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COMPUTER NETWORK RESEARCH 

Advanced Research Projects Agency 
Semiannual Technical Report 

June 30, 1972 

1. INTRODUCTION 

This Semiannual Technical Report covers the period January 1 
through June 30, 1972. Our activities have concentrated on computer 
systems studies and computer-communication network studies. -In Section 
2 below, we describe the results from modeling, analysis and measurement 
of various aspects of computer systems behavior. In Section 3 we do like- 
wise for networks and present some specific results for the ARPA Network. 

2. COMPUTER SYSTEMS STUDIES 

2.1    Time-Shared Systems 

Our strong effort in the area of modeling of computer systems is 
continuing.  In the field of time-sharing algorithms, R. Muntz authored 
a paper entitled "Waiting Time Distribution for Round-Robing Queueing 
Systems" [1], and demonstrated that although round-robin has the desired 
effect in yielding better service to shorter jobs, it also results in 
vastly increased variance in response time for longer jobs, as compared 
with first-come-first-served (FCFS). This study investigated finite- 
quantum systems with overhead. 

In previous reports we have discussed the importance of networks 
of queues as structures which can more realistically model multiple- 
resource systems. R. Muntz and F. Baskett (Stanford University) are 
currently preparing a report [2] on new results in this area. The start- 
ing point for this work was the work by Chandy on a concept called local 
balance. Their results include the modeling of a network in which there 
are different classes of customers. Customers in different classes may 
have different resource demand characteristics. This is useful in model- 
ing computer systems in that different job mixes can be modeled and also 
in modeling computer networks in that routing of messages based on source 
and destination can be modeled. Their results also permit various types 
of scheduling disciplines at service centers in the network (viz., FCFS, 
RR processor sharing, LCFS). Other generalities included in these results 
involve state-dependent service rates and arrival rates. 

This research on networks of queues is an on-going effort. Work 
is continuing in both extending the analytic results and in validation 
of the models. At least one graduate student is working on his Ph.D. 



thesis in this area of research. 

A Master's thesis by Walter Sheets [3], supervised by L. Kleim-ock, 
has resulted in the generation of a simulation language and program for 
evaluating the performance of and experimenting with a variety of schedul- 
ing algorithms for time-shared systems. This "resource" is to become one 
of the standard programs available to users over the ARPA Network. 

2.2 Paging Algorithms 

Reference [4] (included in this report as Appendix A) considers 
various working set replacement algorithms. Page inter-reference inter- 
val distribution, average page fault frequency (the frequency of those 
instances at which an executing program requires a page of data or instruc- 
tions not in the main memeory), average working set size and inter-page 
fault-time (time between page faults) distribution for a simulated Work- 
ing Set Replacement Algorithm for three typical programs with different 
sizes were measured on the UCLA Sigma Executive (SEX) time-sharing sys- 
tem via page reference strings. These measured results are reported in 
this paper. The average page fault frequency relationships between work- 
ing set parameters and process scheduling are discussed. These relation- 
ships are useful in planning the working set size and process scheduling 
which optimize system efficiency. 

2.3 Buffer Behavior 

A paper entitled "Buffer Behavior from Mixed Input Traffic and 
Single Constant Output Rate," by Chu and Liang [5], is included as Appen- 
dix B. A queueing model with limited waiting room (buffer), mixed input 
traffic (Poisson and compound Poisson arrivals), and constant service 
rate is studied. Using average burst length, traffic intensity, and 
input-traffic mixture rate as parameters, there are obtained relationships 
among buffer size, overflow probabilities, and expected message-queueing 
delay due to buffering. These relationships are portrayed on graphs that 
can be used as a guide in buffer design. Although this study arose in 
the design of statistical multiplexors, the queueing model developed is 
quite general and may be useful for other industrial applications. 

2.4 Miscellaneous 

Estrin, Muntz and Uzgalis published a paper "Modeling and Measure- 
ment and Computer Power" [6], which is included as Appendix C. This paper 
provides an informal definition of computer power and three applications 
of the definition to issues which will influence our ability to influ- 
ence computer systems in the 1970's. For the purposes of the paper, a 
computer system is composed of: a centralized hardware configuration; a 
set of terminals for entry and exit of user programs and data; and users 
and user protocol for entry and exit. There is no accepted measure for 
global power or performance of computer systems. There is even no 
accepted measure for computer cost. Only when a subsystem or subfunction 
is isolated does it become possible to determine key parameters. However, 
it is useful to hypothesize such measures and consider influences on them. 
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In this way, the first section provides a context for the other sections 
by reviewing parameters which make computing systems more or less power- 
ful. The remaining three sections of the paper are applications of the 
definition. The second section gives a critique of the state of model- 
ing. The third section characterizes measurement tools. The  fourth 
sectirn discusses the role of measurement at the user interface. 

A paper entitled "Fisheye: A Lens-Like Computer Display System," 
by L. Kleinrock and K. Stevens, to be published in the Communications of 
the ACM [7], considers the potential of a new computer display system. 
This system permits global vision as well as local magnification simul- 
taneously and has shown to be quite effective in scanning larg« data sets. 

3.     COMPUTER-COMMUNICATION NETWORKS 

3.1   Analysis 

A paper by Frank, Kahn and Kleinrock entitled "Computer Communi- 
cation Network Design -- Experience with Theory and Practice" [6] is in- 
cluded as Appendix D. The design of the ARPA Computer Network brought 
together many individuals with diverse backgrounds and philosophies.  In 
this paper, methods used in the design of the Network are reviewed from 
the vantage of over two years experience in its development. The design 
variables, system constraints, and performance criteria for the network 
are discussed along with an evaluation of the tools used to design an 
efficient and reliable system. The design procedures and the conclusions 
reached about the network's properties appear to be generally applicable 
to message switched networks. Consequently, the results of this paper 
should be useful in the design and study of other store-and-forward com- 
puter conmunication networks. 

Work by Cantor and Gerla [9] has resulted in the acceptance of 
their paper, "The Optimal Routing of Messages in a Computer Network via 
Mathematical Programming," and gives a computationally efficient exact 
algorithm for solving an important clzzz  of problems. The problem of 
finding the optimal routes for messages in a message-switched computer 
network can be, under proper assumptions, formulated as a nonlinear 
multicommodity flow problem. Many techniques that solve the most gener- 
al cases can be found in the mathematical programming literature; these 
techniques, however, prove to be computationally inefficient for the 
design of a computer network. For that reason, considerable effort has 
been spent in the past in developing heuristic techniques. Quite satis- 
factory results have been obtained and the computational efficiency 
has been greatly improved; however, all of these techniques have various 
limitations. This paper presents an exact method which, by using decom- 
position techniques and taking advantage of the particular formulation 
of the problem, is computationally competitive with heuristic methods 
and is not affected by their limitations. 

"Some Recent Advances in Computer Communications," by Chu [10], 
is included as Appendix E. Recent advances in computer communications 
are discussed, including: 1) computer traffic characteristics in the 



case of short holding time representing the inquiry-response r.ystems; 
2] telephone channel error characteristics of high speed voice band data 
transmission on the switched telecommunication network, and of the low 
speed channel at a rate of 300 bits/sec; 3) optimal fixed block size for 
communication systems using error detection and retrrnsmission as error 
control (yith random or burst error channel); 4) statistical multiplex- 
ing (Asynchronous Time Division Multiplexing); 5) loop systems; and 
6) security in computer communications. New areas needing further inves- 
tigation are included. 

G. Fultz completed his work on "Adaptive Routing Techniques for 
Message Switching Computer-Communication Networks" [11] under the super- 
vision of L. Kleinrock. This Ph.D. thesis will be published as one of 
our Computer Systems Modeling and Analysis Group reports and will enjoy 
wide distribution. This report considers adaptive routing techniques 
applicable to message switching computer-communication networks such as 
the AR?* Network. The emphasis i on the prediction of average message 
delay and the specification, impl'.mentation and evaluation of various 
classes cf message routing procedures. The fundamental operational as- 
pects of a message switching network model are presented. This model, 
which is based upon the existing Ai ^ Network, is utilized for the form- 
ulation of theoretical network pen <nnance measures and is the basis for 
a computer simulation program written to obtain the performance of spe- 
cific routing algorithms. A methodology for the investigation of message 
routing strategies applicable to message switching networks is developed 
and six key areas requiring study ^re identified.  Known routing tech- 
niques are classified into three bro. 1 catagories:  1) deterministic 
routing techniques, 2) stochastic routing techniques, and 3) flow con- 
trol routing techniques. From this classification, one can determine 
which techniques are applicable to theoretical studies and which are can- 
didates for operating network algorithms. The remainder of the report 
is concerned with the following investigations:  1) network performance 
measures and models, 2) specification, implementation and evaluation of 
deterministic, stochastic and flow control routing algorithms, and 3) 
the impact of a network's size and topology on message routing procedures. 

3.2    Measurement Activities 

During the period of March 1 through June 30, 1972, steps were 
taken to accelerate and broaden the Network Measurement effort, mainly 
through the effort of V. Cerf. Two major goals are: 

a) the creation of a network measurement laboratory 
b) execution of as wide a variety of measurement experiments 

as possible 

These goals are not restricted to UCLA's Network Measurement Center, but 
also include other interested sites around the network. In order to co- 
ordinate network-wide measurement efforts, a Network Measurement Group 
was formed in mid-March. As chairman of this group, V. Cerf has sought 
to initiate cooperative measurement experiments among the network sites. 
Two early projects arising from the formation of this group include the 
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4) NWC and NTHMP: These programs permit a user to sequence through 
the data obtained by NETSTAT, accumulating data and printing out 
selected statistics messages (or trace or snapshot messages) ob- 
tained from IMF's. This facility is essentially a low level fil- 
tering and formatting service. 

5) TMPROC: This program accepts as input files from NETSTAT and 
produces statistical analyses of traffic length distribution, 
delays and transmission rates, and link utilization observed dur- 
ing transmissions between TINKER AFB and McCLELLAN AFB. The re- 
sults are published separately for traffic from TINKER to 
McCLELLAN and vice-versa. 

6) SURVEY: This program automatically polls the HOSTS in the net 
and collects status information, delay to perform ICP (if ICP is 
possible). The resulting data are placed in a file for further 
processing (BY DMCG, eventually). 

7) GRAPHIT: This program utilizes the IMLAC Fortran graphics package 
and permits us to present our results graphically on the two avail- 
able IMLAC terminals. Eventually this facility will permit inter- 
active monitoring of experiments while they are being run. The 
facility will be helpful at the ICCC in October. 

The network measurement effort has benefited from the strong support of 
the SPADE software staff.  In particular, the installation of a time-of- 
day clock, a high priority "super queue," and a mechanism for scheduling 
interrupts at pre-determined times have made it possible to design a 
HOST traffic generator for the SEX system, A programming philosophy is 
taking shape, partly as a result of J. Postel's and M. Kampe's programming 
work. This philosophy advocates the use of 'HELP' routines embedded in 
all user level programs which will respond to the bewildered user's cry 
for help with increasingly detailed instructions and explanations. The 
mechanism to provide this service will be common to all programs and will 
permit programmers to create and modify their HELP sections through the 
use of the EDIT program, without the need to recompile or reassemble any 
working program. The ease with which such help sections can be provided 
will contribute to the quality and quantity of these facilities. 

ONGOING PROJECTS 

1) Specification of an artificial traffic generator for SDC's DDP- 
516. 

2) Installation of the SMOG package in the SEX system (under the 
direction of C. Maxwell). 

3) Design of the Message Switching Protocol Instrumentation (with 
D. Waiden of BBN). 

4) Preparation of papers for the following conferences: 

iO 



a) COMPCON 72: "Selected ARPANET Measurement Experiments" 
with W. Naylor. 

b) WESCON 72: "Selected ARPA Network Measurements" 
with H. Naylor. 

These papers will contain the results of different experiments 

performed on the net. 

5) Preparation of a measurement demonstration for ICCC(in conjunction 
with R. Kahn. BBN). 

3.3    Software Development 

This period has been one of a high level of involvement in ARPA 
Network protocol development. J. Postel has been particularly active in 
Telnet and Remote Job Entry protocol issues and has also participated in 
File Transfer and Graphics protocol development. He co-authored a paper 
on "Function Oriented Protocols for the ARPA Computer Network" [13] which 
is attached as Appendix G. Furthermore, the UCLA-NMC implementation of 
the user-Telnet program has been augmented by adding facilities to send 
and receive data from/to files. This is a very flexible arrangement and 
is further explained in a section of the SEX Notebook (the system refer- 
ence manual) titled "The Telnet Switch." 

4.     CONCLUSIONS 

This period, then, has seen some exciting advances in the modeling 
of computer systems, particularly in the creation of the general model for 
queueing networks. The ARPA Network measurement effort has accelerated 
considerably and numerous measurements have been reported already; ongoing 
experiments continue at. present. The analytical progress in networks is 
also moving along rapidly and new results are forthcoming. The symbiosis 
between modeling, analysis and measurement continues to be a healthy one, 
and we offer our progress as a prime example of the mutual benefit one 
achieves in such a relationship. 
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Presented at the PIB International Syn.posiu. XXI on Computer-Communications 
Network and Teletraffic, April 1972. 

Measurement Data on the Working Set Replacement 

Algorithm and Their Applications* 

by 

W.W. Chu, N. Oliver1" and H. Opderbeck 

Computer Science Department 
University of California 

Los Angeles, California 90024 

ABSTRACT 

Page Inter-reference Interval distribution, average page fault 

frequency (the frequency of those Instances at which an executing program 

requires a page of data or Instructions not In the main memory) average 

working set size and Inter-page fault-time (time between page fault) 

distribution for a simulated Working Set Replacement Algorithm for three 

typical programs with different sizes were measured on the UCLA 

Executive (SEX) time-sharing system via page reference strings.   These 

measured results are reported In this paper.   The average page fault fre- 

quency relationships between working set parameters and process scheduling 

are discussed.   These relationships are useful in planning the working set 

size and process scheduling which optimize system efficiency. 

tilallnd^^tSr;^ by Jfe^S- 0ff1ce of Naval ^search, Mathema- 
4027   NR olS ?^.ISn.hCi!wCeS DlvJsion' Contr"t No. N00014.69-A-0200- 

i* * n!8"129 and the Advanced Research Projects Agency of the Deoart- 
ment of Defense. Contract No. DAHC 15-69-C-0285 P 

+M1dÄ0f ^ ^ ^ 6eneral MOt0rS ReSMrCh Technical Center. Wa^e". 
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1^ Introduction 

Memory mMfm* becomes a severe problem In miiltiprogra-lng and 

virtual »emor/ systems.    In a multiprogramming system, many programs are con- 

currently executed by the processor.   Thus the main memory Is shared by many 

programs.    Since the total size of all of the programs far exceeds the size 

of the main memory. In order to keep Infomatlon that «111 be used In the 

„ear future In the main memory, the system constantly moves Infomatlon 

between several levels of storage media. 

In this paper, we consider the case of paged memory systems: that 

is. the address spaces are partitioned Into equal size blocks of contiguous 

addresses.   The paged memory system has been used by many computer systems. 

However, the basic page replacement problem of deciding which page should be 

kept in main memory and which should be removed when additional space Is 

needed Is still little understood and has been of considerable interest. 

Obviously, the page «moved should be a page with the least probability of 

being needed In the near future.   The difficulty lies in trying to determine 

which page this «ill be without Incurring difficult Implementation problems 

at the same time. 

Many replacement algorithms have been proposed and studied in the 

past: such as Random. First-in First-out. Stack Replacement Algorithms 1 

(for example. Least Recently Used (LRU)), and the Working Set Replacement 

Algorithm.^   The first three replacement algorithms require a fixed size 

„emory space for each process.   The Working Set Replacement Algorithm, how- 

ever, requires a variable size storage space for each process and the size 
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varies with program demands. This variable storage space provides an adaptive 

capability In the replacement algorithm which Is quite appealing. The work- 

ing set principle of memory management states that a program may use a pro- 

cessor only If Its working set (set of pages) Is In the main memory, and no 

working set pages of an active program may be considered for removal from the 

main memory. Properties of the working set replacement algorithm, the rela- 

tionships among page inter-reference interval, average page fault frequency 

and average working set size for the Working Set Replacement Algorithm are 

m 
described In a recent paper by Denning and Schwartz.1- '' 

Because of the complex nature of program behavior, analytical esti- 

mation of the above mentioned parameters of program behavior becomes very 

difficult. Yet this information is Important in the planning of an efficient 

replacement algorithm that optimize system performance. Therefore we employ 

measurement techniques for such estimations. We collect data about the pat- 

tern of references to all the pages which comprise the executed program, and 

measure these parameters experimentally via Interpretive execution. This 
[4] 

technique has been used previously to measure dynamic program behavior 
[5] 

and also to measure the performance of Belady's Optimal Replacement Algorithm 

and LRU replacement algorithms.'■ * J 

Here we report the measured program behavior of the Working Set 

Replacement Algorithm. We shall first report measurement results such as 

page inter-reference Interval distribution, average page fault frequency, 

average working set size and Inter-page-fault-time distribution. We then 

discuss the use of average page fault frequency to determine the working set 

parameter, and propose a page fault scheduling algorithm for process scheduling 

which Improves system efficiency. 
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11.        Measurements and Results 

The working set W(t,T) at a given time t Is the set of distinct pages 

referenced In the time Interval ((t-x+l), t) where T IS called the working 

set parameter.   The working set size w(t,T) Is the number of pages In W(t,T). 

The average working set size S(T) defines as S(T) ■ H1^   i   v   w(t,T)    . 
(      t*l ) 

\for systems employing working set replacement algorithms, several parameters 

of Interest are:   1) page Inter-reference Interval distribution F(T)   which 

describes the fraction of the page Inter-reference Intervals less than T; 

2) average page fault frequency mfi) which describes the average number of 

page faults per page reference   for working set parameter T;   3) average 

working set size S(T); and 4) Inter-page-fault-time (time between 

page fault) distribution P(t,T) which describes the fraction of the Inter- 

page- fault-times less than or equal to t for a given T. 

F(T) IS a fundamental distribution; It closely relates to the other 

three parameters.   When we assume that the page reference rate Is one page 

per unit time, we know that the page references that result In page faults 

are those references whose Inter-reference Intervals exceed T.   Thus, m(T) > 

1-F(T).    It can be shown^ that S(T) «   E    m(Z).   Thus, S(T) Is closely 
2-0 

related to m(T).   l/m(T) Is the average running time between page faults. 

Since P(t,T) Is the fraction of Inter-page-fault-tlme less than or equal to 

t, 1/m(T) Is the time average of the density function P(t+l,t) - P(t,T}; 
m 

that Is, l/md) •  E t-[P(t+l,T) - P(t,T)]. 
t-1 

To employ measurement techniques for estimating these parameters, wo 

collect data about the pattern of references to all the pages which comprise 

the executed program and measure these parameters experimentally via Inter- 

pretive execution.   For this purpose an Interpreter for the UCLA S1gma-7 

time-sharing system has been developed.   This Interpreter Is capable of 

r 19 
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executing Sigma-? object programs by handling the latter as data and repro- 

ducing a program's sequence of references.   This sequence, In turn, can 

then be used as Input to programs which simulate the Working Set Replacement 

Algorithm. 

Three different programs with different sizes were Interpretively 

executed, and their behavior was Investigated under the Working Set Replace- 

ment Algorithm.   A FORTRAN Compiler was chosen as the representative for a 

small program.   META-7 was chosen as the representative for a large program. 

It translates programs written In META-7 to the assembly language of the 

Sigma-7. A OCDL (Digital Control Design Language) compiler was chosen as a 

representative for a medium size program.   This compiler is written in 

META-7.   DCDL translates specifications of digital hardware and micro- 

program control sequences into Interpretive code. 

Table 1 shows some characteristic properties of these programs. 

The column 'size' 1$ divided into two parts.    'Static' refers to the number 

of pages necessary to store the program as an executable file on a disk 

where one page consists of 512 32-bit words.    'Dynamic' indicates the number 

of different pages actually referenced while processing the given input 

data.   The difference between the number of pages in static and dynamic 

riiults from the fact that programs creat new pages durinq execution for 

working storage areas and that not all pages of programs are reference 

during executing a specific set of input data. 
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Table 1. Program sizes of the three measured programs 

Size Number of page references 

Static Dynamic 

FORTRAN            24 34 1.000,000 

DCDL 44 58 1,000,000 

META-7 84        153 1,000,000 

Figure 1 shows the average page fault frequency «1(1) for the three 

programs. We note that all three programs exhibit similar page fault char- 

acteristics. The average page fault frequency decreases rapidly with T. 

Large programs tend to have a slower rate of decrease. The reason for such 

characteristics is mainly the locality of the program; that is, during any 

interval of execution, a program favors a subset of its pages, and this set 

of favored pages changes its membership slowly. Further, the locality for 

large programs is usually larger than that of small programs. The page 

inter-reference interval distribution F(T) » l-m(T) can be obtained easily 

from mfx). The average working set sizes as a function of T are shown in 

Figure 2. Measurement data support the premise that average working set size 

increases as program size increases and reaches a constant level as T reaches 

a certain value. The PU.-O's of the three programs for selected T'S are 

shown in Figure 3. We note that P(t,T) is very sensitive to T and program 

size. For a given program, the average inter-page-fault-time increases as T 

increases. This occurs because for the small T case, many of the pages 

to be referenced In the near future are in the secondary memory; 

thas the average working set size is very small and yields a high page fault 

rate. For the large T case, most of the pages are in the main memory which 

yields a large average working set size and a small page fault rate. For 
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a given T, large size programs have a higher page fault rate than that of 

a small size program. In the next section we shall discuss the applications 

of these parameters to determine the working set parameters and process 

scheduling which improve system efficiency. 

III.   Applications of Measurement Data 

A.  Working Set Parameter T 

Working Set Parameter x is an important parameter which affects 

page fault rate, memory utilization, and thus system efficienty. The measure- 

ment data support the fact that x should be chosen according to the execut- 

ing program (e.g., locality) and system organization (e.g., available memory 

size and the speed ratio between main and secondary memory). If t is not 

properly chosen, for example if x is too short, then pages are removed from 

the main memory while still potentially useful. This results in high page 

traffic between the different levels of memory. If x is too long, then 

pages that are not needed may remain in the main memory, which is an 

inefficient use of memory space. Instead of choosing x arbitrarily, we 

propose to determine x from the measured m(x) and designate it as x . As 

a result, x0 is now closely related to program behavior as well as to system 

organization. 

The efficiency of a program is defined as the ratio of total 

virtual running time to total real running time (total virtual time and total 

page waiting time); that is. 
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Eff . total virtual running time 
total real running time 

1 
l+in(T)R 

(1) 

where  R » A/T 

A • Access time of the main memory 

T » Access time of the secondary memory 

Since R is fixed for a given system, from (1) we know a fixed average page 

fault frequency nix)  Insures a certain level of efficiency. 

Suppose we would like the system to operate at an average page 

fault level of about lO"4 page faults/reference; that is. one page fault 

In every 104 page references. Then from Figure 1. T0 for Fortcomp. DCDL 

and META.7 are 22. 45, and 54 m sec (1 psec per page reference) respectively. 

From Figure 2, the corresponding average working set size is 15. 36, and 

39 pages. 

