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AN EXPONENTIAL MODEL FOR THE SPECTRUM OF A SCALAR TIME SERIES 

by 

P. Bloomfield 

Summarv 

A new class of parametric mode IF for the spectrum of a 

scalar time series is proposed, in which the logarithm of the 

spectral density function is represented by a finite Fourier 

series. Two alternative parameter estimation procedures are 

described, and the use of a fitted model to provide forecasts of 

future values is discussed. The model has been compared with the 

moie conventional autoregressive/moving-average model, and the 

results of their comparison are given. 
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1. Introduction 

Although there has been much discussion of the fitting of 

parametric models to time series, essentially only one such model, 

or class of models, has been considered. This is the auto- 

regressive/moving-average model, which is discussed by Box and 

Jenkins (1970, Chapter 3), for instance.  In this model, it is .. 

assumed that the observed series {X.} is related to an unobserv- 

ed white noise series fet} by 

The spectral density function of the series is then 

2 
T2 

gu) = Tir- 
- ? e_eiru 

r=l r 

- Us1™ 
r=l r 

2 
where T  is the variance of et. 

The model discussed in this paper was motivated by the 

observation that the logarithm of an estimated spectral density 

function is often found to be a fairly well-behaved function, and 

could thus be approximated by a truncated Fourier series. The 

form which has been chosen for this model is 

_ T 
2 

gCu) = ir exp(2 ) 6 cos rw) . 
™ r=l r 

! Vc (2) 

The evenness of g restricts the exponent to be a cosine series, 

which is written in this form for later convenience. 



It is, of course, possible to approximate any well- 

behaved function by a truncated Fourier series. However, 

the model (2) would be of use only if p were small. This 

raises the question of whether such spectra arise in practice. 

An answer to this question will evidently be found only in 

extensive application of the model. The model (1), used with 

small values of p and q , has been remarkably successful 

at fitting practical data. In many cases, a similarly good fit 

could be exnected with the model (2). 

In section 2 we discuss maximum likelihood estimation of the 

parameters of the model, and the asymptotic distribution of 

the estimates, while in section 3 we consider some inefficient 

estimates. The construction of predictions of future values 

of the series is described in section U. The model was fitted 

to a number of time series discussed by Box and Jenkins (1970, 

p. 575), and the results are contained in section 5. Finally, 

in section 6 we examine briefly the effect of one type of 

departure from our assumptions. 



2. Maximum Likftlihood Parameter Estimation 

Walker (1961*) discusses the estimation of a general model of 

the form 

2 
g(w) s ^h(at;e), , 

where 

h(a);e) = |1 + Z or(e)e
irwi2i 

Now this condition is equivalent to 

r  log{h(ü);e))dw = 0, 
-ir 

for all values of 6 , and hence the model (2) falls into this 

class. 

Walker shows that, if the series is Gaussian, then t!i« log- 

likelihood of the parameters, given observed data x,,...^ , is 

approximately 

-IT 

where 

K«) = (2iTn)"1| i x.y-H 
ir=l z »   » 

the periodogram of x.,...^ . Thus 6 may be estimated by 

minimising 

tit 

ETST^Tdw » 
<3) 

•IT 

2 
and T may be estimated by the minimised value. 



A        9 Walker also shows the resulting estimates. 6 and f , are 

consistent, and furthermore that the distribution of /n(e - e(1) 

converges to N{a, WO^)"1} where 

mV  r U? f ^ ioghCu^)}^ log hCcb^Jl'dw . 

For the model (2), it is easily verified that WO) is 

identically equal to I , which is one reason for the use of 

2 cos ru in that model. 

With other models, direct minimisation of (3) is not the usual 

procedure for obtaining the estimates § and T  . However, for 

the model (2), the result that WO) = I makes such a procedure 

simple.  For a Newton-Raphson minimisation gives rise to an 

iterative scheme in which 

where ^vO..) and VO ) are the vector and matrix, respectively, m  «n      «« ~n r J * 

o* first and second derivatives of (3), evaluated in each case 

at 6 .  Now V(§ )  can be approximated by V(9 ), which can ••n      - -n „ .«o » 

further be approximated by its expectation, since its variance 

is readily seen to be 0(n ).  But E{VO )} may itself be 
2 2 2 aporoximated by 2T VKG«) S 2T I .  Replacing T  by Its 

n'th iterated estimate, 9   .  which is of course just (3) evaluated 

at 0 , we obtain a modified iterative solution, in which 

-n+1  -n  2x2 "" n 

n 
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Note that 

^ "«V = +! l'nfäj 4 log{h(W;6))|g d» 
n        n -IT 

- 1 T 2irl((i))   „fll )du 

where c(w)1 = (cos w,... »cos, pw). Now the first factor in the 

integrand is just I(ta))/gn(«), where gn(w) is the n'th 

iterated estimate of the spectral density function gCw) . Thus 

the vector of modifications contains the Fourier coefficients of 

the normalised periodogram, and in particular these vanish at the 

minimising values 9 . 



