other two con-

version equations for H and'N in this study are: Hc = E—'-%—‘l and
Nc = N‘?&. The numbers in the conversion equations are selected so

that the center level will be zero and the levels on either side become

18
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Table 1. Coded Values . Levels cf the Experimental Variables

rotatability, a difference of no practical importance in most studies

i
Variable Coded Values Variable 3:

B Symbol -1,63] -1.0 0 +1.0 +1. 63 Name :g
E o ‘ e =
g v 30 48 75 102 120 Lines per inch

- H 0.1 | 0.18 | 0.3] o0.42 0.5 | microseconds

“‘; o N 4.6 6.0 8.0 10,0 11.4 | volts rms

*], In practice, one works backwards by first sclecting the extreme

' values of interest in real world terms and setting them equal toxo. 3
i Plus or minus 1, 63 is the appropriate a for a three factor design with %S
orthogonal blocking. It differs slightly from the 1, 68 required for 2%

= A =

involving human performance.

Performance (Dependont) Variable

The performance score on each trial run is the distance d that

-k

§ e the target image was from the camera lens at the time of recognition.

i - For the analysis in the paper, the d was determined by the numbers
%‘ i read from a digital counter at the time of recognition.

The score d can be converted into distance D in inches by

-

means of the equation

- ,

- D = 12+ 0,3d
o~
v and D can be expressed as spot size (S5) at the target by the following

rclationship:

SS = (2.8 x 10°3) D inches.
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Experimental Design

With three independent variables, the coordinates of the basic
central composite design are rep.re'sented by the eight vertices of the
cube, the six vertices of the star, and six center points, The
geometric distribution of these 20 data collection points was shown
earlier in Figure 1. The coded spatial coordinates of these 20 points
are listed in Table 2, orthogonally blocked into three groups of 6, o,
and 8 conditions each. The blocked design is geometrically repre-
sented in Figure 3, Note that two of the six center points are in each
‘block. )

Data coullected from any one of the blocks would permit an

estimate of the linear effects of each of the three variables; Data

~ collected from the 'ﬁrst two blocks would complete the cube portion

of the design and permit an estimate of all linear effects and two-
factor interactions. Data collected from the total 20 points permits an
estimate of all linear effects, all two-factor interactions, and all

quadratic effects for the three variables., In addition, an estimate of

- experimental error and lack of fit can be made,

Observers were tested on all conditions in one block twice per
day. After the sequence in a block was cocmpleted, it was repeated to
provide two trials per condition, Within each block the order was
"perfectly' counterbalanced among observers. This means that among
observers each condition occurred only once at every ordered position -

within a block and was preceded or followed once by every other

SLOCK | 8LOCK U BLOCK tit

F'igure 3. Blocking a central composite design
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véeqdition within the block. Figure 4 illustrates how the counterbalancing

" Effects of differences in the ‘tank targets were removed by this counter-

-and theé potential- of unknown envxronmental changes from day to day are A
“block which.are hot- -due to- differences -4
have shifted:the average.performance: level for that block: In additior, ~

_there-are d1££erent sets oi‘ tatgets used m each block. ‘Since no-effort
4had been made to-equate the tank-images for easé-of recognition, this

: mm'.mmmﬁm i
R

Lid i e

replication: (with observers) of the design was mtroduced as a

of observers, order, and éonditiépe occuirred within the three blocks.

balancing, since every display condition within a block was tested with

every target within the block,

Blocking

‘The value of blocking. cérﬁie illustrated with this expérimental S

de51gn. The-distribution of observers-and targets among- the blocks

all likely to result An aver_'" erformance differences from block to

expenmental Coniditions..
For example, two:-more subJects were .added in-the third block to coms=

plete the counterbalancmg procedure. Their performance equld,quiiy

would be expected to cause dxfferences in.average performance levels
among blocks. - Finally, in-any study, unspecified diurnal variations

can-be expected to occur- whxch could ‘result-in unwzted shifts in-
‘performance:- among*blocks. By usinug- orthogonal blocking in this
central composite design, average shifts in performance from block
to-block for any ,~iie;a;son will not affect thé-estimates of the coefficients
in the second order polynomial.

Several features were added-in this study with human-observers
which might not have been used had the same design been employed.in
a chemicalrexperiment. F‘-st of all, the counterbalancmg and

methodological rather than a sta.tutical tool. Its. purpose was not to
increase data reliability (whichit: does do mdirectly), -but to improve 4
-data validity on the asspmptxon that the counterbalancing will.offset - -
the failure to-perform the time-consuming task of e_q;u;ati‘hg;ftarg‘e'tvs and
to counteract:any learning effects which xi‘n’ight possibly occur, Asa
-second precaution, ‘the. order-in which-the blocks'were presented to
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Fxgure 4 - Order in which each cbserver was. tested'on
experimental cond;tzons within each block.

