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ABSTRACT

The main purpose of tiiis work is to study the diffusion of

a thin tangential jet of an . solution of drag reducing

polymer injected into the water turbulent boundary layer of a
Sflat plate at a free stream Reynolds number,3.6 x 10"., and at the

same time to measure the accompanying drag reduction. Measure-

ments of the concentration of injected fluid at the wall of the

flat plate ,at different stations downstream from the narrow in-

jection slitwere performed for a variety of initial concentra-

tions and ratios of injection to free stream velocities. The

injection slit is located downstream of the leading edge in a

region where the boundary layer is already turbulent. Due to

the fact that direct measurements of the polymer concentration

cannot easily be made the injected solutions were darkened with

drawing ink and the concentration of ink was measured by light

absorption techniques, using specially designed photocells. In

this study it is supposed that the diffusion of the dye is also

representative of the diffusion of the polymer solution. The

dye concentration reasurements in the case of water injection

are close to those found in other studies for the temperature

distribution over an insulated flat plate in the case of tan-

gential heated fluid injection into a turbulent boundary layer.

g For the drag reducing polymer injection,an empirical formula has

been obtained where the ratio of measured concentration at a

downstream station to the injected concentration is a function

of some dimensionless distance.
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The wall concentration distribution is found to be mainly

represented by two regions; the first region where the wall

concentration is practically constant and equal to the inijected

"one and the second region where the concentration varies approx-

imately as the inverse of the distance from the injection slit.

The length of the first region is highly influenced by the ad-
ditive and increases linearly with the value of the ejected con-

centration. From a simple theoretical analysis,it is shown that

this increased length is directly related to the thickening of

the viscous sublayer observed in homogeneous polymer additive

solutions and the changes on the molecular diffusion coefficient

attached to high molecular weight polymer at large concentrations.

It is also shown that the wall concentration distribution

is related to the drag reduction and that a simple ccrrelation

between its values and the characteristics parameters of the

external flow and the drag reducing injection can be established.

By applying this correlation to the results published by differ-

ent authors it is shown that a quite accurate estimation of the

injection requirements can be made in a large range of Reynolds

numbers.

i°I
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I. STATEMENT OF THE PROBLEM

The ability of high polymer solutions to reduce the turbulent

friction resistance in pipes is well known since the pioneering

studies of Toms (1). During the last ten years a broad experi-

mental and theoretical research effort has been made in order to

clarify understending of the phenomena and to study the possible

application to naval engineering problems. We refer to the papers

of Tulin (2), Lumley (3), Paterson et al. (4) and Hoyt (5) for a
complete bibliography on the subject.

Plthough considerable progress has been made in understanding

the subject, actual applications to large ships have not been

made, nor have they been proposed too seriously. This was partly

due to the fact that theoretical understanding of the dispersion

of polymer solutions in turbulent boundary layers at very high

Reynolds number was not supported by experimental evidence.

Experimental results are available in the case of wall

injection in circular pipec; Wells (6) performed the injection

on a completely developed boundary layer, while Poreh (7) injected

the polymer solutions in a developing boundary layer. Here we

concentrate our attention on drag reduction in flow over flat

plates. Love (8) performed experiments in a small recirculating

channel, where injection of an aqueous solution of polyethylene ]
oxide Polycx WSR 301 is made on a 0.46 m long flat plate through

a 14 degree inclined slit, having a clearance of 0.8 mm and situa-

ted at 3.76 cm from the leading edge. The free stream velocities
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used were 2.90 and 3.50 m/sec which correspond to Reynolds