3. Inefficient Parameter Estimates 

Some consistent but inefficient estimates of the parameters 

of our model are suggested by the following observation. Let 

u. * 2irj/n, and m * C(n-l)/2]. Then the distribution of the 

periodogram ordinates Kb).) f... «Ku •) , may be approximated by 
A      m 

that of m independent exponential random variables with means 

T2        ? g(w.) s *- exp(2 )  6 cos rw.) . 
J   /ir     rSi 

r     J 

Suppose that Z.,...,Z  have precisely this distribution, and 

let £. s log Z. , j s l,...,m. Then the c. are uncorrelated, 

and 

E(C.) = ipd) ♦ logj^- + 2 J ercos ro». , 
j '-" r=l      J 

and 

var(c.) = *•(!) . 

Here ty    is  the di-gamma function, whence ^(1) is -y  , and 

Y is Euler's constant, 0.S7722. Also ^'(l) is ir2/6 s 1.6UM3 

Let 

t(1,) = ^ x c. r   n .^ ^3 cos rw. , r = l,...,p , 

and 

u(1) = 2ir exp(-^'(l) ♦ | #I Cj) • 

Then it is easily verified that 

Ett^) = er ♦ OCn"1) , 

varU^) s ^'(D + OCn"1), r      n 

cov(t^1>,e^1)) = OCn"1), 



and indeed that the distribution of /n(t   - 6) converges to 

MCO.^CDI). 

Now if we define a    in terms of log I(w.) , j « l,...m, 

in the sane way that t    is defined from (. , j = l,.../n, 

then clearly under suitable conditions the same asymptotic 

distribution will be valid. Comparison with the results for the 

approximate maximum likelihood procedure described in the previous 

section shows that the estimates 8   have efficiency ^'(1)  , 

that is, around 61%. 

Jones (196U) has discussed the calculation of quantities 

very similar to 6  , but recommends that the periodogram be 

smoothed somewhat before taking logarithms. Even in terms of 

Z1,...,Z , this gives rise to rather difficult problems in deter- 

mining the properties of the estimates. However, a similar 

procedure would be as follows. Suppose that m has a fairly 

small factor k , and m = km. . Then the Z's may be smoothed 

in a sense, by dividing them into m. adjacent blocks of k , 

and summing the blocks. Let 

,(k) . 3* 
Z •  -  A      Za,] = l,...,m • 
3    fc=Cj-l)k+l * 

and ?.  = log zi  . Clearly the expectations of Z's in the same 

block will be similar. Suppose they were identical, i.e. 

I  ercos rwj = I  9rcos rü>.k , I -  (j-l)k+l,... ,jk 

j = i,.«im i * 



It would then be true that 

P 2 
E(Cjk)) s *(k) * 2 I  erco8 rw^ + logj^ , 

j -  l,...m. . Thus one may define new statistics 

ml 
trk) s ^H I    5jk)c08 rwj » r = 1.---P. 

ml 
u(1) = 2ir exp(-*'(k) ♦ ^ J c?k)) . n j=l 3 

The asymptotic distribution of these statistics as n ■»• • for 
(k) fixed k is such that the distribution of /ri(t  -6) converges 

to NCO.k^'Ck)!). As before, we define 6   in terms of 

logarithms of sums of periodogram values, in the same way that 

t    is defined from the 2's. Then under suitable conditions, 

(k) the distribution of    /n(0      —e)    will converge to the normal 
(k) distribution. In particular, the efficiency of 9    relative 

to the approximate maximum likelihood solution discussed in 

the previous section is (k^'Ck)} , values of which are given in 

Table 1. 
2 

Clearly we may also define estimates of T , to be defined 
(k) in terms of Kw..) analogously with ux  , k s 1,2,  

The first of these was discussed by Davis and Jones (1968) and 

more recently by Cleveland (1971). The efficiencies of these will, 

for Gaussian data, follow the same progression as in Table 1. 
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For non-Gaussian data, the situation is not so clear. For instance, 

the variance of an efficient estimate of T , as derived by 

Walker (196>0 for a linear process, depends on the value of the 

fourth cumulant of the innovation process. Thus the argument 

we have used should not be expected to be valid in that case. 
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«♦. Construction of Predictions 

For the model (1), predictions of future values may be 

constructed directly from this equation, as in Box and Jenkins (1970, 

Chapter 5).  Since the parameters in the exponential model (2) 

have no similar direct interpretation, the construction of 

predictions is based on more general theory; see for instance Hannan 

(1970, Chapter 3). For a series {X.} with spectral density 

function g^), the central problem is to find a function o(') of 

a complex variable 2 , satisfying 

2   •   ■ 
(i) g(w) = J?|a(e

iw)|2   for some T2, 

(ii) o(0) -  1 

(iii) a has neither zeroes nor poles in the unit disc 

|z| < 1. 

