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,.is the calculation Of thermal strer--in the tubes of' the radiators,

cooling the panels and ribs, and in the cylindrical and conical

shells. Considerable attention is given to the calculation of

thermal streiS in the electrodes of motors and parts of the feed

system. In the appendix is given) information on the rupture strength
of the materials most widely used in extraterrestrial engines.

This book is a ianual for senior students in courses of related

* •specialties. It can also be useful to engineers and designers who

work in the sphere of space technology. 30 tables, 350 illustrations,

bibliography of 52 titles.

k
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'.PREFACE

This manual is written in accordance with the program of a
course in the design of extraterrestrial electric rocket engines

(ERE), and is to be read in schools of higher educaticn.

In the press a number of problems connected with ERE have

been widely discussed. However, the questions examined in this book
of their design, strength, vibrations, have not as yet been properly

systematized and much time shculd be spent on their study.

In this manual vie-have made an attempt at the systematic
presentation of the indidted information. In its preparation
the authors took ii:to account the fact that the students are
already familiar with courses on the strength of materials and

the theory of extraterrestrial electric rocket engines.

The book consists of five chapters. Chapter I presents general
information on extraterrestrial engines and requirements imposed'on

them; ERE classification is given, there fundamental and structural
diagrams are presented, and also the general problems of reliability
and strength are examined.

Chapter II contains fundamental information on design and

stress analysis of the ERE power generator. The greatest attention
is here given to nuclear reactors; their classification, structural
diagram, and design of separate units and parts are examined.

FTD-MT-24-1462-71 viii
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In stress analysis the calculation of thermal stress in reactor parts

is of considerable interest.

Furtherdiscussed are the areas of applicability, the design

and stress ahalysis-of radioactive isotopic, power sources, solar

concentrato' ,, and fuel elements.

Chapter III has been dedicated to the energy converters in an

ERE. Along with mechanical energy converters which include the

turbine, generator,, shafts, bearings, we examine thermoemission,

thermal, and photoelectric converters, Chapter IV deals with

the problems of strength and design of heat exchange equipment.

Chapter V has been' dedicated to motors, Plasmas and ion motors,

their classification, structural diagram, design and stress analysis,,

particularly- thermal stress, make up the basic content of this

chapter.

In the manual are used materials publisLed in the press'. The

given examples of design and calculati~n have a methodical character

and are not connected with specific engines.

The section dedicated to the problem 6)' reliability of an

extraterrestrial engine (Chapter I) is writtei, by Doctor of the

Technical Sciences, Professor D D. Sevruk, the section on

"Machine Converters" (Chapter III) and "Heat-Exchange Equipment"

(Chapter IV) by Docent D. N. Surnov, the section "Vibration of a

Rotor on Hydrostatic Bearings" (Chapter III) is written by

Doctor of the Technical Sciences Professor A. F. Gurov and Teacher

* V. I. Bykov; the remaining-material is by Doctor of the Technical

Sciences, kProfessor A. F. Gurov.

P • The manuscript was looked over 'by Doctor of the Technical

Sciences Professor A. V. Kvasnikov and his colleagues who made

a number of valuable remarks. Many useful indications have been

FTD-MT-2JI-1 1162-71 ix



made by the reviewers. The authors express their sincere gratitude

to them. Furthermore, the authors are grateful to Doctor ofTechnical Sciences Professor G. S. Skubachevskiy who was of great
aid during the work on this book.

All remarks and requests for this book should be directed tothe Mashinostroyeniye Publishing House (Moscow, B-66, ist Basmannyy
per., 3).
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CHAPTER I-
I]

EXTRATERRESTRIAL ENGINES a,

The purpose of a,-cOurse in the.,design-and stress analyis ,of

extraterrestrial electric rocketi engines is to study designs of

engires (ERI), their units and parts, stress and vibiation analyslis,

the development of experiencein planning and designing units and
parts, and-researchon the dynamic phenomena which aocompany engine

operation.

Various engines can b.e used in space. Today wiaely used are

chemical propellant rockets - liquid propeilant rockets (LPRE)

and solid propellant rockets (SPRE). a

In this course are, studied designs of extraterrestrial.

electric rocket engines-and the thrust which they create as a result

of interaction of electromagnetic and elecqrostatic'fieids with the

ionized working medium.,. Such an engine considts of two fundamental

parts: the airb,?rn power installation and the engine itself, which

can be called a Motor (predominantly lbw thrust).

1.1. CLASSIFICATION OF ERE,

All electric rocket space engines, based'on type of power plant

can be divided into ERE:

I t

I FT1D-MT-2-I4.4i62-71 i .I ,t
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- with nuclear reactor (or reactors);
with ehf• use of rad4bactive isotope poifer;

-with the.,pse of solar energy;

'-with the use of chemipal energy.'

Ba'ed'on the methodeof energy oonve••ion'into electrical,

they can be divided 'into motors:

w4%th mechanical power conversion;

- 1 -h thermoenjission power gonversion; '

,-- h'*• thermoelectric and photoelectric power conversion;

u; h thermodhemical power conversion 4 by fuel element;
- with magnetohydrodynamic power conversioh,

: I 'Ii

Ba8ed- on type of,'Mdto2:

- ionLc (electrostatic); A
- plasma;

!, electrothermal. ,

Bdased 'ol purpose:

- sustainer;

- correction;

- short-life one-shot use. ,

Engines are divided also into multimode afid single mode.
S I !

Let us examine the classificaiion based on purpose because

in ,courses on engine theory this classiticatibn has: not been thoroughly

studied.1
I I !

Sustainer dngineslare intended to prov4delinterplgnetary flight

into outer space.' These motors can be both 'single mode and multimoee.

In the latten case, they can change the value and the direction of

the thrust sector. A gradual variation in the thrust! level 6an be

accomplished by switching the, motors in the power installation-,o

and off or by continUously varlible control. Sustainer, mdv.s cn
beldesigned for manned,,or unmanned'flight. The piloted~spacecraft

I 4 I 2

I I
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requires special protection of the crew from cosmic radiation and

radiation from the nuclear reactor. For some space programs such

motors can operate for 10,000 h or more.

Correction motors are intended for correcting the trajectory

(orbit) of spaceflight vehicles. The operating time of these motors

can reach 100 h.

Short-life motors are single mode motors of one-shot use for

pilotless flight vehicles and for man-made satellites of various

purposes. The duration of their operation does not exceed 5 h.

1.2. REQUIREMENTS FOR EXTRATERRESTRIAL
ELECTRIC ROCKET ENGINES

The specific mass of the motor

The motor should have the very lowest specific mass.

The specific mass of the motor yis the ratio of the mass M

of a "drive" motor (without the expended'working medium) to its

thrust R (in kg/N) or to the electrical power N (in kg/kW):

M or (i)

¶'ihe parameter-y estimates the degree of weight perfection of

the motor.

In designing motors we start from an assignment in which thrust

level, as well as the size and mass (weight) engine characteristics,
have been shown. In this case, it is advantageous that a motor of
given thrust have minimum overall size and mass.

Sometimes overall size and mass of the motor are given and

it is necessary to obtain a motor with the maximum possible thrust,

FTD-MT-24-1462-71 3



This task appears frequently in planning as the result. 9Pf the modification

of designs already built. The parameters of a motor, its character-

istics - thrust and power - are connected with its overall size and

mass.

The specific mass of a motor is one of the important quality

criteria in engine design. In proportion to the perfection of the

design its specific mass is decreased.

Extraterrestrial electric rocket motors are not produced in

serial production; they have not acquired final forms. This is why

their specific mass fluctuates within a wide range and depends upon

the -type of design, purpose, and power of this system.

Table 1.1 and Fig. 1.1 show the specific mass of various power

units for space engines and their power.

Table 1.1.

NAME OF SYSTEM N kW y kg/kW

Turbogenerator with nuclear reactor 10,000 3
5 100

Thermoemission with nuclear reactor 2500 4
8 8o

Thermoelectric with nuclear reactor 5 200
and protection 0.3 1000

Thermoemission with solar power 3 50
concentrator 0.1 45

Thermoelectric on radioactive ,1 120
isotopes 0.1 300

As can be seen from the table'and Fig. 1.1, the specific mass

of power units depends upon electrical power. A particularly noticeable
reduction in specific mass is seen with an increase in the power of

the power plant with nuclear reactors. This is explained by the fact

that specific mass is defined as the ratio of the ERE's mass to the

4



electrical power of the power installation. This is convenient
because the thrust of the motor R and the electrical power of the
power installation N (W) are connected by the ratio

'Ve rw2 R.

where m - the per-second mass flow of the working medium, kg/s;
w - the discharge velocity, m/s; R - thrust, N; v,. - the efficiency
of the motor.

Ske/im.

SI3100,.

Igo 908 500

~U .. " ,
SII 10 ~ 100 1000 50

Fig. 1.1. The dependence of the specific mass of power units on
electrical power: 1 - thermoelectric system on radioisotopes; 2
solar photoelectric batteries; 3 - thermoemission system on solar
energy; 4 - thermoelectric system with atomic reactor without
protection; 5 - thermoelectric system with atomic reactor with
protection; 6 - turbogenerator system on solar energy; 7 - thermo-
emission system with atomic reactor without protection; 8 - thermo-
emission system with atomic reactor with protection; 9 - turbogenerator
system with atomic reactor without protection; 10 - turbogenerator
system with atomicrreactor.

*: Designations: KO/KOM = kg/kW, xem = kW.



F ~~~~~~~ ~~ ~ ~ - -- - ---. ~ . - "~V - '' ' . O . ~ r T W .i

The mass of the nuclear reactor and the mass of the protection
unit, making up the major portion of the mass of the power plant,
vary little with an increase in the power of the power plant.
Therefore, at high power levels the specific mass of installations
with nuclear reactors is the smallest and these installations are
preferable for use in space engines.

Turbogenerator installabions have less specific mass as compared
with ther•moemission beginning with a power of approximately 50 kW
"because ,•f the higher efficiency which is evident from Fig. 1.2.

1S~

- - - . -

oo 1000
No i5mFig. 1.2. The dependence of mass and efficiency of nuclear powerunits upon electrical power (without protection): 1 - the mass ofthermoemission installations with efficiency equal to 10; 2 - themass of turbogenerator installations with efficiency changingaccording to curve 3; 3 - the efficiency of turbogenerator power

installations.
Designations: x* = kg, xm = kW.

6



Extraterrestrial motors in power from I to 50 kW are promising

with thermoemission, thermoelectric energy conversion with any

nonnuclear heat source. Radioisotope power sources are effective

for systems with thermoelectric energy converters for low-power

motors (from 30 W to 50 kW).

The economy of extraterrestrial motors

The second important requirement for an ERE is, minimum.

expenditure of working medium during its operation, i.e., the best

economy.factor. This is determined by the specific function of

the worki'ng medium.

Specific consumption is the ratio of the flow rate per second

of the working medium to the thrust level of the motor (kg/N-s):

C,,Mr. (1.2)

In an electrical ERE the entire reserve of the working medium

is located aboard the ship, therefore, we determine the economy

factor of a motor based on the specific impulse.

The specific impulse of a motor is the ratio of its thrust to

the flow rate per second of the working medium: J = R/m T This

value is inverse to the specific flow rate of the working medium.

Specific impulse in the International System is

WIz=[A N-s/kg (1.3)

Table 1.2 givesa comparison of the specific impulses of plasma

extraterrestrial engines (PEE), ion extraterrestrial engines (IEE),
and liquid propellant rocket engines (LPRE).

Ak-7



Table 1.2.

Ilmpulse J LPRE PEE MEE

/s e.2-3.5)'103 (50-100).103 up to 600.i03

Extrateri'zestrial electrical rocket motors have a specific

imPulSe higher \than LPRE. This explains the preferred use of
electrical rocket motors for interstellar flights. The value of

specific impulse, In each concrete case should be optimal.

Reliability and:' servi:`e life of ERE

Reliability is usually understood as the property of the product
to execute assigned' functions, preserving its operating indexes
within assigned limits during the required time interval -or required
operating time.

The reliability of a product is explained by its ".dependability,"
"maintainability," "storage stability," and also by the "longevity"
of its parts.

In this section we examine only problims relating to longevitY'.
A broader discussion of the problem of relfdbIlitly is given in
section 1.4.

Longevity is- the property of a part to preserve efficiency
up to a limiting condition with the necessary interruptions for
maintenance and repair.

The indexes of longevity are life and service.period.

Life is characterized by the length of operating time up to
a limiting condition Specified in the technical specifications and
records. The service period is the length of time by the calendar

8
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that a part operatesbefore!te limiting condition sets in or before

write-off.
! *

Identical motors during operation will have different longevity

since damage and breakdowns are possible in various elements of the'

motor and at different times and occur as a'resuit of scarcely

noticeable differences in'material, manufacturing;procedures, ptc.

i I

The life (service) is established'by. the supplier plant as

the time of guaranteed faultless operationof the engine. After

working its full life the engine is removed- l'om operation.

Longevity is different for engines-of different purposes-.

For example, for liquid and solid propellant rocket engines (LPRE and

SPRE) it is less than 5 h, for aviation turbojet'(TJE) 100-1500 h,'

and. for extraterrestrial electrical rocket engines (ERE) 5-l0,000 h.

Life pf ordinary rocket. engines (LPRE and SPRE) for one-shot

use is made up of the useful operating time, the' plant inspection time,1

and the acceptance testing time. I I

The life of engines for repeated l use is easily established,

based on the trouble-free service time of the most stressed critical
part of the engine. Such engines have the concept of full or

amortized life, which is established from several intermediate liv4s.
After operating for a period corresponding to an intermediate life-

time the motor undergoes complete dismantling, replacement, of stressed

parts which are dangerous in an emergency, and then the second

operation on the following lifetime. There can be several such

* lifetimes. Amortized or full life can consist of two or three

intermediate lifetimes after overhauls. Only after working out the
amortized or full lifetime does an engine go for remelting.

The longevity of ERE can be different depending upon their

purpose.,

9' I



SRadiatfa, -safety, for a ERE

* I

Radiation safety is-especidlly important for systems whose power

source is a nuclear reactor or radioactive isotopes.

The requirem~pts ~for safety techniques for emergency states
are.different depeiding upon the time and place of:the emergency.

If theemergency is at, the start, in the immediate proximity of

the earth's suriace (altitude of failur4 no more:than 50 km), the
power plant sh6uld lbe al.owed to fall and not be destroyed (it can

n6t haVe time to burn). If the emergency occurs upon start at a

significantidistance from earth, the ERE should be destroyed into

such fine particles as to ens'ure :that the installation will burn up

at a distafce of 100-150 km from earth. If such destruction does
,notloccur, or if the destruction'or emergency occurs in the zone

of earth,orbits, it should be shot off,to the ?iJe of orbits exceeding
400 km wherb its radiation is not dangerous and where it can remain

for a Tong period of time.
I I

1.3.; STRUCTURAL DIAGRAMS OF ERE

Let us examine an ERE with an ion motor and a'power installation

wiih an energy conversion machinei Figure -1.3 shows the structural

,diagram ofsuchian tRE. It consists of two fundamental parts - the
power ihstallation 1-14 and th'e ion motor itself 15.

The poweri instdllation is a three-circuit system and each
circuit is a sealed independent system where liquid metal circulates.

Despite the apparent complexity, a three-circuit diagram is preferable

to a single-circuit orla two-circuit.

One of the substantial advantages of the three-circuit

installation is the fact that 'in the reactor'and the cooler-radiator

the -woring medium is in a single-phase ,working state,

; ' i0



Fig. 1.3. Diagram of an ERE with mechanical energy
conversion and an ion rocket motor,

In the single-circuit installation the reactor should be a

boiling reactor. In the two-circuit installation we can not avoid

the two-phase state of the working medium in the radiator,

The first outline of the installation consists of the reactor 1

with protection, the steam generator 2 and pump units 12, the

oxide trap filter 11 and compensating capacitance 13.

The second circuit of the installation consists of a steam

generator 2, a turbine 3 of the turbogenerator, turbine control 14,
regenerative heat exchanger 5, condensation heat exchanger 6, and'

units 11, 12 and 13.

The third outline of the installation consists of condenser 6,
cooler-radiators 7 and 9, heat exchanger 8, and bearings 4 of the

turbogenerator.
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Table 1.3 shows the working media, temperatures, and pressures

which may be encountered in designing such an installation. As can

be seen from the table, mercury, potassium, and sodium eutectic make

possible the designing of a comparatively low-temperature power--pglnt.

Its advantage lies in the possible use of simpl' stainless steel

F • of type Khl8N9T. The low level of temperature for the heat carrier

simplifies the finishing of this installation and operation. The

shortcoming of these working media is the low temperature of the

radiator. A cycle with elevated radiator temperature under equal

conditions gives a lighter installation.

An installation where the working media are l-.thium and potassium,

other conditions being equal, has less mass because of the decrease

in size of the radiator. However, here we should consider the

-necessity of using the more expensive materials niobium and molybdenum

in ircuiý ts With lithium.

Installations with sodium and potassium have a more intermediate
position with respect to their advantages,

Let us examine the interaction of elements of the installation
(see Rig. 1.3). Sodium or lithium eutectic ,'rom the reactor enters
the steam generator 2 forming the steam of the working medium for
the secondary circuit of the installation. Steam entering turbine
3 tunts the rotor of the turbogenerator, installed, as a rule, on
hydrostatic bearings. The working medium enters regenerator 5 where
part of the heat is given off to the condensed working medium and
further into condenser 6 where the steam is completely condensed.

The condensation of vapor in the secondary circuit is accomplizhed

by the cold liquid metal of the third-circuit Which is usually
selected to be the same as the metal of the first circuit. In the
third c.rcuit the heat is expended by the condenser-radiator 7.

The pumping of metal in each circuit is done by pump 12 and the
rceaning by filter 11; the compensation of metal expansion during

13



heating is accomplished by capacitor 13. Turbine~revolution is

controlled by regulator 14.

Part of the liquid me t-tl in the third circuit enters the bearings

of the turbine generator. Usually the temperature of this metal

coming out of the radiator is higher than-the optimum temperature

i of the bearing. It should be lowered to t = 50ý-200°C. Pressure

in the circuit,, defined only by resistance in the circuit and the

cavitation characteristics of~pump 12 (usually not exceeding (1.0-2) x

X 105 N/m2), is insuffic~ient for bearing efficiency,j, This is why

in a parallel circuit of the third outline there is installed,

besides an additional cooler 9, a centrifugal pump 10 which
pressurizes the mfetal in the bearing to (,4-6),.!05N/m.

There Is one more circuit in this installation,, the fourth

circui-t, the cooling circuit of ",,e turbogenerator, windings.

S~The advantage of such an installation •ies in the fact that

S~in all its parts elements of known technical solutions are~used and,

I ~ in tlhis sense, It is nearer than any other to accomplishment. It

is also known that for an ERE of high power the specific mass of such

• an Installation is the lt~ast. The shortcomings of such an

installation are its complexity and bulkiness.

S~Let us give one of the possible versions of the starting of
Ssuch installation.

S~The installation is vacuumized and serviced with the working

medium. After filling, the metal is cleaned by the filters.

After servicing in the heated state, the installation enters the

• carrier rocket and in this state is placed in orbit. In orbit, after

dropping the aerodynamic and heat shields, the reactor is turned

on. The temperature of the working medium is raised., The radiator,

unfolded into working position, ensures the cooling of the working

medium. The turbine of the turbogenerator makes Its first revolution,

The ERE after a certain time goes into operating mode.
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The schematic of a nuclear thermoemisslon-
power plant with a plasma mo-t6r

The motor installation shown in Fig. 1.4 consists of power plant

1-11 and the motor itsel- 12.;-

The pwr pln is a igecruttpeadicue h

0 i

n wFig. I.b. Diagram of an ERE with a thermdemissionS~energy Converter.

i The power plant is a single-circuit type and includes the

•, • subassembly of the reactor 1 in which the heat-releasing element
(HRE) has been combined, with cathode 2 and anode 3 and the/ units

S ' for protection 4I, radiator 5, pump 61 compensating capac~vor 7•,

tank with inert gas 8, and starting pump :9 complete the installationA

The figure also shows the arbitrary placement'o"• cabac'itor 10

with cesium, the d~scharging Jetll f'or dumping cesiuzhx and slag

products.

During the starting of the reactor and its heating, there

proceeds- the emission of electrons from the heated cathode to the

comparatively cold anod6. Heat is removed from th4 anode by Ithe

*liquid metal which circulates in the circuit and the radiator.
SThe current being obtained is used for the power supoly of the ihotor,

pumps and units.

*; 'I I

+ 15



' I

I 'I

I I I

! ' I;

The advantage of such an arrangement is the!simplicity (tfhere

are no rotating parts), compactness, and tpe possibility df obtaining

Shigh currents directly, 1which simplifies the power supply of the

S p:•lasma motor. The shortcomings of the arrangpment arc the complexity

of finishing the reactor unit pith a converter, and the&difficulty

involved with studying andadjusting these two fundamential'elements.

1 i

', The subassenibly 1works,under conditions of elevated, temperatures

when iarge neutron fluxes existl and prolonged time, wAich pomplicates

the selebtion ofladequate materials.

The idstallation is dta~tkd similarly to the installation in'
the prpvious eiample. After filling, he'ating,,'and cleaning, 'the

installation is.ready to start. Circulation of liquid metal'is II I I I

ensured by starting pump 9 whilch, after the reactor is started, I

is' disconnected.

Diagram of a'n extraterrestrial power plant
Swith ttermoelectric energy 1conver~ioh
* 1

Figurc 1.5 shows this type of tw6-circuit unit. The 'irst

circuit consists Qf the reactor 1,.,thcI pump 3, and the thermoelectric
corlyert~er unit 4. Th•,secbnd circuit,,consists of the ?onverter 4,
amid the diaaiator 5'. Each circuit has a compensating compacitor 6'

(shpown here only in th6 radiator circuit). The unit can have one

pump 3 on both circuits, The cooling 6f such aipunp can requireian

additionat cooler-radiator *2.

Whdn the reactor is started there occurs'-heating of the *

hot" Junction of the thermoelectric (semiconductor),converter of p

t5 •e unit. The,1 cooling of the converter is accomplished bylthe

fliquio metal of the secondary circuiti. Current obtained as a result!
is -used for the power supply of the space engine system.

I 1 6
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Fig. 1.5. Diagram of an ERE with a thermoelectric energy
converter.

The advantages of the unit are simplicity and lightness with

limited power levels; a shortcoming is less efficiency than in

the other two examined units.

Semiconductors have low temperatures for the cold-soldered

joint, which makes a heavier radiator.

The unit is started similarly to the unit examined above.

Diagram of a solar extraterrestrial power
plant with fuel elements

This system consists of three circuits (Fig. 1.61). The first

circuit includes the solar concentrator 1 with thermal trap 2, heat

exchanger 4, and units 7, 8, 9 being the pump, filter and compensator.

The second circuit includes the generator, the fuel element

itself 3, the evaporator and regenerative phase separator 4, and

the condenser 5. The third circuit consists of the condenser 5,

the cooler-radiator 6, and units 7, 8, and 9.

17
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Fig. 1.6. Diagram of a solar extraterrestrial power-plant
with fuel elements.

In guiding the installation int 6 orbit, the orientation system

insures flux concentration of solar emission in trap 2. The liquid

metal is heated by the heat of the trap, for example, the lithium

which enters the generator 4 for the separation of the reaction

products of the fuel element into the basic components.

In the fuel element the anode working medium, for example,

sodium, enters the ion-exchange membrane, is ionized, giving off

electrons to the anode, penctrates the membrane to the cathode area

where it is connected with the cathode working medium, for example,

tin. The cathode working medium, while dissolving the positive

anode ions-, releases energy close to the heat effect of reaction.