Usually in a multiprogramming environment several types of 

programs may be concurrently operated by the operating system. The working 

set parameter of such a system may either be variable of fixed. In the 

variable t case, the T0 should change from one program to another; while in 

the fixed T case, the T0 remains fixed for all types of programs. Because 

of the simplicity of a fixed T scheme, it requires less overhead to implement 

than the variable T scheme. However, the efficiency may not be as high as 

that of the variable T case. 

One way to determine the value of a fixed T is to use the 

weighted average working set parameters of each program; that is. 

*>»» 
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where T1 - working set parameter for the 1th program that 

selected from its md) 

u1 » relative usage frequency of the ith program 

n ■ total number of distinct programs used in the system 

The decision as to which scheme should be used for a given system 

should he based on program behavior, relative usage frequency of all the 

distinct programs used by the system, and the overhead in implementing these 

Schemas. 

6.  Process Scheduling 

In a multiprogramming system, to increase system efficiency and 

to reduce response time for short jobs, the job queues for CPU processing 

usually have several priority levels. Let us consider a system having two 

levels of queues: Short Quantum Queue (SQQ) and Long Quantum Queue (LQQ). 

SQQ has a higher priority than LQQ. All jobs enter the SQQ. Processes in 

the SQQ are given one time slice at a time. The process is put at the back 

of the SQQ after the process either Incurred a page fault or used up the 

time slice; that is, the process is serviced in a round-robin fashion. A 

process stays in the SQQ until its short quantum time runs out. It is then 

put on the front of the LQQ. The LQQ will not be serviced until the SQQ is 

empty. A process in the LQQ receives service until its long quantum time 

runs out. It is then put at the end of the LQQ. 

When a system is properly designed, such scheduling algorithms 

yield: 1) fast response time to short jobs, and 2) most of the short jobs 

are run in the SQQ and long jobs ( compute-bound processes ) will run in the 
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LQQ. Since LQQ provides more memory space for each process than that of 

SQQ, such scheduling yields less page swapping. 

If the quantum time of the SQQ Is too »hort, then many of the 

short jobs will be In the LQQ; If the quantum time Is too long, then many 

computational jobs will be In the SQQ. The system Is designed such that most 

of the short Jobs finish their processing In the SQQ and only the compute- 

bound processes enter Into the LQQ. The short quantum time should be larger 

than the average real process time of short jobs. However, the process time 

varies from one process to another. In addition, the processing time Is 

further complicated by page faults occurring during Its execution. 

The real processing time of a process Is the sum of the virtual 

process time and the total time waste<f due to page faults of that process. 

For example, two processes requiring the same amount of virtual CPU orocess- 

Ing time could hive very different page fault frequences, and thus yield very 

different real processing time. Therefore the real processing time Is 

extremely difficult to estimate. 

We knoi« that page fault frequency has great Influence on system 

efficiency and the response time of the short jobs. We propose to use a 

page fault as a measure In process scheduling; that Is, when a process 

exceeds a certain number of oage faults or exceeds the quantum time of the 

SQQ (whichever occurs first), then the process switches from the SQQ to the 

LQQ. We shall call such a scheme a page fault scheduling algorithm. In a 

multiprogramming environment, the CPU Idle times due to page swapping between 

main and secondary memories are directly affected by the page fault frequency. 

The paoa fault scheduling algorithm should be effective In reducing CPU Idle time 

And Improve system efficiency. (See Appendix). 

*For a systea operating In a ciultlprogracalng äiivlrcnocnt* uc sitould aUo 

Include the time spent In waiting for the availability of CPU. 
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Precedes with high page fiult rates occupied in the wain memory 

greatly reduce th* efficient utilization of main memory. The page fault 

scheduling algorithm adaptively allocates the low page fault rate processes 

in the main memory and higher page fault rate processes in the ^eco^^ary 

memory. Thus such scheduling improves the utilization of main memvy. As 

a result, this will improve the average response time of the system. An 

analogy to the above scheduling algorithm is the well known "serving the 

shortest job first" algorithm in queueing theory that results in improve- 

ments in average waiting time; except in our case we have further improved 

the memory utilization efficiency. 

The number of page faults occurring during processing before 

switching a process from a SQQ to a LQQ depends on the response time required, 

the number of processes operating concurrently, the replacement algorithm 

used, and page fault frequency characteristics. Further study in this area 

is needed. 

In order to reduce response tine, the quantum time of the SQQ 

and LQQ are further divided into man> time slices. The optimal slzi* of time 

slices is another Important parameter that affects system efficiency. The 

time slice should be selected such that most of the processes either page 

fault or become inactive before running out of the time slice. Since P(t,T) 

describes the iiiter-page-fault-time distribution of a process for a given T, 

the time slice for the Quantum Queues can be determined from P(t,iK For 

example, if we wish 95X of the time that the process will page fault before 

running out of the time slice -- that 1$, only 5X of the time the process 

will run to the end of the time slice -- then from Figure 3 we know 
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the tine slices of the LQQ   for T - 10 m sec are: 28 m sec for the FOKIRAN 

Compiler, 13 m sec for DCDL, and 12 m sec for META-7.    Time slices for T - 25 

■ sec are: 58 m sec for the FORTRAN Compiler. 38 m sec for DCOL, and 35 m sec 

for META-7.    Thus, the measured Inter-page-fault-time distribution provides 

a good way to determtiethe optimal time slices for the Quantum Queues which 

avoids excessive unnatural Interrupts that degrade response times. 

The pa^e fault scheduling algorithm, as well as the selection 

of the time slice form Inter-page-fault-time distribution, a «e quite general 

and can be applied to other types of replacement algorithms. 

VJ: Conclusions 

Page Inter-reference Interval distribution, average working set size, 

average page fault frequency^and Inter-page-fault-tlme distribution for three 

typical programs with working set replacement algorithms are measured and 

reported.   Measurement results support program locality and the following 

working set properties:    the average page fault frequency decreases rapidly as x 

Increases and Increases as program size Increases.    Based on these measured 

data, working set parameter and process scheduling may be selected from and 

based on the average page fault frequency.   The time slices for the Quantum 

Queues my be determined from Inter-page-fault-tlme distributions.   A page 

fault scheduling algorithm is proposed for process scheduling in a multi- 

prograaring environment.   Such an algorithm 1$ effective in reducing CPU idle 

time and improve system efficiency. 

♦The three measured programs are not short jobs; they should be run In LOO 

STSTÄ ^rd p(t,T,'s '""*'* ** "^ °f"- ™«"'" 
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Although the Working Set Algorithm provides an upper bound on replace- 

ment algorithm performance, the high cost of implementation prevents it from 

being widely used. Therefore future research should be In developing low cost 

hardware devices for economically Implementing the Working Set Algorithm or. 

perhaps even more fruitful. In developing new replacement algorithms that 

have performance comparable to that of the Working Set Algorithm but are much 

easier to Implement. For example, we have recently studied a Page Fault 

Frequency Replacement Algorithm. Such an algorithm adjusts the LRU (Least 

Recently Used ) stack according to page fault frequency. Preliminary results 

already Indicate it has excellent performance. 
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APPENDIX 

A Cyclic Queuelng Model to Study CPU and I/O Operations 

To Illustrate the relationships among CPU Idle time, average page 

fault frequency and swapping time (time to bring In a new page from the aux- 

iliary memory) T, a cyclic queuelng model'-8^ Is used to study CPU and I/Ü 

operations. The system In Figure 4 consists of two classes of service facili- 

ties. Service facility class I represents a single CPU; Its service rate Is 

directly determined by the average page fault rate* X. Service facility class 

II represents k parallel I/O servers with each having an average service rate 

y ■ y . The k parallel servers represent, for example, a paging drum with k 

different sectors. Using such I/O facilities, a high degree of overlap of I/O 

requests can be achieved In a multiprogramming system with relatively low page 

fault frequency. 

Let P^j be the probability that a job leaving server 1 will proceed 

to server J. We assume that the job leaves CPU (server 0) and goes randomly 

to the k I/O servers for service; thus POJ a F • for -^ ' 1» 2 *k'   Since 

jobs which have finished their I/O operations always return for CPU operations, 
P10 ' 1 for 1 ■ 1, 2, .... k; and all the other P^j's are equal to zero. 

Let N be the total number of jobs In the system, and let n, denote 

the number of jobs In service plus the number In queue at the 1th server. The 

state of the system can then be determined by the k + 1 tuple (n^n,,...^.) 

In which T,  ni ■ N. The number of distinguishable states of the system—equal 

to the number of partitions of N customers among k + 1 servers—Is (NLk). 

•For a system using Working Set Replacement Algorithm with parameter x, then 
X ■ m(T). 

r   ^9 
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Let P(n0,n1,...,n|C) be the stationary probability that the system is 

in state (nQ,^,...^), and let all the service times be assumed to be ex- 

ponentially distributed. Then the steady state equations can be written in 

the form: 

e(n0) X + £ eCnj) u P(nQ«n^,...,nk) 

■ ^ e(nj) X P0j P(n0+lin1....,nj-l,....nk) 

J«1 

+ £ e^ v  pi0 p^no"1,nl Vl.-.-.nk) 
i«l 

where the indicating function 

eCnj) if n. - 0 

if n. ji 0 

(Al) 

accounts for the impossibility of any customer leaving the jth server if that 

server is empty. 

The left hand side of (Al) represents the rate of transition out 

of state (nQ.n^...^); and the right hand side is the rate of transition into 

this state. Solving (Al) by a method of separation of variables^, we have 

•'nQ»n»|...t 

1-1 V        / 

/a\N-n0 

W "feWFlfe/ (A2) 

where a » \/\i   and the normalizing function G(N) is determined from the fact 

that the sum of all the P(n0,n1 nk) is equal to 1. Thus 
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k 1»! W 

1-0 1 

0 (A3) 

/N-n0+k-l\ 
where ^   k-1     yis the number of distinguishable partitions of N-n0 jobs among 

k I/O servers. 

The probability that the CPU is idle is 

P0 ' S P(0¥n1,n2f....nk) 
k 
En.-N 

1-1 1 

.   1     /WlVaV 

N 
For the case k « 1, then (A4) reduces to P0 » Jf 

(A4) 

A«1 

For the case N » 3 and k « 6, the values of PQ'S for selected o's 

are shown in Table II. 
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Table II P0 vs. a 

a !o 
0.25 0.003 

0.50 0.019 

1.00 0.091 

1.50 0.187 

2.00 0.278 

2.50 0.362 

3.00 0.431 

3.50 0.488 

4.00 0.537 

4.50 0.577 

5.00 0.612 

We note that a Is the ratio of average page swapping time (from 

secondary memory) to average Inter-page-fault-time. A large a Implies large 

page swapping time or small Inter-page-fault-time (high page fault frequency), 

or both. Thus the probability of CPU Idle time Increases as a Increases. 

Hence, the page fault scheduling algorithm should be effective In reducing 

CPU Idle time and should thus Improve system efficiency. 
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APPENDIX B 

BUFFER BEHAVIOR FOR MIXED INPUT TRAFFIC AND SINGLE 

CONSTANT OUTPUT RATE 

by Wesley W. Chu and Leo C. Liang 
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tnffic inltatit;, »nd input-trafflc miilure rate is parunelerc, we 
obuin reUlionthipt among boiler »iie, overflow probabilities, and 
expected (neeaa<c-<)ueuein( delay due to bttflering- These relation- 
shipt are portrayed oo (rapha that can be uaed aa a guide in buffer 
deaifB. Although this atndy arose in the design of statistical multi- 
pieiors, the queueing model developed ia quite general and may be 
uaetal (or other industrial applicationa. 
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I.   I NTHOOtRTION 

In many enginpenng problems surh ns oomputer-storagr 
.•»lloration, data comprrasion. and data communication [1], 
buffer design is one of the important considerations. Birdsall 
ft al [2], and later Dor [3] have analysed buffer behavior 
with Poisson input arrivals and consttutt output rate. Chu 
f4) has studied the buffer behavior of a similar model with 
multiple synchronous constant output rates. He has further 
studied buffer behnvior for batch Pnisson arrivals and a single 
constant output rate 15] In many data communication sys- 
tems, input traffic is n mixture of bursts (string of characters) 
and single characters For example, in a computer communi- 
cation system, the cathode-ray-tube terminal outputs arc in 
bursts and the teletypewriter outputs are «n characters Buffer 
behavior with such mixed input traffic is studied in this paper 

For a given mixed input traffic and a constant output rate, 
we are interested in 11 the relationship between overflow 
probability (the average fraction of the total number of arriv- 
ing characters rejected by the buffer) and buffer site at various 
traffic intensities, and 2) the expected queueing delay due to 
buffering. These relationships are obtained by a technique 
similar to Chu [IJ. The results in this paper represent a 
generalisation of his work. 

II. ANALYSIS OP BvmH BEHAVIOR 

Let us define the time to transmit a character on the multi- 
plexed line as a unit service interval. The input traffic arriving 
at the buffer is assumed to be a mixture of single-character 
inputs and burst (string of characters) inputs. The single- 
character input X is assumed to be Poisson distributed, with 
s rate A, characters per unit service interval as shown in (1). 

m hi exp(-X,), 0, 1,2, 

The characteristic function for /,(*) is 

pt{u) - exp (-X, + X, exp (iu)]. 

(0 

(2) 

For burst input traffic, we assume the length / of the burst )' is 
geometrically distributed with mean I ■ 1/9, and the number of 
bursts Z arriving during a unit service interval is Poisson distri- 
buted with a rate Xc bursts/unit service interval. The distribu- 
tion of I is 

MO - #0 - »)' 1-1,2, (3) 

and the distribution of the number of burst« arriving during 
a unit service interval is 

x; 
71! 

(4) 

The total number of characters due to burst inputs that 
arrive during the time to transmit a character on the multi- 
plexed line is a random sum and equals 

Zv. (6) 

..< — 

where K,, a random variable distributed as (3), is the num- 
ber of characters contained in the ith arriving burst and Z, 
a random variable distrihutod as (4), is the total number of 

41 



CONCISE  PAPCM 231 

bursts arriving during the unit service interval. All of these 
random variables are assumed to be statistically independent 
of each other. It can be shown that 4*(u), the characteristic 
function of 5 [5], is 

4«(u) - exp | -X. + X.» 

•exp(tu)/(l-(l - »)exp(iu)l|.        (8) 

and f,(j) (the probability that exactly ; characters will arrive 
due to burst arrivals during a unit service interval) has a 
compound Poisson distribution 

/.Ü) 

exp (-X.), 

J 

i 

1,2, 

0. (7) 

For mixed traffic of single-character inputs (Poisson) and 
burst inputs (compound Poisson), the probability that exactly 
n characters arrive during a unit service interval n. is the 
convolution of /*(*) and />(;); that is, 

n. - /,(n) • /x(n) 

.(M)M-r'exP(-X.)+^exp[_(x> + Xt)] 

n- 1,2, 

n. - exp (-(X, + X.)l. 

The characteristic function for TT. is 

(8) 

- exp | -(X, + X.) + X, exp (iu) 

+ X.» exp (iu)/[l -(!-») exp (<«))). 

The time required to compute IT. from (8) is dependent 
on n. For large n (e.g., n > 1000), the computation time is 
prohibitive. Using the same technique as [5], we compute JI. 
via the fast Fourier transform (FFT) inversion method as 
follows: 

1   ""' 
11, - -jj 2*«x(r) exp(-2)rtm/M), 

M   r.o 

n - 0, 1, 2, • • • , ilf - 1 

where 

r   mu/M, 
i {-l)"'; 
M total number of points used to represent 4«x(r) 

number of 11.. 

(10) 

total 

In order to determine 11. accurately, they are computed with 
double precision on the IBM 360/91 at the University of Cali- 
fornia, Los Angeles. Furthermore, we want to use as many points 
as possible to represent 4ax(T)', that is, we want to make At as 
large as possible. Because of the word-length limitation of the 
computer, double precision provides 15-digit accuracy. Therefore, 
when 11. < 10-l>, it is set equal to aero. M is selected such that 
nn>it < 10-". The M is different for different values of X,, X., 
andf. 

Since the buffer has a finite site of N, an overflow will result 
when a character arrives at the buffer and finds the buffer is full. 

Thus, the average-character departure rate from the buffer 
(carried load) ß is less than the average-charactpr arrival rntr at 
the buffer (offered load) 7 * X, + Xf 7. The carried load can he 
computed from the probability that the buffer is busy; that is, 
^ ~ 1 — p«, where p( is the probability that the buffer is empty, 
which can be obtained in the exact manner as in |5|. 

The traffic intensity p measure« the degree of eongeation and 
indicates the impact of an input traffic stream upon the departure 
stream. Since the offered load is represented in a unit service 
interval, p -> 7 ■* X, + X,?. 

The overflow probability of the buffer (the average fraction of 
the total number of arriving characters rejected by the buffer) is 

P., 
offered load — carried load 

offered load = 1-/3/7.       (ID 

Let a be the input-traffic mixture rate that describes the 
percentage of the traffic contributed by compound Poisson 
arrivals. Clearly, 1 — a is the percentage of the traffic con- 
tributed by Poisson arrivals. Thus, 

and 

a * X,[/p 

1 - a = Xp/p. 

In the preceding analysis, we have treated each character 
as a unit. However, in computing the expected message delay 
D due to buffering, we should treat each message as a unit. 
The strvice time is the time required to transmit the entire 
message. When the buffer size JV is large, for a line with a 
constant transmission rate, the service-time distribution is the 
same as the message-length distribution except scaled by a 
constant transmission rate factor. The message-length dis- 
tribution for the mixed input traffic of length m is 

Mm) - Xp + X. 
«(m) + 

X,+ X. 0(1 - 6)' 

(9)     where 

6(m) {'■ 

m = 1, 2, 3, 

m - 1 

m > 1. 

(12) 

When the overflow probability is very small, a good ap- 
proximation for the expected message delay can be computed 
from a queueing system with infinite waiting room [4]. The 
expected queueing delay for an M/G'l (Poisson arrivals 
/general service/single output) queueing system is 

\Eli 
2(1 - p) 

(13) 

where 

X - X, -I- Xc 

^m«] « second moment of M»n). 

It can be shown that 

FAm*] -{\K + M2 - 0)/n 

Substituting (14) into (13), we have 

(14) 

D ■ —,—-—r + -^ — ,        character-service-times. 
2(1 - p) 1 - p 

(15) 
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IV. CuNcumiuN 

A finite waiting-room queuing model with mixed input 
traffie and constant output rate has been studied. For a 
given traffic intensity and a given input-traffic mixture rate, 
buffer behavior (in terms of buffer overflow probability and 
average queueing delay) lies between that for Poisson input 
arrivals and that for compound Poisson input arrivals. When 
the traffic mixture rate a approaches zero, the buffer be- 
havior reduces to the Poisson input case. When « equals one, 
the buffer behavior corresponds to the compound Poisson 
input case. The numerical results for buffer behavior are por- 
trayed in graphs that are useful in buffer designs. 
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III. DISCUSSION OF RESULTS 

The relationship of buffer length to overflow probability has 
been computed for selected traffic intensities p, the expected 
burst length I, and input-traffic mixture rate a as shown in 
Figs. 1-3. 

The overflow probability depends upon the N, p, I, and a. For 
a given buffer siie N, the overflow probability increases as p, 
I, and a increase. For a given overflow probability, the required 
buffer site increases as p, I, and a increase. 

In our analysis, we have assumed that the burst length is geo- 
metrically distributed and takes values from one to infinity. In 
practice, however, the maximum burst length is limited to a 
finite number of characters. Because of the long-tail effect of the 
geometric distribution, the result obtained here will be more 
conservative than that of a truncated geometric distribution. 

When the average burst length I equals unity or when the 
input-traffic mixture rate a equals zero, the model reduces to the 
Poisson arrivals with constant output rate, which has been 
obtained by Birdsall et al. [2], Dor [3], and Chu [4]. When a 
equals unity, then the model reduces to batch Poisson arrivals 
with a constant output rate, which has been analyzed by Chu (5). 
For given p and /, the buffer size required to achieve a desired 
level of /*„( is not simply proportional to a. For a desired level 
of Pöt, Nl (the required buffer size for average burst length I) is 
much greater than I • Nt, where iVi is the required buffer size for 
burst length of one (Poisson input arrivals). 

The expected message delay D due to buffering (calculated 
from an M/G/l system with an infinite waiting room) depends 
upci or, p, and I For a given p and a given I (or a), from (15) 
we note that D is linearly proportional to a (or Z). This agrees 
with our intuition that for a given traffic intensity, the message 
delay increases as the message length increases and as the amount 
of bunt input traffic increases. The relationships between I and 
D for a — 0.5 and selected p are portrayed in Fig. 4. 
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INTRODUCTION 

Since the early 1960s Hio literaturo»52 reveals 
increasing concern with effectiveness of information 
processing systems and our ability to predict influences 
of system parameters. A recent survey paper" discusses 
methods of performance evaluation related to three 
practical goals: selection of the best among several 
existing systems; design of a not-yet existing system; 
and analysis of an existing accessible system. The 
classification of goals is useful, but wo can point to 
neither the models nor the measures iior the measure- 
ment tools to allow reliable judgments with respect to 
those three important goals at this time. 

We choose to discuss three issues which do not fail 
cleanly into Lucas' categories but which are certain 
to influence our ability to evaluate computer systems 
in the 1970R. The three issues are: effectiveness of 
models of computer systems; requirements to IK- met 
by measurement ex|>eriinents; and application of 
modeling and measurement to the user interface with 
computer systems. 

The first section provides n context for the other 
sections by reviewing parameters which make com- 
puting systems more or less |)owerful. The second 
section gives a critique of the state of modeling. The 
third section characterizes measurement tools. The 
fourth section discusses the role of measurement at 
the user interface. 

COMPUTER POWER 

We consider a computer system to be composed of: 
a centralized hardware configuration; a set of terminals 
for entry and exit of user programs and data; an 
operating system; public programs and data bases; 

• This research was supported by the National Science Foun- 
dation, Grant No. GJ 809. 

user programs and data; and users and user protocol 
for entry and exit. 

There is no accepted measure for global power or 
performance of computer systems. There is even no 
accepted measure for computer cost. Only when :, 
subsystem or subfunction is isolated does "it become 
possible to determine key parameters. However, it is 
useful to hypothesize such measures and consider in- 
fluences on them. 

Let us, therefore, define a conceptual measure which 
we call computer system power, l\ as a multivariate 
polynomial function whose coefficients are sigiuficanee 
weights. We would, of course, like to have a set of 
orthogonal functions whose independent variables 
correspond to measurable parameters but that state 
of happiness is not apparently within reach. In an 
attempt to exemplify our philosophy, the authors 
discuss a set of variables which should influence P 
keeping in mind that derivation of a figure of merit 
wotdd require dividing P by some measure of cost. 

We  intuitively expect computer system   power  to 
increase if the: 

• execution time of any CPU instruction is decrea-ed 
• access time of any memory subsystem is decreased 
• transfer rate to or from any memory subsystem is 

increased 

• transmission rate of any buss structure is increased 
• transfer rate to and from any input or output de- 

vice is increased 

• delay in resource availability is decreased 
• error recovery time is decreased 
• numl)er of useful public programs is increased 
• performance of any public program is increased 
• access time to any public data base is decreased 
• arrival, execution, and departure  rates of   user 

programs are increased 

• execution time or resource requirement of any user 
program is decreased 

725 
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• number of effective users increases 
• amount of protocol for any user decreases 

In a deeiHT, even more qualitative sense, we expect 
a computer system to IH

1
 more powerful if the following 

conditions hold: 

• system manager has a model permitting adaptation 
to changing load 

• errors and system imbalances are reported to 
maintainers and developers 

• program documentation and measurements permit 
modification with few side effects 

• average number of user runs before correct execu- 
tion is decreased 

• the quality of any user program increases in the 
sense that there is more effective use of a source 
language on a given computer system. 

