
!

(3 o

N COMPUTER NETWORK RESEARCH

< ADVANCED RESEARCH PROJECTS AGENCY

SEMIANNUAL TECHNICAL REPORT

June 30, 1972

D D C

W'
irp.r^ nr-

AUe 14 ßfTZ

^LL U

Principal Investigator: Leonard Kleinrock

Co-Principal Investigators: Gerald Estrin

Michel Melkanoff

Richard R. Muntz

>v

NATIONAL TECHNICAL
INFÜPMATION SERVICE

.. . ,., » pf rc„irrif ,f#

-.-gf^lH VA 77MI

Computer Science Department

School of Engineering and Applied Science

University of California, Los Angeles

DfethaÜnON STATEMttlT X"

Approred for public r»l
Distribubon Unlimited

A
A«,«l»,„t.

tüttmimmmmk mmmmmimm**

BEST
AVAILABLE COPY

I I I ■■ - - — —— I I ■■" ■

UNCLASSIFIED
Sri im'» ClauMficalinn

DOCUMENT CONTROL DATA R&D
5r. um. . ;«».I)I< n(iU<. ,>/ n/l.-. />../> ..> »6«if«r(«„J im/,.,!,^; ^inofali.^i n.i/-> hr anlrtrd whin lln „m ,tl rrporl is rlitttlhrd)
l TING «CTIVITT (Corponlt author)

Computer Science Department
School of Engineering and Applied Science 90024
405 Hilgard, University of California, Los Angeles

i».»«rPO»»T SFCUNITV CLAMIFIC «IION

Unclassified
ib. CMOU*1

1 NCPOKT TITte

Computer Network Research

« en • •. i ■ , .i NOTCt (Typ* of »pari and Inclumlvr dm ft)

i »u THORtd (FltH nam». mid Urn Inlilml, fait namr)

Leonard Kleinrock

• NEPOIt T D« T»

June 30, 1972
•a CONTnac T Oft 6*ANT NO.

6. PMOJEC T NO

7a. TOTAL NO OF PAGES

118
7l>, NO OF REFS

180
•a. OPIGINATOR'S REPORT NUMBEPOl

9b. OTHER REPORT NOISI (Any othrt numhrrt Ihml may ba attlaned
this rrporl) m

10 OKTRIBUTION STATEMENT

Distribution of this document is unlimited.

II SuPPLEMENTARVNOTES

I) ABSTRACT

IJ SPONSORING MILI T ART ACTIVITY

ARPA Semiannual Technical Report, January 1, 1972 through June 30, 1972.

DD FORM I47Q
I MOV «« I "T / *J

S/N 0101-807.6801

(PAGE I)

Security Classification

/ \

Sponsored by

ADVANCED RESEARCH PROJECTS AGENCY

COMPUTER NETIVORK RESEARCH

SEMIANNUAL TECHNICAL REPORT

June 30, 1972

ARPA Contract DAHC-15-69-C-0285

ARPA Order No. 1380

»

Principal Investigator:

Co-Principal Investigators:

Leonard Kleinrock

Gerald Estrin
Michel Melkanoff
Richard R. Muntz

• »

Computer Science Department

School of Engineerinrj and Applied Science

university of California, Los Angeles

.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the United States Government.

TABLE OF CONTENTS

Section IMS.

1 INTRODUCTION 1

2 COMPUTER SYSTEMS STUDIES !

2.1 Time-Shared Systems *

2.2 Paging Algorithms 2

2.3 Buffer Behavior 2

2.4 Miscellaneous 2

3 COMPUTER-COMMUNICATION NETWORKS 3

3.1 Analysis 3

3.2 Measurement Activities 4

3.3 Software Development

4 CONCLUSIONS

PUBLICATIONS 8

Additional Publications and Presentations 9

APPENDIX A

Measurement Data on the Working Set Replacement
Algorithm and Their Applications, by W. W. Chu,
N. Oliver and H. Opderbeck

APPENDIX B

Buffer Behavior for Mixed Input Traffic and Single
Constant Output Rate, by W. W. Chu and L. C. Liang

APPENDIX C

Modeling, Measurement and Computer Power, by
G. Estrin, R. R. Muntz, and R. C. Uzgalis

APPENDIX D

Computer Conununication Network Design -- Experience
with Theory and Practice, by H. Frank. R. Kahn, and
L. Kleinrock

APPENDIX E

Some Recent Advances in Computer Communications,
by W. Chu

APPENDIX F

Rand Saturation Experiment Preliminary Results,
by V. Cerf and W. Naylor

APPENDIX G

Function-Oriented Protocols for the ARPA Computer
Network, by S. Crocker. J. Heafner. R. Metcalfe.
and J. Postel

i •.

ii

COMPUTER NETWORK RESEARCH

Advanced Research Projects Agency
Semiannual Technical Report

June 30, 1972

1. INTRODUCTION

This Semiannual Technical Report covers the period January 1
through June 30, 1972. Our activities have concentrated on computer
systems studies and computer-communication network studies. -In Section
2 below, we describe the results from modeling, analysis and measurement
of various aspects of computer systems behavior. In Section 3 we do like-
wise for networks and present some specific results for the ARPA Network.

2. COMPUTER SYSTEMS STUDIES

2.1 Time-Shared Systems

Our strong effort in the area of modeling of computer systems is
continuing. In the field of time-sharing algorithms, R. Muntz authored
a paper entitled "Waiting Time Distribution for Round-Robing Queueing
Systems" [1], and demonstrated that although round-robin has the desired
effect in yielding better service to shorter jobs, it also results in
vastly increased variance in response time for longer jobs, as compared
with first-come-first-served (FCFS). This study investigated finite-
quantum systems with overhead.

In previous reports we have discussed the importance of networks
of queues as structures which can more realistically model multiple-
resource systems. R. Muntz and F. Baskett (Stanford University) are
currently preparing a report [2] on new results in this area. The start-
ing point for this work was the work by Chandy on a concept called local
balance. Their results include the modeling of a network in which there
are different classes of customers. Customers in different classes may
have different resource demand characteristics. This is useful in model-
ing computer systems in that different job mixes can be modeled and also
in modeling computer networks in that routing of messages based on source
and destination can be modeled. Their results also permit various types
of scheduling disciplines at service centers in the network (viz., FCFS,
RR processor sharing, LCFS). Other generalities included in these results
involve state-dependent service rates and arrival rates.

This research on networks of queues is an on-going effort. Work
is continuing in both extending the analytic results and in validation
of the models. At least one graduate student is working on his Ph.D.

thesis in this area of research.

A Master's thesis by Walter Sheets [3], supervised by L. Kleim-ock,
has resulted in the generation of a simulation language and program for
evaluating the performance of and experimenting with a variety of schedul-
ing algorithms for time-shared systems. This "resource" is to become one
of the standard programs available to users over the ARPA Network.

2.2 Paging Algorithms

Reference [4] (included in this report as Appendix A) considers
various working set replacement algorithms. Page inter-reference inter-
val distribution, average page fault frequency (the frequency of those
instances at which an executing program requires a page of data or instruc-
tions not in the main memeory), average working set size and inter-page
fault-time (time between page faults) distribution for a simulated Work-
ing Set Replacement Algorithm for three typical programs with different
sizes were measured on the UCLA Sigma Executive (SEX) time-sharing sys-
tem via page reference strings. These measured results are reported in
this paper. The average page fault frequency relationships between work-
ing set parameters and process scheduling are discussed. These relation-
ships are useful in planning the working set size and process scheduling
which optimize system efficiency.

2.3 Buffer Behavior

A paper entitled "Buffer Behavior from Mixed Input Traffic and
Single Constant Output Rate," by Chu and Liang [5], is included as Appen-
dix B. A queueing model with limited waiting room (buffer), mixed input
traffic (Poisson and compound Poisson arrivals), and constant service
rate is studied. Using average burst length, traffic intensity, and
input-traffic mixture rate as parameters, there are obtained relationships
among buffer size, overflow probabilities, and expected message-queueing
delay due to buffering. These relationships are portrayed on graphs that
can be used as a guide in buffer design. Although this study arose in
the design of statistical multiplexors, the queueing model developed is
quite general and may be useful for other industrial applications.

2.4 Miscellaneous

Estrin, Muntz and Uzgalis published a paper "Modeling and Measure-
ment and Computer Power" [6], which is included as Appendix C. This paper
provides an informal definition of computer power and three applications
of the definition to issues which will influence our ability to influ-
ence computer systems in the 1970's. For the purposes of the paper, a
computer system is composed of: a centralized hardware configuration; a
set of terminals for entry and exit of user programs and data; and users
and user protocol for entry and exit. There is no accepted measure for
global power or performance of computer systems. There is even no
accepted measure for computer cost. Only when a subsystem or subfunction
is isolated does it become possible to determine key parameters. However,
it is useful to hypothesize such measures and consider influences on them.

2

6

l>

In this way, the first section provides a context for the other sections
by reviewing parameters which make computing systems more or less power-
ful. The remaining three sections of the paper are applications of the
definition. The second section gives a critique of the state of model-
ing. The third section characterizes measurement tools. The fourth
sectirn discusses the role of measurement at the user interface.

A paper entitled "Fisheye: A Lens-Like Computer Display System,"
by L. Kleinrock and K. Stevens, to be published in the Communications of
the ACM [7], considers the potential of a new computer display system.
This system permits global vision as well as local magnification simul-
taneously and has shown to be quite effective in scanning larg« data sets.

3. COMPUTER-COMMUNICATION NETWORKS

3.1 Analysis

A paper by Frank, Kahn and Kleinrock entitled "Computer Communi-
cation Network Design -- Experience with Theory and Practice" [6] is in-
cluded as Appendix D. The design of the ARPA Computer Network brought
together many individuals with diverse backgrounds and philosophies. In
this paper, methods used in the design of the Network are reviewed from
the vantage of over two years experience in its development. The design
variables, system constraints, and performance criteria for the network
are discussed along with an evaluation of the tools used to design an
efficient and reliable system. The design procedures and the conclusions
reached about the network's properties appear to be generally applicable
to message switched networks. Consequently, the results of this paper
should be useful in the design and study of other store-and-forward com-
puter conmunication networks.

Work by Cantor and Gerla [9] has resulted in the acceptance of
their paper, "The Optimal Routing of Messages in a Computer Network via
Mathematical Programming," and gives a computationally efficient exact
algorithm for solving an important clzzz of problems. The problem of
finding the optimal routes for messages in a message-switched computer
network can be, under proper assumptions, formulated as a nonlinear
multicommodity flow problem. Many techniques that solve the most gener-
al cases can be found in the mathematical programming literature; these
techniques, however, prove to be computationally inefficient for the
design of a computer network. For that reason, considerable effort has
been spent in the past in developing heuristic techniques. Quite satis-
factory results have been obtained and the computational efficiency
has been greatly improved; however, all of these techniques have various
limitations. This paper presents an exact method which, by using decom-
position techniques and taking advantage of the particular formulation
of the problem, is computationally competitive with heuristic methods
and is not affected by their limitations.

"Some Recent Advances in Computer Communications," by Chu [10],
is included as Appendix E. Recent advances in computer communications
are discussed, including: 1) computer traffic characteristics in the

case of short holding time representing the inquiry-response r.ystems;
2] telephone channel error characteristics of high speed voice band data
transmission on the switched telecommunication network, and of the low
speed channel at a rate of 300 bits/sec; 3) optimal fixed block size for
communication systems using error detection and retrrnsmission as error
control (yith random or burst error channel); 4) statistical multiplex-
ing (Asynchronous Time Division Multiplexing); 5) loop systems; and
6) security in computer communications. New areas needing further inves-
tigation are included.

G. Fultz completed his work on "Adaptive Routing Techniques for
Message Switching Computer-Communication Networks" [11] under the super-
vision of L. Kleinrock. This Ph.D. thesis will be published as one of
our Computer Systems Modeling and Analysis Group reports and will enjoy
wide distribution. This report considers adaptive routing techniques
applicable to message switching computer-communication networks such as
the AR?* Network. The emphasis i on the prediction of average message
delay and the specification, impl'.mentation and evaluation of various
classes cf message routing procedures. The fundamental operational as-
pects of a message switching network model are presented. This model,
which is based upon the existing Ai ^ Network, is utilized for the form-
ulation of theoretical network pen <nnance measures and is the basis for
a computer simulation program written to obtain the performance of spe-
cific routing algorithms. A methodology for the investigation of message
routing strategies applicable to message switching networks is developed
and six key areas requiring study ^re identified. Known routing tech-
niques are classified into three bro. 1 catagories: 1) deterministic
routing techniques, 2) stochastic routing techniques, and 3) flow con-
trol routing techniques. From this classification, one can determine
which techniques are applicable to theoretical studies and which are can-
didates for operating network algorithms. The remainder of the report
is concerned with the following investigations: 1) network performance
measures and models, 2) specification, implementation and evaluation of
deterministic, stochastic and flow control routing algorithms, and 3)
the impact of a network's size and topology on message routing procedures.

3.2 Measurement Activities

During the period of March 1 through June 30, 1972, steps were
taken to accelerate and broaden the Network Measurement effort, mainly
through the effort of V. Cerf. Two major goals are:

a) the creation of a network measurement laboratory
b) execution of as wide a variety of measurement experiments

as possible

These goals are not restricted to UCLA's Network Measurement Center, but
also include other interested sites around the network. In order to co-
ordinate network-wide measurement efforts, a Network Measurement Group
was formed in mid-March. As chairman of this group, V. Cerf has sought
to initiate cooperative measurement experiments among the network sites.
Two early projects arising from the formation of this group include the

v-

^^ Ä^t^ns^'Ä?at sever.aJsites CUCLA' *™'
Artificial HDST^L'generat^fa^e^^Lf r^ raechani-s-
at cooperating sites (UCLA? 22^«^^ LS.^SJ^ t*^ ^ SmmeT

which is very nearly oneratinnoi *. r «J^ ' QMCGJ- Another project
statistics CauSicalW « oi 5°!: "P t0 COllect mST availability
UCLA also has s^J a si^v nro^f t0 the ^^ method in use at ™) ■
suits from "»^J^^^*^*1™- ^G «ill collect re-

able (perhaps oS-lfne) in net^nLs^nttt^6 ^ reSUltS aVail-

during thSMrS5 ^fl'rL^r' 0n tW0 aSpeCtS of the ne^-k
under heavy locafioad Si ! ? lnvestigation on network behavior
EXPERlMEgr^Has^nltia^ bT'^yJof" vtu* ST »^P^TION
publishe^Tas Network Measurement NntA^rfJij* The res"lts have been
F. Further saturatLn e^erimentfwn? K

[121
 fd T included as Appendix

IMPSYS as soon as it Js ^sta?leJ ^ Performed und^ the new

monitoring of actual tiaf?; ^ TIN^R-M^LELLAN experiment, has involved
are automfticaUy eatJ^fl LH "f" r.IN,CER AFB and McCLELLAN AFB. Data
iation of tie ^ertient TtrTuJ™* ""'" VTOgTm COntro1 after init-
will compare reSus obtained^ ^"f!; ^V " in PreParation which
McCLELLAN. As with the saJur^Lf and.results Published by TINKER and

monitored regula^^^5^^ rL^^riM^rrL^of5^?^ Wil1 be
pared with the old (2510). IMPSYS (62600) will be com-

distribu^Toli^Lrrc^tllmt^^ ^l^^ ^ ^ Fult2 0" **
by actual experi^nmion durSthSn '^ receivin8 IMP "i" be tested
available a^er instana0tilU"nf8tJe"er^sCOmParatiVe reSUltS Wil1 be

laborato^'th^^noiinrsVft^e ^^iTrtaii0n 0f ' mea—nt
cess of being constructed. UPPOrtS haVe been or are in ^ P^o-

0 lo^'folfn^ WhiCh COlleCtS stati«ics messages from the NCP and foraats them into a standardized file format.

2) iSflnd tJZnT* WhiCh PermitS exPerimenters to manually init-
tiJ!^ terminate measurement at the IMP's in the network. II.

F

4) NWC and NTHMP: These programs permit a user to sequence through
the data obtained by NETSTAT, accumulating data and printing out
selected statistics messages (or trace or snapshot messages) ob-
tained from IMF's. This facility is essentially a low level fil-
tering and formatting service.

5) TMPROC: This program accepts as input files from NETSTAT and
produces statistical analyses of traffic length distribution,
delays and transmission rates, and link utilization observed dur-
ing transmissions between TINKER AFB and McCLELLAN AFB. The re-
sults are published separately for traffic from TINKER to
McCLELLAN and vice-versa.

6) SURVEY: This program automatically polls the HOSTS in the net
and collects status information, delay to perform ICP (if ICP is
possible). The resulting data are placed in a file for further
processing (BY DMCG, eventually).

7) GRAPHIT: This program utilizes the IMLAC Fortran graphics package
and permits us to present our results graphically on the two avail-
able IMLAC terminals. Eventually this facility will permit inter-
active monitoring of experiments while they are being run. The
facility will be helpful at the ICCC in October.

The network measurement effort has benefited from the strong support of
the SPADE software staff. In particular, the installation of a time-of-
day clock, a high priority "super queue," and a mechanism for scheduling
interrupts at pre-determined times have made it possible to design a
HOST traffic generator for the SEX system, A programming philosophy is
taking shape, partly as a result of J. Postel's and M. Kampe's programming
work. This philosophy advocates the use of 'HELP' routines embedded in
all user level programs which will respond to the bewildered user's cry
for help with increasingly detailed instructions and explanations. The
mechanism to provide this service will be common to all programs and will
permit programmers to create and modify their HELP sections through the
use of the EDIT program, without the need to recompile or reassemble any
working program. The ease with which such help sections can be provided
will contribute to the quality and quantity of these facilities.

ONGOING PROJECTS

1) Specification of an artificial traffic generator for SDC's DDP-
516.

2) Installation of the SMOG package in the SEX system (under the
direction of C. Maxwell).

3) Design of the Message Switching Protocol Instrumentation (with
D. Waiden of BBN).

4) Preparation of papers for the following conferences:

iO

a) COMPCON 72: "Selected ARPANET Measurement Experiments"
with W. Naylor.

b) WESCON 72: "Selected ARPA Network Measurements"
with H. Naylor.

These papers will contain the results of different experiments

performed on the net.

5) Preparation of a measurement demonstration for ICCC(in conjunction
with R. Kahn. BBN).

3.3 Software Development

This period has been one of a high level of involvement in ARPA
Network protocol development. J. Postel has been particularly active in
Telnet and Remote Job Entry protocol issues and has also participated in
File Transfer and Graphics protocol development. He co-authored a paper
on "Function Oriented Protocols for the ARPA Computer Network" [13] which
is attached as Appendix G. Furthermore, the UCLA-NMC implementation of
the user-Telnet program has been augmented by adding facilities to send
and receive data from/to files. This is a very flexible arrangement and
is further explained in a section of the SEX Notebook (the system refer-
ence manual) titled "The Telnet Switch."

4. CONCLUSIONS

This period, then, has seen some exciting advances in the modeling
of computer systems, particularly in the creation of the general model for
queueing networks. The ARPA Network measurement effort has accelerated
considerably and numerous measurements have been reported already; ongoing
experiments continue at. present. The analytical progress in networks is
also moving along rapidly and new results are forthcoming. The symbiosis
between modeling, analysis and measurement continues to be a healthy one,
and we offer our progress as a prime example of the mutual benefit one
achieves in such a relationship.

11

PUBLICATIONS

1. Muntz, R., "Waiting TUe Distribution for Round-Robin (>ieueing Systems,"
PIB International Sy«posium XXI on Computer-Cowwinicat^ns Network and
Teletraffic, April 1972.

2. Nuntz. P.., and F. Baskett, "Open, Closed, and Mixed Networks of (>ieues
of Different Classes of Cu?to«er$," to be published.

3. Sheets, W., "A Simulator for a Large Class of Scheduling Algorithms
for Time-Shared Computers," Raster's thesis. Computer Science Depart-
ment, School of Engineering and Applied Science, University of Cali-
fornia, Los Angeles, September 1972.

4. Chu, W. W., N. Oliver, and H. Opderbeck, "Measurement Data on the Work-
ing Set Replacement Algorithm and Their Applications," PIB International
Symposium XXI on Computer-Conmunications Network and Teletriffic, April
1972.

5. Chu, W. W., and L. C. Liang, "Buffer Behavior for Mixed Input Traffic
and Single Constant Output Rate," IEEE Trans, on Communications, Com-
20, No. 2. April 1972, pp. 230-23S.

6. Estrin, C, R. R. Muntz, and R. C. Uzgalis, "Modeling and Measurement
and Computer Power," API PS Conference Proc, Spring Joint Computer
Conference 1972, 40:725-738.

7. Kleinrock, L., and K. Stevens, "F sheye: A Lens-Like Computer Display
System," accepted for publication in Communications of the Association
for Computing Machinery, 1972.

8. Frank, H., R. E. Kahn, and L. Kleinrock, "Computer Conmunication Net-
work Design -- Experience with Theory and Practice," AFIPS Conference
Proc., Spring Joint Computer Conference 1972, 40:255-270.

9. Cantor, D., and M. Gerla, "The Optimal Routing of Messages in a Compu-
ter Network Via Mathematical Programming," IEEE Computer Science Con-
ference 72, San Francisco, California, September 12-14, 1972.

10. Chu, W. W., "Some Recent Advances in Computer-Communications," to be
presented at USA-Japan Computer Conference, Tokyo, October 3-5, 1972.

11. Fultz, C, "Adaptive Routing Techniques for Message Switching Computer-
Communication Networks," Ph.D. dissertation. Computer Science Depart-
ment, School of Engineering and Applied Science, University of Cali-
fornia, Los Angeles, June 1972.

12. Cerf, V,, and W. Naylor. "Rand Saturation Experiment Preliminary Re-
sults," Network Measurement Note #2, Computer Science Department,
University of California, Los Angeles.

' 12

13. Crocker, S.. J. F. Heafner, R. M. Metcalfe, and J. Postel, "Function-
Oriented Protocols for the ARPA Computer Network," AFIPS Conference
Proc., Spring Joint Computer Conference 1972, 40:271-i79.

Additional Publications and Presentations

Kleinrock, L., "Computer Networks," in Computer Science. A. F. Cardenas.
L. Presser, and M. A. Marin (eds.), Wiley Interscience, New York, 1972.
pp. 241-284.

Kleinrock, L., "Survey of Analytical Methods in Queueing Networks," in
Computer Networks. R. Rustin (ed.), Courant Institute Computer Science
Symposium III, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

Kleinrock, L., "Performance Models and Measurements of the ARPA Computer
Network," presented at "Reseaux de Calculateurs," Paris, France, May 25-26,

Cerf, V., "Network Measurement," presented at Conference on Resource
Sharing Computer Networks, Montreal, May 31, 1972.

Master's Theses

Kline, C, "LISP Interpreter in a Paged Environment," Master's thesis.
Computer Science Department, School of Engineering and Applied Science,
University of California, Los Angeles, Dec. 1971. Chairman: R. R. Muntz

Sei, K. "Software Design for the Lincoln Wand," Master's thesis. Computer

r1^"?^ P'rtment' Scho01 of Engineering and Applied Science, University
of California, Los Angeles, March 1972. Chairman: L. Kleinrock.

Sheets, W "A Simulator for a Large Class of Scheduling Algorithms for
Time-Shared Computers," Master's thesis. Computer Science Department,
School of Engineering and Applied Science, University of California. Los
Angeles, Sept. 1972. Chairman: L. Kleinrock.

Opderbeck, H., "On Program Behavior and the Efficiency of Replacement
Algorithms," Master's thesis. Computer Science Department, University of
California, Los Angeles, Dec. 1971. Chairman: W. W. Chu.

Tobagi, F., "Comparison of Various Queueing Network Models," Master's
thesis Computer Science Department, University of California, Los Angeles.
Dec. 1971. Chairman: L. Kleinrock.

Wong, J., "Performance Evaluation of the SEX Time-Sharing Svstem," Master's
thesis. Computer Science Department, School of Engineering and Applied
Science, University of California, Los Angeles, Dec. 1971. Chairman:
R. R. Muntz.

13

Ph.D. Dissertations

Cerf, V., "Multiprocessors, Semaphores, and a Graph Model of Computation,"
Ph.D. dissertation (Report No. UCLA-ENG-7223), Computer Science Department,
School of Engineering and Applied Science, University of California, Los
Angeles, June 1972. Chairman: G. Estrin.

Dobieski, W., "Closed Cyclic Queues," Ph.D. dissertation. Computer Science
Department, School of Engineering and Applied Science, University of Cali-
fornia, Los Angeles, June 1972. Chairman: L. Kleinrock.

Fultz, G., "Adaptive Routing Techniques for Message Switching Computer-
Communication Networks," Ph.D. dissertation, Computer Science Department,
School of Engineering and Applied Science, University of California, Los
Angeles, June 1972. Chairman: L. Kleinrock.

14

10

APPENDIX A

MEASUREMENT DATA ON THE WORKING SET REPLACEMENT

ALGORITHM AND THEIR APPLICATIONS

by W. W. Chu, N. Oliver and H. Opderbeck

1 rr

Presented at the PIB International Syn.posiu. XXI on Computer-Communications
Network and Teletraffic, April 1972.

Measurement Data on the Working Set Replacement

Algorithm and Their Applications*

by

W.W. Chu, N. Oliver1" and H. Opderbeck

Computer Science Department
University of California

Los Angeles, California 90024

ABSTRACT

Page Inter-reference Interval distribution, average page fault

frequency (the frequency of those Instances at which an executing program

requires a page of data or Instructions not In the main memory) average

working set size and Inter-page fault-time (time between page fault)

distribution for a simulated Working Set Replacement Algorithm for three

typical programs with different sizes were measured on the UCLA

Executive (SEX) time-sharing system via page reference strings. These

measured results are reported In this paper. The average page fault fre-

quency relationships between working set parameters and process scheduling

are discussed. These relationships are useful in planning the working set

size and process scheduling which optimize system efficiency.

tilallnd^^tSr;^ by Jfe^S- 0ff1ce of Naval ^search, Mathema-
4027 NR olS ?^.ISn.hCi!wCeS DlvJsion' Contr"t No. N00014.69-A-0200-

i* * n!8"129 and the Advanced Research Projects Agency of the Deoart-
ment of Defense. Contract No. DAHC 15-69-C-0285 P

+M1dÄ0f ^ ^ ^ 6eneral MOt0rS ReSMrCh Technical Center. Wa^e".

16

1^ Introduction

Memory mMfm* becomes a severe problem In miiltiprogra-lng and

virtual »emor/ systems. In a multiprogramming system, many programs are con-

currently executed by the processor. Thus the main memory Is shared by many

programs. Since the total size of all of the programs far exceeds the size

of the main memory. In order to keep Infomatlon that «111 be used In the

„ear future In the main memory, the system constantly moves Infomatlon

between several levels of storage media.

In this paper, we consider the case of paged memory systems: that

is. the address spaces are partitioned Into equal size blocks of contiguous

addresses. The paged memory system has been used by many computer systems.

However, the basic page replacement problem of deciding which page should be

kept in main memory and which should be removed when additional space Is

needed Is still little understood and has been of considerable interest.

Obviously, the page «moved should be a page with the least probability of

being needed In the near future. The difficulty lies in trying to determine

which page this «ill be without Incurring difficult Implementation problems

at the same time.

Many replacement algorithms have been proposed and studied in the

past: such as Random. First-in First-out. Stack Replacement Algorithms 1

(for example. Least Recently Used (LRU)), and the Working Set Replacement

Algorithm.^ The first three replacement algorithms require a fixed size

„emory space for each process. The Working Set Replacement Algorithm, how-

ever, requires a variable size storage space for each process and the size

17

varies with program demands. This variable storage space provides an adaptive

capability In the replacement algorithm which Is quite appealing. The work-

ing set principle of memory management states that a program may use a pro-

cessor only If Its working set (set of pages) Is In the main memory, and no

working set pages of an active program may be considered for removal from the

main memory. Properties of the working set replacement algorithm, the rela-

tionships among page inter-reference interval, average page fault frequency

and average working set size for the Working Set Replacement Algorithm are

m
described In a recent paper by Denning and Schwartz.1- ''

Because of the complex nature of program behavior, analytical esti-

mation of the above mentioned parameters of program behavior becomes very

difficult. Yet this information is Important in the planning of an efficient

replacement algorithm that optimize system performance. Therefore we employ

measurement techniques for such estimations. We collect data about the pat-

tern of references to all the pages which comprise the executed program, and

measure these parameters experimentally via Interpretive execution. This
[4]

technique has been used previously to measure dynamic program behavior
[5]

and also to measure the performance of Belady's Optimal Replacement Algorithm

and LRU replacement algorithms.'■ * J

Here we report the measured program behavior of the Working Set

Replacement Algorithm. We shall first report measurement results such as

page inter-reference Interval distribution, average page fault frequency,

average working set size and Inter-page-fault-time distribution. We then

discuss the use of average page fault frequency to determine the working set

parameter, and propose a page fault scheduling algorithm for process scheduling

which Improves system efficiency.

1 18

11. Measurements and Results

The working set W(t,T) at a given time t Is the set of distinct pages

referenced In the time Interval ((t-x+l), t) where T IS called the working

set parameter. The working set size w(t,T) Is the number of pages In W(t,T).

The average working set size S(T) defines as S(T) ■ H1^ i v w(t,T) .
(t*l)

\for systems employing working set replacement algorithms, several parameters

of Interest are: 1) page Inter-reference Interval distribution F(T) which

describes the fraction of the page Inter-reference Intervals less than T;

2) average page fault frequency mfi) which describes the average number of

page faults per page reference for working set parameter T; 3) average

working set size S(T); and 4) Inter-page-fault-time (time between

page fault) distribution P(t,T) which describes the fraction of the Inter-

page- fault-times less than or equal to t for a given T.

F(T) IS a fundamental distribution; It closely relates to the other

three parameters. When we assume that the page reference rate Is one page

per unit time, we know that the page references that result In page faults

are those references whose Inter-reference Intervals exceed T. Thus, m(T) >

1-F(T). It can be shown^ that S(T) « E m(Z). Thus, S(T) Is closely
2-0

related to m(T). l/m(T) Is the average running time between page faults.