Electrons which have completed operation in the external circuit

participate in the formation of a reaction product alloy, in our

example, Na-Sn.

Subsequently, the reaction-product enters the regenerator

and the process is repeated. In the installation in question

the anode working medium, for example, metal, is condensed in

the heat-exchanger 5 with the help of the metal of the third circuit

and cooler 6.

18



The advantage of this arrangement is its simplicity, cheapness,

lightness, and efficiency; the shortcoming is the difficulty of

selecting design materials for the fuel element which works for a

prolonged time.

1.4. ERE RELIABILITY PROBLEMS

Initial assumption

In extraterrestrial motors various types of propellant rockets

can be used. However, the most effective are the nuclear electric

rocket motors. The electrical power of such installations can

be thousands of kilowattsand, subsequently, even many tens of

thousands of kilowatts. ERE for piloted interplanetary flights must

work reliably for 10-25 thousands of hours.

To provide reliable operation for this long a period of time
with a large number of on and off switchings, We must solve a number

of complex problems. Therefore, we shall present only the general

problems of ERE reliability and, in a-number of cases, show some

possible approaches to the solutions of specific questions of ERE

reliability.

For reliability criteria values are taken with which reliability

is estimated quantitatively; they include the probability of breakdown-

free operation, failure rate, etc.

As a reliability criterian we take the probability of breakdown-

frve operation, i.e., the fact that in a given period of time or in

the limits of a given mission failures do not occur; then based on

the available experience in building foreign liquid propellant rocket
engines, the average reliability of a LPRE, 0.9, is achieved after

approximately 300-400 firing tests. In this sense, the work on

a single-chamber LPRE with a thrust of 690 t (the F-1 engine, USA)

is very characteristic. This engine operates on a propellant which

19



consists of kerosene (RP-l fuel) and liquid oxygen. It was developed

during the period 1960-1965 with 1545 bench starts and an overall

average operating time of %'8200 s for each engine. Fifty-eight

motor samples were spent on the first thousand starts. In use on

a rocket this motor should work reliably for %l50-s,,.jIf we assume1

that at the moment of the beginning of motor operation its reliability

P was equal to zero (in actuality, probability of breakdown-free

operation of this type engine with the first start can scarcely be

lower than 0.2) and then it built up according to exponential law

P=1I -- e-a (1.4)

where N is the number of tests, a is a certain coefficient which

characterizes the rate of reliability rise (see example at the end of

section), then after conducting 310 tests the reliability calculated

thus was 0.7-0.75, and after conducting 1545 tests it became no

less than 0.9975. By reliability we meap the lower confidence limit

of the probability of breakdown-free operation during a preset

period of time under given conditions with a confidence coefficient

of 0.95.2

As concerns ERE, because of their extremely high cost they

can only be manufactured in single samples. However, the quantitative

forecast of reliability and its experimental confirmation are

necessary; special items are not isolated for confirmation of

reliability, but everything necessary for this is obtained

simultaneously with operation and acceptance tests of working

samples.

"1Barlow P., Proshan F., Mathematic reliability theory, translated
from English, izd-vo "Sovetskoye radio," 1969, str. 334.

2Confidence range is the interval limited by the confidence
boundaries in which, with a given confidence coefficient, lie the
parameter being evaluated. Confidence parameter is the probability
of the fact that the parameter being evaluated lies within a given
confidence interval (GOST 13216-67).
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A complex system or any part of it, with the advent of the

science of reiibility, became possible to estimate as a certain

number which quantitatively characterizes the reliability of

each specific item. However, it .is necessary. to know fully that

this number (if it is near enough to one) canh be an actual

characteristic of the rellabtlity of the specific example of the

product only under the condition of continuous effective action

to maintain (perfect) the quality.of the part in all stages of its

manufacture and operation. The reliability of any product combines
into one very many different elements,. units, instruments, systems

and processes.

At the ERE planning stage as a measure-.of reliability it is

possible to use conditionally -the probability of breakdown-free

operation in the execution of a problem. Breakdown-free operation

must be provided during the guidance pf the spacecraft with thc ERE

to the start orbit, during the start in this orbit, during operation

in the transfer phases, in the stopping and starting processes

for these phases, and in the trajectory returning the crew to

earth orbit.

Statistical data on such installations are still scarcely

available; therefore in predicting reliability We use various

factors whoge selection depends upon tests and engineering intuition

of the des.Iners. These factors are useful in-the early stage of

planning since xthey enable the distribution of reliability require-

ments between component parts of the complex. Calculations of

reliability decrease the subjectivity of the approach for the

definition of technical specifications under development and make

it possible to simplify the agreement of inconsistent requirements.

Furthermore, reliability calculations are necesira,' to define

the program necessary to provide reliability. Actually calculations

connected with the prediction of reliability concern only the

reference line of incorrect execution. They do not include

uncertainties and indeterminancies characteristic for new developments,

21



especially for installations intended for prolonged operation under
new conditions. As noted, :these uncertainties are estimated
subjectively. Prediction and confirmations of reliability should
consider and estimate the •results'of all conditions: the bases for
developmentý, the qualification for developers, the level of
production, physical phenomena. leading to failures, operation,
the possibility of designing a product able to resist at all stages
the conditions which.deteriorate product qualities. In this
case, an approximation should be selected correctly. One ought also
to remember that the test ,conditions never completely correspond
to actual service conditions, especially as this ielates to complex
ERE. The proper use ofP weighted tests, just as natural tests,
in determining weak points In projects requires especially large
experiments. Therefore, kirecasting the reliability of a complex
system which has been, created can be done only by highly skilled
specialists. High reliabi, Ity can be achieved by performing a
group of operations including the following:

- analytical investigations;

- generalization of the experiment of developers and utilization
of statistics;

- mathematical simulation in analog-digital computers (ADC):
- complex simulation (the ADC together with natural units or

systems);
- deep exploratory investigations and 6areful adj-s*a,,ent in

laboratory conditions, on stands with the simulation of'space
conditions as well as in-flight conditions;

- equipment pi-oviding lor the maintenance of reliability and
functioning during operation;

- strict and continuous support, procedural, industrial and
organizational measures which ensure faultless production and the
operation of the item;

- positive solutions, equipment, and measures which ensure
adaptability of an ERE to self-maintenance in working during the
entire period of operation.
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Stages and content of operation *

The creation and use of complex produqts generally, and with

an ERE especially, is divided into the followingstages:

- scientific research and the introduction of proposals concerning'
the .creation of an'ERE of a specific purpose;

- preliminary planning, compilation.and agreement of technical

tasks; i

- sketch and engineering design;
- experimental adjustment in full scale and the' manufacture of

experimental models;

- bench tests under conditiohs 0f space simulation, flilght 'I
design tests, and government tests;

- the manufacture of the working part;
- program application (utilization, operation)..

The quantity and sequence of stages during theicreation of an,

ERE can change based on specific problems.

To provide and evaluate reliability as a-parameter of an ERE'the
development and utilization of special procedures is required at

all stages of creation and product application (spebial methods of

study, calculation, adjustment of construct1 !on and technology,

measurement, provision for faultless Production, etc).

Coordination and general organization of work in cieating anIIERE with the assigned level of reliability,ý ;hould be aridotn I

the basis of the following assumptions:i . I

- concerning the order of development, tests, experimental
manufacture, manufacture for use, and input of ERE into operation'

- concerning the order of the agreement of specifidations on

the supply of component parts (elemints)j materials and their
supply with the reliability evaluation;

23 SI I
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- concerning the evaluation and current marginal testing of'

productb i•i production;:.

- concerning a single system of information about the technical

.state and' the reliabil4ty of all parts and the ERE as a whole;

- concerning reclamation work;

-- conce•riing the reliability: services of all organizations

which participate i-n the creation of the ERE.
I I

Requirements for methods of standardizing'and evaluating the

reliability 8f Individual forms of systems and complex products

makiAg up 1the ERE should b6e specified in special documentation.

Reliability reiquirements Xfor an ERE and its parts are

intro~duced into technical, assignments and then into technical

speificatidns'and manufacturing recoids.

Rellability at theistages of product manufacture is ensured

and confirmed (measured, demonstrated) on the basis of the common
plan T'or the creation (development, manufacture) of the product

with the assigned idvei of reliabiliiy and the program for providing

*engineering data and reliability of the component parts of product.

Methods and-means of confirming (ineasuring, demonstrating)

reliabi'lity are established by general and specific procedures

or by! specifications'for manifacture, test and Jnspection of

component Varts and the ERE as a whole. During the creation of

such a complex system as an ERE, especiqlly at the initial stages, it

is not always possible to estimate quantitatively its reliability.

In these ,cases it is advantageous to use its merit rating. By merit
rating for reliability'we mean the evaluation of the suitability

of the product for use with respect to its purpose, based predominantly

upon qualitati ve anAlysis. This includes:-

-the correctness of the:operating principles selected, volume

aand depth of dedign and theoretical substantiation, modes of operation,

I I24
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'the use of earlier systems and units, the advisability of using

basic materials and component parts, stability against service

failure in the least reliable elements, the correctness of the

accepted structural solutions and product strength reserves;

procedural and industrial provision for solutions arrived

I at during planning;

- the necessary volume of tests during the experimental check

of designs, circuits, modes of operation, stability to external

effects, critical characteristics and conditions;

- the sufficiency of complex tests and checks of the correctness

of a comb3nation of systems under various possible emergency

situations.

During the compilation and coordination of works based on

programs to ensure ERE reliability, it is necessary to keep in mind:

- reliability as a given value can be achieved only after

conducting a series of adjustment stages for all parts and the ERE

as a whole;

Sachievement of the assigned level of reliability with the

correct work setting is determined by the number of Valid experiments

made while conducting a given stage of adjustment for the part of

the structure being examined or the ERE complex;

-the value which characterizes the reliability rises sharply

with the use of special airborne apparatus for monitoring, maintenance,

and optimization of ERE efficiency as a whole or an extraterrestrial

vehicle which uses an ERE as the basic motor.

k This latter can guarantee adaptability of an ERE to supporting

itself in working order during its entire life.
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Structural diagram of operations

The reliability of elements, units, systems, and the ERE as a

whole, as with any complex product, is set at the planning and
designing stage, is ensured and supported at the subsequent stages

of matiufacture, experimental adjustment, production of flight

samplet., and during their operation. Figure 1.7 depicts the

structural diagram of operations with respect to ERE reliability.

4 eFigure 1.8 shows the results of calculations in a fully simplified

analytical model of reliability. They show hjw reliability of a

complex ERE depends upon <he levels of the reliability of the

main operating parts. This 'reliability is given taking into

account the different levels cf the effect of subsystems involved,

in the structural diagram of EAE. reliability along with the main

6peratitng parts. To compile a curve of reliability growth, as

depicted in Fig,. 1.8, it is necessary to examine the entire structural

diagram of the ERE. Such branched schematics must be composed for

a series of structural solutions being examined and the optimum

version should be selected (including the accepted redundancy,

maintainability, etc.). From the approximation chart in Fig. 1.8

it is evident that in'the initial stages of finishing the decisive

influence opi reliability is the varlious links. In the process of

finishing their effect is: almost excluded,. In spite of this, the

reliability of the entire complex in practice has not been acceptable

even with high reliability for the main operating parts. Above has

been shown the complex of operations in establishing reliability which

must be accomplished to achieve an assigned reliability for a real

ERE.

.•.nce creating an ERE is the Joint work of a large number of,

specialized organizations, the responsibility for providing

reliability is distributed among the chief developer of the ERE

complex and the organizations making the component parts, materials,

units, and systems. The correct distribution of reliability,

requirements between developers forces them to make an evaluation

27
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and analysis. It is evident that with the assigned (or accepted)

reliability of an ERE the reliability criteria of its components

should be very high. Therefore, to provide the required reliability

all developer •organizations should create specific routines for

providing rel'Yability and fulfill them-. The chief developer must

find and, accept such diagrams and structural' solutions as will allow,

with the reliability of all component parts somewhat less than unity,

the fulfillment of the functions of a given ERE while preserving its

operational criteria within assigned limits for the necf ;sary period

of time.

1,0 -

0,2 &,'

__zi

I - -
Reactor unit 0,95 o,97

Thermal power system 0 8 0 0,85 0,85 4719.0 al5w
Electric power ,', 0,9.9 29 9 09599S

[otor insthi1ation V'8- 0,85' 0, 90 0,9.1 0)91,1
Reliability of main functioning parts of the ER

Fig. 1.8. Possible projected rel.V .bility
(probability of breakdown-free ope..-ation) for an
ERE complex under different levels of reliabilities
for the main functioning parts.
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Reliability prrgram

An ERE, as any item of spade technology, must have high

reliability Under the condition of the systematic fulfillment of

specific operations (programs). Below is a list of operations

which ensure the reliability programs.

i. A, study of technical and ,reliability characteristics
of parts 6o .nalogs and: prototypes." An acquaintanbe with items.
at their production sites (design, preparati'sn, adjustment) and

operating sites. Recognition ofbreakdowns, rnd emergencies;
recognition of factors determining these breakdowns and emergencies;

a study of methods used to eliminate them; examination of methdds

used to adjust item to the necessary reliability.

2. Compilation and analysis of the reliability pf versions df

enlarged structural diagrams and mathematical models of itemsto
be developed, taking into account the conditions of their use. Ih

compiling the diagrams, it ig necessary to apply the principýe of

self-adaptation, which in its practical application reduces to the
automatic detecAion of deviations in the operation of the item (or a,
part, system,. unit of It), tqeir identification (establishment of

r&4gs6ns), choice of correcting actions (or-bperatibns), and

application of fhe selected operation to 61imiAate the failure
noted (disturbance of operational capability).'

A A self-adapting ERE, ,because of the presence elin it of means

for breakdown compensation, can ensure.great longevity w- 11 optimal
characteristics of each condition oT flight. Self-adaption makes

It possibjle to use for achieving almost'absolutely'reliability
elements which are not'absplutely reliable. From the point,of'view

of ERE poduction and adjUxstment, the use of salt'-adapting devices

means that for adjustment'tests cbnsiderably less self-adapting

items than the ordinary nonself-adapting items are necessary,.

2 9 S
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-wdight charapteris~tics;

-cost.1'
I I .I

4. Preliminary standardization of the reliability of eltmenas, m

uni-, instruments, aggregates; and systems.

~ I I - O2

1 5. Develdpment and ba'ss for r~qviirements onicomplex
reliability, more precise definition of reliability norms'feor

Isystems, taking into account reqhirements on operation, cost and

weight.
4 I I

6. Selection of dompleting elements; solution to problems

of speciAlized development of new completing elements andimatekials
with respect to engineering level which is expected in the operating

period of the future ERE. ,I I

7. Second optinlization of ERP reliability, taking;into accountl

the work of in-flight systenms for checking and mafntaining reliability

atd ERE contr9l. Determining the'basilc data and compiling'the

technical task for developing this In-flight system which must also

be built according to the self-adaptatton principle and fulfill the

following basic operaj *ve fLunctiois:

-'multiple'chedk (s&onetimes hundreds oýr even thqusands'per

second) according to several values (indices) of each tested

parametex; ,,, ,

,- evaluatior, (automatic) of the reliability of the che'ck

:results based bn a~l tested parameters. for each moment of the

check;
4 I I 30
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-- indication of state, transmission of command to turn on

reserve elements or systems or automatic maintenance of reliability

on the prescibed level;

- prediction of state ,and optiý..-zation of the possibilities

of fulfilling the program at each checked ,moment of flight in the

presence of a reserve, after its exhaustion and after each Oreakdown

of ERE parts in the absence of their possible replacement;

- delivery of prediction data with respect to the provision

of breakdown-free flight oi- return to base.

8. Development of reliability of methodology for the ERE and

its systems applicable to all stages.

9. Determining the nomenclatures of bench equipment. Compiling
working methodology, programs, and graphs for finishing the:ERE

* and all its parts up to required reliability. Determining the

numrr'^r of samples necessary for tests. Developing systems and forms

of ithering, handling, and'using information on reliability for

r stages of ERE production and operation. Organization of the

hange of reliable information between a4l development

-and operational sections.

10. Refined optimization (with respect to characteristics

indicated in paragraph 3). Correction, completion, or reworking

of technical documentation as work is fulfilled on the stages

depending upon the applicability of the approximation achieved

for the prescribed values of working parameters, weight, life,

reliability. Achievement and mai!itenancýe of reliability - this

process is for the entire period of tne item's existence - from

the moment of the agreement on a technical task for its development

to the end of the operating period.
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Organization of work

A piloted spacecraft for flights to the planets is, ofcourse,

unique in its complexity. The ERE for such a craft will be a

powerful installation on a high engineering level. Insuring its

reliability is the greatest problem, not only scientific and

technical but also organizational.

After receiving the technical task (TT) and establishing time

periods for development, it is necessary to plan all the work.

One of the well-known progressive methods of organizational guidance

in the creation of complex systems is the method of network

planning and administration (NTA). The main value of this method

lies in the fact that it allows us to distinguish the optimal

version of planning and administration in all stages.

To illustrate this method we shall graph the creation of a

hypothetical ERE for a piloted shacecraft. We assume that work

is carried out in five stages and ten phases; for each phase one

year is set aside. The stages and phases are illustrated on the

graph (Fig. 1.9).

0I

0 'As-

1 1

_7 8

"Paubi paomhI Phases of work

Fig. 1.9. Main stages and phases of operation in the
NTA system in the creation of a hypothetical ERE for a
piloted spacecraft (solid line); dashes show the
development of work on the creation of an ERE for a
flight which would land astronauts on a planet and return
them to earth.
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Stages

I. Analysis of the technical task, planning sketches of the

ERE, and experimental work on the systems.

II. Development and testing of experimental samples of ERE.

III. Acceptance tests for systems, the beginning of the
• finishing work on the ERE complex.

IV. Completion of finishing, acceptance tests and production

of an ERE working model.

SV. Combined (complex) bench tests of a spacecraft with an

JI ERE; delivery of samples of the ERE working model.

Phases

1. Analysis of the technical task, beginning of preliminary

ERE drafting, development of experimental samples of aggregates and

systems, beginning of experimental work on aggregates and systems.

2. Obtaining initial experimental results on aggregAtes and,

systems, finishing preliminary draft on ERE complex.

3. Finishing experimental work on aggregates and systems,

making experimental samples of ERE.

4. Introducing necessary changes, finishing aggregates and

systems, experimental work on ERE complex.

• i i 5. Completion of finishing work on aggregates and systems,
completion of experimental work on ERE complex, introduction of

5.necessary changest

il3
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6. Beginning of finishing work on ERE complex, conducting

experimental flight tests of some systems, conducting acceptance

tests on systems.

7. Completion of finishing work on the ERE complex, introduction

of-necessary changes, preparation of working samples of the complex.

8. Conducting experimental flight tests of the complex, beginning

acceptance tests of the complex, production of ERE working model.

9. Completion of acceptance test of ERE complex, introduction

of necessary changes, check of bench tests, and delivery-of samples

of ERE~working model.

10. Combined complex bench and flight tests of spacecraft

with ERE.

Similar, but considerably more detailed, graphs should be

compiled for systems and their separate parts.

The listed stages and phases show only the development and

completion qf the basic cycle of research and development work,

after which we proceed to space flight tests (SFT) of the sample

spacecraft with all the airborne and ground flight support equipment.

Component diagram (of component parts)
of the ERE

At the beginning of ERE planning its systems, component parts,

operat, 'g principles, operating processes, operating modes, materials,

etc., should be selected. All interrelations must be determined;

problems involved in ensuring the stability of parameters, lifetime,

reserves, self-adaptation, and reliability must be solved. Also

problems in the organization of work, accomplishment periods, and

cost should be solved.
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control system

Fig. 1.10. Diagram characterizing the component parts of a
hypothetical piloted space vehicle with an ERE.
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The first of these works is to draw up an ERE composition

diagram. For general orientation, Fig. 1.10 presents a composition

diagram of a hypothetical piloted 'pace vehicle with an ERE,

broken- down into its main parts; Fig. 1.11,presents the component

parts of useful load, and Fig. 1.12 the component parts of the control

system of this vehicle.

In the development of an ERE b-sed on a technical task, the

composition diagrams must comply with all conditions imposed by

the buyer. 'Therefore, below, in Fig. 1.13-1.16 diagrams are

presented which characterize the composition of an ERE only with

respect to •the large systems used in any ERE. For example, Fig. 1.16

shows a more detailed breakdown of only one nuclear electric ERE

with a turbogenerator system for obtaining electrical power. The

composition of a nuclear electrical system and other ERE systems

depends upon a hugh number of possible general and particular solutions

with. respect to each of the systems uiead in the ERE. A list of

aggregates and instrumentG-, presented in Fig. 1.16, reflects the

approximate nomenclature of aggregates, instruments, units,

and subsystems. It is assumed that all the main systems and their

parts are created on the principle of self-adaptation.

Composition of ion engine

For example, let us examine the composition diagram of an ion

engine presented in Fig. 1.15. From the diagram it is apparent

that the electrical rocket engine includes:

- a system of 0 converting parameters of electrical power for

the electrical rocket engines;

- automatic electrical equipment, circuit breakers, and

emergency electricol power release;

- cooling system for electrical , cket engines;

- module unit of electrical rocket engines;

- automatic control equipment for the engine unit;

Sequipment for monitoring and maintaining reliability;

structural parts: power frame, attachment devices, electrical

supply line, etc.
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However, 'this list can be changed depending upon the engine's

operating principle or structural decisions-made with respect to

any part. For example, if the electrical power plant fs a type of

reactor-transformer, it is advisable to use a low-voltage plasma

engine. The use of this engine is more expedient if the electrical

voltage of the reactor-transformer is equal to the working voltage

of the engine and it is installed directly on the switching unit

of the reactor-transformer. Such a decision. substantially changes

the nomenclature and content of the-entire ERE composition indicated

in-Fig. 1.15, while the ERE itself can be optimal for this case

Sboth with respect to the working parameters and reliability. Therefore,

below we have presented only the overall requirements on ERE

reliability aiid•the particular case examined is to solve the problem

of electrical rocket engine reliability with an ion engine.

-C Engine reliability requirements

The engine of a piloted spacecraft for long-range flights must

have Very'high, practical 100% reliability. The length of the

operating period is meas,"red in years. Electrical rocket engines

in general and ion engines in particular are being built for the

first time and., therefore, it is impossible to ,zxpect 100%

r elizbility for an ERE with only one engine. The tested engineering

Sapproach to the solution of such a problem is the joint use of

,two paths':

- the creation, of a highly reliable electrical rocket motor

which is a module- of the engine;

- the :use of reserve modules.

In the case of an ion engine the module system is obviously

more applicable. It is a unit composed of modules of ion motors,

a -complex of necessary equipment and devices, also with corresponding

reserves.
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From the point of view of reliability, the engine in the ERE

system is that part whose breakdown can entail, in the best case,

an emergency or nonfulfillment of task, and in the worst, a

cazastrophy for the entire space vehicle. Therefore, the engine

must provide the necessary impulse in all operating modes, including

damage of certain elements, systems or motors.

Diagnrams of ERE systems must exclude the possibility of the

occurrence of operation modes which are not permissible in safe

flight or conditions of ERE controlling sections where failures

occur in the systems themselves or any part of the ERE.

Equipment for inspecting and mafi taJning ERE reliability

must switch off, in a timely manner, places with reduced reliability,

switch on peserves;, and-send -the primary commands to the space

vehicle control system for a general solution to the question of

the possibility of meeting the flight program or correcting it.

Engineering methodology for calculations must be set up

in the planning and development process.

