WIDE SHIFT FSK VLF-LF ANTENNA **FEED NETWORKS**

Author: L.M. Vallese, ElectroPhysics Corp.

Scientific Otficer: Dr. A. Shostak, Code 427, Office Naval Research, Arlington, Va

Contract: N00014-71-C-0043 Final Report

March 1972

 $\mathsf{Rep}(\ldots,\mathsf{e}_\mathsf{A},\ldots)$ Joy NATIONAL TECHNICAL **INFORMATION SERVICE** M.S. Person from Computer Springfield & A. 22134

ELECTROPHYSICS C OR F_*

> 48 Spruce Street Nutley, N.J. 07110

ACKNOWLEDGMENT

The work for the development of novel feed networks for the broadbanding of VLF and LF antennas in wide shift FSK modulation has been developed under Contract N00014-71-C-0043 during the period from September 1970 to August 1971, under the direction of Dr. L. M. Vallese.

The Scientific Officer was Dr. A. Shostak, Code 427, Director Electronic Programs, Office of Naval Research, Arlington, Va. The guidance and valuable comments provided by Pr. Shoatak are gratefully appreciated.

 $-i -$

ABSTRACT

The problem of broadbanding VLF and LF antennas for wide shift FSK modulation has been solved by recourse to static feed networks, which exhibit either two separate passbands centered at the mark and at the space frequency respectively, or a single wide passband extending over the frequency shift, Several configurations of one-port and of two-port networks have been developed: these exhibit minimum number of elements, with values that are economically realizable. The new antenna feed networks could be applied to existing antenna installation without excessive modifications.

TABLE OF CONTENTS

Figures

1 - Example of spectrum of an FSK modulated wave
2 - Plot of m/ $(m^2 - n^2)$ versus n 2 - Plot of $m/(m^2 - n^2)$ 3 - Spectral density of random FSK binary wave; discontinuous phase 4 - Spectal density of random binary FSK wave; continuous phase. 5 - Spectral density function of random binary FSK wave; continuous phase. b - One-port antenna feed network 7 - Example of one-port feed network 8 - Use of transformer to modify the network of fig 7. 9 - Example of one-port feed network iO-6quivalent network transformation. **11-** Two passband filter for FSK modulation: a) synthesized network b) equivalent network. 12- Lc.y pass filter prototype 13- Contiguration of band-pass filter network 14- sutterworh synthesis 15- Bessel synthesis **Ib-** Chebyshev synthesis **(I** dB ripple) **1?-** Band pass filter corresponding to prototype of fig 12 18- Equivalence between parallel combination and series combination

TABLES

- of capacitance and resistance.
- 19-RAnd **naqs** filter woth ideal transfurmer
- 20- Example of Ncrton eqvivalent network transformation.
- 21-. Band pass Fessel filter with Norton transformation.

 $VLF = IF$ **FSK ANTENNA FEED NETWORK DESIGN**

Introduction

The narrow bandwidths and high O of electrically short VLF and LF intennas have limited, in general, the speed of on-off keying. By recourse to synchronous modulation of the entenna reactance (tuning inductor or added capacitor) it has been possible to extend the practical frequency shift of FSK systems to about \pm 50 Hz and the word rate to about 100 per minute $(1,2)$, synchronous switching, however, results in large transient phenomena, unless particular attention is paid to timing and initial conditions; for example an incremental capacitor could be switched in and out at the peak of the voltage wave (when the charging current is minimal), provided the voltage across the capacitor is maintained constant during the period while it is out of the circuit⁽³⁾ In addition, silicon controlled rectifiers exhibit severe limitations of reverse blocking voltage, and maximum forward current, necessitating recourse to expensive parallel series combinations. An alternative approach, which is considered in this report, is based on the design of antenna feed networks, other than the conventional tuning inductor, to permit the operation of the antenna under wide frequency shift. A basic consideration in the development of such networks is that the realizations are as simple as possible and that the circuit elements, inductors and capacitors, have values which are economically realizable. It is shown in the following that a simple, practical solution is obtained by recourse to series connected one-port networks, having two separate zeros of transmission, corresponding to the two carrier frequencies of the FSK modulation. Another solution consists of the utilization of a four port network, having a Bessel type transmission esponse characteristics; the latter approach, which also leads to realizable hetworks, is based on the application of the coupled-resonator bandpass filter approximation theory or on the standard low pass/band pass approximation $\binom{1}{1}$ and extends previous efforts based on the realization of Butterworth or Chebychev filter networks (5) .