Since P(t,T) Is the fraction of Inter-page-fault-tlme less than or equal to

t, 1/m(T) Is the time average of the density function P(t+l,t) - P(t,T};
m

that Is, l/md) • E t-[P(t+l,T) - P(t,T)].
t-1

To employ measurement techniques for estimating these parameters, wo

collect data about the pattern of references to all the pages which comprise

the executed program and measure these parameters experimentally via Inter-

pretive execution. For this purpose an Interpreter for the UCLA S1gma-7

time-sharing system has been developed. This Interpreter Is capable of

r 19
i- <* --

executing Sigma-? object programs by handling the latter as data and repro-

ducing a program's sequence of references. This sequence, In turn, can

then be used as Input to programs which simulate the Working Set Replacement

Algorithm.

Three different programs with different sizes were Interpretively

executed, and their behavior was Investigated under the Working Set Replace-

ment Algorithm. A FORTRAN Compiler was chosen as the representative for a

small program. META-7 was chosen as the representative for a large program.

It translates programs written In META-7 to the assembly language of the

Sigma-7. A OCDL (Digital Control Design Language) compiler was chosen as a

representative for a medium size program. This compiler is written in

META-7. DCDL translates specifications of digital hardware and micro-

program control sequences into Interpretive code.

Table 1 shows some characteristic properties of these programs.

The column 'size' 1$ divided into two parts. 'Static' refers to the number

of pages necessary to store the program as an executable file on a disk

where one page consists of 512 32-bit words. 'Dynamic' indicates the number

of different pages actually referenced while processing the given input

data. The difference between the number of pages in static and dynamic

riiults from the fact that programs creat new pages durinq execution for

working storage areas and that not all pages of programs are reference

during executing a specific set of input data.

20

Table 1. Program sizes of the three measured programs

Size Number of page references

Static Dynamic

FORTRAN 24 34 1.000,000

DCDL 44 58 1,000,000

META-7 84 153 1,000,000

Figure 1 shows the average page fault frequency «1(1) for the three

programs. We note that all three programs exhibit similar page fault char-

acteristics. The average page fault frequency decreases rapidly with T.

Large programs tend to have a slower rate of decrease. The reason for such

characteristics is mainly the locality of the program; that is, during any

interval of execution, a program favors a subset of its pages, and this set

of favored pages changes its membership slowly. Further, the locality for

large programs is usually larger than that of small programs. The page

inter-reference interval distribution F(T) » l-m(T) can be obtained easily

from mfx). The average working set sizes as a function of T are shown in

Figure 2. Measurement data support the premise that average working set size

increases as program size increases and reaches a constant level as T reaches

a certain value. The PU.-O's of the three programs for selected T'S are

shown in Figure 3. We note that P(t,T) is very sensitive to T and program

size. For a given program, the average inter-page-fault-time increases as T

increases. This occurs because for the small T case, many of the pages

to be referenced In the near future are in the secondary memory;

thas the average working set size is very small and yields a high page fault

rate. For the large T case, most of the pages are in the main memory which

yields a large average working set size and a small page fault rate. For

^1

a given T, large size programs have a higher page fault rate than that of

a small size program. In the next section we shall discuss the applications

of these parameters to determine the working set parameters and process

scheduling which improve system efficiency.

III. Applications of Measurement Data

A. Working Set Parameter T

Working Set Parameter x is an important parameter which affects

page fault rate, memory utilization, and thus system efficienty. The measure-

ment data support the fact that x should be chosen according to the execut-

ing program (e.g., locality) and system organization (e.g., available memory

size and the speed ratio between main and secondary memory). If t is not

properly chosen, for example if x is too short, then pages are removed from

the main memory while still potentially useful. This results in high page

traffic between the different levels of memory. If x is too long, then

pages that are not needed may remain in the main memory, which is an

inefficient use of memory space. Instead of choosing x arbitrarily, we

propose to determine x from the measured m(x) and designate it as x . As

a result, x0 is now closely related to program behavior as well as to system

organization.

The efficiency of a program is defined as the ratio of total

virtual running time to total real running time (total virtual time and total

page waiting time); that is.

zz

8

Eff . total virtual running time
total real running time

1
l+in(T)R

(1)

where R » A/T

A • Access time of the main memory

T » Access time of the secondary memory

Since R is fixed for a given system, from (1) we know a fixed average page

fault frequency nix) Insures a certain level of efficiency.

Suppose we would like the system to operate at an average page

fault level of about lO"4 page faults/reference; that is. one page fault

In every 104 page references. Then from Figure 1. T0 for Fortcomp. DCDL

and META.7 are 22. 45, and 54 m sec (1 psec per page reference) respectively.

From Figure 2, the corresponding average working set size is 15. 36, and

39 pages.

Usually in a multiprogramming environment several types of

programs may be concurrently operated by the operating system. The working

set parameter of such a system may either be variable of fixed. In the

variable t case, the T0 should change from one program to another; while in

the fixed T case, the T0 remains fixed for all types of programs. Because

of the simplicity of a fixed T scheme, it requires less overhead to implement

than the variable T scheme. However, the efficiency may not be as high as

that of the variable T case.

One way to determine the value of a fixed T is to use the

weighted average working set parameters of each program; that is.

*>»»

'"•I Iv,0 U)

where T1 - working set parameter for the 1th program that

selected from its md)

u1 » relative usage frequency of the ith program

n ■ total number of distinct programs used in the system

The decision as to which scheme should be used for a given system

should he based on program behavior, relative usage frequency of all the

distinct programs used by the system, and the overhead in implementing these

Schemas.

6. Process Scheduling

In a multiprogramming system, to increase system efficiency and

to reduce response time for short jobs, the job queues for CPU processing

usually have several priority levels. Let us consider a system having two

levels of queues: Short Quantum Queue (SQQ) and Long Quantum Queue (LQQ).

SQQ has a higher priority than LQQ. All jobs enter the SQQ. Processes in

the SQQ are given one time slice at a time. The process is put at the back

of the SQQ after the process either Incurred a page fault or used up the

time slice; that is, the process is serviced in a round-robin fashion. A

process stays in the SQQ until its short quantum time runs out. It is then

put on the front of the LQQ. The LQQ will not be serviced until the SQQ is

empty. A process in the LQQ receives service until its long quantum time

runs out. It is then put at the end of the LQQ.

When a system is properly designed, such scheduling algorithms

yield: 1) fast response time to short jobs, and 2) most of the short jobs

are run in the SQQ and long jobs (compute-bound processes) will run in the

u

u

10

LQQ. Since LQQ provides more memory space for each process than that of

SQQ, such scheduling yields less page swapping.

If the quantum time of the SQQ Is too »hort, then many of the

short jobs will be In the LQQ; If the quantum time Is too long, then many

computational jobs will be In the SQQ. The system Is designed such that most

of the short Jobs finish their processing In the SQQ and only the compute-

bound processes enter Into the LQQ. The short quantum time should be larger

than the average real process time of short jobs. However, the process time

varies from one process to another. In addition, the processing time Is

further complicated by page faults occurring during Its execution.

The real processing time of a process Is the sum of the virtual

process time and the total time waste<f due to page faults of that process.

For example, two processes requiring the same amount of virtual CPU orocess-

Ing time could hive very different page fault frequences, and thus yield very

different real processing time. Therefore the real processing time Is

extremely difficult to estimate.

We knoi« that page fault frequency has great Influence on system

efficiency and the response time of the short jobs. We propose to use a

page fault as a measure In process scheduling; that Is, when a process

exceeds a certain number of oage faults or exceeds the quantum time of the

SQQ (whichever occurs first), then the process switches from the SQQ to the

LQQ. We shall call such a scheme a page fault scheduling algorithm. In a

multiprogramming environment, the CPU Idle times due to page swapping between

main and secondary memories are directly affected by the page fault frequency.

The paoa fault scheduling algorithm should be effective In reducing CPU Idle time

And Improve system efficiency. (See Appendix).

For a systea operating In a ciultlprogracalng äiivlrcnocnt uc sitould aUo

Include the time spent In waiting for the availability of CPU.

EL &

II

Precedes with high page fiult rates occupied in the wain memory

greatly reduce th* efficient utilization of main memory. The page fault

scheduling algorithm adaptively allocates the low page fault rate processes

in the main memory and higher page fault rate processes in the ^eco^^ary

memory. Thus such scheduling improves the utilization of main memvy. As

a result, this will improve the average response time of the system. An

analogy to the above scheduling algorithm is the well known "serving the

shortest job first" algorithm in queueing theory that results in improve-

ments in average waiting time; except in our case we have further improved

the memory utilization efficiency.

The number of page faults occurring during processing before

switching a process from a SQQ to a LQQ depends on the response time required,

the number of processes operating concurrently, the replacement algorithm

used, and page fault frequency characteristics. Further study in this area

is needed.

In order to reduce response tine, the quantum time of the SQQ

and LQQ are further divided into man> time slices. The optimal slzi* of time

slices is another Important parameter that affects system efficiency. The

time slice should be selected such that most of the processes either page

fault or become inactive before running out of the time slice. Since P(t,T)

describes the iiiter-page-fault-time distribution of a process for a given T,

the time slice for the Quantum Queues can be determined from P(t,iK For

example, if we wish 95X of the time that the process will page fault before

running out of the time slice -- that 1$, only 5X of the time the process

will run to the end of the time slice -- then from Figure 3 we know

W>

12

the tine slices of the LQQ for T - 10 m sec are: 28 m sec for the FOKIRAN

Compiler, 13 m sec for DCDL, and 12 m sec for META-7. Time slices for T - 25

■ sec are: 58 m sec for the FORTRAN Compiler. 38 m sec for DCOL, and 35 m sec

for META-7. Thus, the measured Inter-page-fault-time distribution provides

a good way to determtiethe optimal time slices for the Quantum Queues which

avoids excessive unnatural Interrupts that degrade response times.

The pa^e fault scheduling algorithm, as well as the selection

of the time slice form Inter-page-fault-time distribution, a «e quite general

and can be applied to other types of replacement algorithms.

VJ: Conclusions

Page Inter-reference Interval distribution, average working set size,

average page fault frequency^and Inter-page-fault-tlme distribution for three

typical programs with working set replacement algorithms are measured and

reported. Measurement results support program locality and the following

working set properties: the average page fault frequency decreases rapidly as x

Increases and Increases as program size Increases. Based on these measured

data, working set parameter and process scheduling may be selected from and

based on the average page fault frequency. The time slices for the Quantum

Queues my be determined from Inter-page-fault-tlme distributions. A page

fault scheduling algorithm is proposed for process scheduling in a multi-

prograaring environment. Such an algorithm 1$ effective in reducing CPU idle

time and improve system efficiency.

♦The three measured programs are not short jobs; they should be run In LOO

STSTÄ ^rd p(t,T,'s '""*'* ** "^ °f"- ™«"'"

Z7

13

Although the Working Set Algorithm provides an upper bound on replace-

ment algorithm performance, the high cost of implementation prevents it from

being widely used. Therefore future research should be In developing low cost

hardware devices for economically Implementing the Working Set Algorithm or.

perhaps even more fruitful. In developing new replacement algorithms that

have performance comparable to that of the Working Set Algorithm but are much

easier to Implement. For example, we have recently studied a Page Fault

Frequency Replacement Algorithm. Such an algorithm adjusts the LRU (Least

Recently Used) stack according to page fault frequency. Preliminary results

already Indicate it has excellent performance.

Acknowledgement

The authors wish to thank P.E. Denning of Princeton University for his

critical comments on this paper.

'> 8

14

APPENDIX

A Cyclic Queuelng Model to Study CPU and I/O Operations

To Illustrate the relationships among CPU Idle time, average page

fault frequency and swapping time (time to bring In a new page from the aux-

iliary memory) T, a cyclic queuelng model'-8^ Is used to study CPU and I/Ü

operations. The system In Figure 4 consists of two classes of service facili-

ties. Service facility class I represents a single CPU; Its service rate Is

directly determined by the average page fault rate* X. Service facility class

II represents k parallel I/O servers with each having an average service rate

y ■ y . The k parallel servers represent, for example, a paging drum with k

different sectors. Using such I/O facilities, a high degree of overlap of I/O

requests can be achieved In a multiprogramming system with relatively low page

fault frequency.

Let P^j be the probability that a job leaving server 1 will proceed

to server J. We assume that the job leaves CPU (server 0) and goes randomly

to the k I/O servers for service; thus POJ a F • for -^ ' 1» 2 *k' Since

jobs which have finished their I/O operations always return for CPU operations,
P10 ' 1 for 1 ■ 1, 2, k; and all the other P^j's are equal to zero.

Let N be the total number of jobs In the system, and let n, denote

the number of jobs In service plus the number In queue at the 1th server. The

state of the system can then be determined by the k + 1 tuple (n^n,,...^.)

In which T, ni ■ N. The number of distinguishable states of the system—equal

to the number of partitions of N customers among k + 1 servers—Is (NLk).

•For a system using Working Set Replacement Algorithm with parameter x, then
X ■ m(T).

r ^9

15

Let P(n0,n1,...,n|C) be the stationary probability that the system is

in state (nQ,^,...^), and let all the service times be assumed to be ex-

ponentially distributed. Then the steady state equations can be written in

the form:

e(n0) X + £ eCnj) u P(nQ«n^,...,nk)

■ ^ e(nj) X P0j P(n0+lin1....,nj-l,....nk)

J«1

+ £ e^ v pi0 p^no"1,nl Vl.-.-.nk)
i«l

where the indicating function

eCnj) if n. - 0

if n. ji 0

(Al)

accounts for the impossibility of any customer leaving the jth server if that

server is empty.

The left hand side of (Al) represents the rate of transition out

of state (nQ.n^...^); and the right hand side is the rate of transition into

this state. Solving (Al) by a method of separation of variables^, we have

•'nQ»n»|...t

1-1 V /

/a\N-n0

W "feWFlfe/ (A2)

where a » \/\i and the normalizing function G(N) is determined from the fact

that the sum of all the P(n0,n1 nk) is equal to 1. Thus

30

lü

k 1»! W

1-0 1

0 (A3)

/N-n0+k-l\
where ^ k-1 yis the number of distinguishable partitions of N-n0 jobs among

k I/O servers.

The probability that the CPU is idle is

P0 ' S P(0¥n1,n2f....nk)
k
En.-N

1-1 1

. 1 /WlVaV

N
For the case k « 1, then (A4) reduces to P0 » Jf

(A4)

A«1

For the case N » 3 and k « 6, the values of PQ'S for selected o's

are shown in Table II.

31

17

Table II P0 vs. a

a !o
0.25 0.003

0.50 0.019

1.00 0.091

1.50 0.187

2.00 0.278

2.50 0.362

3.00 0.431

3.50 0.488

4.00 0.537

4.50 0.577

5.00 0.612

We note that a Is the ratio of average page swapping time (from

secondary memory) to average Inter-page-fault-time. A large a Implies large

page swapping time or small Inter-page-fault-time (high page fault frequency),

or both. Thus the probability of CPU Idle time Increases as a Increases.

Hence, the page fault scheduling algorithm should be effective In reducing

CPU Idle time and should thus Improve system efficiency.

32

REFERENCES

1. Mattson. R.L. et al., "Evaluation Techniques for Storage Hierarchies."
IBM System Journal, Vol. 9. No. 2, pp. 78-117, 1970.

2. Denning, P.J., "The Working-Set Model for Program Behavior," Coimmi-
cations of the ACM, Vol. 11, No. 5, pp. 323-333, May 1968.

3. Denning, P.J. and S.C. Schwartz, "Properties of the Working Set Model,"
Proceedings of the 3rd ACM Symposium on Operating System Principles,
October l971.

4. Fine, G.H., C.W. Jackson and P.V. Mclsaac, "Dynamic Program Behavior
Under Paging," Proceedings of the 21st National Conference on ACM,
pp. 223-228, 19?r

5. Belady, L.A., "A Study of Replacement Algorithm for a Virtual-Storage
Computer," IBM System Journal, Vol. 8, No. 2, 1966.

6. Coffman, E.G. and L.C. Varian, "Further Experimental Data on the Behavior
of Programs in a Paging Environment, "Conwunications of the ACM, Vol. 11,
No. 7, pp. 471-474, July 1968.

7. Joseph, M., "An Analysis of Paging and Program Behavior," Computer
Journal. Vol. 13, No. 1, February 1970.

8- Gordon, U.T. and G. F. Newell, "Closed Queueing Systems with Exponential
Service/ Operations Research, Vol. 15, No. 2, Aoril 1967, nn. 245-265.

33

^ 10 -2

|

E
>- o z
UJ

O
UJ
Q:

10 rZ

Ul o

UJ v

o
<

UJ

10 r5 -L

FORTRAN

.L ± ±
10 20 30 40 50

WORKING SET PARAMETER T^msec)
60

Figure 1. Average page fault frequency in(T) as a function of
working set parameter T.

34

10 20 30 40 50
WORKING SET PARAMETER T,(msec)

60

Figure 2. Average working set size S(T) as a function of
working set parameter T.

35

u

Cl

(%)'(i •■»)<)

36

o
*•

<D
to

CM
ro

0)

GO E c
CM o

•H

^J

UJ
^ 2 *->

•s.
CM '"

H o
i E

O
CM ü

3

t-

3

< U.

U.
QO

CD 1 a. J
UJ
^ 4-1

2 C •
P-H ,0

CM
■~' 1 t^

Q: S

iV\

UJ 3
•r-l
U.

- ^

o o o o o o o o
o a> 00 N CD in ^r K)

(%)U^)d

37

'.'

J

j

.,•■

c
o

i o

a i u, o
I u

i>
00 t^

a. r.

0) s:

- (0 UJ ^

m
o E
9

(%)U'i)d
f 38

^"liiiH^p")

Figure 4. A Cyclic Queueing system for
modeling CPU and I/O operations

39

APPENDIX B

BUFFER BEHAVIOR FOR MIXED INPUT TRAFFIC AND SINGLE

CONSTANT OUTPUT RATE

by Wesley W. Chu and Leo C. Liang

10

.

IKK; TR«NHU-riONH ON COM M I'NICftTIONH, AI'NII. 11172

tnffic inltatit;, »nd input-trafflc miilure rate is parunelerc, we
obuin reUlionthipt among boiler »iie, overflow probabilities, and
expected (neeaa<c-<)ueuein(delay due to bttflering- These relation-
shipt are portrayed oo (rapha that can be uaed aa a guide in buffer
deaifB. Although this atndy arose in the design of statistical multi-
pieiors, the queueing model developed ia quite general and may be
uaetal (or other industrial applicationa.

Rrprinled by permiuion from
IEEE TRANSACTIONS ON COMMUNICATIONS

Vol COM W. No. 2. April 1972
Copyriiht © 197J, by Iht InUilutc of Electrical and Electronic! Enfinrcri, Inc.

PRINTED IS THE I'.S.A.

Buffer Behavior for Mixed Input Traffic and Single
Constant Output Rate

WESLEY W. CHU, MEMBER, IEKE, AND LEO C. LIANG

Abttracl—A queueing model with limited waiting room (buffer),
mixed input traffic (Poiaaon and compound Poiaaon arrivala),
and constant aenrice rate ia studied. Using average burst length,

Paper approved by the Data CommuBieatioiu Committee of the IEEE
Communication« Boeiely for puMiration without oral preeentetion Thb raaesreh
<vaa aupporteH hy the U. S Ofllce of Naval Reaearrh. Reaearch Procram Oflce.
Contract NOOO14-6»-A-0300-4027. NR 048-1» Manuaeript received July K Hfl
reviaad October 10.1071.

The aulbore an mith the Vnivenily of California. Loe Anaele«. Calif. 90024.

I. I NTHOOtRTION

In many enginpenng problems surh ns oomputer-storagr
.•»lloration, data comprrasion. and data communication [1],
buffer design is one of the important considerations. Birdsall
ft al [2], and later Dor [3] have analysed buffer behavior
with Poisson input arrivals and consttutt output rate. Chu
f4) has studied the buffer behavior of a similar model with
multiple synchronous constant output rates. He has further
studied buffer behnvior for batch Pnisson arrivals and a single
constant output rate 15] In many data communication sys-
tems, input traffic is n mixture of bursts (string of characters)
and single characters For example, in a computer communi-
cation system, the cathode-ray-tube terminal outputs arc in
bursts and the teletypewriter outputs are «n characters Buffer
behavior with such mixed input traffic is studied in this paper

For a given mixed input traffic and a constant output rate,
we are interested in 11 the relationship between overflow
probability (the average fraction of the total number of arriv-
ing characters rejected by the buffer) and buffer site at various
traffic intensities, and 2) the expected queueing delay due to
buffering. These relationships are obtained by a technique
similar to Chu [IJ. The results in this paper represent a
generalisation of his work.

II. ANALYSIS OP BvmH BEHAVIOR

Let us define the time to transmit a character on the multi-
plexed line as a unit service interval. The input traffic arriving
at the buffer is assumed to be a mixture of single-character
inputs and burst (string of characters) inputs. The single-
character input X is assumed to be Poisson distributed, with
s rate A, characters per unit service interval as shown in (1).

m hi exp(-X,), 0, 1,2,

The characteristic function for /,(*) is

pt{u) - exp (-X, + X, exp (iu)].

(0

(2)

For burst input traffic, we assume the length / of the burst)' is
geometrically distributed with mean I ■ 1/9, and the number of
bursts Z arriving during a unit service interval is Poisson distri-
buted with a rate Xc bursts/unit service interval. The distribu-
tion of I is

MO - #0 - »)' 1-1,2, (3)

and the distribution of the number of burst« arriving during
a unit service interval is

x;
71!

(4)

The total number of characters due to burst inputs that
arrive during the time to transmit a character on the multi-
plexed line is a random sum and equals

Zv. (6)

..< —

where K,, a random variable distributed as (3), is the num-
ber of characters contained in the ith arriving burst and Z,
a random variable distrihutod as (4), is the total number of

41

CONCISE PAPCM 231

bursts arriving during the unit service interval. All of these
random variables are assumed to be statistically independent
of each other. It can be shown that 4*(u), the characteristic
function of 5 [5], is

4«(u) - exp | -X. + X.»

•exp(tu)/(l-(l - »)exp(iu)l|. (8)

and f,(j) (the probability that exactly ; characters will arrive
due to burst arrivals during a unit service interval) has a
compound Poisson distribution

/.Ü)

exp (-X.),

J

i

1,2,

0. (7)

For mixed traffic of single-character inputs (Poisson) and
burst inputs (compound Poisson), the probability that exactly
n characters arrive during a unit service interval n. is the
convolution of /*(*) and />(;); that is,

n. - /,(n) • /x(n)

.(M)M-r'exP(-X.)+^exp[_(x> + Xt)]

n- 1,2,

n. - exp (-(X, + X.)l.

The characteristic function for TT. is

(8)

- exp | -(X, + X.) + X, exp (iu)

+ X.» exp (iu)/[l -(!-») exp (<«))).

The time required to compute IT. from (8) is dependent
on n. For large n (e.g., n > 1000), the computation time is
prohibitive. Using the same technique as [5], we compute JI.
via the fast Fourier transform (FFT) inversion method as
follows:

1 ""'
11, - -jj 2*«x(r) exp(-2)rtm/M),

M r.o

n - 0, 1, 2, • • • , ilf - 1

where

r mu/M,
i {-l)"';
M total number of points used to represent 4«x(r)

number of 11..

(10)

total

In order to determine 11. accurately, they are computed with
double precision on the IBM 360/91 at the University of Cali-
fornia, Los Angeles. Furthermore, we want to use as many points
as possible to represent 4ax(T)', that is, we want to make At as
large as possible. Because of the word-length limitation of the
computer, double precision provides 15-digit accuracy. Therefore,
when 11. < 10-l>, it is set equal to aero. M is selected such that
nn>it < 10-". The M is different for different values of X,, X.,
andf.

Since the buffer has a finite site of N, an overflow will result
when a character arrives at the buffer and finds the buffer is full.

Thus, the average-character departure rate from the buffer
(carried load) ß is less than the average-charactpr arrival rntr at
the buffer (offered load) 7 * X, + Xf 7. The carried load can he
computed from the probability that the buffer is busy; that is,
^ ~ 1 — p«, where p(is the probability that the buffer is empty,
which can be obtained in the exact manner as in |5|.

The traffic intensity p measure« the degree of eongeation and
indicates the impact of an input traffic stream upon the departure
stream. Since the offered load is represented in a unit service
interval, p -> 7 ■* X, + X,?.

The overflow probability of the buffer (the average fraction of
the total number of arriving characters rejected by the buffer) is

P.,
offered load — carried load

offered load = 1-/3/7. (ID

Let a be the input-traffic mixture rate that describes the
percentage of the traffic contributed by compound Poisson
arrivals. Clearly, 1 — a is the percentage of the traffic con-
tributed by Poisson arrivals. Thus,

and

a * X,[/p

1 - a = Xp/p.

In the preceding analysis, we have treated each character
as a unit. However, in computing the expected message delay
D due to buffering, we should treat each message as a unit.
The strvice time is the time required to transmit the entire
message. When the buffer size JV is large, for a line with a
constant transmission rate, the service-time distribution is the
same as the message-length distribution except scaled by a
constant transmission rate factor. The message-length dis-
tribution for the mixed input traffic of length m is

Mm) - Xp + X.
«(m) +

X,+ X. 0(1 - 6)'

(9) where

6(m) {'■

m = 1, 2, 3,

m - 1

m > 1.

(12)

When the overflow probability is very small, a good ap-
proximation for the expected message delay can be computed
from a queueing system with infinite waiting room [4]. The
expected queueing delay for an M/G'l (Poisson arrivals
/general service/single output) queueing system is

\Eli
2(1 - p)

(13)

where

X - X, -I- Xc

^m«] « second moment of M»n).

It can be shown that

FAm*] -{\K + M2 - 0)/n

Substituting (14) into (13), we have

(14)

D ■ —,—-—r + -^ — , character-service-times.
2(1 - p) 1 - p

(15)

42

232 IEEE TRANSACTIONS ON COMMUNICATIONS, APRIL 1972

ICr'i i ■

lO"

I
if «-'

icr»

lO"'

ior«l—I

i i i i i—'—a"**

10-

lO"*

i—i—i—lice»

•o-»

ID"'

10:

lO"

t "0-
J

S
S I
s
i lO"*
E i

10"

0 SO «0 90 120 ISO 1*0 210
■urn* LENGTH (CHARACTERS).!«

lO-*!—»■

I I 1 1 '

• • I 00

10 :

10-

lO'

lO""

-. lO"'

-I 1 110"*
0 100 200 SOO 400 SOO COO 700

•UffER LENGTH (CHARACTERS I. N

(a) (b)

200 400 MO ROO 1000 1200 1400
■UPPCR LENGTH (CHARACTERS >.N

(c)

400 tOO 1200)«00 2000 2400 2MP
•UTFER LENGTH (CHARACTERS), N

(d)

fig. 1. Buff« Iratlh S vtnu* overflow pntebUity P,i for timfla iatmity * - O.SO. (•) J - 4 ehuaetan. (b) (- 10 chaneUn. (o) 1 •SO
ehaiacUn. (d) I - 40 eharactan.

43

OONCIi : PAFtM 333

"O-'r—r-

30 «O W IM ISO HO 210
•UFFCR LENGTH (CHARACTCNSI. N

•O-'r

ft
t to-*

g
i to-«

10"

io-»l—t.

a Iff'

IO-

- lO"'

-.Iff'

lO"*
100 ZOO SOO 400 500 600 700

•UTFER LCMTH (CHARACTERS). N

(b)

KT*«—r 1—r—aier'

- lO'4 tOT« r

ZOO 400 MO MO 1000 IZM 1400
■urrCR LEH6TH (CHARACTERS).«

0 4M MO IZM ISM 2000 Z4M ZSOO
MFFER LENGTH I CHARACTERS). N

(•) <d>_
Fj«. 2. N vmuM P.i lor * -0.70. (»jT - 4 «IwneUn. (b)T- 10 ehaneUn. (d T - 20 ohsraetm«. (<1)T- Mehanetcn.

44
.

234
ICn TRANSACTIONS ON COMMUNICATIONS, APBIL 1972

,0Vo ' »0 ÜÖ 150 J«0 HO 140 2T0
•Urre« LENOTMCCMAMCTeWI.H

100 200 500 400 500 600 TOO BOO
■UFFER LENGTH (CMAWCT£«),N

<b)

200 400 600 600 1000 1200 1400 1600
■UFFEft LENGTH (CHARACTERS), N

"400 600 1200 1600 2000 2400 2600 52
■UFFER LENGTH (CHARACTERS). N

(.) _ (<!)_
Fi«. 3. N v»nu« P.i «or p - O.SO. (•)! - 4 ehincMn. (b)T - 10 ehumcun. (c)T - JO eharaetm. (d) I - 40 ehutctan.

45

230

IV. CuNcumiuN

A finite waiting-room queuing model with mixed input
traffie and constant output rate has been studied. For a
given traffic intensity and a given input-traffic mixture rate,
buffer behavior (in terms of buffer overflow probability and
average queueing delay) lies between that for Poisson input
arrivals and that for compound Poisson input arrivals. When
the traffic mixture rate a approaches zero, the buffer be-
havior reduces to the Poisson input case. When « equals one,
the buffer behavior corresponds to the compound Poisson
input case. The numerical results for buffer behavior are por-
trayed in graphs that are useful in buffer designs.

HEFEHENCES

|l| W. W. Chu. "Dwign coruideratioiM of atrntMlirtl multipUxora." in Pror. ACM
Symp. Problem» in the OvtimitaUon of Data Communieaiion Syttemt. 1969.
Pine MounUin City, Ga.. pp. 36-60.

|2| T. G. Birdull, M. P. Riltenbktt, and S. H Weiiutrin. "Analyiia o(aayn-
chronoua time multiplexinR of speech sources." 1HE Trane. Commun. Syet.,
vol. C8-10, PP 390-397, Dec. 1962

t3| N. M. Dor. "Guide to the length of buffer storaKcmiuired fur ranilum (PuiMum
input and constant output rates," IEEE Trane. Elerlron. (ompul. (Short
Notes), vol. EC-16. pp. 683-684. Oct. 1967

|4| W. W. Chü. "nuffer behavior for Poisson arrival and multiple synchronous
corstant outputs." IEEE Trane. Compul.. vol. C-19. pp. S30-534. June 1970.