However. even in the initial stage of development it is necessary

to solve approximately general problems of evaluating reliability

of modules, systems, the main parts of the ERE, and also the entir&

ERE. Let us consider an example.

Example 1.1. We:shall estimate the reliabilit, of a medule

of a ion rocket engine for the initial stage of its experivmental

work. We shall keep in-mind that in this stage there is, as yet no

control system for the space vehicle (see Fig. 1.12) nrA' a part of

it - the equipment for inspecting and maintaining rel/Zability of

the ERE (see Fig. 1.14). Unsolved also are problem, of self-adaptation

and as yet incompletely researched are the physical processes involved.

No evaluation has been made of the effect of external factors on the

operation of the electrical rocket engine; no production technology

has been worked out and new structural materials have not been
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developed. Or course, there are no statistics on the operational

ability of the e1:,ment, nodes, oagregates r and systems otathe

engine module. In this stage of work the operating time achieved
(lifetime) is hundreds oreven thousands of times less than that

required.
Fo;' the ssequenAt studY the followingselectibns are madh:

- an ion engine (IE) with ionization of the working mediumobY

oscillattng discharge -(Fig. Ih ko);

- an ion motor with ionization of the working medium on a

heated porous surface (Fig. 1.18)S''I 
4

4 I

.,�$1 1 ,12 17 17

From electric powei supply sources'

Diagram of ion motOr module with ionization of working

diu 1 illating dscharge - working medium tank; la - tank
Feaer 2.1 -.. ing dis e 3 1 p in C" (porous medium); I -S~medium by 0.. ,m'3-spplying ... ye 7 - steam Pipe;

Sh at r 2 - working m dim ; 3 - s " 6 - cu to ff v al e. 1[^ •i soleno id;

vaporizers; 5 - heat for v • aiporier0 6i- chtoff -vambe I g pi p

8- a'thode heater; 9 -r cathd;1 ~ a g ri chobrs;1 oeod

12 -aode; 13 - extending grid; eror grid
st 1 - accelerating grid; 16 - neutralizer heater; e 17-SS 

sh e d i .. systems- 1.-. 
- n e s f o

neutralizer; 18 - electrostatic shield; a- , ut frmsys em'.

power supply sources; A inlet from enle au 
t

113



I I i

S I I*,

7~ ~ ý 8 .. - -"-
AW.I t •I

L I I

I S I
Fig i.1 ' of i mt i

I I I

mqimo hete poou ,ura I -& bI rin mediu ga~c la-.

vaoizr 5 -3Ioie etr;6-uo~av; ta ye

Sfroo eelectric power supply Sources;I I

o system.

Fig. i.,18. lniagram of ion motor modue with ionizationgof working
modium on heated porous Suaface:s i - working medium tanhc; la - tank
heater; 2- working msdium; 3 - supplting "wmick" ,(porus medium); 4

8 - i6n emitter hpater;I9 - porous ion emitter; 14 Iintermediate
grid o grid system;I 15 - accelerating grid; 16 - neutralizer heater; ,

I 17. - neutralizer (electron, source)• 18 - electros~atici shield;' a-g -,

ti~lets from electric power supply sourc~es; A - inlet from engine
•ut6matic system., '

I 44

•+ ! For cbonvenience the common elements of both diagrams are

S. shown on the figures and designated identically, while the diagrams
Sthemselves: are ,dividedlinto foihr systems which are comono5 'to them:

I Il

SI - a supply system for the working medium, +

, ~II,-ion source, i ,'

III - ion optical system,, i -
IV - span~ charge neutralization system.

- I • ,I *

.1'

I

+ t-

5 5

+• +< + ++i.... ....• ! 5,•+p .... -- 5,-+ + + ... . . ..... ,•t •.+ .'.... -"-+• • ++I .. .. •• + ..... i•...• -•'•+... "5--.... > -, , I



From the design and operational points of view, these two

diagrams differ mainly in the thermal:stress of the main elements.

A comparison of the working processes for these diagrams show
Sthat the ion motor with a three-dimensional ionsource can be made

so that none of its parts will be heated above 7000C. At the same

time an ion motor with a surface ionizer, all other things being

equal, requires the ionizer temperature and the temperature of

elements connected with it to be approximately 140000. Therefore,

in the second diagram it is considerably more difficult to achieve

a high level of reliability than it is in the first. In addition,

the first type of motor is less sensitive to contamination, the

quality of material processing, and fabrication--precision for a

considerable number of parts; it does not require highly oxidation-

resistant metals rand insulators.. In it can be used quite a variety

of working media, while in the ion motor with a surface ionizer

virtually only cesium and rubidium can be used. Thus, a comparison

of module diagrams gives -the designer many starting pdint~s for

solving reliability problems.

Structurally it is advisable to build an ERE with an ion motor

on the basis of modules. For the current reliability evaluations

of an ion motor module, in,-the process of experimental work, we

can, use the assumption made in calculating reliability that the

planned module, which must have a long lifetime can have two types of

failures:

- sudden failures, which can be caused by the effect of random

factors (in the presence of equipment for checking and maintaining

'reliability, there can be virtually no sudden failures);

- gradual failures, which are due to irreversible processes

(material aging, electrode erosion, various types of wear,

irremovable contamination, etc.). In this case, We can take as a

reliability criterion probability PM of failure-free work of the

ion motor module during given period of time T. In other words PM( )
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is the probability that the average time before breakdown occurs

(T) will be greater than prescribed:

Piz (x) -=Bep (T>..T). (1.5)

It is obvious that the reliability diagram plotted as a logical

functional diagram of module system connections for Figs. 1.17 and

1.18 is a series of the above four systems. The compilation of a

more detaileO -structural diagram is nedessary and possible in the

development of the module and its systems.

For the indicated structural diagram of the module the

probability of stability in the main parameters of the module PM

during tests (current reliability) can be expressed as the product:

k k-4

P IIZ= -Pi = PPIPPI, -(1.6)
i-1 i-1

where PM is the current probability of successful test results,

i.e., such that the main parameters of the module (and similarly

of the system) do not go beyond the permissible limits for any

reason.

Taking the division of failures into sudden and gradual and

their mutual independence, the probability of breakdown-free

-operation for the module

"P -Rfl (P,,P,,)', (1.7)

where P and- P- are the probab-lIty of breakdown-free operation

for -the i-.th -omponent o- the structural diagram defined respectively

accordirig 'to sudden and gradual failures; k is the number of the

component parts of structural diagram.
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As the number or tests builds up-and the operational ability
of the module improves, a failure distribution law is distinguished;

in the first approximation we can assume it is exponential. Then
the current probability of the Ni-th test being successful is written

in the following manner:

P.41 = I -ae-Wt (1.8)

where a and a are coefficientsdetermined exponentially; nk is the
total number of failures; Nk is the total number of tests examined.

To determine coefficients a and a a graph of the accumulated

failures has been plotted. Failures lead to single standardized

test conditions. In this case, failures caused by random factors

(industrial defects, errors in the bench system, rough deviations

in tests conditions, etc.). are not taken into account. An example

of such a graph is given in Fig. 1.19. Bends of the curve at

pounts a-d correspond to the proper solutions made in the process

of development, which lead to an increase in the number of failures.

The spot where the curve stops climbing corresponds to the end of

the finishing tests; the module of the ion motor is brought up to

a given requirement of failure-free operation. The curve in

sections is approximated by an exponent, for each section of which

the value of coefficient a is found.

For each section, coefficient

a -- Uflk •,.. (1.9)
I -e

j *Based on the obtained results of processing experimental

data, a graph of current reliability is plotted for the module of

the ion motor or its systems PM f(Ni).
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(1)•

(2)O05uee, VUcio 3.avemHb al~mxud A

Fig. 1.19. Bar graphs of accumulated
failures. Points a-d correspnnd to
the acceptance of solutions which
improved the work of the module; point
d corresponds to the end o,' finishing.

KEY: (1) Quantity of accumulated
failures, n; (2) Total number of tests
examined, Nk.

* With the aim of rapidly revealing the weakest spots in the

motor during experimental processing, it is advisable to plot such

curves for individual units, aggregates, processes, techniques,

bench test conditions, and for other reasons affecting reliability

in the module development process as shown in Fig. 1.20.

Thus, the quantity P 4 dhar~cterizes the validity of the

reference data at the Ni-th moment of testing. At the end of

the development work, when failures for any reasons cease, the

module achieves the full required reliability PM*

Using the graph in Fig. 1.20, we can, in certain limits,

predict the future course of finishing work and, if necessary,

pose the problems of the necessity for accepting specific solutions

capable of increasing the reliability level.
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'Po. = -ý

SFig. 1.20. Curves showing buildup of

current reliability for ion motor systems
and module (buildup of probability for
successful Ni-th test of system and module):

P0M 1 - a - initial reliability

(probability); PM - module reliability

achieved.

1.5. PROBLEMS OF ERE STRESS ANALYSIS

Questions of ERE strength in this course are examined with

respect to the preliminary sketching of parts and structural. nodes.

In this stage of planning we assume that a node in the first

approach is made up of components and its main dimensions are

selected. We also assume that the designer has selected the basic

thicknesses of the walls of the parts bearing the load; the basic

loads are determined for critical parts; heat flux and wall temperature

are determined for heated parts.

A check of the correctness of the selected design dimensions.

in the first approach, and a check of the strength of critical parts

of .a node in the preliminary sketch are the main tasks of the proposed
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stress analysis. The correctness criterion will be .the amount

of strength reserve or plasticity of the part.

At this stage of planning stress analysis is generally conducted

as an elastic problem, which makes it possible to obtain comparatively

simple relationships which are also convenient to use. Such a

calculation is a verification. It does not exclude and, in some

cases, requires a more detailed calculation using special methods

which we shall not. discuss in this book because of space limitations.

Strength reserve. Plasticity reserve

Stress analysis for parts consists of three stages.

First stage - determining forces and moments acting on the

part and its unsafe section.

Seoond stage - calculation of stresses which occur in the

part from the effect of forces and moments. This stage, as a rule,
is the most difficult.

Third stage - comparison of stress obtained with limiting

stresses of the stress-strain diagram for the _material from which

the part is made or with stress in similar designs which operate

successfully.

Let us clarify the terminology which we shall be using in our

study.

The strength of a part is the ability of the pFirt to resist

the loads acting on it. Strength is a function of many factors:

temperature and length of operation, the character of stress variation,

the shape of the part, its dimensions, surface condition, the

design of Junction and couplings, the orientation of the fibers of

the metal and its structure, etc. The proper evaluation of the effect

of each of these factors on strength is one of the tasks of

calculation.
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Stress is the intensity of the internal forces of elasticity,

corresponding to a given elementary area of a certain cross sction.

Stress is calculated for this area as the ratio of the absolute

value of force to the size of the area on which it acts, i.e.,

as the force which occurs per unit of area.

Normal stress ik is that component of stress which acts*1 S
perpendicularly to the area; the subscript k designates the direction

of normal to the area. For example, if the area is perpendicular

to axis x, normal stress acting on this area is designated a•

Tangential stress T is the component of stress acting:along I

the area; the subscript k also indicates the direction of normal to

tha area, while the subscript i is'the direction of ti.e vector of

tangential stress; the dimension of stress N/m (or kg/cm2).

Under the effect of external forces and stress which occur,

the dimeusions of the part change somewhat; it is deformed.

Deformation is the change in linear or' angular dimensions of

a part; usually these changes are very insignificant as compared

with the part's dimensions.

Absolute elongation, i.e., change in the lineardimensions Ik,

is designated AZk. It is positive during extension and negative..
during compressioni.

Relative elongation Ek is the r~atio: ek. = Alk/Z; the subscript

k indicates in what direction elongation id occurring.

Relative shear y is the angle by which the original right angle

between two selected directions in the part changes during its

deformation. If these mutually perpendicular directions are

designated x and y, relative shear y is given the subscript xy.
5I1
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Thd mechanical properties of the material under static loading

are-characterized by a stress-strain diagram which represents the

relationship between the conditional normal stresses a and the

relative elongations e.

The arbitrariness of normal stres3:-ei ,and the relative

,elongation q which corresponds to themin'±es in the fact that stresses

Spertain to .the original area of sample irosslsection while

"elongation e pertains to its original length;

In the range of low elastic a~d ela~to-plastic deformations,

arbitrary stresses and ýlongat~ons differ little froii true ones

calculated with the ,contragtion of the sample cross. sktion during

its testing taken account, and for.ordinary engineering calculations

are 'used as reference values.

One of the peculiarities of the deforzmation diagram examined

is the standard method of obtaining it. The diagram is determined

experimentally on standard thachines in 'a comparatively short period

of tine'(less than two minutes). The standardness of the method

of.finding the deformation diagram isan obligatory conidition in

determining the properties of the material;*otherwise it would be

impossib'le to use, these results.

,A typical arbitrary deformation diagranm is presented in Fig. 1.21a.

The deformation process can be illustrated also by a simplified

stress-strain diagram consisting of two straight lines (Fig. 1.21W).

On the ldeformation diagram characteristic points y,,T, and b

are determined, each• of whicfi correspond to a certain limiting

stress.

The plAstic limit ay = 0h.002 is that stress at which the first

sign of plastic ddformation appear. Tpis limit is defined as the

stress responsible for a given small permanent'set'. Usually the

residual relative elongation c O.00270.005%. Plastic limit is a
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strength criterion only when even small residual deformation can not

be permitted during operation.

The modulus of elasticity E is the coefficient of stress and

strain proportionality in the limits of elasticity:

03= EB,

where

E= tga= da --
dg I

(IT a)

0 0

b)
Fig. 1.21. Material deformation diagram:
a) typical arbitrary diagrams; b) simplified
diagrams.
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Yield' limit a a is the stress which corresponds to the
T 0.2appearance of permanent sets of a certain magnitude. Usually yield

limit is defined as the stress at which residual relative elongation

e = 0'.2% occurs. Yield limit is widely used in calculations as a

characteristic of the material's resistance to stati.o loads when the

operating capability of the part or design element Is determined by

its deforming ,properties, for example, when rotating parts interfer

with nonrotating parts or when the elongation of an element leads to

the overlapping of important ducts for passage of the working medium.

Beyond the plastic limit is the hardening modulus D, which

characterizes the resistance of the material to small elastic-

plastic deformations:

where

D =tg= dolde.

The substantial difference between D and E is the fact that the

quantity D is a variable. In approximate calculations it is

frequently assumed to be constant.

The hardering modulus D with an increase in stresses from y

to aT can be de'zreased by a factor of 100 and more.

The strength limit or tensile strength of the material ao1 is

the arbitrary stress corresponding to maximum load duriiig extension

or compression tests on the sample.

For most structural materials tensile strength is the main

strength characteristic of metal during static loading, the quantity

determining strength reserve of the structure.
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Strength- reserve is the ratio of the strez.gth limit of the

material to the maximum stress rising in the material of a part

iWhen it is in Operation:

• i• • __ a. •(1.10)

Plasticity 'reserve can be determined from formula

' O,. or (10.2)[ OMSX' Pmax

if the stresses are expressed in loads. This calculation is called
the limiting load calculation.

The conditions for the operating capability of a part abe

Sn > I; no2 >i

As seen from the formulas, a substantial factor determining
strength reserve is the quality of the. material. Obviously, the -higher

G06, the higher the strength reserve will be and the easier, all
other things being equal, it will be 'o make a part or structural

element from 'it with the required properties.

What re4uirement should be ,imposed ;on materials to ensure

, high stuctura'l strength reserve with the least weight? The following
requir;ements are imposed on structural matiirials used in extraterres-
trial ,electrical rocket engines and, particular, in reactor units:

-high strength (strength limit must be the highest possible);

- high-temperature strengths.

- oxidation, resistance - high resistance to interaction with
sir and other gases at high temperatures;

- good weidability;

- small cross sections for capture (absorption) (of •neutrons;
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- capable of resistance to neutron fluxes without. substantial

change in deformation diagrams;

-'compatability with corrosive working media;.

- low e'raporation rate in the vacuum of space.

How do the materials actually behave?

The strength limit of structural materials rapidly drops with

an increase in temperature and length of or ration (Fig. 1.22a) and

scarcely changes from the irradiation of neutron fluxes. Viscosity

of the material is reduced and the cold brittleness threshold rises.

In. the deformation pattern, as it were, the scale is reduced along

the axis- of the abscissas (Fig-. 1.22b). Therefore, the caldulation

of strength--reserve for structural-,materials- in -neutron fluxes.

diffez.s little from ordinark calcý.ations. Plasticity reserve,

however, should be determined while taking the distortion of the

deformation diagram into account.

The selection of structural materials depends upon the working

medium and its compatibility with certain materials.

dj 61 dt'6 6

a) tcb) 1

Fig. 1.22. Variation in material strength
limit: a) as a function of time and tempera-
tures; b) as a function of irradiation by
neutrons.
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We know that. 1iquid metals,.,widely used in power plants, are
corrosive media. Ti. -,tiveiy affect structural materials, des,troying

them. Noncorroding chromium-nickel alloys, under cdnditiors of

compatibility, can be used at temieratures up to 8000C with ill

liquid metals except lithium. At higher temperatures of liquid

metals, including lithium, the use of, niobium, ana mo'lybdehum iý,

required.

All structural materials sublimate and 'evaporate in space and

do so more 'intensely the higher their surface temperature. Figure,

1.23 shows that at temperatures 'above 10000C the evaporation rate

of carbon and chromium-nickel alloys reaches spveral millime~tezs a

year. Inevaluating the strehgth, of thin-walled structures, we must

keep in mind their thinning due to sublimation. These propeities of'

materials make it possible to'refine the Iormulah (1.10) and (1.11).

If material tests are carried out on'a standard machine (i.e.,

test time is not long), the formula of strength, and plasticity

reserve will be,:
' !I

•O.2
.0.2,(1,12)•'=-- ; 'HO.2=- ii' ,,2

II @max Iflx

where the subscript t indicates the temperature of the material

during the tests.

With these formulas we can design' parts for short-life engines,,

If the parts operate for a long time, we should use a resqrve-of

stress-rupture strength and craep.

Stress-rupture strength reserve. Creep

Elasticity theory considers the stress and ztrainstate 'of aj part as a linear'relationship between stresses and strains.. With

short test duration, :,ow 17evels of temperature, and ,stresses, thb

application of formulas of the theory of elasticlty and,tl'ermoelasticity

to actual bodies and designs composOd of thee bodies, does not result

-I S
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in significant erro'rs, which is usually substantiated by experiments.

Such calculation is also advisab~le in the stage of preliminary

sketching for,the first evaluation of the stressed and strained state
of a part and, to enable the proper choice of itb main dimensions.'

I , II a

I a

4, v aM/kOd {a) ,(c )

IOep.M.(b) e e-e d)

J7L1L /'edh so Xpax

. . -1,

(g 1-0'

* I

• I aI,

j I a

500 600 700 0oo 900 1000 110 1200 ,
I I

"Fig. 1.23. Evaporation rato of metals in a,
,vacuuin. , a

a KEY: (a) Beri-lium, (b) Coper, (c) Iron,S' ' (d')6hromium, •(e) Titanjum, .(f) Nick•els, (g)

Molyl~deriumi. a

I I, Desigpation: ,/qO =nmmr,

a

* I a
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However, when the operating time is increased, as well as the

temperature level and stresses, the difference in the behavior of

idealy elastic bodies and the actual body becomes greater and greater

and more or less significant corrections must be introduced into the

calculations, taking into account the characteristics of the behavior

of the, actual materials under working condition.

It is necessary to calculate parts 'in the stage of creep and

stress relaxation, in three cases.

1) For- parts operating a long time at high temperatures, the

change in geometric dimensions must be strictly monitored due to the

effect of these dimensions on, -the working process of the engine,

its efficiency, or parameters' -or example, impairment of cooling

in nozzles of the engines becausu of a decrease in the flow-through

sections for the coolant.

2) For parts operating a long time at high temperatures with

large stress gradients due to thermal or external loading. Stress

relaxation substantially levels off the nonuniformities of stress

in the part, as a result of which structuraL relief is Kdaaifest.

3) For parts operating in compression. Compression, stresses

arising in structural elements which are safe when calculating

"elasticity can become dangerous with plastic deformations during
long operation and lead to loss of structural stability.

As we know, there are two concepts concerning nonelastic behavior

of materials: plasticity and creep. The difference in these two

similar concepts lies in the fact that plastic deformation weakly

or scarcely depends on time, while creep deformation develops with

time. Thus, creep can be defined as the state of a material at which

with constant stresses in the part deformation develops depending upon

its operating time. Time is one of the main characteristics of creep.

in the presence of creep there occurs a redistribution of stresses

which changes With time.
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As indicated above, the operational capability of material

is determined by the deformation diagram. The deformation diagram

of a material is experimentally determined on standard machines

in a comparatively short period of time - less than 2 min (curve 0

in Fig. 1.24).

8°7'

(Y

Fig. 1.24. -Diagram of material deformation
versus length of testing.

However, it has long been noted that a deformation diagram is

substantially distorted if testing time changes. If testing time

is reduced, line a = f(e) moves to a higher level. The limiting

values of stress a0. 0 0 2 , '0. 2 , %o are highW(curve 1 on Fig. 1124)

as compared with the standard deformation curve (curve 0 on the same

figure).

The strain diagram is even more distorted if the testing

time is increased (curve 2) as compared with standard. Distortion

proceeds toward a decrease in maximum stresses a0.0U2' a0. 2 , a. and

toward an increase in the section of the diagram from plasticity

limit ao0. 2 (point T on the diagram) to point aa - the point of sample

fracture. This effect is intensified if the sample is subjected to

additional heating.
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Plastic deformations in the latter case can, achieve such

significant values that we can not disregard them where it Is

important to conserve the geometric dimensions of an it'em.

To evaluate the supporting power of material operating for a

long time under elevated temperatures, it would be best to take

the deformation diagram of this material under conditions of actual

operating time and temperature. However, machines for experiments

under such conditions would have to be built. The conditions themselves

cannot be a limitless quantity; some tests cannot be set up at all.

Therefore, tests are carried out on the simplest niachines. Constant

pull P is applied to a sample and elongation and rupture stress ar(

measured as a function of time and temperature. As a result of svch

tests: we can plot curves a = f(T) at t = const or a f(t) at T =

= const (Fig. 125a, b).

60 F
S• ~~~=C~llst ' •gt~

'C- 
P'1 

-1>-pI

Kt L \

a) b)

S~c)

Fig. 1.25. Typical creep dlt;,.;am.

However, it is best to obtain the function e f(T), wihich we

call the creep curve (Fig. 1.25c).

If stresses are low and the i:kme for taking the deformation

diagram is short, relative el.ongatin :f a rod will be deterviined

from formula e = a/E = P/EF.
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According t; this formula, at constant stress, elongation

maintains a constant value and does not depend on time. (At low

temperatures and stresses, change in c will be slow and small and

can be disregarded.) In Fig. 1.25c this stress corresponds to point

0.

At high temperatures and stresses, the rise in e will be

significant; it will substantially depend upon time (Fig. 1.25c).

On this curve we can distinguish three stages of creep (I, II, and IU),

Stage I is characterized by a variable growth rate in creep flow

£ = de/dt. At the beginning of the stage the growth rate is not

high; then it drops to a minimum value, remaining approximately

constant in the I1 stage.

The ar•rc of creep I with decreasing rate is called unstable

creep. Thio stage is usually brief, although, in certain cases,

it can react-i s+,-veral tens of hours. This area of' creep is manifested

in calcularlons for parts of short-life rocket engines. In designing

parts for long-life rocket engines it can be disregarded.