Although the above observations are useful in 
stating expected events of concern they ignore inter- 
actions l)etween such events and give no indication 
of weighted importance of the individual events. We 
further characterize our systems by the following 
simple remarks. 

If the time required for every physical transition to 
reach its new stable state were halved, wo would expect 
throughput of the system to double. If only some of 
the events were reduced in transition time, we could 
no longer guarantee that there would be a reduction 
in computation time because the scheduling of events 
is a function of starting and stopping times of con- 
current processes. Anti-intuitive anomalies23'J are 
disturbing but do not keep us from conjecturing that 
they occur only infrequently. If we neglect anomalies, 
then we cannot expect change in execution time of 
any one instruction or any one routine or any one 
compiler to produce a decimal order of magnitude 
change in a sensibly weighted function of the above 
parameters. Given reasonable measurement tools and 
design of measurement experiments we conjecture 
that somewhere between 10 percent and 50 percent 
improvement in performance can be accomplished for 
most systems by changes in assignment and sequencing 
of resources. Although these percentages do not seem 
dramatic in their impact, the absolute number of 
dollars or number of computer hours which would 
become available is far from negligible. 

In contrast with the heuristic probing and tuning 
of a given system, much greater impact is possible 
at the user interface with a computer system and by 
advances in models, particularly validated models of 
our computer systems. For example, we would guess 

that there are more than 10 attempts to run a program 
during its development l)efore it runs once "correctly." 
For complex programs the ratio of numbcr-of-corrcct- 
runs to numlMT-of-runs can approach zero. Hence, if 
the user interface can l)e altered so as lo increase the 
probability of a correct run, large benefits may result. 

The effect of model development is a more sophis- 
ticated and qualitative issue. It is self evident that to 
the extent that we can predict liehavior of even a 
subsystem through modeling, we can hope to isolate 
important parameters and the way they affect per- 
formance. In fact, only through modeling efforts can 
we generalize experimental results at one center to 
apply to many others. Furthermore, it has been 
recognized that simulation is the most widely used 
tool in evaluation of systems. If simulation depends 
upon precise imitation of a computer system, its 
development cost is generally prohibitive and it is 
fraught will all the unreliability associated with one- 
shot development. Effective simulation depends upon 
validated approximate models of systems and of user 
programs. Creation of such strong models is the most 
difficult of our tasks. However, the very process of 
validating or invalidating simplifying assumptions 
used in models can lead to new algorithms and im- 
proved models. Margolin, Parmelee and Schatzoff3' 
very competently demonstrate this effect in their 
recent study of free-storage management algorithms. 

In this section we have taken cognizance of the fact 
that there is no simple (or even complex) formula for 
computer performance. The reader's attention has 
been focussed on the last five in the list of factors 
affecting computer performance because they offer 
so much more return. The following sections review 
work in analytic modeling, measurement, anil the user 
interface. 

CRITIQUE OF ANALYTIC MODELING 

Any system design, any measurement project or 
any resource allocation strategy is based on some con- 
ception of the environment in which it operates. That 
conception is i model. It is Iwmeficial to have such 
models explicitly stated so that they can be explored, 
tested, criticized and revised. Even better, though not 
often achieved to the extent desired, is a formal anal- 
ysis of the models. 

Models and methods of analysis vary greatly. Our 
concern here is with probabalistic models of systems 
and processes and also with discrete graph models of 
programs. The goals of these analyses are both insight 
and quantitative results to influence the design of 
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systems,  resource allocation stratepes ami  possibly 
the design of langaages. 

While most will argue that the goals of such analyses 
are inherently worthwhile and must be pursued, there 
is widespread dissatisfaction with the current state of 
the field. Basically, there are three major areas of dis- 
satisfaction. First, the models are generally over- 
simplified in order to make them mathematically 
tractable. This obviously makes the results questionable 
and brings us to the second major failing which is that 
analytic results are often not validated by measurement 
or simulation. Moreover, in cases where system evalua- 
tion studies are carried out, the existing models do not 
seem powerful enough to provide a uniform basis for 
measurements. The third major criticism is that most 
of ihe literature on analytic modeling is a collection 
of analyses of specialized models. This points up the 
lack of very general powerful results which would 
allow analysis to become an engineering tool. As it is 
now, each new situation almost always requires a 
separate analysis by an expert. 

While the above are substantial criticisms, this is 
not to say that analysis has not had its impact. We 
can cite, for example, the working set model of program 
behavior," the work on stack algorithms,41 studies of 
time-sharing and multiprogramming system resource 
allocation and analyses of I/O scheduling,«4» 
the work on data transmission systems and on 
networks"15" and the work on graph models oi" 
programs.4,>-!'J7MM-t47l0M 

Promising areas of research. 

Multiple resource models 

Much analytic work has dealt with single; resource 
models. The reason for this is clearly that most of the 
analytic tools which are available apply to single re- 
source environments. The computer system analyst 
is typically not a mathematician developing new tools 
but is generally engaged in applying existing tools. 
Nevertheless, computer systems are multiple resource 
systems and we must learn to analyze such systems. 

Some recent studies of multiple resource models of 
computer systems have been made using results by 
Gordon and Newell.21 The general model considered 
by Gordon and Newell is one in which customers (or 
jobs) require only one resource at a time, but move 
from one resource to another. An example is illustrated 
in Figure I for three resources. 

The nodes in this figure represent resources and the 
arcs represent possible transitions from one resource 
to another. When a customer has finished at resource i 

Figure I—Exiimplf network of queues muucl 

he moves to (requires) resource j next with proba- 
bility I',,. The arcs are labeled with these probabilities. 
The service time at each resource is assumed to be 
exponentially distributed. This is a closed system 
meaning that the number of customers in the system 
remains fixed. Gordon and Newell have found ex- 
pressions for the equilibrium distribution of customers 
in service or queued at each resource. This allows one. 
for example, to calculate the utilization of the various 
resources. > 

Moore43 and Buzen8 have applied-this model to 
multiprogramming systems. Moore measured the MTS 
system to obtain the transition probabilities and mean 
service times of the resources and then used the model 
to estimate system parameters such as resource utiliza- 
tions. The relatively close agreement to measured 
system parameters leads one to believe that the model 
can be used to predict the effect of some changes in 
system configuration. In using the model in this way, 
one must be careful that the proposed changes do not 
significantly affect the basic behavior of the customers. 
Buzen used the same model to gain insight into re- 
source allocation in multiple resource models of com- 
puter systems. His studies include the investigation of 
buffering and the effects of paging algorithms. Both 
Moore and Buzen have used the model to try to give 
a meaningful formal definition to the term "bottle- 
neck." It is of interest that they arrive at different 
definitions of a bottleneck. The reader is referred to 
the references for details. 
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While the studies mentioned above are clearly ad- 
vances in the study of computer system models there 
are numerous open questions. For example, the model 
does not allow the representation of the simultaneous 
use of several resources such as memory and CPU 
Also there is no means for repivsenting the synchroni- 
zation of events such as a process doing buffered I/O. 
Another limitation is that the customers in the system 
are UBtimed to have the same statistical behiavor, i.e., 
the transition probabilities and service time distribu- 
tion are the same for all customers. 

Bounds and approximaiions 

Kvery evaluation technique makes use of approxi- 
mations. These approximations may arise, for example: 
m estimating the system parameUrs, user and program 
l)ehavior; or in simplifying the mode! of the system 
itself. There is clearly a tradeoff between types of 
approximations. By simplifying a model one might be 
able to handle more general types of user and program 
l)ehavior. Much of the analytic work has been con- 
cerned with exact mathematical solutions to models 
which are themselves gross approximations. 

An area which is beginning to be explored is that of 
approximate solutions to more general models. For 
example, Gaver has used the diffusion approximation 
for the analysis of heavily loaded resources in queueing 
studies.'0 The basic technique is to consider that the 
work arrival process is not the arrival of discrete cus- 
tomers requiring service but rather a work arrival flow. 
This work arrival flow is a continuous process with the 
same mean and variance as the original process. Another 
example of the use of approximations is the work by 
Kimblcton and Moore on the analysis of systems with 
a limiting resource.14 

It is clear that the use of any approximation requires 
validation of the results. This may take the form of 
comparing results with  measurements of an actual 
system, simulation, or obtaining bounds on the error 
in results. Bounds may also be applied in a different 
manner. Much has been written on the analysis of 
time-sharing scheduling algorithms and their effects 
on response times. Kleinrock, Muntz and Hsu*1 have 
reported on results which in effect demonstrate the 
Iwunds on response time characteristics for any CPU 
scheduling algorithm which does not make use of a 
priori knowledge of customers service times. The im- 
iwrtance of the bounds is that one can see the limits of 
the   variation  in   response  characteristics   that  are 
|)ossibIe by varying the scheduling algorithm and the 
extent to which these limits have been approached. 

Program behavior 

A major problem that must IK- dealt with in any 
evaluation effort concerned with computer systems is 
program behavior. Kven when using approaches such 
as benchmarking or trace-driven modeling there is the 
problem of selection of programs which are in some 
sense representative of the total population of programs 
that will be run on the system. 

Studies of memory management in particular have 
had to explicitly include models of program Mmvior. 
The early work in this area«" stressed wry general 
but powerful aspects of program behavior" such as 
"locality" and "working set." More recent work deals 
with more explicit models of the generation of reference 
strings which assume more about program behavior 
but correspondingly allow for more detailed analysis,11 

It is hoped that these models will permit more detailed 
studies of multiprogramming and procedure sharing. 

It is interesting to note that the bulk of this work 
has l.een directed toward finding models which can 
represent   the   universe  of  possible   programs.   More 
particularly, the goals of this research have been to 
isolate parameters characterizing program behavior to 
which memory management is sensitive and to compare 
the   effectiveness   of   various   memory   management 
strategies. This approach is in line with a common 
theme which runs through most of the work on resource 
allocation strategies in computer systems. That is, we 
see most allocation strategies attempting to work well 
over the total population of programs possibly utilizing 
measurements of recent past history of the process to 
predict the near future. Outside of work arising from 
graph models of parallel programs*-•■" very little has 
Ix-en done to utilize a priori information about a process. 
Many systems do make a priori distinctions between 
batch and interactive processes.  It seems reasonable 
though that much more information may be available 
which  would  be useful  in allocating resources.   For 
example, it has In-en suggested that the time-slice and 
paging algorithm parameters be tailored to the pro- 
cess.« Use of a priori information assumes that the 
process is available for analysis prior to execution. This 
is a  valid  assumption  for  production  jobs,   system 
processes, and to some degree for all jobs at compile 
time. Since these processes consume a significant por- 
tion of the system  resources, gains in efficiency in 
managing such processes might result, in major gains 
in  total efficiency.  There are many open problems 
associated with this approach: 

I. Is there a conflict with a program design goal of 
program modularity? How is information al>out 
separately compiled procedures to be combined? 
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2. Should procossps IK
1
 ponnittcd to advise the 

system as to theii' resouree needs? How does the 
system protect itself against false information? 

'.i. How to manage resources effectively for pro- 
cesses which provide a priori information, and 
also for processes without associated a priori 
information? 

4. What kind of a priori information is actually 
useful to management of a system: how costly 
is it to obtain ami utilize effectively? 

5. How predictable are the resource requirements 
of processes? 

While this approach has received only some slight 
mention in the literature, it ap|)ears to be a fertile 
area for research. 

Graph models of programs provide an abstraction 
of program structure governing flow of control and 
demand for resources/110,1,K They permit a represen- 
tation fitting somewhere l)etween the full detail of 
actual programs and parametric or stochastic repre- 
sentations of them. Most work using graph models 
has been concerned with ronrurrent procrssing. How- 
ever, the graph model analyses explicitly reveal sets of 
independent tasks which liecome candidates for al- 
ternate sequencing in sequential si/slems. 

Ideally, we search for models of systems and program 
l>ehavior which provide principles guiding synthesis of 
configurations along with well founded resouree manage- 
ment strategies. Measurement must validate effective- 
ness of such strategies. The diversity of computations 
further demands that measured parameters lie pro- 
vided to operating systems and users in order to permit 
adaptation to dynamic variations in system bcliavior 
and to unavoidable anomalies in systems and languages. 

Studies during the latter half of the '60s showed how 
little attention had l*een given to measiirability in 
the man-made universe of computer systems. The 
next section characterizes some of the problems in 
measurement. 

MEASURRMKNT OF INFORMATION 
PROCESSING SYSTEMS 

Tools for measurement of computer systems must 
satisfy all of the following requirements: detection of 
prescribed events; recording of detected events; 
retrieval of accumulated records; data reduction; and 
display. 

We comment on each in turn. 

Detection 

We start by rejecting the absurdity of olwrvinc all 
of the states of a system under observation since it 
would imply detecting the slate of every input, every 
memory element and every output every time their 
was a change, along with the time at uhieh the ehangc 
occurred Hence, any set of measiireinent tools must 
include means of selecting a subset of system statis 

Hardware measurement took provide a preseriU'd 
numlier of sensing prolies which may IK- phv-ieally 
placed on selected register or buss |X)ints in a machine 
under observation. Measurement system registers 
along with programmed comparators and basic logical 
o|)erations permit further filtering by allowing detec- 
tion of a subset of the events sensed by the prolies 
Even with such filtering the rat«' of change of detected 
states may be excessive. If the irKponM1 time of hard- 
ware measurement clemrnts is insufficient, basic 
circuit changes would be required to make the me.ismv- 
ment feasible. If bandwidth is iiMiMirirnt, it is sonn- 
times jmssible to introduce a sampling signal and 
thereby further reduce the niimlM r of delected events. 
In the absetiee of interaelioii irilh tqfttpare monitor pro- 
gnims, a hnrdirarr monitor i» rlrarly Umileä in its utility. 
To IJC convinced of this, one need only consider the 
kind of program status infoimalion change which in 
observable by prolies only when it apiu-ars in the form 
of an operand during the course of compiitntkm. Hard- 
ware detection can have the virtue of intiodueing no 
artifact into the measured system and of lieing able to 
detect events whose states are not accessible to meas- 
urement programs. Sampled detection may !«• made 
more effective by allowing interference with the ob- 
served process. If a sampling signal enforces a proper 
interruption, observed data may lie sequenlially sensed 
by detection circuits. The recently repoitid "Nourotron" 
monitor1 is the most interesting implemented hardware 
monitor, and its design shows the foresight of enablinn 
interaction with software monitor programs. 

Software measurement tools consist of programs 
which detect selected events by virtue of their inserlinn 
at state-change |ioints in the sequential computational 
process.'7 47!" This detection process introduees arti- 
fact in execution time, in space required for measure- 
ment program storage, and sometimes (e.g., synelirom- 
zation with asynchronous cyclic processes) in qualita- 
tive side effects on existing computational processes. 
In a sampling mode, measurement programs can have 
their in-line artifact reduced by disturiiing the (low 
of computation only at a sampling time At a sampling 
time, measurement programs may l>e brought in to 
check as large a set of memory states as is needed and 
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thrn control is rrturnrl to thr olxwrvod »yntrm. In 
Ihr alwonrv of hnnlwarr pupport, n soft wan- monitor 
i.« iiimti .1 io oltM'rvntion of thow syxtoin Mati-s whirli 
Ivivr atT.ct..! ninnory content* In on«- VOM-, canful 
analysis of ■nnirmionl of IM. 1 funrtionn of an IHM 
H60 9!M nvralnl anontalio in n>ronlo»l Nvstcin stat«"* 
which can hot In- chararlcnir«] a-* artifact Mtfodaefd 
by OS ;«jü when it ia>rrt» «nie aKMociatcd with I O 
interrupts into the «*!«• U-ing nfMMnd. 

It hsf« U-conx- ck'ar that wc an- not fac«<i| with mu- 
tually exclusive altemativeH if hartlwan' detection 
tools or software detection tool* Kather how much of 
each; how they are inteRroted; and how they an- made 
available to ex|ierimetitci>. A pafH-r by Nemeth and 
Kovner44 presents a pleasing example of the powtl of 
combine«! haniwan' and soft wan- in thi- hands of a 
user. They point out that facilities introduced for hard- 
ware debugging are often the kind useful .n later program 
measurementa. 

Data ReHwtton 

111« amount and kind of data n^iuction is determined 
by the goal of the measurement et|ienment and limi'a- 
tions of measurement tcH»l capabilities in detection, 
recordrng and pre|iarntion for retrieval For example, 
assume that we want to obtain a history of utilization 
of routines in order to divide which should In- kept m 
primary storage at.d which should be kept in liuckup 
storage Assume, further, that every time a routine is 
called: the name of the calkil routine, the time of day. 
and the name of the user is rrconM, It would »iot In- 
very in. .■in,:..;ful to generat«- only a history showing the 
times at which each rmitine in the syntem was nwd by 
each user Data niluction would be rrquind to deter- 
mine, for example, the total numlier of such usos, an 
ordering of routines by numlier of uses, a determina- 
tion of the numlier of routines involved in, say SO 
percent, of the uses and their names, etc. 

Recording 

If an event of interest ha« lieen detected, its oc- 
currence must affect memory contents Such action 
may IM- as simple as incrementing a counter or as com- 
plex as storing a Io, of state information for later 
analysis. In .V cane ol nondisturbing hardware mea- 
surements. . xternal stora/e must lie provided and the 
transfer rate must lie able to ki-ep up with the rate of 
change-of-state information observed by a set of prolies 
and associated circuits. In the caw of software meiaun- 
ments, sufficient memoiy spa«- must either IM- pro- 
vided to record all relevant state information, or "Iso 
preprocessing reduction programs must lie called in 
to reduce storage requirements. 

Retrieval 

In the construction of any large system, both a data 
gathering and retrieval system must lie incor|)orated 
into the basic design. Failure to do so will limit the 
amount of instrumentation available later when ef- 
ficiency qui^tioas arise. For example, in a large pn>- 
gramming system which has transient program M%- 

ments, data gathering is easily inserted into any 
program segment; howev.r, unless a standard data 
storing program is available, the data gathered cannot 
lie easily retrieviil The IBM PL/I F-level compiler 
is an example of a programming system broken into 
transient program segments. It fails to have a data 
storing program with adequate bandwidth to support 
meaningful Tnea«urernent activity. 

I 

Di$play 

The goal of the data reduction process is cMotd by 
the s|>ecif)id form of display or fi-Hliack to the ex|)eri- 
menter. If measurement M lieing made for fii-dbsek 
to an o|ierating system for use in resourr »Santton, 
parameter values must lie delivered to nieiwin- cells to 
be accessiil by the operating system. If measurement 
is made for accounting purpoan or. more giwrally. to 
provide the user with fi-edback alioul hi« quality of 
us*- aid system n-sponse. results should In' merged into 
user and system manager files If mea<uremi nt i« made 
for U|M i itni control and managemetit. simple alpiia- 
numeric displays an- common. For expcrmnital anal- 
ysis of system liehavior, (T{T displays, graphs and 
computer printout are generally «"quinnl. 

Measurement Methodology 

The complexity of computer systems dictates sp«,eial 
care in the planning of measurement experiments.  If 
the results of ntperimrnts are not reproducible, they 
are of little value   If any assumptions made ar»- not 
rc-cordiil and validatiil. the results cannot In- general- 
iw^il and applied at anotli«-r time or place. A large body 
of statistical theory is available providing methods for 
alistracting prapprtJM out of individual data points, 
but applicability must be carefully checke«!. We have 
little h«>|»«• of adhering to principles if we do not have a 
mensurement  language to preseriU1 tneasun-ment rx- 
|>erinii .its as sequences of commented operations which 
are ippmpriately integrate! with olis«>rv«>«l data. The 
latter step nee«!s wait upon creative development of 
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measurement tools and their test in meaningful ex- 
periments. Measurement capability must be explicitly 
included during periods of system design and must In- 
available for inclusion in user program design. Digital 
computer systems and programs are properly charac- 
terized as complexes of very elementary functions. 
Full systems or programs, therefore, generally require 
partition in order to manage the synthe.Ms process. 
Each partition introduces possible measures of validity 
of output, of performance and of cost. Means for meas- 
urement should be checked at that point in design and 
a value judgment made if excessive artifact would be 
introduced by the measurement process. 

If a system contains the structure and primitive 
operations satisfying the five requirements discussed 
in this section, it carries the tools for adaptability. We 
conjecture that much more than the 10 percent to 50 
percent improvement alluded to in the Introduction 
becomes attainable—particularly when measurement 
tools can influence user behavior. 

COMPUTER POWER AND USER INTERFACE 

In the seventies some stronger effort must be directed 
toward increasing computer power by a reduction of 
the complexity of the user interface. 

Operating systems and Higher Level Languages are 
tools designed to give the user control of the portion of 
a computer system he needs. With the exception of 
work done at SDC,8'2» little reported effort has been 
devoted to the human engineering aspects of these 
tools. During the last decade, while hardware made a 
dramatic increase in power, the management tasks 
required of the operating system increased from trivial 
to highly complex. At the same time, vhe users were 
required to supply (in unnatural form like JCL) more 
of the parameters which would allow effective manage- 
ment decisions to be made by the operating system. 
These user-supplied parameters have increased the 
burden of complexity at the user interface—and re- 
duced the amount of useful work a user can accomplish 
in a given period of time. 

For example, much of the attraction of APL 360 
is its simplification of the operating system interface 
along with the addition of immediate extent ion of it> 
concise powerful primitives. A batch oriented 
FORTRAN user perceives this as a tremendous in- 
crease in his computer power. A more sophisticated 
user might see APL as a powerful desk calculator which 
provides immediate access to functions similar to 
functions he already commands, less accessibly, in 
other languages. 

Another user interface problem exists at the level 
of higher level languages. As more advanced hardware 
becomes available to the user, he seeks to solve mine 
complex problems. When a problem grows Iteyond a 
manageable point, the user segments the problem into 
pieces plus associated linkages. In doing so, however, 
he introduces a new set of communication problems; 
a change in one program which affects nn interface can 
now wreak havoc in another "completed" portion of the 
problem solution. Higher level languages have been lax 
in the types of program interconnections (and inter- 
actions) allowed. 

An example of the problems of creating a large pro- 
gramming system are reported by Melady and Lehman 
using data from the development of OS 360.* While 
this study concerned programs written in assembly 
language for the IBM 360, the properties which produce 
the error rates and modification ratios reported in 
their paper are characteristics of all large programming 
systems today. 

Several techniques for improving the probabilities 
that a program can be made error free are available in 
the literature. One of the earliest is Dijkstra's "Notes 
on Structured Pragramming,"1* an« also "THE Pro- 
gramming System."15 His system breaks the problem 
into shells of "pearls" or "primitive" operations. Each 
shell is built using the "primitives" of the next lower 
level. This system attempts to minimize interactions, 
forces the programmer to produce generalized func- 
tions which can be tested, and allows easy instrumenta- 
tion l>ecause of the segregation of functions. 

Some disadvantages of such a hierarchical scheme 
make its practical application difficult. Such a scheme 
increases initial development time In-cause it forces 
developers to completely understand the structure of 
the system being built and to predefine the proper 
function for each hierarchy. Transitions bet ween levels 
may IK- costly. Functions at the lowest level are the 
most general and, therefore, the most frequently used. 
Small inefficiencies in these function», or in the method 
of traversing levels of the structural hierarchy, magnify 
costs dramatically anil force the user away from cen- 
tralize«! functions. This defeats the original purpose of 
the organization. 