IS) . "Buffer behsvior for batch Poisson arrivals and single cunstsm output."
IEEE Trane. Commun. TwWl.. vol. COM-18. pp. 6i:i-618. On 1970

(61 K Fuchs and P. K Jackson, "Estimates of distributions of random vanal/lea for
certain computer communication traffic models." Commun. Aee. fomput
Mach . vol. 13. pp 7S2-757. Dec. 1970.

10 20 SO 40 SO 60
WCRME BURST LENGTH (CHARACTERSI. /

7C

Fig. 4. Average bunt length I versus eipected
rate a - 0.S

delay D for traffic mixture

III. DISCUSSION OF RESULTS

The relationship of buffer length to overflow probability has
been computed for selected traffic intensities p, the expected
burst length I, and input-traffic mixture rate a as shown in
Figs. 1-3.

The overflow probability depends upon the N, p, I, and a. For
a given buffer siie N, the overflow probability increases as p,
I, and a increase. For a given overflow probability, the required
buffer site increases as p, I, and a increase.

In our analysis, we have assumed that the burst length is geo-
metrically distributed and takes values from one to infinity. In
practice, however, the maximum burst length is limited to a
finite number of characters. Because of the long-tail effect of the
geometric distribution, the result obtained here will be more
conservative than that of a truncated geometric distribution.

When the average burst length I equals unity or when the
input-traffic mixture rate a equals zero, the model reduces to the
Poisson arrivals with constant output rate, which has been
obtained by Birdsall et al. [2], Dor [3], and Chu [4]. When a
equals unity, then the model reduces to batch Poisson arrivals
with a constant output rate, which has been analyzed by Chu (5).
For given p and /, the buffer size required to achieve a desired
level of /*„(is not simply proportional to a. For a desired level
of Pöt, Nl (the required buffer size for average burst length I) is
much greater than I • Nt, where iVi is the required buffer size for
burst length of one (Poisson input arrivals).

The expected message delay D due to buffering (calculated
from an M/G/l system with an infinite waiting room) depends
upci or, p, and I For a given p and a given I (or a), from (15)
we note that D is linearly proportional to a (or Z). This agrees
with our intuition that for a given traffic intensity, the message
delay increases as the message length increases and as the amount
of bunt input traffic increases. The relationships between I and
D for a — 0.5 and selected p are portrayed in Fig. 4.

46

APPENDIX C

MODELING, MEASUREMENT AND COMPUTER POWER

by G. Estrin, R. R. Muntz and R. C. Uzgalis

47

Reprinted from —

AFIPS — Conference Proceedings
Votum« 40

® AFIPS PRESS
Montvcl«, N.J. 0764S

Modeling, measurement and computer power*

by G. ESTRIN, R. R. MUNTZ and R. C. UZGALIS

Vnivmity of California
Los Angeles, California

INTRODUCTION

Since the early 1960s Hio literaturo»52 reveals
increasing concern with effectiveness of information
processing systems and our ability to predict influences
of system parameters. A recent survey paper" discusses
methods of performance evaluation related to three
practical goals: selection of the best among several
existing systems; design of a not-yet existing system;
and analysis of an existing accessible system. The
classification of goals is useful, but wo can point to
neither the models nor the measures iior the measure-
ment tools to allow reliable judgments with respect to
those three important goals at this time.

We choose to discuss three issues which do not fail
cleanly into Lucas' categories but which are certain
to influence our ability to evaluate computer systems
in the 1970R. The three issues are: effectiveness of
models of computer systems; requirements to IK- met
by measurement ex|>eriinents; and application of
modeling and measurement to the user interface with
computer systems.

The first section provides n context for the other
sections by reviewing parameters which make com-
puting systems more or less |)owerful. The second
section gives a critique of the state of modeling. The
third section characterizes measurement tools. The
fourth section discusses the role of measurement at
the user interface.

COMPUTER POWER

We consider a computer system to be composed of:
a centralized hardware configuration; a set of terminals
for entry and exit of user programs and data; an
operating system; public programs and data bases;

• This research was supported by the National Science Foun-
dation, Grant No. GJ 809.

user programs and data; and users and user protocol
for entry and exit.

There is no accepted measure for global power or
performance of computer systems. There is even no
accepted measure for computer cost. Only when :,
subsystem or subfunction is isolated does "it become
possible to determine key parameters. However, it is
useful to hypothesize such measures and consider in-
fluences on them.

Let us, therefore, define a conceptual measure which
we call computer system power, l\ as a multivariate
polynomial function whose coefficients are sigiuficanee
weights. We would, of course, like to have a set of
orthogonal functions whose independent variables
correspond to measurable parameters but that state
of happiness is not apparently within reach. In an
attempt to exemplify our philosophy, the authors
discuss a set of variables which should influence P
keeping in mind that derivation of a figure of merit
wotdd require dividing P by some measure of cost.

We intuitively expect computer system power to
increase if the:

• execution time of any CPU instruction is decrea-ed
• access time of any memory subsystem is decreased
• transfer rate to or from any memory subsystem is

increased

• transmission rate of any buss structure is increased
• transfer rate to and from any input or output de-

vice is increased

• delay in resource availability is decreased
• error recovery time is decreased
• numl)er of useful public programs is increased
• performance of any public program is increased
• access time to any public data base is decreased
• arrival, execution, and departure rates of user

programs are increased

• execution time or resource requirement of any user
program is decreased

725
48

726 Spring Joint Computer Conference, 1972

• number of effective users increases
• amount of protocol for any user decreases

In a deeiHT, even more qualitative sense, we expect
a computer system to IH

1
 more powerful if the following

conditions hold:

• system manager has a model permitting adaptation
to changing load

• errors and system imbalances are reported to
maintainers and developers

• program documentation and measurements permit
modification with few side effects

• average number of user runs before correct execu-
tion is decreased

• the quality of any user program increases in the
sense that there is more effective use of a source
language on a given computer system.

Although the above observations are useful in
stating expected events of concern they ignore inter-
actions l)etween such events and give no indication
of weighted importance of the individual events. We
further characterize our systems by the following
simple remarks.

If the time required for every physical transition to
reach its new stable state were halved, wo would expect
throughput of the system to double. If only some of
the events were reduced in transition time, we could
no longer guarantee that there would be a reduction
in computation time because the scheduling of events
is a function of starting and stopping times of con-
current processes. Anti-intuitive anomalies23'J are
disturbing but do not keep us from conjecturing that
they occur only infrequently. If we neglect anomalies,
then we cannot expect change in execution time of
any one instruction or any one routine or any one
compiler to produce a decimal order of magnitude
change in a sensibly weighted function of the above
parameters. Given reasonable measurement tools and
design of measurement experiments we conjecture
that somewhere between 10 percent and 50 percent
improvement in performance can be accomplished for
most systems by changes in assignment and sequencing
of resources. Although these percentages do not seem
dramatic in their impact, the absolute number of
dollars or number of computer hours which would
become available is far from negligible.

In contrast with the heuristic probing and tuning
of a given system, much greater impact is possible
at the user interface with a computer system and by
advances in models, particularly validated models of
our computer systems. For example, we would guess

that there are more than 10 attempts to run a program
during its development l)efore it runs once "correctly."
For complex programs the ratio of numbcr-of-corrcct-
runs to numlMT-of-runs can approach zero. Hence, if
the user interface can l)e altered so as lo increase the
probability of a correct run, large benefits may result.

The effect of model development is a more sophis-
ticated and qualitative issue. It is self evident that to
the extent that we can predict liehavior of even a
subsystem through modeling, we can hope to isolate
important parameters and the way they affect per-
formance. In fact, only through modeling efforts can
we generalize experimental results at one center to
apply to many others. Furthermore, it has been
recognized that simulation is the most widely used
tool in evaluation of systems. If simulation depends
upon precise imitation of a computer system, its
development cost is generally prohibitive and it is
fraught will all the unreliability associated with one-
shot development. Effective simulation depends upon
validated approximate models of systems and of user
programs. Creation of such strong models is the most
difficult of our tasks. However, the very process of
validating or invalidating simplifying assumptions
used in models can lead to new algorithms and im-
proved models. Margolin, Parmelee and Schatzoff3'
very competently demonstrate this effect in their
recent study of free-storage management algorithms.

In this section we have taken cognizance of the fact
that there is no simple (or even complex) formula for
computer performance. The reader's attention has
been focussed on the last five in the list of factors
affecting computer performance because they offer
so much more return. The following sections review
work in analytic modeling, measurement, anil the user
interface.

CRITIQUE OF ANALYTIC MODELING

Any system design, any measurement project or
any resource allocation strategy is based on some con-
ception of the environment in which it operates. That
conception is i model. It is Iwmeficial to have such
models explicitly stated so that they can be explored,
tested, criticized and revised. Even better, though not
often achieved to the extent desired, is a formal anal-
ysis of the models.

Models and methods of analysis vary greatly. Our
concern here is with probabalistic models of systems
and processes and also with discrete graph models of
programs. The goals of these analyses are both insight
and quantitative results to influence the design of

43

Modoling, Measuremont and Computer Power Hi

systems, resource allocation stratepes ami possibly
the design of langaages.

While most will argue that the goals of such analyses
are inherently worthwhile and must be pursued, there
is widespread dissatisfaction with the current state of
the field. Basically, there are three major areas of dis-
satisfaction. First, the models are generally over-
simplified in order to make them mathematically
tractable. This obviously makes the results questionable
and brings us to the second major failing which is that
analytic results are often not validated by measurement
or simulation. Moreover, in cases where system evalua-
tion studies are carried out, the existing models do not
seem powerful enough to provide a uniform basis for
measurements. The third major criticism is that most
of ihe literature on analytic modeling is a collection
of analyses of specialized models. This points up the
lack of very general powerful results which would
allow analysis to become an engineering tool. As it is
now, each new situation almost always requires a
separate analysis by an expert.

While the above are substantial criticisms, this is
not to say that analysis has not had its impact. We
can cite, for example, the working set model of program
behavior," the work on stack algorithms,41 studies of
time-sharing and multiprogramming system resource
allocation and analyses of I/O scheduling,«4»
the work on data transmission systems and on
networks"15" and the work on graph models oi"
programs.4,>-!'J7MM-t47l0M

Promising areas of research.

Multiple resource models

Much analytic work has dealt with single; resource
models. The reason for this is clearly that most of the
analytic tools which are available apply to single re-
source environments. The computer system analyst
is typically not a mathematician developing new tools
but is generally engaged in applying existing tools.
Nevertheless, computer systems are multiple resource
systems and we must learn to analyze such systems.

Some recent studies of multiple resource models of
computer systems have been made using results by
Gordon and Newell.21 The general model considered
by Gordon and Newell is one in which customers (or
jobs) require only one resource at a time, but move
from one resource to another. An example is illustrated
in Figure I for three resources.

The nodes in this figure represent resources and the
arcs represent possible transitions from one resource
to another. When a customer has finished at resource i

Figure I—Exiimplf network of queues muucl

he moves to (requires) resource j next with proba-
bility I',,. The arcs are labeled with these probabilities.
The service time at each resource is assumed to be
exponentially distributed. This is a closed system
meaning that the number of customers in the system
remains fixed. Gordon and Newell have found ex-
pressions for the equilibrium distribution of customers
in service or queued at each resource. This allows one.
for example, to calculate the utilization of the various
resources. >

Moore43 and Buzen8 have applied-this model to
multiprogramming systems. Moore measured the MTS
system to obtain the transition probabilities and mean
service times of the resources and then used the model
to estimate system parameters such as resource utiliza-
tions. The relatively close agreement to measured
system parameters leads one to believe that the model
can be used to predict the effect of some changes in
system configuration. In using the model in this way,
one must be careful that the proposed changes do not
significantly affect the basic behavior of the customers.
Buzen used the same model to gain insight into re-
source allocation in multiple resource models of com-
puter systems. His studies include the investigation of
buffering and the effects of paging algorithms. Both
Moore and Buzen have used the model to try to give
a meaningful formal definition to the term "bottle-
neck." It is of interest that they arrive at different
definitions of a bottleneck. The reader is referred to
the references for details.

bO

"28 Spring Joint Computer Conference, 1972

While the studies mentioned above are clearly ad-
vances in the study of computer system models there
are numerous open questions. For example, the model
does not allow the representation of the simultaneous
use of several resources such as memory and CPU
Also there is no means for repivsenting the synchroni-
zation of events such as a process doing buffered I/O.
Another limitation is that the customers in the system
are UBtimed to have the same statistical behiavor, i.e.,
the transition probabilities and service time distribu-
tion are the same for all customers.

Bounds and approximaiions

Kvery evaluation technique makes use of approxi-
mations. These approximations may arise, for example:
m estimating the system parameUrs, user and program
l)ehavior; or in simplifying the mode! of the system
itself. There is clearly a tradeoff between types of
approximations. By simplifying a model one might be
able to handle more general types of user and program
l)ehavior. Much of the analytic work has been con-
cerned with exact mathematical solutions to models
which are themselves gross approximations.

An area which is beginning to be explored is that of
approximate solutions to more general models. For
example, Gaver has used the diffusion approximation
for the analysis of heavily loaded resources in queueing
studies.'0 The basic technique is to consider that the
work arrival process is not the arrival of discrete cus-
tomers requiring service but rather a work arrival flow.
This work arrival flow is a continuous process with the
same mean and variance as the original process. Another
example of the use of approximations is the work by
Kimblcton and Moore on the analysis of systems with
a limiting resource.14

It is clear that the use of any approximation requires
validation of the results. This may take the form of
comparing results with measurements of an actual
system, simulation, or obtaining bounds on the error
in results. Bounds may also be applied in a different
manner. Much has been written on the analysis of
time-sharing scheduling algorithms and their effects
on response times. Kleinrock, Muntz and Hsu*1 have
reported on results which in effect demonstrate the
Iwunds on response time characteristics for any CPU
scheduling algorithm which does not make use of a
priori knowledge of customers service times. The im-
iwrtance of the bounds is that one can see the limits of
the variation in response characteristics that are
|)ossibIe by varying the scheduling algorithm and the
extent to which these limits have been approached.

Program behavior

A major problem that must IK- dealt with in any
evaluation effort concerned with computer systems is
program behavior. Kven when using approaches such
as benchmarking or trace-driven modeling there is the
problem of selection of programs which are in some
sense representative of the total population of programs
that will be run on the system.

Studies of memory management in particular have
had to explicitly include models of program Mmvior.
The early work in this area«" stressed wry general
but powerful aspects of program behavior" such as
"locality" and "working set." More recent work deals
with more explicit models of the generation of reference
strings which assume more about program behavior
but correspondingly allow for more detailed analysis,11

It is hoped that these models will permit more detailed
studies of multiprogramming and procedure sharing.

It is interesting to note that the bulk of this work
has l.een directed toward finding models which can
represent the universe of possible programs. More
particularly, the goals of this research have been to
isolate parameters characterizing program behavior to
which memory management is sensitive and to compare
the effectiveness of various memory management
strategies. This approach is in line with a common
theme which runs through most of the work on resource
allocation strategies in computer systems. That is, we
see most allocation strategies attempting to work well
over the total population of programs possibly utilizing
measurements of recent past history of the process to
predict the near future. Outside of work arising from
graph models of parallel programs*-•■" very little has
Ix-en done to utilize a priori information about a process.
Many systems do make a priori distinctions between
batch and interactive processes. It seems reasonable
though that much more information may be available
which would be useful in allocating resources. For
example, it has In-en suggested that the time-slice and
paging algorithm parameters be tailored to the pro-
cess.« Use of a priori information assumes that the
process is available for analysis prior to execution. This
is a valid assumption for production jobs, system
processes, and to some degree for all jobs at compile
time. Since these processes consume a significant por-
tion of the system resources, gains in efficiency in
managing such processes might result, in major gains
in total efficiency. There are many open problems
associated with this approach:

I. Is there a conflict with a program design goal of
program modularity? How is information al>out
separately compiled procedures to be combined?

51

ModHing, Mpasuremrnt ami Computor Power 721>

2. Should procossps IK
1
 ponnittcd to advise the

system as to theii' resouree needs? How does the
system protect itself against false information?

'.i. How to manage resources effectively for pro-
cesses which provide a priori information, and
also for processes without associated a priori
information?

4. What kind of a priori information is actually
useful to management of a system: how costly
is it to obtain ami utilize effectively?

5. How predictable are the resource requirements
of processes?

While this approach has received only some slight
mention in the literature, it ap|)ears to be a fertile
area for research.

Graph models of programs provide an abstraction
of program structure governing flow of control and
demand for resources/110,1,K They permit a represen-
tation fitting somewhere l)etween the full detail of
actual programs and parametric or stochastic repre-
sentations of them. Most work using graph models
has been concerned with ronrurrent procrssing. How-
ever, the graph model analyses explicitly reveal sets of
independent tasks which liecome candidates for al-
ternate sequencing in sequential si/slems.

Ideally, we search for models of systems and program
l>ehavior which provide principles guiding synthesis of
configurations along with well founded resouree manage-
ment strategies. Measurement must validate effective-
ness of such strategies. The diversity of computations
further demands that measured parameters lie pro-
vided to operating systems and users in order to permit
adaptation to dynamic variations in system bcliavior
and to unavoidable anomalies in systems and languages.

Studies during the latter half of the '60s showed how
little attention had l*een given to measiirability in
the man-made universe of computer systems. The
next section characterizes some of the problems in
measurement.

MEASURRMKNT OF INFORMATION
PROCESSING SYSTEMS

Tools for measurement of computer systems must
satisfy all of the following requirements: detection of
prescribed events; recording of detected events;
retrieval of accumulated records; data reduction; and
display.

We comment on each in turn.

Detection

We start by rejecting the absurdity of olwrvinc all
of the states of a system under observation since it
would imply detecting the slate of every input, every
memory element and every output every time their
was a change, along with the time at uhieh the ehangc
occurred Hence, any set of measiireinent tools must
include means of selecting a subset of system statis

Hardware measurement took provide a preseriU'd
numlier of sensing prolies which may IK- phv-ieally
placed on selected register or buss |X)ints in a machine
under observation. Measurement system registers
along with programmed comparators and basic logical
o|)erations permit further filtering by allowing detec-
tion of a subset of the events sensed by the prolies
Even with such filtering the rat«' of change of detected
states may be excessive. If the irKponM1 time of hard-
ware measurement clemrnts is insufficient, basic
circuit changes would be required to make the me.ismv-
ment feasible. If bandwidth is iiMiMirirnt, it is sonn-
times jmssible to introduce a sampling signal and
thereby further reduce the niimlM r of delected events.
In the absetiee of interaelioii irilh tqfttpare monitor pro-
gnims, a hnrdirarr monitor i» rlrarly Umileä in its utility.
To IJC convinced of this, one need only consider the
kind of program status infoimalion change which in
observable by prolies only when it apiu-ars in the form
of an operand during the course of compiitntkm. Hard-
ware detection can have the virtue of intiodueing no
artifact into the measured system and of lieing able to
detect events whose states are not accessible to meas-
urement programs. Sampled detection may !«• made
more effective by allowing interference with the ob-
served process. If a sampling signal enforces a proper
interruption, observed data may lie sequenlially sensed
by detection circuits. The recently repoitid "Nourotron"
monitor1 is the most interesting implemented hardware
monitor, and its design shows the foresight of enablinn
interaction with software monitor programs.

Software measurement tools consist of programs
which detect selected events by virtue of their inserlinn
at state-change |ioints in the sequential computational
process.'7 47!" This detection process introduees arti-
fact in execution time, in space required for measure-
ment program storage, and sometimes (e.g., synelirom-
zation with asynchronous cyclic processes) in qualita-
tive side effects on existing computational processes.
In a sampling mode, measurement programs can have
their in-line artifact reduced by disturiiing the (low
of computation only at a sampling time At a sampling
time, measurement programs may l>e brought in to
check as large a set of memory states as is needed and

52

-i_^

730 SpnriK Joint Computer Conferrncr, 1972

thrn control is rrturnrl to thr olxwrvod »yntrm. In
Ihr alwonrv of hnnlwarr pupport, n soft wan- monitor
i.« iiimti .1 io oltM'rvntion of thow syxtoin Mati-s whirli
Ivivr atT.ct..! ninnory content* In on«- VOM-, canful
analysis of ■nnirmionl of IM. 1 funrtionn of an IHM
H60 9!M nvralnl anontalio in n>ronlo»l Nvstcin stat«"*
which can hot In- chararlcnir«] a-* artifact Mtfodaefd
by OS ;«jü when it ia>rrt» «nie aKMociatcd with I O
interrupts into the «*!«• U-ing nfMMnd.

It hsf« U-conx- ck'ar that wc an- not fac«<i| with mu-
tually exclusive altemativeH if hartlwan' detection
tools or software detection tool* Kather how much of
each; how they are inteRroted; and how they an- made
available to ex|ierimetitci>. A pafH-r by Nemeth and
Kovner44 presents a pleasing example of the powtl of
combine«! haniwan' and soft wan- in thi- hands of a
user. They point out that facilities introduced for hard-
ware debugging are often the kind useful .n later program
measurementa.

Data ReHwtton

111« amount and kind of data n^iuction is determined
by the goal of the measurement et|ienment and limi'a-
tions of measurement tcH»l capabilities in detection,
recordrng and pre|iarntion for retrieval For example,
assume that we want to obtain a history of utilization
of routines in order to divide which should In- kept m
primary storage at.d which should be kept in liuckup
storage Assume, further, that every time a routine is
called: the name of the calkil routine, the time of day.
and the name of the user is rrconM, It would »iot In-
very in. .■in,:..;ful to generat«- only a history showing the
times at which each rmitine in the syntem was nwd by
each user Data niluction would be rrquind to deter-
mine, for example, the total numlier of such usos, an
ordering of routines by numlier of uses, a determina-
tion of the numlier of routines involved in, say SO
percent, of the uses and their names, etc.

Recording

If an event of interest ha« lieen detected, its oc-
currence must affect memory contents Such action
may IM- as simple as incrementing a counter or as com-
plex as storing a Io, of state information for later
analysis. In .V cane ol nondisturbing hardware mea-
surements. . xternal stora/e must lie provided and the
transfer rate must lie able to ki-ep up with the rate of
change-of-state information observed by a set of prolies
and associated circuits. In the caw of software meiaun-
ments, sufficient memoiy spa«- must either IM- pro-
vided to record all relevant state information, or "Iso
preprocessing reduction programs must lie called in
to reduce storage requirements.

Retrieval

In the construction of any large system, both a data
gathering and retrieval system must lie incor|)orated
into the basic design. Failure to do so will limit the
amount of instrumentation available later when ef-
ficiency qui^tioas arise. For example, in a large pn>-
gramming system which has transient program M%-

ments, data gathering is easily inserted into any
program segment; howev.r, unless a standard data
storing program is available, the data gathered cannot
lie easily retrieviil The IBM PL/I F-level compiler
is an example of a programming system broken into
transient program segments. It fails to have a data
storing program with adequate bandwidth to support
meaningful Tnea«urernent activity.

I

Di$play

The goal of the data reduction process is cMotd by
the s|>ecif)id form of display or fi-Hliack to the ex|)eri-
menter. If measurement M lieing made for fii-dbsek
to an o|ierating system for use in resourr »Santton,
parameter values must lie delivered to nieiwin- cells to
be accessiil by the operating system. If measurement
is made for accounting purpoan or. more giwrally. to
provide the user with fi-edback alioul hi« quality of
us*- aid system n-sponse. results should In' merged into
user and system manager files If mea<uremi nt i« made
for U|M i itni control and managemetit. simple alpiia-
numeric displays an- common. For expcrmnital anal-
ysis of system liehavior, (T{T displays, graphs and
computer printout are generally «"quinnl.

Measurement Methodology

The complexity of computer systems dictates sp«,eial
care in the planning of measurement experiments. If
the results of ntperimrnts are not reproducible, they
are of little value If any assumptions made ar»- not
rc-cordiil and validatiil. the results cannot In- general-
iw^il and applied at anotli«-r time or place. A large body
of statistical theory is available providing methods for
alistracting prapprtJM out of individual data points,
but applicability must be carefully checke«!. We have
little h«>|»«• of adhering to principles if we do not have a
mensurement language to preseriU1 tneasun-ment rx-
|>erinii .its as sequences of commented operations which
are ippmpriately integrate! with olis«>rv«>«l data. The
latter step nee«!s wait upon creative development of

53

I

Modeling, Measurement and Computer Power 731

measurement tools and their test in meaningful ex-
periments. Measurement capability must be explicitly
included during periods of system design and must In-
available for inclusion in user program design. Digital
computer systems and programs are properly charac-
terized as complexes of very elementary functions.
Full systems or programs, therefore, generally require
partition in order to manage the synthe.Ms process.
Each partition introduces possible measures of validity
of output, of performance and of cost. Means for meas-
urement should be checked at that point in design and
a value judgment made if excessive artifact would be
introduced by the measurement process.

If a system contains the structure and primitive
operations satisfying the five requirements discussed
in this section, it carries the tools for adaptability. We
conjecture that much more than the 10 percent to 50
percent improvement alluded to in the Introduction
becomes attainable—particularly when measurement
tools can influence user behavior.

COMPUTER POWER AND USER INTERFACE

In the seventies some stronger effort must be directed
toward increasing computer power by a reduction of
the complexity of the user interface.

Operating systems and Higher Level Languages are
tools designed to give the user control of the portion of
a computer system he needs. With the exception of
work done at SDC,8'2» little reported effort has been
devoted to the human engineering aspects of these
tools. During the last decade, while hardware made a
dramatic increase in power, the management tasks
required of the operating system increased from trivial
to highly complex. At the same time, vhe users were
required to supply (in unnatural form like JCL) more
of the parameters which would allow effective manage-
ment decisions to be made by the operating system.
These user-supplied parameters have increased the
burden of complexity at the user interface—and re-
duced the amount of useful work a user can accomplish
in a given period of time.

For example, much of the attraction of APL 360
is its simplification of the operating system interface
along with the addition of immediate extent ion of it>
concise powerful primitives. A batch oriented
FORTRAN user perceives this as a tremendous in-
crease in his computer power. A more sophisticated
user might see APL as a powerful desk calculator which
provides immediate access to functions similar to
functions he already commands, less accessibly, in
other languages.

Another user interface problem exists at the level
of higher level languages. As more advanced hardware
becomes available to the user, he seeks to solve mine
complex problems. When a problem grows Iteyond a
manageable point, the user segments the problem into
pieces plus associated linkages. In doing so, however,
he introduces a new set of communication problems;
a change in one program which affects nn interface can
now wreak havoc in another "completed" portion of the
problem solution. Higher level languages have been lax
in the types of program interconnections (and inter-
actions) allowed.

An example of the problems of creating a large pro-
gramming system are reported by Melady and Lehman
using data from the development of OS 360.* While
this study concerned programs written in assembly
language for the IBM 360, the properties which produce
the error rates and modification ratios reported in
their paper are characteristics of all large programming
systems today.

Several techniques for improving the probabilities
that a program can be made error free are available in
the literature. One of the earliest is Dijkstra's "Notes
on Structured Pragramming,"1* an« also "THE Pro-
gramming System."15 His system breaks the problem
into shells of "pearls" or "primitive" operations. Each
shell is built using the "primitives" of the next lower
level. This system attempts to minimize interactions,
forces the programmer to produce generalized func-
tions which can be tested, and allows easy instrumenta-
tion l>ecause of the segregation of functions.

Some disadvantages of such a hierarchical scheme
make its practical application difficult. Such a scheme
increases initial development time In-cause it forces
developers to completely understand the structure of
the system being built and to predefine the proper
function for each hierarchy. Transitions bet ween levels
may IK- costly. Functions at the lowest level are the
most general and, therefore, the most frequently used.
Small inefficiencies in these function», or in the method
of traversing levels of the structural hierarchy, magnify
costs dramatically anil force the user away from cen-
tralize«! functions. This defeats the original purpose of
the organization.

Another disadvantage of a hierarchical scheme i»
that while instrumentation of the system is easy, in-
t«'rpretation of the measurements is generally not
Measurement results could change drastically if the
organization of the program were modified. Therefore,
it is hard to tell how much of what goes on is due to
the structural hierarchy and how much is due to the
intrinsic properties of the program Such knowledge
points a way toward improvement.

54

732 Spring Joint Computer Conference, 1972

COMPILETIME

EXECUTION-TIME

ERROR DESCRIPTION

NO FILE/STRING SPECIFIED. SYSIN/SYSPRINT HAS
BEEN ASSUMED

TEXT BEGINNING yyyy SKIPPED IN OR FOLLOWING
STMT NUMBE" Mr_

STATEMENT Nt WB1 't xxxx HAS BEEN DELETED DUE
TO A SEVERE .^KOR NOTED ELSEWHERE.

TEXT BEGINNING yyyy IN STATEMENT NUMBER xxxx
HAS BEEN DELETED.

DATA CONVERSION WILL BE DONE BY SUBROUTINE
CALLS.

OPTION IN GET/PUT IS INVALID AND HAS BEEN
DELET£D

ILLEGAL PARENTHESIZED LIST IN STATEMENT NUM-
BER xxxx FOLLOWS AN IDENTIFIER WHICH IS NOT A
FUNCTION OR ARRAY.

TEXT BEGINNING vyvv IN OR FOLLOWING STATEMENT
NUMBER xxxx HAS BEEN DELETED.

SEMICOLON NOT FOUND WHEN EXPECTED IN STATE-
MENT xxxx. ONE HAS BEEN INSERTED.

INVALID USE OF FUNCTION NAME ON LEFT HAND
SIDE OF EQUAL SYMBOL OR IN REPLY, KEYTO OR
STRING OPTION.