In the following, after a brief review of the basic relationships involving antenna bandwidth. FSK frequency shift, keying rate, etc, the synthesis of the antenna feed networks for wide shift FSK modulation is

presented. A frequency shift of ± 250 Hz at about 20 KHz carrier frequency will be assumed.

Basic Relationships in FSK antenna modulation systems

For conventional FSK transmitting antennas, with single inductor tuning, a semiempiricat relationship nas been developed to express the 3 dB bandwidth as a function of the frequency shift $\pm \Delta f$, the keying rate f_x and the keying element bandwidth product (τb) :

$$
Bw_3 dB \cong 1.16 (Af + (cb) f_r)
$$

= 1.16 f_r (m + (vb))

This value represents the 3 dB bandwidth required at the receiver; in the above relationship $m = \Delta f$ is the modulation index. The keying rate f_r is proportional to the word race K_{tot}

$$
f_r = k K_w
$$

where f_r is given in Hz, R_u is given in words/minute and k is a coefficient which depends on the particular encoding system: $k = 0.19$ for Cable Morse, $k = 0.25$ for Teletype - 5 unit synch., $k = 0.42$ for Tele•'zpe - 7 uuiir start-stop, k **=** 0.45 for Continental Morse. For single tuned antennas the keying element bandwidth product is taken as 3 approximately; since $\tau = 1/2f$ there follows $f_r \approx b/6$ where b is the 6 dB antenna-tuning coil bandwidth. This approximate relationship provides a first order value for the maximum permissible keying rate with an antenna having 6 dB bindwidth **b.**

In FSK wodulation it is desirable, in general, to select the modulation index so that the carrier amplitude vanishes and only the sidehands, at $f_a \pm -n f_r$, are present. Considering a carrier at frequency f_0 which is modulated periodically and discontinuously with frequency shift from $f_o - \Delta f$ to $f_o + \Delta f$, with a pulse of period T and keying rate f_r , i.e. with modulation index **m** = $\Delta f / f_r$, one finds that FSK modulated current may be expanded as follows:

$$
i(t) = I_m \cos(w_0 t + \Delta w S(t))
$$

= $I_m \sum_{n=-\infty}^{\infty} \frac{2}{\pi} \frac{m}{(m-n)^2}$ sin (m-n) $\frac{1}{2} \pi x \cos(w_0 - n w_x)t$

where $S(t)$ is a square wave function (fig.1), w_0 is the carrier frequency, w_r is the keying rate, $m = \Delta w/w_r = \Delta f/f_r$. Writing the latter expression in expanded form one has:

$$
i(t) = (2I_{m}/\pi m) \sin(\frac{1}{2}(\pi m) \cos w_{0}t + (carrier)
$$

\n
$$
+ \frac{2}{\pi}I_{m} - \frac{1}{2}cos\frac{1}{2}(m\pi) (\cos(w_{0} - w_{r})t - cos(w_{0} + w_{r})t)
$$

\n
$$
- \frac{2}{\pi}I_{m} - sin\frac{1}{2}(m\pi) (\cos(w_{0} - 2\omega_{r})t - cos(w_{0} + 2w_{r})t)
$$

\n
$$
\frac{2}{\pi}I_{m} - cos\frac{1}{2}(mr) (\cos(w_{0} - 3w_{m})t - cos(w_{0} + 3w_{r})t)
$$

