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Comparison of Several Gradient Algorithms

For Mathematical Programming Problem s

by

A. MIELE , J.L. TIETZE 3, and A.V. LEVY4

Abstract. In this paper, the numerical solution of the basic problem of mathematical

programming Is considered. This is the problem of minimizing a function f(x)

subject to a constraint tsx) = 0. Here, f is a scalar, x an n-vector, and cp a

q -vector, -with q < n.

Six variations of the sequential gradient-restorntion algorithm and the

combined gradient-restoration algorithm are considered, and their relative

efficiency (in terms of number of iterations for convergence) Is evaluated.

The variations being considered are as fcllows:

(M) SGRA-CR, sequential gradient-restoration algorithm, complete restoration,

(ii) SGRA,-IR, sequential gradient-restoration algorithm, incomplete restoration,

(iti) SGRA-OR, sequential gradient -restoration algorithm, optional resLoration,
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S12 AAR-94

(iv) CGRA -NR, combined gradient-restoration algorithm, no restoration,

(v) CGRA -AR, combined gradient -restoration algorithm, alternate restoration,

S(vi) CGRA-O1R, combined gradient-restoration algorithm, optional restoration,

Evaluation of these algorithms is accomplished through eight numerical "I]
examples. The first two examples pertain to quadratic functions subject to

linear constraints. The remaining examples pertain to nonquadratic functions i

subject to nonlinear constraints. The results indicate that (a) the inclusion of

a restoration phase is necessary for rapid convergence and (b) the algorithms

with alternate restoration or optional restoration are the most efficient among

those considered here.

I;

t! p
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1. Introduction

of •In previous papers (Ref. 1 -3), two basic algorithms for the minimization

of constrained functions were developed: the sequential gradient-restoration

V algorithm (SGRA) and the combined gradient-restoration algorithm (CGRA). The
I'

former is an iterative algorithm which consists of the alternate succession of

gradient phases and restoration phases; the latter is an iterative algorithm in

which the gradient phase and the restoration phase are combined in a single

phase.

In the gradient phase of SGRA, one generates a displacement Ax lowering

the value of the function, while avoiding excessive constraint violation; in the

restoration phase of SGRA, one generates a displacement Ax restoring the

constraint wo a predetermined accuracy, while avoiding excessive change in the

value of the function. On the other hand, in the gradient-restoration phase of

CGRA, one generates a displacement Ax lowering the value of the augmented

function, while simultaneously reducing the constraint violation.

In this paper, six variations of the sequential gradient-restoration

algorithm and the combined gradient-restoration algorithm are considered, and

their relative efficiency (in terms of number of iterations for convergence) is 4

evaluated through eight numerical examples. The variations being considered

are indicated below:

(i) SGRA -CR, sequential gradient-restoration algorithm, complete restoration,

(ii) SGRA-IR, sequential gradient-restoration algorithm, incomplete restoration, V
(iii) SGRA-OR, sequential gradient-restoration algorithm, optional restoration,

(iv) CGRA-NR, combined gradient-restoration algorithm, no restoration,
4444!
:,4 .



4 AA6R-94

(v) CGRA-AR, combined gradient-restoration algorithm, alternate restoration, []

(vi) OGRA-OR, combined gradient-restoration algorithm, optional restoration.

Ii;

Ii
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5 1AAR-94

2. Statement of the Problem

We consider the problem of minimizing the function

i ,subject to the constraint (

=0(x) o (2)

where f is a scalar, x an n-vector, and rp a q-vector, with q < n. Here, all vectors

are column vectors. It is assumed that the first and second partial derivatives

of the function f(x) and cp(x) exist and are continuous and that the constrained

minimum exists.

2. 1. First-Order Conditions. From theory of maxima and minima,

it is known that the above problem is equivalent to that of minimizing the

augmented function

TF(x,•) =f(x) + X Cj(x) (3)

subject to the constraint (2). Here, the q-vector X is the Lagrange multiplier

and the superscript T denotes the transpose of a matrix. It

F (X, X) =f (X) + CP(x)) (4)
x x x

denotes the gradient of the augmented function, the optimum solution for x and X

must satisfy the relations

7 €(x)= 0 F (x, X) =0 (5)X

g4

4,
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which are a system of n + q equations in the n + q components of x and X. In

Eqs. (4)-(5), the gradients f and F denotes n-vectors and the matrix C0x isx x

n x q. 1j-

2.2. Approximate Solutions. Since the system (5) is generally nonlinear,

approximate methods must be employed. In this connection, we introduce here

the scalar performance indexes i

P(x) = (x)(x) , Q(x, X) = F (x, X)F (x, X) (6)x x

which measure the errors in the constraint and the optimum condition, respectively.