For if the Taylor series expansion of ctCO"  is 

a(z)"1 = 1-1  Bez
s , 

ssl s 

then the best one-step predictor of Xt is 

^ •J1
B*xt-° 

A  2      '•'2 
and its mean squared error, E{(X --x.) } , is T . 

Predictions may be made further into the future recursively. 

For the best two-stet> nredictor of X.  is found bv predicting 

X. , by the above formula with t replaced by t-1 , and then 

substituting the predicted value into the original formula. An 

n-step prediction is found by repeating this operation. The mean 



11 

squared errors of these successive predictions are found from the 

Taylor series expansion of o(«) .  For if 

OB 

o(z) = 1 + jt ot zs , 
s=l s 

then the mean squared error of the n-step prediction is 

f (i ♦   I «;)  . n > 1 . 
s=l s 

For the effect on these mean squared errors of using fitted 

parameter values, see Bloomfield (1972). 

General numerical methods are available for obtaining the 

coefficients  {o_> and {ß } . However, for the exponential s s 

model (2) we may use the structure of the model to obtain these 

coefficients analytically. For 

P   r 
o(z) = exp( \  6 z ) 

r=l 

is clearly the required function.  Suppose first that p = 1, so 

that o(z) s expCe^z) •  Then clearly a = 9?/s! and 

s-1 
B = (-1)  o_ .' Next suppose that p > 1 . Then 

8 S 

p r o(z) =    n exp(e^z )   . 
rsl r 

The Taylor series of each factor of this product is easily written 

down, and the Taylor series of the product is just the convolution. 

The coefficients    {(3 )    may be obtained similarly. 

The auto-covariances of a series    {X.}    may be obtained by 

a similar argument.    As before, we suppose first that    p =  1  . 

Then the spectral density function is 
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where Is(*) is a modified Bessel function (Abramowitz and 

Stegun, 19 6>», p. 37U). Hence the auto-co variance of lag s is 
2 

T 
I
8(2e1) . When p > 1 , the spectral density function is a 

product of similar terms, and thus the autocovariances are 

convolutions of sequences of Bessel functions. Notice, however, 

that the convolutions in this case involve infinite summations, 

whereas those involved in obtaining the coefficients  {o } and 

{ß } involved only finite sums. 
8 

If one goes back over the data which were used to fit the 

model, one may use the fitted predictor to predict each value 

from the preceding value, and hence find the error of this pre- 

diction. Had one used the true predictor to do this, the errors 

would have been uncorrelated with each other. Now it is easily 

shown that the periodogram of these errors may be found approxi= 

mately, up to a constant multiple, by dividing the periodogram of 

the data by the estimated spectral density function. However, it 

was shown in section 2 that if the efficient fitting procedure 

described there is used, then the first p Fourier coefficients 

of this normalised periodogram vanish. This implies, of course, 

that the sample autocovariances of the fitted prediction errors 

vanish, for lags 1 to p, to this order of approximation. An 

examination of the fitting procedure of section 2 shows that no 

other model with the same number of parameters can achieve this. 

Thus of all models containing a given number of parameters, the 

exponential model (2) gives the whitest residuals, in this sense. 
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By contrast, when a p-parameter autoregressive model has 

been fitted, the residuals are uncorrelated with the previous p 

values of the original series. Thus in an autoregressive model, 

one detects lack of fit by finding autocorrelation amongst the 

residuals.  One must evidently look elsewhere in the case of 

fitting the exponential model. 



1 
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5.  Results of Fitting the Model 

In order to compare the exponential model with the establish- 

ed autoregressive-moving average models, it was fitted to six 

series studied by Box and Jenkins (1970, pp. 525 ff). For 

several of these series, Box and Jenkins first differenced the 

data in order to render it more tractable.  In each case, the 

same degree of differencing was used, and  then the saune number of 

parameters were fitted.  The results are presented in Table 2. 

The exponential model was fitted by the efficient iterative 

scheme described in section 2.  Initial values were taken to be 

the first of the inefficient estimates of section 3. The criterion 

for convergence was based on the sum of squares of the modifications 

to the parameters multiplied by the series length and divided by 

the numer of parameters being fitted. The iteration was terminated 

when this quantity first fell below 0*01, or in other words, 

when the root mean square modification first fell below one 

tenth of the common asymptotic standard deviation. The multi- 

perameter models were fitted sequentially, each new parameter 

requiring around four iterations. 