numbers of 1.28 to 1.7 x 106. He showed that a maximum drag

reduction of 415 to 50% of the difference between the turbulent

and laminar drag can be obtained in this range of Reynolds

numbers. The optimum concentration was about 50 ppm and the

optimum flow rate about 1.0 , l0-3 mS/sec/m. Wu (9) made a

complementary analysis of Love's results and shc2*d that the

optimum ejection rate corresponds roughly to the discharge with-

in the inner boundary layer. Later Wu and Tulin (10) gave new

experimental evidence of the polymer requirements using a 7

degree inclined slot with gaps varying from 0.56 to 2.36 mm at

a free stream velocity of 2.44 m/sec and a flat plate Reynolds

number of 1,3 x 108. Their results indicate that for the

smallest gap a higher drag reduction than found by Love for the

same Reynolds number (1.3 x 106) can be obtained by using an

ejection Df 500 ppm solution of the same polymer at a flow rate

of only 0.1 y l0-3 m3/sec/m. In fact the polymer consumption is

practically the same in the two tests; a decrease on the injec-

tion rate requires an increase on the concentration and vice-

versa, We must point out that the ratio between the ejection and

the free stream velocity is in the case of Love of 0.42 and only

O.C98 for the reported tests of Wu and Tulin.

In the same range of Reynolds numbers (0.8 to 2.2 x 106),

Tagori and Ashidate (11) performed injection tests on a 2.505 m

flat plate in a free surface channel using the same polymer as

drag reducing additive. The injections were performed tangen-

tially through a 1.5 mm width slit at flow rates varying from
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0.01 10-3 to 0.13 x 1O- me/sec/m and concentrations from 50 to

500 ppm. Their results are summarized in a formula having a

range of application limited to the values of parameters men-

tioned above. For Reynolds numbers exceeding their upper value,

e.g. lO•, the drag reduction computed by using this suggested

formula are unreasonably high.

Because the drag reduction which can be obtained from a

given high polymer injection is related closely to the diffusion

of the drag reducing agent into the turbulent boundary layer and

consequently to the concentration distribution along the wall, it

seemed of interest to perform experiments and measure simultaneously

this distribution and the associated drag reduction. High free-

stream Reynolds numbers were choosen to perform these experiments

in order to be in a range of parameters close to those of some

possible practical applications: torpedo, hydrofoil, screw

propeller, etc.

This report is divided in several sections as follows:

Section II is a description of the experimental set-up and the

methods of analysis of the drag reduction and concentration

measurement data. Section III is devoted to the presentation of

the experimental data along with a tentative correlation of the

concentration measurements data. Section IV presents a dis-

cussion of the physics of the diffusion process according to

our experimental evidence and together with the well known

viscous sublayer thickening and boundary layer velocity distri-

bution effects due to polymer additives. Finally Section V is
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devoted to the correlation of the available drag reduction data

with the trailing edge concentration computed by using the re-

II. EXPERIMENTAL SET-UP

The flat plate used was 3.048 m long and 5.08 cm thick with

a well rounded leading edge and a sharp trailing edge as shown

in Figure 1. The injection slot was located at 0.23 m from the

leading edge and was 0.30 m in height and 0.5 mm wide. As is

shown in Figure l, the slot was designed with a view to ensure

a tangential flow with the minimum disturbance of the upstream

velocity profile. Five sampling .slits were located at middepth

of the plate at 0.063, 0.203, 0.508, 1.007 and 2.337 m from the

injection slot. The dimensions of those sampling slits were
0.038 m long and 0.25 mm wide.

The tests were performed in the HYDRONAUTICS High Speed

Channel (HSC) at a constant free stream velocity of 10.65 m/sec.

The plate was mounted in a Planar Motion Mechanism (PMM) (12)

system and reluctance force gages were used to measure the drag.

The output of the gages was integrated during a certain period

of time (2 seconds) before and during each injection in order

to obtain the mean values of the drag forces.

The injection system consists of an injection reservoir

having a total volume of 0.137 m3 connected with three indepen-

dent distributors inside the plate through a stopcock and a
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manifold. The flow rate was computed by measuring the change

on the reservoir level during a known time interval.