Then, we observe that P = 0 and Q = 0 for the optimum solution, while P > 0 and/or

Q > 0 for any approximation to the solution. When approximate methods are used, they

must ul~irmately lead to values of x and X such that

P(x)!el Q(x,X) e2  (7)

Alternatively, (7) can be replaced by

R(x, X) c 3 (8)

where

R(x, X) = P(x) + Q(x, X) (9)

denotes the cumulative error in the constraint and the optimum condition. In

(7)-(8), ell, C2P S3 are small, preselected numbers. Note that, if one

chooses = C2 C 3' satisfaction of Ineq. (8) implies satisfaction of Ineqs. (7).

Sm m • .
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3. Description of the Algorithms

In this section, the algorithms being investigated ;-re described.

I (i) SGRA-CR: Sequential gradient-restoration algorithm, complete

9 irestoration. This algorithm consists of the alternate succession of gradient

phases and restoration phases.

The gradient phase is started providing

SP(x) f, r (10)

j It involves a single iteration, ii which the augmented function is reduced subject

V to an upper limit for the constraint error, that is, 5

_ F(R, X) < F(x, X) P(R) !5 e4 (11)

( The restoration phase is started providing

P(x) > e (12)

It involves several iLerations, in each 0f which the constraint error is reduced,

that is,

P(R) < P(x) (13)1.
The restoration phases Is terminated whenever Ineq. (10) is satisfied.

The symbol x denotes the nominal point, R the varied point, and X the

L! Lagrange multiplier. A
S:I '
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Remark. The algorithm is started with a gradient phase if Ineq. (10)

is satisfied or a restoration phase if Ineq. (10) is violated. Normally, a gradient

phase is followed by a restoration phase. Occasionally, the gradient phase is

followed by another gradient phase, that is, the restoration phase is bypassed: L
this is precisely the case whenever Ineq. (10) is satisfied.

(ii) SGRA -IR: Sequential gradient-restoration algorithm, incomplete

restoration. This algorithm consists of the alternate succession of gradient

phases and restoration phases.

The gradient phase is started regardleus of whether Ineq. (10) is satisfied.

It involves a single iteration, in which the augmented fUnction is reduced subject

to an upper limit on the constraint error, that is,

F(R, X) < F(x, X) , P(5) - P(x) + c,4 (14)

The restoration phase is started only if Ineq. (12) Is satisfied. It

involves a single iteration, in which the constraint error is reduced in accordance

with Ineq. (13).

The start*,;, condtdon and the bypassing condition for SGRA -IR are I "

Identical with twase of SGRA -CR (see Remark). "

(iii) SCJRA-OR: Sequential gradient-restoration algorithm, optional *
restoration. 'rs algorithm consists of the alternate succession of gradient

phases and restoration phases.

The gradient phase is started providfng

Z(x, X) <1 (15)
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where the parameter Z is defined by

Z = eP(x)/Q(x, )) (16)

with

= e2/1  (17)Li

It involves a single iteration, in which the augmented fnction is reduced it

accordance with Ineqs. (14).

The restoration phase is started providing

Z(x, X) > 1 (18)

It involves several iterations, in each of which the constrallnt error is reduced iM

accordance with Ineq. (13). The restoration phase is terminated whenever Ineq. (15)

is satisfied.

The bypassing condition for SGRA -OR is identical with that of SGRA -CR

(see Remark).

4k
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(iv) U -M- CoAmbied grsoe-r a res .

In this algorithmn, the gradient phase and !be rarorai phaws an cembwd

together in a skDnle phase. It izvolves a sin-e fterafiok iun wk tie zegamd

function is reduced in accordance with Ineqs. (14).

(v) CGRA -M Combined graient-restorafim atjp bn. *cum

restoration. This algorithm consists of the altern sa cessiam of Cmuidz

gradient-restoration phases and restoration phases.

irz,, combined gradient-restoration phase is starced regarldss of whedvr

Ineq. (10) is satisfied. It involves a single iteration, in which thre a.waetd

functicn is reduced in accordance with Ineqs. (14).

The restoration phase is started only if n•wq. (f2) is satisfied. ft

involves a single iteration, in which the comstraint error is reduced in

accordance with Ineq. (13).