Th. area of creep I1, characterizing constant deformation
rate is called steady creep. Depending upon temperature and stress

level, it can last from tens of minutes to many hundreds of hours.

In materials for ektraterrestrial electrical rocket engines this

zone can reach 10,000 and more hours. It is fundamental in analyzing

parts for creep.

The third, brief stage of creep is characterized by the formation

of a neck in the sample and fracture. The sharp increase in c at

the end of stage III is explained by the increase in sample stress.

It is difficult to keep stress ,onstant •in Rn ordinary experimental

machine. If we create such conditions, then creep stage III becomas

less pronounced (dashes on Fil;. 1.25c) and also terminates in the

fracture of the sample at point p. Time T characterizes the full

operating time of the material up to its fracture.
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Let us examine the basic design relationships under creep

and subsequent rupture.

Any material having the property of elasticity and creep

can, in the first approach, be represented in the form of the

elementary model shot-in in Fig. i.26, The model consists of two

different types of parts connected in !series - an elastic element

having rigidity C and a cylinder filled with a viscous liquid which

can overflow through small holes in a piston. Resistance to the

piston displacement is proportional to the speed of its disp~acemenv

and the coefficient of viscous friction a of the liquid.

0•• Fi.. 1.26,i Model of elastic viscous°:i • 6, body.I

A

The displacement of point A of the element can be made up of

the displacements of the elastic (subscript "I") and viscou.. part.

of the element (subscript "2"). For the elas't'.: part of thw ,nwio

P P, IP P=:-CXJ' ,; = ;

(the derivative of the time function is designated by tho jxot).

For the viscous part of the element

P-=a, 2; X 2 - - I or dX2 dc
a afdc•'.and P,(i,1.

P

a2~-'



Total deflection and total displacement rate of point A will

be

p•.P
XA=Xl+x2, or xr=---.- r;

C5  a (1.15)

xA -X-'."2, or :-
Orl

C a

It is easy to, see that formulas (1.15) describe qualitatively,

rather well, the behavior of a linear, elastic plastic body. Actually,

if time T is brief, i.e., T -* 0, deformation of the element is

determined only by the first term after the equal sign in the

expression (1.15). At high values of T plastic flow increases with

constant elastic deformation. The deformation rate of point A is

determined only by the viscosity of the body' since with a constant

value for- force P the derivative of this quantity is zero.

A large number of materials possess viscosity. For them the

deformation change rate with uniaxial deformation. will be determined

from formulas similar to (1.15):

E u E -a

whure E and a are constants of the material.

A somewhat different relationship gives better agreement with

experiment for metals:

where X is the constant oV the metal. If we assume 1/X B, we

finally obtain

4(1.16)
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The constants B and n are determined in processing the experimental

creep curve. For example, on Fig. 1.27a the dependence o'f creep

deforiAation e on time and stress is shown for steel.' The sect.qn of

unsteady creep is disregarded.

75 A

10 5 210 -

5 I -..

0 5 70 Us'.10',ad O45o,5 3 . 5

a) . 6.1O•'a/cN?

Fig. 1.27. Determining 6onstants of the creep curve.
Steel content: C = 0.31; Mn = 0.54; Ni 2.05; Crl=
= 0.83.

2 = Ni 2  ac=h 2 2Designations: M/2 MN/m2; vac h; aac2 = daN/cm

From these curves we determine the rates corresponding to

steady creep ( = cmn (,the subscript "min" will be dropped in thl.
future). The value of creep rate-is presented in Table 1.1!. We map

these points on a logarithmic grid (Fig. -1.27b) and dx~aw a straight
line so that it occupies, as nearly as possible, the "average"

position between them. Since relationship (1.16) for steady creep
has the form

t I ,Ban, (1.17)

the tangent of the slope angle of a straight line In I in B +,n in o
agrees with index n; from Fig. 1.27b we find n = 2.3. Afteý this,
from the points of the straight line we find B.; The values of
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and B, evqn for. single-type metals, var~y within a wide range.

Table .IL.5,presents somevalues of these quantl;ies for various

steeis.,
I I

-Able 1. 11.

S3triuss a W/n Fl)) I, I i( IIIln 7

Creep rate c.'08 1/1, 0,77 I ,115 2,.3 - 3,17

'Table 1.5. ,

.\li'PKa Temlnewr- 11.B(Oa~lj Aoipical Te.Niuicaie B (i0an
(1I I,1 (l ( "

c'Tal;,, rypa.'C I • ii. , .p., cT..•u, TY1w,•, "C jic.,,2•.q.ac
20 500 6,1 2,.3.10-23 1'khl8N9T 650 5,9 1,,34.10-22

4100 6,9 1,58-10-36 khl3N16i '700 5,0 6,9.10-2-

12G2A 454 4,4 .1, .10.--j . "hNVM12, 500 7,76

l2KIMF (300 12,7 3,3.1.0---14 GOO 10,3
; , ""700 5,21

1.EY: (1) Br&nd od steel; (2) Tempqratune, 0C.

2nDesignation: (Oaa/,cA2 ) -,qaci = (daIJ/om,)" h

Constant B iri equation (1.17) ds sometime.s called theBaily

constant. For the best approkimate description of t'he creep

processes under slow and monotonically changing stress, L. M. Kachanov

[21] hasproposed Lhative consider coefficient B a function of time.

In accordance with this, equation (1.16) is rewritten as

I II

Equation (1.18) Is called the basic eq .uation of flowitheory.
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Along with equation (1.18) we use equation

= +U L) W " 211(1.19)

where

() B () d£ (1.20)

and, consequently,

d2
B d(r= . (1.21)

Sometimes for a comparative evaluation of the resistance of a

given material to creep, the so-called creep limit is introduced.

By creep limit we mean the stress at which in a given period of

time T a given creep flow e is achieved.

For extraterrestrial electric rocket engines this time reaches

L4000-10,000 h. Elongation e = 1-2%.

The value of creep limit is established by processing a set

of creep curves (Fig. 128a). Assuming the quantities.,n and B

are known in equation e = Ban and substituting them into relationship

we find for a given c (for example, e = 1%) time T at which with a

given stress this deformation is achieved, i.e., we examine the

relationship

or all
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or after taking the logarithm

n IgO=IgA-Igr. (1.22)

100 'Cqacza)

100 00100 ,rc
b) c)

Fig. 1.28. Determining creep limit and stress-
rupture strength.

Designation: vac = h; m/M2  N/rm2 .

The form of this dependence is shown in Fig. I.,28b where the

creep limit is designated a t (e indicates deformation in %, TC,T

test time, t test temperature).

Reserve of stress-rupture strength in
material

As mentioned, the strength limit of materials substantially

dependsupon operation time and temperature.
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Iftesting continues, as shown in Fig. 1.250, creep stage III
ends in material rupture. I Stress at which rupture 6dccrA will
depend upon the material, the testing time, and the temperature,.
Limitingivalue 6f ;:ress at which sample rupture appears in' a
ist perioddof time is ctlled the stress-rupture strength of the
mdtekial and is designated by ator at (the subscript T indicates

I • the operating time bsfore rupture). This time is usually 100, 1000,
5600i 10,000 h and is determined-by both the design operatinf time

sand thee capabilitieS of the test machine on which these values are

'achieved. The superscript t indicates the sample testing temperature
S • since' it is the second factor, after operatingtime, which determines

S! o the value of the -strength limit of a given material.

In-many: cases of stress-analysis, Just aS 'the Strength limit
a8 6f a standard strain diagram, the stress-rupture strength is a
criterion. for the operational capability of a design. The principal
diff6eence'-between st'ress-rupture strength and strength limita

''lies in its dependence on operatin. time. In the same way as ,raph
)0 t 1= f (T) is plo'tted in determinihg.creep limit, so graph

ýCot is plotted in determining stress-rupturi strength as a function

of mater3tal operating time. Figure 1.28c shcws a typical stress-
rupture strength-curve.

The suppiy" of stress-rupture strength is determined similarly
to the supply with short-term loading:

' 1.... .- , (1.23)'

where amax is the maximum stress in a part or the maximum.intensity

of stresses under a complex stressed state (see below). Since in
logarithmic coordinates the graph showing the dependence of 'tress-

rupture Strenh h on time is linear, the dependence of time before
Srupture on' s-ress-rupture strength .Ls exponential:
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T=Aor-m. (1.24)

This relationship serves for finding the coefficient of operating

time reserve.

The coefficient of time reserve n,. is the ratio of sample

rupture time to material operating tinte for a part:

n., ------- (1.25)
T

(superscript t and subscript a indicate temperature and stress of

-test). This expression is used to find the operating time reserve

of an item.

The exponential dependence (1.22) of stress-rupture strength

on material operating time makes it posplble to evaluate strength

limit in a wide range of material operat--ng time. However, the

interpolation method examined below should be used with caution

9nity for a first rough es'timate of strength limit in the absence

of other more reliable data.

We shall assume that we have diagram a. = f(T,, t) and diagram

of maximum states a = f(e, t, T)'. The shape of these diagrams-

is shown in Fig. 1.29b and a.

6dan/M4Z -C=59ac 1961%e/lmm

t20 9C~

A

20 ' 1 •- - -

0 5 10 IS 2 0 C o S 10 L '1000 '10000

a) b)
Fig. 1.29. Diagram of strength limit: a) a =f s, C't: t),; b) aB 1'= f(t, T).

Designations: Oax/MM 2 = daN/mm2 ; vac = h.
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Based on the known deformation diagram o- the material with

short-term testing (Fig. 1.29a) and the known dependence of stress-

rupture strength for any temperatuie (Fig. l.ý9b - solid line), the

curves of strength limit are'interpolated.

'Line t = 700 0 C is extended to > > 10,000h. Line t* = 9001C is

drawn wholly based on one point A, taken from Fig. 1.25a. 'Such a

plotting is not complex since, curVe 0= f(T) in a logarithmic

grid is illustrated by a straight line.

In limiting load calculations.we can encounter another casd;

we have a stress-rupture strength,,diagram - in Fig.i 1.30a it is

.presented in the form a6 = f(t) -Iand a deformation diagramrinithe

form of a = f(T) (Fig. 130b) for the usual, testing time, gor example,

T= 5 h (curves are indical:ed by solid lines)., It is necess'ary to

find the deformation diagram for another operating time. itn the,,

approximate calculation we use a method of completing the diagram

in Fig. 1.30b. Foi, example, if there is a, diagram of the type shown

in Fig. ,.Oa for a long operating time, for example, Tra 1000 h,

and there is a deformation dlajram'Of the type shown in Fig. 1.30b

for, a brief operating time, for .example T = 5!h, then, by• drawing

on the diagram in Fig. 1.30b the point of long operation for the

corre-ponding temperature (for example,, poi•ntB at t= 8000), we

plot all the missing branches oC the diagram, proportionally varying

the distance between branches for other tenperat.ures. The obtained ,

network of curves (illustrated by dashes) can be used for the appr~oxi-

mate calculation of plasticity reserve during long operati6n of a

material.

Intensity of stresses

When a part is in ', uniaxial stressed state, in the denominator

of formula (1.23) is the maximum value of stress and the answer,
if aa is known, is obtained immediately since the deformation diagrams

of the material are obtained on samples subjected to uniaxial load.
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•. ~a)- , ,b),

9ig-. 1.30. Plotting cur.ye a. = f(s, t,,- j" vGhe I

approximate method. H2 2

Designations: H/M= NlI 2 ; 4ac = h.1

However, can stre3s, in the -direction of' any axis in a complexly

stressed element be" compared With that, obtained according to, the

' usual deformation diagram? Obviously, this can nQt be crone. The

effect of stress in a perpendicular direction1 strongly distorts the

supporting power' of'ýthe element. This is easill estdblished in

Fig. 1.31a. For a uniaxial state ax ESxl or sx /E, 'while in

a biaxial state
! 4

I 4!I

I 4'Oi

OP viously w4 can plot the deformation diagram while stretching

a sample in two mutually perpend-icular directions (Rig. 131b).

However, this is not sim'aple since the ra1io of stresses ax and a

can be very different and, in po'inciple, infinitely large. a

It: is also important to ,use material accumulated in experiihents

in 'a uniaxial state, for new tasks and not to do all the experimental,

workagain. a

S7 2

I 4

I '4 4
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(a) Fig. 1,31., Uniaxial (a) and

two-dimensional (b) stressed
state of a sample.

(b)

Strict analysis indicates that the diagram of deformation

for a sample in a uniaxial stressed.state., according to law a =E

can be used for determining the supporting power of an element in
a two-dimensional or three-dimensional stressed state if, instead
of ax and ex or ay And wyWe compare generalized or equivalent
,stress a., which is called intensity of stresses, and generalized or
-equivalent deformations ci, obtained in accordance with one of the
theories of material strengths. Then the basic relationship between
stress and deformation will have the form

a =ESt is(1,26)

where

Equivalent stress a,, i.e., stress which should.ýbe created
in 'an extended sample;so that its stressed state correspond to a
given state,, is most. frequently in accordance with.one of two
strerýth theor`tes,. the theory based on equality of the largest
tangential stresses and the theory of the equalityof distortion
enorgy. The first-is widely used in tasks, where the limiting
stage is characterized by a transition of the elastic state to
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plastic, i,.e., if a0.002 < amax < a 0.2" It, however, "isused if
we encounter in the calculation a complex stressed state of design
elements when the largest and smallest of the main stresses have

different signs. The second is used in tasks, where the limiting

state is characterized by the beginning of rupture, i.e., if

C0.2 <a < .Cmax

The formula 'for determining equivalent stress.in accordance

with the first theory

ai c=G -ka 3, (1.27)

where 0a, 02, 03 are the main stresses; k = T.0 /aT.c is the ratio

of the yieldopoint of the materials during extensions to the yield

,point during contraction k = a /a :for brittle material's; for
B.P B.C

the majority of structural materials k = i.

Formulas for determining the equivalent stressed state in

accordance with the second theory will be different depending upon
whether the element is in elastic (N = 0'.3) or plastic (P = 0.5)

state.

Equivalent stress for a three-dimensional stressed state is

We find'equivalent stress for a 'two-dimensional stressed state.

The element is in elastic state (P = 0.3):
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The element is in plastic state (1 = 0.5):

__ 2 2 1/2ZT ax + e ,. +
-,=-y -':,+~~.,

-.*=t (S.,O.G-,) 
(1.30)

£ . -. -'-t (-÷+0,5". .
3 '1

Example 1.2. Find the equivalent stress for three stressed

states indicated in Fig. 1.32. Stresses are given in daN/cm2 .1

Material under extension and contraction operates identically (k - 1).

The value of equivalent stress according to formuaa (1.27) is

a) -g=800-100=700; (=POO, C? = 300, 03 = 100);

b) :i=C00•--!-(-100)= 700 (-1=6'W0, C2=0. o3=--100);.
c) ai=750-0=750; (:1=750, a,=`.00, oj=O).

The value of equivalent stress. according to. formula ,(i..8) is

Cj= I 0,5 ((1 i-a2)27- ( a2- 1)2 -- (a3- aj)2j;

a ) o = ]0,5 ((800 -- 3)0~)2 + (300 - 100). + (IOU - 800)21 =623;

b) € = J 0,5 [(WO0 -- 0) + (0- 100)2 + (_ 100 =TO00)2fJ= 654;

c) -ot = J/0,5 [(750- 0)4 + (100-0)•2 + (0 -- 750)2] = 805.

As seen from the example, the values of equivalent stresses,
,caiculated according to different .strength theories, are not the,
same.

*1 daN = iON; 1 daN/cm2 = 1000 N/m2 = 1 kN/m 2 .
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300 100,

/1000

a) b) c)

Fig. 1.32. Finding equivalenf' stresses.

Stress-rupture strength of material under
nonstationary loading

A considerable number of engine parts operate under nonstationary

stress and nonstationary heating. Let us examine the samples whose

temperature and loading is shown in Fig. 1.33.

I so Fig. 1.33. Determining stress-
3 L1.J rupture strength limit for

"•P material under nonstationary
loading.

As seen from ths figure, the material of the sample was first
heated to t 1 and stressed a1 to, during time period Ti; then on section

T2 temperature and stress were changed to'values t 2 , 02, etc., until

complete rupture. At the end of such variable loading the sample

experienced stress k at temperature tk and ruptured With time lapse
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Total operating time of the sample before -ruptureowas

Let us designate in terms of TlpS t2p, ... , skp the time

intervals necessary for rupture under stresses a, c .2 ""I ak"

These quantities are determined from the stress-rupture strength

curves at various temperatures tl, t 2 , ... , tk. We shall call the

ratios T i/Tlp, T2 /T2p, ... , Tk/tkp material damage in first, second,

etc., modes,.

Experimental studies on stress-rupture strength of samples

operating under nonstationary stresses and heating have enabled us

to establish the fact that total damage for a given material is equal

to one:

£ s-L-l.(1-31)

This assumption Is called the law of linear damage summation.

Under continu6us stress variation

•P d- .

-- 1, (1.32)

Where a and t are, subscript and superscript indicating that rupture

time T- i•s determined for •a glvenh dress a and a given temperature

t.

Let us find-the coefficient of operating time reserve,

which, as before, we shall designate nT.
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We increase the loading time of a part in each segment TI,

**., Tk an identical number of times so that at the end of the k-th

loading stage the part ruptures. Thef 4ihe quantity indicating how

many times the time segments T1 , T2 , ... , Tk must be increased

so that rupture occurs at the end of the mode is the coefficient of

longevity reserve. We designate this new loading time for each

segment with an asterisk:

n ~.nr,; T 2 f 1 2 ,. ;f!,

Then

k k

I. I I

where ,T is the operating time of the part.. Hence, substituting

rel.ationships (1.33) into (1.31), we obtain the formula for the

coefficient of longevity reserve:

& -- -- .(1.34)

Tip

To determine a coefficient of strength reserve under nonstationary

loading we assume that stresses a1 , a2, ... , ak are increased an

identical number of tfmes n so that at the end of the new mode
p

rupture occurs. Then in expression (1.31), taking into account

formula (1.24),

• ;= (1.35)Ti A 11 (n@)1 *

where Tip is the stress necessary for rupture after time Tf. Iti i.
is found from the stress-rupture strength curve of the mater•ial

under various temperatures.
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Substituting expression (1.35) into formula (1.31), we obtain
the equation for determining the coefficient of strength reserve:

h!

This e6 ation is solved graphically. In the particular case of

constaric temperature, foirmula (1.36) is simplified. Assuming

m = m = m, we obtain

rip--- -- ,(1.37)
1 2 Mk

where n is the stress-rupture strength reserve, bf a part when it

is under nonstationary loading,,

Stress relaxation,

A change in the stressed state of a part during a period of

time under constant load is called stress relaxatin.

Equation (1.18) enables us to, calculate stress relaxation. i

We assume that the element is in a stressed state, and thus it is
established that its, subsequent deformation is limited. Then fr9m
equation (1.18), assuming e = const and's = 0,,we obtain

da/an = -EB(T)dT, or on the basi- of expresbion (1.21),

h -Ed ,(1.38)

Integrating this expression, we find
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Designating Q 0t0 we dbtain,

I Q= .(1. 40)'-

or

I

Since! n>1 nd ,.wt unlimited 'time increase, grows without

restriction, 0 is a diminishing function. The shape of the
*function Qis indicatled' in Ftlg. 1.314,

Fign 1.3i4. Determining stress
relaxation.

A graph of functions, B(T), and ýs can be found from the main
dependenbes of plastic flow

I Ianc i=B(r)irn. (1.041)

4,

Went htpic hnt= Vdfomaio , 0; herfoe,)he

t~e nowne, a' and n.. (.-otin, gp of fuctona,-i. .3)
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Function B(T) is found after determining function ' by graphic

and numerical differentiation.

As seen from the figure, the value of coefficient. B() is
Svariable in a certain segment -it corresponds to the segment of

Unsteady cree-i and is constant in the remaining segment - the segment

of steady creep. Function Q after a certain value grows

monotonically.. •Function p decreases shai'ply when J -near zero

and then, monotoni*aliy.

Thernrl' stresses

In studying thermal stresses we face two different problems.

The first problem is finding the thermal stresses -which appear

as a result of rapid heating or cooling of a junction or part. This
mode, although brief, corresponds to the -maximum temperature gradients

and, consequently, stresses. Decrease in these stresses can be
achieved by increasing unit firing time or starting time. For an

installation where the time must be minimal, stresses must be

designed for.

The second problem is to calculate stresses which occur in

parts. as a- result of the effect of steady thermal fluxes and
their corresponding steady temperature gradients.

For very many elements this calculat16n.-is fundamental if

deformations corresponding ho these stresses do not go beyond the limits

of elastic. This calculation can be a reference for stress analysis
if thermal stre.-ses exceed the elasticity limit of the material

when plastic deformations accompanying these sti-esses dan not be

disregarded. Strength calculation for parts) in this ca~'e, must
be made with relaxation phenomena taken into account.
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If we heat a three-dimensional element of an elastic body to

temperature t1 and in no way hinder its free expansion, the element

expands in all directions and its thermal deformations' are expressed

by the following formulas:

lTXYt = T*YZI - V ZXt = O,••:(1l. 42)

where At - t 0 (L0 is initial temperature of the body)'; a is

the coefficient of linear expansion (relative elongation of the

material under heating per 1C).

The disappearance of shear components of pure thermal deformations

y comes from the absence of any distortions of units with;- this

deformation.

If the body is heated nonuniformly or any segment of its surface

is connected with another body, the elements of the body can not

freely expand and thermal or tempeirature stresses occur in it. In

this case, deformation of each body element is made up of thermal

deformation of a free element and elastic deformation caused by

thermal stresses. If these stresses are designated, as they usually

are, in terms of ax', Gy, z' T xy' Tyz, TZX' then deformations

!-- :-

-I-7Yt0 1 (1.43)

1 1 .1ij

where

E
2(1 + .
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We shall express stresses in term8 of deformation. Adding the

first three equations, we obtain

9 ' 8#O+z + .t (1.44)

where e is the relative three-dimensional expansion of an element.
t I.

The first equation (1.43) is then transforiwied as:

P + u.(1.45)
2G I -- 2A 1+

Hence we determine ax, a and a..

+ A

x-I + 2.t I - 2- 1)• 1

S__ ,to +• ý_L+Cut ,•,Ou(1.!46)

-I-2!A I - 21

The obtained general expressions for strains and stresses are

simplified for the case of two-dimensional and uniaxial stressed

states.

For the two-dimensional stressed state

ex (., _ Pam) Ct.•taI

-----•- (am -- Pax•) +- / (1.'47)
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and relationships (1.46) assume the form ,

I j br+ MI ±. I;

I + (1.48)

For the uniaxial stressed state

5' ''

!, -x+aAt; ) (1.49)

The results obtatned have simple physical meaning.

In generalized fci'm they can be jýresented as

"Y , (1 .50)

where e is the thermal deformation of a free part; y is elastic

"deformafion of a part occurring due to contained thermal deformation.

Thus, the tolal deformation of the heated part is made up of

its free thermal expansion and 'elastic deformation due !to

the containment of this deformation.

Thermal stresses are determined only by the-elastic component

of' deformation. Finding it Ls the basic difficulty in analysis.

Thermal deformation c is always known; for example, for a rod

0 ,

This sirmplifies obtaining a numerical result. The rules of

the qtressed state of a heated part show a substantial 'difference
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between it and the stressed state of an unheated part under loading

where, as we know, any relative deformation corresponds to a certain

stress. Let us examine, for example, the stress and strains in a

part free from attachment (Fig. 1.35a).

P

a) b)
Fig. 1.35. Thermal deformation under uniaxial
loading.

The quantities a and at are given, Deformation is

E=' - -•Et•=•"t, since e Y-0;

*--E,=UA1:" O=-E£L=O.