ADDRESSING INTERRUPT.
FIXED OVERFLOW.
FILE name-END OF FILE ENCOUNTERED.
ERROR IN CONVERSION FROM CHARACTER STRING TO

ARITHMETIC.
• IBM, PL/I{F) Projrammer«' Guide {Appendix K), GC28-6594, January 1971.

NUMBER OF
ERROR
OCCURRENCES

ERROR TYPE*

263 IEM0227

87 IEM0182

74 IEM0725

63 IEM0152

46 IEM1790

39 IEM0185

27 IEM0677

27 IEM0109

25 IEM0096

23 IEM0673

14
12
8
7

IHE804
IHE320
1HE140
IHE604

Figure 2a—Moet frequent PL/I errors

GltftPM Cf V««l*B(.r 10
SAMPLES CF LESS THAN

E*Cf SPACt • IOI.il UMtS.
i HAVE ntm OtLETEO.

If«0/?TI
It"l7'»fl
|MtCfi)«l
lHEt)20l •
IE>*CS26l •
IE«CU;I •
lEMlliOl •
IHEOtACI •
IMIÜ6T»! •
UMC72SI •
lEMClStl •
IE«01t2l
U-Cütll
IEM2r6TI
IE«Ct46l
umtxxii
IE««(C«<1I
ii<«io«ai
liOCtllt •
If'CtTll •
I£«CIJ4| *
IcXCC-.ll •

1
k.OO
 1 •- ...i—

C.?J

■I-
?. 30 O.oO 3. SO 0.60 0. TO 0.10 0.90 1.0C

Figure 2b—Average peraiatencc sorted by average persistence

55

Modeling, Measurement and Computer Power 733

NUMBER OF ERROR TYPE»
ERROR
OCCURRENCES

COyiPILE-TIME
143 SY16
131 SYE5
89 CGOC
83 SYOB
76 SM4E

55 SY3A
53 SY04
48 SY06
46 SY09
40 SM50

EXECUTION-TIME
827 EX78
239 EX83
211 EXBB
189 EX7D
180 EX98
169 EX7B
141 EXB8

90 EX9F
46 EXS9

ERROR DESCRIPT;ON'

IMPROPER ELEMENT(S)
ILLEGAL USE OF COLUMN 1 ON CAUD
NO FILE SPECIFIED. SYSIN/SYSPHINT ASSUMED
MISSING f-EMICOLON
idcnt HAS TOO MANY SUBSCRIPTS. SUBSCRIPT LIST

DELETED
IMPROPER LABEL
MISSING)
MISSING COMMA
MISSING :
name NEVER DECLARED, OR AMBIGUOUSLY QUALIFIED

(EXPRESSION REPLACED OH CALL DELETED)

SUBSCRIPT number OF idcnt IS OUT OF BOUNDS
FIXED POiNT OVERFLOW
DELETED STATEMENT ENCOUNTERED
LENGTH OF SUBSTRING LENGTH OF STRING
INCOMPATABLE OPTIONS ON OPEN
INDEX OF SUBSTRING LENGTH OF STRING
ARRAY ELEMENT HAS NOT BEEN INIT1LIZED. IT I<

SET TO 0.
IMPLIED CONVERSION NOT IMPLEMENTED
PROGRAM IS STOPPED. NO FINISH ON-UNIT AFTER

ERROR
4j EXB7 ident HAS NOT BEEN INITIALIZED.

• Conway, R. W. ct al,. Uscr'a Guide to PL/C, The Cornell Compiler for PL/1, RelcBS« 6, Department of Computer Science, Cornell
Univeraitv, Ithaca, August 1, 1971.

Figure 3a -Most frequent PL/C errors

r.

Present studies of forced program structure and
program proofs of correctness may begin to provide
models on which HLL designers may base their pro-
posals. However, any major changes should be de-
signed to improve the user's system so that each pro-
gram submittal can be a learning experience. In this
way a programming system can be called upon to point
out unusual events; draw the programmer's attention
toward possible errors; and yet, not produce volumes
of output which would be costly to print and which a
programmer would refuse to read.

Work at Cornell toward producing compilers which
correct human failings rather than punish them has
culminated in a highly functional, rapid compiling,
and very permissive PL/I student-oriented compiler
called PL/C.44 This compiler does spelling correction of
keywords, automatic insertion of missing punctuation,
etc. In addition automatic collection of some statistics
is done at execution time. For example, each label
causes a count to be maintained of the number of times
execution passed through that labeled statement.
Compilers such as these increase computer power by
reducing the complexity of the user interface.

Implementations of HLLs could further help a

programmer by giving an optional cross reference
listing showing locations where a variable is changed,
could be changed, or just referenced. Items could be
flagged if they were never referenced or set; only refer-
enced; or only set. In the first two cases .spelling cor-
rection might be applicable. Statements which use
expensive library subroutines or other costly language
features could be flagged. Measurement nodes could
be easy to insert and operate. These should, in turn,
produce meaningful data which relate directly to
questions the programmer wanted to ask.

But such discussions have only beat around the bush
itself. The real problem, the bush, is the higher level
language. The real questions are: What features are
error prone? What features of the language allow auto-
matic validity checking of what is written'.' How can
these properties be identified and measured? How can
the knowledge of these things bo used to reduce com-
plexity of the user interface so that the user perceives
an increase in his computer power? Which language
constructs are seldom used, adding unnecessary com-
plexity and unreliability?

Kfforts to measure the human engineering aspects
of computer language use37 and to provide feedback

5G

734 Spring Joint Computer Conference, 1972

ÖUPl- GF V*RIABLk IC t«CM SPACt « ICO.OJ UNIIS.
SAMPLES a LESS THAN i HAVE dEtN UELETEO.

CGOC
£«70
e«ss
SMSÜ
e«sv
E«7()
EXTB
CClf
SYiT
$•»51
£«f5
SY16
SVO*
S"«7
ItiB
EXt'B
S»^£
sine
S»lt
SYIL
SYtB
SYob
SVOE
SM5t
SY3*
SYJA
SY17
SYC9
EXIF

t«t>7
SY1B
SYIO
SH4E
SK^B
SY13
SYOi
SYt5
EXB3
SYf i
SYEB
SM<tA
SY3C
SY3r
SM<>1
SY£0

*

.-I
0.6C 0.80

■I-

L. f.
"I
0* in .20

-I —
0. 3C O.'.O O.iO 0.70 0.90 1.00

AVERAGE PERSISTENCE

SOiUtO BY AVERAGE PERSISTENCE

Figure 3b

into the design stages of higher level languages and
the control and command languages of the operating
system may provide major increases in computer
power by:

• increasing the number of users who can bring
problems to the machine

• decreasing the number of problem submissions
necessary to bring a job to completion

Work is in progress at SDC,,,»M moving toward a
man-machine symbiosis. These little publicized ap-
proaches to measurement of human problem solving
and computer languages have just begun to scratch

the surface of this very important area. Work at UCLA
has attempted to identify properties of PL/I which
are prone to human error. As a first approximation,
error rates and persistence curves of various errors
identified in students' use of the IBM PL'I F-level
compiler30 is presented in Figure 2. Corresponding
results for errors found by Cornell's PL/C compiler
are presented in Figure 3. Figure 2a shows a table of
the number of occurrences of the most frequent PL I
error types recorded during compilation and during
execution times. Figure 2b displays the persistence of
errors by PL/I type during the student runs. The
vertical coordinate is the error type ordered by the
magnitude of PERSISTENCE RATIO. The hori-

5?

Modeling, Measurement and Computer Power 730

zontal coordinate is the PERSISTENCE RATIO and
was calculated as an average of (number of sequential
trials during which the particular error persisted)
divided by the total number of trials. If an error type
did not occur in at least 5 problem assignments it was
arbitrarily deleted to keep the displayed range of
values reasonable. Figures 3a and 3b display the same
properties for assignments using PL/C. A total of 128
problem assignments completed by 28 students are
included in the statistics. Follow-up work is intended
to lead more deeply into language design and hopefully
into new techniques for automatically localizing errors
in a program.

The basic technique for doing this is to allow the
programmer to specify more information than the HLL
processor needs to compile the program. An example
would be identifiers of the form "CONSTANT" in a
PL/I data attribute syntax. CONSTANTS as opposed
to variables, would only be set by an initial attribute
and would be illegal as a left-hand side of an assign-
ment or as an argument of a pseudo-variable. In ad-
dition, the program could be considered as having this
attribute. At several points in a program (e.g., block
exit time) these constants would be checked to see if
their value had changed. If any had, a warning would
be printed; the correct value restored; and the program
would continue. Such a new PL/I data type allows
automatic checking for consistency to localize errors
and yet is almost painless for a programmer to use.
When a program is debugged, it is easy to turn off this
kind of checking for the sake of more efficient per-
formance. In a hardware environment like the
MULTICS GE 645, these errors can be detected dy-
namically when illegal accesses occur.

Debugging tools should be designed into the lan-
guage and taught as part of the language, because the
majority of the time a programmer deals with a Ian-

Source Input

/.
compilation

/
execution- 'data

input

• accretion'

library-

Figure 4a—Information flow in a standard HLL job

f Source 1 editing ^^^^^
I 'ibforv I f> * ^\

■ compilation * execution

.accretion

library-

Figure 4b—Modified information flow to nugmont feedback
in ii HLL job

guago, he is also dealing with an incorrect program
Subscript checking, trace information, validity chocking
at periodic intervals, time and count information,
formatted displays of all program information and
selective store and fetch recording are the kinds of
things which should be available to the HLL pro-
grammer.

In addition, measurement tools should 1»' im-
mediately accessible to any user without burdening
others, so that if questions of efficiency are raised they
can be answered simply and quickly. Some of the
measurement tools which seem important are: (1) flow
charts or tables as optional output which would stress
intermodule dependencies; (2) time and count control
statements which could be output, reset and inactivated
under program control, and would create output auto-
matically if the program terminated abnormally or
without expressly outputting the data gathered; (3)
program size should be easily accessible by the program
dynamically and summaries of available space should
be available at program termination.

In order to increase the complexity of tiie pro-
gramming problems which users can handle, languages
must be allowed to accommodate personal ways of
expressing concepts. To do this, at the very minimum,
new data types should be available for the programmer
to define as well as operators which use these data
types. This begins to syntactically approach the
Dijkstra concepts and to allow easier application of
hierarchically structured programs. Hopefully these
approaches will increase the user's computer power by
making the development of his programs easier.

The programming system itself should be restruc-
tured so that more information is available to a HLL
processor. Figure 4a shows the diagram of information
flow in a usual batch oriented system. The source code
is compiled; the resulting object code is passed to the
accretion step where library or previously compiled
programs are added to it; and the resulting load module

m

736 Spring Joint Computer Conference, 1972

is passed to the execution phase; finally, output from
execution is passed back to the user. To provide more
automated feedback, Figure 4b shows information
flow in a system where statistical summaries of one
execution are available to the next compilation. In
addition, the accretion step spends much more of its
time checking linkage conventions and the validity of
argument-parameter choices. This programming sys-
tem has an edit/compile time library which is designed
to help make changes easy. For example, it keeps
"COMMON" declarations uniform (read EX-
TERNAL if you are a PL/I programmer) and it also
uses information from the compiler to point the user at
syntax errors and information from the execution phase
to point the user at semantic errors.

Such modifications can reduce errors and speed the
development of programs by improving communica-
tion between what are now considered separate pro-
gram steps. However, the most important changes,
across all the proposed modifications, are those changes
which will allow the programmer to receive only those
pieces of information relevant to the level at which he
is programming (i.e., making changes). This would
provide dynamic help; help where the programming
language acts as an extension of the users' mind to
assist in problem solving and optimization.

It is important to view these changes which move
toward dynamic assistance in terms of costs. Each
change must cost something in execution time over-
head. Some of the more powerful features like selective
fetch and store monitoring must be expensive. How-
ever, if these features were found valuable, then modi-
fication to hardware might diminish costs dramatically.
Integrating these techniques into HLLs must be
inherently costly because implementation and testing
of human interaction with these diagnostic features
arc difficult to execute in any controlled way—much
work must rest on subjective evaluation of users'
behavior. Integration of aids into HLL translators
must be initially done without those very aids which
are deemed necessary to help programmers modify
programs. Therefore, any change is fraught with risks
caused by lack of checks in current systems. Obviously
bootstrapping is called for and we can expect many
passes before achieving effective tools.

The development of richer higher level languages
on the one hand, and the development of debugging
services and error correcting compilers on the other,
exert forces in the direction of increasing performance
at the user interface. With appropriate use of models
and measurement much more improvement may be
obtained.

SUMMARY

Computer systems are different from other systems by
virtue of the dynamic fashion in which our compre-
hension of their behavior may be built into their opera-
tion. If validated models are developed, they may then
be built into the system itself to serve adaptive re-
source allocation algorithms. If measurement tools are
effectively integrated, they may be made available to
the user to improve the quality of his use of program-
ming languages. If the user is, in fact, a team develop-
ing programming systems, the modeling and measure-
ment facilities may serve to make much more complex
programs possible because a model of programs being
built is, itself, generally too complex for a group of
unaided humans to manage in an error free way. In
the above paper we have sought to open up these
questions.

We have not had much experience with effective
modeling and measurement. There is an immense
amount of data to be observed in a computer system
Cost-effectiveness of performance measurement must
be considered. As one of our reviewers put it, "This
reviewer has seen some measurement studies lead to
system improvements which will pay off sometime in
2018." Hopefully the 1970s will see more effective
modeling and measurement introduced into the design
process and selectively carried into developed systems
to hep both interna' process management and the
enrichment of external us,' through the user interface.

REFERENCES

1 R A ASCHENBRENNER L AMIOT
N K NATARAJAN
The neurotron monitor system
AFIPS Conference Proceedings Vol 39 pp 31-37 1971 Full
Joint Computer Conference Las Vegas Nevada NovomluT
1971

2 L A BELADY
A study of replacement algorithms for a virtual storage
computer
IBM Systems Journal Vol 5 No 2 pp 78-101 1960

3 L A BELADY R A NELSON G S SHEDLER
An anomaly in the space-lim- characteristics of certain
program* running in paging machines
Communications of the ACM Vol 12 No 6 pp 349-353
June 1969

4 L A BELADY M M LEHMAN
Programming system dynamics or the meta-di/namics of
systems in maintenance and grow h
IBM Report No l.C 3546 September 1971

5 D P BO VET G ESTRIN
A dynamic memory allocation in computer systems
IEEE Transactions on Computers Vol C-19 No 5
pp 403-411 May 1970

59

Modeling, Measurement and Computer Power 737

6 D BOVET G ESTRIN
On static memory allocation in computer tyttem»
IEEE Transactions on Computers Vol C-19 No 6
pp 492-503 June 1970

7 T H BREDT
Analyst» of paral'el nyttenu
IEEE Transactions on Computers Vol C-20 No 11
pp 1403-1407 November 1971

8 J P BUZEN
Queueing network model» of multiprogramming
PhD Dissertation Harvard University Cambridge Mass
August 1971

9 V G CERF
Mea»urement of recursive procettes
Computer Science Department Technical Report No
UCLA-ENG-70-43 University of California Los Angeles
May 1970

10 V G CERF K GOSTELOW S VOLANSKY
E FERNANDEZ
Formal propertie» of a graph model of computation
Computer Science Department Technical Report
No UCLA-ENG-7178 December 1971

11 W W CHU
A study of asynchronous time dim»ion multiplexing for
time sharing computer»
AFIPS Conference Proceedings Vol 39 pp 669-678 1971
Fall Joint Computer Conference Las Vegas Nevada
November 1971

12 P DENNING
The working set model for program behavior
Communications of the ACM Vol S No 11 pp 323-333
May 1968

13 P DENNING S C SCHWARTZ
Propertie» of the working set model
Proceedings of the Third Symposium on Operating Systems
Principles pp 130-140 Stanford University October 1971

14 J B DENNIS
Programming generality, paralle i*m and computer
architecture
Proceedings of the IFIP Congress 68 Booklet C Software 2
pp C1-C7 North Holland Publishing Co Edinburgh England
August 1968

15 E W DIJKSTRA
The structure of the THE multiprogramming system
Communications of the ACM Vol 11 No 5 pp 341-346
May 1968

16 E W DIJKSTRA
Note» on structured programming
Report No EWD249 Technische Hogeschool Eindhoven
Spring 1969

17 G ESTRIN D HOPKINS B OOGGAN
S D CROCKER
SNUPER COMPUTER—Inttrumentation automation
AFIPS Conference Proceedings Voi 30 pp 645-656 1967
Spring Joint Computer Conference Atlantic City New
Jersey April 1967

18 E B FERNANDEZ
Restructuring and scheduling of parallel computation»
Presented at the Fifth Asilomar Conference on Circuits and
Systems Pacific Grove California November 8-9 1971 To be
published in the proceedings of that conference

19 H FRANK I T FRISCH W CHOU
Topologicat considerations in the ARPA computer network
AFIPS Conference Proceedings Vol 3 pp Ml-.W I't7n
Spring Joint Computer Conference Atlantic City Now
Jersey May 1970

20 D P GAVER
Diffusion approximations and models for certain congestion
problems
Journal of Applied Probability Vol ■) pp 607-623 19ÜS

21 W J GORDON G F NEWELL
Closed queueing systems with exponential server <
ORSA Journal Vol 15 No 2 pp 254-265 March 1907

22 K GOSTELOW
Flow of control, resource allocation, and the proper termination
of programs
Computer Science Department Techniral Report No
UCLA-ENG-7179 University of California LOH Angeles
California December 1971

23 R L GRAHAM
Bounds for certain multiprocessing anomalies
The Bell System Technical Journal pp 1563-1581 November
1966

24 A N HABERMANN
Prevention of system deadlocks
Communications of the ACM Vol 12 No 7 pp 373-377 July
1969

25 L E HART G J LIPOVICH
Choosing a system stethoscope
Computer Decisions Vol 3 No 11 pp 20-23 November 1971

26 A W HOLT H SAINT R M SHAPIRO
S WARSHALL
Final report for the information system theory project
Rome Air Development Center by Applied Data Research
Inc Contract No AF30(602)-4211 1968

27 A W HOLT F COMMONER
Event» and condition <
Parts 1-3 Applied Data Research Inc 450 Seventh Avenue
New York New York 10001 1969

28 A HORMANN A LEAL D CRANDELL
U»er Adaptive Language (UAL): A step towards
man-machine syncrgism
SDC TM-4539 June 1969

29 A HORMANN S KAUFMANN-DIAMOND
C CINTO
Problem solving and learning by man-machine teams
SDC TM-4771 July 1971

30 PL/1(F) compiler program, logic manual
GY28-6800 Fifth Edition IBM 196G, 67,68,69 October 1969

31 D H H IGNALLS
FETE—A FORTRAN Execution Time Estimator
Computer Science Department Report No STAN-CS-7I-2Ü4
Stanford University February 1971

32 R R JOHNSON
Needed: A measure for measure
Datamation pp 22-30 December 15 1971

33 R M KARP It E MILLER
Parallel program schemata
Journal of Computer and System Sciences Vol 3 No 4
pp 147-195 May 1969

34 S R KIMBLETON C G MOORE
A limited resource approach to system performance evaluation
Technical Report No 71-2 Department of Industrial
Engineering University of Michigan June 1971

60

738 Spring Joint Computer Conference, 1972

35 L KLEINROCK
Analytic and simulation methods in computer network design
AFIP8 Conference Proceedings Vol 36 pp 569-579 1970
Spring Joint Computer Conference Atlantic City New
Jersey May 1970

36 L KLEINROCK R R MUNTZ J HSU
Tight bounds on the average response time for time-shared
computer systems
Proceedings of the IFIP Congress 71 TA-2 pp 50-58
Ljubljana Yugoslavia August 1971

37 D E KNUTH
An empirical study of FORTRAN program»
Computer Science Department Report No CS-186 Stanford
University 1971

38 H C LUCAS JR
Performance evaluation and monitoring
ACM Computing Surveys Vol 3 No 3 pp 79-91 September
1971

39 B H MARGOLIN P P PARMELEE
M CHATZOFF
Analysis of free-storage algorithms
IBM Systems Journal Vol 10 No 4 pp 283-304 1971

40 D F MARTIN
The automatic assignment and sequencing of computations on
parallel processor systems
PhD Dissertation and Computer Science Department
Technical Report No UCLA-ENG-66-4 University of
California Los Angeles 1966

41 R MATTSON J GECSEI D SLUTZ I TRAIGER
Evaluation techniques for storage hierarchies
IBM Systems Journal Vol 9 No 2 pp 78-117 1970

42 J M McKINNEY
A survey of analytical time-sharing models
Computing Surveys Vol 1 No 2 pp 105-116 June 1969

43 C G MOORE
Network models for large-scale timesharing systems
PhD Dissertation University of Michigan April 1971

44 H MORGAN R A WAGNER
PL/C—The design of a high performance compiler for PL/I

AFIPS Conference Proceedings Vol 38 pp 503-510 1971
Spring Joint Computer Conference Atlantic City New
Jersey May 1971

45 A G NEMETH P D ROVNER
User program measurement in a timed-shared environment
Communication of the ACM Vol 14 No 10 pp 661-666
October 1971

46 J RODRIGUEZ-ROSELL
Experimental data on how program behavior affects the choice
of schedular parameters
Proceedings of the Third Symposium on Operating Systems
Principles pp 156-163 Stanford University October 1971

47 E C RUSSELL G ESTRIN
Measurement based automatic analysis of FORTRAN
programs
AFIPS Conference Proceedings Vol 34 pp 723-732 1969
Spring Joint Computer Conference Boston Massachusetts
May 1969

48 H SACKMAN
Man-computer problem solving
Auerbach Publishers Inc 1970

49 T J TEOREY T B PINKERTON
A comparative analysis of disk scheduling policies
Proceedings of the Third Symposium on Operatin ; Systems
Principles pp 114-121 Stanford University October 1971

50 R C UZGALIS J ALLEN
360 model 9t execution times of selected PL/1 statements
Modeling and Measurement Note No 7A September 1971
360 assembly language source code for selected PL/1
statements with model 91 execution times
Modeling and Measurement Note No 7B September 1971
Computer Science Department University of California
Los Angeles

51 S A VOLANSKY
Graph model analysis and implementation of computational
sequences
PhD Dissertition and Computer Science Department
Technical Report No UCLA-ENG-70-48 University of
C lifornia Los Angeles 1970

61

APPENDIX D

COMPUTER COMMUNICATION NETWORK DESIGN —

EXPERIENCE WITH THEORY AND PRACTICE

by H. Frank, R. E. Kahn and L. Kleinrock

62

Reprinted from —

AFIPS — Conference Proceedings
Volume 40

© AFIPS PRESS
Mon»y«U. N.J. 07645

Computer communication network design-
Experience with theory and practice*

by HOWARD FRANK ROBERT E. KAHN

Network Analysii Corporation
Glen Cove, New York

and

LEONARD KLEINROCK

University of California
Los Angeles, California

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

Tho ARPA Network (ARPANET) project brought
together many individuals with diverse backgrounds,
philosophies, and technical approaches from the fields
of computer science, communication theory, operations
research and others. The project was aimed at providing
an efficient and reliable computer communications
system (using message switching techniques) in which
computer resources such as programs, data, storage,
special purpose hardware etc., could be shared among
computers and among many users." The variety of
design methods, ranging from theoretical modeling to
hardware development, were primarily employed
independently, although cooperative efforts among
designers occurred on occasion. As of November, 1971,
the network has been an operational facility for many
months, with about 20 participating sites, a network
information center accessible via the net, and well over
a hundred researchers, system programmers, computer
center directors and other technical and administrative
personnel involved in its operation.

In this paper, we review and evaluate the methods
used in the ARPANET design from the vantage of
over two years' experience in the development of the
network. In writing this paper, the authors have each
made equal contributions during a series of intensive

• This work was supported by the Advanrcd Itescsrch Projects
Agency of the Ocpartment of Defense under Contract No.
DAHC lä-70-C-0120 at the Network Analysis Corporation,
Contract Nos. DAHC 1..-69-C-0179 and DAHC-71-C-0OS8 at
Bolt Beranek and Newman Inc., and Contract No. DAHC
15-69-C-0283 at the University of California at Los Angeles.

discussions and debates. Rather than present merely a
summary of the procedures that were used in the
network design, we have attempted to evaluate each
other's methods to determine their advantages and
drawbacks. Our approaches and philosophies have often
differed radically and, as a result, this has not been an
easy or undisturbing process. On the other hand, wo
have found our collaboration to be extremely rewarding
and, notably, we have arrived at many similar con-
clusions about the network's behavior that seem to be
generally applicable to message switched networks.

The essence of a network is its design philosophy, its
performance characteristics, and its cost of implementa-
tion and operation. Unfortunately, there is no generally
accepted definition of an "optimal" network or even of
a "good" network. For example, a network designed to
transmit large amounts of data only during late evening
hours might call for structural and performance char-
acteristics far different from one servicing large numbers
of users who are rapidly exchanging short messages
during business hours. We expect this topic, and others
such as the. merits of message switching vs. circuit
switching or distributed vs. centralized control to be a
subject of discussion for many years.114MMM:I7

A cost analysis performed in 19G7-19GS for the ARPA
Network indicated that the use of message switching
would lead to more economical eommunieations and
better overall availability and utilization of resources
than other methods.3"38 In uddition to its impact on
the availability of computer resource«, this decision has
generated widespread interest in store-and-forward
communications. In many instances, the use of store-
and-forward communication techniques can result in

255

63

256 Spring Joint Computer Conference, 1972

greater flexibility, higher reliability, significant tech-
nical advantage, and substantial economic savings over
the use of conventional common carrier offerings. An
obvious trend toward increased computer and com-
munication interaction has begun. In addition to the
ARPANET, research in several laboratories is under
way, small experimental networks are being built, and
a few examples of other government and commercial
networks are already apparent.,7"w'4147M M

In the ARPANET, each time-sharing or batch
processing computer, called a Host, is connected to a
small computer called an Interface Message Processor
(IMP). The IMPs, which are interconnected by leased
50 kilobit/second circuits, handle all network com-
munication for their Hosts. To send a message to
another Host, a Host precedes the text of its message
with an address and simply delivers it to its IMP. The
IMPs then determine the route, provide error control,
and notify the sender of its receipt. The collection of
Hosts, IMPs, and circuits forms the message switched
resource sharing network. A good description of the
ARPANET, and some early results on protocol develop-
ment and modeling are given in References 3, 12, 15,
23 and 38. Some experimental utilization of the
ARPANET is described in Reference 42. A more recent
evaluation of such networks and a forward look is
given in References 35 and 39.

The development of the Network involved four
principal activities:

(1) The design of the IMPs to act as nodal store-
and-forward switches,

(2) The topological design to specify the capacity
and location of each communication circuit
within the network,

(3) The design of higher level protocols for the use
of the network by time-sharing, batch pro-
cessing and other data processing systems, and

(4) System modeling and measurement of network
performance.

Each of the first three activities were essentially per-
formed independently of each other, whereas the
modeling effort partly affected the IMP design effort,
and closely interacted with the topological design
project.

The IMPs were designed by Bolt Beranek and
Newman Inc. (BBN) and were built to operate in-
dependent of the exact network connectivity; the
topological structure was specified by Network Analysis
Corporation (NAC) using models of network per-
formance developed by NAC and by the University of
California at Los Angeles (UCLA). The major efforts
in the area of system modeling were performed at

UCLA using theoretical and simuhition techniques.
Network performance- measurements have been con-
ducted during the development of the network by
BBX and by the Network Measurement Center at
UCLA. To facilitate effective use of the net, higher
level (user) protocols are under development by a
group of representatives of universities and research
centers. This group, known as the Network Working
Group, has already specified a Host to Host protocol
and a Telnet protocol, and is in the process of com-
pleting other function oriented protocols.4 2'J We make
no attempt to elaborate on the Host to Host protocol
design problems in this paper.

THE NETWORK DESIGN PROBLEM

A variety of performance requirements and system
constraints were considered in the design of the net.
Unfortunately, many of the key design objectives had
to be specified long before the actual user requirements
could be known. Once the decision to employ message
switching was made, and fifty kilobit/second circuits
were chosen, the critical design variables were the
network operating procedure p.nd the network topology;
the desired values of throughput, delay, reliability and
cost were system performance and constraint variables.
Other constraints affected the structure of the network,
but not its overall properties, such as those arising from
decisions about the length of time a message could
remain within the network, the location of IMPs
relative to location of Hosts, and the number of Hosts to
be handled by a single IMP.

In this section, we identify the central issues related
to IMP design, topological design, and network
modeling. In the remainder of the paper, we describe
the ma or design techniques which have evolved.

IMP properties

The key issue in the design of the IMPs was the
definition of a relationship between the IMP subnet
and the Hosts to partition responsibilities so that
reliable and efficient operation would be achieved. The
decision was made to build an autonomous subnet,
independent (as much as possible) of the operation of
any Host. The subnet was designed to function as a
"communications system"; issues concerning the use of
the subnet by the Hosts (such as protocol development)
wen; initially left to the Hosts. For reliability, the
IMPs were designed to be robust against all line failures
and the vast majority of IMP and Host failures. This
decision required routing strategies that dynamically
adapt to changes in the states of IMPs and circuits.

64

Computer Communication Network Design

and an elaborate flow control strategy to protect the
subnet against Host malfunction and congestion due to
IMP buffer limitations. In addition, a statistics and
status reporting mechanism was needed to monitor the
behavior of the network.

The number of circuits that an IMP must handle is a
design constraint directly affecting both the structure
of the IMP and the topological design. The speed of thn
IMP and the required storage for program and buffers
depend directly upon the total required processing
capacity, which must be high enough to switch traffic
from one line to another when all are fully occupied. Of
great importance is the property that all IMPs operate
with identical programs. This technique greatly
simplifies the problem of network planning and main-
tenance and makes network modifications easy to
perform.

The detailed physical structure of the IMP is not
discussed in this paper.4" However, the operating
procedure, which guides packets through the net, is
very much of interest here. The flow control, routing,
and error control techniques are integral parts of the
operating procedure and can be studied apart from the
hardware by which they are implemented. Most
hardware modifications require changes to many
IMPs already installed in the field, while a change in
the operating procedure can often be made more
conveniently by a change to the single operating
program common to all IMPs, which can then be
propagated from a single location via the net.