The starting condition and the b~pa-sing coilditioa for CA-"An-AR

identical with those of SGR.A-CR (see Remnark).

(vi) CGRA -OR: Combined gradient-re-storation algorithm,, option-3

restoration. This algoriz.'in consists of the alternate succession of combined

gradient-restoration phases and restoration phases.

The combined gradient-restoration phase is started providing Ineq. (15)-

is satisfied. It involves a single iterationin which the augmented function is

reduced in accrdance with Ineqs. (14).

The restoration phase is started providing Ineq. (18) is satisfied. It

involves several iterations, in each of which the constraint error is reduced

.'4
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fr armIconbi*k uf eq. (13). Tbe restoration phase is terminated whenever

-im. 0%~ is sjfiftLe

Tb-. DW7auiN~cv~m~h for CGRA-OR is identical with that of SGRA-CR

LuiajL For thC 215L1111U3 with Ogtiomal restoration, the multiplier )

affhgei (I5)-(1S)is counjuted as follos. For SGRA-OR, Eq. (19-1)

ma be-Sfibed Vkh C =1 ad C =0. For CGRA-OR, Eq. (19-1) must I-e
1 2

IwMA'AfiinhC I Iard C= 1.

2ei
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4. Generalized Algorithm

Let x denote the nominal point, M the varied point, Ax tl..; displacement

leading from the nominal point to the varied point, and m the stepsize. With

this understanding, the previous algorithms can be represented in the following

generalized form:

DX (x~q ( l+ciPx(x)fx(x) -C 2crx) =)C 0XX (19-1)

x x
P=0 Cf(x) +e (x()X (19-2)

Ax = -ap (19-3)

=x + Ax (19-4)

For given nominal point x and constants C and C29 Eqs. (19) constitute a

complete iteration leading to the varied point M providing one specifies the i

stepsize m. The constants C and C2 depend on the particular algorithm and V
take the values given in Table 1. The detailed derivation of Eqs. (19) is

presented In Refs. 1-3 and, hence, is not repeated here.

.1t
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Table 1. Characteristic constants.

UAlgorithm Phase C C2

SGRA Gradient 1 0

Restoration 0 1

SGradient -restoration 1 1
CGRA

L Restoration 0 1

Li

9-

.4_
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5. Stepsize Determination [3
For all of the previous algorithms, the position vector at the end of any

step can be written as ti
S= x - ap (20)

where p denotes the search direction, which is given by (19-2). This is a L.

one-parameter family of varied points 5, for which the augmented function (3),

the constraint error (6-1, and the error in the optimum condition (6-2) take

the form

F(., X) = F(x - ap, X) = F(cL) (21)

P(R) = P(x - ap) = P(d) (22)

Q(o, X) = Q(x - ap, X) = Q(a) (23)

1!For the gradient phase of a SGRA -algorithm or the combined gradient -

restoration phase of a CGRA -algorithm, Ineqs. (11) and (14) can be written4t
in fhe general form

P(a) < P(0) R•) !5 R0) + C4 (24) .(24)

Their satisfaction can be ensured by employing a bisection process, starting

from a suitably chosen reference stepsize

a.= a (25) 1
04

I
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L

For the determination of the reference stepsize, see Section 6.
L

For the restoration phase of a SGRA -algorithm or a CGRA -algorithm,

Ineq. (13) can be written as

fL P(M) <P(O) (26)

LAIts satisfaction can be ensured by employing a bisection process, starting from

"the reference stepsize

~ I ~=1 (27)

This value reduces the constraint error P(x) to zero, if the constraint function

tp(x) is linear in x.

4

'-I
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6. Reference Stepsize

The search technique outlined in Section 5 for the gradient stepsize

employs a bisection process, starting fromthe reference stepsize (25), i
until satisfaction of Ineqs. (24) occurs. A procedure useful to determine this

reference stepsize is outlined here and is based on a quadratic representation

of the augmented function associated with the one-parameter family of solutions (20). U
Let the function F(ca) be represented in the quadratic form

F(ad) k + k I(+ k2 (28)

and let the coefficients of the quadratic be determined so as to match the values

of the ordinate and the slope at (x =0 and the value of the ordinate at M I .

This yields the relations

F(O)=k 0  , ()=k , ()=kO+k +k 2  (29)

which imply that

k 1F(0) , k -Q(O) k2  F(1) -F(0) + Q(O) (30)
02

With the coefficients known, the following possibilities arise:

(i) k2 >0 or (ii) k 20 (31)
2 22

In Case (i), the quadratic function (28) has a minimum for the following value

oi the gradient stepsize:

o.=-k /2k (32)1,2
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.In Case (ii), the quadratic function (28) decreases monotonically with a.