Another disadvantage of a hierarchical scheme i» 
that while instrumentation of the system is easy, in- 
t«'rpretation of the measurements is generally not 
Measurement results could change drastically if the 
organization of the program were modified. Therefore, 
it is hard to tell how much of what goes on is due to 
the structural hierarchy and how much is due to the 
intrinsic properties of the program Such knowledge 
points a way toward improvement. 
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COMPILETIME 

EXECUTION-TIME 

ERROR DESCRIPTION 

NO   FILE/STRING   SPECIFIED.     SYSIN/SYSPRINT    HAS 
BEEN ASSUMED 

TEXT  BEGINNING   yyyy  SKIPPED   IN  OR   FOLLOWING 
STMT NUMBE"  Mr_ 

STATEMENT  Nt WB1 't  xxxx  HAS  BEEN   DELETED  DUE 
TO A SEVERE .^KOR NOTED ELSEWHERE. 

TEXT BEGINNING yyyy IN STATEMENT NUMBER xxxx 
HAS BEEN DELETED. 

DATA CONVERSION  WILL BE  DONE  BY SUBROUTINE 
CALLS. 

OPTION   IN   GET/PUT   IS   INVALID   AND   HAS   BEEN 
DELET£D 

ILLEGAL PARENTHESIZED LIST IN STATEMENT NUM- 
BER xxxx FOLLOWS AN IDENTIFIER WHICH IS NOT A 
FUNCTION OR ARRAY. 

TEXT BEGINNING vyvv IN OR FOLLOWING STATEMENT 
NUMBER xxxx HAS BEEN DELETED. 

SEMICOLON NOT FOUND WHEN EXPECTED IN STATE- 
MENT xxxx.  ONE HAS BEEN INSERTED. 

INVALID USE OF FUNCTION NAME ON LEFT HAND 
SIDE OF EQUAL SYMBOL OR IN REPLY, KEYTO OR 
STRING OPTION. 

ADDRESSING INTERRUPT. 
FIXED OVERFLOW. 
FILE name-END OF FILE ENCOUNTERED. 
ERROR IN CONVERSION FROM CHARACTER STRING TO 

ARITHMETIC. 
• IBM, PL/I{F) Projrammer«' Guide {Appendix K), GC28-6594, January 1971. 

NUMBER OF 
ERROR 
OCCURRENCES 

ERROR TYPE* 

263 IEM0227 

87 IEM0182 

74 IEM0725 

63 IEM0152 

46 IEM1790 

39 IEM0185 

27 IEM0677 

27 IEM0109 

25 IEM0096 

23 IEM0673 

14 
12 
8 
7 

IHE804 
IHE320 
1HE140 
IHE604 

Figure 2a—Moet frequent PL/I errors 

GltftPM   Cf    V««l*B(.r      10 
SAMPLES  CF   LESS   THAN 

E*Cf  SPACt   •   IOI.il  UMtS. 
i   HAVE   ntm   OtLETEO. 

If«0/?TI 
It"l7'»fl 
|MtCfi)«l 
lHEt)20l • 
IE>*CS26l • 
IE«CU;I • 
lEMlliOl • 
IHEOtACI • 
IMIÜ6T»! • 
UMC72SI • 
lEMClStl • 
IE«01t2l 
U-Cütll 
IEM2r6TI 
IE«Ct46l 
umtxxii 
IE««(C«<1I 
ii<«io«ai 
liOCtllt • 
If'CtTll • 
I£«CIJ4| * 
IcXCC-.ll • 

1  
k.OO 
 1 •- ...i— 

C.?J 

■I- 
?. 30 O.oO 3. SO 0.60 0. TO 0.10 0.90 1.0C 

Figure 2b—Average peraiatencc sorted by average persistence 
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NUMBER OF ERROR TYPE» 
ERROR 
OCCURRENCES 

COyiPILE-TIME 
143 SY16 
131 SYE5 
89 CGOC 
83 SYOB 
76 SM4E 

55 SY3A 
53 SY04 
48 SY06 
46 SY09 
40 SM50 

EXECUTION-TIME 
827 EX78 
239 EX83 
211 EXBB 
189 EX7D 
180 EX98 
169 EX7B 
141 EXB8 

90 EX9F 
46 EXS9 

ERROR DESCRIPT;ON' 

IMPROPER ELEMENT(S) 
ILLEGAL USE OF COLUMN 1 ON CAUD 
NO FILE SPECIFIED.   SYSIN/SYSPHINT ASSUMED 
MISSING f-EMICOLON 
idcnt   HAS   TOO   MANY   SUBSCRIPTS.    SUBSCRIPT   LIST 

DELETED 
IMPROPER LABEL 
MISSING ) 
MISSING COMMA 
MISSING : 
name NEVER DECLARED, OR AMBIGUOUSLY QUALIFIED 

(EXPRESSION REPLACED OH CALL DELETED) 

SUBSCRIPT number OF idcnt IS OUT OF BOUNDS 
FIXED POiNT OVERFLOW 
DELETED STATEMENT ENCOUNTERED 
LENGTH OF SUBSTRING   LENGTH OF STRING 
INCOMPATABLE OPTIONS ON OPEN 
INDEX OF SUBSTRING   LENGTH OF STRING 
ARRAY ELEMENT HAS  NOT BEEN  INIT1LIZED.   IT  I< 

SET TO 0. 
IMPLIED CONVERSION NOT IMPLEMENTED 
PROGRAM   IS  STOPPED.    NO   FINISH   ON-UNIT   AFTER 

ERROR 
4j EXB7 ident HAS NOT BEEN INITIALIZED. 

• Conway, R. W. ct al,. Uscr'a Guide to PL/C, The Cornell Compiler for PL/1, RelcBS« 6, Department of Computer Science, Cornell 
Univeraitv, Ithaca, August 1, 1971. 

Figure 3a -Most frequent PL/C errors 

r. 

Present studies of forced program structure and 
program proofs of correctness may begin to provide 
models on which HLL designers may base their pro- 
posals. However, any major changes should be de- 
signed to improve the user's system so that each pro- 
gram submittal can be a learning experience. In this 
way a programming system can be called upon to point 
out unusual events; draw the programmer's attention 
toward possible errors; and yet, not produce volumes 
of output which would be costly to print and which a 
programmer would refuse to read. 

Work at Cornell toward producing compilers which 
correct human failings rather than punish them has 
culminated in a highly functional, rapid compiling, 
and very permissive PL/I student-oriented compiler 
called PL/C.44 This compiler does spelling correction of 
keywords, automatic insertion of missing punctuation, 
etc. In addition automatic collection of some statistics 
is done at execution time. For example, each label 
causes a count to be maintained of the number of times 
execution passed through that labeled statement. 
Compilers such as these increase computer power by 
reducing the complexity of the user interface. 

Implementations of HLLs   could  further help  a 

programmer by giving an optional cross reference 
listing showing locations where a variable is changed, 
could be changed, or just referenced. Items could be 
flagged if they were never referenced or set; only refer- 
enced; or only set. In the first two cases .spelling cor- 
rection might be applicable. Statements which use 
expensive library subroutines or other costly language 
features could be flagged. Measurement nodes could 
be easy to insert and operate. These should, in turn, 
produce meaningful data which relate directly to 
questions the programmer wanted to ask. 

But such discussions have only beat around the bush 
itself. The real problem, the bush, is the higher level 
language. The real questions are: What features are 
error prone? What features of the language allow auto- 
matic validity checking of what is written'.' How can 
these properties be identified and measured? How can 
the knowledge of these things bo used to reduce com- 
plexity of the user interface so that the user perceives 
an increase in his computer power? Which language 
constructs are seldom used, adding unnecessary com- 
plexity and unreliability? 

Kfforts to measure the human engineering aspects 
of computer language use37 and to provide feedback 
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ÖUPl-   GF   V*RIABLk     IC        t«CM  SPACt   «   ICO.OJ  UNIIS. 
SAMPLES   a   LESS   THAN        i   HAVE   dEtN  UELETEO. 

CGOC 
£«70 
e«ss 
SMSÜ 
e«sv 
E«7() 
EXTB 
CClf 
SYiT 
$•»51 
£«f5 
SY16 
SVO* 
S"«7 
ItiB 
EXt'B 
S»^£ 
sine 
S»lt 
SYIL 
SYtB 
SYob 
SVOE 
SM5t 
SY3* 
SYJA 
SY17 
SYC9 
EXIF 

t«t>7 
SY1B 
SYIO 
SH4E 
SK^B 
SY13 
SYOi 
SYt5 
EXB3 
SYf i 
SYEB 
SM<tA 
SY3C 
SY3r 
SM<>1 
SY£0 

* 

.-I  
0.6C 0.80 

■I- 

L. f. 
"I 
0* in .20 

-I — 
0. 3C O.'.O O.iO 0.70 0.90 1.00 

AVERAGE   PERSISTENCE 

SOiUtO   BY   AVERAGE   PERSISTENCE 

Figure 3b 

into the design stages of higher level languages and 
the control and command languages of the operating 
system may provide major increases in computer 
power by: 

• increasing the number of users who can bring 
problems to the machine 

• decreasing the number of problem submissions 
necessary to bring a job to completion 

Work is in progress at SDC,,,»M moving toward a 
man-machine symbiosis. These little publicized ap- 
proaches to measurement of human problem solving 
and computer languages have just begun to scratch 

the surface of this very important area. Work at UCLA 
has attempted to identify properties of PL/I which 
are prone to human error. As a first approximation, 
error rates and persistence curves of various errors 
identified in students' use of the IBM PL'I F-level 
compiler30 is presented in Figure 2. Corresponding 
results for errors found by Cornell's PL/C compiler 
are presented in Figure 3. Figure 2a shows a table of 
the number of occurrences of the most frequent PL I 
error types recorded during compilation and during 
execution times. Figure 2b displays the persistence of 
errors by PL/I type during the student runs. The 
vertical coordinate is the error type ordered by the 
magnitude  of  PERSISTENCE  RATIO.  The  hori- 
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zontal coordinate is the PERSISTENCE RATIO and 
was calculated as an average of (number of sequential 
trials during which the particular error persisted) 
divided by the total number of trials. If an error type 
did not occur in at least 5 problem assignments it was 
arbitrarily deleted to keep the displayed range of 
values reasonable. Figures 3a and 3b display the same 
properties for assignments using PL/C. A total of 128 
problem assignments completed by 28 students are 
included in the statistics. Follow-up work is intended 
to lead more deeply into language design and hopefully 
into new techniques for automatically localizing errors 
in a program. 

The basic technique for doing this is to allow the 
programmer to specify more information than the HLL 
processor needs to compile the program. An example 
would be identifiers of the form "CONSTANT" in a 
PL/I data attribute syntax. CONSTANTS as opposed 
to variables, would only be set by an initial attribute 
and would be illegal as a left-hand side of an assign- 
ment or as an argument of a pseudo-variable. In ad- 
dition, the program could be considered as having this 
attribute. At several points in a program (e.g., block 
exit time) these constants would be checked to see if 
their value had changed. If any had, a warning would 
be printed; the correct value restored; and the program 
would continue. Such a new PL/I data type allows 
automatic checking for consistency to localize errors 
and yet is almost painless for a programmer to use. 
When a program is debugged, it is easy to turn off this 
kind of checking for the sake of more efficient per- 
formance.   In   a   hardware   environment   like   the 
MULTICS GE 645, these errors can be detected dy- 
namically when illegal accesses occur. 

Debugging tools should be designed into the lan- 
guage and taught as part of the language, because the 
majority of the time a programmer deals with a Ian- 

Source  Input 

/. 
compilation 

/ 
execution- 'data 

input 

• accretion' 

library-  

Figure 4a—Information flow in a standard HLL job 

f    Source   1 editing ^^^^^ 
I    'ibforv    I f>      * ^\ 

■ compilation    * execution 

.accretion 

library- 

Figure 4b—Modified information flow to nugmont feedback 
in ii HLL job 

guago, he is also dealing with an incorrect program 
Subscript checking, trace information, validity chocking 
at periodic intervals, time and count information, 
formatted displays of all program information and 
selective store and fetch recording are the kinds of 
things which should be available to the HLL pro- 
grammer. 

In addition, measurement tools should 1»' im- 
mediately accessible to any user without burdening 
others, so that if questions of efficiency are raised they 
can be answered simply and quickly. Some of the 
measurement tools which seem important are: (1) flow 
charts or tables as optional output which would stress 
intermodule dependencies; (2) time and count control 
statements which could be output, reset and inactivated 
under program control, and would create output auto- 
matically if the program terminated abnormally or 
without expressly outputting the data gathered; (3) 
program size should be easily accessible by the program 
dynamically and summaries of available space should 
be available at program termination. 

In order to increase the complexity of tiie pro- 
gramming problems which users can handle, languages 
must be allowed to accommodate personal ways of 
expressing concepts. To do this, at the very minimum, 
new data types should be available for the programmer 
to define as well as operators which use these data 
types. This begins to syntactically approach the 
Dijkstra concepts and to allow easier application of 
hierarchically structured programs. Hopefully these 
approaches will increase the user's computer power by 
making the development of his programs easier. 

The programming system itself should be restruc- 
tured so that more information is available to a HLL 
processor. Figure 4a shows the diagram of information 
flow in a usual batch oriented system. The source code 
is compiled; the resulting object code is passed to the 
accretion step where library or previously compiled 
programs are added to it; and the resulting load module 
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is passed to the execution phase; finally, output from 
execution is passed back to the user. To provide more 
automated feedback, Figure 4b shows information 
flow in a system where statistical summaries of one 
execution are available to the next compilation. In 
addition, the accretion step spends much more of its 
time checking linkage conventions and the validity of 
argument-parameter choices. This programming sys- 
tem has an edit/compile time library which is designed 
to help make changes easy. For example, it keeps 
"COMMON" declarations uniform (read EX- 
TERNAL if you are a PL/I programmer) and it also 
uses information from the compiler to point the user at 
syntax errors and information from the execution phase 
to point the user at semantic errors. 

Such modifications can reduce errors and speed the 
development of programs by improving communica- 
tion between what are now considered separate pro- 
gram steps. However, the most important changes, 
across all the proposed modifications, are those changes 
which will allow the programmer to receive only those 
pieces of information relevant to the level at which he 
is programming (i.e., making changes). This would 
provide dynamic help; help where the programming 
language acts as an extension of the users' mind to 
assist in problem solving and optimization. 

It is important to view these changes which move 
toward dynamic assistance in terms of costs. Each 
change must cost something in execution time over- 
head. Some of the more powerful features like selective 
fetch and store monitoring must be expensive. How- 
ever, if these features were found valuable, then modi- 
fication to hardware might diminish costs dramatically. 
Integrating these techniques into HLLs must be 
inherently costly because implementation and testing 
of human interaction with these diagnostic features 
arc difficult to execute in any controlled way—much 
work must rest on subjective evaluation of users' 
behavior. Integration of aids into HLL translators 
must be initially done without those very aids which 
are deemed necessary to help programmers modify 
programs. Therefore, any change is fraught with risks 
caused by lack of checks in current systems. Obviously 
bootstrapping is called for and we can expect many 
passes before achieving effective tools. 

The development of richer higher level languages 
on the one hand, and the development of debugging 
services and error correcting compilers on the other, 
exert forces in the direction of increasing performance 
at the user interface. With appropriate use of models 
and measurement much more improvement may be 
obtained. 

SUMMARY 

Computer systems are different from other systems by 
virtue of the dynamic fashion in which our compre- 
hension of their behavior may be built into their opera- 
tion. If validated models are developed, they may then 
be built into the system itself to serve adaptive re- 
source allocation algorithms. If measurement tools are 
effectively integrated, they may be made available to 
the user to improve the quality of his use of program- 
ming languages. If the user is, in fact, a team develop- 
ing programming systems, the modeling and measure- 
ment facilities may serve to make much more complex 
programs possible because a model of programs being 
built is, itself, generally too complex for a group of 
unaided humans to manage in an error free way. In 
the above paper we have sought to open up these 
questions. 

We have not had much experience with effective 
modeling and measurement. There is an immense 
amount of data to be observed in a computer system 
Cost-effectiveness of performance measurement must 
be considered. As one of our reviewers put it, "This 
reviewer has seen some measurement studies lead to 
system improvements which will pay off sometime in 
2018." Hopefully the 1970s will see more effective 
modeling and measurement introduced into the design 
process and selectively carried into developed systems 
to hep both interna' process management and the 
enrichment of external us,' through the user interface. 
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INTRODUCTION 

Tho ARPA Network (ARPANET) project brought 
together many individuals with diverse backgrounds, 
philosophies, and technical approaches from the fields 
of computer science, communication theory, operations 
research and others. The project was aimed at providing 
an efficient and reliable computer communications 
system (using message switching techniques) in which 
computer resources such as programs, data, storage, 
special purpose hardware etc., could be shared among 
computers and among many users." The variety of 
design methods, ranging from theoretical modeling to 
hardware development, were primarily employed 
independently, although cooperative efforts among 
designers occurred on occasion. As of November, 1971, 
the network has been an operational facility for many 
months, with about 20 participating sites, a network 
information center accessible via the net, and well over 
a hundred researchers, system programmers, computer 
center directors and other technical and administrative 
personnel involved in its operation. 

In this paper, we review and evaluate the methods 
used in the ARPANET design from the vantage of 
over two years' experience in the development of the 
network. In writing this paper, the authors have each 
made equal contributions during a series of intensive 

• This work was supported by the Advanrcd Itescsrch Projects 
Agency of the Ocpartment of Defense under Contract No. 
DAHC lä-70-C-0120 at the Network Analysis Corporation, 
Contract Nos. DAHC 1..-69-C-0179 and DAHC-71-C-0OS8 at 
Bolt Beranek and Newman Inc., and Contract No. DAHC 
15-69-C-0283 at the University of California at Los Angeles. 

discussions and debates. Rather than present merely a 
summary of the procedures that were used in the 
network design, we have attempted to evaluate each 
other's methods to determine their advantages and 
drawbacks. Our approaches and philosophies have often 
differed radically and, as a result, this has not been an 
easy or undisturbing process. On the other hand, wo 
have found our collaboration to be extremely rewarding 
and, notably, we have arrived at many similar con- 
clusions about the network's behavior that seem to be 
generally applicable to message switched networks. 

The essence of a network is its design philosophy, its 
performance characteristics, and its cost of implementa- 
tion and operation. Unfortunately, there is no generally 
accepted definition of an "optimal" network or even of 
a "good" network. For example, a network designed to 
transmit large amounts of data only during late evening 
hours might call for structural and performance char- 
acteristics far different from one servicing large numbers 
of users who are rapidly exchanging short messages 
during business hours. We expect this topic, and others 
such as the. merits of message switching vs. circuit 
switching or distributed vs. centralized control to be a 
subject of discussion for many years.114MMM:I7 

A cost analysis performed in 19G7-19GS for the ARPA 
Network indicated that the use of message switching 
would lead to more economical eommunieations and 
better overall availability and utilization of resources 
than other methods.3"38 In uddition to its impact on 
the availability of computer resource«, this decision has 
generated widespread interest in store-and-forward 
communications. In many instances, the use of store- 
and-forward communication techniques can result in 
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greater flexibility, higher reliability, significant tech- 
nical advantage, and substantial economic savings over 
the use of conventional common carrier offerings. An 
obvious trend toward increased computer and com- 
munication interaction has begun. In addition to the 
ARPANET, research in several laboratories is under 
way, small experimental networks are being built, and 
a few examples of other government and commercial 
networks are already apparent.,7"w'4147M M 

In the ARPANET, each time-sharing or batch 
processing computer, called a Host, is connected to a 
small computer called an Interface Message Processor 
(IMP). The IMPs, which are interconnected by leased 
50 kilobit/second circuits, handle all network com- 
munication for their Hosts. To send a message to 
another Host, a Host precedes the text of its message 
with an address and simply delivers it to its IMP. The 
IMPs then determine the route, provide error control, 
and notify the sender of its receipt. The collection of 
Hosts, IMPs, and circuits forms the message switched 
resource sharing network. A good description of the 
ARPANET, and some early results on protocol develop- 
ment and modeling are given in References 3, 12, 15, 
23 and 38. Some experimental utilization of the 
ARPANET is described in Reference 42. A more recent 
evaluation of such networks and a forward look is 
given in References 35 and 39. 

The development of the Network involved four 
principal activities: 

(1) The design of the IMPs to act as nodal store- 
and-forward switches, 

(2) The topological design to specify the capacity 
and location of each communication circuit 
within the network, 

(3) The design of higher level protocols for the use 
of the network by time-sharing, batch pro- 
cessing and other data processing systems, and 

(4) System modeling and measurement of network 
performance. 

Each of the first three activities were essentially per- 
formed independently of each other, whereas the 
modeling effort partly affected the IMP design effort, 
and closely interacted with the topological design 
project. 

The IMPs were designed by Bolt Beranek and 
Newman Inc. (BBN) and were built to operate in- 
dependent of the exact network connectivity; the 
topological structure was specified by Network Analysis 
Corporation (NAC) using models of network per- 
formance developed by NAC and by the University of 
California at Los Angeles (UCLA). The major efforts 
in the area of system modeling were performed at 

UCLA using theoretical and simuhition techniques. 
Network performance- measurements have been con- 
ducted during the development of the network by 
BBX and by the Network Measurement Center at 
UCLA. To facilitate effective use of the net, higher 
level (user) protocols are under development by a 
group of representatives of universities and research 
centers. This group, known as the Network Working 
Group, has already specified a Host to Host protocol 
and a Telnet protocol, and is in the process of com- 
pleting other function oriented protocols.4 2'J We make 
no attempt to elaborate on the Host to Host protocol 
design problems in this paper. 

THE NETWORK DESIGN PROBLEM 

A variety of performance requirements and system 
constraints were considered in the design of the net. 
Unfortunately, many of the key design objectives had 
to be specified long before the actual user requirements 
could be known. Once the decision to employ message 
switching was made, and fifty kilobit/second circuits 
were chosen, the critical design variables were the 
network operating procedure p.nd the network topology; 
the desired values of throughput, delay, reliability and 
cost were system performance and constraint variables. 
Other constraints affected the structure of the network, 
but not its overall properties, such as those arising from 
decisions about the length of time a message could 
remain within the network, the location of IMPs 
relative to location of Hosts, and the number of Hosts to 
be handled by a single IMP. 

In this section, we identify the central issues related 
to IMP design, topological design, and network 
modeling. In the remainder of the paper, we describe 
the ma or design techniques which have evolved. 

IMP properties 

The key issue in the design of the IMPs was the 
definition of a relationship between the IMP subnet 
and the Hosts to partition responsibilities so that 
reliable and efficient operation would be achieved. The 
decision was made to build an autonomous subnet, 
independent (as much as possible) of the operation of 
any Host. The subnet was designed to function as a 
"communications system"; issues concerning the use of 
the subnet by the Hosts (such as protocol development) 
wen; initially left to the Hosts. For reliability, the 
IMPs were designed to be robust against all line failures 
and the vast majority of IMP and Host failures. This 
decision required routing strategies that dynamically 
adapt to changes in the states of IMPs and circuits. 
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and an elaborate flow control strategy to protect the 
subnet against Host malfunction and congestion due to 
IMP buffer limitations. In addition, a statistics and 
status reporting mechanism was needed to monitor the 
behavior of the network. 