The sampling system consists of a vacuum pump, a vacuum

reservoir, three photocells (13) and a sampling reservoir (Fig-

ure 2). The concentrations were recorded continuously by means

of a U.V Visicorder. Because only three cells were used for

five sampling slits it was necessary to provide two of these

with a by-pass. When the shift from one slit to another slit

was made the fluid sampled from the first slit and contained

in a small portion of the tubing diffusesinto the sampling

stream arriving from the second slit and could change the value

of the measured actual concentration. This isespecially true

when the first slit is choosen to be upstream of the second

slit. During the tests made with the three lower concentrations

the order of sampling was such that the first three slits were

sampled at the beginning and the last slits at the end of the

run. This order was changed during the subsequent tests in

order to reduce the influence of the higher dye concentrations

of the upstream on the downstream slits. For these testssam-

ples from the first, fourth and fifth slits were measured at

the beginning and from the second and third at the end.

II.1 Drag Measurements

The drag reduction takes place only on the surface

effectively covered by the injection and it was therefore

necessary to infer the value of the drag of this surface from
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the net drag measurement without injection. Such measurements

were made for different velocities and the results are shown in

Figure 3. These values are distinctly different from those

corresponding to a conventional flat plate. This is due to the

fact that, although the wave making and pressure drag can be

neglected in the present case, there is an important component

associated with the splash of the water at the leading edge of

the plate, since the plate is only partly submerged in the

channel. To take into account this effect the plate was tested

at the same velocity, 10.65 m/sec, but at different depths in

order to obtain by extrapolation the value of the splash drag

for zero depth. Figure 4 is a plot of these different values

of the drag versus the depth of immersion. For zero depth the

residual drag is about 8.0 Kg. By subtracting this value from

those obtained at the depth used in our tests, 0.304 m, we com-

pute a drag coefficient of 0.242 x 10-", which is very close to

the friction drag coefficient calculated according to conven-

tional formulas(Figure 3).

It can be then inferred that the Action drag of the

surface of the flat plate covered by the injection could be

accurately computed by using for the laminar drag the following

formula,

D 1.328 x1 V [Re-1/2S - Re 2 1  [£1]

Lam 2 L L
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and for the turbulent drag
V [Re1/ -Re-/ ]

Ourb= 0.074 x SpV[ SL [2]

where RL, SL and R., S, are respectively the Reynolds number and

the wetted surface corresponding to the total length of the plate

and the injection station. Let AD be the difference between the

drag measured before and during the injection; the drag reduction

effectiveness will be defined by

DR%)D AD_ l .D 1 0 0  [3]
Tur D Lam

Two measurements of the velocity were made for each test;

one by using a Prandtl tube placed between the plate and one .

the walls of the channel and another by means of the pressure

drop between two stations in the convergence section of the HASC.

The velocity computed from these two independent measurements

did not differ by more than two percent. Besides, no appreciable

change on the velocity due to the drag reducing injection was

observed. The scatter in repeated drag measurements made without

injection is less than ±0.5% of the mean value.

11.2 Concentration Measurements

The concentration measurements . ere made with specially

designed light absorption systems and photocells. The input

voltage or intensity of the light source was choosen in order to

achieve the maximum possible output readings between zero dye and

A
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dye concentration corresponding to practically zero light trans-

mission. This dye concentration was choosen after several tests

to be 1250 ppm of India ink in tap water. The corresponding

voltage output of the photocell was 40.0 mV and the equivalent

spot displacement on the U.V recorder was 12.0 cm. Figure 5

gives the calibration curve for the three cells. It is interest-

ing to see from this figure that the response of the photocell

varies non linearly with the concentration. This allows very

good precision in the range of low concentrations which are the

most interesting in the scope of this work.

The procedure used for continuous sampling can be described

as follows. Before each injection the vacuum reservoir was

switched on and the Visicorder started in order to obtain an in-

itial reading for the water contained in the channel. These

readings were compared with those obtained during the calibration

of the cell. mfter the injection was started the output of the

cells were continuously recorded till they reached a steady value.