Let us note that c pi 0, while a - 0, i.e., full deformation

of a part does not characterize its stressed state.

We shall examine stress and strains in a part having rigid

attachment (presented, for example, in Fig. 135b).

Quantities a and At are given. Deformation

:, C :=O; 2 = -

3 = Ez -- E'at.

Let us note that e = 0, while a O 0.

The stressed state of a part having a rigid attachment has

one more important quality - the rigid attachment is a single

attachment, with which the thermal deformation of the part is

precisely equal. to its elastic deformation with opposite sign.
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In parts having an elastic attachment, conditions for rigid

attachment are mentally created to evaluate the maxim,.m thermal

stresses which can occur.

Example 1.3. Find the thermal stresses in a pa, made of steel

and installed rigidly as shown in Fig. 1.35b, if 10.10-5 1/°C;

E = 2.1011 N/m 2 ; At = 1000C, are known.

Stress

o=EaAt=-2-.1011• 10. 0-6• 100=--20.107 'ý ;112

As seen from the example, even this relat4v 1", little preheating

of a rigidly attached part causes great stresseE

The appearance of stresses when heating a p.rt with an

attachment (Fig. 1.35b) is sometimes given such a physical

interpretation as the following: if there were no limiting

attachment, the part would expend under heating by quantity

Et = aAt, but since there is a rigid attachment, this elongation

does not occur. This can be represented as the inverse deformation

of a free part as a result of the action of force P which occurs

at the site of the rigid attachment.

The introduction of reactive force P, occurring at the site of

deformation confinement)makes possible simple metnods of finding

thermal stresses in the most varied cases. We shall examine a

common engineering method of finding thermal stresses.

We have a part (Fig. 1.36a) whose deformation is confined.

Quantities a, At, and E are given. If this pai.t is deformed freely,

its deformation ct = aAt. Since the deformation of the part is

confined, its deformation is equal to c; this quantity is less than

£t by quantity Ey, as shown 'n Fig. 1.36a. We find the value of

deformation c y in the following manner.

86



a) b)

c)

Fig. 1.36. Determining thermal stresses.

Before heating, the part is installed in a rigid housing which

does not allow expansion during heating (Fig. 1.36b). Reactive

force P occurs during heating. We find it from the thermal

deformation, which is known; for this case it is equal to elastic

deformation: ey = -et = -sAt. Hence P = eyEF.
y

Stresses and strains obtained in this state differ from actual

ones since there is no rigid attachment of the part. To obtain

true thermal deformations we must apply to the part load P, which

occurs in the attachment of the part, but is directed in the opposite

direction, i.e., with negative sign (Fig. 1.36c).

The sum of part deformations with rigid attachment (Fig. 1.36b)

and deformations from reaction forces P, taken with opposite sign

(Fig. 1.36c), gives tne true elastic deformation. Finally, we

obtain

ey = -uAt+ e(-P) - (1.5?)

This method of finding elastic thermal deformation anu.

consequently, stresses will be used in even more complex pi-vDlems.
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CHAPTER II

ERE POWER GENERATORS

2.1. NUCLEAR REACTOR UNIT

A nuclear reactor is the most promising source of power of
an extraterrestrial rocket engine. It exhibits high power capabili-
ties, makes it possible to obtain sufficiently high temperatures for

the working medium, and has a constant mass characteristic during

its entire operating time. Disadvantages of a reactor include its

high cost, construction difficulties, necessity for crew protection

from nuclear radiation during operation, repair limitations, and
the danger present during emergencies. The problem. of obtainIng

the best structural materials for the core is presently in the

stage of solution.

Based on the energy of neutrons which determine the nuclear

fission, reactors are broken down into those operating on fast,

intermediate, and thermal neutrons. Reactors on fast neutrons
are simple in construction and have comparatively small size and mass.

They are also simple technologically, have a small number of parts,

are not sensitive to the use of structural materials which absorb

neutrons in the core. A disadvantage is the large load of fissionable
material that they require and, therefore, in many cases, they are
more expensive than other reactors.

Reactors on thermal neutrons are more complex in construction,
have greater mass and size with the same power, and are more sensitive

to the use of structural materials in the core. However, these
reactors have a number of merits. They are usually cheaper since,
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other conditions being equal, the charge of fissionable material

is less. To moderate the neutron from the energy which they have

during fission (-2 MeV), moderating material (a moderator) is used

for example, hydrogen, which contains material mixed uniformly in

the core or separately from the fissionable material.

Reactors on Intermediate neutrons have a number of disadvantages

and advantages somewhere between the two previous types of reactors.

Thermal and intermediate reactors are divided into. homogeneous

and heterogeneous based on the principle of the core layout.

Homogeneous reactors have a moderator which is uniformly mixed with

the fissionable material; in heterogeneous reactors the moderator

and the fisslonable material can be in different phases in the core.

BaseP on the physical state of the heat-transfer agent, reactors

are divided Into those with liquid and those with gas heat exchange.

Reactors in which the heat-transfer agent passes from liquid phase

to vapor phase are called "boiling." Reactors with liquid and gas

heat exchange are divided, based on the working medium's pattern

of motion, into direct-flow and loop reactors. In direct-flow

reactors the heat-transfer agent moves in the same direction in all

sections of the reactor. Communications, in this case, have a simple

form; the reactor is comparatively simple in construction. In

reactors with loop (or counter-current) flow the heat-transfer agent

is first used for cooling the housing of the reactor and then enters

the core. The loop pattern is sometimes determined by the location

of the reactor in the power plant.

Based on length of operation, reactors are divided into long-
use and relatively short-use reactors.

In addition, based on the character of the contact between the

wo:iking medium and the surface of the fuel elements of the core,

reactors are divided into reactors with solid, liquid, or gaseous

fuel element surfaces. The last two types of reactors allow the

working medium's temperature to rise beyond the limits of solid

state. However, they have r-t gone beyond the experimental or
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research stage. Reactors with a solid wall have preference in

extraterrestrial rocket engines.

Structural diagrams of nuclear reactors

Direct-flow nuclear reactor on fast neutrons

One of the possible: reactor designs (Fig. 2.1a) conisLFts of

a housing (1, 2, 3), fuel elements 4, a radial reflector ,., regulating

cylinders 6 and 7, and a protection unit 8.

The housing 1 is the main structural part of the reactor. It

braces the core and the control system; it absorbs and transmits loads

arising during the start of the engine and during its normal operation.

The housing unit includes the load-bearing panel 2, a perforated

plate which is also called the tube panel. This braces the fuel

elements and absorbs the loads from them during start and operation.

1 0qGcz

Fig. 2.1. Structural diagrams of nuclear reactors: a direct-
flow on fast neutrons; b - homogeneous on thermal neutrons.
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The fuel elements also rest on a light thin diaphragm 3,

whose purpose is to hold the fuel elements and deflect the heat-

transfer agent during reactor operation. Fuel element A consists

of a shell with which it is braced through the shank to the load-bearing

panel of the reactor, an active fissionable s.bstance, and two end

reflectors. The radial reflector 5, in this example, consists of

two parts - a fixed part in the form of a thin layer adjoining the

inner surface of the housing 1 and an external part, which is removed

to stop the reactor in the case of an emergency situation.

The reactor is controlled by cylinder 6, which is started in

motion by mechanism 7; emergency turn-off is accomplished by moving

reflectors 5.

Liquid metal, as indicated by the arrow, enters the reactor from

a conduit in the head of the reactor, passes through the openings in

the tube panel between the fuel elements, and emerges from the

collector on the rear wall of the reactor.

Diagram of a homogeneous thermal neutron reactor
with loop motion of the working,medium

This reactor (Fig. 2.1b) consists of a housing unit (1, 2, ;

a fuel element unit 4 consisting of a shell, an end reflector, and

the fissionable material mixed with the moderator; a radial reflector

5; regulating and emergency rods 6 and 7; and a:protection unit '.

The heat-transfer agent entering the reactor passes between the

outer shell of housing and the thin wall connected by~a fluted

adapter. Then, as shown by' the arrow, the heat-transfer agent

passes through the openings in the load-bearing panel to the core

and then to the exhaust outlet. The fuel elements are installed

in the core with very small thermal clearances. To decreqse the

absorption of neutrons, structural material - steel shells - is used

only for the emergency and regulating rods 6 and 7, located n the

core.
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Diagram of intermediate reactor

This diagram (Fig. 2.2a) is similar to the previous two diagrams.
The hoL-sing (1, 2, 3) is the same as in the thermal neutron reactor.

The fuel elements 4 are installed in a shell of structural material
just as in a rapid neutron reactor. The radial reflector 5 is
similar tp that in a fast neutron reactor as is the control, carried
out by cylinder 6 located in reflector 5. Here ýI~oo are the cylinders

for emerge. 3y cut-off.

S~(b)

- I

Fig. 2.2. Structural diagrams of nuclear reactors: a - on inter-
mediate neutrons; b - heterogeneous on thErmal neutrons.

Figure ?.2b gives.a structural diagram for a heterogeneous
reactor w•._,h a gaseous working medium.

'The housing 1 of the reactor, the end walls 2, !nd the pipes
for the fuel elements and the passage oP the heau-tr.::icer agent 3
are a r±l~d all-welded des~ign of t'e dirpct-flow type. T'c fuel
elements 4, in the form of plates, shown in the flgur'2 or •.i .ight,
are set by ,ection3 into the pipes 3. The controlling and emergency
rods 5 "_nd 6 are made similarly to the diagram ci' a thermal reactor.
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As the reflector and moderator in this reactor, one of the pos-

sible variants is water, which enters the right upper branch connection

of the housing and occupies the entire free space between the fuel

elements and the housing. In order to provide a uniform mixing

of the water during the operation of the reactor, diaphragms with

openings are installed in the housing. To ensure the necessary

cooling of the structural elements there is a special water supply

into the jacket which covers the fuel element shell.

The gas, for example, helium, passing along the internal channel,

is heated from the plites, which can be made from a uranium alloy.

The ".•-'n of the channel can be different depending upon the pressure

of ;!. heat-transfer agent.

TH1E CONSTRUCTION OF REACTOR ELEMENTS

Means of connecting elements

Many reactor parts are made from sheet material and are joined

by welding or soldering. Let us outline the welding technique

used for reactor elements and then show examples.

Electric ar.;on-arc welding - the fundamental form of welding

in the construction of a reactor - ensures a durable pressurized

seam. This procedure can be completely automated.

Resistance welding ensures a durable unpressurized seam. Th's

is used foi the connection of uncritical parts.

Spot welding does not provide a durable pressurized seam. It

is used for clampin, in intermediate operations and also for bracing

uncritical parts.

Electron-beam welding provides a durable pressurized seam of the

highest quality. It allows the welding of different types of

materials, for example, nonferrous metal to steel, tungsten, etc.,

i.e., materials which do not ordinarily undergo welding well. It

should be noted that this form of welding is not always used; it ij

expensive and requires special equipment.
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In addition to these methods, some.iimes rare welding techniques

of great promise are used. These inclijue friction welding, thermal

diffusion welding, ultrasonic welding, *aser beam and blast welding.

30'---#0°

(bJ '" 0 R10

V7
(() (d) '7

(a) 25) .7z

(c+,) (2,5 )A

(h-2)Iz I550z ". , •

(e) a

Fig. 2.3. Weld seams obtained by argon-arc weldi1g.
KEY: (j) View.

Soldering is also widely used in the construction of reactor

elements. In many elements, for example: the connection of multi-

layer shells, the bracing of power units, etc., soldering is used

successfully along with welding. In certain cases - the connection

of structural materials with ceramics it is irreplaceable and is

a urique iveans of corinecting tLhe elements.
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Let us examine the examples of welding reactor elements in the

drawing. Figure 2.3 shows examples of argon-arc electric welding

of housing elements with butt welding and overlapping.

The edges of the shells under the weld must be processed by a

specific method (Fig. 2.3a); frr thtn materials the edges are cut

along a plane at an angle of )-20Q. The thickness of the uncut

material is -0.05h, where h -s the thickness of the sheet. Such a

joint is used if the design allows it to be examined from two sides.

In the figure it is apparent that butt welding cannot be depicted

on a drawing (see sketch I).

Figure 2.3b shows a seam when its inspection from the side is

ruled out because of the inaccessibility or complexity of the design.

On the inside, before the welding of parts 1 and 2, deflector 3,

which is a plate or a thin ring (depending upon the size), is

installed by spot welding. Such a deflector ensures the uniform

penetration of the joint and guarantees the quality of the seam,

averting accidental overshoots of molten metal during welding.

With an increase in the thizkness of the welded plate to 50 mm

or more, the edges of the sheet are processed as shown ir. Fig. 2.3c

and d. Here such seams are shown in the drawing in profile or

cross section.

When shell designs are ovarlapped (Fig. 2.3e) the seam s!,oula

be removed from the edge of the shell or from other deformations;

this is a necessary condition for strengthening the structure.

Figure 2.11 shows connection methods which are rarely encountered

in reactor design. Resistance welding is successfully used in over-

lapping sheets (F•ig. 2. 14a) 4nere durable but not pressurized seams
are required, for example, in welding the bracing collar to the

shell.
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Deflectors, Jackets, shields and auxiliary parts can be welded

by electric spot welding. The location of electrodes and the form

of welding are shown in the drawing on Fig. 2.4b.

In the illustration of electron-beam welding (Fig. 2.4c) the

filling of the seam with metal is not shown or is shown in the form

of a wedge with a 30-50 angle.

The seam, without shading, is shown on the drawing of friction

welding (Fig. 2.4d).

Figure 2.4e is an illustration of soldering single-type or

different-type materials.

The two-layer shells 1, 2, 3, shown in Fig. 2.4f, are widely

used in reactor construction. The shells 1 and 3 are connected

with adapter 2 between them by soldering. The shape of the adapter

differs. An adapter with steep pitch is used in elements where the

load on the shell 3 is small.

Extreme differences in t1_ thicknesses of welded parts should

be avoided for argon-arc welding in butt and overlap welded units.

Figure 2.5a shows e.xamples of correctly and incorrectly (circled

sketches) welded units.

Figure 2.5b gives an example of argon-arc welding of sheet-

metal elements of the reactor's housing with elements not made from

sheet metal. In the housing there are parts which connect several

such elements, for example, a frame flange. The thicknesses of the

walls of the welded elements must be the s~ame at the weldin& points.

The welding seams of parts 4I and 5 are - on different levels

tc provide for assembling fiom the same s,11,.

On the four drawings in Fig. 2.5c we see the e:i finishing of

two-layer shells. Usually, two-layer shells consist of a thick-

walled power shell having minimum temperature, a thin hot shell,

and the adapter between them which connects the shells with soldering.
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Between these shells passes a fluid which either completely or

partially fills the space between them. Sometimes the working mediurn

passes in the opposite direction along thq fluted adapter as'shown

in the first sketch.

n Cr 4,
H 1

(a) (b

(d) (e)

z.z

Fig. 2.4. Methods of joining reactor elements.
KEY: (1) View.

At the inlet points for the working fluid in the inner-shell

space, the end finishing of the internal thin shells can be per-oimed

by different methods. In the second sketch the end of the internal

shell is deformed so as to allow the blind soldering of the internal

to the external shell, completely closing off the exit of the internal

fluid. In the third sketch this same effect is achieved by soldering

the end of the internal shell by means of a ring which can be made

from the soldering material If the distance between the shells is

small. The fourth sketch shows the partial soldering of the fluted

adapter on the end. Such soldering allows the overflow of 'part
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of the fluid Prom the space between the shell's to the adjacent tection

if this is necessary.

As with any oiher construction, we know t~at it:is expediejit

to assemble reactor eiempnts in units. For example, hood 1 and hood,

3 of the reactor (Fig, 2.5d) must be welded to the central part 2

of' the reactor when each part is ;conpletely or almost'completely

asseb]led. Such assem'bly is complicated if the shells of these

paris consist of two or more layers. The figure illustrates a method

of connecting such multi-lT ýred units.

I

((c)

-(1)

7232

(d) (e)

Fig. 2.5. Methods of joining reactor elements.
KEY: (4) View.
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The procedure for welding a two-layer shell is as follows:

the internal shells 2 and 4 are welded. This is easy to do since

the outer shell projects beyond the edge. After welding, seam

cleaning and inspection, the external ring 5, consisting of two-

A halves, is welded on.

•:• •p* odO /c/'s" (1)

(a) (b)1)

7 __-___ ', .

Fig. 2.6. Construction of reactor housing elements.

2 2

KEY: (1) p < 50 daN/cm

it should be kept in imind that the distance between shells I

and 3 must not be very big since it determines the size of the

section of internal shells 2 and 4 which are not reinforced by an

adapter. This is essential for designs having a large pressure
drop on the internal shells 2 and 4.
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Figure 2.5e shows the same design procedure for connecting

two parts of three-layer shells. In this construction the middle

split collar 1 is held by the flanges of split collar 2.

The working fluid must be fed into and drained from the reactor

housing. Figure 2.6a is a sketch of a supply pipe for, moderate

pressures (not exceeding 50 daN/cm 2). The power housing 1 has

openings which connect the cavity of tank 3 with the intershell

space. These openings are made before soldering shells 1 and 2.

The working medium is fed along pipe 4 which is flattened here.

If the pressure of the working fluid exceeds 50 daN/cm2 (Fig. 2.6b),

the branch pipe and tanks must be stronger. The internal shell 2

in the section located opposite the openings in housing 1 is

reinforced. Tank 3 and pipe 4 have a circular cross section; this

design is typical for gas reactors.

In some cases, the reactor core is installed as an independent

unit. The core is fully assembled on the pipe panel of the reactor.

Figure 2.6c shows one of the possible designs of such a pipe panel.

The pipe panel 1 is installed before the support to the bead on the

reactor flange and is held motionless by an elastic ring 2 which is

attached by screws 3 and wire 4. The seam 5 is made after the

core is installed.

Usually reactor construction is all-welded; thereiore, the

location of the weld seams must agree with the sequence of its

assembly. The last seam on the diagram in Fig. 2.6d can only be

seam 5. This diagram enumerates the most probable sequence cf weld

seams.

Construction of the fuel element for a fast
neutron reactor

In some cases, for engineering reasons, a fuel element can be

mounted unassembled. Figure 2.7a shows a design which allows the

installation and removal of a fuel element.
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A fuel element is a closed pressurized thin-walled design,

consisting of shells 2 covered on two sides by end pieces 1 and 5.

Inside the shell with a small gap is placed part of the end reflector

3 and the pellet of fissionable material 4. Depending upon the

heat-transfer agent, its temperature, and the type of fissionable

material, shell 2 and end pieces 1 and 5 are made from stainless

steel, for example, KhlGN9T, ZhSK, molybdenum, niobium alloys. The

fissionable material is made from uranium alloys, uranium carbide

oxide. The reflector is made from beryllium, beryllium oxide.

End piece 1 of the fuel element freely enters the opening of the

pipe panel 6 and the rectangular notch of fixing plate 7. Then

by turning the fuel element 900 it is fixed axially to plate 7 and

the flange of end piece 1. Then the end piece is restrained from

freely turning during the transporting and operating of plate 8

in which there are rectangular notches for the end piece and openings

for the passage of the heat-transfer agent. Plate 8 is screwed to

the pipe panel 6. In figure 2.7a the S - B cross section is given

without plate 8, and view A is given with this plate installed.

Sf 5-5
/ 2-

8 

-

.. . ....(a)

5 4

19 (b-4

Fig. 2.7. Construction of a fuel element for reactors: a - on fast
neutrcnb; b - on thermal neutrons.
KEY: (1) View.
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The second end piece 5 fixes the fuel element to the lightweight
diaphragm 9 of the reactor.

The shell of the fuel element is the most loaded element in
the reactor and, consequently, in the entire power plant. The shell

operates under the highest possible temperature. It is subjected

to the action of gas forces arising as a result of uranium fission.

Gaseous fission products can collect under the shell. If the reactor

has various alternating modes of operation, this leads to cyclic

loading of the shell.

The fuel element unit of a thermal reactor (Fig. 2.7b) includes

end piece 1, part of end reflector 2, and the fissionable material

3.

Depending upon the heat-transfer agent and the temperature of

the fuel element, the end pieces are made from stainless steel,

for e~ample, Khl8N9T, molybdenum, niobium. The reflector can be

beryllium oxide, beryllium; the fuel in a homogeneous reactor can be

a blenid of uranium with graphite, beryllium oxide, hydrides.

A fuel element, thus, is a structure of various materials
assembled into one unit. A connection between the separate elements,

the steel end pieces, and tho outer shell, if there is one, is

accomplished by welding or soldering.

The fuel elements form the core of a homogeneous reactor. The

end piece 1 in the form of a tube then becomes hexagonal, which

ensures a tight fit for the core. The heat-transfer agent passes

through the openings inside the fuel element or between the uni's.

The fuel element is welded to the load bearing panel 4 through ring

5, providing a uniform wall for the welded parts. The second ring

of the fuel element rests on a diaphragm 6.
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S(a) (b)
II • • /Fig. 2.8. Construction of a fuel

element for reactors: a - on
intermediate neutrons; b - on

thermal neutrons, heterogeneous.

(c) (d)

Presented in Fig. 2.8a, the fuel element for an intermediate

neutron reactor is made as that of a fast neutron reactor, in the

shape of a closed thin-walled welded shell (1, 2, 3, 4) inside of
which is located part of the end of reflector 5, the fissionable

material 6, mixed, as in a thermal reactor, with a moderator. The
shells of the fuel element are made from stainless steel, molybdenum,

niobium; the reflector from beryllium oxiee; the core from e mixture

of uranium with beryllium oxide, hydrides. The cross-sectional

shape of a fuel element in the core can be circular or hexagonal.

The heat-transfer agent can pass along the channels inside the fuel

element or can wash over the surface of the fuel element on the out-
side. The end piece 1 of the fuel element and the load-bearing

panel 7, in this example, are attached by a thin pressed plate 8

welded to plate 7 by spot welding. Figure 2.8b shows a version of

fuel element attachment to the load-bearing panel 7. The uniform
wall of the welded surfaces is achieved by boring or milling plate

7 at the bracing point of the fuel element shell 1.

Figure 2.8b illustrates the construction of a fuel element of

a heterogeneous reactor. T"he fuel element consists of a two-layer

shell 1, 2, 3 inside of which the core units are located. Each unit
consists of a graphite base 4 anU plates of fissionable material 5

made fron ur.mium tlloy.
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The units are fixed in the shell 3 with a spacer ring 6, a

spring 7, and a support ring 8. The external shell of the fuel

element is welded to the load-bearing panel 9. The plate is tapered

at the bracing point of the fuel element by a comparatively simple

engineering method. The plate is drilled, stamped as shown in sketch

c, and then stretched to the necessary size. This ensures identical

thickness for the welded elements. The material of shells 1, 2, 3

is stainless steel.

Construction of adjusting cylinder for a fast
neutron reactor and an intermediate reactor

The unit (Fig. 2.9a) consists of a housing 1, which is held by

flange 2 to the projection of the housing flange. The adjusting

cylinder (4, 5, 6) is located on bearings 3 and 7 in the housing 1.

S 5

(1) OaR 8-8 (1) C-C

(b.)

(a)

Fig. 2.9. Construction of the regulating rod of a reactor: a - on
fast neutrons and intermediate neutrons; b - on thermal neutrons.
KEY: (1) View.
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The reflector material 5 (beryllium, beryllium oxide) is packed

into the pressurized shell 4. A segment of boron steel 6, which

exhibits powerful neutron absorbbnce, is set in the lugs to the

internal surface of the shell 4, which occupies approximately i80d.