The number of circuits that an IMP must handle is a 
design constraint directly affecting both the structure 
of the IMP and the topological design. The speed of thn 
IMP and the required storage for program and buffers 
depend directly upon the total required processing 
capacity, which must be high enough to switch traffic 
from one line to another when all are fully occupied. Of 
great importance is the property that all IMPs operate 
with identical programs. This technique greatly 
simplifies the problem of network planning and main- 
tenance and makes network modifications easy to 
perform. 

The detailed physical structure of the IMP is not 
discussed in this paper.4" However, the operating 
procedure, which guides packets through the net, is 
very much of interest here. The flow control, routing, 
and error control techniques are integral parts of the 
operating procedure and can be studied apart from the 
hardware by which they are implemented. Most 
hardware modifications require changes to many 
IMPs already installed in the field, while a change in 
the operating procedure can often be made more 
conveniently by a change to the single operating 
program common to all IMPs, which can then be 
propagated from a single location via the net. 

Topological properties 

The topological design resulted in the specification of 
the location and capacity of all circuits in the network. 
Projected Host—Host traffic estimates were known at 
the start to be either unreliable or wrong. Therefore, 
the network was designed under the assumption of 
equal traffic between all pairs of nodes. (Additional 
superimposed traffic was sometimes included for those 
nodes with expectation of higher traffic requirements.) 
The topological structure was determined with the aid 
of specially developed heuristic programs to achieve a 
low cost, reliable network with a high throughput and 
a general insensitivity to the exact traffic distribution. 
Currently, only 50 kilobit/second circuits are being 
used in the ARPANET. This speed line was chosen to 
allow rapid transmission of short messages for inter- 
active processing (e.g., less than 0.2 seconds average 
packet delay) as well as to achieve high throughput 
(e.g., at least 50 kilobits/second) for transmission of 
long message». For reliability, thn network was con- 
strained to have at least two independent paths between 
each pair of IMPs. 

The topological design problem requin-H coiwideration 
of the following two questions: 

(1) Starting with a given slate of the network 
topology, what circuit modificationti are required 
to add or delete a set of IMPs? 

(2) Starting with a given state of network topology, 
when and where should circuits be added or 
deleted to account for long term changes in 
network traffic? 

If the locations of all network nodes are known in 
advance, it is clearly most efficient to design the 
topological structure as a single global effort. However, 
in the ARPANET, as in most actual netwoika, the 
initial designation of node locations is modified on 
numerous occasions. On each such occasion, the 
topology can be completely reoptimized to determine a 
new set of circuit locations. 

In practice, there is a long lead time between the 
ordering and the delivery of a circuit, and major topo- 
logical modifications cannot be made without sub- 
stantial difficulty. It is therefore prudent to add or 
delete nodes with as little disturbance as possible to 
the basic network structure consistent with overall 
economical operation. Figure 1 shows the evolution of 
the ARPANET from the basic four IMP design in 1U69 
to the presently planned 27 IMP version. Inspection of 
the 24 and 27 IMP network designs reveals a few 
substantial changes in topology that take advantage of 
the new nodes being added. Surprisingly enough, a 
complete "reoptimization" of the 27 IMP topology 
yields a network only slightly less expensive (about 
1 percent) than the present network design.28 

Network models 

The development of an accurate mathematical model 
for the evaluation of time delay in computer networks is 
among the more difficult of the topics discussed in this 
paper. On the one hand, the model must properly 
reflect the relevant features of the network structure 
and operation, including practical constraints. On the 
other hand, the model must result in a mathematical 
formulation which is tractable and from which mean- 
ingful results can be extracted. However, the two 
requirements are often incompatible and we search for 
an acceptable compromise between these two extremes. 

The major modeling effort thus far has been the study 
of the behavior of networks of queues.21 This emphasiH 
is logical sine«' in message switched systems, messages 
«•xperience queueing delays as they psiss from node to 
node and thus a significant performance measure is the 
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Figure 1—The evolution of the ARPANET 

speed at which messages can be delivered. The queueing 
models were developed at a time when there were no 
operational networks available for experimentation and 
model validation, and simulation was the only tool 
capable of testing their validity. The models, which at 
all times were recognized to be idealized statement«« 
about the real network, were nonetheless crucial to the 
ARPANET topological design effort since they afforded 
the only known way to quantitatively predict the 
properties of different routing schemes and topological 
structures. The models have been subsequently demon- 
strated to be very accurate predictors of network 
throughput and indispensable in providing analytical 
insight into the network's behavior. 

The key to the successful development of tractable 
models has been to factor the problem into a set of 
simpler queueing problems. There are also heuristic 
design procedures that one can use in this case. These 
procedures seem to work quite well and are described 
later in the paper. However, if one specializes the 
problem and removes some of the real constraints, 
theory and analysis become useful to provide under- 
standing, intuition and design guidelines for the original 
constrained problem. This approach uncovers global 
properties of network behavior, which provide keys to 

good heuristic design procedures and ideul perfonnaner 
bounds. 

DESIGN TECHNIQUES 

In this section we describe the approaches taken to 
the resign problems introduced in the previous section. 
Wr first summarize the important properties of the 
ARPANET design: 

(1) A communications cost of less than 30 cents per 
thousand packets (approximately a megabit). 

(2) Average paokrt delays under 0 2 seconds through 
the net. 

(3) Capacity for expansion to 64 I.MPs without 
major hardware or software redesign. 

(4) Average total throughput capability of 10-1.1 
kilobits/second for all Hosts at an IMP. 

(5) Peak throughput capability of gS kilobits second 
per pair of IMP« in an otherwise unloaded 
network. 

(6) Transparent communications with maximum 
message size of approximately 8000 bits and 
error rates of one bit in lO" or less. 
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(7) Approximat.lv US |Mre«»t iivailability of any 
IMP ami CI<H«- to 100 ppvepfcl ovailability of all 
apFntlaR IMRi from any opmblp IMP. 

The n'latiotuhipM brtrnTf the various desiKii «(Torts 
are illustrut«tl by thew praprrtinL Th.- topoiagieal 
design provi«!«-* for both a «b-sit »i av.rag«' t:.n)UKhput 
and for two or more paths to be fully us.t| for eom- 
munication brtftmi any pair of Hosts. Thf opmting 
procedun- should allow any pair of Hosts to achi.v« 
those obj.clives. The availability of IMPs to com- 
municate reflects both the fact that IMPs an- down 
about 2 percent of the time and that th.- topoiagy is 
selected so that circuit failures contribute little addi- 
tional to the total system downtime. 

/A/P design 

The IMP design consists of two closely coupl.-d but 
nonetheless separable pieces—the physical hard wan- 
specification (based on timing and reliability consid.-ra- 
tions and the operating procedure) and the design and 
implementation of the operating pr.»cedur.- using the 
specifi.-d IMP hard war.-. Th.- IMP originally d.-v.-lop.-d 
for the ARPANET contains a 16-bit one mimisecond 
computer that can handle a total of about K m.-gabitv 
second of "useful" information on a total of approxi- 
mat.-ly one megabit second of circuit capacity (e.g., 
twenty 50 kilobit/second circuits). Hardware is likely 
to change as a function of the required IMP capacity 
but an operating procedure that o|M-rates well at one 
IMP capacity is likely to be transferable to machin.-s 
that provide different capacity. However, as a network 
grows in si«e and utilitation, a mere comprehensive 
operating  procedure  that   takes  account   of  known 
structural properties, such as a hierarchical topology, 
is appropriate. 

Four primary areas of IMP design, namely messag.- 
handling and buffering, error control, flow control, and 
routing are discussed in this section. The IMP provides 
buffering to handle messag A for its Host and packets 
for other IMPs. Error control is required to provide 
reliable   communication   of   Host   messages   in   the 
presence of noisy communication circuits. The design 
of the operating procedure should allow high through- 
put in the net under heavy traffic loads. Two pot.-ntial 
obstacles to achieving this objective are: (I) The n.-t 
can become congested and cause the throughput to 
decrtast with increasing load, and   (2)  The routing 
procedure mav be unabl.- to ; Iways adapt sufficiently 
fast to the rapid movement of packets to insure .-fficient 
routing.  A  flow   control  and   routing  procedure  is 
needed that can efficiently meet this requirement. 

M«-KH«KC handlinx and bulTerinR 

In th.- ARPANET, Ihr maximum mnwiim si»- was 
constrained to IM- approximat.ly S000 bits. A pair „f 
Hosts will typically communicate over th.- net via a 
«quenc- of transmitt.-d in.ss:ig.-s. To olilain delay», of 
a f.-w tenths of a s.-con.l for such ni.-ssag.-s and to low.-r 
the requin-d IMP buff.-r storage, the IMP program 
partitions .-aeh nw-ssage into one or nion- pack.-ts each 
containing  at   most   approximat.-lv   1000 bits    Each 
packet of a message is- transmitted indeprndenfl)   to 
th.- d.Mination where th.- m.-ssag.- is ri-ass.-mbl.-d by 
th<-  I.\IP More shipment to that destination Host 
Alternately, the Hosts could assume the responsibility 
for reassembling messagi-s. For an asynchronous IMP- 
Host ch-mr -I, this marginally  simplifi.-s the  IMP*» 
task. However, if evtry IMP-Host channel w.-r.- «yn- 
chronous, and the Host provid.-d the ntmembly. th. 
IMP task can b< further simplified. In this biter ca*.-. 
"IMP-like" software would have to be providrd in 
<-ach Host. 

Th<- mi-th«Hl of handling buff.-rs should br simple to 
allow for fast proc.-ssing and a small amount of program 
The number of buff.-rs should IM- sufficient  to st<-r. 
.nough pack.-ts for the circuits to In- u.-M-d to capacity; 
the siie of the buffers may be intuitiv.-ly s.-l.-ct.-d with 
the aid of simple analytical tcehmqura. For .-xampl,, 
fix.tl buff.-r si«es an- useful in th.- IMP for simplicity 
of d.-sign and spe.«,! of op«-ration, but inefficient utiliza- 
tion can arise because of variable length packets. If 
.•aeh buffer contains A words of overhead and provid.-s 
space for M wonls of text, and if messag.- siz.s are 
uniformly distributed between  1  and  L, it  can !>.- 
shown" that the choice of M that minim'iz.-s th.  . x- 
pected storage is approximately y/HL. In practier. M 
is chosrn to be somewhat smaller on the assumption 
that most traffic will b.- short and thai the amount ,.f 
ov.-rhead can be as much as, say, 20 percent of buffer 
storag.-. 

Error control 

Th.- IMPs must assume th.- respoasibilitv for pro- 
viding error control. There an- four |M>ssibilili.-s to 
consider: 

(1) Message are drlivered to th.-ir d.-stination out 
of order. 

(2) Duplicat.-    in.sHag.-s    an-    d.-liv.-red    to    th.- 
d.-stination. 

(3) M.-ssag.-san-d.-liv.-n-d with .m.rs 

(4) M.-s.sag.-s an-not d.'livere.|. 

b7 
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The task of proper sequenciiiR of missaRf-s for 
delivery to the dcHtinatton Host nctwüly falls in the 
provinc- of both error control aiul flow control. If at 
most one message at a time is allowed in the net betwmi 
a pair of Hosts, proper sequencing occurs naturally. A 
duplicate packet will arrive at the d<-stiiiation IMP 
after an acknowledgment has been missed, thus causing 
a successfully received packet to be retransmitu-d. The 
IMPs can handle the first two conditions by assigning 
a sequence number to each packet as it enters the 
network and processing the sequence number at the 
destination IMP. A Host that performs reassembly can 
also assign and process sequence numbers and check 
for duplicate packets. For many applications, the order 
of delivery to the destination is immaterial. For priority 
messages, however, it is typically the case that fast 
delivery requires a perturbation to the sequence. 

Errors are primarily caused by noise on the com- 
munication circuits and are handled most simply by 
error detection and retransmission between each pair of 
IMPs along the transmission path. This technique 
requires extra storage in the IMP if either circuit 
speeds or circuit lengths substantially increase. I-ailures 
in detecting errors can be made to occur on the order of 
years to centuries apart with little extra overhead 
"(20-30 parity bits per packet with the SO kilobit second 
circuits in the ARPANET). Standard cyclic error 
detection codes have been usefully applied here. 

A reliable system design insures that each trans- 
mitted message is accurately delivered to its intended 
destination. The occasional time when an IMP fails and 
destroys a useful in-transit message is likely to occur 
far less often than a similar failure in the Hosts and has 
proven to be unimportant in practice, as are errors due 
to IMP memory failures. A simple end to end retrans- 
mission strategy will protect against these situations, 
if the practical need should arise. However, the IMPs 
are designed so that they can be removed from the 
network without destroying their internally stored 

packets. 

Flow control 

A network in which packets may freely enter and 
leave can become congested or logically deadlocked and 
cause the movement of traffic to halt.»^ Flow control 
techniques are required to prevent these conditions 
from occurring. The provision of extra buffer storage 
will mitigate against congestion and deadlocks, but 
cannot in general prevent them. 

The sustained failure of a destination Host to accept 
packets from its IMP at the rate of arrival will cause the 
net to fill up and become congested. Two kinds of 

logical deadlocks, known M reassembly  lockup  • 
store-and-forward lockup may Hbmomir. In mwrmbly 
bckufi, the nmaimug packets of partially nas-iubl. d 
m.ssag.s are blocked from naehinu the .l.>(iiiaiiou 
IMP (thus preventing the message from IMIII« eom- 
pl.ted   and   the  reassembly   »pace  fm-d)   by   olh-r 
packets in the net that are waiting for reassembly spae•• 
at that  destination to breome free.  In a store-and- 
forward lockup, the destination has n»om to ace. pi 
arriving packets, but the packets interfere with eaeh 
othrr by tying up buffers in transit in such a way that 
none of the packets an- able to reach the destination.17 

These phenomena have only been made to occur during 
very carefully arranged testing of the ARPANET and 
by simulation." 

In the original ARPANET design, the use of soft- 
ware links and RFNM8 protected against eoiig.stion 
by a single link or a small set of links. However, ih<' 
combined traffic on a large number of links could si ill 
produce congestion. Although this strategy did not 
protect against lockup, th«- methml has provided an.pl. 
protection for the levels of traffic encount.n-d by «he 
net to date. 

A particularlv  simple flow control algorithm that 
augments the original IMPd.sign to prev.m coiig.-sti-.n 
and lockup is also described in  H.f.nnc-   17.  This 
scheme includes a mechanism whereby packets may !..• 
discarded from the net at the destination IMP when 
congestion is about to occur, with a copy of «ach di- 
cardi-d packet to be retransmitted a short time later by 
the originating Host's IMP.  Kathrr than exp.ri.nc 
excessive delays within the net  as traffic levels ar.- 
increased, th.' traffic is qucwd outside the net so that 
the transit time delays internal to the net continue to 
remain small. This strategy prevents the insertion of 
more traffic into the net than it can handle. 

It is important to note the dual requirement for «nail 
delays for interactive traffic and high bandwidth for th.- 
fast transfer of files. To allow high bandwidth between 
a pair of Hosts, the net must be able to ace pt a rteady 
flow of packets from one Host and at the Mm- time I 
able to rapidly quench the flow at the entrance to th- 
source IMP in the event of imminent congestion at tie- 
destination. This usually requires that a separat.- 
provision be made in th.- algorithm to protect short 
interactive messages from experiencing unm-cessarily 
high delays. 

Routing 

Network routing strategies for distributed ii<-tworks 
require routing decisions to be made with only in- 
formation available to an IMP ami th.-  IMP must 
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exfcuto those decisioas to «•ff(>ct the routinR'*'* A 
simp!«- example of such a strutegv is to have each IMP 
haiuiliug a packet independenth route it along its 
current estimate of the shortest path to the destination. 

For many applications, it suffices to deal with an 
idealized routing strategy which may not simulate the 
IMP routing functions in detail or which uses informa- 
tion not available to the IMP The general properties 
of both strategies are usually similar, diffiring mainly 
in certain implementation details such as the avail- 
ability of buffers or the constraint of counters and the 
need for the routing to quickly adapt to changes in 
IMP and circuit status. 

The IMPs perform the routing computations using 
information received from other IMPs and local 
information such as the alive dead state of its circuits. 
In the normal case of time varying loads, local informa- 
tion alone, such as the length of internal queues, is 
insufficient to provide an efficient routing strategy 
without assistance from the neighboring IMPs. It is 
possible to obtain sufficient information from the 
neighbors to provide efficient routing, with a small 
amount of computation needed per IMP and without 
each IMP requiring a topological map of the network. 
In certain applications where traffic patterns exhibit 
regularity, the use of a central controller might Ix' 
preferable. However, for most applications which 
involve dynamically varxing traffic flow, it appears 
that a central controller cannot be used More effectively 
than the IMPs to update routing tables if such a 
controller is constrained to derive its information via 
the net. It is also a less reliable approach to routing 
than to distribute the routing decisions among the 
IMPs 

The routing information cannot be propagated about 
the net in sufficient time to accurately characterize the 
instantaneous traffic flow. An efficient algorithm, there- 
fore, should not focus on the movement of individual 
packets, but rather use topological or statistical in- 
formation in the selection of routes. For example, by- 
using an averaging procedure, the flow of traffic can be 
made to build up smoothly. This allows the routing 
algorithm ample time to adjust its tables in each IMP 
in advance of the build-up of traffic. 

The scheme originally usi-d in the ARPA network 
had each IMP select one output line per destination 
onto which to route packets. The line was chosen to be 
the one with minimum estimated time delay to the 
destination. The selection was updated even half 
second using minimum time estimates from the neigh- 
boring IMPs and internal estimate.» of the delay to each 
of the neighbors. Even though the routing algorithm 
only selects one line at a time per destination, two 
output tim-s will be used if a queue of packets waiting 

transmission on one line builds up before the ruiiting 
update occurs and another line is chosen Motlifiraltons 
to the scheme which allow several lines per destination 
to be us<ti in an update interval (durillR which the 
routing is not changed) are possible using two or more 
time delay estimates to select the paths. 

In practice, this approach hw worked quite effectively 
with the moderate levels of traffic experienced in the 
net. For heavy traffic flow, this strategy may !»■ 
inefficient, since the routing information is based on 
the length of queues, which we have seen can change 
much faster than the information about the change can 
be distributed. Fortunately, this information is still 
usable, although it can be substantially out of date and 
will not, in general, be helpful in making efficient 
routing decisions in the heavy traffic case. 

A more intricate scheme, recently develop«! by 
BBN, allows multiple paths to be efficiently used evi u 
during heavy traffic." Preliminary simulation studies 
indicate that it can be tailored to provide efficient 
routing in a network with a variety of heavy traffic 
conditions. This method separates the problem of 
defining routes onto which packets may be routed from 
the problem of selecting a route when a particular 
packet must be routed. By this technique, it is possible 
to send packets down a path with the fewest IMPs and 
excess capacity, or when that path is filled, the one with 
the next fewest IMPs and excess capacity, etc. 

A similar approach to routing was independently 
derived by NAC using an idealized method that did not 
require the IMPs to participate in the routing decWions. 
Another approach using a flow deviation technique has 
recently been under study at UCLA." The intricacies of 
the exact approach lead to a metering procedure that 
allows the overall network flow to be changed slowly for 
stability and to perturb existing flow patterns to obtain 
an increased flow. These approaclvs all posses*, in 
common, essential ingredients of a desirable routing 
strategy. 

Topological connidrralioim 

An efficient topological design provides a high 
throughput for a given cost. Although many measures 
of throughput an* possible, a convenient one is the 
average amount of traffic that a single IMP can -end 
..ito the network when all other IMPs are transmitting 
according to a specified traffic pattern. Often, it is 
assumed that all other IMPs are behaving identically 
and each IMP is sending equal amounts of traffic to 
each other IMP. The coastraints on the topological 
design are the available common carrier circuits, the 
target cost or throughput, the desired reliability, and 
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TABLE 1—23 Node 28 Link AU PA 

Number of Number of 
CircuitB Combinations 
Failed to be Examined 

2S 1 
27 28 
26 378 
29 3276 
2-1 2047:) 
23 98280 
22 376740 

1184040 
310810.> 
6906900 
13123110 
21474180 
30421735 
37442160 
40116600 
37442160 
30421739 
21474180 
13123110 
6906900 
3108108 
1184040 

376740 
98280 
204 7 j 
3276 
378 
28 

Number of 
Cutsets 

I 
2H 

378 
3276 

2047.-) 
98280 
376740 
1184040 
3108105 
6906900 
13123110 
21474180 
30421799 
37442160 
40116600 

37442160 

30421793 
21474180 
13123110 
6906900 
3108108 
1184040 

349618 
«70Ö47 
=a98:)2 

827 
30 
0 

the   cost   of  computation  required   to  perform   the 
topological design. 

Since, there was no clear specification of tin- amount 
of traffic that the network would have to accommodate 
initially, it was first constructed with enough excess 
capacity to accommodate any reasonable traffic require- 
ments. Then as new IMPs were added to the system, 
the capacity was and is still being systematically 
reduced until the traffic level occupies a substantial 
fraction of the network's total capacity. At this point, 
the net's capacity will be increased to maintain thf 
desired percentage of loading. At the initial stages of 
network design, the "two-connected" reliability con- 
straint essentially determined a minimum value of 
maximum throughput. This constraint forces the 
average throughput to be in the range 10-15 kilobits per 
second per IMP, when .50 kilobit/sec circuits are used 
throughout the network, since two communication 
paths between every pair of IMPs are needed. Alterna- 
tively, if this level of throughput is required, then the 
reliability s()ecification of "two-connectivity" can be 
obtained without additional cost. 

Reliability computations 

A simple and natural characterization of network 
reliability is the ability of the network to sustain 
communication between all operable pairs of IMPs. For 
design purposes, the requirement of two inde|M'udent 
paths between nodes insures that at least two IMPs 
and/or circuits must fail before any pair of operuble 
I MPs cannot communicate. This criterion is iiulepeiu lent 
of the properties of the IMPs and circuits, does not take 
into account the "degree" of disruption that may occur 
and hence, does not reflect the actual availability of 
resources in the network. A more meaningful measure 
is the average fraction of IMP pairs that caiuu t com- 
municate because of IMP and circuit failures. This 
calculation requires knowledge of the IMP and circuit 
failure rates, and could not be performed until enouidi 
operating data was gathered to make valid pmliction- 

To calculate network reliability, we must consider 
elementarv network structures known as cutsets.  A 

.01     .02     OS     .04     OS      OC     .07     0«     09        10       II 

PROBABILITY OF ELEMENT   FAILING 

Figure 2-Network iiViiiliibilily v». IMP and eirouit relmbililv 

' vo 



Computer Communication Network Design Mi 

cutset is a set of circuits and or I.MPs whose removal 
from the network breaks all communication paths 
between at least two operable I Mi's. To calculate 
reliability, it is often the case that all cutsets must be 
either enumerated or estimated. As an example, in a 
2'.\ IMP, 2S circuit AHPA Network design similar to 
the one shown in Figure 1(d), there are over twenty 
million ways of deleting only circuits so that the 
remaining network has at least one operable pair of 
I.MPs with no intact communication paths. Table 1 
indicates the numbers of cutsets in the 23 IMP network 
as a function of the number of circuits they contain. 