Only at this moment two of the cells are connected to the other

slits and continuously recorded till they reached a new steady

state. This method of measurement allows a very good precision

of the values of the concentration. However some scatter appears

in the results; it seems to be due to the errors introduced by

different factors as: precision of the dye concentration of the

injected solution, coloration of the water used in the channel

after several tests, stability of the light intensity, stability

r I
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of the galvanometers of the U.V recorder, precision in the ]
readingsof the U.V records and calibration curves, etc. In

spite of this scatter the general features of the diffusion

process may be accurately examined.

11.3 Sampling at the Wall

The fluid sampled by aspiration of the boundary layer close

to the flat plate wall will be more or less representative of the

wall concentration itself depending on the rate of sampling. For

the three cells sampled simultaneously in the experiments the
rate of sampling is less than 5.0 cme/sec, that is to say 0.43

cme/sec/cm. The dimensionless boundary layer thickness corre-

sponding to this flow rate will be,

-+ ~) 9.27
'V

value slightly lower than the Newtonian viscous sublayer thick-

ness. For drag reducing fluids the fluid will be sampled from

only a small portion of the thickened viscous sublayer which is

three times larger than the Newtonian viscous sublayer in the

case of maximum drag reduction.

The measurements will then correspond to the bulk concen-

tration inside a thin layer of fluid close to the wall. Because

we are in this work mainly interested in the drag reduction

effects, which are related to the additive concentration in the

viscous sublayer thickness, these concentration measurements can

be considered as characteristic of the effect of interest.
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11.4 Polymer Used and Mode of Preparation

The polymer used in these tests were polyethylene oxide,

Polyox WSR 301, from the Union Carbide Corporation. The solu-

tions to be injected were made by diluting a 1000 ppm master

solution, prepared about 24 hours in advance, with the necessary

amount of tap water. The dilution was performed just before the

tests and the dye (India Ink) was introduced simultaneously.

Gentle manual mixing was used to insure a homogeneous solution.

For some of the solutions prepared in such a way it was

verified that the light diffusion corresponding to the 1250 ppm

of dye was not affected by the dissolved high molecular weight

polymers. These readingswere very close to those: obtained dur- ]
ing the photocell calibration using tap water.

III. PRESENTATION OF THE RESULTS

III.1 Drag Reduction Results

Figure 6 shows the values of the drag reduction computed as

indicated in Section II.1 as a function of the injection over

free stream velocity ratio and additive concentrations. It appears

that for constant injection rate the drag reduction increases

for 100, 200 and 500 ppm concentration solutions. For tested

concentrations larger than the latter - 750 and 1000 ppm - the

drag reduction is quite constant and equal to those obtained

with 500 ppm. The maximum value of the drag reduction obtained,

for the range of injection rates tested, is 56.3%.
I

I

°I
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It is interesting to compare the present results with those

obtained by Wu and Tulin (10) using similar slot width, 0.56 mm,

and ratio of injection to free stream velocity. Figure 6 shows

that, despite the large difference in the free stream velocities

and Reynolds numbers, the values of the drag reduction obtained

by these authors are very close to the present results. The

nonsumption df polymer required to obtain the same drag reduction

is however verydifferent between these two experiments. In the

present case this consumption is about four times larger than in

Wu's experiments.

111.2 Concentration Measurements

The results obtained for dyed water injection are shown in

Figure 7. Only for the first three sampling slits the concen-

tration measured is high enough to be taken into account. For

the last two slits the concentration is less than 1% of the

injected concentration. These results can be compared with those

obtained by Seban (14) for the wall temperature distribution over

an insulated flat plate in the case of a tangential injection of

a heated gas into a turbulent boundary layer in air. Seban has

shown that for ratios of injection to free stream velocity lower

than one the relative temperature distribution can be correlated

with a dimensionless distance given by (pV/pivi)l'5 (x/s) where

p and p, are respectively the densities of the free stream and

injected fluid.