It must be cooled to prevent overheating. The adjusting cylinder

is turned by spring 8. The journal-thrust bearing 3 and the journal

bearing 7 operate with a dry lubricant or, are lubricated with the

cooling fluid if the cylinder is of such construction.

The housing of the adjusting cylinder 1 is attached so as t?
ensure free thermal deformation of the more highly heated rea,tor

$ housing and the installation is light because of the pin connection.

The locking of the pin is shown in the figure (view B).

One of the possible designs of the adjusting rod in a thermal

reactor (Fig. 2.9b) consists of a controlling cylinder 1, a housing

2, support devices 3, and the rod 4. These elements of the, rod are

made from stainless steel, except for rod 4 which is made from boron

steel.

Tne adjustment is performed by the moving of the rod into the

core of the reactor using a piston and cylinder; the rod must be

cooled during operation. The coolant is fed to tanks 5.
?N

The working fluid controlling the rod, in this case, is the sime

as the cooling fluid. The housing of the adjustment rod 1 is welded

to the load-bearing plate of the reactor 6 and the support diaphragm

7. The disadvantage of this design is its porosity.

Prctection unit

The protection unit (Fig. 2.10) of the studied reactor has a

mass which sometimes exieeds the mass of the reactor itself. The

protecti rn unit coneists of' a bracing frame 1 which connects the
protection with the reacts. &rnd with other elements of the installa-

tion, load-bearing rings 2, •uaphragms 3, sht.ll:k 4, p~pes 5 for

introducing the jdjust!ir 'od into the reactor. The protective
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mpterial is sheLt tungsten 6 for protecting the installation from

y-radiation; metal hydride and layers of boron steel 8 or other

material protect the installation from neutron radiation.

The entire unit is a welded pressurized structure. Pressuriza-

tion is necessary t6 contain the hydrogen given off as a result of

the neutron bombardment of metal hydride.

The release of hydrogen during operation requires that the

protective shell be'designed for strength and stability. A decrease

in hydroger pressure can be achioved by creating a vacuum when

filling the shells with metal hyd1ride.

In designing this.shell we should also keep in mind the heating

of the protection unit during the operation of the reactor.

Figure 2.11 shows an overall view of a homogeneous nuclear

reactor whose energy is effected in a thermal electric converter.

The, reactor has 37 fuel elements which are cooled by the eutectic

Na-K at t~x,= 4550C and t = 5180C (BX = input; eýx = output].

21

44

S 6 7' 8

Fig. 2.10. Reactor protection unit.
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Figure 2.12 is a sketch of a fast neutron reactor. The working

medium is the eutectic Na-K, the nuclear fuel uranium carbide, the

reflector beryllium, the material of the regulating cylinders

beryllium. The heat-transfer agent has a loop-type feed.

The eutectic, passing through the two-layer shell 1 of the

housing, enters the reactor core through the openings in the pipe

panel 2. Part of the heat-transfer agent goes through the central

channel in the fuel element 3 and part into the cavity between the

fuel elements and then into the branch pipes of the reactor housing.

Thermal deformation of the core is compensated by installing )he

pipe panel 4 on sylphon bellows 5.

Figure 2.13 shows a heterogeneous reactor on intermediate neutrons.

This reactor consists of a housing with branch pipes (1, 2, 3), a

core (4, 5, 6), regulating devices (7, 8, 9) and shield 10.

The liquid metal enters the reactor housing through branch pipe

2, passes through the core and exits from the reactor through branch

pipe 3. The core is made up of disks 4 with openings through which

the pipes pass which connect it with the pipe panels 5 and 6.

The reactor is regulated by cylinders 7; emergency control is

accomplished by tilting reflectors 8 and the reflectors 8 are moved

by mechanism 9. The shield 10 is of multilayer construction. Shadow

shielding is used; therefore, the outlines of the reactor must be

inscribed in it.

Figure 2.14 illustrates a reactor of the "Romashka" type, in
which heat transfer from the core is accomplished without a heat-

transfer agent.

The reactor is cylindrical. The heat releasing elements 1 are

made in the form of plates of uranium dicarbide with 90% enrichment

by the uranium isotope U23. The core consisting of the fuel elements

and graphite plates 2 with a maximum temperature in the center of
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1770'C is surrounded on all sides by reflector 3 of e.eryllium,

in the side sections of which are four regulating rods

A-o

i -4
Fig. 2.11. Construction of a nuclear reactor on thermal
neutrons: 1 - housing; 2 - regulating rods; 3 - electric
drJve of the rod; 4 - pump; 5 - shield.

A thermal electric converter 5 of germanium-silicon alloy is

located directly on t - surface of the radial reflector, having a

temperature of 10000C. The electrical power of the converter 5 is
500W. The figure shows fins 6 installed on the converter for cooling.

Stress analysis of reactor parts

Let us consider a minimum stress analysis for the reactor part.

The following basic elements should be analyzed: cores and

shells of heat-re~.easing elements, housing and other shells, and

the load-bearing panel.
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!~ ~ ~~. . ........... li ....

Fig. 2.12. Construction of a fast neutron nuclear reactor.KEY(: (1) View.

The heat-releasing elements in the f'orm of solid circular rods

b or plates experience t.hermal stresses due to the nonuniform heating
of the material. The greatest nonuniformity of heating and, conse-
quently, the highest temperature gradient occurs in the cross section
of a fuel element when along its axis the temperature changes more

or less smoothly.

If heat release in uraniam or its compounds occurs uniformly
and the heat is uniformly drained from a cylindrical or flat surface,

il, then the ten oeraturc field is symmetric with respect to the axis of

logl
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the fuel element's core and the temperature gradient can be a function

of the radius r of a circular fuel element or the distance from the

axis of symmetry of a flat fuel element. In this case, in the first

evaluation of strength we disregard the effect of end sections of the

core on the intensity and we find the stresses in the fuel element

at any point removed from the ends. A more precise evaluation of

thermal stresses is obtained if we take into account the deformation

of the end sections.

As a result of the temperature gradient in the core, there are

radial, circular, and axial stresses corresponding to the thermal

deformations of the core, i.e., it is in a three-dimensional stressed

state which should be taken into account in stress analysis.

To decrease the thermal stresses, cores are frequently made in

the form of peilets of fissionable material placed in a cylindrical

shell. Cracking and crushing of pellets during operation is undesir-

able; therefore, temperature stresses should be checked. If the

pellet is thin-walied, it will be in a two-dimensional stressed state

and will experience loading in circular and radial directions; stresses

in the direction of the fuel element's axis will be small and are

not taken into account.

The shell surrounding the pellets of the fuel elements will be

loaded by the pi'essure cf gases given off during uranium fission.

To check the strength of the shell involves a number of calculations

concerning the strength of the reactor unit.

Then in a number of minimum calculations for the reactor the

calculation of the reactor housing and the support plate is involved.

To determine thermal stresses we shall assume that the temperature

gradient along the element of the part is known and given. Also

known are the main characteristics of the reactor material (some of

them are presented at the end of the book).
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THERMAL STRESSES IN FUEL ELEMENTS

Thin cylindrical pellets

The rods of a fuel element are made in the form of flat thin

pellets - disks (Fig. 2.15a). The disk is in a two-dimensional

stressed state. Stress in the direction of the x-axis is zero.

The quantities a, At = f(r), E, are given. We must find
B .T.

a and where ar are radial and 0 are circular stresses.

tmn 4to At0
t2

0tto --- • 0 .. -0 0t

to to to
(a) (b)

Fig. 2.15. Temperature gradients.

From the symmetry of the problem it follows that radial dis-

placements u depend only on rvadius r while circular displacements v
in the direction q are zero. Then the main deformations have the

form:
du I (

C -7 ( • , )+ aAt,

r E
hence

E+ ( du )Atl. (2.2)
r drJ
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We substitute ar and aC into the equation of equilibrium1 :

Z7- = + ro'=0---.

We find the differential equation for radial displacement

r r2  (2.3)

For integration it is conveniently represented in the form

The first integration gives

(ru (1 ..Lt) u.a'tr -2- Cjr, (2.5)

and the second
r

1 +---U rat dr +- Clr +--r
r2 r

a (2.6)

Here C1 and C2 are constants.

Substituting equation (2.6) in (2.2), we find the formulas for

stresses:

E ratdr+ EC1  _ _C2

r2 1 2(I-IL) (I +) r21

r (2.7)
' raldr -.- EC _ EC2T•r•.. 2(1-- (+F)-"

a
Let us find the constants C1 and C2. We know that

'This equation (2.82) is derived in section 2.2.
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Ora-O"when r=a;

when r=b. (2.8)

Substituting these conditions into equations (2.7), we obtain

C,--~ , ý; ._-. rua.!dr;
(b2 -a ) dr

a

b (2.9)
C, -1. u-4-) a2."-(b2 -- a?.) rut.

a

Finally, we obtain

r 2 -- 0 E E
b.--a- - 2 ciardr -- -- aairdr;

a a (2.10)

b r
"r2 + a2  aAlrdr E

a~irdr+ a Adrdr-Hui
.- a2  r- r

a a

For a disk without an opening in these formulas we should assume

a =0. Then

b r

1 0

b 0

"" aAtrdr '- aAfrdr- EUA.(2? Nor (2.11)

Let us find the deflection of the pellet. We substitute into

expression (2.6) the value of constants C1 and C2:

IA) r2 + (I + a" ' I

r (b2- -a2) r (2.12)
a a
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In these formulas At is the temperature gradient. In the earlier

examined problems it is determined from formula

At=tl - t,

where t0 is the temperature of part manufacture or assembly, usually

201C;

t is the temperature which exists in the part as a result of

heating.

For this problem this equality can be conveniently presented

in the form

At = tml + Atof (r) - to = Atmi + Atof (r),

i.e., in the form of a constant component of gradient Atmin and a

variable component of a gradient depending upon the radius, At 0 f(r).

If we substitute this expression of the gradient into the stress

formula (2.10), we find that the integrals of the constant component

of the gradient t will be equal to zero and the stress will be a

function of only At0 and the law of temperature variation along the

radius f(r). The main technological stresses we shall disregard.

Therefore, it is advisable to determine the temperature gradient At

by the formula At = At 0 f(r).

In many cases, it is advisable to replace the true law of

temperature variation with approximate functions. Figure 2.15b shows

the temperature gradients which can be encountered in these calcula-

tions.

The linear law of temperature variation is

t At' r

The hyperbolic law of temperature variation is
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The exponential logarithmic dependence is

In(b/r)
In (b6a)

The law of temperature gradient variation along the radius f(r)

can be represented, in many cases, in the form of a power dependence

At =ato -r
Ab--l (2.13)

where n = 1, 2, 3, ... , n.

If we substitute expression (2.13) into (2.10), we obtain the calcu-

lation formulas for computing stresses:

ar 2 -a 0- 1 b (b--a)"+' (-a)+

6,b2 -a0 r2 (b - a)[ n + n+2 -

r 2 (b ' [(b --r)"+ 2 (b --a)Y '" b{b-r,"+i bfb- a)n '1l

,-(b--a)" [I---+2 -" +I n+ + I

:7.=Fatr2-:. a2 I b (b-a)n~1  (b ~-a,"+ 2

Sb ?.-a2- r2-b --a/" n+ I - n + 2 j

I [(b--r) n 2 (b--a)"+?-" b b--r.)"'+l_+ b (b-a)" +i

r-a(I-a,Ln -- n+2 n +I + n+ '

- bL-_ ý.) n
t ~(2. 1•)

If the heat removal in the fuel element is accomplished from the

surface of the internal opening, then the gradient will be

* d.....Ad ( r -a \4

b-a/ (2.15)

where n = 1, 2, 3, ... , n.
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If we substitute expression (2.15) into (2.10), we obtain the
calculation formulas for this case also. The result is presented

in Chapter V, relation (5.89).
t

Example 2.1. Find the .thermal stresses in the disk, assuming

n=1I and -it .14

As a result of calculation, we obtain

r=a; z,=O; = -Ea'o.0,.%; r= I; I,=r ; 0.;EaAt0.,13.

A stress diagram is shown in Fig. 2.1ob. The crosshatched lines

show the stresses if a = 0.

Thick-walled cylindrical fuel elements

The quantities E, a, At, a t are given (Fig. 2.17). FindThe~~ ~ qunite E ,A, .T.

ar' Or, a cx. We assume that temperature distribution At is symmetric

relative to the axis of the cylinder and does not change in the

direction of its axis.

• -•",• ... -- _.._ ._

At

to~

(a) tMLn (b)

Fig. 2.16. Thermal stresses.

We assume that at a sufficient distance from the ends the cross

sections of the cylinder are flat, i.e., we shall consider the part
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of the cylinder between two adjacent cross sections as a disk

experiencing plane strain. Normal stresses ar' a, and ax also occur.

The latter are distributed' along the fades of this dilk so that the

faces are kept flat. The stresses which arise 'in the cylinder are

determined from formulas t4O]: ,

b
I r.-a 2 E ' Atrdr - UA r
I.&b2- a? r2 

IL2 r.1

.r~E!.r + cz 'alrdr-E-

1 0-0+= r2 1 r2,, ••
a "a

•=ES . __ t " aAtrdr- EuAt .

, (2.16)

Fig. 2.17. Thermal stresses. 1 •.

* .1

I?

If~~~~~~ ~ ~ theo ar-ooeig nth yidr hna=Oadthe

stress formulas acquire the form•

I, C,

h
\a.*11rdr + .V/r dr-Ea

2119

b2 r

0 0
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Constant azial relative strain e in each particular case must

* * be chosen' so that the eguaily acting forces, distributed along the
cross section of the, cylinder, vanish, i.e.,

b

'a -rdr==0.
*6 (2.18)

' A jpint solution of equations (;2.17) and (2.18) gives

I I

whereAt 0  t t is the maximum; value of the temperature gradient
along the cross sdction of the fuel element.
hif ta is the temperature on the internal surface of the cylinder and

the temperature on the external surface is zero, the temperature

, at any distance r from center: is

A t= / 1 U In / --.b

Substit~utiig this value intd formulas (2.17), we find the following
exoressions fbr thermal stresses: ,

a2 bj a
• (-'•./ i-n ---- - -- i In-i;

2(1p) In ba [ r bV.a2 2) a4

Et2( ,-,:2lb/ ir b: 2a2 In 6
"r . . . l:

2(1-r b2V- a2 a (2.19)

IIf ta is positive, radial stress for all points is compressive

and vanishjs on the internal and external surfaces of the cylinder.
The stress components aq, and Ox reach their highest absolute values

on the inner and outer surýfaces of the cylinder. Assuming r = a,

we:find

120

LI
'9.



EuI~, 21,2

Eat, bb •

2-(1 ---xInb14 j12 a-a a (2.20)

When r = b

Eat, 20_ In-
2(1-p)Inb!a 12--a2  a (2.21)

If the wall thickness is small as compared with the external

radius of the cylinder, formulas (2.20) and (2.21) can be simplified,

assuming

-= 1 tn; in 1 Mn

a a 2 3

and considering m a small quantity. Then when r = a

S(1 (2.2?)

and when r = b

Ea'a I

If the is of the cylinder are very thin, we disregard th5•

term m/3 in expressions (2.22) and (2.23). Then for surfaces r -I

and r = b we obtain, respectively,

Eat.,,(2 2 )

C;'b - xb- (2 21

2(1 -1.)

These thermal stresses will be distributed throughout the thich-

ness the same as in a two-dimensional plate or a thin shell with ,

linear law of temperature distribution.
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"Thermal stresses are the main factor to keep in mind when

designing a fuel element for a reactor. This .s easy to show if we

express the temperature of fuel element through the heat-release

function qv, called the three-dimensional state of thermal stress:

qv"2 E \-•t =t,., i. At tM,,• o14.I-..•"UJ

If a = 0, then

Ea Af

•t•I .-. L\ 4

I r
_Ea tI r 1
Ea 2

(2.25)

In the temperature range 50-6000 C the quantity Ea/(l - i) for

uranium, for example, has virtually a constant value:

S0,35 daN /11.112 TC4.

Figure 2.18 shows the stress distribution in the core o1' a

uranium heat-releasing element with a temperature difference of

At = 1. Circular and axial stresses have the highest value. On the

surface of the core both of these stresses are maximum and equal to

EI

.'.,X , --Ea A(2.26)

These formulas are useful for evaluating the correctness of the fuel

element core dimensions.

-12
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Fig. 2.18. Thermal stresses in 0•6 / 6
the core of a fuel element.

KEY: (1) 5 daN/mm2 . 0,4

0, 2

I0125-qD1s 0 OqO70,02
(1 6da H/MI~4 2

The maximum temperature gradient (i., 0C) along the cross section

of a heat-releasing element for a cylinder with an internal heat

source can- be determined from formula [301

- qvd2

1';.

where X is the thermal conductivity coefficient in W/m'deg;

is the three-dimensional state of thermal stress in W/m3;

At is the temperature difference on the axis and the surface

of the core in 0C;

d is the core diameter in m.

If we replace the temperature difference between the center and

the surface of the core At in forinul.a (2.26) with the cited exprtssion,

we obtain

S=b -- l 1.10 qvd__._I I. ."03 j

From this formula it is apparent that a decrease in core diameter is

an effective method -" reducing maximum thermal stresses since these

stresses are proportional to the square of the diameter.

Example 2.2. rind the maximum thermal stress in a fuel element

of the reactor if the following are known: core diameter 5 mm,

= 30 W/m'deg; q = 0.435"109 W/m3. Obviously
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This example shows that significant thermal stresses arise with

comparatively small dimensions of the fuel element rod.

Naturally an increase in the dimensions of the fuel element

increases its thermal loading and can cause stresses which exceed

the yield point. In this case, calculations should be performed

with allowance for plastic flow.

The physical picture of the stressed state will be as follows.

Since the stresses exceed the yield point, plastic flow of the

metal will occur in the fuel element core, due to which plastic

deformations will appear and the excess thermal stresses will be

relaxed. When the heat-releasing element is cooled, there will

appear, in its core residual stresses of opposite sign which can also

be called metal flow if the yield point is exceeded. Since the

temperature field is axisymmetrical, the form of the fuel element

remains unchanged, but its rupture resistivity will be weakened due

to the cyl Lc nature of thelloading.

In each individual case the stress level is determined by the

degree of the fuel element's thermal intensity N Y. In low-power

unstressed ieactors N < 1 kW/kg. After finding ar o0, 0c ", the

strength of the fuel element core should be evaluated from formula

(1.23)

0Imat

where

oi=<f6= l(<, - '.,- )22+ , -4,) 2].
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It is necessary that n > 1l. Ifthis is not the case, calculations

should be performed in gzeater detail with allowance for the plastic

flow of the material.

Laminated fuel elements '"

A I

A laminated fuel element whose diagram is presented in Fig. 2.19
is installed freely in, a housing. The quantities'E, a, At = t -to

are given. Find ax .

As is apparent rrom the figure, :the temperature gradient is

symmetric with respect to the axis of the fuel element. Accor'ding

to the common method of finding thermal stresses, we fix the fuel

element rigidly in the axial direction (Fig. 2'.19b) and find strtxýs

a1 from the reactive forces hrising from such a bracing:

"Jz • Ea 'A
,(2.27)

The factor 1/(1 - i) is introduced because of the two-dimerIaional

stressed stjte of the plaýta.' A detailed derivation of t~his form.ula

for a plate will be given in Chap'er MV.
, I

The application of a bopd leads to a violhtioh of the boundAry

conditions of the freely installed iplate. We reproduce the condA,.!ons

by the appliqation of a force which is equal and opposite to the

reactive force in the fixing:

M21

" Ealbdy.
-h"2

Stress from this force is

hI2

5'- 1 L'E IV .1, (2.28)
I -s1 - ,h (I - Oh -l bh
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1 f

Finally, stresses in the fipee .plates are

-:h (2.29)
I. ' ft, , '

Figure 2.119b, c, and d show the stress diagranis for a1  a and theI I 
1 a-totalstress diagramof the plate. I",

Figu. 2.19.' Findingd thermalo fo l2 n t
S~~(a)" ' "

stresses in a laminated fuel (
etlement.

ft +
a ft

; (c)

I "(d)

Sometimed stress equations are 'expresseq in terms of thermal

fluxes. If q isithreeldimensional heat released in W/m3, and Xv I I

is the thermal conductivity coefficientiin W/m'deg, formula (2!29)

will have the forpi , ,
ft,. I, '

a=) (2- I
X 3 2 (i/2)z]

Stress analysis of reactor- shells

Let us mention several co'mmon concepts relating to shells.

By a shell we mean a bodyjw1ich has onelof three measurements

considerably smaller than the other two. The two surfaces of the shell

having the largest dimensions are cilled the main surfaces.
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The locus of points equidistant from the main surfaces of the

shell is called the middle surface. The gecmetric shapes of a shell

are completely determined by the shape of the middle surface and the

law of variation for the shell thickness. As a rule, this thickness

is constant.

The most widely used are shells of revolution, i.e., shells

which have a middle surface formed by the rotation of any plane

curve around an axis lying in the plane of this curve and called

the generatrix.

If the middle surface is a plane, the shell is called a plate.

The curve formed on the surface of the shell by the intersection

of it by the plane passing through the axis is called the meridian.

Obviously the meridians agree with the generatrices of the shell.

The meridian's radius of curvature at any point is called the first

principal radius of curvature R1 of the surface at a given point;

the radius of curvature of the curve obtained from the intersection

of the surface by a plane perpendicular to the meridian is called

.the second principal radiusjR of the 4urface at a given point.

Sometimes the word "principal" is omitted.

The radii R1 and R2 are variable quantities characterizing th,•

geometry of a shell of rotation. Completely geometric forms of

a shell of revolution are characterized by these two radii and the

angle 0, formed by the normal to the middle surface and the axis

of symmetry. Figure 2.20 presents these parameters for various

types of single-layer shells.

In engines, in addition to simple single-layer shelis, complex

two- and multilayer shells are used, which have, as a rule, the

shape of a body of revolution. Between the walls of the shells

flows liquid or gas, frequently used for cooling the walls. Various

types of complex multilayer shells are shown in Fig. 2.21.
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In many cases, we can assume that the stresses arising in the

shell are uniformly distributed throughout the thickness. Shell

theory constructed on this assumption is called mom•.ntless theory.

This corresponds to cases when the shell has no sharp transitions

or rigid attachments if it is not loaded with concentrated boundary

forces and moments.

z

AAA A

&;4" Fig. 2.20.

(a) 
()

(C) (:d)

Fig. 2.21. Types of multilayer shlells.
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Equations of equilibrium for an axisymmetric
single-layer shell

We shall examine the equilibrium of an element of an axisymmetric

shell (Fig. 2.22) cut by two meridional and conical surfaces.

We assume that the x-axis and the displacement along this axis

u are directed along a tangent to an arc of the meridian, the y-axis

and v, respectively, along a tangent to an arc of the circle, and

the z-axis and w along the normal. If the strain of the shell is

axisymmetric, displacement v is absent.

We apply to the faces of this element internal forces, and at

point A external forces.

We designate with the symbols N, and N• the pull which occurs

per unit length of an arc of corresponding cross section (in N/m2):

where S1 , S2 is the length of the arc of the element.

Fig. 2.22. Derivation of th
equilibrium equations for shell p
element.

P
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The quantities R1 1 R2 , h, p (N/mr2 ) are known, where p is the

pressure of the working medium, h is the thickness cf the element.

* Find a0 , aY, n.

Obviously, the meridional a0 and peripheral ac stresses will be

NI

, .h S 1  
a

We project all forces onto the z-axis; their sum must be equal to

zero:

2. sin -- NO No S'
2

y.:N4 -- ;• ' = /,s,&2.