A combination of analysis and simulation can be 
used to compute the average fraction of non-com- 
municating IMP pairs. Detailed descriptions of the 
analysis methods are given in Reference 44 while their 
application to the analysis of the ARPANET is dis- 
cussed in Reference 43. The results of an analysis of 
the 23 IMP version of the network are shown in Figure 
2. The curve marked A shows the results under the 
assumption that I.MPs do not fail, while the curve 
marked B shows the case where circuits do not fail. 
The curve marked C assumes that both IMPs and 
eireuils fail with equal probability. In actual operation, 
the average failure probability of both I.MPs and 
circuits is about O.O-.'. For this value, it can be seen that 
the effect of circuit failures is far less significant than 
the effect of IMP failures. If an IMP fails in a network 
with n IMPs, at least n — l other IMPs cannot com- 
municate with it Thus, good network design cannot 
improve upon the effect directly due to IMP failures, 
which in the ARPANET is the major factor affecting 
the reliability of the communications. Further, more 
intricate reliability analyses which consider the loss of 
throughput capacity because of circuit failures have 
also been perfurmed and these losses have been shown 
to he negligible.^ Finally, unequal failure rates due to 
differences in line lengths have been shown to have 
onl\ minor effects on the analysis and can usually be 
negli cted.2' 

Topolofrical optimization 

During the computer optimization process, the 
reliability of the topology is assumed to be acceptable if 
the network is at least two-connected. The object of 
the optimization is to decrease the ratio of cost to 
throughput subject to an overall cost limitation. Thi> 
techni(|ueemi)loys a sophisticated network optimization 
program that utilizes circuit exchange heuristics, 
routing and flow analysis algorithms, to generate low 
cost designs. In addition, two time delay models were 
initially used to (1) calculate the throughput corre- 

sponding to an average time delay of 0.2 seconds, 
(2) estimate the packet rejection rate due to all buffers 
filling at an IMP. As experience with these models 
grew, the packet rejection rate was found to be iirf;linil)le 
and the computation discontinued. The delay computa- 
tion (Equation (7) in a later section) was subsequently 
first replaced by a heuristic calculation to speed the 
computation and later eliminated after it was found 
that time delays could be guaranteed to be acceptably 
low by preventing cutsets from being saturated. This 
"threshold" behavior is discussed further in the next 
section. 

The basic method of optimization was described in 
Reference 12 while extensions to the design of large 
networks are discussed in Reference 9. The method 
operates by initially generating, either manually or by- 
computer, a "starting network" that satisfies the overall 
network constraints but is not, in general, a low cost 
network. The computer then iteratively modifies the 
starting network in simple steps until a lower cost 
network is found that satisfies the constraints or the 
process is terminated. The process is repeated until no 
further improvements can be found. Using a different 
starling network can result in a different solution. 
However, by incorporating sensible heuristics and by 
using a variety of carefully chosen starting networks and 
some degree of man-machine interaction, "excellent" 
final networks usually result. Experience has shown 
that there are a wide variety of such networks with 
different topological structures but similar cost and 
performance. 

The key to this design effort is the heuristic procedure 
by which the iterative network modifications are made. 
The method used in the ARPANET design involves the 
removal and addition of one or two circuits at a time, 
Many methods have been employed, at various times, 
to identify the appropriate circuits for potential addi- 
tion or deletion. For example, to delete uneconomical 
circuits a straightforward procedure simply deletes 
single circuits in numerical order, reroutes traffic and 
reevaluates cost until a decrease in cost per megabit is 
found. At this point, the deletion is made permanent 
and the process begins again. A somewhat more 
sophisticated procedure deletes circuits in order of 
increasing utilization, while a more complex method 
attempts to evaluate the effect of the removal of any 
circuit before any deletion is at'empted. The circuit 
with the greatest likelihood of an improvement is then 
considered for removal and so on. 

There are a huge number of reasonable heuristics for 
circuit exchanges. Aftir a great deal of experimentation 
with many of these, it appears that the choice of a 
particular heuristic is not critical. Instead, the spe« d 
and efficiency with which potential exchanges can be 
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investiRiited appears to be the linutinn factor affecting 
the quality of the final design. Finally, as the size of 
the network increases, the greater the cost becomes to 
perform any circuit exchange optimization. Decom- 
position of the network design into regions becomes 
necessary and additional heuristics are needed to 
determine effective decompositions. It presently appears 
that these methods can be used to design relatively 
efficient networks with a few hundred IMPs while 
substantially new procedures will be necessary for 
networks of greater size. 

The topological design requires a routing algorithm 
to evaluate the throughput capability of any given 
network. Its properties must reflect those of an im- 
plementable routing algorithm, for example, within 
the ARPANET. Although the routing problem can be 
formulated as a "multicommodity flow problem"10 and 
solved by linear programming for networks with 20-30 
IMPs,8 faster techniques are needed when the routing 
algorithm is incorporated in a design procedure. The 
design procedure for the ARPA Network topology 
iteratively analyzes thousands of networks. To satisfy 
the requirements for speed, an algorithm which 
selects the least utilized path with the minimum number 
of IMPs was initially used.12 This algorithm was later 
replaced by one which sends as much traffic as possible 
along such paths until one or more circuits approach a 
few percent of full utilization.28 These highly utilized 
circuits are then no longer allowed to carry additional 
flow. Instead, new paths with excess capacity and 
possibly more intermediate nodes are found. The» 
procedure continues until some cutset contains only 
nearly fully utilized circuits. At this point no additional 
flow can be sent. For design purposes, this algorithm is 
a highly satisfactory replacement for the more com- 
plicated multi-commodity approach. Using the al- 
gorithm, it has been shown that the throughput capa- 
bilities of the ARPA Network are substantially 
insensitive to the distribution of traffic and depend 
mainly only on the total traffic flow within the network.8 

Analytic models of network performance 

The efTrrt to determine analytic models of system 
performance has proceeded in two phases: (1) the pre- 
diction of average time delay encountered by a message 
as it passes through the network, and (2) the use of 
these queueing models to calculate optimum channel 
capacity assignments for minimum posshle delay. The 
model used as a standard for the average message delay- 
was first described in Reference 21 where it served to 
predict delays in stochastic communication networks. 

In Reference 22, it was modified to deserilve the be- 
havior of ARPA-like computer networks while in 
Reference '2'.i it was refined further to apply directly to 
the ARPANET. 

The single server model 

Queueing theory20 provides an effective set of ana- 
lytical tools for studying packet delay. Much of this 
theory considers systems in which messages place 
demands for transmission (service) upon a single 
communication channel (the single server). These 
systems are characterized by A{T), the distribution of 
interarrival times between demands and Hit), the 
distribution of service times. When the average demand 
for service is less than the capacity of the channel, the 
system is said to be stable. 

When /1(T) is exponential (i.e., Poisson arrivals), 
and messages are transmitted on a first-come first-served 
basis, the average time T in the stable system is 

W2 

2(1-P) 
+ 1 (1) 

where X is the average arrival rate of messages, i und t- 
are the first and second moments of Bit) respectively, 
and p""Xlf<l. If the service time is also exponential, 

T = 
\-p 

(2) 

When Air) and li{t) are arbitrary distributions, the 
situation becomes complex and only weak results are 
available. For example, no expression is available for '/'; 
however the following upper bound yields an excellent 
approximation" as p—»1: 

-   2(l-p) 
(3) 

where oj and a»2 are the variance of the interarrival 
time and service time distributions, respectively. 

Networks of queues 

Multiple channels in a network environment give 
rise to queueing problems that are far more difficult to 
solve than single server systems. For example, the 
variability in the choice of source and destination for a 
message is a network phenomenon which cunlrilnites to 
delay. A principal analytical difficulty results from the 
fact that flows throughout the network are correlated. 
The basic approach to solving these stochastic network 
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problems is to decompose them into analyzablc single- 
server problems which reflect the original network 
structure and traffic flow. 

Early studies of queueing networks indicated that 
such a decomposition was possible;60" however, those 
results do not carry over to message switched computer 
networks due to the correlation of traffic flows In 
Reference 21 it was shown for a wide variety of com- 
munication nets that this correlation could be removed 
by considering the length of a given packet to be an 
independent random variable as it passes from node to 
node. Although this "independence" assumption is not 
physically realistic, it results in a mathematically 
tractable model which does not seem to affect the 
accuracy of the predicted time delays. As the size and 
connectivity of the network increases, the assumption 
becomes increasingly more realistic. With this assump- 
tion, a successful decomposition which permits a 
channel-by-channel analysis is possible», as follows. 

The packet delay is defined as the time which a 
packet spends in the network from its entry until it 
reaches its destination. The average packet delay is 
denoted as T. Let Zjt be the average delay for those 
packets whose origin is IMF j and whose destination is 
IMP k. We assume a Poisson arrival process for such 
packets with an average of 7>» packets per second and 
an exponential distribution of packet lengths with an 
average of 1 /p bits per packet. With these definitions, 
if y is the sum of the quantities >,», then" 

(4) 

Let us now reformulate Equation (4) in terms of 
single channel delays. We first define the following 
quantities for the tth channel: C, as its capacity 
(bits/second); K as the average packet traffic it carries 
(packets/second); and 7\ as the average time a packet 
spends waiting for and using the tth channel. By 
relating the l^j to the \y,k\ via the paths selected by 
the routing algorithm, it is easy to see that" 

(5) 

With the assumption of Poisson traffic and exponential 
service times, the quantities T, are given by Equation 
(2). For an average packet length of l/V bits, 1= l/pCi 
seconds and thus 

TV 
1 

ßCi—\i 
(6) 

Thus we have successfully decomposed the analysis 
problem into a set of simple single-channel problems. 

A refinement of the decomposition permits a non- 
exponential packet length distribution and uses Equa- 
tion (1) rather than Equation (2) to calculate 7',; 
as an approximation, the Markovian character of the 
traffic is assumed to be preserved. Furthermore, for 
computer networks we include the effect of propagation 
time and overhead traffic to obtain the following 
equation for average packet delay22" 

i y Hd      /iC, —A, *] 
Here, 1/V represents the average length of a Host 
packet, and \/n represents the average length of nil 
packets (including acknowledgments, headers, requests 
for next messages, parity cheeks, ete.^ within tin- nvt- 
work. The expression l//i'r. + [(X,/M('.) (Mr^X.)]!-/'. 
represents the average packet delay on the ith channel. 
The term (X./MC.VCMC-M ■« «he average time a 
packet spends waiting at the IMP for the tth channel to 
become available. Since the packet must compete with 
acknowledgment» and other overhead traffic, the 
overall average packet length l/V appears in the 
expression. The term l/n'C, is the time required to 
transmit a packet of average length /• Finally: A' is 
the nodal processing time, assumed constant, and for 
the ARPA IMP approximately equal to O..'}') ms; 
Pi is the propagation time on the ith channel (about 
20 ms for a 3000 mile channel). 

Assuming a relatively homogeneous set of d and 
Pi, no individual term in the expression for delay will 
dominate the summation until the flow X, > in one 
channel (say channel t.) approaches the capacity (',,,. 
At that point, the term T,e, and hence T will grow- 
rapidly. The expression for delay is then dominated by 
one (or more) terms and exhibits a threshold behavior. 
Prior to this threshold, T remains relatively constant. 

The accuracy of the time delay model, as well as this 
threshold phenomenon was demonstrated on a 19 node 
network14 and on the ten node ARPA net derived from 
Figure 1(c) by deleting the rightmost five IMPs. 
Using the routing procedure described in the last 
section28 and equal traffic between all node pairs, the 
channel flows Xi were found for the ten node net and 
the delay curves shown in Figure 3 were obtained. 
Curve A was obtained with fixed 1000 bit packets,* 
while curve H was generated for exponentially dis- 
tributed variable length packets with average size of 
Ö00 bits In both cases A and B, all overhead factors 
were ignored. Note that the delay remains small until a 

* In cue A, the npplirafioii (if rqimtinn (I) iillowa fur nmsl.irit 
piicktt lengths (i.e., zoro vivriiiiicc). 
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DELAY (SEC) 
O o 
• «I 

i r 

500 BIT PACKETS PLUS OVERHEAD 

1000 BIT PACKETS  PLUS OVERHEAD 

1000 BIT PACKETS WITHOUT OVERHEAD 

■ 500 BIT PACKETS   WITHOUT  OVERHEAD 

1 

Figure 3—Delay vs. throughput 

total throughput slightly groator than 400 kilobits/ 
second is rerr'el. The delay then increases rapidly. 
Curves C u >a D respectively represent the same 
situations whci the overhead of 136 bits per packet and 
per RFNM and 152 bits per acknowledgment are 
included. Notice that the total throughput per IMP 
is reduced to 250 kilobits/second in case C and to 
approximately 200 kilobits/second in case Ö. 

In the same figure, we have illustrated with X'H the 
results of a simulation performed with a realistic 
routing and metering strategy. The simulation omitted 
all network overhead and assumed fixed lengths of 
1000 bits for all packets. 

It is difficult to develop a practical routing and flow 
control procedure that will allow each IMP to input 
identical amounts of traffic.  To compare the delay 

curve A with the points obtained by simulation, the 
curve should actually be recomputed for the slightly 
skewed distribution that resulted. It is notable that the 
delay estimates from the simulation (which used a 
dynamic routing strategy) and the computation (which 
used a static routing strategy and the time delay for- 
mula) Are in close agreement. In particular, they both 
accurately determined the vertical rise of the delay 
curve in the range just above 400 kilobits/second, the 
formula by predicting infinite delay and the simulation 
by rejecting the further input of traffic. 

In practice and from the analytic and simulation 
studies of the ARPANET, the average queueing delay 
is observed to remain small (almost that of an unloaded 
net) and well within the design constraint of 0.2 seconds 
until the traffic within the network approaches the 
capacity of a cutset. The delay then increases rapidly. 
Thus, as long as traffic is low enough and the routing 
adaptive enough to avoid the premature saturation of 
cutsets by guiding traffic along paths with excess capacity, 
queueing delays are not significant. 

Channel capacity optimization 

One of the most difficult design problems is the 
optimal selection of capacities from a finik set of 
options. Although there are many heuristic approaches 
to this problem, analytic results are relatively scarce. 
(For the specialized case of centralized networks, an 
algorithm yielding optimal results is available.") While 
it is possible to find an economical assignment of 
discrete capacities for, say, a 200 IMP network, very 
little is known about the relation between such capacity 
assignments, message delay, and cost. 

To obtain theoretical properties of optimal capacity 
assignments,   one   may   ignore   the   constraint   that 
capacities are obtainable only in discrete sizes.  In 
Reference 21  such a problem  was posed  where the 
network topology and average traffic flow «ere a-.>umed 
to be known and fixed and an optimal match of capaci- 
ties to traffic flow was found.  Also,  the  traffic  was 
assumed   to   be   Markovian   (Poisson   arrivals   and 
exponential   packet   lengths)   and   the  independence 
assumption and decomposition method were applied. 
For ('ach channel, the capacity f. was found which 
minimized  the average message delay  T, at  a  fixed 
total system cost 1). Since \(/ß is the average bit rate on 
the cth channel, the solution to any (.primal assignment 
problem must provide more than this minimal capacity 
to each channel This is clear since both Filiations (0) 
and (7) indicate that T, will become arbitrarily large 
with less than (or equal to) this amount of capacity. 
It is not critical exactly how the excesa capacity is 
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assigned, as long as C,>X,.V Other important param- 
eters and insights have been identified in studying the 
continuous capacity optimization problem. For ex- 
ample, the number of excess dollars, I)„ remaining 
after the minimum capacity \,/ft is assigned to each 
channel is of great importance. As /),—»0, the average 
delay must grow arbitrarily large. In this range, the 
critical parameters become p and n where p=y/nC is 
the ratio of the rate 7//1 at which bits enter the network 
to the rate C at which the net can handle bits and 
n = X/7, where X = £\i is the total rate at which packets 
flow within the net. The quantity p represents a dimen- 
sionless form of network "load" whereas n is easily 
shown to represent the average path length for a 
packet. 

As the load p approaches 1/n, the delay T grows very 
quickly, and this point p= 1/n represents the maximum 
load which the network can support. If capacities are 
assigned optimally, all channels saturate simultaneously 
at this point. In this formulation n is a design parameter 
which < »ends upon the topology and the routing 
procedure, while p is a parameter which depends upon 
the input rate and the total capacity of the network. 
In studying the ARPANET23 a closer representation 
of the actual tariffs for high speed telephone data 
channels used in that network was provided by setting 
0=]C.d.C, where 0<a<l.* This approach requires 
the solution of a non-linear equation by numerical 
techniques. On solving the equation, it can be shown 
that the packet delay T varies insignificantly with a 
for .3<a<l. This indicates that the closed form 
solution discussed earlier with a=l is a reasonable 
approximation to the more difficult non-linear problem. 
These continuous capacity studies have application to 
general network studies (e.g., satellite communications)33 

and are under continued investigation."" ^ 
In practice, the selection of channel capacities must 

bf made from a small finite set. Although some theo- 
retical work has been done in this case by approxi- 
mating the discrete cost-capacity functions by 
continuous ones, much remains to be done.13 M Because 
of the discrete capacities and the time varying nature 
of network traffic, it is not generally possible to match 
channel capacities to the anticipated flows within the 
channels. If this were possible, all channels would 
saturate at the same externally applied load. Instead, 
capacities are assigned on the basis of reasonable 
estimates of average or peak traffic flows. It is the 
responsibility of the routing procedure to permit the 
traffic to adapt to the available capacity.14 Often two 

• Of course the tariffs reflect the discrete nature of available 
channels. The use of the exponent a provides a continuous fit 
to the discrete cost function. For the ARPANET, a=.8. 

IMP sites will engage in heavy comnumieatiou and 
thus saturate one or more critical network cutsets. In 
such cases, the routing will not be able to send addi- 
tional flow across these cuts. The network will therefore 
experience "premature" saturation in one or a small set 
of channels leading to the threshold behavior described 
earlier. 

DISCUSSION 

A major conclusion from our experience in network 
design is that message switched networks of the ARPA 
type are no longer difficult to specify. They may be 
implemented straightforwardly from the specifications; 
they can be less expensive than other currently available 
technical approaches; they perform remarkably well as 
a communication system for interconnecting time- 
sharing and batch processing computers and can be 
adapted to directly handle teletypes, displays and many 
other kinds of terminal devices and data processing 
equipment.1'*1 

The principal tools available for the design of net- 
works are analysis, simulation, heuristic procedures, 
and experimentation. Analysis, simulation and heuristics 
have been the mainstays of the work on modeling and 
topological optimization while simulation, heuristic 
procedures and experimental techniques have been the 
major tools for the actual network implementation. 
Experience has shown that all of these methods are 
useful while none are all powerful. The most valuable 
approach has been the simultaneous use of several of 
these tools. 

Each approach has room for considerable improve- 
ment. The analysis efforts have not yet yielded results 
in many important areas such as routing. However, for 
prediction of delay, this approach leads to a simple 
threshold model which is both accurate and under- 
standable. Heuristic procedures all suffer from the 
problem that it is presently unclear how to select 
appropriate heuristics. It has been the innovative use 
of computers and analysis that has made the approach 
work well. For designing networks with no more than a 
few hundred IMPs, present heuristics appear adequate 
but a good deal of additional work is required for net- 
works of greater size. Simulation is a well developed tool 
that is both expensive to apply and limited in the overall 
understanding that it yields. For these reasons, simula- 
tion appears to be most useful only in validating models, 
and in assisting in detailed design decisions such as the 
number of buffers that an IMP should contain. As the 
size of networks continues to grow, it appears that 
simulation will become virtually useless as a total design 
tool. The ultimate standard by which all models and 
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conclusions can be tested is experimentation. Experi- 
mentation with ^he actual network is conceptually 
relatively straightforward and very useful. Although, 
experiments are often logistically difficult to perform, 
they can provide an easy means for testing models, 
heuristics and design parameters. 

The outstanding design problems currently facing 
the network designer arc to specify and determine the 
properties of the routing, flow control and topological 
structure for large networks. This specification must 
make full use of a wide variety of circuit options. 
Preliminary studies indicate that initially, the most 
fruitful approaches will be based on the partitioning of 
the network into regions, or equivalently, coastructing 
a large network by connecting a number of regional 
networks. To send a message, a Host would specify 
both the destination region and the destination IMP 
in that region. No detailed implementation of a large 
network has yet been specified but early studies of their 
properties indicate that factors such as cost, throughput, 
delay and reliability are similar to those of the present 
ARPANET, if the ARPA technology is used.« 

Techniques applicable to the design of large networks 
are presently under intensive study. These tcckniques 
appear to split into the same four categories as small 
network design but approaches may differ significantly. 
For example, large nets are likely to demand the place- 
ment of high bandwidth circuits at certain key locations 
in the topology to concentrate flow. These circuits will 
require the development of a high speed IMP to connect 
them into the net. It is likely that this high speed IMP 
will have the structure of a high speed multiplexor, and 
may require several cooperating processors to obtain 
the needed computer power for the job. Flow control 
strategies for large networks seem to extrapolate nicely 
from small network strategies if each region in the large 
network is viewed as a node in a smaller network. 
However, this area will require additional study as will 
the problem of specifying effective adaptive routing 
mechanisms. Recent efforts indicate that efficient 
practical schemes for small networks will soon be 
available. These schemes seem to be applicable for 
adaptive routing and flow control in networks con- 
structed from regional subnetworks. The development 
of practical algorithms to handle routing and flow- 
control is still an art rather than a science. Simulation is 
useful for studying the properties of a given heuristic, 
but intuition still plays a dominant role in the system 
design. 