A
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By using a similar parameter, with p = P, in our case, we

obtain for the dyed water injection a concentration distribution

fit given by,

1 .06 -0.711
c vi x

ci V s

that is to compare with Seban's formula for the temperature

distribution

5 . 0 - 1 .2 -0 .8t Pli x=-=25.0 --- [51
ui pV s

where t is the wall temperature. Taking into account that our

fit is obtained by using only a few experimental points and that

the experimental set-ups were quite different comparison between

these two formulae is very satisfactory. This agreement gives

confidence in the technique employed for concentration measure-

ments.

The injection of Polyox solution instead of pure water

changes completely the measured concentration distribution

curves. For lou concentrations, say 100 ppm, it can be seen

in Figure 8 that a very important downstream shift appears in

the decay of concentration. For the same sampling slit and

injection velocity the measured concentrations are in this case

an order of magnitude larger than in the case of water, injection.

As might be expected this shift increases with the injection

velocity and concentration, Figures 9 to 12.
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k To be consistent with what was done above for water

P injection the dimensionless distances, x/s, were multiplied by

(vi/V) 1 "5 and the mean square fit for all the values of dimen-

SK sionless concentrations less than 0.8 was computed for each

injected concentration. With these fits it is possible to

E-E. define the effective distances for which c/c. 1. These points

are exhibited in Figure 13 as a function of the injected concen-

tration. Notwithstanding a certain scatter, a linear relation-

ship between the shift of the concentration lines and the

injected concentration can be found. if this effective distance

is made the basis of the measurements of distance downstream, the

concentration distribution for the decay region is given by,

1.74 -1.16vi
c 1. x 1.16

.=10 .79  -V cil
c i -s [6

Figure i1 shows the experimental points together with the best

fit mentioned above. Although the spread of the experimental

points are quite substantial for the low concentrations, expres-

sion [6] is still a relatively accurate formula that may be

found useful in estimating the practical application of drag

reducing fluid through thin slit injection.

IV. PHYSICAL DISCUSSION

It seems possible to divide the behavior of the injected

w'.ll jet into two regions, i) an upstream region where the dif-

fusion is not very important and ii) a downstream region where

the diffusion near the wall is very important and can be approx-

imated by a power law dependence on distance.

,J
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i) In the first region, on the assumption that molecular

diffusion in the viscous boundary layer is preponderant we can

make a simple computation to obtain an approximate value of the

length of this region. The path of a fluid particle is given

by

x = u dt [7]

The u velocity dependence on the thickness of the viscous sub-

layer can be written

u y [8]

and y is related to the molecular diffusion, D, by

y (D (m t)2 L]

By replacing [81 and [91 in [7] and integrating between the

wall and the diffusion sublayer, 6D for T constant on x, we
w

obtain
T

=2 w 6 3

3 iD Dm

where t is the length of the initial region. By using

dimensionless values of the viscous sublayer thickness we

havee,

s DNs % [10]
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For a Newtonian fluid and an Inert tracer we can estimate

the length of thip initial region by using the classical rela-

tionship between the diffusion and viscous sublayer (15),

+ +3/4f

N [11]
5A

C

and by introducing [1i] into [101 we obtain

1//4 +9/4 v £121
3 = s v

The value of the dimensionless viscous sublayer can be estimated

from (16)

+ u* 65v

5 - lo [131

and the wall shear velocity

-1/10 I
= 0.1152 Rex [1]

Considering that the injection is performed in a region where

Rex 2 x 106, the length of the initial zone will be

t - 4 m [151

which correspond to about 8 times the slot width used in our case. AI

This value is close to the experimental results of Seban (14) and

our own extrapolated values for low ratios of injection to free

streamh velocity.
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Let us suppose that the Schmidt number is unchanged for
the low concentration solutions of high polymers (17). The
ratio between the initial zone, due only to the thickening of

the viscous sublayer by the additive, will be, denoting by the

subscript p the values referring to the polymer solutions,
9/4

+

B[16]