éach- observer was counterbalanced among -days (see Fzgure 5)-t6.
reduce possible block differences. Even though theorencally, block

diffe‘rences are urthogonal to the regression equation, non-linearities-

;w‘-hich:aré ikﬁown to exist with human petformance data warrants the

added;préééution -of reducing block differences. Until more experience

-has been obtained-with these designs ih experiments wzth human ‘sSub-

jects, t_he r,eplxcatxons and counterbalancing techngques should probably

be employed, . However, the experiméntér must éventually balance the

- advantages xncurred ‘by. running enough sub;ects to perfectly counter-

gns withm a block agamst the ¢isadvantages -of added
time and costs.’ By counterbalancmg the order- that observers ran

‘on the dxfferent blocks, it was not possible to complete only ‘one block

and examme the data to decxde .on how to- run the remainder of the

7 ~exper1ment. The advantages of this procedure would be conézderably

greater as the number of factors inc -reased, With only three factors

kR




- OBSERVERS

Order. in whu.h observers were: —
tested by block. ;

the degrees of. ‘reedom available for tésts witlun blocks are too

small to be meamngful.

If countérbalancing is considered to-be: & przme requirem:’ jf—
another advantage of blocking can-be- shown. A "perféct" counter-
‘balance (meaning each condition appearmg -once.in: every columxi,
S every TOW,. and precedmg and following each- condition once) of the

' emp_vyed as subJects and where counterl;alancin is; sed;
not- enough to merely-compare: the total number of data col‘ection
. points for a single replicate. Instead ‘the effects of blockivg on- the
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'taken into consideration: I
two- central-composzte des;gns for a five-factof study. A full central- e
_rcg;mposxte design would require 54 data collectxogrzpomts for a sxngle

_replication, A desigr in which-a fractional hailf of the cube portion.is

uséd (which would: still keep main effects and two factor interactions.

:g?ﬁ—‘ jé t‘i Furthermore, ‘the addxtxonal three blocks m the 54 pomt

‘mental Variatfons; Given the fequirement for perfect counterbalancmg, w,

lﬁmpixﬂ’

-of the observers were used on-all condxtions in all blocks, Two of thé

g
bt

I Mg,

s el e Sl - n e e - S

total number of data collectmn pomts for the rephcated desxgn must be j' o 4

_ S

An mteresting 1llustranon ofthis pomt can be made by comparmg R

clear) would ‘require only 33 data collection pomts. However if

R R R

-;re" xmn and counterbala.ncmg are employed, the 33 point désign is i
_15;__ Ve more economxcal. The 'dlfference lies in: the blockmg whxch is.

"ata collectmn poxnts and a. mxmmum of ’2 subgects. A perfect

.provide a gréater opportunity for controlhng unwanted en\nron;’,

the- larger basic design would actually be better. The experimenter
workmg thh human. obserVers will have to. decxde whether hé éxtra

rephcatmns reqmred for counterbalancmg are desxrable or necessary

L A T e e e T I R TR bRy

Observers. Exght observers were used in this-study, ‘Each wer,e:

aIIOWed three practxce trxals before begmmng a block of trials. Six =

O
P e

.re

observers wére used only. on the third block of conditions for reasons

¢ v Y
s b g vl

indxcated prevmusly. e




The d oh the -two: trxals pér condxtion

two'tnals were averaged to: obtam a*smgle o

er condxtxon pér obsérver, The- median d.score

‘performance:8core

- among the observers for -éach condition-was-then- obtamed ‘to_represent
the average. distance, d -at which all targets in-éach’ bléck were
recogmzed by the'-observers in: that block on each experimental

‘condxtxom Thes ; Wenty d- scores, each representmg performance on

one of the twenty :Aisplay conuitxons, ‘were - used in.the- data analysxs.
By usmg the ,medxan performance scores for each dxsplay, any

é regres.

f ‘i’_f:figgié,~4Wé§e':-wiiii‘ﬁ‘g;;;o;a‘sgg.'me a ‘1:1';393;; relationship, the
ubject variability could be combined with the original
_ analysis:of variance. '
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RESULTS OF TARGET RECOGNITION EXPERIMENT

The purpose of this section is primarily to show the types of
qi;estiohs‘wh{ch can be asked of the experirfgental data, to illustrate
Eff‘s'b‘rﬁe of the features available when using the central-composite
-designs, and to indicate - con51derations necessary in-the interpretation
_ =of results, ‘While-the résults ‘of:the présent study will be used to
- exempley these, ‘the calculatxons requlred to- analyze the data will not

oe descrxbedlsuch informatmn 18- exphc1t1y provxded in a number of

r1ued by performmg the 1nd1cated opera.txon on the values of the ﬁrst

three columns; For example, if for an experzmental condition, V equals
41 and H. equals -1, then. for that same condxtmn, VH would equal (+1)(= l)

!