\n
$$
+ \frac{2}{\pi}I_{m} - cos\frac{1}{2}(mr) (\cos(w_{0} - 3w_{m})t - cos(w_{0} + 3w_{r})t)
$$

\n
$$
...
$$

It is seen that if the modulation index $w = \Delta f/f_r$ is selected as

$$
m = 2
$$
, 4, 6, ... i.e. $\Delta f = 2f_r$, 4f_r, 6f_r,...

the emplitude of the carrier vanishes. On the other hand the amplitudes of the 3ideband components vary proportiunally to $m/(m^2 - n^2)$ where n is the order of the sideband; plotting the quantity $m/(m^2 - n^2)$ versus n (fig 2) it is found that the amplitudgs of the sidebands are clustered in the vicin!ty of the order n which is closest to the modulation index m. More generally, an analysis of Zhe spectral density function of random sequences of FSK aignals has been developed by W.R. beinett and S.O.Rice⁽⁶⁾ this function defines the distribution of the average signal power versus frequency and indicates the frequency bands of greatest interest. Two cascs have been considered, one fn which the phase is discontinuous (as would

-3-

occur when the frequency shift modulation is obtained by switching between **two** separate oscillators), and another in which the phase is continuous. Bennett and Rice have calculatd some specific examples and plctted the spectral density function versus the frequency ratio $(f - f_1)/f$ where f_1 is one of the mark or space frequencies and f_1 is those ping rate. A case of discontinuous phase is depicted in fig 3, with $2\Delta f \equiv 0.8$ f_r; it is noted that discrete spectral lines occur at the mark and space fre-quencies and a continuous spectrum falling off a_3 $1/f^2$ is present on either side of the passband. An example of continuous phase is illustrated in fig 4 (for $2\Delta f = .8 f_y$) and in fig. 5 **(** for $2 \Delta f = 1.2 f_x$ **)**; no line spectra are found (thless there are degenerate relationships between f_1 , f_2 , f_r) and a continuous spectrum falling off as $1/f^4$ on either side of the passband is resent.

Consideration of the spectral density function is important for the determination of the required passband of the antenna feed network. However, another problem of interest is that of overshoot or ringing which occurs because of phase distortion. In this connection, ringing is found to be larger where the cutoff is sharper, such as $\mathbb{L}^{\mathcal{A}}$ the case of Chebychev or high order Butterworth responses. For these reasons iv appears that Bessel type responses, which are characterized by flat delay over cne passband, are more appropriate for the present application. Not only such filters exhibir lower overshoot phenomena, but they also yield lower pulse rise and decay times.

-4-

Synthesis of one-port antenna feed networks

For the purpose of the following calculations we assume the following design requirements: 2×10^4 hz and 2.05×10^4 Hz. Mark and Space frequencies: Antenna static capacitance 0.0523 pF Antenna resonant frequency 36 kHz Antenna radiation resistance 0.09 Chm Radiated power 138 KW Antenna current 1238 ampere Antenna base capacitance at 2x10⁴ dz 0.1175 pF Antenna base resistance 0.18 Ohm

The antenna base cappeltance is computed taking into account the inductance of the downleads, using the formula

 $c_1 = c_0 (f_{res}^2 - f^2) / f^2$

The above antenna characteristics are similar to these of the Annapolis antenna.

The first approach to the synthesis of feed networks to outain FSK operation with a saift of 500 Hz is based on the utilization of oneport networks, connected in series with the antenna (ile.6); since the antenal is equivalent to the series combination of a capacitance and a small resistance, the reactance function including C_a has one of the following forms

$$
x(s)_{1} = K \t s^{2} + w_{1}^{2}
$$

\n
$$
x(s)_{2} = K \t s^{2} + w_{1}^{2} (s^{2} + w_{2}^{2})
$$

\n
$$
s (s^{2} + w_{2}^{2})
$$

\netc.