By ssuing, flloingexperimental evidence (18)., that the

ratio between the dimensionless viscous sublayer thickness is,

V
-- •- 3 17]6 +

6v

and that the ratio between the wall shear velocities (cf.(19)

and Appendix) is,

U*

--P- - 0.8 [181U*

we obtain

[15 [19]1°
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It can be expected that diffusivity is very small for such high

molecular weight additives at high concentrations and consequently

a considerably larger value of the initial zone will be reached.

By using the estimation of D - 10-8 m3/sec given by Poreh and Hsu

(20) Equation [16] becomes if the viscosity is unchanged

( m) (;P)1  u* [20]

and its numerical value will be

85 [21]

The length of the initial zone will be one or two orders of

magnitude larger than for a Newtonian fluid and an inert tracer

depending on the assumed values of (bv +/v+)- and (Di/Di ). This
p p

simple computation shows remarkably good agreement with our ex-

perimental results. We can conclude this section bj saying that
the changes in the viscous sublayer thickness due to the additive

together with the decrease on the molecular diffusivity attached

to high molecular weight polymers produce a considerable increase

on the length of the initial diffusion zone.

o_ • _
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ii) In the second or final region turbulent mixing

predominates right to the wall. The mass balance can be written

u -+ v B=- (D 7) [22]cX B Y B e zy

where u and v are the velocities in the direction of x and y

respectively, c(x, y) the concentration and D the effective
e

diffusion coefficient. This relation can be written in von Mises

coordinates (x, *) and we obtain

•cI -- • • )[23]

1- (D U 2-C[23

By assuming that the effective diffusion is given by (15),

I-De = •u.y [24I]]

and

u n 125y [2-5]

we have

EI = V [26]

and
1+1/n

1+1/n [27]
S= v V =vn
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then, by introducing [273 into [26],

ac =VA n+l u* a ac -

7I, n V B( a) [28] M4

By assuming that the shear velocity, u*, is independent of x,

Equation [28] has an exact solution,

*/vx

C = K X-1 e Au*/V (ni+l/n)

*/vx

= K X2 e A • (n+i/n) [29]

The constant K is determined by,

n/n+l• ~vi s
i c*c v---V = c dV' [30]

0

where #' = */V6, is the dimensionless stream function. By

operating we obtain,
vi s
iV r

="(ci6) [-(n/nei)' - [313

A Jr7 (n+I/n) e A -1J

that replaced in [29] allows the computation of the concentra-

tion profile through the boundary layer,

lI
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1_y , n+ i/n, (n / n)

ql 1 1• (n+i/n)m

c v Re (n/n+l) e

fn+lSW -e

where y' = Y/5 is the dimensionless distance from the wall

and qij the injection rate perunit width. Although it was

assumed in the above computation that the wall shear velocity,

and consequently the local friction factor, is a weak function

of the distance, for purposes of numerical calculation the de-

pendence on local Reynolds number will be taken into account.

For a Newtonian fluid we have (16),

Cf 0.0288 -1/5

x= (Re1

2.7 (Re)/5 [33

for n 7. For a drag reducing fluid and maximum drag reduction

efficiency the following formula is derived by simple calcula.-

tion (see Appendix)

tI

Il
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y, n+l/n (Ulx)

qi 1 1C7 (n+I/n)s

ci Rex (n/n+l)- 1 e [7n )

[~le

where Y' = Y/6 is the dimensionless distance from the wall

and qi' the injection rate perunit width. Although it was

assumed in the above computation that the wall shear velocity,

and consequently the local friction factor, is oa weak function

of the distance, for purposes of numerical calculation the de-

pendence on local Reynolds number will be -aken into account.