;'§i' -1-and H2 would equal (-l}( 1).or +1. -

_ Reg résé’ioﬁ-»Aﬁslysis

AR Ao

A least square fit performed on the coded data matrix yielded the
“following mult).ple regressxon equation‘

llb. 14+ 10, 54V - 14,95H - 15 34N - 6. 62VH- 1.31VN

== : (Equation 1)

+fl-—_; 36 HN -.:7;;7;5 *v? +. 17.7531,4-?‘ - 0.20N?

= _g d all values of V.. H, andij -are coded.. -
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- To express the relationship of Equation 1 in real world values
_ _ zinstead.of-coded: values;. the following: substitutions should -be made in_

" “Equatien 1:
o . ey 1
Y1 CH =03 . N.-8

V.= " H = %3512 ‘ N =

7 whei‘er\f,uf!-{,,;aiﬁd N are the terms of the coded equations, and the primed
. terms-aré-in réal world méasurement,
~ When this substitution is made-and the equation simplified, the

- real world-régression-equation- is:

- T >: . . .
S ¥, = 207194 2,79V - 487, 20H - 21.99N'

0 204V'E -0.024V' N +56.51 HN  (Equation 2)

2 2

LT j=!2 - - ot |
- <0,011 V"™ £106,4H" --0,05 N
~wheré ¥, = d-and all values of V, H, and N'are in terms of real world

measurements;

 Given the latté: equation, an engineer can:

1. Estimate performarnce for values of V), H} and N'not

B © included in'the original study.

2. Estimate equipment design requirements for specified
performance level.

3. Si\idy‘f_he effects of trade-offs among two or more
variables.

4, :Determing the combination of variables which yield best
performance.

5, Compare the effect of different factors on performance in
order to better plan future research.
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6. Determine the direction of slope of the response surface
for:planning the-region in which subsequent experiments - ;

should be carried out.

As with any polynomial; it is dangerous to extrapolate beyond the
region of the original experimental design, The curve which is obtained
by a least square fit approximatzs the existing data; but beyond that

point, the curve may be compleéiely inaccurate.

R e s T T e s oot i o

‘ Aix‘élysis of Variance

Before usmg the- equatmn, the experxmenter should ask‘

l. How well does- the equatxon estimate- the performance in RN
th~s study? ”

2, How well- would thzs equatxon be expected to-predict new
-data?

i L D -
S Ay YNBSS
- . > i " i
#altd | .
o

3. _Does:thév second otder polyromial adequately describe. the
empirical data?

4, ‘Was the introé’uciidtg:of blocking into the experimental
design justified?

5. What are the confidence limits for the predicted performance?

The first step toward understanding the data 18 to perform an
-analysis of variance. The results of the analysis of Table 3 are shown
/ih’ Tab_lé 4.

Table-4 shows how the total variance was partitioned into that

0y

portion which can be accounted for by the regression equa.tmn and that
‘whxch cannot-{residual), The total variance is merely the variance of

b

tﬁhﬁer Performance obtained empirically from the experiment (i.e., the
B Yéolumn of Table 3-and the A column in Table 5). If we had estimated
7‘1»:‘grfc_§r_rhange for each of the 20 experimental conditions using the coded

2t
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regression equation, #1, w'e)\would have obtained the values in
Column B of Table 5 (i.e., Y). The variance of this colunin is the
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Table 4, Analysis of Variance of the Results from Coded Data

Source
Regression

First Order Terms
Second Order Terms

_Residual

Block
Error

Bias (l.ack of Fit)
Random (Centéi Points)

TOTAL

Proportion d.f,

. 74

. 55
.19

<26

.14
.12

.10
.02

Lo

9

3
6

10

2
8

19

5
3

Variance
1143,

2533,
448,

363,

1002,
203,

286,
66,

732,

F P
A 5.63 <.05

12,47 <.005
2,21 >.10

4,94 <,05

4,32%* >,10

(*'i‘ested by Random error; all others tested by Error variance.)