Expanding in series the above relationships one finds:

$$
\mathbb{X}(s)_1 = -Ks + \cdots + \mathbb{W}_1^2 / s
$$

 $-5-$

$$
X(s)_{2} = Ks + b/s + 2c s/(s^{2} + w_{2}^{2})
$$

where

$$
b = k w_1^2 - w_3^2 / w_2^2
$$

$$
2c = K (w_1^2 + w_3^2 - w_2^2 - (w_1^2 w_3^2/w_2^2))
$$

Clearly $X(s)$ corresponds to the conventional single tuning inductor
case, where $L = K$ and $C_0 = 1/kw_1^2$; on the other hand $X(s)$ ₂ corresponds to a network having two zeros of transmission, respectively w₁ and at w₃, and so on. Following this approach it is possible \mathbf{a} to synthesize an intenna feed network having may number of transmission zeros; in practice, in orde to reduce complexity and losses, the number of zeros should be maintained at a minimum.

Clearly in the case of FSR modulation the two-zero of transmission case is of interest. Canonic realizations are readily obtained by $X(s)$ ₂ either in partial fractions or in continuous fractions. $expand^tng$ Expansion in partial fractions yields:

 $X(s)$ ₂ = Ks + bs + 2c/ (s² + v₂²)

which corresponds to the configuration of fig. 7, consisting of a series combination of an inductor and of a parallel resonant circuit. Expressing the network components in terms of the parameters k_1 , w_1 , w_2 , w_3 one finds:

$$
L_1 = K
$$

\n
$$
C_a = \frac{v_2^2}{2} / k w_1^2 w_3^2
$$

\n
$$
C_2 = 1/K (w_1^2 + w_3^2 - w_2^2 - w_1^2 w_3^2 w_2^2)
$$

\n
$$
L_2 = K (w_1^2 + w_3^2 - w_2^2 - w_1^2 w_3^2 / w_2^2) / w_2^2
$$

and w₃ are prescribed, it is necessary to determine Since K, W_1

 $-6-$

a suitable value for the pole w_{γ} ; this must satisfy the relationship

$$
w_1 \leftarrow w_2 \leftarrow w_3
$$

Two conditions any be considered, one in which w_2^2 de taken as the average of w_1^2 and of w_3^2 , i.e.

$$
w_2^2 = (w_1^2 + w_3^2)/2
$$

and the other in which w_2 , is selecced as the geometric mean of w_1 and of w_2 , i.e.

$$
w_2 = \sqrt{w_1 - w_2}
$$

As example, taking the latter condition one finds the following values for the network components:

$$
L_1 = -K = 1/\nu_1 \nu_3 c_a
$$

$$
c_2 = \nu_1 \nu_3 c_a / (\nu_1 - \nu_3)^2
$$

$$
L_2 = (\nu_1 - \nu_3)^2 / \nu_1^2 \nu_3^2 c_a
$$

Substituting the values of $C_{\frac{1}{3}}$, $W_{\frac{1}{3}}$ and $W_{\frac{1}{3}}$ previously given one finds the following component values for the network of fig 7

$$
E_1 = 0.527 \text{ mb}
$$

\n
$$
C_2 = 200 \text{ pF}
$$

\n
$$
L_2 = 0.32^\circ \text{ pF}
$$

It is seen that the inductance L_1 has a value which corresponds to series resonance of the antenua capacitance at the frequency $(\omega_1 \omega_3)^2$ and that the inductance L_0 and the capacitance C_2 form a parallel resonant circuit tuned it the same frequency. However, the inductance I₂ is too small (yielding a low quality factor) and the capacitance C_2 is too large for a practical realization, The difficulty may be resulved by recourse to a transformer as shown in fig. 2. In this case the primary

has inductance L, as required by the design; the secondary is tightly coupled to L_2 and has a larger inductance L_2^1 and a smaller capacitance C_2^{\dagger} , both resonation at the frequency $(w_1w_3^{\dagger 2})$. As an example, letting $C_2^{\dagger} = 0.5$ pF one has $L_2^{\dagger} = 0.123$ mb.