The goodness of fit of the models has been assessed by the 

residual variance.  Since this estimates the one-step prediction 

error variance which would be achieved by using the fitted model, 

it provides useful criterion with a pnactical interpretation.  For 

three of the series, the exponential model provides virtually as 

good a fit as the respective best autoregressive-moving average 

model.  For another two, however, the fit is considerably worse. 



15 

For those series, series A and E , the addition of two 

more parameters to the exponential model did little to improve 

the fit. 

While these results contain no evidence that time series 

exist which fit the exponential model better than the 

autoregressive-moving average model, at least they show that the 

two models provide comparable fits for certain series.  Since 

there are p+1 distinct autoregressive-moving average models, 

each containing p parameters, one must expect the exponential 

model to be rather less flexible.  Further experience will be 

required to determine whether this lack of flexibility will be 

sufficient to out-weigh the computational and statistical 

simplicity of the exponential model. 



... mnMMmm 

16 

6.  Departure from Assumptions 

When fitting one of a sequence of parametric models to a 

timerseries, one is never more than trying to approximate the 

structure of the series, if indeed it possesses a stationary 

structure. Thus it will rarely be true that the spectrum of the 

series belongs to the class of spectra being fitted. Since this 

is one of the assumptions underlying the result of Walker (196U) 

which has been used in sectior, 2, it is instructive to examine 

what happens if that assumption is dropped. 

Suppose then that the spectrum of the series is g^Cu), 

and that the class of models under consideration is of the form 

ji hUje) , 

as in section 2.  For parameter values 6 , the mean squared error 

of the corresponding one-step predictor is 

r {g0(a))/h(w;e)}du- 

-ir 

We shall regard the closest member of the family as being defined 
o 

by parameters 6., TQ, where 6^ minimises this integral and 

TQ is the minimum value.  It may be shown that the estimates 

defined in section 2 are consistent estimates of these quantities. 

In that sense, that estimation procedure and the present definition 

of closeness are well-matched. However, the asymptotic distribution 

of the estimates is no longer the same. Whilst asymptotic joint 

normality with zero means still holds, the asymptotic dispersion 
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matrix is now    V(eft)'
1U(6n)V(en)'

1  , where 

- *      w J     0     1      h(w,e)3 houTrj 

u(e) s 
! f^ g0(w) 

—11 ~ 

and h, and H« denote the vector and matrix of first and 

seeond e-derivatives of h , respectively. 

For the p-parameter exponential model (2), it is easily 

seen that 

h,(w;0) s 2h(w;e)c(w) , 

H0(ü);e) = ^h(w;e)c(w)c(u), , 

where cCo))' s (cos ü)»...,cos pu). Thus in this case. 

U(e) 

Then it is easily verified that 

-if    *VW' 

-v 

- ,-lfTrf80<fa)) ]2c(fa>)c(u))'  do»   . 

uo) - v(e) 

since 

,1*1 g0(w).. ] fSn(u) 

c(w)c(u) 'dw s irl    . 
-IT 
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Since the integrand is symmetric and nonnegative definite, 

it follows that U(e) - V(e)2 and hence also V(e)"1U(e)V(e)"1 - I 

are nonnegative definite.  '    '" 

Thus the asymptotic dispersion matrix for 6 derived in 

section 2 is in reality a lower bound, only achieved when the 

spectrum of the series being analysed belongs to the class of 

spectra being fitted.  It seems plausible that the same should 

hold for an arbitrary model, but we have been unable to extend 

the result beyond the exponential model. 

It follows that when fitting the exponential model as an 

approximation, misleadingly significant fitted values will arise 

more frequently than would otherwise be expected, when the 

true parameter value is, in fact, zero. Extra caution will be 

needod to avoid the inclusion of unnecessary parameters. 
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Table 1.  Variance and Efficiency of t(k) 

k n var tik) = k*' (k) eff. t(k) (%) Ip'Ck) 

1 1.641193 61 1.64493 

2 1.28986 78 0.64493 

3 1.181*79 84 0.39493 

U 1.13528 88 0.28382 

5 1.10660 90 0.22132 

6 1.08792 92 0.18132 

7 1.07478 93 0.15354 

8 1.06504 94 0.13313 

Table 2. Results of fitting the model 

Series Degree of 
differencing 

Number of 
parameters Bo> 

Residual Variance 

: and Jenkins Exponential 

A(1) 0 2 0.097(2) 0.146 

A 1 0.101 0.164 

B 1 52.2 52.2 

C 1 0.018 0.023 

D 0 0.090 0.121 

D 1 0.096 0.096 

E 0 2 228 297 

E 0 3 218 295 

F 0 2 113 115 

(1) The labelling is as in Box and Jenkins (1970, p. 524). 

(2) These values are taken from Table 7.13 of Box and Jenkins (1970, 
p. 239). 
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