Table 5. Derivation of Residual Values
» A B c
Experimental ~ Observed Estimated Residual

Condition Performance Performance A
(Y) (Y) (Y-Y)

1 113,25 111, 62 1. 62

2 94. 00 101, 76 - 7.76

3 115,50 116. 14 - 0.64

4 115, 25 116. 14 - 0.89

5 81,50 90. 39 - 8.89

6 142. 00 135.10 6. 89

7 125, 25 116, 14 9.10
8 116, 25 116, 14 0.108

9 107. 00 91, 31 15, 68

10 105, 00 79.92 25, 07

11 198. 25 172, 05 26,19

12 106. 00 95, 59 10. 40

13 107.75 116. 14 - 8,39

14 125.59 116, 14 9.35

15 62. 75 78. 26 -15,51

16 116. 25 144, 64 -28, 39

17 123,75 140, 64 -16. 89

18 102, 25 112,68 -10.43

19 98, 25 95,80 2.44

20 81.50 90,55 - 9,05
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variance associated with Regression in Table 3. If we calculated the
differences between the obtained performance (Y) and the estimated
performance (Q’), we would have the residual values shown in ColumnC
of Table 5 {i.e., Y-Q}. The variance of these numbers provides the

variauce for the Residual in Table 4.

5‘. Mﬂmwmm?‘ N s e U

Equation Strength. Each value in the proportion column in

Table 4 indicates that proportion of the total variance which can be
accounted for by each of the sources of variance, It is obtained by

dividing the sum of squares (i, e., variance multiplied by degrees of

i g o i
! TR N et
A e

freedem) for the particular source by the total sum of squares, Thus,
the regression-equation in this study accounted for 0. 74 of the total
variance. This proportion, Rz, is referred to as the Coefficient of
Multiple Determination. The square root of this value, 0.86, repre-
sents the Multiple Regression Coefficient, R, for the equation which

ke

is equivalent to the simple correlation between the observed (Y) and

i

A
the estimated (Y) performance scores. This relationship is plotted

in Figure 6.

Equation Fit. Some explanation must be provided for the 0. 26 of
the variance not accounted for by the regression equation. In Table 4,
we see that 0. 14 of the 0. 26 was due to different performance among
the blucks, The remaining 0. 12 is attributable to Error of which two
possible sources can be determined. The Random errér represents
the variability in performance among the replicated center points
within blocks. The Bias error is actually that which is left over after
all other sources of variance have been accounted for., This latter
source, not being a result of random variation, or block differences,
or any term in the second order polynomial, must represent the
presence of higher-than-second order effects which cannot be isolated
with the amount of data collected in the present experiment. A com-
parison of the two error sources yield an F-ratio of 4. 32, which for
5 and 3 degrees of freedom could happen by chance more than teh times

in one hundred. With so few degrees of freedom, a conservative
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Figure 6. Scatter diagram showing the relationship
between estimated and observed performance.
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significance test (p = 0, 10) is recommended. We therefore assumed

,’m"!

that the B as variance was not reliably larger than the chance variance
and that the second order polynomial is an adequate fit,

t

L LT

Block Effects. Combining the two '"not significantly different"

error sources into a single Error term provides more degrees of

* sfwmw 4

freedom for future tests of significance. Mean performances among
blocks did vary significantly (Table 4) at the 0. 05 probability level;

¥

however, with the central-composite design, these differences will
not affect the coefficients of the regression equation. The use of
blocking in this experiment, therefore, prevented unwanted sources of

i
ey

variance from distorting the results,
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Equation Reliability, We can also test the reliability of the
regression equation by calculating the ratic between the Regression and
the Error variance. The I’ of 5. 63 was statistically significant at the
0. 05 probability level (Table 4). However, Box has suggested that this

test is a relatively insensitive one and that to be of practical significance,

the F-ratio should be four times greater than the F required for statisti-
cal significance. While this is an arbitrary value, the F test combined
with the proportional contributicn of the Regression equation to total

variance together are the best indicators of the equations usefulness.

Equation Predictiveness, An equation which accounts for a

high proportion of the variance of experimental date is not necessarily
a good predictor of future data, Any set of data can be fitted by a
polynomial with enough terms. Since the equation can be expected to
account for some chance effects wh-.ch are not likely to occur in a
second data sample, the Coefficient of Determination will prove to be
an overestimation when applied to a new sample., To estimate how well
the equation might predict future data, corrections must be made for
the number of terms in the equation relative to the number of observa-
tions from which the equation was derived. The following equation
relates the {vo:

%2 = 1o (1 - RY (a-1)/(net-1)

where n is the number of observations and ! is the total number of terms
in the equation. For ‘he equation in this study, the estimated predictive
strength would drop from 0. 74 to 0. 50.