Several open questions in network design presently 
are: (1) what structure should a high bandwidth IMP 
have; (2) how can full use be made of a variety of high 
bandwidth circuits; (3) how should large networks bo 
partitioned for both effective design and operation; 

and (4) what operational procedures should large 
networks follow? Much work has already been done in 
these areas but much more remains to be (lone. We 
expect substantial progress to be achieved in the next 
few years, and accordingly, the iucreaseil uuderstmiding 
of the properties of message switched networks of 
all sizes. 
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Ifff **?»*•*< >■"»<">»    I) computer traffic ch.r. 
act.rl.tlc. In the ca.e of long holding time repre- 

i   u    .5 •lien,lfic «Ppllcation.,   and in the c.e of 
IÜ2JÜ??! V"! re» """""« »he inqulry-re.pon.« 
■y.t.m.t 2) telephone channel error ch*r.ct.ri,\lc. 

i of high .peed vt<ce b.nd data tr.n.mU.ion on the 
.witched telecommunication network,   and of the low 
•p«.d channel at a rate of 300 bit./.eci   3) optimal 
llxed m...age block ri.e for communication ,v.. 

item, u.lng «rror detection and retran.mi..ion a. 
ul'SUSZ? SSl f'n,dom " bur,t "ro* channel), 1 ril  .   "i,"   •n|,ltlP1«»'>g ( v.ynchronou. Time 
Dl»l.lo» Multiplexing!, 5) loop .y.tem. and 6) .ecur- 
Ity in computer communication..    New area, needln* 
further Inve.tigation are included. "««Jing 

I.    XNTRODUCTION 

M-.-A,uCTpUte^"con,munlc,,'on ■/•»em. .uch a. 
tlme-.harlng and dl.trlbuted computer .y.tem. 
fhUTtLV-^ •'"* ""JP'""/.  the problem of being 
S.i-1 »»«l"atand and to predict .y.tem behavior 
Iweome. incr.a.ingly important.    It become, clear 

eporating and performance criteria at minimum 
co« for computing,   communication and operation 
two key problem area, need to be .tudledi   lir.f ' 
P?-?*,.TlMtn« P^ob'am between computer and «m- 
mwücation .y.tem., .econd.   the reUtion.hip. .r^on, 
communication traffic .ource..   channel, and com- 
put.r r..ourc. allocation mechanl.m.. 

th...^",^""1"" ln •,udyln« •"«• under.tandlng th... problem, are.    1) computer deiner.'   lack of 

Sn e'n. l!.C.0,T.m.UnlJ:•,,it,, ^^"^y, Z) commun- ication engineer.'   lack of knowledge in computer 
Uchno ogy, and JMh. lack of tool, and model, with 
«...n,: 'nTiy\e

1 
the beh"i«" «" »he« complex ■yilein..    The fir.t two difficultie. may be rc.olved 

by .«chang. of Information between computer 
•M.lgn«r. and communication .peclaU.t..    The third 

Dn l.r.l (-..^r nnu j 

Hr|m ^'..ini* r<>lumi> uf i.\i hcrr 

difficulty may be remedied by periodically .ummarl- 
ilng important re.earch related to computer- 
communication .y.tem. which 1. .cattered through- 
out v. rlou. journal.,  conference proceeding, and 
technical report».    In thl. paper we aim at the la.t 
objective, 

II.    RECENT ADVANCES IN COMPUTER 
CCMMUNICATIONS 

1.    Computer Traffic Characterl.tlc. 

It ha. become apparent that real progrc»» in 
modeUng and analy»i. depend, upon more than 
elegant analytical re.ult. ba.ed upon convenient but 
unsupported ...umption*.    Mea.urement and ob»er - 
vatlon ire needed, the computer traffic character- 
l.tlc. of ln-hou.e time-.harlng .y.tem» ha» been 
undertaken by the Bell Telephone Laboralorie» to 
obtain e.timate. of .y.tem variable».    Two type» 
of .y.tem« under »tudy arei   long holding wme 
(connect to dl.connect) and .hort holding time.   Long 
holding time i. characterl.tlc of bu.ine»» and 
»clentlfic application, which require exten.ive 
computation, a holding time typically of 15 to 30 
minute*.    Short holding time i. characteri.tic of 
inqulry-re.pon.e .y.tem. .uch a. on-Une banking 
credit bureau and production control which have 
holding time, of a few .econd. to one or two minute.. 

Jack.on and Stubb. [I] and Fuch. and Jack.on 
IZJ have reported the re.ult. of long holdir.R time 
They .how that the volume of computer-to-u »er 
traffic 1. an order of magnitude higher than that of 
u.er-to-computer traffic.    The interarrlval time 
between me..age. can be approximated by an 
exponential di.trlbuUon, that 1..   the »tream of 
me.«age. can be a.aumed to con.titute a Poi»»on 
pro<e...    Furthermore,   the length of me»»agrs 
can b. .ati.factorlly approximated bv the geometri- 
cal dletrlbutlon.    During the call inttrval.   the u.e- 
i. acUv. only 5 & of the lime and the computer t» 
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• cllvr about 10% of Ihr tlm*.    Thu«,  lh« channel ia 
Idle for a algnldcant portion o( Ihr holdlnx tim*. 
Th« Iradlc charactrrlatica of ahorl holding timt 
arr reported on   by Oidlck,   Kuch* and Jackaon [ Ij 
Thr mekaurad rraulta from (o'ir auch ayatrma 
rrvral that uaar aand tim« (thr total amount of 
tim* Airing which uaar charactrra arr bring Irana- 
millrd) la traa than IS% of th« holding tim«.    Thia 
paramrtrr i« ImporUnt to th« draign of atatialical 
multiplaitora.    Thr charactar intrrarnval timr a 
can br rcpr«a«nt«d aa a aum of two gamma diatrt- 
butlona; th« number of ua«r aegmrnta prr call and 
computer eegmenta per call,   can be repreaented 
by a gromrtru«! dlatributton.    Theae meaaure- 
menta and eatimated ayatem variablea not only 
provldr ua with Inaight Into the behavior of the 
ayatem and ahed light on areaa that need improve- 
menu,   but are eaatntial in the modeling and aoaly- 
■la of computer communication ayatema. 

I.    Channel Error Chararterlatica 

Th« communication channel provid«a lh« link« 
betwrrn proc«aaora and terminal,    nd playa an 
Important rot« in cumput«r comn.anicatlon ayatema, 
Thua,  a characteritation of channel performance 
la important for untleratandmg Ihr cauae of error«, 
tor auggeatlng the roaalble improvementa in the 
draign of tranamiaiion rquipment and the draign of 
•fflcicnt error control ayatema,   and for p.^nning 
optimal computer (.ommunication ayatama. 

To characterifr t«l«phon« channel error per- 
formance,   a aurvay meaaurcmenl program of the 
telephone network to determine the error perform- 
ance and th« data apeed capaaiUtiea ia neceaa^ry. 
A arrira at auch atudira at\rt«d by th« Bell ayatema 
in 19SS waa directed lowarda thia goal,   and aeveral 
Siprra have been publiahed on thia aubject (4-8). 

«re wr thall emphaais« r«c«nt eurv«y rcauua 
(1949-19701 on high apc«d veir« band data trana- 
mlaaion performance on th« «witched telecommuni- 
cation network (7) and low apeed data tranamiaaion 
performance on th« awitchad t«l«communicatlon 
network (8).    In their two papera,   th« dlatrlbutiona 
of error par call ar« giv«n on a bit,  burat and 
block bail«.    Information la alao pr««rntcd on the 
dlatrlbution of intervale between crrora,   the 
ttmcturr of burat rrrora and the number of errora 
in block« of varioua alaea.    Such atatiatica provide 
Information on channel reliability and are alao 
uaeful In the deaign of efficient error control 
procedurca. 

i 
In th« high apeed voiceband data tranamiaaion 

channel,  toll traffic waa uaed aa a baaia for th« 
aampling plan which rcaulted in the ««lection of 
•pproslmately 400 dialed-toll connectiona between 
geographically diaperaed local awitching officea. 
Data ratea of 1200,   2000,   3400 and 4800 bita/arc 
are meaauted on the Bell Syatem «witch telecom- 
munication network.    The meaaured reaulta ahow 
• aubatantial Improvement of performance In 
cemparlaon with the rraulta of prrvioua aurvrya; 
for ruample.   lh« m«Baur«d r««ult« for operation 
at 1200 and 2000 bil«/«cc ahow that approKimately 
82% of th« call« hav« an avarag« error rale of I 
• rror In 10' bit« or belter over ahorl,   medium 

and long haul calla: while the t9S9 Alexander,   Cryb 
and Naat -urvry [4] ahowa only M't of thrlr trat 
calla reached thia performance level (10'') for 
operation at the aame data rate.    A grnrral 
tendency for performance to degrade with trana- 
miaaion diatanc« haa been noted.    Theae reaulta 
alao indicate that impulae noiae accounted for a 
Urge peiccntage of the obaerved errora. 

low apeed data tranamiaaion correaponda to 
teletypewriter«,   computer porla and other terminal 
device» that communicat« by mcana of data organ- 
laed in chaiacler« (compnaed of aeveral bit«) 
ualng atart-atop tranamiaaion at a rate of 100 
bita/a«c.    Ch«ract«r «rror «lattatict,   rather than 
bit error atatiatica,   are the parameter« of inlrrrat 
in thia type of tranamiaaion becau«« the meaaage 
conalata of a dtaplay (in telelypewritera) or u>e 
character« in moat application« (in computer»). 
Measurement» were made on S)4 connection« with 
over 21 million charactera (1 character a  10 bila) 
tranamltled.    Over 90% of the low apeed test calla 
contained about 14. 000 to S4. 000 charactera.    A 
character error rate of 10~* or leaa 1« indicated 
for approKimatrly 78% of all call«,  while 9f% of 
all c.iU« have a loal character rate of lO"4 or lea«. 
Errora occurring in the meaaagea are in bureta 
rath« r than at random.    Thr number of character 
errora in a block increaaea with the block length. 
Since thia ia the firat report on low «prrd data,   no 
compariaon with any prevloua aurvey i« po««ible. 
Further analyais of the atatiatica will give inaight 
into the cauace of errora which in turn may auggeat 
approachea to improve error performance. 

1.    Optimal rinrd Meaaage B.ock Siae 

The meaaage output« from a computer are 
uaually in atringa of charactrra or burat«.    Thr 
variation of maaaage length can beet be deacrihed 
by a probability dlatrlbution.    For eaae in data 
handling and memory management,  the random 
meaaage length la uaually partitioned Into aeveral 
fixed aiae blocke.    Due to the random lennth of 
the meaaage,   the lait partitioned block usually I« 
not filled by the me ««age but ia filled with dummy 
information. 

For reaaona of economic« and reliability, 
error detection and retranamiation la employed 
in many data communication «yatem« [S, ■').     The 
optimal block aiae ia an important parameter in 
the deaign of auch ayatema.    From the acknowl- 
edgement point of view,   it i« driirable to arlrct 
the largrat poa«ible block aiae.    Since each 
meaaage block requlrea at leaat one acknowlrugo- 
ment aignal,   thr fewer the number of blocke needed 
for a meaaage,   the the channel capacity 
required for acknowl« '—mrnta.    On the other 
hand,   aince a larger meaaage block haa a higher 
channel waatage due to the laat unfilled partitioned 
block,   and alao haa a higher probability of rrror, 
it 1« dealrable to aelect the amalleat poaaible block 
«iae.    Thue there la a trade-off in «electing the 
optimal block aiae. 
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'-"   Kucf r» (10).   Balkevlc and Mucnch [ll| and 
Klrlin (U) h«v» itudlrd th.- optimal mrftfi* block 
• lit for tha error detection and retranamleelon 
■yatem thai maximtcea tranimlatlon rlftctcncy, 
Chu [U] conaldrr» an additional important param- 
eter -the meaaagc (file) length - in determining 
the fixed meaeagi' block aiae,  which figntficantly 
affecta the aelectlon of the optimal block aiae. 
Hie model comldert average metaage (file) length, 
measage length diatribution,  channel error char. 
•cteriatice (random error and buret error),   over* 
head (or äddreaaing,   error control and acknowl- 
edgement delay.    Hie criterion for opttmality ia to 
mlnlmlae the time waited in acknowledgementa, 
ratranamlaaiona and the watte in the laat unfilled 
block. 
tunuv      i. 

«.    Statlatlcal Multipleiiing 

Multiplexing ia commonly uaed to ahare and 
to efficiently utillre a communication channel. 
Currently data multiplexing haa taken two format 
Frequency Diviaion Multiplexing IFDM) and 
Synchronoua Time Diviaion Multiplexing (STOM) 
commonly known at time dlviiion multiplexing. 
Frequency Diviaion Multiplexing dividet the 
channel bandwidth into teveral aubchanneta auch 
that the bandwidth of each aubchannel ia greater 
than that required (or a meaaage channel.    Becauae 
of the need to employ "guard banda" to prevent 
data algnata from each of the data channela from 
feeding into adjacent channelt and becauae of the 
relatively poor data trantmtttion characlentlict 
of tha voice band    hannrl near the edgea of ttt 
bandwidth,   FDM doet not make at efficient uae of 
the voice band a a doe a ST DM. 

In STDM.  each uter (terminal) ia aaaigned a 
fixed time duration or time tlot on the > ommum- 
cation channel for the tranarmttion of metaagea 
from terminala to computer.    The multiplexing 
apparatua acant the tet of uaert in a round robin 
fatli       .    After one uaer' a time duration haa 
clapaed,  the channel ia awitched to another uter. 
With appropriately detigned tynchronout operation, 
required buffering can be limited to one character 
par terminal.    Addreaalng la utually not required 
aince the uter it Identified by the time dot poal- 
tlon.    The STDM techmqur,   however,  alao haa 
certain dlaadvantagea.    It la inefficient in channel 
utlllration to permanently attlgn a »egment of 
bandwidth that it utillted only a portion of the 
time.    Statlatica collected Ivm teveral typical 
operating time aharlng aytteti.. (l) thowed that 
during a call (connect to diaconnect),   the uaer-tO' 
computer traffic (or the long holding time caee ia 
active only S% of the time.    Thut STDM would be 
very Inefficient In channel utillaatlon in auch an 
environment alnce STDM allocalea a time alot to 
each uaer independent of hia activity.    In order to 
Incrcaae channel utillaatlon,   ttatiatical multl> 
plexlng or Atynchronout Time Diviaion Multi- 
plexing (ATDM)  hat been propoaed (14. \i] lot 
computer communicationt.    Thv baalc idea it to 
awitch (rom  one uter to another uter whenever 
the (ormer la Idle and the latter ready to trantmit 
data.    Thut the data It atynchronoutly or ttatitti- 
catly multiplexed with reaped to tl.e uaera.    With 

auch an arrangement,   each uter would be granted 
acceaa to the channel only when he haa a meaaage 
to trantmit.     The crucial attnbutea of auch a multi- 
plexing technique am    1) an addreaa la required 
(or each tranamitled meatage and   Z) bu((ering ia 
required to hindlc atatlatlcal Iluctuatlona In the 
Input trafde. 

The daU atructure (or mettagea (ormlng the 
Input to the   nultlplexor bu((er can be claaaKied 
Into (our ca'egorleai   conatant length meaaagea; 
random length meaaageai mixed (conatant and 
random length) meaaagea; tandom length meatage 
tegmertrd Into (ixed tiae blocka.     The conatant 
length mrttage input correaponda to teletype (TTY) 

- 1   input,   ea  h uaer lypaa in one character at a time. 
Tha rantlom length meaaage input corretpondt to 
paper tap-   input,   cathoda-ray tuba (CRT) input or 
computer    > .j it.    Tha mixed meaaage input corre- 
aponda to ti'.'dc (rom a mixture o( typea of Input 
terminalt tuch aa CRT,   TTY,   etc.    For aate in 
data handling and memory management,   random 
length meaiagea are often tegmenled into fixed 
tiae blockt which correapond to the laat type o( 
data atructure.    Since meaaagea have random 
length,  the laat block of a met   .ge utually cannot 
be entirely filled.    Aa a rcault,   (or a given traidc 
intent itv.  thlt type of data tlructure require a a 
larger buffer ihan that o( random length meaaagea 
which are not aegmented 114).    The buffer behavior 
o( thcae (our typea o( data atructurea have been 
analyaed by finite waiting room queuvlng modela 
(M.I7J. 

The buffer behavior of a ttatiatical multiplexor 
(or mixed mettage Inputa hea between that o( con- 
atant length and random length mettagea (17). The 
output procett o( a atatlatlcal multiplexor haa been 
atudlatlby Pack [lt|. 

The demultiplexor diatrlbutea mettagea to 
appropriate dralinatlont according to their meaaage 
addreaaea.    Thua, the behavior of id,   demulti- 
plexing buffer  not only dependa on tra((lc inlenalty 
but alao on traffic achedullng to vanout dettlnalicnt. 
In tha caae of a time thanng tytlem,   mettage 
achedullng la determined by the job tcheduling 
algorithm o( tha computer operating tyttem.    In 
the caae of dialributed computer ayatrma,   meaaage 
achedullng la Influenced by the meataitr routing 
algorithm.    A aimulalion tludy of the demulti- 
plexing buffer behavior revealed that,   for a given 
Input traffic volume,   the brat bu((er behavior can 
ba achieved by achedullng an equal amount o( traffic 
to each deatlnalion (14).    Hence there ia a cloae 
relationahlp among demultiplexing ayatem periorm- 
ance and achedullng algonthma (20) in computer 
operating ayalama and/or meaaage routing algor» 
ilhma.    Further raaearch in thia direction would 
be deairable.    Reaulta obtained In thia area wilt 
be eatential In the joint optitnitatlon of the overall 
performance of auch computer communication 
ayalema. 

Buffering la required to provide error control 
and meaaage tcheduling which are two Important 
functlona In computer communication tyttema. 
Since atatlatlcal multiplexing requiret buffering to 
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haadto gIstUlic*! (iuctM«Uon«    «he muUlpUKinf 
buiftr c«n »Uo b« uxd lor the** (uncttent. 

From Ihr»» »tudir« «• conclude thai In »n 
ATDM •y»t»m.   an acceptabl» bulfcr evorflo»' 
probablUly < »n hr achlrvrd by • »«••onabl« buff»» 
• l>»l th* *«p*ct»d quounng delay it very »mall and 
■ cetptabla (or ntoal appltcallon».    Hone«,  ATDM 
or stattaiScat mulUplamlng la a (»aalbla tochnqu» 
•(or data communlcallona.    Furthrrmoro ATDM 
graatly Improve* iha tranamlaaton »((Iciancy and 
ayalam organliatton.    W» have conatrucled a 
atatlatical mulliplaaor at UCLA     Our preliminary 
experience ha» ahown that tha gain In communl- 
cattoa coat,   eipeclally In long dltlance tran»- 
tnlaalotk,   by employing A I DM in computer common» 
Icatioa could (ar outweigh coala ol overhead in 
addreaalng and »lorage (or buffering.    Statlatlcal 
multlplaalng »hould,  therefore,   have high potential 
(or uaa in (uturr computer-communication ayatem». 

).    Loop Sy»tem« 

A apodal dlalrlbutad computer ayalam archi» 
lecture of conalderable recent Inlereal ta the loop 
(rtogl ayalam.    Thla type of ayilem connect» all 
lermlnala and/or connpulara by a common bu* or 
loop.    Th* major advantage* are the »trnpl* routing 
algorithm and *a*e in control o( Information. 
Farmar and Nrwhall (Zl| propoard and conatrucled 
a loop ayatem with buraly lra((lc which connect» 
varioua davtca* auch a* teletype,   plotter,   cathode- 
ray tub* dlaplay,   dl»k control unit and computer 
together     Yuon,  at al.  [Z2| preaa.il* *ome approx- 
Imate reautta on th.  Ira((lc behavior of thia dia- 
trlbulad loop ayalam.    Plarc* (21| propoaad a 
hierarchy of tnterconnacted loop »y»lem» with 
random length maaaaga* aagmantrd into (iaed alaa 
blocka,  and provide* a acham* (or tranafernng 
(formation among the varlou» level» o( loop». 
Konhetm and Mel»ter [24) analyied auch a hirr- 
archical *y»lem.    riaya» and Sherman [IS] »tudied 
tha maaaag* delay due to buKertng (or a alngle 
loop ayatem.    Tha data aourc* i» aaaumad to be o( 
a buraly -nature.    Tha lra((lc generalad by aarh 
uaer I* aaaumed to be Idanllcally dlatrib>'led with 
onKormly  dlalrlbuted deatlnatlon»     Konhelm and 
Malatar [Z6} »tudied the loop »y»l*m a* a priority 
aarvlca »yttam.    M***ag»a may »mar the ayalam 
al any Input terminal located on tha loop.    Priority 
ia aaalgned on the baal* of pocition on th* loop: 
Ik* terminal cloaoal to tha computer h»» hlgh**l 
priority and prlorltle* docraaa* with ' diatancr' 
from the computer.    The atationary queue length* 
and aver»»» virtual walling Urn* ar* calculated. 
Spraglna (27) ha» calculated the waiting time of 
thla priority loop »v»tem with Polaaon arrival 
proca»*.    Kayr    .'«j ha* obtained the mean and 
variance of nu-**ag» walling lime and proportion* 
o( blocked meeaagea of lixed length mr**age* of 
a loop ayatem.    Tarbar and I.anon [29) have pro- 
posed a loop »y»lem uaing (Ixed meaaag* lencth 
almllar to that o( Pierce except me »»age a are 
addreaae» lo procceac* rather than proceaaor*. 
rurthar,   meaaaga* can ba only removed at their 
•rlgin. 

Raaoarch roaolt» have ahown thai the 
•ccaplable quauclng delay can ba achieved when Iha 
lra((lc In a loop ayatem 1* under careful control. 
One of the ahortcoming* of »uch a ayalrm however, 
la ayatem reliability,    further aludy 1» meded In 
determining the reliablllly  per(ormance of loop 
ayatem* and way* ol Improving *y*lem reltabllily. 
Such aludiaa will enable u* lo compare the coat- 
performance of loop *y*lem* with thai ol other 
ayatama. 

t.    Security In Computer Communication* 

With tha growth in the u** of remote terminal 
davlcaa and tlmc-aharlng ayatcma in making 
ln(ormalion available lo a wide variety o( uaera 
(or widely divrrae application»,  the problem of 
computer commufücation aecurily become» 
incraa«ingly important (10-12).    The communication 
channel» are perhap» tha moat vulnerable compo- 
nent* of tha computer »yrtem becauae they are 
aaay t« acceaa by method« euch a* wire lapping, 
picklnc up electromagnetic pulaea.   or   'piggy-back" 
entry |)2]     The nature of computer communication 
»ecurily I» quite dlffrrrnt (rom that of th» cla»»lcal 
communication aocurlly.    They differ at lea»l In the 
(allowing waya.     I) Computer die» uaually offer a 
large amount of data lo work on.    The enemy «oull 
have lo know exactly what type of information wa» 
In aach (lla (e. g,t  program»,   addre»» file», 
»ctantldc in/ormationi In order lo aleal It.    21   In 
computer (llea,   all racorda are uaually aimilar. 
Program* have a high rate o( repeated character- 
laticifa.g.,   COBOL,   rORTMAN).    Al*o,   quite 
often the elrucluro of the computer program can b' 
guaiaed at.    All thai* almllaritlr* can help an 
enemy cryplanalyst to decod' even when (airly 
•ophi*tlcat*d cryptographic technique* are   ... .1, 
Thu* new method* are needed to provide aecurily 
in computer conununlcallon*. 

Th* u*a o( logic operation le. g.,   exclualve OR) 
and paeudo-random number» preeently »eem» lo 
offer Iha greateat poaaibility (or computational 
cryptography.    A unique key (or each me*»age i* 
generated (rcm the paeudo-random number gen> 
orator,  and the me**age then perform» logical 
laxcluaive OR) operation» with the key lo produce 
tha cipher meaaaga.    The rever»» operatlor. 
decipher» the cipher into lla original menaage. 
Thia type of operation I» uaually very fa»t and 
effl< lent In modern computer a and ha» the advantage 
of good aecurlty,   low co»l,   and eaay changrabilltv. 
Thcae methoda have been explored by Skalrud [>)], 
Krlahnamurthy,   (14) and Ta»«el.    [M\ 

To (urlher Increaa* lecunly in computer 
in(ormallon,  we could Introduce multiple prrudo- 
random number generator* to achieve higher 
level* o( arcurily.    For example,   the »y»lrm couli 
u»e one peeudo-random number generator lo cipher 
the me»»age| then each uaer could further provide 
their own paeudo-random number generator lo 
provide a »econd level of ciphering.    Another way, 
perhap» even more effrctivr,   I» lo u»r an expanded 
character »el technique lo break down the »tallallcal 
parameter» of the me»»age,   »uch a» frequency of 
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•in(U Unara,   di»,r»m..   ,o«.l pcrccnlan«^,  «tc. 
befor» fwrfarmini Ih« logical operation with th« 
parudo-random number.    Our preliminary reaullt 
Indicate thla acheme provide« excellent «ecurily 
performance.    Detailed flndln». will be reported 
la the acar future. 

Sharing of fllea and data baaet i« not only 
Important In application«,   but alae ireatly 
iocreaaa« flealbtllty and computer capabibly 
Sacunty and protection are abaolutely necesaary 
la the.e facllilie«.    The full utiliaation of Iheae 
ayatem. rolle« hearily on efficient technique« to 
provide effective Information «ecunty     Much 
work «till need« to be done. 