Topological properties

The topological design resulted in the specification of
the location and capacity of all circuits in the network.
Projected Host—Host traffic estimates were known at
the start to be either unreliable or wrong. Therefore,
the network was designed under the assumption of
equal traffic between all pairs of nodes. (Additional
superimposed traffic was sometimes included for those
nodes with expectation of higher traffic requirements.)
The topological structure was determined with the aid
of specially developed heuristic programs to achieve a
low cost, reliable network with a high throughput and
a general insensitivity to the exact traffic distribution.
Currently, only 50 kilobit/second circuits are being
used in the ARPANET. This speed line was chosen to
allow rapid transmission of short messages for inter-
active processing (e.g., less than 0.2 seconds average
packet delay) as well as to achieve high throughput
(e.g., at least 50 kilobits/second) for transmission of
long message». For reliability, thn network was con-
strained to have at least two independent paths between
each pair of IMPs.

The topological design problem requin-H coiwideration
of the following two questions:

(1) Starting with a given slate of the network
topology, what circuit modificationti are required
to add or delete a set of IMPs?

(2) Starting with a given state of network topology,
when and where should circuits be added or
deleted to account for long term changes in
network traffic?

If the locations of all network nodes are known in
advance, it is clearly most efficient to design the
topological structure as a single global effort. However,
in the ARPANET, as in most actual netwoika, the
initial designation of node locations is modified on
numerous occasions. On each such occasion, the
topology can be completely reoptimized to determine a
new set of circuit locations.

In practice, there is a long lead time between the
ordering and the delivery of a circuit, and major topo-
logical modifications cannot be made without sub-
stantial difficulty. It is therefore prudent to add or
delete nodes with as little disturbance as possible to
the basic network structure consistent with overall
economical operation. Figure 1 shows the evolution of
the ARPANET from the basic four IMP design in 1U69
to the presently planned 27 IMP version. Inspection of
the 24 and 27 IMP network designs reveals a few
substantial changes in topology that take advantage of
the new nodes being added. Surprisingly enough, a
complete "reoptimization" of the 27 IMP topology
yields a network only slightly less expensive (about
1 percent) than the present network design.28

Network models

The development of an accurate mathematical model
for the evaluation of time delay in computer networks is
among the more difficult of the topics discussed in this
paper. On the one hand, the model must properly
reflect the relevant features of the network structure
and operation, including practical constraints. On the
other hand, the model must result in a mathematical
formulation which is tractable and from which mean-
ingful results can be extracted. However, the two
requirements are often incompatible and we search for
an acceptable compromise between these two extremes.

The major modeling effort thus far has been the study
of the behavior of networks of queues.21 This emphasiH
is logical sine«' in message switched systems, messages
«•xperience queueing delays as they psiss from node to
node and thus a significant performance measure is the

U

Uiä

258 Spring Joint Computer Conference, 1972

SMI UTAH

UCM

UCL«

4 -IMP NETWORK -12/1 /69

(a)

UCL« HAND HN H*RV

10-N00E NETWORK - 7/W70
(b)

QCAUN

UCL» RAND MN H«Rv lulWOUCHS

15-IMP NETWORK - 3/1/71

McCLEULAN
UTAH BOULOCM GWC CASE MI LRL UTAH

GARN

MIT« UCSI0 **HÖ

ETAC

UCLA RAND TINKER BRN HARV NRS

24-IMP NETWORK - 4/1/72
(d)

L HC

RADC

UCLA SDC USC ROOLOER CMC CASE

27-IMP NETWORK - PLANNED

Figure 1—The evolution of the ARPANET

speed at which messages can be delivered. The queueing
models were developed at a time when there were no
operational networks available for experimentation and
model validation, and simulation was the only tool
capable of testing their validity. The models, which at
all times were recognized to be idealized statement««
about the real network, were nonetheless crucial to the
ARPANET topological design effort since they afforded
the only known way to quantitatively predict the
properties of different routing schemes and topological
structures. The models have been subsequently demon-
strated to be very accurate predictors of network
throughput and indispensable in providing analytical
insight into the network's behavior.

The key to the successful development of tractable
models has been to factor the problem into a set of
simpler queueing problems. There are also heuristic
design procedures that one can use in this case. These
procedures seem to work quite well and are described
later in the paper. However, if one specializes the
problem and removes some of the real constraints,
theory and analysis become useful to provide under-
standing, intuition and design guidelines for the original
constrained problem. This approach uncovers global
properties of network behavior, which provide keys to

good heuristic design procedures and ideul perfonnaner
bounds.

DESIGN TECHNIQUES

In this section we describe the approaches taken to
the resign problems introduced in the previous section.
Wr first summarize the important properties of the
ARPANET design:

(1) A communications cost of less than 30 cents per
thousand packets (approximately a megabit).

(2) Average paokrt delays under 0 2 seconds through
the net.

(3) Capacity for expansion to 64 I.MPs without
major hardware or software redesign.

(4) Average total throughput capability of 10-1.1
kilobits/second for all Hosts at an IMP.

(5) Peak throughput capability of gS kilobits second
per pair of IMP« in an otherwise unloaded
network.

(6) Transparent communications with maximum
message size of approximately 8000 bits and
error rates of one bit in lO" or less.

6G

Computer Communiration Xetwork Design 219

(7) Approximat.lv US |Mre«»t iivailability of any
IMP ami CI<H«- to 100 ppvepfcl ovailability of all
apFntlaR IMRi from any opmblp IMP.

The n'latiotuhipM brtrnTf the various desiKii «(Torts
are illustrut«tl by thew praprrtinL Th.- topoiagieal
design provi«!«-* for both a «b-sit »i av.rag«' t:.n)UKhput
and for two or more paths to be fully us.t| for eom-
munication brtftmi any pair of Hosts. Thf opmting
procedun- should allow any pair of Hosts to achi.v«
those obj.clives. The availability of IMPs to com-
municate reflects both the fact that IMPs an- down
about 2 percent of the time and that th.- topoiagy is
selected so that circuit failures contribute little addi-
tional to the total system downtime.

/A/P design

The IMP design consists of two closely coupl.-d but
nonetheless separable pieces—the physical hard wan-
specification (based on timing and reliability consid.-ra-
tions and the operating procedure) and the design and
implementation of the operating pr.»cedur.- using the
specifi.-d IMP hard war.-. Th.- IMP originally d.-v.-lop.-d
for the ARPANET contains a 16-bit one mimisecond
computer that can handle a total of about K m.-gabitv
second of "useful" information on a total of approxi-
mat.-ly one megabit second of circuit capacity (e.g.,
twenty 50 kilobit/second circuits). Hardware is likely
to change as a function of the required IMP capacity
but an operating procedure that o|M-rates well at one
IMP capacity is likely to be transferable to machin.-s
that provide different capacity. However, as a network
grows in si«e and utilitation, a mere comprehensive
operating procedure that takes account of known
structural properties, such as a hierarchical topology,
is appropriate.

Four primary areas of IMP design, namely messag.-
handling and buffering, error control, flow control, and
routing are discussed in this section. The IMP provides
buffering to handle messag A for its Host and packets
for other IMPs. Error control is required to provide
reliable communication of Host messages in the
presence of noisy communication circuits. The design
of the operating procedure should allow high through-
put in the net under heavy traffic loads. Two pot.-ntial
obstacles to achieving this objective are: (I) The n.-t
can become congested and cause the throughput to
decrtast with increasing load, and (2) The routing
procedure mav be unabl.- to ; Iways adapt sufficiently
fast to the rapid movement of packets to insure .-fficient
routing. A flow control and routing procedure is
needed that can efficiently meet this requirement.

M«-KH«KC handlinx and bulTerinR

In th.- ARPANET, Ihr maximum mnwiim si»- was
constrained to IM- approximat.ly S000 bits. A pair „f
Hosts will typically communicate over th.- net via a
«quenc- of transmitt.-d in.ss:ig.-s. To olilain delay», of
a f.-w tenths of a s.-con.l for such ni.-ssag.-s and to low.-r
the requin-d IMP buff.-r storage, the IMP program
partitions .-aeh nw-ssage into one or nion- pack.-ts each
containing at most approximat.-lv 1000 bits Each
packet of a message is- transmitted indeprndenfl) to
th.- d.Mination where th.- m.-ssag.- is ri-ass.-mbl.-d by
th<- I.\IP More shipment to that destination Host
Alternately, the Hosts could assume the responsibility
for reassembling messagi-s. For an asynchronous IMP-
Host ch-mr -I, this marginally simplifi.-s the IMP*»
task. However, if evtry IMP-Host channel w.-r.- «yn-
chronous, and the Host provid.-d the ntmembly. th.
IMP task can b< further simplified. In this biter ca*.-.
"IMP-like" software would have to be providrd in
<-ach Host.

Th<- mi-th«Hl of handling buff.-rs should br simple to
allow for fast proc.-ssing and a small amount of program
The number of buff.-rs should IM- sufficient to st<-r.
.nough pack.-ts for the circuits to In- u.-M-d to capacity;
the siie of the buffers may be intuitiv.-ly s.-l.-ct.-d with
the aid of simple analytical tcehmqura. For .-xampl,,
fix.tl buff.-r si«es an- useful in th.- IMP for simplicity
of d.-sign and spe.«,! of op«-ration, but inefficient utiliza-
tion can arise because of variable length packets. If
.•aeh buffer contains A words of overhead and provid.-s
space for M wonls of text, and if messag.- siz.s are
uniformly distributed between 1 and L, it can !>.-
shown" that the choice of M that minim'iz.-s th. . x-
pected storage is approximately y/HL. In practier. M
is chosrn to be somewhat smaller on the assumption
that most traffic will b.- short and thai the amount ,.f
ov.-rhead can be as much as, say, 20 percent of buffer
storag.-.

Error control

Th.- IMPs must assume th.- respoasibilitv for pro-
viding error control. There an- four |M>ssibilili.-s to
consider:

(1) Message are drlivered to th.-ir d.-stination out
of order.

(2) Duplicat.- in.sHag.-s an- d.-liv.-red to th.-
d.-stination.

(3) M.-ssag.-san-d.-liv.-n-d with .m.rs

(4) M.-s.sag.-s an-not d.'livere.|.

b7

260 Spring Joint Computer Conference, 1&72

The task of proper sequenciiiR of missaRf-s for
delivery to the dcHtinatton Host nctwüly falls in the
provinc- of both error control aiul flow control. If at
most one message at a time is allowed in the net betwmi
a pair of Hosts, proper sequencing occurs naturally. A
duplicate packet will arrive at the d<-stiiiation IMP
after an acknowledgment has been missed, thus causing
a successfully received packet to be retransmitu-d. The
IMPs can handle the first two conditions by assigning
a sequence number to each packet as it enters the
network and processing the sequence number at the
destination IMP. A Host that performs reassembly can
also assign and process sequence numbers and check
for duplicate packets. For many applications, the order
of delivery to the destination is immaterial. For priority
messages, however, it is typically the case that fast
delivery requires a perturbation to the sequence.

Errors are primarily caused by noise on the com-
munication circuits and are handled most simply by
error detection and retransmission between each pair of
IMPs along the transmission path. This technique
requires extra storage in the IMP if either circuit
speeds or circuit lengths substantially increase. I-ailures
in detecting errors can be made to occur on the order of
years to centuries apart with little extra overhead
"(20-30 parity bits per packet with the SO kilobit second
circuits in the ARPANET). Standard cyclic error
detection codes have been usefully applied here.

A reliable system design insures that each trans-
mitted message is accurately delivered to its intended
destination. The occasional time when an IMP fails and
destroys a useful in-transit message is likely to occur
far less often than a similar failure in the Hosts and has
proven to be unimportant in practice, as are errors due
to IMP memory failures. A simple end to end retrans-
mission strategy will protect against these situations,
if the practical need should arise. However, the IMPs
are designed so that they can be removed from the
network without destroying their internally stored

packets.

Flow control

A network in which packets may freely enter and
leave can become congested or logically deadlocked and
cause the movement of traffic to halt.»^ Flow control
techniques are required to prevent these conditions
from occurring. The provision of extra buffer storage
will mitigate against congestion and deadlocks, but
cannot in general prevent them.

The sustained failure of a destination Host to accept
packets from its IMP at the rate of arrival will cause the
net to fill up and become congested. Two kinds of

logical deadlocks, known M reassembly lockup •
store-and-forward lockup may Hbmomir. In mwrmbly
bckufi, the nmaimug packets of partially nas-iubl. d
m.ssag.s are blocked from naehinu the .l.>(iiiaiiou
IMP (thus preventing the message from IMIII« eom-
pl.ted and the reassembly »pace fm-d) by olh-r
packets in the net that are waiting for reassembly spae••
at that destination to breome free. In a store-and-
forward lockup, the destination has n»om to ace. pi
arriving packets, but the packets interfere with eaeh
othrr by tying up buffers in transit in such a way that
none of the packets an- able to reach the destination.17

These phenomena have only been made to occur during
very carefully arranged testing of the ARPANET and
by simulation."

In the original ARPANET design, the use of soft-
ware links and RFNM8 protected against eoiig.stion
by a single link or a small set of links. However, ih<'
combined traffic on a large number of links could si ill
produce congestion. Although this strategy did not
protect against lockup, th«- methml has provided an.pl.
protection for the levels of traffic encount.n-d by «he
net to date.

A particularlv simple flow control algorithm that
augments the original IMPd.sign to prev.m coiig.-sti-.n
and lockup is also described in H.f.nnc- 17. This
scheme includes a mechanism whereby packets may !..•
discarded from the net at the destination IMP when
congestion is about to occur, with a copy of «ach di-
cardi-d packet to be retransmitted a short time later by
the originating Host's IMP. Kathrr than exp.ri.nc
excessive delays within the net as traffic levels ar.-
increased, th.' traffic is qucwd outside the net so that
the transit time delays internal to the net continue to
remain small. This strategy prevents the insertion of
more traffic into the net than it can handle.

It is important to note the dual requirement for «nail
delays for interactive traffic and high bandwidth for th.-
fast transfer of files. To allow high bandwidth between
a pair of Hosts, the net must be able to ace pt a rteady
flow of packets from one Host and at the Mm- time I
able to rapidly quench the flow at the entrance to th-
source IMP in the event of imminent congestion at tie-
destination. This usually requires that a separat.-
provision be made in th.- algorithm to protect short
interactive messages from experiencing unm-cessarily
high delays.

Routing

Network routing strategies for distributed ii<-tworks
require routing decisions to be made with only in-
formation available to an IMP ami th.- IMP must

68

Computer Communication Network Design 2tU

exfcuto those decisioas to «•ff(>ct the routinR'*'* A
simp!«- example of such a strutegv is to have each IMP
haiuiliug a packet independenth route it along its
current estimate of the shortest path to the destination.

For many applications, it suffices to deal with an
idealized routing strategy which may not simulate the
IMP routing functions in detail or which uses informa-
tion not available to the IMP The general properties
of both strategies are usually similar, diffiring mainly
in certain implementation details such as the avail-
ability of buffers or the constraint of counters and the
need for the routing to quickly adapt to changes in
IMP and circuit status.

The IMPs perform the routing computations using
information received from other IMPs and local
information such as the alive dead state of its circuits.
In the normal case of time varying loads, local informa-
tion alone, such as the length of internal queues, is
insufficient to provide an efficient routing strategy
without assistance from the neighboring IMPs. It is
possible to obtain sufficient information from the
neighbors to provide efficient routing, with a small
amount of computation needed per IMP and without
each IMP requiring a topological map of the network.
In certain applications where traffic patterns exhibit
regularity, the use of a central controller might Ix'
preferable. However, for most applications which
involve dynamically varxing traffic flow, it appears
that a central controller cannot be used More effectively
than the IMPs to update routing tables if such a
controller is constrained to derive its information via
the net. It is also a less reliable approach to routing
than to distribute the routing decisions among the
IMPs

The routing information cannot be propagated about
the net in sufficient time to accurately characterize the
instantaneous traffic flow. An efficient algorithm, there-
fore, should not focus on the movement of individual
packets, but rather use topological or statistical in-
formation in the selection of routes. For example, by-
using an averaging procedure, the flow of traffic can be
made to build up smoothly. This allows the routing
algorithm ample time to adjust its tables in each IMP
in advance of the build-up of traffic.

The scheme originally usi-d in the ARPA network
had each IMP select one output line per destination
onto which to route packets. The line was chosen to be
the one with minimum estimated time delay to the
destination. The selection was updated even half
second using minimum time estimates from the neigh-
boring IMPs and internal estimate.» of the delay to each
of the neighbors. Even though the routing algorithm
only selects one line at a time per destination, two
output tim-s will be used if a queue of packets waiting

transmission on one line builds up before the ruiiting
update occurs and another line is chosen Motlifiraltons
to the scheme which allow several lines per destination
to be us<ti in an update interval (durillR which the
routing is not changed) are possible using two or more
time delay estimates to select the paths.

In practice, this approach hw worked quite effectively
with the moderate levels of traffic experienced in the
net. For heavy traffic flow, this strategy may !»■
inefficient, since the routing information is based on
the length of queues, which we have seen can change
much faster than the information about the change can
be distributed. Fortunately, this information is still
usable, although it can be substantially out of date and
will not, in general, be helpful in making efficient
routing decisions in the heavy traffic case.

A more intricate scheme, recently develop«! by
BBN, allows multiple paths to be efficiently used evi u
during heavy traffic." Preliminary simulation studies
indicate that it can be tailored to provide efficient
routing in a network with a variety of heavy traffic
conditions. This method separates the problem of
defining routes onto which packets may be routed from
the problem of selecting a route when a particular
packet must be routed. By this technique, it is possible
to send packets down a path with the fewest IMPs and
excess capacity, or when that path is filled, the one with
the next fewest IMPs and excess capacity, etc.

A similar approach to routing was independently
derived by NAC using an idealized method that did not
require the IMPs to participate in the routing decWions.
Another approach using a flow deviation technique has
recently been under study at UCLA." The intricacies of
the exact approach lead to a metering procedure that
allows the overall network flow to be changed slowly for
stability and to perturb existing flow patterns to obtain
an increased flow. These approaclvs all posses*, in
common, essential ingredients of a desirable routing
strategy.

Topological connidrralioim

An efficient topological design provides a high
throughput for a given cost. Although many measures
of throughput an* possible, a convenient one is the
average amount of traffic that a single IMP can -end
..ito the network when all other IMPs are transmitting
according to a specified traffic pattern. Often, it is
assumed that all other IMPs are behaving identically
and each IMP is sending equal amounts of traffic to
each other IMP. The coastraints on the topological
design are the available common carrier circuits, the
target cost or throughput, the desired reliability, and

tt)

262 Spring Joint Computer Conference, 1972

TABLE 1—23 Node 28 Link AU PA

Number of Number of
CircuitB Combinations
Failed to be Examined

2S 1
27 28
26 378
29 3276
2-1 2047:)
23 98280
22 376740

1184040
310810.>
6906900
13123110
21474180
30421735
37442160
40116600
37442160
30421739
21474180
13123110
6906900
3108108
1184040

376740
98280
204 7 j
3276
378
28

Number of
Cutsets

I
2H

378
3276

2047.-)
98280
376740
1184040
3108105
6906900
13123110
21474180
30421799
37442160
40116600

37442160

30421793
21474180
13123110
6906900
3108108
1184040

349618
«70Ö47
=a98:)2

827
30
0

the cost of computation required to perform the
topological design.

Since, there was no clear specification of tin- amount
of traffic that the network would have to accommodate
initially, it was first constructed with enough excess
capacity to accommodate any reasonable traffic require-
ments. Then as new IMPs were added to the system,
the capacity was and is still being systematically
reduced until the traffic level occupies a substantial
fraction of the network's total capacity. At this point,
the net's capacity will be increased to maintain thf
desired percentage of loading. At the initial stages of
network design, the "two-connected" reliability con-
straint essentially determined a minimum value of
maximum throughput. This constraint forces the
average throughput to be in the range 10-15 kilobits per
second per IMP, when .50 kilobit/sec circuits are used
throughout the network, since two communication
paths between every pair of IMPs are needed. Alterna-
tively, if this level of throughput is required, then the
reliability s()ecification of "two-connectivity" can be
obtained without additional cost.

Reliability computations

A simple and natural characterization of network
reliability is the ability of the network to sustain
communication between all operable pairs of IMPs. For
design purposes, the requirement of two inde|M'udent
paths between nodes insures that at least two IMPs
and/or circuits must fail before any pair of operuble
I MPs cannot communicate. This criterion is iiulepeiu lent
of the properties of the IMPs and circuits, does not take
into account the "degree" of disruption that may occur
and hence, does not reflect the actual availability of
resources in the network. A more meaningful measure
is the average fraction of IMP pairs that caiuu t com-
municate because of IMP and circuit failures. This
calculation requires knowledge of the IMP and circuit
failure rates, and could not be performed until enouidi
operating data was gathered to make valid pmliction-

To calculate network reliability, we must consider
elementarv network structures known as cutsets. A

.01 .02 OS .04 OS OC .07 0« 09 10 II

PROBABILITY OF ELEMENT FAILING

Figure 2-Network iiViiiliibilily v». IMP and eirouit relmbililv

' vo

Computer Communication Network Design Mi

cutset is a set of circuits and or I.MPs whose removal
from the network breaks all communication paths
between at least two operable I Mi's. To calculate
reliability, it is often the case that all cutsets must be
either enumerated or estimated. As an example, in a
2'.\ IMP, 2S circuit AHPA Network design similar to
the one shown in Figure 1(d), there are over twenty
million ways of deleting only circuits so that the
remaining network has at least one operable pair of
I.MPs with no intact communication paths. Table 1
indicates the numbers of cutsets in the 23 IMP network
as a function of the number of circuits they contain.

A combination of analysis and simulation can be
used to compute the average fraction of non-com-
municating IMP pairs. Detailed descriptions of the
analysis methods are given in Reference 44 while their
application to the analysis of the ARPANET is dis-
cussed in Reference 43. The results of an analysis of
the 23 IMP version of the network are shown in Figure
2. The curve marked A shows the results under the
assumption that I.MPs do not fail, while the curve
marked B shows the case where circuits do not fail.
The curve marked C assumes that both IMPs and
eireuils fail with equal probability. In actual operation,
the average failure probability of both I.MPs and
circuits is about O.O-.'. For this value, it can be seen that
the effect of circuit failures is far less significant than
the effect of IMP failures. If an IMP fails in a network
with n IMPs, at least n — l other IMPs cannot com-
municate with it Thus, good network design cannot
improve upon the effect directly due to IMP failures,
which in the ARPANET is the major factor affecting
the reliability of the communications. Further, more
intricate reliability analyses which consider the loss of
throughput capacity because of circuit failures have
also been perfurmed and these losses have been shown
to he negligible.^ Finally, unequal failure rates due to
differences in line lengths have been shown to have
onl\ minor effects on the analysis and can usually be
negli cted.2'

Topolofrical optimization

During the computer optimization process, the
reliability of the topology is assumed to be acceptable if
the network is at least two-connected. The object of
the optimization is to decrease the ratio of cost to
throughput subject to an overall cost limitation. Thi>
techni(|ueemi)loys a sophisticated network optimization
program that utilizes circuit exchange heuristics,
routing and flow analysis algorithms, to generate low
cost designs. In addition, two time delay models were
initially used to (1) calculate the throughput corre-

sponding to an average time delay of 0.2 seconds,
(2) estimate the packet rejection rate due to all buffers
filling at an IMP. As experience with these models
grew, the packet rejection rate was found to be iirf;linil)le
and the computation discontinued. The delay computa-
tion (Equation (7) in a later section) was subsequently
first replaced by a heuristic calculation to speed the
computation and later eliminated after it was found
that time delays could be guaranteed to be acceptably
low by preventing cutsets from being saturated. This
"threshold" behavior is discussed further in the next
section.

The basic method of optimization was described in
Reference 12 while extensions to the design of large
networks are discussed in Reference 9. The method
operates by initially generating, either manually or by-
computer, a "starting network" that satisfies the overall
network constraints but is not, in general, a low cost
network. The computer then iteratively modifies the
starting network in simple steps until a lower cost
network is found that satisfies the constraints or the
process is terminated. The process is repeated until no
further improvements can be found. Using a different
starling network can result in a different solution.
However, by incorporating sensible heuristics and by
using a variety of carefully chosen starting networks and
some degree of man-machine interaction, "excellent"
final networks usually result. Experience has shown
that there are a wide variety of such networks with
different topological structures but similar cost and
performance.

The key to this design effort is the heuristic procedure
by which the iterative network modifications are made.
The method used in the ARPANET design involves the
removal and addition of one or two circuits at a time,
Many methods have been employed, at various times,
to identify the appropriate circuits for potential addi-
tion or deletion. For example, to delete uneconomical
circuits a straightforward procedure simply deletes
single circuits in numerical order, reroutes traffic and
reevaluates cost until a decrease in cost per megabit is
found. At this point, the deletion is made permanent
and the process begins again. A somewhat more
sophisticated procedure deletes circuits in order of
increasing utilization, while a more complex method
attempts to evaluate the effect of the removal of any
circuit before any deletion is at'empted. The circuit
with the greatest likelihood of an improvement is then
considered for removal and so on.

There are a huge number of reasonable heuristics for
circuit exchanges. Aftir a great deal of experimentation
with many of these, it appears that the choice of a
particular heuristic is not critical. Instead, the spe« d
and efficiency with which potential exchanges can be

i n*

264 Spring Joint Computer Conference, 1972

I

investiRiited appears to be the linutinn factor affecting
the quality of the final design. Finally, as the size of
the network increases, the greater the cost becomes to
perform any circuit exchange optimization. Decom-
position of the network design into regions becomes
necessary and additional heuristics are needed to
determine effective decompositions. It presently appears
that these methods can be used to design relatively
efficient networks with a few hundred IMPs while
substantially new procedures will be necessary for
networks of greater size.

The topological design requires a routing algorithm
to evaluate the throughput capability of any given
network. Its properties must reflect those of an im-
plementable routing algorithm, for example, within
the ARPANET. Although the routing problem can be
formulated as a "multicommodity flow problem"10 and
solved by linear programming for networks with 20-30
IMPs,8 faster techniques are needed when the routing
algorithm is incorporated in a design procedure. The
design procedure for the ARPA Network topology
iteratively analyzes thousands of networks. To satisfy
the requirements for speed, an algorithm which
selects the least utilized path with the minimum number
of IMPs was initially used.12 This algorithm was later
replaced by one which sends as much traffic as possible
along such paths until one or more circuits approach a
few percent of full utilization.28 These highly utilized
circuits are then no longer allowed to carry additional
flow. Instead, new paths with excess capacity and
possibly more intermediate nodes are found. The»
procedure continues until some cutset contains only
nearly fully utilized circuits. At this point no additional
flow can be sent. For design purposes, this algorithm is
a highly satisfactory replacement for the more com-
plicated multi-commodity approach. Using the al-
gorithm, it has been shown that the throughput capa-
bilities of the ARPA Network are substantially
insensitive to the distribution of traffic and depend
mainly only on the total traffic flow within the network.8

Analytic models of network performance

The efTrrt to determine analytic models of system
performance has proceeded in two phases: (1) the pre-
diction of average time delay encountered by a message
as it passes through the network, and (2) the use of
these queueing models to calculate optimum channel
capacity assignments for minimum posshle delay. The
model used as a standard for the average message delay-
was first described in Reference 21 where it served to
predict delays in stochastic communication networks.

In Reference 22, it was modified to deserilve the be-
havior of ARPA-like computer networks while in
Reference '2'.i it was refined further to apply directly to
the ARPANET.

The single server model

Queueing theory20 provides an effective set of ana-
lytical tools for studying packet delay. Much of this
theory considers systems in which messages place
demands for transmission (service) upon a single
communication channel (the single server). These
systems are characterized by A{T), the distribution of
interarrival times between demands and Hit), the
distribution of service times. When the average demand
for service is less than the capacity of the channel, the
system is said to be stable.

When /1(T) is exponential (i.e., Poisson arrivals),
and messages are transmitted on a first-come first-served
basis, the average time T in the stable system is

W2

2(1-P)
+ 1 (1)

where X is the average arrival rate of messages, i und t-
are the first and second moments of Bit) respectively,
and p""Xlf<l. If the service time is also exponential,

T =
\-p

(2)

When Air) and li{t) are arbitrary distributions, the
situation becomes complex and only weak results are
available. For example, no expression is available for '/';
however the following upper bound yields an excellent
approximation" as p—»1:

- 2(l-p)
(3)

where oj and a»2 are the variance of the interarrival
time and service time distributions, respectively.

Networks of queues

Multiple channels in a network environment give
rise to queueing problems that are far more difficult to
solve than single server systems. For example, the
variability in the choice of source and destination for a
message is a network phenomenon which cunlrilnites to
delay. A principal analytical difficulty results from the
fact that flows throughout the network are correlated.
The basic approach to solving these stochastic network

72

Computer Communication Network Design 265

problems is to decompose them into analyzablc single-
server problems which reflect the original network
structure and traffic flow.

Early studies of queueing networks indicated that
such a decomposition was possible;60" however, those
results do not carry over to message switched computer
networks due to the correlation of traffic flows In
Reference 21 it was shown for a wide variety of com-
munication nets that this correlation could be removed
by considering the length of a given packet to be an
independent random variable as it passes from node to
node. Although this "independence" assumption is not
physically realistic, it results in a mathematically
tractable model which does not seem to affect the
accuracy of the predicted time delays. As the size and
connectivity of the network increases, the assumption
becomes increasingly more realistic. With this assump-
tion, a successful decomposition which permits a
channel-by-channel analysis is possible», as follows.