Similarly expansion in continuous fractions of $X(s)$ ₂ leads to the following result:

$$
x(s)_{2} = -\frac{a!}{s} + \frac{b!}{s} + \frac{2c!s}{s} + \frac{2c!s}{s} + \frac{3c!}{s} + \frac{3c!}{s}
$$

The corresponding network realization is shown in fig. 9, where

$$
w_2' = 1/L_4 c_4 = w_1^2 + w_3^2 - w_1^2 w_3^2/w_2^2
$$

\n
$$
L_3 = (w_1^2 + w_3^2 - w_1^2 w_3^2/w_2^2) / w_1^2 w_3^2 c_a
$$

\n
$$
L_4 = \frac{w_2^2 (w_1^2 + w_3^2 - w_1^2 w_3^2/w_2^2)}{w_1^2 w_3^2 c_a (w_1^2 + w_3^2 - w_2^2 - w_1^2 w_3^2/w_2^2)}
$$

Substituting the given antenna parameters one finds:

$$
L_3 = 0.527 \text{ m}
$$

$$
L_4 = 0.862 \text{ h}
$$

$$
C_4 = 0.123 \text{ pF}
$$

It is noted that the values of the inductance L_{μ} and of the capacitance C_{α} are highly inpractical. However, as in the previous case, a network transformation may be introduced, by recourse to a transformer, such that the driving point impedance is conserved (fig. 10). Assuming that the transformer has unity coupling one finds the following relationships among the components of the two networks:

$$
\frac{(L_3 + L_4)C_4}{L_3} = \frac{(L_4' + L_5') C_4'}{L_3'}
$$

$$
L_3 L_4 / (L_3 + L_4) = L_3' L_5' / (L_4' + L_5')
$$

$$
L_4 C_4 = L_5' C_4'
$$

Letting $L_3 = L_3'$ one can select C_4' and L_5' so that the last relationship is satisfied and, at the same time, the values of these compoaents are practically realizable.

In conclusion, it has been shown that it is possible to synthesize one-port antenna feed networks having two separate passbands, centered respectively at the mark and at the space frequencies. These networks are realizable and can be designed for any conventionally tuned VLF antenna, with minor modifications of the existing components.

Synthesis of two-port antenna feed networks

In addition to the use of one-port antenna feed networks having a prescribed driving point impedance it is also possible to obtain the desired broadbanding by recourse to a two-port network, which incorporates the antenna capacitance as its output element, and exhibits a transfer function corresponding to the desired bandwidth(fig 11). Transfer functions of interest are the Butterworth or maximally fl, t, the Chebychev or equal ripple, the Legendre or maximum fall-off, the Bessel or linear phase. In the case of FSK modulation the latter type of transfer function is preferable, because of lower ov -ishoot and better values of rise and decay time in pulse operation,

In the following the synthesis of two port antenna feed n etworks is approached using either the "coupled resonator bandpass filter ar, roximation" (4) or the "classical low-pass band-pass approximation". Although general design foirnulas will be derived, the particular case of the Bessel function response will he emphasized. An application of the coupled resonator method for the realization of Chebychev filters has been developed by Zverev and Blinchikoff **(5)**

The starting configuration is a low pass prototype of second order (fig 12); when this is designed for unity load resistance and unity radian bandwidth the circuit elements **R₁** and **L** can be expressed ir terms of the capacitance C with the following relationships:

Butterworth

$$
R_1 = \frac{\sqrt{2} C - 1}{C^2 - \sqrt{2} C + 1}
$$
 $L = \frac{C}{C^2 - \sqrt{2} C + 1}$

Chebychev (letting $k = \sqrt{1 + \epsilon^2} + \epsilon$ where ϵ is the ripple)

$$
R_1 = \frac{\sqrt{2k} (\xi + 1)}{(1 + \xi k) c^2 - \sqrt{2k(\xi + 1)} c + k(\xi + 1)}
$$

$$
L = \frac{k (\xi + 1) C}{(1 + \xi k) C} - \sqrt{2k (\xi + 1) C} + k(\xi + 1)
$$

Bessel

$$
R_1 = -\frac{3c}{3c^2} = \frac{1}{3c} + 1
$$
 $L = -\frac{c}{3c^2} = -\frac{1}{3c + 1}$

It should be noted that the Legendre case for $n = 2$ coincides with the Butterworth case for $n = 2$.