The equilibrium condition is written as

,V, \7S2 ..
S-A L ...-A. A'.-!- -S .•pSSq-

RI .R2 .

Hence, after dividing the entire equation by S1 S 2 h, we obtain

I? 'FR, T" (2.30)

Here the two unknowns are a0 and o•. The second equilibrium equation

of the system is set up for part of the shell (Fig. 2.23) cut off

by the normal conical seu ion. To add to the available load p we

allow for the possible Internal distributed load pt applied

indicated in Fig. 2.23.
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Fig. 2.23. Equilibrium
of a shell element. P

The sum of the projections of the forces onto the x-axis must
be equal to zero. The projections of these forces onto the h-axis
are

,\~ N,,2•rr sin Oo; dP1 --p2,'rrdS, cos 0; dS, -
cosO

After integration we obtain

S
Px- - •p2zardr

*P p

0

0 No

The equilibrium condition is written as:

be.,_atr sieu 0to pzhtr tg'I r,

U

ahre •.

whr SMr r sin O(= S (p - p1 tg M) rr.

0 0

3(2131)
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If the external load is zero, then Net0 sin e0 f prdr or

2 0
after integration Ne sin 60 = pir2. Equations (2.30) and (2.31)

enable us to obtain the unknown stresses a0 and q, in an axisymmatrlc

shell.

The supporting power of a single-layer
spherical shell

Spherical shells are founO in auxiliary devices for the reactor

unit. Stress in a single-layer spherical shell, filled with gas or

liquid at piressure p, is determined from expression (2.30). For

the sphere R1 = R2 = R, a0 = a = a and

o-pR/2h. (2.32)

The walls of the sphere are in a plane-stressed state but this

does not affect its supporting capacity since

and the coefficient of safety is

71 lata a

A spherical shell is the most reasonable design for volumes

found under high pressure. In the systems encountered we should

assume n = 1.1-1.2. Figure 2.24 shows the formation of a welded

seam in a skherical sh-ll.

The supporting capacity of a single-layer cylindrical shell

Cylindrical single-layer shells are frequently encountered in

various design elements (Fig. 2.25). Based on the known quantities

R, h and p, let us find 0,, oa and n.
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The first equilibrium equation for an element cut out' of a
cylindrical wall is obtained from expression (2.30) by substituting

R 1 = and R2 =R:

* (2.33)

The stress a = we find by dividing the forces acting on the

bottom by the cross section of the shell. As we know, if uniformly

distributed pressure acts on any surface? then, regardl~ss of the

shape of the surface (see 1, 2, 3 on Fig. 2.25b), the projection of

the equally acting forces of pressure onto a givep axis is' equal t6

the product of the pressure p times the area of the surface projectioh

onto a plane perpendicular to the axis.

Fig. 2.24. Formation of a =6

welded seam in a spherical
shell.

ifConsequently, regardless of the shape of the bottom, the for'e

pulling the shell in the direction of the x-axis,

and the stress

4I

2i-Rh 2h 54.3)
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Fig. 2.25. A: cylindrical
single-layer shell.

P A

' -X (b)

(a)

Thus, the peripheral stress a in the walls of a cylindrical

she:ll is twice as great as ithe axial stress a Also important is

the fact that this peripheral stress is almost equal to the equivalent

stress which determines the strength and the supporting capacity of

the shell. Actu~lly, equivalent stress

*

since =k : 0.507.

The forniula (2.33) is widely used in rough calculations of more

pomplex design. I
I I

The safety coefficient of the shell is found by the usual method:

SI 2

I i(2.35)

depending upon the purpose of the element n = 1.2-1.5.
II

End plate of a cylindrical shell

Frequently single4-layer cylindrical shells have a closed shape.

One of the possible forms of the end part is a sphere with a radius

equal to the radius of the cylinder, i.e., r = R (Fig. 2.26).

* II
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The wall stress of this sphere is determined from formula (2.32):

pr

The wall stress of the cylinder .= pr/h = c. c" The spheridal

end plate of a cylindrical shell with the radius of the sphere equal

to the radius of the cylinder is not a reasonable design with respect

to either weight or dimensions. As seen from Fig. 2.26a, if the

thicknesses of the cylinder material and the end plate are identical,

stresses a1 in them will be different; a = pr/2h = 0.511c
eiL4HJ = 0.87 pr/h [4An = cylinder]; the structure will be

too heavy. A decrease in the thickness of the end plate by a factor
of two (Fig. 2.26b) does not lead to an equally strong construction.

There is a new disadvantage - the weld seam is located at the point

where the cylinder changes into a sphere. A change in the thickness

of the material in the design is also technologically undesirable.

The dimensions are as large as before.

The two designs of end plates, presented in Figs. 2.27a and b,

are also not reasonable since in them bending moments load the

tiansitional parts of the shells.

If we assume that the radius of a spherical end plate is r 2R,

the additional maximum pulling stress from bending ox = ° max a',

point A, which is found on the internal surface of the element

(Fig. 2.27), exceeds oa in the two indicated cases (a and b) b:, a

factor of 30 and by a factor of 6, respectively, i.e.,

0x max = 30(p c and ax max = 6  c' c3

Considerably more reasonable is an end plate of elliptical

shape.

Stress analysis of an elliptical end plate

The elliptical shape is taken for an end plate of reactor

housings and of various volumes. We know that for an ellipse with

semiaxes a and b the principal radii of curvature (Fig. 2.28a) will

be expressed by formulas:
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b a2h-2

(a2 sina ÷b 2 a)3,219

k2~~~ a2  (.6
-(.jl jJ 2 a + b2 Coe? Ul) 1l 2  ( 6

C pe

(a)(b

Fig. 2.26.

(4xx d;~u~

(a)

Ox max

Fig. 2.27. [136
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These formulas enable us to plot the elliptical surface. Given

the angle a of the vector's radius (this angle agrees with angle 0),

we find the radii of curvature R and R2 , after which-we plot the

ellipse. For example,

CL =0, ., 21b; (L= 2,R '=b ; R2 =a.

We find stresses a6 acting on the element in a meridional

direction. Let us project the forces acting on the shell element

onto the x-axis. We obtain (Fig. 2.28a) Ff sin a27r = p~ar 2 , where

r = R2 sin a, or

No pr PR2
sin a• 2/z•.( 2.37}•

h 2 sinc&'i 2h,2k

,(a) (b)

Fig. 2.28. Determining stresses in an elliptical end
plate.

Substituting (2.37) into the basic equation (2.30), we find

the str,:-ss a@ acting in a peripheral direction:

137



F1  *R2  hi

-- ,"h "=I- R2?RI (2.38)

Formulas (2.37) and (2.38) enable us to compute the stress in
an elliptical end plate or an elliptical vessel.

Exawple 2.3. Find the stress in an elliptical end plate at

points 0 and A if its dimensluns a = R; b = 0.5R of a cylindrical

shell. The stresses in the end plate depend upon the radii of
curvature RI and R2 , which, in turn, depend upon the dimensions a

and b of the ellipse.

The stress at point 0 (lying on the axis of symmetry):

a-U. V=; I=R2-R -- R.;

pR2  pR
~2A h

Thus, the stress at point 0 of the elliptical end plate is

equal to the peripheral stress of a cylindrical shell.

The stress on the equator at point A:

b2 LO,5R)2
R a R-- -0,25R; R 2=a=R;S2' a R

2 Z _-- R2 (R I _ R2 p
2h 2h h 2R - "

The meridional stresses at point A are equal to the axial
stresses in a cylindrical shell. Peripheral stress, however, on

the equator achieves negative values. A stress diagram is shown
in Fig. 2.28b. Here, however, the diagram is drawn for generalized
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stresses. Maximum generalized stresses in the 1ýquatofia2, c~ross

section are

Substituting a -6 *5a4 ) we obtain at point A stress ai = .2

The stress a~ is equal to~ a0 where oq;on'ithe en'd plate 'is equal to

i

! I

zero.

q•OI5L I 2

I I

Thus, in the central part of ti~e end plate the gener'alized

stresses are almost equivalent to stresses in a cylindrical shelL

Consequently, an elliptical end plate can be' made of Ailmost equal

strength with a cylindrical shell by varying the dimensio'hs a and

b of the ellipse.

The disadvantage of an elliptioal end plate is thevariablb

value of the radius of curAture with respect to angle ai. lometimes

the end plate is formed similarly to an elliptical une but with the
radii of two circumferences (Fig. '2.29).

The v.dximum stress at point A as a resulthof the appearance off bending iroment M~ will be [~431 0 max (r/6.60prý c, and-'if
p = 0.251, as is frequen.tly' the case, then 0 na~ 1i. 2 5ar i.e.,

very nearly the maximum stress of a cylindrical shell.
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In critical structures the small overstressing at.point A can

be compensated by structural methods. An effort is made not to locate

the welding seams oft the end plate at a bending point of the shellsS'I .
(Fig. 2.30a).; sometimes the reýnforcing ring is introduced dt a

sharp angle (Fig. 2.30b).
lI

0) 25R O ,25R

P=2RI I

(a) (b)'

Fig. 2.30. Structural diagram of couplings. ,

I'iI I

Such structural methods provide a uniformly strong structure

for" the'end plate and e.liminate the need for additional stress

analyses. If; however, additipnal stresses canndt be avoided, the

safety coefficient must be evaluated according to the -usual formula

n

121 max
4 I

where n = 1.2-1.5 dependink upon the specific conditions.

S -Supporting capaclty of a two-layericylindrical she'll

We anhlyze the twos-layer shell whose element is shown in Fig. 2.31

for supporting ability based on zero-moment theory.' We shall examine.

the joint deformation 9f nonidentically heated shells, coninected by

rigid longitudinal bonds. The type of bond has no effect on the

t6tal supporting capacity. UsuallyI the rigidity of bonds is com-

parativly high although structurally they can be made quite
differently.

140
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Shells in the reactors which we shall examine below experience

force And temperature effects. The temperature of the heat-transfer

agent in the reactor can be quite high. The wall temperature of

the shell, which touches the hot working medium, will be substantially

lower due to cooling; however, it remains nevertheless so high that

this has a noticeable effect on the mechanical and strength properties

of the shell material. The most severely heated is the wall touching

the hot working medium. It can have a temperature of 800-10000C and,

in some cases, even higher.

The wall temperature depends greatly on its thickness. The

thicker the wall the higher its heat resistance and the higher,

consequently, its temperature and the lower the strength indices

of the material.

At high temperatures, which working media have, it is impossible

to increase the strength of the hot shell by increasing its thickness,

This would lead to overheating, local fusion, and washing out of

metal.

Fig. 2.31. Diagram of an element

of a two-layer cylindrical
shell.

6 f

Thus, the shell touching the hot working medium must be rather

thin in order to provide the necessary heat transfer and to maintain

a low temperature. On the other hand, it must be sufficiently strong

P in order to maintain a pressure drop between the interhousing and

the working spaces.

14l
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The second shell is the main load-bearing element which receives

both the full pressure drop of the working medium and the ambient

medium and the load of the unit as a whole. The temperature of

this shell is considerably less than the first and does not exceed

the temperature of the cooling liquid. Its thickness is determined

not by the conditions of heat transfer but is dictated wholly by

strength considerations.

Figure 2.32 shows the probable pressures and temperatures of

two-layer shells of reactors in a working mode. This is the main

design mode for which careful check of shell strength is required

[26], [30].

As seen from Fig. 2.32, the first shell experiences a small

pressure drop but is severely heated. The second shell, on the

other hand, is moderately heated but is loaded with a large pressure

drop. The pressure drop is not great if in the interhousing space

a liquid metal is flowing. The pressure drop is great if the

cooling working medium is fluid and particularly gas.

The second design mode is the mode of hydrocompression. Into

the interhousing space of the shells a cold engineering fluid is fed

under full pressure for a short test. This technological loading of

a shell is a very grave task since the thin-walled first shell, which

does not experience such drops in the working mode, is under the

full pressure drop In this test. Neither the shells themselves, nor

the connection between them, nor the solder should be damaged as a

result of the hydrocompression.

The low temperatures -nnd short duration of this mode should be

kept in mind. Such a test is not only a strict technological check A

of design quality; such modes can occur when an ERE is started.

Analysis of a two-layer cylindrical shell without
allowance for axial load

In this analysis on], peripheral stresses in the shell are

examined, assumLng that tLrc are no other stresses, for example,
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axial stresses. Simplicity fully Justifies the errors which will

be present in the calculations.

)_105

A250, 5OO9760O ;-899 0 ~1
jV-42+12 0) 10~700-.8Ma0.2K 5-41=(a..1200

"" .

p-('-100,.40 t. 4 ', .. 14-5'/vl

(a.) (b)

Fig. 2.32. Example of temperature gradient and pressure
gradient in two-layer shells: Wm - liquid metal; M -
liquid; F - gases; 1 - hot shell; 2 - cold shell.

One of the peculiarities of this analysis is also the fact

that ordinarily analysis is made on the ductility reserve since

two-layer shells, in most cases, are used as pipes for carrying the

working fluid where the pass-through sections must preserve their

basic parameters throughout the operation of the design.

We know: p is the pressure of the gas for the liquid in the

working cavity of the unit in N/im2 ; PM is the pressure in the inter-

housing space in N/mi2 ;. the geometric dimensions of the shells and

the unit are h, R; the coefficient of linear expansion for the shell.I: material a and their mean temperature t; operating time T, shell

Sstrain diagram a = Ec. Find ao, I)a, n 0 2 .

All parameters relating to the inner shell we shall designate

with one prime, and parameters relating to the .outer shell with two
V primes. Let us assume that the radii of the shells are near each

other, i.e., R' I R" b R. We shall also keep in mind that the

connections of the shells are undeformable in a radial direction

and pliable in a peripheral direction.
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Let us examine the equilibrium of an element taken from a shell

(see Fig. 2.31) with central angle d,, for which within this element

we separate 'he inner shell from the outer shell. Gas pressure p,

pressure in the inner shell space pf1 , and contact pressure P,, which

is an averaged pressure of the forces of the connection between the

shells, act on the internal shell.

PressurespM and p act on the external shell; we disregard the
pressure on the external surface (if it is substantial, it must be

taken into account). If we applied the vectors of the peripheral

stresses a' and a", we write the condition for shell element

equilibrium, indicated in Fig. 2.31, according to formula (2.33).

We obtain

M -,P xrf hU" = P, + j ,

where p is the current value of the gas or liquid pressure.

Eliminating (p,., + p R) from these equations we obtain

S(2.39)

In this equation there are two unknowns a' and al; we supplement

equation (2.39) with the strain compatibility equation.

A peculiarity of strains in an axisymmetric (in this case,

cylindrical) element is the inter-relationship (usually called

compatibility) of the strains in radial and peripheral directions.

Let us examine the elongation of element ab (Fig. 2.33) up to the

dimensions a 1bl; in view of the axial symmetry, points a and a,, b and

bI remain on the radii of this element.

The full relative strain of the element in a peripheral direction

C is easily determined:

S~ n
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abl-ab (R+AR)d-•Rdf AR

ab Rd? R (2.41o)

This full relative peripheral strain of each shell will be

made up of elastic and thermal strains and if we allow for the fact

that we have assumed R' = R" R, the second missing equation will

have the following form:

-. R (2.41)

Here e' and " are only the elastic strains of the shells in

"the peripheral direction and a't' and a"t" [cp = average] are their

thermal strains.

Let us show the order of the numerical stress analysis based
on formulas (2.39) and (2.111).

t=t7ý -P, / -/I

Fig. 2.33. Derivation of strain Fig. 2.34. Determining a,.
equations.

We shall assign the quantity e n l n 1 AR/R. BasedPn P n (P n
on this quantity and the known a'tcp and a"tcp, we find

-- 7 n - " 9 e n -a CP"

Then, according to the diagram a = f(s) we determine a' and

ar" (Fig. 2.34). Here, based on the known a' and al", we find
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and plot the function p = f(AR) (Fig. 2.35). On the curve we locate

the poInt of the given pr (point 3) and determine the reserve of the

total supporting capacity of the shell - the ratio of limiting

pressure of the working gas or liquid peA to their working pressure

Pr"

The quantity p npeA is determined according to the graph of

function p = f(AR) (Fig. 2.35). On this graph we note point 11, at

which the straight line drawn from the origin of coordinates is

tangent to the curve p = f(AR). This point determines the beginning

of large strains which are dangerous with respect to a change in the

geometric dimensions of the shells. The pressure corresponding to

the point 11 we shall call limiting pressure pripeA' If oin this

diagram we plot the calculated working fluid pressure Pr' then the

ratio of pnpeA to pr will be the safety coefficient (loading

capacity) n0. 2 of the shell:

o•.2= PnpenlPr" (2.4 )

The quantity n0. 2 must be within 1.3-1.8.

On this same diagram we plot the stress curves a$ and oa and

note the characteristic points.

Point 1 corresponds to the position where the outer shell is

stretched due to the heating of the inner shell. The external pressure

p on the shell Is zero.

Point 2 illustrates the extension of the outer shell by pressure

p and by the inner shell due to its thermal elongation. The coin-

pressive stresses of the inner shell during its thermal expansion

are completely compensated by its extension as a result of the

application of pressure p.
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Point 3 corresponds to the stressed statelof shells in working

mode. They are loaded by pressure pr so that both shells are

stretched and both participate in the 6peration.

20,

(1))
17-I-- -

H • l )f 15i . •"
1 I

Pno (3) - _
iI " I12(2

RMM :0 100 .200 300 700 500 600 t° ,

Fig. 2.35. Stresses and safety Fig. 2.36. Variation in 'the coef-
coefficient in two-layer shells. ficient of -linear expa:nsion forx
KEY: (i) p N/n 2  steels versus, hea&1ng temperature.

KEY: (1) lKhl8N9T; (2) E16511;
(3) Steel.

Point 4 is the point of maximum pressure after which def6rriation

of shells cannot be permitted. This is the pla3t'icity limit of

shells. Further loading can lead to inadmissible changes in the

cooling channel.

The breaking pressure corresponding to design strength is easy

to find on the diagram. This is the maximum pressure p.
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* Example 2.41. Let a two-layer shell be given with dimensions:

R ='g.;2 cm = 9.2-102 m, h' h" =15m l.5-10 M.

The mneanitempera~tures of' the inner and outer walls are

t' 575'C; t": = 1000C, shell material is Khl8N9T steel. Thermal
cp 'cPi

elongations~are, determined froiA the graphs presented in Fig. 2.36,

from which it is apparent that alt = .01011; a~t" 0.0016.
cp cp

The stretch diagrams for Khl8N9T steel at tempera-ures of 575
and l00*C aru presented ILn Fig. ý.37. We assume that at negative

values1 of c the diagram aP. E: has the same shape as at positive
vales utthe sign of cy)reverses. The working pressure pr- 1

vaue but3
N/rn2  We asisigned the value AR =0.25*10 M

G! a 0-H1

O~.W 4 H/M .'l -

4 
~~t:=5700m E=21,61OH/2(1

0,'4.

101118

-*~-.~ *~.~4~4 ~ -(2)
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Now we seek the pressure of the gases which cause this radial.

strain. For this we find from formula (2.41) e = AR/R = 0.25/92 =

= .72"103. Next we find e and 0:

=• -• -a' t' = 2,72.1-- _10,4- 10-3 =--7,68-10-';

t; •. -WaT" = 2,72.10-3-- l~610-3 = ,610-3.

According to the known values of relative strains el and 0"

from the graph a = f(C) presented in Fig. 2.37, we find the value

of the stresses

a' = -21.4"107 N/m2 and a" = 9.4"10 7 N/m2 .

As mentioned above, we assume that with negative values of

9 the diagram a = f(e) has the same form as at positive values,
only the sign of a changes.

At low values of e the stress cs can be directly calculated

from'formula a0 = EE9, where the Young's modulus for each temper.ture

is taken from the graph presented in Fig. 2.38.

In our case, E' = 1.6"1011 N/m2 ; E" = 2'1011 N/m2 .

N

1,8 .(2)~ Cm a. nb 0,8xn9_ _

,0 1....go t0

Fig. 2.38. Variation in the Young's modulus of various materials.

KEY: (1) N/m2 ; (2) Steel.
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Finally, from formula (2.39) we determine

tI

The obtained value p = 3.3'105 N/m2 indicatus that the selection of

AR has Moen unsuccessful since the pressure inside the shells

Pr = 10"102" H'/rm2. Let us continue calculations until we obtain the

full curve p f(AR), after assigning other values for AR (see

Table 2.1).

Table 2.1. ,_
•' (3) C"

(2) cjf c" -"

) C) I- -

A, .

A-AI 1()-3 2,72 5,44 811 9,52 10,90 13, 1 16,32

2 -=-9--at' 10-3 -7,ii8--.19- -- 2,24 -0,8P 0,50 3,21 5,92

3 10-3 1,06 3,7h 6,50 7,8V, 9,24 11,95 14,66

4 107 -21 ,4 -20,-I -16,& -- lV 8 18,8 20,8

5 C 107 19,4 27,1 8 9, .1 30 30,4 .31,2 31,8

A h'% 101 -- 32,1 -30,6 -25,2 -16,2 12 28,2 31,2

7 h"a lot 29,1 11,7 --1,1 -15 15,6 45.8 .17,7

8 (4)+(7) 10' -3 11,1 18,9 28,8 57,6 75 78,9

9 p= ('ý).'R 105 -3,3 12,1 20,6 31,: 62,5 81,5 85,5

KEY: (1) Line number; (2) Function; (3) Factor.

The results of cal,-ulation are presented in the form Lf a curve

(Fig. 2.39). On the figure we see the variations of a' and a" as

the function of AR. Nutc on these curves the points corresponding tL

the pressure pr" = 1 105 N/HM.
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As is apparent from Fig. 2.39, the increase in shell radius at

working pressure is 0.9.1-,3 m. The stress in the outer shell i!

al = 30'i07 N/m 'and in the inner shell is a' = -6.107 N/mr2 ; the

latter stress is compressive which is explained by •theŽgreat thermal

elongation of the inner shell., If the working pressure were higher

the stress in the inner shell would e tensile stress.

Fig. 2.,39. The stressed state - - -

of shells as a function of p
radial strain. ---- -...-.-

Ia ., - -

--60 01-i

~-20

The curves presented in Fig. 2.39 show that when p = 0 there

is a certain strained state caused by the thermal expansion of the

inner shell.

It is important to note that on the pressure variation curve

two sections of shprp increase are observed. The first section with

low AR and the second with AR z 0.9"l1- 3 m. This is explained as

follows. If the pressure is low, the external shell operates

elastically and.with a rise in pressure, strains slowly increase.

If the pressure is •reater than a certain magnitude, in the outer

shell plastic flow will occur; now it will be loaded not only by the

*1 forces of pressure but also by forces from the direction of the

inner and more severely heated shell. A rapid increase in AR occurs
with an insignificant rise in pressure.
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At high pressures shell resistance again grows (sharp rise in

,pressure Curve). This occurs when elongation under the effect of

pressure exceeds thermal elongation. Then the inner shell begins to

extend and is put into operation.

Finally, as is apparent from the curve presented in Fig. 2.39,

at pressures above p 70"10 5 N/me, a sharp increase in plastic flow

occurs in the shells.

Supporting capacity of the shell is n 0 . 2 = 75"105/410"105 = 1.87

where p npe = 75105 N/m2 and Is determined by the above method.

Analysis of a two-layer shell with allowance
for axial loading

-Let us cut an elemeht out of the shell and apply to it all the

known loads (Fig. 2.110). As in the preceeding case, we know the

pressures pr' Pm,' the geomnetric dimensions of the shellb h, R, the

coefficients of linear expansion for the material a, the mean heating

temperature t, the shell operating time T, and the strain diagram

of the material a = Es. We must find a., ae and n 0o 2 .