The packet delay is defined as the time which a
packet spends in the network from its entry until it
reaches its destination. The average packet delay is
denoted as T. Let Zjt be the average delay for those
packets whose origin is IMF j and whose destination is
IMP k. We assume a Poisson arrival process for such
packets with an average of 7>» packets per second and
an exponential distribution of packet lengths with an
average of 1 /p bits per packet. With these definitions,
if y is the sum of the quantities >,», then"

(4)

Let us now reformulate Equation (4) in terms of
single channel delays. We first define the following
quantities for the tth channel: C, as its capacity
(bits/second); K as the average packet traffic it carries
(packets/second); and 7\ as the average time a packet
spends waiting for and using the tth channel. By
relating the l^j to the \y,k\ via the paths selected by
the routing algorithm, it is easy to see that"

(5)

With the assumption of Poisson traffic and exponential
service times, the quantities T, are given by Equation
(2). For an average packet length of l/V bits, 1= l/pCi
seconds and thus

TV
1

ßCi—\i
(6)

Thus we have successfully decomposed the analysis
problem into a set of simple single-channel problems.

A refinement of the decomposition permits a non-
exponential packet length distribution and uses Equa-
tion (1) rather than Equation (2) to calculate 7',;
as an approximation, the Markovian character of the
traffic is assumed to be preserved. Furthermore, for
computer networks we include the effect of propagation
time and overhead traffic to obtain the following
equation for average packet delay22"

i y Hd /iC, —A, *]
Here, 1/V represents the average length of a Host
packet, and \/n represents the average length of nil
packets (including acknowledgments, headers, requests
for next messages, parity cheeks, ete.^ within tin- nvt-
work. The expression l//i'r. + [(X,/M('.) (Mr^X.)]!-/'.
represents the average packet delay on the ith channel.
The term (X./MC.VCMC-M ■« «he average time a
packet spends waiting at the IMP for the tth channel to
become available. Since the packet must compete with
acknowledgment» and other overhead traffic, the
overall average packet length l/V appears in the
expression. The term l/n'C, is the time required to
transmit a packet of average length /• Finally: A' is
the nodal processing time, assumed constant, and for
the ARPA IMP approximately equal to O..'}') ms;
Pi is the propagation time on the ith channel (about
20 ms for a 3000 mile channel).

Assuming a relatively homogeneous set of d and
Pi, no individual term in the expression for delay will
dominate the summation until the flow X, > in one
channel (say channel t.) approaches the capacity (',,,.
At that point, the term T,e, and hence T will grow-
rapidly. The expression for delay is then dominated by
one (or more) terms and exhibits a threshold behavior.
Prior to this threshold, T remains relatively constant.

The accuracy of the time delay model, as well as this
threshold phenomenon was demonstrated on a 19 node
network14 and on the ten node ARPA net derived from
Figure 1(c) by deleting the rightmost five IMPs.
Using the routing procedure described in the last
section28 and equal traffic between all node pairs, the
channel flows Xi were found for the ten node net and
the delay curves shown in Figure 3 were obtained.
Curve A was obtained with fixed 1000 bit packets,*
while curve H was generated for exponentially dis-
tributed variable length packets with average size of
Ö00 bits In both cases A and B, all overhead factors
were ignored. Note that the delay remains small until a

* In cue A, the npplirafioii (if rqimtinn (I) iillowa fur nmsl.irit
piicktt lengths (i.e., zoro vivriiiiicc).

73

266 Spring Joint Computer Conference, 1972

DELAY (SEC)
O o
• «I

i r

500 BIT PACKETS PLUS OVERHEAD

1000 BIT PACKETS PLUS OVERHEAD

1000 BIT PACKETS WITHOUT OVERHEAD

■ 500 BIT PACKETS WITHOUT OVERHEAD

1

Figure 3—Delay vs. throughput

total throughput slightly groator than 400 kilobits/
second is rerr'el. The delay then increases rapidly.
Curves C u >a D respectively represent the same
situations whci the overhead of 136 bits per packet and
per RFNM and 152 bits per acknowledgment are
included. Notice that the total throughput per IMP
is reduced to 250 kilobits/second in case C and to
approximately 200 kilobits/second in case Ö.

In the same figure, we have illustrated with X'H the
results of a simulation performed with a realistic
routing and metering strategy. The simulation omitted
all network overhead and assumed fixed lengths of
1000 bits for all packets.

It is difficult to develop a practical routing and flow
control procedure that will allow each IMP to input
identical amounts of traffic. To compare the delay

curve A with the points obtained by simulation, the
curve should actually be recomputed for the slightly
skewed distribution that resulted. It is notable that the
delay estimates from the simulation (which used a
dynamic routing strategy) and the computation (which
used a static routing strategy and the time delay for-
mula) Are in close agreement. In particular, they both
accurately determined the vertical rise of the delay
curve in the range just above 400 kilobits/second, the
formula by predicting infinite delay and the simulation
by rejecting the further input of traffic.

In practice and from the analytic and simulation
studies of the ARPANET, the average queueing delay
is observed to remain small (almost that of an unloaded
net) and well within the design constraint of 0.2 seconds
until the traffic within the network approaches the
capacity of a cutset. The delay then increases rapidly.
Thus, as long as traffic is low enough and the routing
adaptive enough to avoid the premature saturation of
cutsets by guiding traffic along paths with excess capacity,
queueing delays are not significant.

Channel capacity optimization

One of the most difficult design problems is the
optimal selection of capacities from a finik set of
options. Although there are many heuristic approaches
to this problem, analytic results are relatively scarce.
(For the specialized case of centralized networks, an
algorithm yielding optimal results is available.") While
it is possible to find an economical assignment of
discrete capacities for, say, a 200 IMP network, very
little is known about the relation between such capacity
assignments, message delay, and cost.

To obtain theoretical properties of optimal capacity
assignments, one may ignore the constraint that
capacities are obtainable only in discrete sizes. In
Reference 21 such a problem was posed where the
network topology and average traffic flow «ere a-.>umed
to be known and fixed and an optimal match of capaci-
ties to traffic flow was found. Also, the traffic was
assumed to be Markovian (Poisson arrivals and
exponential packet lengths) and the independence
assumption and decomposition method were applied.
For ('ach channel, the capacity f. was found which
minimized the average message delay T, at a fixed
total system cost 1). Since \(/ß is the average bit rate on
the cth channel, the solution to any (.primal assignment
problem must provide more than this minimal capacity
to each channel This is clear since both Filiations (0)
and (7) indicate that T, will become arbitrarily large
with less than (or equal to) this amount of capacity.
It is not critical exactly how the excesa capacity is

74

Computer Communication Network Design 207

assigned, as long as C,>X,.V Other important param-
eters and insights have been identified in studying the
continuous capacity optimization problem. For ex-
ample, the number of excess dollars, I)„ remaining
after the minimum capacity \,/ft is assigned to each
channel is of great importance. As /),—»0, the average
delay must grow arbitrarily large. In this range, the
critical parameters become p and n where p=y/nC is
the ratio of the rate 7//1 at which bits enter the network
to the rate C at which the net can handle bits and
n = X/7, where X = £\i is the total rate at which packets
flow within the net. The quantity p represents a dimen-
sionless form of network "load" whereas n is easily
shown to represent the average path length for a
packet.

As the load p approaches 1/n, the delay T grows very
quickly, and this point p= 1/n represents the maximum
load which the network can support. If capacities are
assigned optimally, all channels saturate simultaneously
at this point. In this formulation n is a design parameter
which < »ends upon the topology and the routing
procedure, while p is a parameter which depends upon
the input rate and the total capacity of the network.
In studying the ARPANET23 a closer representation
of the actual tariffs for high speed telephone data
channels used in that network was provided by setting
0=]C.d.C, where 0<a<l.* This approach requires
the solution of a non-linear equation by numerical
techniques. On solving the equation, it can be shown
that the packet delay T varies insignificantly with a
for .3<a<l. This indicates that the closed form
solution discussed earlier with a=l is a reasonable
approximation to the more difficult non-linear problem.
These continuous capacity studies have application to
general network studies (e.g., satellite communications)33

and are under continued investigation."" ^
In practice, the selection of channel capacities must

bf made from a small finite set. Although some theo-
retical work has been done in this case by approxi-
mating the discrete cost-capacity functions by
continuous ones, much remains to be done.13 M Because
of the discrete capacities and the time varying nature
of network traffic, it is not generally possible to match
channel capacities to the anticipated flows within the
channels. If this were possible, all channels would
saturate at the same externally applied load. Instead,
capacities are assigned on the basis of reasonable
estimates of average or peak traffic flows. It is the
responsibility of the routing procedure to permit the
traffic to adapt to the available capacity.14 Often two

• Of course the tariffs reflect the discrete nature of available
channels. The use of the exponent a provides a continuous fit
to the discrete cost function. For the ARPANET, a=.8.

IMP sites will engage in heavy comnumieatiou and
thus saturate one or more critical network cutsets. In
such cases, the routing will not be able to send addi-
tional flow across these cuts. The network will therefore
experience "premature" saturation in one or a small set
of channels leading to the threshold behavior described
earlier.

DISCUSSION

A major conclusion from our experience in network
design is that message switched networks of the ARPA
type are no longer difficult to specify. They may be
implemented straightforwardly from the specifications;
they can be less expensive than other currently available
technical approaches; they perform remarkably well as
a communication system for interconnecting time-
sharing and batch processing computers and can be
adapted to directly handle teletypes, displays and many
other kinds of terminal devices and data processing
equipment.1'*1

The principal tools available for the design of net-
works are analysis, simulation, heuristic procedures,
and experimentation. Analysis, simulation and heuristics
have been the mainstays of the work on modeling and
topological optimization while simulation, heuristic
procedures and experimental techniques have been the
major tools for the actual network implementation.
Experience has shown that all of these methods are
useful while none are all powerful. The most valuable
approach has been the simultaneous use of several of
these tools.

Each approach has room for considerable improve-
ment. The analysis efforts have not yet yielded results
in many important areas such as routing. However, for
prediction of delay, this approach leads to a simple
threshold model which is both accurate and under-
standable. Heuristic procedures all suffer from the
problem that it is presently unclear how to select
appropriate heuristics. It has been the innovative use
of computers and analysis that has made the approach
work well. For designing networks with no more than a
few hundred IMPs, present heuristics appear adequate
but a good deal of additional work is required for net-
works of greater size. Simulation is a well developed tool
that is both expensive to apply and limited in the overall
understanding that it yields. For these reasons, simula-
tion appears to be most useful only in validating models,
and in assisting in detailed design decisions such as the
number of buffers that an IMP should contain. As the
size of networks continues to grow, it appears that
simulation will become virtually useless as a total design
tool. The ultimate standard by which all models and

75

268 Spring Joint Computer Conference, 1972

conclusions can be tested is experimentation. Experi-
mentation with ^he actual network is conceptually
relatively straightforward and very useful. Although,
experiments are often logistically difficult to perform,
they can provide an easy means for testing models,
heuristics and design parameters.

The outstanding design problems currently facing
the network designer arc to specify and determine the
properties of the routing, flow control and topological
structure for large networks. This specification must
make full use of a wide variety of circuit options.
Preliminary studies indicate that initially, the most
fruitful approaches will be based on the partitioning of
the network into regions, or equivalently, coastructing
a large network by connecting a number of regional
networks. To send a message, a Host would specify
both the destination region and the destination IMP
in that region. No detailed implementation of a large
network has yet been specified but early studies of their
properties indicate that factors such as cost, throughput,
delay and reliability are similar to those of the present
ARPANET, if the ARPA technology is used.«

Techniques applicable to the design of large networks
are presently under intensive study. These tcckniques
appear to split into the same four categories as small
network design but approaches may differ significantly.
For example, large nets are likely to demand the place-
ment of high bandwidth circuits at certain key locations
in the topology to concentrate flow. These circuits will
require the development of a high speed IMP to connect
them into the net. It is likely that this high speed IMP
will have the structure of a high speed multiplexor, and
may require several cooperating processors to obtain
the needed computer power for the job. Flow control
strategies for large networks seem to extrapolate nicely
from small network strategies if each region in the large
network is viewed as a node in a smaller network.
However, this area will require additional study as will
the problem of specifying effective adaptive routing
mechanisms. Recent efforts indicate that efficient
practical schemes for small networks will soon be
available. These schemes seem to be applicable for
adaptive routing and flow control in networks con-
structed from regional subnetworks. The development
of practical algorithms to handle routing and flow-
control is still an art rather than a science. Simulation is
useful for studying the properties of a given heuristic,
but intuition still plays a dominant role in the system
design.

Several open questions in network design presently
are: (1) what structure should a high bandwidth IMP
have; (2) how can full use be made of a variety of high
bandwidth circuits; (3) how should large networks bo
partitioned for both effective design and operation;

and (4) what operational procedures should large
networks follow? Much work has already been done in
these areas but much more remains to be (lone. We
expect substantial progress to be achieved in the next
few years, and accordingly, the iucreaseil uuderstmiding
of the properties of message switched networks of
all sizes.

ACKNOWLEDGMENT

The ARPA Network is in large part the concept ion of
Dr. L. G. Roberts of the Advanced Research Projects
Agency to whom we owe a debt of gratitude for his
support and encouragement. We also acknowledge the
helpful contributions of S. Crocker and B. Dolan of
ARPA. At BBN, NAC, and UCLA many individuals,
too numerous to list, participated in the network effort
and we gratefully acknowledge their contributions.

REFERENCES

1 P BARAN S BOEHM P SMITH
On dislrihulrd communirations
Scries of II reports by Hand Corporation Santa Monicn
California 1964

2 "Specifications for the interconnection of a Host anil
an IMP
BBN Report No 1822 1971 revision

3 S CARR S CROCKKR V CERF
Host-Host communication protocol in the ARPA mtuork
SJCC 1970 pp 589-Ö97

4 S CROCKER et al
Function oriented protocols for the ARPA network
SJCC 1972 in this issue

5 D W DA VIES
The control of congestion in packet switching nettenrks
Proc of the Second ACM IEEE Symposium on problems
in the Optimization of Data Communications Systems
Palo Alto California Oct 1971 pp 46-49

6 D FARBER K LARSON
The architecture of a distributed computer system—An
informal description
University of California Irvine Information and
Computer Science Technical Report «11 1970

7 W D FARMER E E NEWHALL
An experimental distribution switching tytti 'n In handle
bursty computer traffic
Proc of the ACM Symposium on Problems in the
Optimization of Data Communication Systems 1969
pp 1-34

8 H FRANK W CHOU
Routing in computer networks
Networks John Wiley 1971 Vol 1 No 2 pp 99-112

9 II FRANK W CHOU
Cost and throughput in eompiiter-communication niltrnrks
To appear in the Infotceh Report on the Stale of the
Art of CompuU-r Networks 1972

10 H FRANK I T FRISCH
Communication transmission ami transportation networks
Addiaon Weslcv 1972

76

Computer Communication Network Design 269

11 H FRANK I T FRISCH W CHOU
R VAN SLYKE
Optimal design of centralized computer nclworki
Networks John Wiley Voi 1 No 1 pp 43-57 1971

12 H FRANK I T FRISCH W CHOÜ
Topological comideralions in the detign of the
ARPA computer network
SJCC May 1970 pp 581-587

13 L FRATTA M GERLA L KLEINROCK
The flow deviation method; An approach to
ttore-und-forward network design
To be published

14 G FULTZ L KLEINROCK
Adaptive routing technique» for »tore-and-forward
computer-communication network»
Proc of the International Conference on
communications 1971 pp 39-1 to 39-8

15 F HEART R KAHN S ORNSTEIN
W CROWTHER D WALDEN
The interface message processor for the ARPA
computer network
SJCC 1970 pp 551-567

16 R E KAHN
Terminal access to the ARPA computer network
Proc of Third Courant Institute Symposium Nov 1970
To be published by Prentice Hall Englewood Cliffs, NJ

17 R E KAHN W R CROWTHER
Flow control in a resource sharing computer network
Proc of the Second ACM IEEE Symposium on
Problems in the Optimization of Data Communications
Systems Palo Alto California October 1971 pp 108-116

18 R E K*.HN W R CROWTHER
A study of the ARPA network design and performance
BBN Report No 2161 August 1971

19 J F C KINGMAN
Some inequalities for the queue GI/G/l
Biometrica 1962 pp 315-324

20 L KLEINROCK
Queueing system»; Theory and application
To be published by John Wiley 1972

21 L KLEINROCK
CommuniixUion net»: Stochastic message flow and delay
McGraw-Hill 1964

22 L KLEINROCK
Models for computer networks
Proc of the International Conference on Communications
1969 pp 21-9 to 21-16

23 L KLEINROCK
Analysis and simulation methods in computer
JUtwork design
SJCC 1970 pp 569-579

24 T MARILL L G ROBERTS
Toward a cooperative network of lime-shared computers
FJCC 1966

25 B MEISTEU H MÜLLER II RUIMN JR
Optimisation of a new model for mesiage-switching
networks
Proc of the International Conference on Communications
1971 pp 39-16 to 39-21

26 B MEISTER H MÜLLER H RUDIN
New optimisation criteria for message-switching
network»
IEEE Transactions on Communication Technology
Com-19 June 1971 pp 256-260

27 N. A. C. Third Semiannual Technical Report for the
Project Analysis and Optimization of Store-and-Forward
Computer Networks
Defense Documentation Center Alexandria Va
June 1971

28 N. A. C. Fourth Semiannual Technical Report for the
Project Analysis and Optimication of Store-and-Forward
Computer Networks
Defense Documentation Center Alexandria Va Dec 1971

29 The Host/Host protocol for the ARPA network
Network Working Group N I C No 7147 1971 (Available
from the Network Information Center Stanford
Research Institute Menio Park California)

30 ORNSTEIN et al
The termiiuil IMP for the ARPA network
SJCC 1972 In this issue

31 J PIERCE
A network for block switching of data
IEEE Convention Record New York N Y March 1971

32 E PORT F CLOS
Comparisons of switched data networks on the basis of
waiting times
IBM Research Report RZ 405 IBM Research
Laboratories Zurich Switzerland Jan 1971 (Copies
available from IBM Watson Research Center
P O Box 218 Yorktown Heights New York 10598)

33 H O RAYMOND
A queueing theory approach to communication
satellite network design
Proc of the'International Conference on Communication
pp 42-26 to 42-31 1971

34 L G ROBERTS
Multiple computer networks and inter-computer
communications
ACM Symposium on Operating Systems
Gatlinburg Tenn 1967

35 L G ROBERTS
A forward look
SIGNAL Vol XXV No 12 pp 77-81 Augu-t 1971

36 L G ROBERTS
Resource sharing networks
IEEE International Conference March 10C9

37 L G ROBERTS
Access control and file directories in computer networks
IEEE International Convention March 1%H

38 L G ROBERTS B WESSLER
Computer network development to achieve resource shari'if/
SJCC 1970 pp 543-549

39 L G ROBERTS B WESSLER
The ARPA computer network
In Computer Communication Networks edited by
Ahramson and Kun Prentice Mali 1972

40 R A 8CANTLEBURY P T WILKINSON
The design of a switching system to allow remote
access to computer services by other compuli rs
Second ACM/IKEK Symposium on Prnlileni* in the
Optimization of Data Communiratioim Systems
Palo Alto California October 1971

41 R A SCANTLEBURY
A model for the local area of a ilata communication
network—Objectives and hardware organitation
ACM Symposium on Problems in the Optimization
of Data Communication Systems Pine Mountain Ga
1969 pp 179-201

77

270 Computer Communication Network Design

42 11 II THOMAS D A HENDERSON
McKom—A mulli-eomputer programming »yitem
SJCC 1972 In this issue

43 K VAN SLYKE H FRANK
Reliability of computer-communication networks
Proc of the Fifth Conference on Applications of
Simulation New York December 1971

44 R VAN SLYKE H FRANK
Network reliability analytU—l
Networks Vol 1 No 3 1972

45 E WOLMAN
A fixed optimum cell sue for records of various length
JACM 1965 pp 53-70

46 L KLEINROCK
Scheduling, gueueing and delays in timesharing
systems and computer networks
To appear in Computer-Communication Networks
oditod by Abramsun und Kuo Prentice Hall 1972

47 A H WEIS
Distributed netivork activity at IBM
IBM Research Report RC3392 June 1971

48 M BEERE N SULLIVAN
Tymnet—A serendipitous evolution
Second ACM IEEE Symposium on Problems in the
Optimization of Data Communications Systems Palo
Alto California 1971 pp 16-20

49 W TEITELMAN R E KAHN
A mtwork simulation and display program
Third Princeton Conference on Information Sciences
and Systems 1969 p 29

50 P BURKE
The output of a gueueing system
Operations Rcsearcii 1956 pp 699-704

51 J R Jackson
Networks of waiting lines
Operations Research Vol 5 1957 pp 518-521

52 D B McKAY D P KAUP
Network/HO—IBM Research Computer Sei, nets
Department Computer Network
IBM Research Heport RC3431 July 1971

78

APPENDIX E

SOME RECENT ADVANCES IN COMPUTER COMMUNICATIONS

by Wesley W. Chu

73

__

»-.r h I .• * || ,

tt.j..'i l.xt (.r^t.'Kliiiiii Minn (IMI.- I..^.-% hti
IVc* sa .ii>H ri>liiiim *•! --.HMI iwl . tltit^ |i.\t • ht-i.-

SOME RECENT ADVANCES IN COMPUTER COMMUNICATIONS»
i

W..., We »ley W. Chu

'"^ "'" "nlv.r.Uy or C.UfornU. Lo. Angel... C.liforni.. U.S.A.
i .

i r . ;

Sun (i \i Hrrr on tmt pigr unlv
; ABSTRACT
i [

Ifff **?»*•*< >■"»<">» I) computer traffic ch.r.
act.rl.tlc. In the ca.e of long holding time repre-

i u .5 •lien,lfic «Ppllcation., and in the c.e of
IÜ2JÜ??! V"! re» """""« »he inqulry-re.pon.«
■y.t.m.t 2) telephone channel error ch*r.ct.ri,\lc.

i of high .peed vt<ce b.nd data tr.n.mU.ion on the
.witched telecommunication network, and of the low
•p«.d channel at a rate of 300 bit./.eci 3) optimal
llxed m...age block ri.e for communication ,v..

item, u.lng «rror detection and retran.mi..ion a.
ul'SUSZ? SSl f'n,dom " bur,t "ro* channel), 1 ril . "i," •n|,ltlP1«»'>g (v.ynchronou. Time
Dl»l.lo» Multiplexing!, 5) loop .y.tem. and 6) .ecur-
Ity in computer communication.. New area, needln*
further Inve.tigation are included. "««Jing

I. XNTRODUCTION

M-.-A,uCTpUte^"con,munlc,,'on ■/•»em. .uch a.
tlme-.harlng and dl.trlbuted computer .y.tem.
fhUTtLV-^ •'"* ""JP'""/. the problem of being
S.i-1 »»«l"atand and to predict .y.tem behavior
Iweome. incr.a.ingly important. It become, clear

eporating and performance criteria at minimum
co« for computing, communication and operation
two key problem area, need to be .tudledi lir.f '
P?-?*,.TlMtn« P^ob'am between computer and «m-
mwücation .y.tem., .econd. the reUtion.hip. .r^on,
communication traffic .ource.. channel, and com-
put.r r..ourc. allocation mechanl.m..

th...^",^""1"" ln •,udyln« •"«• under.tandlng th... problem, are. 1) computer deiner.' lack of

Sn e'n. l!.C.0,T.m.UnlJ:•,,it,, ^^"^y, Z) commun- ication engineer.' lack of knowledge in computer
Uchno ogy, and JMh. lack of tool, and model, with
«...n,: 'nTiy\e

1
the beh"i«" «" »he« complex ■yilein.. The fir.t two difficultie. may be rc.olved

by .«chang. of Information between computer
•M.lgn«r. and communication .peclaU.t.. The third

Dn l.r.l (-..^r nnu j

Hr|m ^'..ini* r<>lumi> uf i.\i hcrr

difficulty may be remedied by periodically .ummarl-
ilng important re.earch related to computer-
communication .y.tem. which 1. .cattered through-
out v. rlou. journal., conference proceeding, and
technical report». In thl. paper we aim at the la.t
objective,

II. RECENT ADVANCES IN COMPUTER
CCMMUNICATIONS

1. Computer Traffic Characterl.tlc.

It ha. become apparent that real progrc»» in
modeUng and analy»i. depend, upon more than
elegant analytical re.ult. ba.ed upon convenient but
unsupported ...umption*. Mea.urement and ob»er -
vatlon ire needed, the computer traffic character-
l.tlc. of ln-hou.e time-.harlng .y.tem» ha» been
undertaken by the Bell Telephone Laboralorie» to
obtain e.timate. of .y.tem variable». Two type»
of .y.tem« under »tudy arei long holding wme
(connect to dl.connect) and .hort holding time. Long
holding time i. characterl.tlc of bu.ine»» and
»clentlfic application, which require exten.ive
computation, a holding time typically of 15 to 30
minute*. Short holding time i. characteri.tic of
inqulry-re.pon.e .y.tem. .uch a. on-Une banking
credit bureau and production control which have
holding time, of a few .econd. to one or two minute..

Jack.on and Stubb. [I] and Fuch. and Jack.on
IZJ have reported the re.ult. of long holdir.R time
They .how that the volume of computer-to-u »er
traffic 1. an order of magnitude higher than that of
u.er-to-computer traffic. The interarrlval time
between me..age. can be approximated by an
exponential di.trlbuUon, that 1.. the »tream of
me.«age. can be a.aumed to con.titute a Poi»»on
pro<e... Furthermore, the length of me»»agrs
can b. .ati.factorlly approximated bv the geometri-
cal dletrlbutlon. During the call inttrval. the u.e-
i. acUv. only 5 & of the lime and the computer t»

I olth. r>epartm.nt of Def.n.e under Contract No. DAHcii^O.C.ozls"' R"e'rch ProJ«"« Ag.ncy

I .i«.» N«ttK

hO

I ' < I I ■■

• cllvr about 10% of Ihr tlm*. Thu«, lh« channel ia
Idle for a algnldcant portion o(Ihr holdlnx tim*.
Th« Iradlc charactrrlatica of ahorl holding timt
arr reported on by Oidlck, Kuch* and Jackaon [Ij
Thr mekaurad rraulta from (o'ir auch ayatrma
rrvral that uaar aand tim« (thr total amount of
tim* Airing which uaar charactrra arr bring Irana-
millrd) la traa than IS% of th« holding tim«. Thia
paramrtrr i« ImporUnt to th« draign of atatialical
multiplaitora. Thr charactar intrrarnval timr a
can br rcpr«a«nt«d aa a aum of two gamma diatrt-
butlona; th« number of ua«r aegmrnta prr call and
computer eegmenta per call, can be repreaented
by a gromrtru«! dlatributton. Theae meaaure-
menta and eatimated ayatem variablea not only
provldr ua with Inaight Into the behavior of the
ayatem and ahed light on areaa that need improve-
menu, but are eaatntial in the modeling and aoaly-
■la of computer communication ayatema.

I. Channel Error Chararterlatica

Th« communication channel provid«a lh« link«
betwrrn proc«aaora and terminal, nd playa an
Important rot« in cumput«r comn.anicatlon ayatema,
Thua, a characteritation of channel performance
la important for untleratandmg Ihr cauae of error«,
tor auggeatlng the roaalble improvementa in the
draign of tranamiaiion rquipment and the draign of
•fflcicnt error control ayatema, and for p.^nning
optimal computer (.ommunication ayatama.

To characterifr t«l«phon« channel error per-
formance, a aurvay meaaurcmenl program of the
telephone network to determine the error perform-
ance and th« data apeed capaaiUtiea ia neceaa^ry.
A arrira at auch atudira at\rt«d by th« Bell ayatema
in 19SS waa directed lowarda thia goal, and aeveral
Siprra have been publiahed on thia aubject (4-8).

«re wr thall emphaais« r«c«nt eurv«y rcauua
(1949-19701 on high apc«d veir« band data trana-
mlaaion performance on th« «witched telecommuni-
cation network (7) and low apeed data tranamiaaion
performance on th« awitchad t«l«communicatlon
network (8). In their two papera, th« dlatrlbutiona
of error par call ar« giv«n on a bit, burat and
block bail«. Information la alao pr««rntcd on the
dlatrlbution of intervale between crrora, the
ttmcturr of burat rrrora and the number of errora
in block« of varioua alaea. Such atatiatica provide
Information on channel reliability and are alao
uaeful In the deaign of efficient error control
procedurca.

i
In th« high apeed voiceband data tranamiaaion

channel, toll traffic waa uaed aa a baaia for th«
aampling plan which rcaulted in the ««lection of
•pproslmately 400 dialed-toll connectiona between
geographically diaperaed local awitching officea.
Data ratea of 1200, 2000, 3400 and 4800 bita/arc
are meaauted on the Bell Syatem «witch telecom-
munication network. The meaaured reaulta ahow
• aubatantial Improvement of performance In
cemparlaon with the rraulta of prrvioua aurvrya;
for ruample. lh« m«Baur«d r««ult« for operation
at 1200 and 2000 bil«/«cc ahow that approKimately
82% of th« call« hav« an avarag« error rale of I
• rror In 10' bit« or belter over ahorl, medium

and long haul calla: while the t9S9 Alexander, Cryb
and Naat -urvry [4] ahowa only M't of thrlr trat
calla reached thia performance level (10'') for
operation at the aame data rate. A grnrral
tendency for performance to degrade with trana-
miaaion diatanc« haa been noted. Theae reaulta
alao indicate that impulae noiae accounted for a
Urge peiccntage of the obaerved errora.

low apeed data tranamiaaion correaponda to
teletypewriter«, computer porla and other terminal
device» that communicat« by mcana of data organ-
laed in chaiacler« (compnaed of aeveral bit«)
ualng atart-atop tranamiaaion at a rate of 100
bita/a«c. Ch«ract«r «rror «lattatict, rather than
bit error atatiatica, are the parameter« of inlrrrat
in thia type of tranamiaaion becau«« the meaaage
conalata of a dtaplay (in telelypewritera) or u>e
character« in moat application« (in computer»).
Measurement» were made on S)4 connection« with
over 21 million charactera (1 character a 10 bila)
tranamltled. Over 90% of the low apeed test calla
contained about 14. 000 to S4. 000 charactera. A
character error rate of 10~* or leaa 1« indicated
for approKimatrly 78% of all call«, while 9f% of
all c.iU« have a loal character rate of lO"4 or lea«.
Errora occurring in the meaaagea are in bureta
rath« r than at random. Thr number of character
errora in a block increaaea with the block length.
Since thia ia the firat report on low «prrd data, no
compariaon with any prevloua aurvey i« po««ible.
Further analyais of the atatiatica will give inaight
into the cauace of errora which in turn may auggeat
approachea to improve error performance.