For a Newtonian fluid we have (16),

Cf -1/5
= 0.0288 (Re )

= 2.7 (Rex)i/5 [33)xx

for n = 7. For a drag reducing fluid and maximum drag reduction

efficiency the following formula is derived by simple calcula-

tion (see Appendix)

I
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[-pf o .24 (Rex-/27

-1/2.75f•--= 0.415 (Re) 34]

p

for n = 2.5. By assuming a value of • = 1 and by replacingp
[331 or [34] into [r2, the concentration distribution through

the boundary layer can be easily computed. Figure 15 shows the

change in the concentration profile between the pure solvent

and the polymer solution for a local Reynolds number 10'. It

is shown that changes between the two profiles appear only in

the region far from the wall. .

For the concentration distribution along the wall let us

consider Fquation [321 for y = 0

c i s 1 35 1

ci Vx [X (n/n+l)'

Cf (1] L e -C

S-e-

By neglecting the exponential term we can analyze the changes in,

the concentration due to the velocity profile in the case of the

inert tracer and the polymer. Let us make the ratio of these

concentrations for the same values of injected concentration,

velocities and ratio of slot width to distance, for Re = 107X
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C -1/108

= 0.28 Re 02 0.281 (lO')° . 1.0
S~cx

We can conclude that, for large enough Reynolds number (0- 107),

the concentration distributions close to the wall for an inert

tracer and a drag reducing agent injected tangentially on a tur-

bulent boundary layer will be the same in the final region where

turbulent mixing predominates right to the wall s Diherences in

concentration at a given station will be only produced by the

predominant conditions in the initial region as was shown in the

preceding section.

Finally, the wall concentration distribution for a Newtonian

fluid computed from [35) for Re = 107, is

25.6 v' s £371

an expression that is in remarkably good agreement with [53

and with other experimental formulae (20). The differences in
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the power affecting the distance are not considerable and seem

to be due to the simplification of the present model.

V. REIATIONSHIP BETWEEN CONCENTRATION
DISTRIBUTION AND DRAG REDUCTION

The drag reduction attached to a drag reducing fluid injec-

tion will be related to the additive concentration close to the
-A

wall. Our experiments had shown that the wall concentration may

be accurately measured and that the empirical data can be fitted

by a quite accurate correlation. By using this correlation the

concentration at the trailing edge of the plate is given by

I' -4

L 9(~)174 1.16 2.16 £8c= 10.79 ci [38]

if 1.5

L > 7.2(-) s ci, and

L ci
CL i A~

ifA S1.5

L <7.2(V-4)

Figure 16 shows the drag reduction values plotted against

the trailing edge concentration computed from £38]. Although

the number of experimental points, is not sufficient to estab-

lish an accurate correlation it could be said that maximum drag
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reduction seems to be produced by values of the injected con-

centration and ratio of injection to free stream velocity, such

that, the trailing edge concentration will be only a few parts

per million. This corresponds in the present case to an in-

jected concentration of 500 ppm and a velocity ratio of about

0.3. Increases of the injected concentration will not

necessarily be accompanied by an increase of the drag reduction.

Direct comparisons with other measurements of drag

reduction due to wall injection are difficult because the

differences on the initial conditions that prevails upstream

of the injection slot and the different geometries of the

ejectors in the experimental set-ups. Nevertheless, let us

compute the values of the trailing edge concentrations in the

case of maximum drag reduction obtained by Wu and Tulin (10)

for an injection of 300 ppm at an injection velocity of about

one tenth of the free stream velocity

C
DR c L

58 300 o.o98o l03 13.2

The computed trailing edge concentration is larger, by an order

of magnitude, than those estimated in the present experiments

for high drag reduction efficiency.
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In the case of Love's experiments we have,

c LDR c iV/ Lc

43 50 0.317 532 4.87

47 50 0.422 532 8.10

values that are intermediate to those of Wu and Tulin and the

present results. "

From this, we can conclude that the trailing edge concen-

tration is related to the drag reduction efficiency and that,

by fixing its value, it is possible to compute the rate of

injection of a drag reducing agent solution for a large range

of free-stream velocities and lengths of the flat plate.