This suggests the use of the following reference values for the gradient stepsize:

%o =-k /2k 2 if k2 >0

II (33)
a=I if k2g0o 2o

It
H

L.o

it

.4'
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7. Experimental Conditions

In order to evaluate the previous algorithms, eight numerical examples

were considered. The first two examples pertain to quadratic functions subject

to linear constraints. The remaining examples pertain to nonquadratic functions y
subject to nonlinear constraints. Each example was solved with the three

versions of SGRA and the three versions of CGRA outlined in Section 3. All of LI

the algorithms were programmed in FORTRAN IV, and the numerical results

were obtained using a Burroughs B-5500 computer and double-precision arithmetic.

Starting Point. For all of the examples, the nominal point chosen to

start an algorithm was defined by

=x = .... =x =2 (34)

w, •c n denotes rhe dimension of the vector x.

Search Technique. The determination of the gradient stepsize and the

restoration stepsize was performed in accordance with Sections 5 and 6. For

the gradient phase, the stepsize cL was subject to the inequalities

F(d) < F(o) , (cL) P (o) + 1 (35)

For the restoration phase, the stepsize was subject to the inequality

P((%) < P(o) (36)

Convergence. Convergence of an algorithm was defined through the inequalities

- --
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P(x) ! 108 Q(x, X) -0 -4 (37)

VNonconvergence. Conversely, nonconvergence, _, algorithm vas

defined by means of the inequalities

(a) N > 100 (38-1)

or

(b) N > 20 (38-2)

or

• 1069
(c) M >0.4 x 10 (38-3)

Here, N is the iteration number, N is the number of bisections of the stepsize a

required to satisfy Ineq. (35) or (36), and M is the modulus of any of the

quantities employed in the algorithm. Satisfaction of Ineq. (38-1) indicates

divergence or extreme slowness of convergence; satisfaction of Ineq. (38-2)

indicates extreme smallness of the displacement Ax; and satisfaction of Ineq. (38-3)

indicates exponential overflow. Each of these situations is undesirable.

(I

4i -|
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8. Numerical Examples

In this section, eight numerical examples are described. The first two

examples pertain to quadradc functions subject to linear constraints. The

remaining examples pertain to nonquadratic functions subject to nonlinear

constraints.

Example 8.1. Consider the problem of minimizing the function

r2 2 2 2 (9
f=(x 1 -x 2) +(x 2 +x 3 -2) +(x4- 1) +(x 5-1) (39)

subject to the constraints

x +3x =0 x -2x=0 , x2 -x5 =0 (40)
1 2 ' 3 4  52 5

This function admits the relative minimum f = 4.0930 at the point defined by

x 1 =-0.7674 , x2 =0.2558 , x3 =0.6279 , x4 =-0.1162 , =0.2558 (41)

and

X =2.0465 , X2 =2.2325 , =-5.9534 (42)
123

Example 8.2. Consider the problem of minimizing the function

2 )2x24)2)

f= (4x"1 x2 ) + (x2 + x3  2)2+(x 4 1)+ (x5  1) (43)

subject to the constraints

x +3x=0 x+ -2x=0 , x-x=0 (44)1 2 3 4  5x2 x5, Vf 1
This function admits the relative minimum f = 5.3266 at the point defined by
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0=-.9455x ,x 2 =0.3151 x 10, x3 =0.5157, x4 =-0.4527, x5 =0.3151x10 (45)

and

X =3.2779 , 2 2.9054 , X = -7.7478 (46)

Example 8.3. Consider the problem of minimizing the function

f =(x 1 -1)2 + (x 1 -x 2) + (x2 -x 3 )4 (47)

subject to the constraint

2 4
x 1(1+ x 2 )+x 3 -4 - 32 =0 (48)

-1
This function admits the relative minimum f = 0.3256 x 10 at the point defined by

x1= 1. 1048, x2 = 11966 x 3  1.5352 (9)
1 3

and

x = -0. 1072x 10" (50)

Example 8.4. Consider the problem of minimizing the function

12 2 2 4 6 (1
f = =(x1 - 1)2+(xI -x 2) +(x- 3 1)2+(x 4 -1)+(x5  (51)

subject to the constraints

x 2lx + sin(x4-x5) -2/2=0 x +x +x x_- 8-J2=0 (52)