1. Optimal rinrd Meaaage B.ock Siae

The meaaage output« from a computer are
uaually in atringa of charactrra or burat«. Thr
variation of maaaage length can beet be deacrihed
by a probability dlatrlbution. For eaae in data
handling and memory management, the random
meaaage length la uaually partitioned Into aeveral
fixed aiae blocke. Due to the random lennth of
the meaaage, the lait partitioned block usually I«
not filled by the me ««age but ia filled with dummy
information.

For reaaona of economic« and reliability,
error detection and retranamiation la employed
in many data communication «yatem« [S, ■'). The
optimal block aiae ia an important parameter in
the deaign of auch ayatema. From the acknowl-
edgement point of view, it i« driirable to arlrct
the largrat poa«ible block aiae. Since each
meaaage block requlrea at leaat one acknowlrugo-
ment aignal, thr fewer the number of blocke needed
for a meaaage, the the channel capacity
required for acknowl« '—mrnta. On the other
hand, aince a larger meaaage block haa a higher
channel waatage due to the laat unfilled partitioned
block, and alao haa a higher probability of rrror,
it 1« dealrable to aelect the amalleat poaaible block
«iae. Thue there la a trade-off in «electing the
optimal block aiae.

81

I.I-, ■ > 1

'-" Kucf r» (10). Balkevlc and Mucnch [ll| and
Klrlin (U) h«v» itudlrd th.- optimal mrftfi* block
• lit for tha error detection and retranamleelon
■yatem thai maximtcea tranimlatlon rlftctcncy,
Chu [U] conaldrr» an additional important param-
eter -the meaaagc (file) length - in determining
the fixed meaeagi' block aiae, which figntficantly
affecta the aelectlon of the optimal block aiae.
Hie model comldert average metaage (file) length,
measage length diatribution, channel error char.
•cteriatice (random error and buret error), over*
head (or äddreaaing, error control and acknowl-
edgement delay. Hie criterion for opttmality ia to
mlnlmlae the time waited in acknowledgementa,
ratranamlaaiona and the watte in the laat unfilled
block.
tunuv i.

«. Statlatlcal Multipleiiing

Multiplexing ia commonly uaed to ahare and
to efficiently utillre a communication channel.
Currently data multiplexing haa taken two format
Frequency Diviaion Multiplexing IFDM) and
Synchronoua Time Diviaion Multiplexing (STOM)
commonly known at time dlviiion multiplexing.
Frequency Diviaion Multiplexing dividet the
channel bandwidth into teveral aubchanneta auch
that the bandwidth of each aubchannel ia greater
than that required (or a meaaage channel. Becauae
of the need to employ "guard banda" to prevent
data algnata from each of the data channela from
feeding into adjacent channelt and becauae of the
relatively poor data trantmtttion characlentlict
of tha voice band hannrl near the edgea of ttt
bandwidth, FDM doet not make at efficient uae of
the voice band a a doe a ST DM.

In STDM. each uter (terminal) ia aaaigned a
fixed time duration or time tlot on the > ommum-
cation channel for the tranarmttion of metaagea
from terminala to computer. The multiplexing
apparatua acant the tet of uaert in a round robin
fatli . After one uaer' a time duration haa
clapaed, the channel ia awitched to another uter.
With appropriately detigned tynchronout operation,
required buffering can be limited to one character
par terminal. Addreaalng la utually not required
aince the uter it Identified by the time dot poal-
tlon. The STDM techmqur, however, alao haa
certain dlaadvantagea. It la inefficient in channel
utlllration to permanently attlgn a »egment of
bandwidth that it utillted only a portion of the
time. Statlatica collected Ivm teveral typical
operating time aharlng aytteti.. (l) thowed that
during a call (connect to diaconnect), the uaer-tO'
computer traffic (or the long holding time caee ia
active only S% of the time. Thut STDM would be
very Inefficient In channel utillaatlon in auch an
environment alnce STDM allocalea a time alot to
each uaer independent of hia activity. In order to
Incrcaae channel utillaatlon, ttatiatical multl>
plexlng or Atynchronout Time Diviaion Multi-
plexing (ATDM) hat been propoaed (14. \i] lot
computer communicationt. Thv baalc idea it to
awitch (rom one uter to another uter whenever
the (ormer la Idle and the latter ready to trantmit
data. Thut the data It atynchronoutly or ttatitti-
catly multiplexed with reaped to tl.e uaera. With

auch an arrangement, each uter would be granted
acceaa to the channel only when he haa a meaaage
to trantmit. The crucial attnbutea of auch a multi-
plexing technique am 1) an addreaa la required
(or each tranamitled meatage and Z) bu((ering ia
required to hindlc atatlatlcal Iluctuatlona In the
Input trafde.

The daU atructure (or mettagea (ormlng the
Input to the nultlplexor bu((er can be claaaKied
Into (our ca'egorleai conatant length meaaagea;
random length meaaageai mixed (conatant and
random length) meaaagea; tandom length meatage
tegmertrd Into (ixed tiae blocka. The conatant
length mrttage input correaponda to teletype (TTY)

- 1 input, ea h uaer lypaa in one character at a time.
Tha rantlom length meaaage input corretpondt to
paper tap- input, cathoda-ray tuba (CRT) input or
computer > .j it. Tha mixed meaaage input corre-
aponda to ti'.'dc (rom a mixture o(typea of Input
terminalt tuch aa CRT, TTY, etc. For aate in
data handling and memory management, random
length meaiagea are often tegmenled into fixed
tiae blockt which correapond to the laat type o(
data atructure. Since meaaagea have random
length, the laat block of a met .ge utually cannot
be entirely filled. Aa a rcault, (or a given traidc
intent itv. thlt type of data tlructure require a a
larger buffer ihan that o(random length meaaagea
which are not aegmented 114). The buffer behavior
o(thcae (our typea o(data atructurea have been
analyaed by finite waiting room queuvlng modela
(M.I7J.

The buffer behavior of a ttatiatical multiplexor
(or mixed mettage Inputa hea between that o(con-
atant length and random length mettagea (17). The
output procett o(a atatlatlcal multiplexor haa been
atudlatlby Pack [lt|.

The demultiplexor diatrlbutea mettagea to
appropriate dralinatlont according to their meaaage
addreaaea. Thua, the behavior of id, demulti-
plexing buffer not only dependa on tra((lc inlenalty
but alao on traffic achedullng to vanout dettlnalicnt.
In tha caae of a time thanng tytlem, mettage
achedullng la determined by the job tcheduling
algorithm o(tha computer operating tyttem. In
the caae of dialributed computer ayatrma, meaaage
achedullng la Influenced by the meataitr routing
algorithm. A aimulalion tludy of the demulti-
plexing buffer behavior revealed that, for a given
Input traffic volume, the brat bu((er behavior can
ba achieved by achedullng an equal amount o(traffic
to each deatlnalion (14). Hence there ia a cloae
relationahlp among demultiplexing ayatem periorm-
ance and achedullng algonthma (20) in computer
operating ayalama and/or meaaage routing algor»
ilhma. Further raaearch in thia direction would
be deairable. Reaulta obtained In thia area wilt
be eatential In the joint optitnitatlon of the overall
performance of auch computer communication
ayalema.

Buffering la required to provide error control
and meaaage tcheduling which are two Important
functlona In computer communication tyttema.
Since atatlatlcal multiplexing requiret buffering to

1.. i \.- M

haadto gIstUlic*! (iuctM«Uon« «he muUlpUKinf
buiftr c«n »Uo b« uxd lor the** (uncttent.

From Ihr»» »tudir« «• conclude thai In »n
ATDM •y»t»m. an acceptabl» bulfcr evorflo»'
probablUly < »n hr achlrvrd by • »«••onabl« buff»»
• l>»l th* *«p*ct»d quounng delay it very »mall and
■ cetptabla (or ntoal appltcallon». Hone«, ATDM
or stattaiScat mulUplamlng la a (»aalbla tochnqu»
•(or data communlcallona. Furthrrmoro ATDM
graatly Improve* iha tranamlaaton »((Iciancy and
ayalam organliatton. W» have conatrucled a
atatlatical mulliplaaor at UCLA Our preliminary
experience ha» ahown that tha gain In communl-
cattoa coat, eipeclally In long dltlance tran»-
tnlaalotk, by employing A I DM in computer common»
Icatioa could (ar outweigh coala ol overhead in
addreaalng and »lorage (or buffering. Statlatlcal
multlplaalng »hould, therefore, have high potential
(or uaa in (uturr computer-communication ayatem».

). Loop Sy»tem«

A apodal dlalrlbutad computer ayalam archi»
lecture of conalderable recent Inlereal ta the loop
(rtogl ayalam. Thla type of ayilem connect» all
lermlnala and/or connpulara by a common bu* or
loop. Th* major advantage* are the »trnpl* routing
algorithm and *a*e in control o(Information.
Farmar and Nrwhall (Zl| propoard and conatrucled
a loop ayatem with buraly lra((lc which connect»
varioua davtca* auch a* teletype, plotter, cathode-
ray tub* dlaplay, dl»k control unit and computer
together Yuon, at al. [Z2| preaa.il* *ome approx-
Imate reautta on th. Ira((lc behavior of thia dia-
trlbulad loop ayalam. Plarc* (21| propoaad a
hierarchy of tnterconnacted loop »y»lem» with
random length maaaaga* aagmantrd into (iaed alaa
blocka, and provide* a acham* (or tranafernng
(formation among the varlou» level» o(loop».
Konhetm and Mel»ter [24) analyied auch a hirr-
archical *y»lem. riaya» and Sherman [IS] »tudied
tha maaaag* delay due to buKertng (or a alngle
loop ayatem. Tha data aourc* i» aaaumad to be o(
a buraly -nature. Tha lra((lc generalad by aarh
uaer I* aaaumed to be Idanllcally dlatrib>'led with
onKormly dlalrlbuted deatlnatlon» Konhelm and
Malatar [Z6} »tudied the loop »y»l*m a* a priority
aarvlca »yttam. M***ag»a may »mar the ayalam
al any Input terminal located on tha loop. Priority
ia aaalgned on the baal* of pocition on th* loop:
Ik* terminal cloaoal to tha computer h»» hlgh**l
priority and prlorltle* docraaa* with ' diatancr'
from the computer. The atationary queue length*
and aver»»» virtual walling Urn* ar* calculated.
Spraglna (27) ha» calculated the waiting time of
thla priority loop »v»tem with Polaaon arrival
proca»*. Kayr .'«j ha* obtained the mean and
variance of nu-**ag» walling lime and proportion*
o(blocked meeaagea of lixed length mr**age* of
a loop ayatem. Tarbar and I.anon [29) have pro-
posed a loop »y»lem uaing (Ixed meaaag* lencth
almllar to that o(Pierce except me »»age a are
addreaae» lo procceac* rather than proceaaor*.
rurthar, meaaaga* can ba only removed at their
•rlgin.

Raaoarch roaolt» have ahown thai the
•ccaplable quauclng delay can ba achieved when Iha
lra((lc In a loop ayatem 1* under careful control.
One of the ahortcoming* of »uch a ayalrm however,
la ayatem reliability, further aludy 1» meded In
determining the reliablllly per(ormance of loop
ayatem* and way* ol Improving *y*lem reltabllily.
Such aludiaa will enable u* lo compare the coat-
performance of loop *y*lem* with thai ol other
ayatama.

t. Security In Computer Communication*

With tha growth in the u** of remote terminal
davlcaa and tlmc-aharlng ayatcma in making
ln(ormalion available lo a wide variety o(uaera
(or widely divrrae application», the problem of
computer commufücation aecurily become»
incraa«ingly important (10-12). The communication
channel» are perhap» tha moat vulnerable compo-
nent* of tha computer »yrtem becauae they are
aaay t« acceaa by method« euch a* wire lapping,
picklnc up electromagnetic pulaea. or 'piggy-back"
entry |)2] The nature of computer communication
»ecurily I» quite dlffrrrnt (rom that of th» cla»»lcal
communication aocurlly. They differ at lea»l In the
(allowing waya. I) Computer die» uaually offer a
large amount of data lo work on. The enemy «oull
have lo know exactly what type of information wa»
In aach (lla (e. g,t program», addre»» file»,
»ctantldc in/ormationi In order lo aleal It. 21 In
computer (llea, all racorda are uaually aimilar.
Program* have a high rate o(repeated character-
laticifa.g., COBOL, rORTMAN). Al*o, quite
often the elrucluro of the computer program can b'
guaiaed at. All thai* almllaritlr* can help an
enemy cryplanalyst to decod' even when (airly
•ophi*tlcat*d cryptographic technique* are 1,
Thu* new method* are needed to provide aecurily
in computer conununlcallon*.

Th* u*a o(logic operation le. g., exclualve OR)
and paeudo-random number» preeently »eem» lo
offer Iha greateat poaaibility (or computational
cryptography. A unique key (or each me*»age i*
generated (rcm the paeudo-random number gen>
orator, and the me**age then perform» logical
laxcluaive OR) operation» with the key lo produce
tha cipher meaaaga. The rever»» operatlor.
decipher» the cipher into lla original menaage.
Thia type of operation I» uaually very fa»t and
effl< lent In modern computer a and ha» the advantage
of good aecurlty, low co»l, and eaay changrabilltv.
Thcae methoda have been explored by Skalrud [>)],
Krlahnamurthy, (14) and Ta»«el. [M\

To (urlher Increaa* lecunly in computer
in(ormallon, we could Introduce multiple prrudo-
random number generator* to achieve higher
level* o(arcurily. For example, the »y»lrm couli
u»e one peeudo-random number generator lo cipher
the me»»age| then each uaer could further provide
their own paeudo-random number generator lo
provide a »econd level of ciphering. Another way,
perhap» even more effrctivr, I» lo u»r an expanded
character »el technique lo break down the »tallallcal
parameter» of the me»»age, »uch a» frequency of

83

II !• ..

•in(U Unara, di»,r»m.. ,o«.l pcrccnlan«^, «tc.
befor» fwrfarmini Ih« logical operation with th«
parudo-random number. Our preliminary reaullt
Indicate thla acheme provide« excellent «ecurily
performance. Detailed flndln». will be reported
la the acar future.

Sharing of fllea and data baaet i« not only
Important In application«, but alae ireatly
iocreaaa« flealbtllty and computer capabibly
Sacunty and protection are abaolutely necesaary
la the.e facllilie«. The full utiliaation of Iheae
ayatem. rolle« hearily on efficient technique« to
provide effective Information «ecunty Much
work «till need« to be done.

Other advance« which have not been Included
in thl« paper but have Impart on computer com-
munication« arci error control, modulation
tran«ml««ion mediu-r.. «oclal and reculatory
pellcle«, and «tandardiaation.

RtrEKENCES

'■ T: f" J'ck,on •nd c- D- S«ubb«. A Study of
MullUac<.r<> Computer Communlcatlona "

mTpp01t\M:Pt0f''*inif' Vo,■ "•
I. B. Fucha and P. E. Jackaon. Eattmalea of

Dletrlbutlon« of Handom Variable« for Certain
Computer Communlcatlona Traffic Model« "
C^CM. Vol. IJ. No. U. Doc. 1970. pp. 7«.

I. A. L. Dudic k. t. Fucha and P. E. Jackaon.
"Data Traffic Moaauremenl« for Inqulry-
Re«pon«e Computer Communication Syatema •
Proc. iriPCor^re«« 1971. Ljubljana.
Tugoalavia. Augu«t 1971.

4. A.A. Alaaander. KM CrybandO. W. Na«t
•Capabllltle« of the Telephone Network for
PMa Tran«ml««lon. ■ BSTJ. Vol. J9 No J
May |%0. pp. 41l.47i.

I
». B. L. Townaend and R.N. Watt«. "Effective.

•aa« of Error Control In Data Communica-
tion« Over the Switched Telephone Network. "
MIL Vol. 4J. No. *. November 1964.

». C. W. Farrow and L. N Molaman. "Nation-
wide Field Trial Performance of a Multilevel
Vaatlglal Sideband Data Terminal for
Switched Network Voice Channela. " Conference
..""ifr. '»V'g" Conference ConT^TTTT-
Hon. Philadelphia. Pennaylvanla. Jure lÄii.

. M. D. Balkovlc et al.. • 1969-70 Connettlon
Surveyt High-Speed Volceband Data Tran«.
ml.«ion Performance on the Switched Tele-
communication« Networka." BSTJ Vol SO
No. 4. April 1971. pp. UBimRTS.

' "•<?• FUm,,,i »n<l *• N. Hutchlnaon Jr..
•1969-70 Connection Surveyi Low-Speed
Data Tran«ml««ion Performance on the

Switched Telecommunication« Network« "
BSTJ, Vol. SO, No. 4. April 1071
pp. 1)8S-140S.

9. S. Y. Tong. "A Survey of Error Control
Technique« on Telephone Channel«."
Proceedlm« of the 1970 National Electronic
Conference. Chlcaao. pp. 462-476.

10. J.J. Kuccra, "Tranafcr Rate of Information
Bl«a," Computer Deaign. June 1968. pp. S6.

11. M. D. Balkovlc and P. E. Muench. "Effecta of
Propogation Delay Cauaed By Satellite Circuit«
on Data Communication« Sy«tem« that U«e
Block Retran»ml«(lon for Error Correction."
Conference Bee or d IEEE Conference on Com-
"»iMcal'on,. flöüTder. Colorado, June 1%9
pp. 29/JI^9/}6.

12,^ R. L. Klrlln, "Variable Block Length and
Tran«mi««lon Efficiency. " 1KKE Tran«. Comm
Tech., Vol. 17. No. J. Julie 1464. pp. Ho.
TTTT

I). W.W. Chu. "Optimal FUed Me ««age Block
SI a« for Computer Communication«, ' Proe.
»IP Conere«« 1971. Ljubljana, Yugoalavla,
Auguat 1971.

14. W.W. Chu, "De«lgn Conoideratlnn« of Statl«tl.
cal Multipleaora. " Proc. ACM Sympo«ium on
Problem« in the O
cation« Sytem

e Optimiaation ol Data Communi.
ji Pine Mountain. Cieorgia,

IS.

PP. nm
W. W. Chu. "A Study of Aaynchronoua Tim«
Dlvlalbn Multiplexing for Timesharing
Computer«." AF1PS Conference Proceedlna«
vol. is. 1969; pp. R^TK

16. W.W. Chu, "Buffer Behavior for Batch
Pol««on Arrival« and Single Con«tant Output. '
IEEE Tran«. Comm. Tech., Vol. 18, No. S,
October 1970, pp. 61)-616.

17. W.W. ChuaBdL.C. Liang. "Buffer Behavior
for Mixed Input Traffic and Single Conatant
Output Rate. " 1EFE Tran«. Comm. Tech..
April 1972. pp. tn-tn,

U, C. D. Pack, "The Effect of Multiplexing on a
Computer Communication Syatem. ' «ubmitted
to the Comm. ACM.

19. W.W. Chu, "Oemulliplexlng Con«ideratlon«
for Statlatlcal Multiplexor«. ' IFKE Tran«.
Comm. Tech.. June 1972.

20. L. Klelnrock. "Scheduling. Qururtn* and
Delay« In Time-Shared Sy*teiii« and v'onipulrr
Network«." Chapter 4 of Computer-
Communlcatlon Network«, edited by
N. Abram«on and F. Kuo. Prentice Halt
197J.

I *•» \»I-M «•(|«,' , ,■) .,.

84

21 W.O. Fsrmrr and E. C. Nr«hall, "An
EaparlinrnKl Olclrlbulrd Swit^htny Syatem

1 to Handla fiurdy Computrr Traffic, ' Proc.
ACM Synipotium on l'roblrm» in thrSpTlmi-
««tton of P«i« Cointnuntcatton« Syafm». PIT

1 Mountain, Grorni«, O^lobri' l<H>9. pp. !•)}.

22. M. L. T. Yucn. atal., "Trafftc Flow in a
Dialributed Loop SwilcMni Syalom. " PIB
Intgrnation«I Sympotium XXII on Computer
Communication Networks and Teletrafftc,
April 1472. '

tl. J.P. Plorco. C.H. Cohen and W.J. Ktopfl.
■Network for Block Switching of Data. " lEET
Coirforence Kecordi. Now York, March

Z4, A.C. Konheim and B. Meiater, Waiting
Liaoa in Multiple Loop Syatema, " to appear
J. Math. Analyai« and Applicationa.

ti. F. J. Hayea and D.N. Sherman. Traffic
Analyst• of a Ring Switched Data Trana-
mlaaton Syilem," BSTJ. Vol. 40, No. 4.
November IV1, ppTZ^-MTB.

li. A.C. Konhelm and B. Meiater, "Service in
• Loop Syalem. " to appear In JACM 1472.

XT. J, O. Spragin«. "Loopa Uae for Data
Collection, " ^IB International Sympoalum
XXII on Cominjter-Cotnmunlcauön Networ'ka
aod TeleträTdc. April 1972.

2(. R. Kayr, 'Analyala of a Distributed Control
Loop for Data Communication. " MB Inter-
national
Commun

2f. D. Farbor and K. C. Laraon, 'The System
Architecture of the Distributed Computer
System - The Communication Syatem, '
PIB Internatmnal Sympoaium XXII on
Computer CommunKation Nrtworka a.id
Tetotratflc. April l9"7r

iO. P. Baran, "Communlcatlona, Computer a,
and People, " ATIPS Conference Proceedings.
1965 Spring Joint Computer Conference,
Vol. 27, pp. 45.49.

11, W.H. Ware, 'Security and Privacy in
Computer Systems, " AFIPS Conference
Proceedings. 19*7 Spring Joint Computer
Conference.

12. H. E. Peterson and R. Turn, "Syatem
Implicationa of Information Privacy,"
AFIPS Conlcrrnce Proceedings. 1967 Spring
Joint Computrr Conference, Vol. JO, pp.
29l-)00.

1). P.D. Skatrud, 'A Consideration of the
Application of Cryptographic Teihniquea
to Data Procraaing, " AFIPS Confrrrnce
Proceeding a, 1969 Fall Joint Computer
Conference. Vol. 15, pp. 111-117.

)4. E.V. Krlahnamurlhy, "Computer Crypto-
graphic Technlquea for Proceaaing and
Storage of Confidential Information, "
International Journal of Control. November
ViW.

IS. D. V. Taaaol, "Advanced Cryptographic
Technique a for Computer a," C ommuni cations
of the ACM. December 1969, Vol. 12, NSTir
PP SJtrETV

»in le»- r«t*
*li , i. • i «wirf i.i^rin w(It .1 a*f*

Symposium XXII on Computer
icaiion Networks and feletraffic.

bil

w

.-.

::

APPENDIX F

RAND SATURATION EXPERIMENT

PRELIMINARY RESULTS

by V. Cerf and W. Naylor

8(;

Network Measurement Note «2 V. Cerf
NIC »10352 W. Naylor

7 May 72

RAND SATURATION EXPERIMENT

PRELIMINARY RESULTS

VINTON G. CERF

WILLIAM NAYLOR

7 MAY 1972

87

NETWORK MEASUREMENT CENTER
UNIVERSITY OF CALIFORNIA. LOS ANGELES
3804 Boelter Hall
Computer Science Department
Los Angeles, Calif. 90024

RAND SATURATION EXPERIMENT: PRELIMINARY RESULTS

SUMMARY

Thl» experiment Is designed to study delay and throughput characteristics

of a part of the ARPA network when a single node is under increasing background

loading. In particular, RAND's IMP is loaded by activating IMP message generator

fake HOSTs at selected IMPs in the net whose messages are destined for the RAND

IMP fake HOST discard.

The delay and throughput experienced by a single site, UCLA, under varying

loading conditions, are measured and the results discussed in the light of

known characteristics of the IMP-IMP message switching protocols (see also

references BBN1822 and HEART 1970).

EXPERIMENT DESIGN

At the time chis experiment was performed, RAND was the only site in the

net at which four 50KB telephone lines were connected to a single IMP 'see

map on next page). It was possible, then, to transmit as much as 200KB into

RAND's IMP over these four lines.

The artificial traffic generators in each IMP are capable of transmitting

messages to a single site over a single logical link. The messages may be

transmitted with deterministic inter-departure times, and the minimum allowable

delay between message« is the time for the message to be sent and a RFNM

(Request for Next Message) to be returned to the sending HOST. This minimum

delay is on the order of 30 mseconds for adjacent sites and increases as

the number of IMPs between source and destination IMPs increases. Message

lengths can range from 0 to about 8000 bits (exclusive of leader and padding).

Details of the IMP-IMP protocols and message generators car. be found in (DDN1822).

Th>re arc a number of parameters which can be varied in an experiment of this

kind; among these are message lengths, number of message generators running,

message inter-departure times, topology of source and destination IMP d.ita

paths, etc. In this experiment, the nodes of the network are divided into

four classes: measured (UCLA IMP), receiving node (RAND IMP), senders, unused.

Messages are sent from UCLA and from other sending nodes to RAND. ,Delays and

throughput are measured for UCLA only.

^8

mmjm

..

..

Note: Small circled
numbers show order
in which traffic
generators were
turned on to increase
traffic flow to

-. RANI). Numbers
inside site circles
represent ARPANET
site numbers.

89

ARPA NETWORK TOPOLOGY DURING SATURATION EXPERIMENT

,.

^

..

The length of messages sent from UCLA or other sending sites to

RAtfl) varied in length from 1 packet/ message (960 bits) to 4 or 8

packets/message (3840 and 7936 bits, respectively). Table 1 shows

the various combinations of message lengths used in the 9 different

experiments.

p/m ■ packets/message

UCLA OTHER SENDERS

1 p/m 1 p/m

4 '
8 p/m 8 p/m

Message length combination« in packets/message

Table 1

For each combination of message lengths, traffic is first turned

on and measured from UCLA to RAND (see ARPANET map un page 2). This

is accomplished by turning on both the artificial traffic generator

at UCLA's IMP and a cumulative statistics package also in UCLA's IMP

which accumulates statistics on delays and throughputs for traffic

leaving UCLA's IMP. All message generators are run with RFNM driven

traffic (i.e. minim jn inter-departure times). Statistics are gathered

for six minutes (30 samples of 12 second cumulative statistics), and

then a new IMP message generator is started for the next six minute

period (previous generators are left running). In the map on page 2,

the order in which IMP message generators are activated for increasing

number of sonders is shown by a small circled number next to a site.

HO

tXPEKIMENT »ESULTS

•'/

.'

n th. fUur.. rf,lch „„„. the rMult# of ^^ ^^^^^ ^

on. l.port.« point f k..p i„ «^ .. th.t tll. „.,., and '

c ««ur.uc. ob..rv.. „. .p.cUic.U, ,„ . TOlrt. „, (ÜCU) which 15
only one h„p.. ..., ttm th, d..tilult,0„ „, ^^ ^ ^ ^

«o «pec«, to «».r for . ^.urQi .,.. whicli i# not ^^^^ ^

..tln.tlon (i... „,„ th.„ o„. "hop" ow.,). r.t.,. c»p.ri™nt. „„
n«.U,ot. th. „rution l„ throughput .„.. 4.U, for locr...^, h„p

«•UM« botwoen .our« and dc.tiootloi. node.

uo. rorxi moucüPux i. th. numh.r „ bu./.ecoild .ctvi.lly .^ ^
fro. th. „„ .lt. (UBU). „,,. tr>mc inciudot retron>raio

o,.r ..d control hit., .« of ,*,.„ My w „.„ ^ ^

-..tiootion .it. „„.„.. th.r. „. TOt .«u,h hoffor .p.c. to ho.d th.
•M. .h.„ th. p.ck.t .rri,«l. EPFECTIVE TH.«^.,^ u „.^
-Uipl,!^ th. mml,„ «f „m,, „„,„„ ^ ^ mmeU1 ^

,.„.r.tor .. UCU h, th. U^th of th. ... bcln, ..„. „^^

throughput do., «t inciud. o».rh..d hit. «d r.tr.n..i..ion..

ML»UI i. th. d.!., h.t«.„ t„. d.p.rtur. of tnm

th. .rtifi«, tr.ffic ..„„tor to th. ti.. .„»,». r.c.iv.d for thot
....... For «.ltl-p.ck.t ^....... „m.. .„ ..„ „

^.v. .rriv^ « th. -tUdtU. .it. .„d h.v. .t.rt.d into th. r...^

dividi^ th. Rou^-trip d.Uy hy th. «...,. ^ in ,.,„„.,

vcJ1"!1"1 ""** 'l|'Ur" b*,<,, CO,,,ld,r "" r"ul" '« *• «•• th.t «cu ..«,. .„„ .,„„. HA.t „..^ t() ^ i(hiu ^ iit ^
I. ♦. or 8 p.ck.t „,.„ ,u .it.. „. Mndlng ^^^

Wh i"' : t0"1 """'**" ^ '" "-"• » "■"" " -'OP off .Iieht.y -i i«r...i^ Uttrf« *. .hoim „ tllur. thc « '

~ 1 C,"V,• '" " •Ughtly b•10,' *" " "- -" — - '« ~...... Th. corro.poodi^ d.Uy. .houo iB ,.,„. ^ .„„

;>i

For th« case that other sites send 4 or 8 packet messages while

UCLA sends single packet messages, there is much more noticeable

W interference. In the case of 8 packet message interference,

comparison of the total and effective throughput graphs (figures

1 and 2) shows that after 5 sites are sending, UCLA begins to

experience retransmissions as well as simple packet overhead. This

•hows up in figure 3 as a non-linear increase in delay/packet.

The maximum effective data rate sustained by a single link

is shown in figure 2 as roughly 27.5 KDS (kilobits per second).