VCONCLUSIONS
iA

We have investigated experimentally the behavior of a

tangential jet of concentrated solution of a drag reducing

agent. Qualitative and quantitative explanations are offered

for the initial and final regions of diffusion. By using the

empirical formula that fit all the data obtained for the final

zone it is shown that the drag reduction efficiency is related

to the trailing edge concentration obtained for a given set of

initial conditions - ejection velocity, width of the slot,

free stream velocity and length of the plate from the injectior:

2•2I
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slot. Although the upstream conditions are very different for

other experimental works it appears that the above relationship

is verified within an orr-- of magnitude on the trailing edge

concentrations.

New experiments, particularly the measurement of the

concentration profile normal to the wall, should be performed

to increase the theoretical knowledge of the problem and to

permit refinement of the present analysis.
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APPENDIX

POWER LAW VELOCITY PROFILE FOR DRAG REDUCING FLUIDS

Let us consider the turbulent flow in a pipe. The wall

shear stress, Tw' can be written as a function of a power law

of the pipe Reynolds number, V R/v,

1/N •

PV ~ V R0

and the shear velocity will be

2N-1 1/N 2N-1

S, uNR [A2]

By writing that the maximum velocity at the center of the pipe,
| ~U, is

SU =k V [A3]

we obtain
U N--I [Aiin

or

uu 1/n

U* rA5

Ei
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Well known result that relate the power law of the velocity I
profile to the power law' f the friction coefficient. From
D51, the velocity profile is given by,

U=[A6]
U ._

if R is replaced by 6, boundary layer thickness.

By following Schlichting (16) we have in the case of a flat

plate,

f ldu 1 (A7]

6 6
6"= f 1 -)dy' = (n+l) (n+2)

1

The wall shear stress on the flat plate surface will be

pVU " 1/N n d6•7 •w C( ) -[Ag]
r P V2 V 5 (n+l) (n+2) dx

"that, by integration, allows the value of 6(x),

Ir
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N
rx ((n+l) (n+2)_ 1Nl c) [•l(o]
X n - Vx

The local friction coefficient, Cf, is given by

Ni-i
Cf 2 (n+l)njn+2) N1An

Cf= 2 n " VX ll

1. Newtonian Fluid

The wall shear stress for a Newtonian fluid in a pipe is

given by

= 0.0225 ( ) 1/4

and the velocity profile deduced from this expression is

1/7U = (

By calculating the values of [Al0] and [Alli with

c = 0.0025

N=4

n= 7

we obtain the classical formulae
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SA-4I: C 0.076 ( 1/5S(x) " 0 15 [A12]
x(Vx)

and
Cf 0.0576 Vx•[A13] :

2. Drag Reducing Fluid

From the empirical data at minimum friction resistance,

the law of friction is suggested (21) to be,

w__0.5675
S=0.545 V[A14]

This expression was verified by one of the authors (18) in the

case of flow of Polyox WSR 301 in small pipes. From [A141 we

obtain

w 0.5676 1/1.75
= o.14(v) =0.14(v) [(A15]

The value of n will be,

n 2N-1 = 2.5 [A16]

and by operating in [AlO] and rAll], we have

,I
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= 2.4 -rA7
x V

and

1/2 7
cf o.48 IvxI [A8

p

3. Relationship Between Wall Shear Velocities

The wall shear velocity u*., is related to the local fric-

tion coefficient by,

UK [A19]

From [A13] and [A18] we obtain the following ratio between the
wall shear velocity produced by a homogeneous drag reducing

solution and by the solvent

0.082

u. (0.0288) v o

For Re 0(10") this ratio will be

UK

-- 0.785 [A2]uJ
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