This function admits the relative minimum f = 0.2415 at the point defined by
4i
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x=1.1661 , x2 =1.1821 x3 :-1.3802 , x4 =1.5060 , x5 =0.6109 (53) fl

and ,1

X1 =-0.8553 x 10" 1 , 1 X = -0.3187 x 10"1 (54)
1 2

Example 8.5S. Consider the problem of minimizing the function

f =2(x1 -1) +(xI -x 2 ) 2  x-x 3)2 + (x3 -x 4 )4 + (x4 - x5 )4

subject to the constraints

2 3 xx2-
x + 2 + x3_ - 3,/2 o, x. - 2 +x +2- 2W2 =0 , x x o (56)1 2 x3 32=0 3 4x1 5

This function admits the relative minimum f = 0.7877 x 10"1 at the point defined by

x1 = 1. 1911 , 2 =1.U3626 x 3 1.47U28 x4 1..6350 , x 1.6790 (57)

and H
X1 -0.3882 x 10"1 , 2 =0.1672 x 10 1  X3 =-0.2879 x 10. 3  (58)

Example 8.6. Consider the problem of mtidmizing the function

2 22
f= 0.01(x 1 - 1) + (x2 - x ) (59) L

subject to the inequality constraint

x1 5-1 (60)

Introduce the auxiliary variable x3 defined byV"
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x1 + 23 +1=0 (61)

Then, the previous problem can be recast as that of minimizing the function (59)

subject to the equality constraint (61). The function (59) admits the relative

minimum f = 0.04 at the point defined by

x=1 x2 =1 , x3=0 (62)

-i
and

X= 0.04 (63)

Example 8.7. Consider the problem of minimizing the function

f= -x1  (64)

subject to the inequality constraints

3 2
Sx , x ! x (65)

Introduce the auxiliary variables x3 and x4 defined by

X 3 2 2 2x2 - x1 -x 3 = 01 -x-x=0 (66)

Then, the previous problem can be recast as that of minimizing the function (64)

subject to the equality constraints (66). The function (64) admits the relative

minimum f = -1 at the point defined by

x1 2 I3 , x4 =0 (67)2 3 4
i 'A ,
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Example a8. CAnsider the iwolem ci ofidmiig do

i f = 109xi - X2 a

subject to the equality constrain

2 2
X2 + -4=0
x2 3

and the inequality constraint

Introduce the auxiliary variable x1 defined byv

2
x3 =1+X1 xi

Then:, the previous problem can be recast as that of minimizing the functic

2
f=log(l+ t 1) x2

subject to the equality constraint

22 2

Note that x3 has been eliminated from the problem and can be computed a poseriori

with (72). The function (73) admits the relative minimum f = -,/3 at the point defined bhr
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-t :i 43 M37  (75)

I. =JZ.4S(76)

i w

[I

• •mmm •mmK
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9. Results and Conclusions

The examples described in Section 8 were solved with the three versions of

SGRA and the three versions of CGRA described In Section 3. The numerical

results are presented in Tables 2-3, where the number of iterations for

convergence N. is shown. For the eight examples considered, Table 4 shows

the cumulative number of iterations for convergences FN., From the tables, I
the following conclusions arise: (a) a restoration of some form is necessary for

rapid convergence; and (b) while SGRA-CR is the most stable among the

algorithms considered here, rapidity of convergence can be increased somewhat If
one employs algorithms with alternate restoration or optional restoration.

Li

I)

L.I
Li!

,Li
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L

Table 2. Number of iterations for convergence N*.

U Example SGRA-CR SGRA-IR SGRA-OR

LI 8.1 5 5 5

8.2 8 8 8

S8.3 18 14 16

8.4 56 51 42

8.5 8 7 7

S8.6 15 12 16

8.7 9 15 9

8.8 11 11 10

(I

Table 3. Number of iterations for convergence N,.

Example CGRA-NR CGRA-AR CGRA-O R

8.1 17 5 5

8.2 65 8 8

8.3 22 16 16

8.4 36 54 43

8.5 7 7 7

8.6 >100 19 13

8.7 13 7 9

8.8 15 8 10

;

*4 " ' •" ... . . +
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Table 4. Cumulative number of iterations for convergence Z*.

Algorithm INL

SGRA-CR 130

SGRA-IR 123

SGRA -OR 113

CGRA-NR >275 I

CGRA -AR 124 f
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