Of course the value, 0.74, was obtained in an analysis in which
0. 14 of the total variance was due to differences among blocks, We
could have included tlocks as still another linear term of the equation
ana raised the strength of the equation to 0.88. However, since the
blocking effect is an artifact of the methodology, it should not be
included in the regression equation. However, i{ we assume that the
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effects due to Regression and Error represent the total sources of
variability, the Regression equation would then explain 0. 86 of the
variabiility of the present data (not due to blocking) and the predictive

coefiicient becomes 0. 73.

Equation Order. Table 4 shows a partitioning of the Regression

variance into that which can be accounted for by the'First Order terms
and by the Second Order terms. The effect of the Second Order terms
in this analysis was not significantly greater than chance, implying
that the response surface was essentially planar.

Let us digress at this point and remind the reader of one of the
features of the central-composite design -- the sequential approach.
This study was actually conducted without examining the results of first
order effects after one block of data had been collected. ' There were
several reasons why, First, the counterbalancing of blocks among
days prevented a single block from being completed before the entire
study was completed. Second, because of the .1umber of degrees of
freedom in a single block, any.test of fit would have been relatively
insensitive. Had a First Order Regression equation been written for a
single block of data, only one degree of freedom would have been
available each for the Bias and the Random Error, It would not have
been possible to have made a meaningful test of Lack of Fit. (On the
other hand, in fact, had the performance scores of each individual been
used as replicates of fhe first block of the design, a suitable test might

have been made.) Third, the use of the sequential approach is more

“appropriate when searching for an optimum or when the number of

factors are greater than the three studied here, The inclusion of the
second order terms do improve the fit of the present experimental
data -~ increasing the proportion of variance accounted for by 0, 19,

Confidence Limits. The Error variance - .n be used to provide

‘an estimate of the confidence limits for the equation as a whole, For

the 8 degrees of freedom, 95 percent of the estimated responses will
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fall between +3, 65 (in terms of d). In practice, the confidence limits.
at any point in the space will vary slightly at different distances from

the center of the experimental region,

Interpreting the Equation

Our analysis has shown that the equation does in fact describe
the response surface. How can it be used?

By substituting values for the independent variables V! H, and N'
in the equation, we can obtain perforinance estimates useful for
evaluating capabilities of future systems or for judging the effects of
trade-offs among the independent variables,

By examining the equation itself, a better understanding of the
relationships among the dependent and independext factors can be

gained.

Individual Terms. Mathematically, each coefficient of the equa-

tion represents how much changc occurs in d for each unit of change in
the particular term being studied. For example, in the real world
regression equation, No. 2, the coefficient for the V term indicates
that when a new line per inch is added to the display, the recognition
range increases 2, 79 d's. Urfortunately, to understand the effect of

a particular variable is not that simple for two reasons.

First of all, this V term represents only the linear component of
the effect of V. To estimate the total effect of changing lines per inch,
all of the terms which include the V must be considered. Second, the
terms of the real world regression equation {No. 2) are not independent.

This was determined by examining the correlation matrix used to derive

the equation. Therefore, for this equation it is not even possible to
determine from the coefficient the effect of any single terni. If one
were to examine the table of intercorrelations among the 20 conditions
of the nine terms of the equation, one would find, for example, that V
correlates 0,65 with VH, 0.81 with VN, and 0, 98 with VZ. Thus 2
change in performance due to the linear interaction between V and H
cannot be determined in isolation from the effects of V separately
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because these terms are not independent of one another. Similar
intercorrelations can be found among other terms of the equation. All
this means is that while the real world regression equation as a whole
represents an expression which will represent the response surface
with the least average error, the effect of any term cannot be
determined individually.