The coupled resonator bandpass filter approximation is based on the use of a transformation of lossless LC ladder networks (Caver first form) into an equivalent network containing only series inductances and impedance inverters; the inductances are converted to the band-pass case with the transformation

$$
s' \equiv (s^2 + v_o^2) / \sqrt{a \Delta w}
$$

and the impedance inverters are synthesized, with sufficient approximation for narrow band filters, by recourse to T or $\overline{\mathbb{T}}$ configurations of inductances and capacitances. In the present case the final configuration of the band pass filter is shown in fig 13, where the load resistance $\frac{p}{q}$ is the antenna base resistance and the series output capacitance is the antenna capacitance C_a .

In general the relationships, between the elements of the low pass prototype and those of the bandpass approximation are:

 $-10-$

Source and load resistances

$$
R_{s} = \begin{array}{ccc} 2 \pi L_{1} \Delta f & & 2 \pi L_{2} \Delta f \\ q_{1} & & & q_{2} \end{array}
$$

where q_1 and q_2 are the normalized quality factors of the low pass prototype, $q_1 \approx L/R_1$, $q_2 \approx C$.

Inductances

$$
L_1 = \frac{1}{(2 \pi f_o)^2 c_g} \qquad L_2 = \frac{1}{(2 \pi f_o)^2 c_{g1}}
$$

where $C_1 = C_{s1}C_{12} / (C_{s1} + C_{12})$, $C_{11} = C_{a}C_{12} / (C_{a} + C_{12})$ are the mesh capacitances of the band pass filter, and f_{α} is the center frequency of the bandpass realization.

Coupling capacitor

$$
c_{12} = \sqrt{c_1 c_{11}} \quad / \quad (\begin{array}{c} \Delta f \\ f_0 \end{array})
$$

where k_{12} is the normalized coupling coefficient of the low pass prototype, $\kappa_{12} = 1/\sqrt{LC}$, and Δf is the bandwid.ix of the bandpass filter.

Since in the present application the elements R and C are prescribed, the design should be started by assigning a value to the coupling capacitor C_{12} ; from C_{12} there follow C_{11} , L_2 and q_2 .

Now, applying the design equations for the desired type of low pass prototype response, one can calculate the values of R_1 and L and those of q_1 and of k_{12} . Finally, using the relationship expressing $C_{1,2}$, the value of the mesh capacitance C_{τ} is computed; from C_{τ} the values of L_1 and of R_s follow.

Although for the present design of FSK modulation the Bessel type response is preferable, we have calculated the designs for the Butterwork, the Clebychev and the Bessel cases. Taking for the capacitance C_{12} values from 0.5 vF to 3.0 piF we h•ive -found **tue** values shown in Tables **1,** Ii and III, also summarized in the graphs of figs 14, 15, 16,

 $-12-$

mar.

c_{12}	L_2 mh	C.	R,	L	\mathbf{q}_1	k_{12}	Luf	$c_{\mathbf{I}}$	$\begin{array}{c} L_1 & k_6 & c_{s1} \\ m h & c h m + \mu^r \end{array}$	
5. 0	10.659	11.5	0.129	0.093	0.76	0.945	${0.095}$	14.75 42.5 176 14.75 $\mathbf{x}_{10^{-10}}$		
$\left[2.0\right]$	0.575	10	0.151	0.115	0.76	0.935	0.111	$\begin{bmatrix} 198. \\ x10^{-10} \end{bmatrix}$		3.13 129 0.01
3,0	0.558	9.75	0.167	0,1185	0.71	0.935	0.113	$\left \frac{420}{\times 10^{-10}} \right $ 1.5 67.2 0.04		