Other advance« which have not been Included 
in thl« paper but have Impart on computer com- 
munication« arci   error control,  modulation 
tran«ml««ion mediu-r..   «oclal and reculatory 
pellcle«,  and «tandardiaation. 
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RAND SATURATION EXPERIMENT: PRELIMINARY RESULTS 

SUMMARY 

Thl» experiment Is designed to study delay and throughput characteristics 

of a part of the ARPA network when a single node is under increasing background 

loading.  In particular, RAND's IMP is loaded by activating IMP message generator 

fake HOSTs at selected IMPs in the net whose messages are destined for the RAND 

IMP fake HOST discard. 

The delay and throughput experienced by a  single site, UCLA, under varying 

loading conditions, are measured and the results discussed in the light of 

known characteristics of the IMP-IMP message switching protocols (see also 

references BBN1822 and HEART 1970). 

EXPERIMENT DESIGN 

At the time chis experiment was performed, RAND was the only site in the 

net at which four 50KB telephone lines were connected to a single IMP 'see 

map on next page).  It was possible, then, to transmit as much as 200KB into 

RAND's IMP over these four lines. 

The artificial traffic generators in each IMP are capable of transmitting 

messages to a single site over a single logical link. The messages may be 

transmitted with deterministic inter-departure times, and the minimum allowable 

delay between message« is the time for the message to be sent and a RFNM 

(Request for Next Message) to be returned to the sending HOST. This minimum 

delay is on the order of 30 mseconds for adjacent sites and increases as 

the number of IMPs between source and destination IMPs increases. Message 

lengths can range from 0 to about 8000 bits (exclusive of leader and padding). 

Details of the IMP-IMP protocols and message generators car. be found in (DDN1822). 

Th>re arc a number of parameters which can be varied in an experiment of this 

kind; among these are message lengths, number of message generators running, 

message inter-departure times, topology of source and destination IMP d.ita 

paths, etc.  In this experiment, the nodes of the network are divided into 

four classes: measured (UCLA IMP), receiving node (RAND IMP), senders, unused. 

Messages are sent from UCLA and from other sending nodes to RAND. ,Delays and 

throughput are measured for UCLA only. 
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The length of messages sent from UCLA or other sending sites to 

RAtfl) varied in length from 1 packet/ message (960 bits) to 4 or 8 

packets/message (3840 and 7936 bits, respectively). Table 1 shows 

the various combinations of message lengths used in the 9 different 

experiments. 

p/m ■ packets/message 

UCLA OTHER SENDERS 

1  p/m 1 p/m 

4         ' 
8 p/m 8 p/m 

Message length combination« in packets/message 

Table 1 

For each combination of message lengths, traffic is first turned 

on and measured from UCLA to RAND (see ARPANET map un page 2). This 

is accomplished by turning on both the artificial traffic generator 

at UCLA's IMP and a cumulative statistics package also in UCLA's IMP 

which accumulates statistics on delays and throughputs for traffic 

leaving UCLA's IMP. All message generators are run with RFNM driven 

traffic (i.e. minim jn inter-departure times). Statistics are gathered 

for six minutes (30 samples of 12 second cumulative statistics), and 

then a new IMP message generator is started for the next six minute 

period (previous generators are left running). In the map on page 2, 

the order in which IMP message generators are activated for increasing 

number of sonders is shown by a small circled number next to a site. 
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For th« case that other sites send 4 or 8 packet messages while 

UCLA sends single packet messages, there is much more noticeable 

W interference.  In the case of 8 packet message interference, 

comparison of the total and effective throughput graphs (figures 

1 and 2) shows that after 5 sites are sending, UCLA begins to 

experience retransmissions as well as simple packet overhead. This 

•hows up in figure 3 as a non-linear increase in delay/packet. 

The maximum effective data rate sustained by a single link 

is shown in figure 2 as roughly 27.5 KDS (kilobits per second). 

Figures 4, 5, 6 consider the case that UCLA Is sending 4 packet 

messages. We notice in figure 5 that the maximum single link 

data rate is now about 37 KBS. The Increase Is not more since 

the RFNM delay has not decreased to one fourth of Its single packet 

message value, but Is only three fourths (26./34.). However, there 

is a drastic interference between multi-packet messages, as we see 

in figure 4. After more than 3 «Ites are sending multi-packet 

messages, the total throughput drops rapidly. The effective throughput 

drop« evAn faster (see figure 5). The peculiar shape of the curve 

in figure 4 for UCLA sending 4 packet messages and others sending 8 

(I.e. total throughput curve Increases again), can be explained 

by th« following argument. Total throughput begin« to drop as 

lnt«rf«r«nc« lncr««B«« because there i« contention for buffer space 

and the RFItt delay incr««««s. Aft«r « whil«, how« er, the sending 

site begin« to tlm«-out while waiting for an ACK from transmitted 

packet«, and start« to r«-transmlt. Retransmissions, of course, 

are not subject to the "blocked link" convention, and thus can 

create traffic In «xc«s« of the maximum achievable effective traffic. 

(Figure 1 also show« thl« effect). 

The sudden drop in throughput (total and effective) after more than 

three multi-packet senders «re running i« the result of contention for 

re-assembly buffer space In RAND's IMP. There Is enough re-assembly 

buffer spec«, for thr«« full multi-packet messages. The buffers are 

allocated on the assumption that any incoming multi-packet belongs 

to a message containing 8 packets, since it is not known at allocation 

time how long the multi-packet really i«. When more than 3 sites send 

multi-p«ck«t MMMgM to RAND's IMP, th«r« 1« strong contention for 

the available buffer space. 

92 I 



5.5 

Similar result« «re shown in figures 8, 9, and 10 for the 

ea.e th«t UCLA «end« full 8 packet «ultl-packet messages. The maximum 

sustainable effective throughput fo: a single link i« 40.5 KDS. 

We note that «hen there 1« little or no interfereing traffic, the 

RTNM delay/packet drop« from 34 msec to 25 msec a« message length 

increase« from 1 to 8 packet«. 
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FIGURE 3 
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FIGURE 4 
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INTRODUCTION 

Much has been said about the mechanics of the ARPA 
Computer Network (ARPANET) and especially about 
the organization of ite communications subnet.|•,■,•♦•, 

Until recently the main effort has gone into the imple- 
mentation of an ARPANET user-level communications 
interface. Operating just above the communications 
subnet in ARPANET HOST Computers, this ARPA- 
NET interface is intended to serve as a foundation for 
the   organization   of   function-oriented   communica- 
tions." See Figures 1 and 2 for our view of a computer 
system and the scheme for user-level proccss-to-process 
communications. It is now appropriate to review the 
development of protocols which have been constructed 
to   promote   particular   substantive   uses   of   the 
ARPANET, namely function-oriented protocols. 

We should begin this brief examination by stating 
what we mean by the word "protocol" and how proto- 
cols fit in the plan for useful work on the ARPANET. 
When we have two processes facing each other across 
some communication link, the protocol is the set of 
their agreemente on the format and relative timing of 
messages to be exchanged. When we speak of a proto- 
col, there is usually an important goal to be fulfilled. 
Although any set of agreements between cooperating 
(i.e., communicating) processes is a protocol, the proto- 
cols of interest arc those which are constructed for 
general appücation by a large population of processes 
in solving a large class of problems. 

In the understanding and generatiou of protocols 
there are two kinds of distinctions made. Protocols in 
the ARPANET are layertd and we speak of high or 
low level protocols. High level protocols arc those most 
closely matched to functions and low level protocols 
deal with communications mechanics. The lowest level 
software protocols in the ARPANET involve reliable 

JOHN F. HEAFNER 

The RAND Corporation 
Santa Mon cs, California 

ROBERT M. METCALFE 

Mat»aehu*ttU Institute of Tedtnology 
Cambridge, Massachuscttn 

message exchange between ARPANET Interface 
Message Processors (IMPs).'-» A high level protocol is 
one with primitives closely related to a subslnntivc use. 
At the lowest levels the contents of messnge-s are un- 
specified. At higher levels, more and mocc is stated 
about the meaning of message contents and timing. The 
layers of protocol are shown in Figure 3. 

A second way of structuring sets of protocols and 
their design is bound up in the word fadoring. At any 
level of protocol are sets of format and timing rules 
associated with particular groupings of agreements. In 
the IMPs we find certain protocols pertaining to error 
handling, while others to flow control, and still others 
to message routing. At the ARPANET'S user-level 
communications interface there are, among others, 
separable protocols associated with establishing con- 
nections and logical data blocking. These protocols do 
not nest, but join aa modules at the same level. 

Before moving on to consider the higher level func- 
tion-oriented protocols, let us first make a few state- 
ments about underlying protocols.  There arc three 
lower level software protocols which nest in support of 
the user-level communications interface for the ARPA- 
NET. The lowest of these is the IMP-IMP protocol 
which   provides  for  reliable  communication   among 
IMPs. This protocol handles transmission-frcror detec- 
tion and correction, flow control to avoid message 
congestion, and routing. At the next higher level is the 
IMP-HOST protocol which provides for the passage 
of messages between HOSTs and IMPs in such a way 
as to create virtual communication paths between 
HÜ3TS.  With  IMP-HOST  protocol,  a  HOST  has 
owrating rules which permit it to send messages to 
specified HOSTs on the ARPANET and to be informed 
of the dispensation of those messages. In particular, the 
IMP-HOST protocol constrains HOSTs in their trans- 
missions so that they can make good use of available 
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Figure 1—Our view of a computer system 

communications capacity without denying such avail- 
ability to other HOSTs. 

The HOST-HOST protocol, finady, is the set of 
rules whereby HOSTs construct and maintain com- 
munication between processes (user jobs) running on 
remote computers. One process requiring communica- 
tions with another on some remote computer system 
makes requests on its local super/isor to act on its 
behalf in establishing and maintaining those communi- 
cations under HOST-HOST protocol. 

In constructing these low levels of protocol it v as the 
intention to provide user processes with a general set 
of useful communication primitives to isolate them 
from many of the details of operating systems and 
communications. At this user-level interface function- 
oriented protocols join as an open-ended collection of 
modules to make use of ARPANET capabilities. 

The communications environment facing the de- 
signers of function-oriented protocols in the ARPANET 

is essentially that of a system of one-way bytc-orionted 
connections. Technically speaking, a "cunnoction" is a 
pair: a "send socket" at one end and a "receive socket" 
at the othei. Primitives provided at the user-level 
interface include: 

1. Initiate connection (local socket, foreign socket), 
2. Wait for connection (local socket), 
3. Send, Receive (local socket, data), 
4. Close Gocil socket), 
5. Send interrupt signal (local socket). 

Processes in this virtual process network can cre.it«' 
connections and transmit bytes. Connections are sub- 
ject to HOST-HOST flow contiol and the vagaries of 
timing in a widely distributed computing environment, 
but care has been taken to give user processes conti"! 
over their communications so as to make full use of 
network parallelism and redundancy. The kind of 
agreements which must be made in the creation of 
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function-oriented protocols reUte to mica for estab- 
lühing connection», to the timing rules which govern 
transmission sequences, and to the content of the byte- 
streams themselves. 

USE OF REMOTE INTERACTIVE SYSTEMS 

The application which currently dominates ARPA- 
NET activity is the remote use of interactive system«. 
A Telecommunications Network (TELNET) protocol 
is followed by processes cooperating to support this 
application.* A user at a terminal, connected to his 
local HOST, controls a process in a remote HOST as if 
he were a local user of the remote HOST. His local 
HOST copies characters between his terminal and 
TELNET connections over the ARPANET. We refer 
to the HOST where the user sits as the using HOST, 
and to the remote HOST as the $emng HOST. See 
Figure A. 

At the using HOST, the user must be able to por- 
form the following functions through his TELNET 
user process ("user-TELNET"): 

1. Initiate a pair of connections to a serving HOST, 
2. Send characters to the serving HOST, 
3. Receive characters from the serving HOST, 
4. Send a HOST-HOST interrupt signal, 
5. Terminate connections. 

The user-TELNET needs to be able to distinguish bo- 
twecn (1) commands to be acted on locally and (2) 
input intended for the serving HOtT. An escai)o char- 
acter is reserved to mark local commands. Conventions 
for the ARPANET Terminal IMP (TIP) user- 
TELNET are typical.» 

In most tting HOSTs, the above functions arc pro- 
vided by a user-TELNET which is a uarr-lnel program. 
A minimal user-TELNET need only implcmrnt the 
above functions, but several additional support func- 
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session in a local file, sending a file in place of User- 
typed input, repoilinj whetlier various IIOSTs arc or 
have been up). 

In the serving IIJST it is desiralilo that a proems 
controlled over the AilPAHLT behave as it would if 
controlled locally. The clennest way to achieve this 
goal is to generalize the tenninal control portion (TCP) 
of the operating system to accept AUPANKT terminal 
interaction. It is unpleasant to modify any portion of 
a working computer system and modification could be 
avoided if it were possible to use a non-supervisor 
process (eg, "server-TELNET" or "LOGGER") to 
perform the job creation, login, terminal input-output, 
interrupt, and logout functions in exactly the same way 
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«a a direct console user. Prior to the development of the 
ARPANET, no operating system provided these func- 
tions to nor-supcrvisor processes in anywhere near the 
required completeness. Some systems have since been 
modified to support this gcneraliicd job control scheme. 
See Figures 5 and 6. 

Efforts to standardise communications in the TEL- 

NET protocol focused on four issues: character set, 
echoing, establishing connections, and attention 
handling. 

The chosen character set is 7-bit ASCII in 8-bil 
fields with the high-order bit off. Codes with the high- 
order bit on are reserved for TELNET control func- 
tions. Two such TELNET control function codes arc 
the "long-space" which stands for the 200 millisecond 
space generated by the teletype BREAK button, and 
the synchronization character (SYNCH) discussed be- 
low in conjunction with the purpose of the TELNET 
interrupt rignal. 

Much controversy existed regarding echoing. The 
basic problem is that some systems expect to echo, 
while some terminals always echo locally. A set of con- 
ventions and signals was developed to control which 
side of a TELNET connection should echo. In practice, 
those systems which echo have been modified to iacludc 
provision for locally echoing terminals. This is a non- 
trivial change affecting many parts of a serving HOST. 
For example, normally echoing server HOSTs do not 
echo passwords so as to help maintain their security. 
Terminals which echo locally defeat tliis strategy, how- 
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ever, and some other protection scheme is necessary. 
Covermg the password with noise characters is the 
usual solution. 

The HOST-HOST protocol provide* a la^e number 
of sockets for each HOST, but carefully refrains from 
»pocifying which ones are to be used for what. To estab- 
lish communication between a user-TELNET and a 
server-TELNET some convention is required. The 
Initial Connection Protocol (ICP)W is used: 

1. Connection is initiated from a user-TELNET's 
receive socket to a serving HOST's socket 1 
(a send socket). 

2. When the initial connection is established, the 
serving HOST sends a generated socket number 
and closes the connection. This socket number 
identifies an adjacent socket pair at the serving 
HOST through which the user-TELNET can 
communicate with a server-TELNET. 

3. TELNET connections are then initiated be- 
tween the now specified pairs of sockets. Two 
connections are used to provide bi-directional 
communication. 

Note that socket 1 at the serving HOST is in use only 
long enough to send another socket number with which 
to make the actual service connections. 

One of the functions performed by a terminal control 
program within an operating system is the scanning of 
an input stream for attention characters intended to 
stop an errant process and to return control to the 
executive. Terminal control programs which buffer in- 
put sometimes run out of space. When this happens to 
a local tenninal's input stream, a "bell" or a question 

mark is echoed and the overflow character diwiiinlcd, 
after checking to see if it is the attention character. See 
Figure 7. This strategy works well in practice, hut it 
depends rather strongly on the intelligence of the human 
user, the invariant time delay in the input transmission 
system, and a lad; d bufTering between type-in and at- 
tention checking. None of these conditions exists for 
interactive traflic over the net: The serving HOST can- 
not control the speed (except to slow it down) or the 
buffering within the using HOST, nor can it even know 
whether a human user is supplying the input. It is thus 
necessary that the terminal control program or server- 
TELNET not, in general, discard characters from a net- 
work input stream; instead it must suspend its accept- 
ance of characters via the HOST-HOST flow control 
mechanism. Since a HOST may only send messages 
when there is room at the destination, the responsibility 
for dealing with too much input is thus transferred back 
to the using HOST. This scheme assures that no charac- 
ters accepted by the using HOST arc inadvertently lost. 
However, if the process in the serving HOST stops ac- 
cepting input, the pipeline of buffers between the user- 
TELNET and remote process will fill up so that atten- 
tion characters cannot get through  to the serving 
executive. In the TELNET protocol,  the solution to 
this problem calls for the user-TELNET to send  on 
request, a HOST-HOST interrupt signal forcing'the 
server-TELNET to switch input modes to process net- 
work  input  for  attention   characters.   The  server- 
TELNET is required to s.an for attention characters 
in its network input, even if some input must be dis- 
carded while doing so. The effect of the interrupt signal 
to a server-TELNET from its user is to cause the buf- 
fers between them to be emptied for the priority pro- 
cessing of attention characters. 

To flip an attention scanning server-TELNET back 
into its normal mode, a special TELNET synchroniza- 
tion character (SYNCH) is defined. When the server- 
TELNET encounters this character, it returns to the 
strategy of accepting terminal input only as buffer 
space permits. There is a possible race condition if the 
SYNCH character arrives before the  HOST-HOST 
interrupt signal, but the race is handled by keeping 
a count of SYNCHs without matching signals. Note 
that attention chair Hers are HOST specific and mav 
be  any  of  129  characters—128  ASCII   plus   "long 
8pace"-while SYNCH is a TELNET control character 
recognized by all server-TELNETs. It would not ,1-, 
to use the HOST-HOST signal alone in place of the 
signal-SYNCH combination in attention  processing, 
because the position of the SYNCH character in the 
TELNET input stream is required to determine where 
attention processing ends and where normal mode input 
processing begins. 
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FILE TRANSFER 

When viewing the ARPANET as a distributed 
computer operating system, one initial question is that 
of how to construct a distributed file system. Although 
it is constructive to entertain speculation on how the 
ultimate, automated distributed file system might look, 
one important first step is to provide for the simplest 
kinds of explicit file transfer to support early sub- 
stantive use. 

During and immediately after the construction of the 
ARPANET user-level process interface, several ad hoc 
file transfer mechanisms developed to provide support 
for initial use. These mechanisms took two forms: (1) 
use of the TELNET data paths for text file transfer and 
(2) use of raw byte-stream communication between 
compatible systems. 

By adding two simple features to the user-TELNET, 
text file transfer became an immediate reality. By 
adding a "SCRIPT" feature to user-TELNETS 
whereby all text typed on the user's console can be 
directed to a file on the user's local file system, a user 
need only request of a remote HOST that a particular 
text file be typed on his console to get that file trans- 
ferred to his local file system. By adding a "SEND- 
FILE" feature to a user-TELNET whereby the con- 
tents of a text file can be substituted for console type-in, 
a user need only start a remote system's editor as if to 
enter new text and then send his local file as type-in 
to get it transferred to the remote file system. Though 
crude, both of these mechanisms have been used with 
much success in getting real work done. 

Between two identical systems it has been a simple 
matter to produce programs at two ends of a connection 
to copy ra'V bits from one file system to another. This 
mechanisM has also served well in the absence of a more 
general and powerful file transfer system. 

Ways in which these early ad hoc file transfer mech- 
anisms are deficient are that (1) they require explicit 
and often elaborate user intervention and (2) they de- 
pend a great deal on the compatibility of the file sys- 
tems involved. There is an on-going effort to construct 
a File Transfer Protocol (FTP)"" worthy of wide 
implementation which will make it possible to exchange 
structured sequential files among widely differing file 
systems with a minimum (if any) explicit user inter- 
vention. In short, the file transfer protocol being de- 
veloped provides for the connection of a file transfer 
user process ("user-FTP") and file transfer server 
process ("server-FTP") according to the Initial Con- 
nection Protocol discussed above. See Figure 8. A user 
will be able to request that specific file manipulation 
operations be performed on his behalf. The File Trans- 
fer Protocol will support file operations including (1) 
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Figure 8—Data flow for fiJe transfer 

list remote directory, (2) send local file, (3) retrieve re- 
mote file, (4) rename remote file, and (.5) delete remote 
file. 

It is the intention of the protocol designers to regu- 
larize the protocol so that file transfer commands can 
be exchanged by consoles file transfer jobs cngaped in 
such exotic activities as automatic back-up and dy- 
namic file migration. The transfers envisioned will be 
accompanied with a Data Transfer Protocol (DTP)" 
rich enough to preserve sequential file structure and in 
a general enough way to permit data to flow between 
different file systems. 

USING THE ARPANET FOR REMOTE 
JOB ENTRY 

A very important use of the ARPANET is to give a 
wide community of users access to specialized facilities. 
One type of facility of interest is that of a very powerful 
number-cruncher. Users in the distributed ARPANET 
corti/nunity need to have acceb.3 to powerful machines 
for compute-intensive applications and the mode of 
operation most suited to these uses has been batch 
Remote Job Entry (RJE). Typically, a user will generate 
a "deck" for submission to a batch system. See Figure 0. 
He expects to wait for a period on the order of tens of 
minutes or hours for that "deck" to be processed, and 
then to receive the us-. »Uy voluminous output thereby 
generated. See Figure 10. 

As in the case ot file transfer, there arc a few useful 
ad hoc ARPANET RJE protocols. A standard RJE 
protocol is being developed to provide for job sub- 
mission to a number of facilities in the ARPANET. 
This protocol is being constructed using the TELNET 
and File Transfer protocols. A scenario which sketches 
how the protocol provides the RJE in the simplest, 
most explicit way is as follows: 

Via an ARPANET RJE process, a user connects his 
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status of his job. When notified that his input lias been 
processed, he then issues commands to the serving 
HOST to transfer his output back. 

We can of course Imagine more automatic ways of 
achieving these same functions. A user might need only 
type a job submission command to his local system. 
Automatically and invisibly, then, the local system 
would connect and converse with the specified RJE 
server causing the desired output to later appear in the 
users file area or perhaps on a local line printer. The 
intention is to design the RJE protocol so that the ex- 
plicit use can start immediately and the more automatic 
RJE systems can be built as desired. 

OTHER PROTOCOLS AND CONCLUSIONS 

One of the more difficult problems in utilizing a net- 
work of divenic computers and operating systems is that 
of dealing with incompatible data streams. Computers 
and their language processors have many ways of 
representing data. To make use of different computers 
it is necessary to (1) produce a mediation scheme for 
each incompatibility or (2) produce a standard repre- 
sentation. There are many strong arguments for a 
standard representation, but it has been hypothesized 
that if there were a simple way of expressing a limited 
set of transformations on data streams, that a large 
number of incompatibilities could be resolved and a 
great deal of computer-computer cooperation expedited. 

The bulk of protocol work is being done with the 
invention of standard representations. The TELNET 
protocol, as discussed, is founded on the notion of a 
standard terminal called the Network Virtual Terminal 
(NVT). The File Transfer Protocol is working toward 
a standard sequential file (a Network Virtual File?). 
So it is also with less advanced protocol work in graphics 
and data management. 

There Is one experiment which is taking the trans- 
formational approach to dealing with incompatibilities. 
The Data Reconfiguration Service (DRS) is to be 
generally available for mediating between incompatible 
stream configurations as directed by user-suppUed 
transformations." 
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