The table of intercorrelations for the coded independent variables,
however, would show all but the quadratic terms independent of one
another, The points of the central-composite design were selected
with that goal in mind. The three quadratic terms were correlated
-=0,07, With the coded equation, the effect on _c_i_ for unit changes in the
isolated terms can be determined from the coefficients with only a
slight error for the-quadratic terms,

The significance of the coefficients of each of the terms in the
equation can be tested, However, when the purpose of a study is to
describe the response surface, Box and Hunter did not regard such a
test with much favor. They wrote:

"It should be noted here that the individual coefficients of
the model have not been separately tested for significant
departure from zero. If this has been done, and one
coefficient was found to be not significantly different from
zero, we would not be entitled to replace the given estimate
with a zero, for regardless of its magnitude, it is still the
best estimate of the unknown coefficient, To replace this
estimate by a zero would in effect be replacing a best esti-
mate by a biased one. The important test concerns the
order of the model; i. e., whether a model of first order,
or of second order, adequately represents the unknown
function. Another test that could be run would be to deter-
mine whether a particular variable xj contributed signifi-
cantly to the response. In this case the sums of squares of
all the coefficients bearing an i subscript would be pooled
and then tested, "
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While an engineer might be interested in the relative efiects of
certain variables in order to decide where best to distribute time, '
money, and effort in improving a system, this might better be deter-
mined by a more direct approach in which changes in equipment

factors are related to their cost, then seeing how much improvement

in d is possible for differences in dollars,

Graphic Analysis. When an experimental region consists of

only three ‘dimensions or if an equation were reduced to only three
factors (including their interactions and quadratic forms), it is
possible to represent the response surface graphically., Figures 7-A,
B, and C illustrate how this was done for the present study. The sur.-

face appears the same for either the Coded or the Real World regres-
sion equations provided the scales of the axes are equated. The solid
contour lines represent equal performance levels (i, e., recognition
ranges in terms of d) in the same way that lines on a contour map repre-
sent equal terrain altitudes. The three parts of Figure7 represent
three levels of the RMS noise; the size of the plotted area at each level
characterizes the spherical shape of the experimental space.

An examination of these figures can provide some insight

into the relative effects of variables and their interactions upon per-
formance. These figures can be used to evaluate the effects of trade-

‘m whn ‘I'

offs among variables, the shape of the response surface, the direction
in which the optimum performance will be found and which ¢ombinations
of the variables are required to optimize performance, if the optimum
lies is within the experimental space. -

To illustrate how Figures 7A, B, and C can be used, scan across
the three figures.and determine performance at the center. The d
values are approximately 95, 110, and 135. This suggests that within
the experimental region, the effect of RMS noise on performance was

essentially linear, a fact supported by the very small coefficient for
‘the Nz term in the equation,
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What is the effect of sampling rate on performance? From the
Figure 7, the strong interaction between H (sampling rate) and N is
evident. When the noise level is high (Figure 7-C) changing the
sampling rate (or for that matter changing lines per inch) has essen-
tially no effect on performance. When the noise level is low (Fig~
ure 7-A), increasing the sampling rate results is a rather extensive

reduction in recognition range. On the other hand, at this high noise
level, the effect of changing the number of lines per inch on the display
is practically insignificant,

At the center of the experimental space (Figure 7-B), both V
and H affect performance. Performance is best (i.e., recognition
occurs at the greatest distance) when the greatest number of lines per
inch and the slowest sampling rate are used, That is not surprising;
however, the graph also shows that if V and H are decreased together,
recognition range will remain relatively constant.

Multiple Criteria. Plotting the data also facilitates the examin-

ation of multiple criteria. It is not enough for an engineer to know
which combinations of V, H, and N would result in the greatest recoge-
nition range; it's equally important that he take into consideration the
costs. To illustrate, the experimental conditions in Table 3 were
related to dollars as well as to recognition distance, Estimates were
made of the relative costs of the different combinations of sampling
rates, lines per inch on the display, and noise levels for each f the

15 different experimental conditions. These relative values are shown
in Table 6. A second order polvnomial was dqrivéd from this data as

i«unwt!\w m ﬂ

it had been done for the performance measurements. The equation
for the coded data which was obtairied was: ’

$ = 10.49 + 3.499V + 1.01 H+ 0.58 N+ 2,64 VH + 1.26 VN
] (Equation 3)
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+1.20 HN + 0,412 V2 + 0.303 H® + 0. 622 N°
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Table 6. Dependent and Independent Variables Related to Cost