Table I - Butterworth response

Table II - Bessel Response

r sait

yn.

c_{12}	L_{2} \cdot h	$\mathbf C$	R_{1}	L	$ q_1 $	k_{12}	$\mathbf{c}_{\mathbf{II}}$ μ F	$c_{\mathbf{I}}$ \mathcal{F}	L_{1} m/h	R_{s} Ω	\mathbf{c}_1 \ddot{r}
0.5	0.659	11.5	0.130	0.131	1.01	.815	.095	11.I $x10^{-10}$	56.8	176	11.1 $ x $: 0 ⁻¹⁰
1.0	0.60	10.5	0.115	0.142	1.23	.825	.105	40.7 $x10^{-10}$	15.5		39.6 40.7 $ x10^{-10} $
2.0	0.568	9,9	0.123	0.153	1.24	.814	.111	150 $x10^{-10}$	4.25	10.8	150 $x10^{-10}$
3.0	0.558		9.75 0.124	0.155	1.25	.806	,113	316 $x10^{-10}$	2.03	5.12	311 $x10^{-10}$

Table III - Chebyshev Response (1 dB ripple)

 \blacksquare

Considaring the case of the Bessel type response, it is seen that the optimum design is obtained in correspondence of values of C_{12} between 1 and 2 uF; slightly larger values (about 3 uF) are indicated for the Butterworth and the Chebychev **(I** dB ripple) responses.

Finally, another method of synthesis of the bandpass filter consists of direct application of the low pass-band pass transformation to the low pass prototype of fig 12; a further transformation is required to convert the network into one having a series output capacitance and another transfcrwation, based on the **Nu** ton equivalence, is utilized to obtain components which are practically realizable.

For the low pass prototype of fig. 12 the component relationships for a Bessel type response are as follows

The band pass transformed netw-ork is shown in fig **17;** however, in order that this network be applicable to antenna problem, its configuration must be modified to exhibit a series output capacitance. This is done with sufficient approximation for narrow band using the equivalence between the two networks of fig 18 at the center frequency of the pass band:

$$
c_2 = c_s \frac{1}{1 + (\omega_0 R_s C_s)^2}
$$

$$
R_2 = R_s \frac{1 + (\omega_0 R_s C_s)^2}{(\omega_0 R_s C_s)^2}
$$

In our application the antenna resistance is $R_g \approx 0.18$ Ohm and the antenna capacitance is $C_s = 0.1175 \text{ }\mu\text{F}$. There follows

$$
C_2 \leq C_8 = 0.1175 \times 10^{-6} \quad F \qquad R_2 = 24,500 \text{ Ohm}
$$

 $-14-$

Recapitulating, the design procedure for the low pass-band pass approximation method is as follows: in the normalized low pass prototype one has

 $R_2 = 1$ **C** $\approx 0.117 \times 10^{-6} \times 25,400 \times 2 \times 2 \times 10^4 = 9.39$ F From these values one calculates R_1 and L, i.e.

$$
R_1 = 0.115
$$
 Ohm $L = 0.0396$ h

In the corresponding band pass netowrk one has

$$
R_1 = 0.115
$$
 Ohm, $L_1 = 1.25 \times 10^{-5}$ h, $C_2 = 2.99 \times 10^{-3}$ F

where the passband of 500 Hz and the load of 1 Ohm have been assumed. Denormalizing to the load $R_2 = 24,500$ Ohm one finds:

$$
R_1 = 2920 \text{ Ohm},
$$
 $L_1 = 317 \times 10^{-3} \text{ h},$ $C_1 = 2 \times 10^{-10} \text{ F}$
 $C_2 = 0.1175 \times 10^{-6} \text{ F},$ $L_2 = 0.537 \times 10^{-3} \text{ h},$ $R_2 = 24,500 \text{ Ohm}.$

Difficulties wou.d be encountered in the realization of the inductance L_1 because of its large value; for this reason a network transformation consisting of the utilization of an ideal transformer or of a Norton equivalence is applied.