Figures 4, 5, 6 consider the case that UCLA Is sending 4 packet

messages. We notice in figure 5 that the maximum single link

data rate is now about 37 KBS. The Increase Is not more since

the RFNM delay has not decreased to one fourth of Its single packet

message value, but Is only three fourths (26./34.). However, there

is a drastic interference between multi-packet messages, as we see

in figure 4. After more than 3 «Ites are sending multi-packet

messages, the total throughput drops rapidly. The effective throughput

drop« evAn faster (see figure 5). The peculiar shape of the curve

in figure 4 for UCLA sending 4 packet messages and others sending 8

(I.e. total throughput curve Increases again), can be explained

by th« following argument. Total throughput begin« to drop as

lnt«rf«r«nc« lncr««B«« because there i« contention for buffer space

and the RFItt delay incr««««s. Aft«r « whil«, how« er, the sending

site begin« to tlm«-out while waiting for an ACK from transmitted

packet«, and start« to r«-transmlt. Retransmissions, of course,

are not subject to the "blocked link" convention, and thus can

create traffic In «xc«s« of the maximum achievable effective traffic.

(Figure 1 also show« thl« effect).

The sudden drop in throughput (total and effective) after more than

three multi-packet senders «re running i« the result of contention for

re-assembly buffer space In RAND's IMP. There Is enough re-assembly

buffer spec«, for thr«« full multi-packet messages. The buffers are

allocated on the assumption that any incoming multi-packet belongs

to a message containing 8 packets, since it is not known at allocation

time how long the multi-packet really i«. When more than 3 sites send

multi-p«ck«t MMMgM to RAND's IMP, th«r« 1« strong contention for

the available buffer space.

92 I

5.5

Similar result« «re shown in figures 8, 9, and 10 for the

ea.e th«t UCLA «end« full 8 packet «ultl-packet messages. The maximum

sustainable effective throughput fo: a single link i« 40.5 KDS.

We note that «hen there 1« little or no interfereing traffic, the

RTNM delay/packet drop« from 34 msec to 25 msec a« message length

increase« from 1 to 8 packet«.

^3

TOTAL THROUGHPUT FRON UCLA VERSUS NUMBER OF SENDING SITES

FIGURE I

I

S

I

36

35

3A

33

32

31

30

29

28

27

26

25

24

23

22

21

20

NOTE» UCLA SENDING 1 PACKET MESSAGES

X - OTHER SITES SENDING I PACKET MESSAGES
O - OTHER SITES SENDING A PACKET MESSAGES
♦ - OTHER SITES SENDING 8 PACKET MESSAGES

8 packet inter-
ference

1 packet
interference

T
1 4

T T
3 4 5 6 7

NUMBER OF SENDING SITES

10 11 12 13

94

1

i
MS

2

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

EFFECTIVE TIIROUCIU'UT FROH UCLA VERSUS NUMDEK OF SENDING SITES

FIGURE 2

1 packet interference

x

NOTE: UCLA SENDING 1 PACKET MESSAGES
X - OTHER SITES SENDING 1 PACKET MESSAGES
o - OTHER SITES SENDING 4 PACKET MESSAGES
♦ - OTHER SITES SENDING 8 PACKET MESSAGES

8 packet
interference

1 I
■
3

TT
7 8 S 6

NUMBER OF SENDING SITES

w

10 11 12 13

J)5

L J,

DELAY AT UCLA VERSUS NUMOER OK SENDING blTKS

FIGURE 3

t

580 >

560 .

540 ,

520 .

500 . *
480 .

i

460 . ■

i

00 440 . • 1

§
CO
l-l

M z

420 .

400 ,

380 .

360 .

340 .

■ <

•
>

a.

flu
M

|
i
|

320 .

300 .

280 .

260 .

240 .

NOTE: UCLA SENDING 1 PACKET MESSAGES
X - OTHER SITES SENDING 1 PACKET MESSAGES
O - OTHER SITES SENDING 4 PACKET MESSAGES
* m OTHER SITES SENDING 8 PACKET MESSAGES

220 ,

200 .

180 ,

1 160 . .

140 .

• 120 .
i i

100 .

80 .

60 .

40 .

\ 8 packet interference
4-

•

20 ,

0 .

1 packet interference

1
1 1 1 1 1 ■
2 3 4 5 6 7

1 1 1 1 1
8 9 10 11 12

1
13

NUMBER Of SENDING SITES

9B

TOTAL THROUGHPUT FROM UCLA VERSUS NUMDEK OF SENDING SITES

FIGURE 4

o

S
06
U.

w
H
rQ

s

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

a S * } 1 pocket interference

8 packet interference

4 packet interference

NOTE: UCLA SENDING 4 PACKET MESSAGES

X - OTHER SITES SENDING 1 PACKET MESSAGES
o - OTHER SITES SENDING 4 PACKET MESSAGES
♦ - OTHER SITES SENDING 8 PACKET MESSAGES

12
—r
13 1 6

i

7 8 10 11

NUMBER OF SENDING SITES

97

\0

42

40

38

36

34

a 32
C/J

CO 30
H

en 28
o

26
M
Z 24
IH

a 22
o
3 20

§ 18
es
u. 16
^4

g ,14
X

12
OS 10
H

Id 8
>
H 6
a /,
b.

la 2

0

EFFECTIVE THROUGHPUT FROM UCLA VERSUS NUMBER OF SENDING SITES

FIGURE 5

«*r' ■wr

\
8 packet interference

3 4 5 6 7 8

NUMBER OF SENDING SITES

9
■T—

10
1—
11

I I

12 13

98

11

DELAY AT UCLA VERSUS Nl^iHER OF SEtSING SITES

/

FIGUUE 6 I
580 -

560 - + ^

540 - yS* +

520 - ^^ «

500 .
NOTE: UCLA SENDING 4 PACKET MESSAGES /

X - OTHER SITES SENDING 1 PACKET MESSAGES / 480 .
O - OTHER SITES SENDING 4 PACKET MESSAGES /

1
460 i ♦ - OTHER SITES SENDING 8 PACKET MESSAGES /

440 . 1
5/»

8

420 .

400 .

380 .
/

2
M 360 . 1

340 .

320 .

300 .
I

280 . 1
g

260 .

240 .
" /

220 . / 8 pocket interference

^ 200 . /

>: 180 . /

160 .

140 .

120 .

100 .

80 ,

•
//__.

^

60 ■

40 .

20 .

0 .
•

I
'^r , ' '"'^ 4 packet interference

1 packet interference

•
1 2 5 i J 1 » 1 1 i4 il il 13

NUMBER OF SENDING SITES

i

99

12

3

i

30

28

26, ,

24

22 .

20 -

18

16 -|

14

12 .

10 .

8 .

6 .

4 .

2

0 J

1

TOTAL TllROUCUPUT FROM UCLA VERSUS NUMBER Of SENDING SITES

FIGURE 7

8 packet interference

NOTE: UCLA SENDING 8 PACKET MESSAGES

X - OTHER SITES SENDING 1 PACKET MESSAGES
O • OTHER SITES SENDING 4 PACKET MESSAGES
* - OTHER SITES SENDING 8 PACKET MESSAGES

T
2 3 4 6 10 11 12 13

NUMBER OF SENDING SITES

ioO

E
M

o

z
M

a o
Ö
u.

z
H

s

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

'

"

'

13

„„cnv, «-«m n* *%™» — - " 5ITES

1 packat Interference

4 packet interference

I l SS SITES SENDING 4 PACKET MESS.
:; ISIS SITES SENDING 8 PACKET MESS.

8 packet Interference

NUMBER OF SENDING SITES

101

14

J3

5

a.
M s
g
i

500

480

460

«40

420

400

380

360

340

320

300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

0

DBLAt AT UCLA VERSUS NUMBER OF SENDING SITES
FIGURE 9

NOTE» UCLA SENDING 8 PACKET MESSAGES

X - OTHER SITES SENDING 1 PACKET MESSAGES
O - OTHER SITES SENDING 4 PACKET MESSAGES
♦ - OTHER SITES SENDING 8 PACKET MESSAGES

1

\

1 packet interference

T
2

T
4

T i
6

T
8 5 6/ 8 9

NUMBER OF SENDING SITES

102

15

■ I

REFERENCES

Um822 "INTERFACE MESSAGE PROCESSOR: Specification» for the
Interconnection of • Host and an IMP"
Report No. 1822, Bolt Beranek and Newman Inc.,
50 Noulton St., Boston, Maaaachueett», reviaed
April 1972.

1BART1970 Heart, F.E., R.E. Kahn, S.M. Ornatein, W.R. Crowther,
and D.C. Walde«, "The Interface Meaaage Proceaaor for
the ARPA Coaiputer Network," AFIPS Procee«HnBa of the SJCC.

May 1970«

103

APPENDIX G

FUNCTION-ORIENTED PROTOCOLS FOR THE ARPA COMPUTER NETWORK

by S. Crocker, J. Heafner, R. Metcalfe, and J. Postel

;;

104

Function-oriented protocols for the ARPA Computer Network

fry STEPHEN D. CROCKER

Advanced Rttearch ProjeeU Agency
Arlington, Virginia

■ad

JONATHAN B. POSTEL

Univenity of California
Lot Angeles, California

INTRODUCTION

Much has been said about the mechanics of the ARPA
Computer Network (ARPANET) and especially about
the organization of ite communications subnet.|•,■,•♦•,

Until recently the main effort has gone into the imple-
mentation of an ARPANET user-level communications
interface. Operating just above the communications
subnet in ARPANET HOST Computers, this ARPA-
NET interface is intended to serve as a foundation for
the organization of function-oriented communica-
tions." See Figures 1 and 2 for our view of a computer
system and the scheme for user-level proccss-to-process
communications. It is now appropriate to review the
development of protocols which have been constructed
to promote particular substantive uses of the
ARPANET, namely function-oriented protocols.

We should begin this brief examination by stating
what we mean by the word "protocol" and how proto-
cols fit in the plan for useful work on the ARPANET.
When we have two processes facing each other across
some communication link, the protocol is the set of
their agreemente on the format and relative timing of
messages to be exchanged. When we speak of a proto-
col, there is usually an important goal to be fulfilled.
Although any set of agreements between cooperating
(i.e., communicating) processes is a protocol, the proto-
cols of interest arc those which are constructed for
general appücation by a large population of processes
in solving a large class of problems.

In the understanding and generatiou of protocols
there are two kinds of distinctions made. Protocols in
the ARPANET are layertd and we speak of high or
low level protocols. High level protocols arc those most
closely matched to functions and low level protocols
deal with communications mechanics. The lowest level
software protocols in the ARPANET involve reliable

JOHN F. HEAFNER

The RAND Corporation
Santa Mon cs, California

ROBERT M. METCALFE

Mat»aehu*ttU Institute of Tedtnology
Cambridge, Massachuscttn

message exchange between ARPANET Interface
Message Processors (IMPs).'-» A high level protocol is
one with primitives closely related to a subslnntivc use.
At the lowest levels the contents of messnge-s are un-
specified. At higher levels, more and mocc is stated
about the meaning of message contents and timing. The
layers of protocol are shown in Figure 3.

A second way of structuring sets of protocols and
their design is bound up in the word fadoring. At any
level of protocol are sets of format and timing rules
associated with particular groupings of agreements. In
the IMPs we find certain protocols pertaining to error
handling, while others to flow control, and still others
to message routing. At the ARPANET'S user-level
communications interface there are, among others,
separable protocols associated with establishing con-
nections and logical data blocking. These protocols do
not nest, but join aa modules at the same level.

Before moving on to consider the higher level func-
tion-oriented protocols, let us first make a few state-
ments about underlying protocols. There arc three
lower level software protocols which nest in support of
the user-level communications interface for the ARPA-
NET. The lowest of these is the IMP-IMP protocol
which provides for reliable communication among
IMPs. This protocol handles transmission-frcror detec-
tion and correction, flow control to avoid message
congestion, and routing. At the next higher level is the
IMP-HOST protocol which provides for the passage
of messages between HOSTs and IMPs in such a way
as to create virtual communication paths between
HÜ3TS. With IMP-HOST protocol, a HOST has
owrating rules which permit it to send messages to
specified HOSTs on the ARPANET and to be informed
of the dispensation of those messages. In particular, the
IMP-HOST protocol constrains HOSTs in their trans-
missions so that they can make good use of available

271

105

272 Spring Joint Computer Conference, 1972

x*:::;-:::w::;:v

User '■:::::-:iSi:;:;:;:i:i:. User ^$8S$

Process Process ^i

&& Network

iijgS:. Coiitrol

Ki:i:;:::j::::::. Program

iiiiili:;.. (NCP)

Terminal Control File System

Terminal

I

M

P

Terminal

Operating

System

Boundary

Figure 1—Our view of a computer system

communications capacity without denying such avail-
ability to other HOSTs.

The HOST-HOST protocol, finady, is the set of
rules whereby HOSTs construct and maintain com-
munication between processes (user jobs) running on
remote computers. One process requiring communica-
tions with another on some remote computer system
makes requests on its local super/isor to act on its
behalf in establishing and maintaining those communi-
cations under HOST-HOST protocol.

In constructing these low levels of protocol it v as the
intention to provide user processes with a general set
of useful communication primitives to isolate them
from many of the details of operating systems and
communications. At this user-level interface function-
oriented protocols join as an open-ended collection of
modules to make use of ARPANET capabilities.

The communications environment facing the de-
signers of function-oriented protocols in the ARPANET

is essentially that of a system of one-way bytc-orionted
connections. Technically speaking, a "cunnoction" is a
pair: a "send socket" at one end and a "receive socket"
at the othei. Primitives provided at the user-level
interface include:

1. Initiate connection (local socket, foreign socket),
2. Wait for connection (local socket),
3. Send, Receive (local socket, data),
4. Close Gocil socket),
5. Send interrupt signal (local socket).

Processes in this virtual process network can cre.it«'
connections and transmit bytes. Connections are sub-
ject to HOST-HOST flow contiol and the vagaries of
timing in a widely distributed computing environment,
but care has been taken to give user processes conti"!
over their communications so as to make full use of
network parallelism and redundancy. The kind of
agreements which must be made in the creation of

10b

Function-Oriented Protocols for AUPA Computer NVtwork 273

'.■■/.■*

c

Figure 2—Two oommunicAting proc—

function-oriented protocols reUte to mica for estab-
lühing connection», to the timing rules which govern
transmission sequences, and to the content of the byte-
streams themselves.

USE OF REMOTE INTERACTIVE SYSTEMS

The application which currently dominates ARPA-
NET activity is the remote use of interactive system«.
A Telecommunications Network (TELNET) protocol
is followed by processes cooperating to support this
application.* A user at a terminal, connected to his
local HOST, controls a process in a remote HOST as if
he were a local user of the remote HOST. His local
HOST copies characters between his terminal and
TELNET connections over the ARPANET. We refer
to the HOST where the user sits as the using HOST,
and to the remote HOST as the $emng HOST. See
Figure A.

At the using HOST, the user must be able to por-
form the following functions through his TELNET
user process ("user-TELNET"):

1. Initiate a pair of connections to a serving HOST,
2. Send characters to the serving HOST,
3. Receive characters from the serving HOST,
4. Send a HOST-HOST interrupt signal,
5. Terminate connections.

The user-TELNET needs to be able to distinguish bo-
twecn (1) commands to be acted on locally and (2)
input intended for the serving HOtT. An escai)o char-
acter is reserved to mark local commands. Conventions
for the ARPANET Terminal IMP (TIP) user-
TELNET are typical.»

In most tting HOSTs, the above functions arc pro-
vided by a user-TELNET which is a uarr-lnel program.
A minimal user-TELNET need only implcmrnt the
above functions, but several additional support func-

107

274 Spring Joint Computer Conference, 1972

««IMI Cm ittttm

Ficur« 3—The Uyen of protocol

tions arc often provided (e.g., saving a transcript of ?
session in a local file, sending a file in place of User-
typed input, repoilinj whetlier various IIOSTs arc or
have been up).

In the serving IIJST it is desiralilo that a proems
controlled over the AilPAHLT behave as it would if
controlled locally. The clennest way to achieve this
goal is to generalize the tenninal control portion (TCP)
of the operating system to accept AUPANKT terminal
interaction. It is unpleasant to modify any portion of
a working computer system and modification could be
avoided if it were possible to use a non-supervisor
process (eg, "server-TELNET" or "LOGGER") to
perform the job creation, login, terminal input-output,
interrupt, and logout functions in exactly the same way

USING HOST

. '■"-'■. - '
> ■ >

^ 1 X::v:::::-:-:5:::::::: I wm
$$ Telnet fps;;;;: I

M pi&S
NCP

..^iÄiSSiS Swft'- * i.... ^ _ -t P

liliiiiiii^ .
^M^m^^1

*
/

/
Terminal Control

^___

SERVING HOST

Ficure 4—D«U flow for remote int«r«cüve use 108

Function-Oriented Protocols for ARPA Computer Network 275

TllVtMl CMItVl ,

Fitvire S—D»U flow tcheme for tcrver

«a a direct console user. Prior to the development of the
ARPANET, no operating system provided these func-
tions to nor-supcrvisor processes in anywhere near the
required completeness. Some systems have since been
modified to support this gcneraliicd job control scheme.
See Figures 5 and 6.

Efforts to standardise communications in the TEL-

NET protocol focused on four issues: character set,
echoing, establishing connections, and attention
handling.

The chosen character set is 7-bit ASCII in 8-bil
fields with the high-order bit off. Codes with the high-
order bit on are reserved for TELNET control func-
tions. Two such TELNET control function codes arc
the "long-space" which stands for the 200 millisecond
space generated by the teletype BREAK button, and
the synchronization character (SYNCH) discussed be-
low in conjunction with the purpose of the TELNET
interrupt rignal.

Much controversy existed regarding echoing. The
basic problem is that some systems expect to echo,
while some terminals always echo locally. A set of con-
ventions and signals was developed to control which
side of a TELNET connection should echo. In practice,
those systems which echo have been modified to iacludc
provision for locally echoing terminals. This is a non-
trivial change affecting many parts of a serving HOST.
For example, normally echoing server HOSTs do not
echo passwords so as to help maintain their security.
Terminals which echo locally defeat tliis strategy, how-

N C P

Buffers < .,.;........... ^ Logger

i| User %::®::v:::;:;::

■TA Process SSS??

Buffers

Terminal Control

LOGGER oust be a background service program capable of initiating job«

Pigare ft—Alternat« data flow icheme for a iervcr

109

27C Spring Joint Computer Confpivncc, 1972

M

\

N C P

Figure 7—D»U flow and processing of the character
input stream

ever, and some other protection scheme is necessary.
Covermg the password with noise characters is the
usual solution.

The HOST-HOST protocol provide* a la^e number
of sockets for each HOST, but carefully refrains from
»pocifying which ones are to be used for what. To estab-
lish communication between a user-TELNET and a
server-TELNET some convention is required. The
Initial Connection Protocol (ICP)W is used:

1. Connection is initiated from a user-TELNET's
receive socket to a serving HOST's socket 1
(a send socket).

2. When the initial connection is established, the
serving HOST sends a generated socket number
and closes the connection. This socket number
identifies an adjacent socket pair at the serving
HOST through which the user-TELNET can
communicate with a server-TELNET.

3. TELNET connections are then initiated be-
tween the now specified pairs of sockets. Two
connections are used to provide bi-directional
communication.

Note that socket 1 at the serving HOST is in use only
long enough to send another socket number with which
to make the actual service connections.

One of the functions performed by a terminal control
program within an operating system is the scanning of
an input stream for attention characters intended to
stop an errant process and to return control to the
executive. Terminal control programs which buffer in-
put sometimes run out of space. When this happens to
a local tenninal's input stream, a "bell" or a question

mark is echoed and the overflow character diwiiinlcd,
after checking to see if it is the attention character. See
Figure 7. This strategy works well in practice, hut it
depends rather strongly on the intelligence of the human
user, the invariant time delay in the input transmission
system, and a lad; d bufTering between type-in and at-
tention checking. None of these conditions exists for
interactive traflic over the net: The serving HOST can-
not control the speed (except to slow it down) or the
buffering within the using HOST, nor can it even know
whether a human user is supplying the input. It is thus
necessary that the terminal control program or server-
TELNET not, in general, discard characters from a net-
work input stream; instead it must suspend its accept-
ance of characters via the HOST-HOST flow control
mechanism. Since a HOST may only send messages
when there is room at the destination, the responsibility
for dealing with too much input is thus transferred back
to the using HOST. This scheme assures that no charac-
ters accepted by the using HOST arc inadvertently lost.
However, if the process in the serving HOST stops ac-
cepting input, the pipeline of buffers between the user-
TELNET and remote process will fill up so that atten-
tion characters cannot get through to the serving
executive. In the TELNET protocol, the solution to
this problem calls for the user-TELNET to send on
request, a HOST-HOST interrupt signal forcing'the
server-TELNET to switch input modes to process net-
work input for attention characters. The server-
TELNET is required to s.an for attention characters
in its network input, even if some input must be dis-
carded while doing so. The effect of the interrupt signal
to a server-TELNET from its user is to cause the buf-
fers between them to be emptied for the priority pro-
cessing of attention characters.

To flip an attention scanning server-TELNET back
into its normal mode, a special TELNET synchroniza-
tion character (SYNCH) is defined. When the server-
TELNET encounters this character, it returns to the
strategy of accepting terminal input only as buffer
space permits. There is a possible race condition if the
SYNCH character arrives before the HOST-HOST
interrupt signal, but the race is handled by keeping
a count of SYNCHs without matching signals. Note
that attention chair Hers are HOST specific and mav
be any of 129 characters—128 ASCII plus "long
8pace"-while SYNCH is a TELNET control character
recognized by all server-TELNETs. It would not ,1-,
to use the HOST-HOST signal alone in place of the
signal-SYNCH combination in attention processing,
because the position of the SYNCH character in the
TELNET input stream is required to determine where
attention processing ends and where normal mode input
processing begins.

liü

Function-Oriented Protocols for ARPA Computer Network 277

FILE TRANSFER

When viewing the ARPANET as a distributed
computer operating system, one initial question is that
of how to construct a distributed file system. Although
it is constructive to entertain speculation on how the
ultimate, automated distributed file system might look,
one important first step is to provide for the simplest
kinds of explicit file transfer to support early sub-
stantive use.

During and immediately after the construction of the
ARPANET user-level process interface, several ad hoc
file transfer mechanisms developed to provide support
for initial use. These mechanisms took two forms: (1)
use of the TELNET data paths for text file transfer and
(2) use of raw byte-stream communication between
compatible systems.

By adding two simple features to the user-TELNET,
text file transfer became an immediate reality. By
adding a "SCRIPT" feature to user-TELNETS
whereby all text typed on the user's console can be
directed to a file on the user's local file system, a user
need only request of a remote HOST that a particular
text file be typed on his console to get that file trans-
ferred to his local file system. By adding a "SEND-
FILE" feature to a user-TELNET whereby the con-
tents of a text file can be substituted for console type-in,
a user need only start a remote system's editor as if to
enter new text and then send his local file as type-in
to get it transferred to the remote file system. Though
crude, both of these mechanisms have been used with
much success in getting real work done.

Between two identical systems it has been a simple
matter to produce programs at two ends of a connection
to copy ra'V bits from one file system to another. This
mechanisM has also served well in the absence of a more
general and powerful file transfer system.

Ways in which these early ad hoc file transfer mech-
anisms are deficient are that (1) they require explicit
and often elaborate user intervention and (2) they de-
pend a great deal on the compatibility of the file sys-
tems involved. There is an on-going effort to construct
a File Transfer Protocol (FTP)"" worthy of wide
implementation which will make it possible to exchange
structured sequential files among widely differing file
systems with a minimum (if any) explicit user inter-
vention. In short, the file transfer protocol being de-
veloped provides for the connection of a file transfer
user process ("user-FTP") and file transfer server
process ("server-FTP") according to the Initial Con-
nection Protocol discussed above. See Figure 8. A user
will be able to request that specific file manipulation
operations be performed on his behalf. The File Trans-
fer Protocol will support file operations including (1)

1

«er

Fill

M .L .„■

<■
. SYft*r

P

/ '
— \

- fttekgrouad Pil« Strvlct PTOITC« M Server-FTP

Figure 8—Data flow for fiJe transfer

list remote directory, (2) send local file, (3) retrieve re-
mote file, (4) rename remote file, and (.5) delete remote
file.

It is the intention of the protocol designers to regu-
larize the protocol so that file transfer commands can
be exchanged by consoles file transfer jobs cngaped in
such exotic activities as automatic back-up and dy-
namic file migration. The transfers envisioned will be
accompanied with a Data Transfer Protocol (DTP)"
rich enough to preserve sequential file structure and in
a general enough way to permit data to flow between
different file systems.

USING THE ARPANET FOR REMOTE
JOB ENTRY

A very important use of the ARPANET is to give a
wide community of users access to specialized facilities.
One type of facility of interest is that of a very powerful
number-cruncher. Users in the distributed ARPANET
corti/nunity need to have acceb.3 to powerful machines
for compute-intensive applications and the mode of
operation most suited to these uses has been batch
Remote Job Entry (RJE). Typically, a user will generate
a "deck" for submission to a batch system. See Figure 0.
He expects to wait for a period on the order of tens of
minutes or hours for that "deck" to be processed, and
then to receive the us-. »Uy voluminous output thereby
generated. See Figure 10.

As in the case ot file transfer, there arc a few useful
ad hoc ARPANET RJE protocols. A standard RJE
protocol is being developed to provide for job sub-
mission to a number of facilities in the ARPANET.
This protocol is being constructed using the TELNET
and File Transfer protocols. A scenario which sketches
how the protocol provides the RJE in the simplest,
most explicit way is as follows:

Via an ARPANET RJE process, a user connects his

111

278 Spring Joint Computer Conference, 1972

Queue of
Submitted Jobs

Figure 9—Submission of RJE input

* • i ♦« on PTF «.rver orocess at the HOST to and initiates its transfer using the File Transfer Proto-

Printer

Control

Sft-NCP k

File \

System

Terminal

Control

Terminal

I
M
V

112

NCP ♦"

RJE

Server

File System

Q

J

J

Figure 10—Retrieval of RJE output

Function-Oriented Protocols for AltPA Computer Nclworl. 27'.)

status of his job. When notified that his input lias been
processed, he then issues commands to the serving
HOST to transfer his output back.

We can of course Imagine more automatic ways of
achieving these same functions. A user might need only
type a job submission command to his local system.
Automatically and invisibly, then, the local system
would connect and converse with the specified RJE
server causing the desired output to later appear in the
users file area or perhaps on a local line printer. The
intention is to design the RJE protocol so that the ex-
plicit use can start immediately and the more automatic
RJE systems can be built as desired.

OTHER PROTOCOLS AND CONCLUSIONS

One of the more difficult problems in utilizing a net-
work of divenic computers and operating systems is that
of dealing with incompatible data streams. Computers
and their language processors have many ways of
representing data. To make use of different computers
it is necessary to (1) produce a mediation scheme for
each incompatibility or (2) produce a standard repre-
sentation. There are many strong arguments for a
standard representation, but it has been hypothesized
that if there were a simple way of expressing a limited
set of transformations on data streams, that a large
number of incompatibilities could be resolved and a
great deal of computer-computer cooperation expedited.

The bulk of protocol work is being done with the
invention of standard representations. The TELNET
protocol, as discussed, is founded on the notion of a
standard terminal called the Network Virtual Terminal
(NVT). The File Transfer Protocol is working toward
a standard sequential file (a Network Virtual File?).
So it is also with less advanced protocol work in graphics
and data management.

There Is one experiment which is taking the trans-
formational approach to dealing with incompatibilities.
The Data Reconfiguration Service (DRS) is to be
generally available for mediating between incompatible
stream configurations as directed by user-suppUed
transformations."

ACKNOWLEDGMENTS

Function-oriented protocols have been the principal
concern of the ARPANET Network Working Group
fNWG). A list of people who have contributed to the
development of the protocols discussed would include,
Robert Bradcn, Howard Brodic, Abhay Bhushan,

Steve Carr, Vint Corf, Will Crowthor, Eric Ilarslem,
Peggy Karp, Charles Kline, Douglas McKay, Ales
McKenzie, John Melvin, Ed Meyer, Jim Michener,
Tom O'Sullivan, Mike Padlip-ky, Ario Shoshani, Bub
Sundberg, Al Vezza, Dave Waiden, Jim White, and
Steve Wolfe. We wo-ild like to acknowledge the contri-
bution of these researchers and others in the A 111'A
Network Working Group, without assigning any re-
sponsibility for the content of this paper.

REFERENCES

1 L G ROBEUTS B D WF.SSLER
Computer network dnelopmmt to achieve resource iforing
AFIPS Conference Procccdinsa May 1970

2 F E HEART ct al
The interface message processor for the A HP A
computer netuork
AFIPS Conference Proceedings May 1970

3 L KLEINROCK
Analytic and simulation method:; in computer
network design
AFIPS Conference Proccrdinps May 1070

4 H FRANK I T FRISCH W CHO'J
Topohgical considerations in the design of the Alil'A
Computer ncticork
AFIPS Conference Proceeüings May 1970

5 Specifications for the interconnection of a Host and an IMP
Bolt Bcranek and Newman Inc Report No 1S22
February 1971

6 C S CARR S D CROCKER V G CERF
HOST-HOST communication protocol in the
ARPA Network
AFIPS Conference Proceedings May 1970

7 HOST/HOST protocol for the ARPA Network
ARPA Network Information Center #7147

8 T O'SULLIVAN et al
TELNET protocol
ARPA Network Working Group Request For
Comments (RFC) |158 ARPA Network Information
Center (NIC) #0768 May 1971

9 S M ORNSTEIN et al
The Terminal IMP for the ARPA Computer Network
AFIPS Conference Proceedings May 1972

10 J B POSTEL
Official initial connection protocol
ARPA Network Working Group Document j2 NIC
|7101 June 1971

11 A K BBUSHAN et al
The data transfer protocol
RFC |2G4 NIC #7812 November 1971

12 A K BHUSHAN jt al
The file transfer protocol
RFC #265 NIC #7813 November 1971

13 R ANDERSON ct al
The data reconfiguration servici—An experiment
in adaptable process/process communication
The ACM/IEEE Second Symposium On Problems lu
The Optimization Of Data Communicalions Systems
October 1971

113