n @:}M}HWMLMH-, b inbal pobok o it 6 o

Dependent(Y) Independent(X)
Design i
Condition Relative v H N i
L Costs _ E
1) 12,63 1 -1 1 —é
2) 17. 50 1 1 -1 2
3) 10. 86 0 0 0 g
4) 7.58 -1 1 1 4
5) 15.10 -1 -1 -1 g
6) 6. 60 -1 1 -1
7) 7.27 -1 -1 1 5
8) 11. 41 1 -1 -1
9 19,49 1 1 1 E
i 10) 4,28 -1, 63 0 0
i 11) 8.10 0 -1.63 0
12) 10. 25 0 0 -1.63
i 13) 17. 81 1.63 0 0
;o 14) 13.41 0 1.63 0
E 18) 12.96 0 0 1,63 §
‘é, This equation, plotted for the N = 0 condition, is shown as the dashed g
L contours overlaying the performance contours in Figure 7-B. Given E
- this information, the engineer can make trade-offs between performance ’g‘
5 and costs for different display designs. The combined information in %
Figure 7-B could be interpreted, for example, as follows: reducing the i
§ number of lines per inch on the dizplay from approximately 125 to 90 7
_ will not materially affect the detection range of 135 d, but would reduce
% costs. from approximately $14x to $11x. Or, it will be necessary to
‘ spend at-least $11x to achieve maximum recognition range.
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Optimization. Once the equation for the response surface has

been derived, it can be used to seek the optimum combination of vari-
ables to produce the greatest yie'd. In the present study, the position
of the maximum recognition range in the three dimensional coordinate
system was found by differentiating the coded regression equation #1
with respect to V, H, and N in turn. The coordinates of the stationary
point (maximum or minimum) are obtained by making these differen-
tiated equations equal to zero, and arriving at the unique solution, In

this example, the coordinates (coded) of the maximum point are:

V=40,106 H=-1,17 = -0, 891

(linZ:; i3nch.) (mi&'(:-(’sec ) (volts I;DI\:SZ noise)

The numbers in parentheses represent the coordinates expressed in
real world measurements, The approximate location of this optimum
combination is shown by a star in Figure 7A (although that noise slice
was -1,25 rather than the required -0. 89).

In certain cases, the optimum point may not fall anywhere near
the experimental region. The same caution expressed eisewhere,
apply to this situation: beware of extrapolating £oo far beyond the
region from wkich the original data were collected. One might use this
estimated optimum (plus an observation of the rate and direction of change
of the response surface) to suggest where a second experimental study
might be located which hopefully would encompass the optimum point.,

On the other hand, for some human factors studies, knowing the
coordinates where performance is optimum may be of little interest.

In certain cases, the experimental region is the only one of any con-
cern because of other constraints outside of the experiment. For
example, where range itself is an experimental variable in a target
acquisition study, the knowledge that target recognition would be
improved at closer ranges than were studied in the experiment may
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be irrelevant if that range were too small to allow an adequate time for
missile launch. In other cases, the nature of the variables would per-
mit the experimenter to guess the optimum combinations without need
of experimentation, For example, an experiment is not needed to know
that air-to-air detection ranges will increase as the size of the target
increases, the contrast between target and sky increases, the cone of
uncertainty as to target location becomes smaller, and so forth, Studies
involving such variables are generally performed to obtain response
surfaces from which to make quantified estimates of performance or
from which the effects of irade-offs among certain variables can be

determined,

Canonical Equations, When a polynomial involves rnove than

three factors, simplified graphic representations are no longer possible

and interpretation becomes difficult, Box suggested that second order

polynomials be transformed to canonical form. Essentially, this trans-

A r“dll‘) ;lr”: ! 1|"

formation shifts the response surface around so the stationary points

are shifted io the center of coordinate system (thereby eliminating the

§'
%‘

linear terms from the equation) and the axes are rotated so the cross-

bt gt i

product terms are eliminated. This leaves a simplified equation com-

posed of only the quadratic terms in a new coordinate system. While

relating tue new equation directly to the real world may be difiicult,

s
g et

it does facilitate a visualization of the shape of the response surface of

the complex, multivariate space, For each variable then, the sign of

-

the quadratic term will indicate the direction of change in the response
surface for each unit change of that variable to one side of center or
the other. This information can be useful for estimating the approxi-
mate direction out of the experimental region in which further improve-
ment in performance might be expected if sequential studies were to

be performed.

Supplementing the Basic Study

Theére are relatively few experiments which really provide all of
the required answers, If we were interested in mapping a response




surface and had successfully picked the correct area of greatest
practical interest, we might still wish to make additional measure-
ments to supplement the original data,

One may wish to supplement a basic study in a number of ways.
One might collect additional data at points adjoining the original design
to see how the surface changes in that expanded area, One might wish
to replicate within the design, possibly in the region of optimum per-
formance, in order to obtain more precise information about that part
of the space, One might wish to study the effect on the response sur-
face when new factors were added. '

With human observers, running additional conditions later than
the original runs creates the same types of problems that can occur
when a study is blocked. Relatively little experience has been accumu-
lated as to the best way to proceed for running additional points. Over-
lapping data points with the original design can provide a basis for
fitting the parts of the experiment together. When it can be anticipated
that some additional data will be wanted (such as certain corners of a
rectangular space which were omitted with the spherical shape of the
central composite designs), these might best be run along with the
" points of the original data. The basic analysis of the central composite
design can be made first, and the effects ui the additional points can
be examined later,

Box and others have warned of the dangers of attempting to
examine too large a space (not in terms of the number of variables,
but in the range covered by each variable), This warning is based on
the assumption that the further apart the data collection points are,
the less likely the second order polynomial will make an adequate fit.