The use of an ideal transformer is shown in figli; in practice an autotransformer is used, tapping the inductor L_2 . Assuming that the transformer ratio is $1:10$, the tap is made at $1/10$ of the turns. The elements R_1 . L_1 and C_1 are modified as follows

$$
R_1 = 29.2 \text{ Ohms}, L_1 = 3.17 \times 10^{-3} \text{ h}, C_1 = 200 \times 10^{-12} \text{ F}
$$

The application of the Norton equivalence is shown in fig20 ; the combination of capacitance $C_1 \times t^2$ and an ideal transformer of ratio l:t is equivalent to the network of $fig.20$, where a negative capacitance $C_1(1-t)$ is present. Substituting in the network of fig 14, absorbing the negative capacitance within $C_2 = 0.1175 \times 10^{-6}$ F and

-15-

converting to the form of fig. 17 one obtains the final network of fig. 21, in this network, assuming that t **=10** , one has

$$
R_1 = 29.2 \text{ Ohm}, L_1 = 3.17 \times 10^{-3} \text{ h}
$$

$$
C_y = 180 \times 10^{-12} \text{ F}
$$
, $C_x = 20 \times 10^{-12} \text{ F}$
 $C_2 = 0.1175 \times 10^{-6} \text{ F}$, $R_a = 0.18 \text{ Ohm}$

In general, once the calculations for the Norton equivalence have been completed, it is necessary to recalculate all the network elements in order to convert the output capacitance value to that of the antenna; however, in the present case, the modification required is negligible,

Conclusion

Several methods for the synthesis of antenna feed networks for nperation with FSK modulation at wide frequency shift have been developed. Two types of networks have been derived, one of singleport type, having two zeros of transmission and allowing the entenna to operate with two separate bands centered respectively :t the mark and at the space frequency, and the other of two-port type, exhibiting a continuous band which extends from the mark to the space frequency. Efforts have been made to develop networks which have economically realizable components and which can be applied to existing antenna installations without extensive modiflcations.

References

- **I 1.** Jacobs and H.N. Brauch "keying VLF transmitters at high speed"Eleztronics Vol 27 (1934) , pp 148 - **¹⁵¹**
- 2 H.G. Wolf **-** " High speed frequency Keying of LF and VLF Radio circuits" IRE Trans. **CS-5** (19)7) N.3 pp 29-42
- $3 J$. Galejs- "Electronic bioadbonding of high q tuned circuits or antennas" Arch. Elektrische Ubertragung Vol 17 (1963) pp 375-380.
- 4 D.S. Humpherys -"The analysis, design and synthesis of electrical filters" Prentice Hall, N.J. 1970
- 5 A.I. 4verev and **H.** Blinchicoff "Application of network synthesis to broadbanding of low frequency antennas" Tran. IEEE Coums. Syst. June 1964 pp 237-250
- **⁶** W.R. Bennett and **S.O.** Rice "Spectral density and autocorrelation functions associated with binary frequency-shift keying" B.S.T.J. Sept. 1903 **pp2355-Z385.**
- 7 A.I. Zverev -"Handbook of filter synthesis" J. Wiley Publ. N.Y. **1907.**

Sideband amplitudes for $m = 2$

Fig. 1 - Example of spectrum of an FSK modulated wave

Fig.5 - Spectral density function of random binary FSK vave; -continuous phace, $2\Delta f = 1.2f_T$

FIG. 6 - One-port antenna feed network

Fig. **10-** Equivalent network transformation

 $\mathcal{A}^{\mathcal{A}}$

Fig 13 - Configuration of band-pass filter network

Fig IU- Equivalence between parallel combination and series combination of capacitance **and** resistance