What would happen if the second order polynomial had not
adequately represented the observed data? The data might be trans.
formed in order to simplify the relationship (much as a log transfor-
mation may linearize what was originally a curved relationship between
subjective judgements of brightness and light intensity in foot lamberts),
Or one might add additional data points to the original design in a
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SUMMARY AND CONCLUSIONS

~ three-factor target recognition study was carried out using

the central-composite design for selecting the coordinates of the

experimenta) data collection points, This study was used to illustrate

some of the advantages and some of the limitations of response surface

mecthodology for human factors engineering research,

Some advantages are:

1.

3.

It provides information in a form which an engineer can
use best. Results are expressed quantitatively as multi-
variate functions approximated by second order polynomials.

Linear, quadratic, and interaction effects are determined.

It collects the information economically, permitting more
comprehensive studies to be performed. The minimum
number of data points are used to express the functional
relationship, to provide some estimate of error, and to
provide some additional) data from which the fit of the
equation can be evaluated. By collecting data in a spherical
region, the center of the space is emphasized and certain
irrelevant conditions at the corners of the experimental

space are eliminated.

It lends itself to collecting the data in incomplete blocks.
This permits a large multi- variate experiment to be broken
into manageable size, it reduces unwanted sources of
variability, and it permits the more efficient utilization of
subjects and materials when these are limited in number.
Blocking enables a study to be carried out in a series of
sequential steps which enable the experimenter to change the
characteristics of the experimental design after the study
has begun and even terminate the study with meaningful

data before the originally planned design has been completed.

It facilitates both the analysis and the interpretation of

results, With the results presented in equation form rather

Preceding page blank
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than as an acceptance or rejection of a hypothesis, maay

questions can be asked of the same data., Coding the

independent variables simplifies both the analysis and i
the interpretafion of the results. Interpretation is further
simplified when the results are presented graphically or -

in canonical form,
Sume disadvantages are: -

1. The central. composite design requires a rather rigid
pattern of data collection points which do not always fit the .

needs of human factors engineering studies, Five levels of

A Bt . £ BB B A M B

each factors arc required, They must be spaced sym-

E metrically about the center at particular locations on a

scale, which changes as the number of factors in the

study change,

A ooty

2, Existing designs are limited primarily to studying first and

second order response surfaces, They were never intended

i

AR el b T £ e e

for use with qualitative variables, and they do not lend

thernselves to the investigation of the effects of single terms.

TR F

This paper attempted to show, however, that the advantages

override the limitations. Furthermore, since the original central-

iyt
W E

composite designs were introduced, other designs suitable for response
surface exploration have been developed. What Box did was to provide

a total methodology, a philosophy of applied research, of which the

QT e

pattern of th< data collection design is only one part, He has demen-

strated an approach which will permit more facto»s to be included

VR o

economically and reasonably into a single experiment, cnabling the

human factors investigator to obtain an overview rather than a piece-

Lithiteicgs

meal examination of a problem, It represents a systems approach to

engineering design. Furthermore, it forces an experimenter te

ALy iy

;
5
E

become involved in his experiment and to make decisions for improving
his data, rather than allowing the all too common situation to exist in

which studies are carried out in cookbook fashion.
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Central- composite designs were planned originally for
chemical research, It is natural that certain modifications of the

method should be expected in research involving human observers,

Problems of presentation order, the need for counterbalancing among
observers, the economical use of replication, the special problems

of data transformation, and the separation of observer effects from
equipment effects must all be considered for human factors engineering

experimentation. The pioblems arise less from the technique and

methodology and more from the lack of experience in using them. The
paucitv of attempts to make full use of these designs makes it difficult
to anticipate what must be done to maintain their positive qualities and
at the same time fit them to studies involving human subjects.
Kempthorne, at the Tenth Conference on the Design of Experiments in
Army Research Development and Testing, 1965, stated it best: ''What
we really lack are accounts of actual experiences with the various
methods, Perhaps a good practical strategy is to use the 'deterministic'
schemes at first, and then turn to the stochastic schemer when the

former ceases to give advances, "
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