NN

• (b)
1y . (a)

Fig. 2.110. An element of a two-layer axisymmetric shell.

We shall assume, as before, that the shell is in the zero-

moment state. The main difficulty lies in the fact that the supporting
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capacity of a shell in a two-axis stressed 'state is determined with

the strain diagrams obtainqd for single-axis stressed state.

Axial loading, which is coxnditionally illustrated in Fig. 2140b

by vector Nx, can have various origins.' 'Usually it is proportional

to the pressure of the working fluid and can be determined from

formula .

VX =IkP, ,

(2.42)

where 'k is the coefficient of proportionality depending upon the

construction of the unit'and the method of tracing. For example,

for the diagram shown in. Fig. 2.40b,

.V..-- 2P=kP, o'hy.a k.=rR-.

Let us examine the equilibrium of this element. Proceeding •

as before,, we obtain the equilibrium condition 'in • piripheral

direction and the strain compatibility condition:

%R

similar to conditions (2..39) ýand (2: 4 1)..

Fcur equations are necessary to solve the problem since there

are four unknowns. From the conditioln of strained compatibility

in the direction of the x-axis we obtain

N = kp =27(1? t~(LT .jc (2.13Y

Let us transform equation (2.113) for simplicity's sake.1 From it

we find w~hat p equals, we. substitut~e ipt~o~the equation (2.39), and

we finally obtain
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I 'I

I II ""

A 0. .

th et x-xs iestabl~ish bhIdffrne ,l we obai th las neesar

I I ,

I I I

e n

I,

12iR2 (2.j456)

I I

The conditionn fo the proer .selection ofpx and u will be

From the condition that the relative strcains of th'e shells inI I

the x-axis direction will be eqdal, we obtain the last necessary

f I oN lýtii ;h stri digao t" -elmtra ems

weqiatio q t
I I

. (2.,416)

Thet calculation procedure is similar to the 'procedure presented•1• ' ~ in example 2.41. ,Only •e, shopuld allow for the, fact that. both sh'ells

are in a two-axis stressed •tate an'd operate Iih a stage of plastic

j flop. Per th'is, in the strain diagr...,of the shell material we must
•, ~replace the stresses and strains a and e r Ls,st.d along the axes

wihtheqatiya and eL. '•etermir',ng the latter from formulas

We assign the qualtity c AR/R and determine the elastic

defor~mations c'I and e": I

S I ~~~t~t I'T; la.~IIc''.,I

We ýlsd assign the values of Cxnl and oxn2' Fpor these two value :s

we find elastic deformations c' and ell:X x
S154.
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Z.rl -= •.r nl--~ ~ 5 -X-'.rIx.--"1k',

Then from the first formula of the system (1.30) we compute

the generalized strains el and e" for two values of lx and el:

"•i1 • '-' I*C x$) , X -'-) (", 3

1; • I (o)-.•S.+(2)12;
2

2 o, - ,-..- .•'

6

,- =, Fig. 2.41. Finding ail and ai2.

all

Based on these values of generalized strains, from the strain

diagram of the material a = f(e) we find afi, i23 °ia' i2

(see Fig. 2.41) and then from expression (1.30) we determine:

i'.o. 3 o:(s~, + .5-=);' o._- o,.(,'x2TO1 ;).
Sin

S3 E X2015
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Now we substi'.2ute the values of the stresses into equation

(2,415) and find whether or not they satisfy this equation. Since

Athe values of S~ and xnare chosen arbitrarily, equation (2.115)

will not be satisfied. Let us plot a graph of dependence A = f(nxn)
S~based on the two points, where

,- .4 4 ,, . 12 . 3 )

We shall try, graphically, to find the value of trs, at which

S= 0 (Fig. 2.d2). Based on the given value of s and on the

obtained value of e we al heshall fin te unknown p from formula

(2.39). W e ati e calculation for new values of d nd and xn

a sd,6o Pntetos

A2--2- 1xh

I " n

Pn1 e

Fig. 2.112. Finding exn* Fig. 2.43. Dependence of stresses'
in shells on radial strain.
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We plot the unknown curve p = f(AR) and, as before, seek

the supporting capacity of the shell n = PnpeA/p.. Figure 2.43

shows the curve p = f(AR) and the stress curves for both shells.

Point 1 corresponds to loading of the outer cold shell from

the thermal expansion of the inner shell. Point 2 corresponds to

loading of the outer shell as a result of pressure created by the

forces of gases and the thermal expansions of the inner shell. This

point is of interest because of the elastic equilibrium of the inner

shell, obtained as a result of the pressure and its thermal expansion.

Point 3 is the point of the given pressure of the working medium

inside the shells. Point 4 is the point for the'limiting value of

pressure when the shell yields.

Usually the ductility reserve for reactor elements should be

selected within the range n0. 2 = 1.1-1.3.

Example 2.5. Let us calculate the shell examined in example

2.4, with allowance for axial loading from the shell bracing

according to the diagram indicated in Fig. 2.40b. In this case, the

axial force is N = prR2 , and the coefficient of proportionality is
2k = •R.

Equation (2.44) assumes the following form:

h' h'- • 2 (h h"ax"
(2.47)

The stretch diagram of the material for the inner and outer

shells is presented in Fig. 2.37. We must only remember that now

e is replaced by the quantity ci and a by the quantity ai'

We assign the values of AR and select for each of them exn

such that equation (2.115) is satisfied. The results of the calcula-
tions are presented in Table 2.2.
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A.10•H/M (1) ___

AA=05.V0'M ,,1=,75-10 M

-1,0 _, _ T io 6o ,0__

.7,0 41 5,0 qo0 71- o -I1I ,0 11 1 1*

Fig. 2.44. A graphic solution of the relationship.

KEY: (1) N/m.

With x selected and AR given, for example, AR = 0.5"10-3 m,

we shall use the graph ofA = f(c xn). After assigning the values

exn = 4.•oi and 4.5l10, we find, graphically, the value A = 0
and, corresponding to it, e xn = 4.25"10-3, as shown in Fig. 2.44.

Now, according to the obtained value e = 4.25"10-3, completely

repeating the calculation, we find p. In some cases, we can omit

the second calculation. For this, when we have verified that A
changes sign in line 37 of Table 2.2, we can immediately find

p graphically (Fig. 2.45).

If we plot p = f(AR), we find the unknown value of Pnpez and
the supporting capacity from Fig. 2.46:

n -- - --2,2.
P2 40.105

Here the values of the stresses ox and ( are plotted as a

function of AR.
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...... ...... I}"

L7,50s. '

-.. -, 7 ''°-^

-- _ _(2)

-20 -10 0 10 20 30 A.1OH/"

Fig. 2.115. A graphic method of "'inding p.
KEY: (1) N/m2 ; (2) N/m.

80. ,

W T

181

II

•0 ,r--,,---

-20- -

3 0 - - - -

Fig. 2.46. The state of stress in shells as a function
of pressure.
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Table 2.2.

(1) i'• (2) (3 (4) 311a'ienvi II \',,iiii riliil

CTjr,- (yll1llt _ A R --:. 05.5 -1- 3 jt; A /•=-0,75.11O--3.It;
Hitt -• E•,=;..,44: 10-3 ,=,16.10-3

I cxn 10-3 4,0 4,5 6,4 6,6

2 a' -xn--' t' 10-3 -6.4 -5,9 -4 3.8

3 --.-- a' t' 10-3 -4,96 L-4,96 -2,24 -2,24

4 ex - r,•'t 1-3- 2,34 2,84 4,74 -- 4,94

-a" t" 10-3 3,78 3,78 6,5 6,5

6 (2)" 10-6 40,96 34,81 16 14,44

7 (3)2 10-6 24,6 24,6 5,02 5,02

8 (2)(3) 10-6 31,74 29,26 8,96 8,51

9 (3)+(7)+(8) 10-6 97,3 88,67 29,98 27,97
0 (2T 3) 1" 9-' = 10-3 11 ,,79 10,88 (1,32 6,11

11 (4)2 ro-6 5,47 8,07 22,47 24,4

12 (5)2 10-6 14,29 14,2-3 42,25 42,25

13 (4).(5) 10-6 8,S8 13,73 30,81 32,11

14 (1 ])+(12)+(13) 10-, 28,51 33,09 95,53 98,76
• ~15 (2 /' /(--= 10-3 8,18 .'(41,9 1,8*

ý16 e 7 22,25 22,10 21,25 21,2

17 €g 107 30 30,2 31,25 31,3

18 (13)0,5 10-3 -2,48 -2,48 -1,12 -1,12

19 (2)+(18) 10-3 -8,88 -8,33 -5,12 -4,92

20 (43) [16)'(10)1 (2))=c; 10' -- 23,11 -22,68 -22,91 -22,75

21 0,5(2) 10-3 -3,2 -2,95 -2 -1,9

22 (:•)+(21) ,0-3 -- ,16 -7,91 -1,24 -4,14
S23 (4..q) [(i~5),(10)] (2) J107 -21,24 -21 41 -19 -19,15

24 0, 5(5) U;-3 1,b9 1,E9 3,25 3.,25
25 (.)+(2-) 10-3 .1,2:3 4,73 7,99 8,19

26 (4 3) [(17)'(15)](25)=a 107 "7,37 28,68 29,.7 .9,7i

KEY: (1) Line number; (2) Function; (3) Factor; (14) Values of
functio,-, when.
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Table 2.2. (Cont d)

(1) V(. )3 (4)_ ,_ "1y,,11_ ,,IMP
CTpC- cI'vll•,,•uls E '1 \R =,5. .1t3.i,; .% R: . 0.75.10- 3.;r

27 0,5(4) 10-3 1,17 1,-42 1 2,47

28 (5)+(27) 10-3 41795 5,2 8,87 8,97

29 (4) [(17)'( 15)](2S,)=e: 107 ,32,03 31,52 32,71 32,C0

3() (20) h 104 -34,67 ý-34,02 -33,41 -34,13
3 (2) h,415 43 44

32 (30)+(32) 104 i 638 8,98 9,79 10,51

33 (2)h' 10-1 -31,6 -32.,11 -32,28 -28,5

34 (29) I' 104 48,05 .17,28 49,07 J 49,9I

35 (33)+(34) 104 18,19 15,17 20,57 10,17
36 0,5 (.r) 104 8,09 7,.59 10,2."9 10,09
37 (32)-(3T'-)=A 0% -1,71, 1,39 --0,5 0,42

38 p=(Q5)!R 10S 17,59 16,49 22,33 21,92

Stress analysis of the load-bearing plate of a react~or ,

In the design of reactors and lother engine units we frequently

encounter single-layer and multi-layer plates, as i•ell as disks,

which operate in a bend from the forces of fluid pressure and

concentrated loads.

Support plates and end pieces are usually 'found tohave a

constant thickness of asymmetric form with asymmetrically located

openings and bracing rods. They 'can be greatly or moderately heated

and, in certain cases, there can be a temperature gradjent alone the

radius of a disk and some va'iati6n in its thickness. The latter,

case can include two-layer plates shield~ed from hot fluids by a

thin wall. The support plate has openings for the passag, of. fluids;

the openings are used for attaching pipes which connect both plates.'

The perforations in the support plate lead to the fact that in a

radial direction it usually has variable i'igidity, particularly at

its bracing point to the walls of the cylinder part of the shell.
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1. In the first approximat~ion we can assunle the plate to be rigidly

fi'xed in the peripheral part during 'its operation in a bend and non-

rigidly fiied d'uringý its operation under rad'ial strains (when radial

strAins are scarcely contained due to the thin-wall nature of the

cylindrical shell's construction).

In. some casep, the plate is considered freely supported along
I I

the peripheral section and thus the stressed state is determined

in the most unfavorable case. Actually, a support plate is attached

ela'stically. The elasticity of the attachment should be allowed

for in more detailed c~alculations.

*. Stresses and bending moments

If we assume-that the bending btrain of a section of plate

follows_,the hypothesis of the invariability of the normal and take

the system of coordin.a~es shown in Fig. 2.47, we shall find the

stressesi Ir, ao, which occur "in the plate, its strain w and safety

coefficient n.

Let' us examine a plate of constant thickness h loaded with

forces which are symmetrically located with respect to the z-axis.

Strains, displacements, and stresses arising in the plate will also

be symmetric relative 'to the z-axis.

Fig. 2.47. Coordinate Axes.
dw

I h

0 0 z

I.I

We designate the bend of the plate w and the turn angle of the

normal 0.; The quantities w and 0 are functions of only the radius

r and are -related to each other by relation
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W/

dr (2.48)

"The sign is negative because with an increase in bend the slope

angle decreases.

A plate element removed from the central axis 0 - r a distance

z is in a two-dimensional stressed state. The strains of this

element (Fig. 2.118) are

and the stresses

Or 1L'2

E, (2.49)~)9 -+ 2.,

These stresses determine the supporting capacity of the plate.

Let us find er and e . We shall examine the strain of the

plate element.

Figure 2.118 shows a plate element dr before and after strain.

Thce normal which occupied position AB before plate deflection turns

angle 0 and occupies position A'B' according to the hypothesis of

the invariability of the normal. The normal A3.B1 turns angle

e + dO. Segment CC1 , located distance z from the middle surface in

a radial direction, achieves elongation

C1C' CC, - +(10-) z-d.

The dimension of element CC1 before strain is dr. Thus, relative

elongation of the plate In a radial direction is
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dr (2.50)

Let us find the relative strain of an element in the peripheral
direction. Before the plate bends the length of the circu;aference

passing through point C will be 2vr, and after the bend 2n(r + zO).

Consequently, relative elongation in a peripheral direction is

S2 + (r+zip) Ij

2ir r (2.51)

Substituting expressions (2.50) and (2.51) into (2.49), we

finally obtain the stresses in the plate

-i.24.Stano plate A1

E-z of +I

(2..52)

Figurc 2.419 shows the stresses ar applied to a strip taken fi-orn,

an elementary prism. Based on the known stresses ar and "T we find

the bending moments applied to the faces.

1'ig. 2.118. Strain of a plate Al
element.

z16
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Ve designate th6 relaitie -momenits dcrring on theý faces 6f

the elements (moments reduced t6 a unit length of the cross section),

Mr and Mv, respectively.

h/2
Obviously, dM r= -zdZ; then M = f rZdz.

-h/2

Using expressions (2.52),, we obtain

- F. fIO \

"" Howevei , consequently,

I -h12(I)( "

r -(2.53)

where D = 12( (2•.•4)

Here D is the rigidity 'of the plate to a bend in N'm; this is

cal-led the cylindrical rigidity.

"Analogously, we obtain the bending moment:

I A'.~ D.Er 10 ) (2.55)

Sometimes the bar over the designation for moments is omi* id. 'Only

we should never forget that in these expres.lons the moments relate

to a unit length of the plate cross section.

Me obtain the simple formulas connecting the bending moments

and the stresses:

165 ( 56)
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Fig. 2.49. Determining C •
bending moment. p I

Equations of plate equil'ibrium

We shall examine, finally, the equilibrium oI' an element. We
apply to the faces l2.1 equally effective forces and moments.

Figure 2.50 shows the positive forces and moments. When tne
plate is rotated in the direction of the z-axis, the positive moment

is directed clockwise, and the intersecting forces along the positive

direction of the z-axis.

On the abcd face (see Fig. 2.50) the tangent stresses give an

equally. effective shearing force Q) directed along the z-axis.

Its intensity, i.e., force, arriving per unit arc rdp, we designate

SQ. The shearing force Q on the abcd face will be equal to Qrdtp,

and on the alb a d, face will be (Q + dQ)(r + dr)d#.

Since the stresses in layers to the right and left of the

neutral plane of the element are identical but unlike in sign,

there are no normal forces on the faces of the element.

Thus, the moments and forces expressed through the corresponding

intensities will be:

Q=Qrdy; Q dQ (Q dQ)i r dr) Iy:

A1i A41'r it; .11, .(r "r) &p
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a a

I a

A4l "• dr; P= pr dr idy;

AW =-P -- prdr d•!,
2 2

.1! (Q +-dQ) =(Q+ dQ7)(r +dr)dr d?.

I" '"i +Afd+oi4.)

Ill

a .

0 
0

(a/ (b)

Fig. 2.50. A plate element.

Projecting all forces acting 6ob the element (see Fig. 2.50a)

onto the z-axis, we obtain

S Qr do (Q +4QlQ(r + 'Ir) (kj -pr dy(r ,

hence

'pr. (2.57)

0167
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! ! I

!, . J

We establish the sum of the moments of forces applied to

the element relative, to the y-axis,, tangent to an'arc of a circle

, with radius r and the middle plane (sqe Fig. 2.50b):

d~r
Al-rdy- [(,4-' dMr) (r -'I dr) dyl 4"- pr dr '- - -- T

'--,ý--drsiln •! (Q-4-tdQ)(r+dr)dydr-O, '

I I

or, disregarding quantities df the highest order, we obtain

!I *

(2.58)'
-:I I

If we substitute M and M from expressions (2.53) ipto (2.58)r
and assume that plate rigidity D is constant, we obtain

rot + I

r D
I I I,

'or

i '""* ( 0 y.1Q
r ------,' , , (2.59)

SI " I !

which qan be checked by simplDe differentiation.
i/

,I!•I 1

If we allow ror dependence (2.48) e = -w', equation (2.59) can

be represented in tile fQrm

,r'j 1 ") (2.60)
! I 1 '

Finally if we substitute Q from equation (2.56) into the right

:side .of equation (2.60) then after certain'transformAtion we find,

finally I , ,

SI16
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r r '(2.61)

or in shortened form,

V2V2W
D

where the Laplacian operator

7 '.v 2w=--w" + ' ,--W l_-(r ,),'.
r r

Frequently we use the integral form of writing equation (2.61).

We shall integrate equation (2.61) four times.

The first integral

r [ "v)', L- ,dr+ C,;
r D0

r r
1r-(rw')' 'r d''''hi 12

0 0

Integrating once more, we obtain

r r r
rw' -- i r41 r Pr dr3,(I Cr.r -nr_•).- ,

-r "D 2a ' 2 )- C2 r"C 3

0 0 0

And finally

r r r r

r -Jrr.JD 4dr

0 0 0 0

+ C2r 2 C" C3 In r - .C 4.
(2.62)
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Deflection of a solid plate with constant cross
section

Expression (2.62), valid for any plate with a constant cross

section and any loading, is simplified for a plate without openings

(Fig. 2.51). From the condition that when r = 0 the quantity w must

be final, we obtain C1 = 0.

i3

5r maz d•lm Fig. 2.51. Plate with sealed
* ,edges.

Thus, for a plate without a central opening,
r r r r •

W -- \- ý r .... ,'f-. dr4 •- C2 +, C4.r r D 4 (2.63)

0 0 0

In the particular case when p = const,

W pr4 , r2

-4=- '---C2 -f-C 4. (2.64'

We shall examine two basic particular cases in analyzing solid plates.

Case 1. The plate is rigidly sealed along the outer contour

and loaded uniformly with a distributed load.
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In this case, the constant C2 in formula (2.64) must be

determined from the condition-w' = 0 when r = b. After differentiating

equation (2.611) once and equating the result to zero, we obtain

•pb3 C_0w' --l~ t• .,)=0,
16D 2

Hence C2 = -(pb 2 )/(8D) and finally

Z-, (b2_r2).
V-ID.' (2.65)

The constant C4 is found from condition w = 0 when r = b; we obtain

'- pb4 pb4

64D .32-D,-

hence O4 = (pb 4)/(64) and finally,

S-P (b2- r2)r.
-- (•b--• (2.66)

The greatest bend of the plate will be in its center

- pb4

64D)

Bending mo.ments are

A-,=•6 [(1 -+ b2 b-(3") r2l;}

,"k--P K1 +)b2--(l.+3,)r21.[ (2.67)

16
In the centei, of the plate .-- 0 +0__p ±_ )

On the supported coni'our 1 M. -

r Sl
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The relative moments are in N'm/m.

Let us find the stresses in the plate. As already mentioned,

h f2 h.

Substituting the maximum values of the moments into these

.formulas, we obtain

(r .. 3 pb2 . 3 pb2
4 h2 ;24 fj (2.67a)

A variation in stress along the -radius of the plate is shown

in Fig. 2.51.

Let us examine the values of plate deflection when it is loaded

with a concentrated concentric load P (see Fig. 2.51).

Solving the initial equation (2.64), we obtain the bend of

the plate:

7 e [(a2 + r 2)ln a (b2"+ r2)(62--a2 ) 1 -+

8-rD b 2b2 sJ

8p[(a2±) lnl"+ (b2--r2)(b2+-a2)]

8.-D j 2b2 j22
(2.68)

where the unit functions are

(0, r> a, J0, r<.a

The value of the bending moment on the plate contour is

r -- 4-P 2 - al

4a b2 j (2.69)
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If the external force is concentrated in the center, plate bend

will be

P r( In +--

&rD 8b (2.70)

The current value of the bending moments is

AT: (1t)nL t I Iý
4a• (2.71)

and the maximum bending moment is obtained in the seal of the plate:

M = -P/47h.

In this case, we usually assume that the load P is applied not

along the circumference but to a certain ring-shaped area whose

width is no less than the thickness of the plate.

Case 2. A plate is freely supported along the outer contour

and is loaded uniformly by a distributed load (Fig. 2.52). In this

case, the c(nstant C2 in equality (2.69) must be determined from A

the condition Mr = 0 when r = b. Omit.ting the intermedi.ate trans-

formations, we obtain

p (b2br21AD \+ 2). (2.72)

Bending moments are

P- (3- b2- - 3(I r2" (2.73)
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Bending moments achieve their maximum values in the center of the

plate:

-~~ ~ P p(+~~

16

r4
Fig. 2.52. Plate with freely

supported edges.

Ij

P --

a
z

L'tt us substitute the values of the moments into these formulas. I

In the center of the plate (o ) =(- _____r max T~ max 8h2

On the outer contour a 0; GCP = 3/41(1 - p)pb.

Obviously, this type of plate attachment is less desirable than the

former.

The vpriation in stresses for the studied case is shown in

Fig. 2.52.

Let us examine the loading of a plate with a concentrically

located power loading (see Fig. 2.52). Solving equations (2.63);4
we obtain

1741
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W -P [(a2 -I -r2)In a +(•1 (" ,)b-(]-)r2 a
S-D -b 2( +p)b 2 p4

+I W I

where

A~r fr a. r4
,O:-r>a O, r<a

The bend in the center will be maximum:

= 3 + (P a 2 )+a 2 In'a8.-D 2 (1 + ,u). •"

In these formulas ,it has been assumed that the conceftric load-
ing is applied to radius a, somewhat removed from the' center. If
radius a is constricteU to a point or. more accurately, to a circum-

ference equal or nearly equal to the thickness of the-plate, then.
bending moments will be

4.r

(2.7"1)

The bend of the plate is.

W 2r2 In JA +.,P r2 )

16.- DI I +16:D " -[- 1+ -<(2.75)

In the center of the plate w =P(3+,)b2
S *,16aD (I + IL)
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Let us fIind the safety coefficient of the plate:

tax

We should select n = .1.3-1.5.

Peculiarities in analyzin~g bracedand
flexiller-eactor 

pl~ates 

'

In certain cases, it is immediately apparent that a plate, if

,it is not braced, will either be 'very heavy or will have an extremely

large~deflection under loading. A defl6ction is called large when

it exceeds the thickness of the plate.. In order to avoid this,

we can rigidly connect, by welding the rods, the load-bearing plate

- with the end plate, which has great rigidity due to its shape and

lower heating temperature (Fig. 2.53).

Two end plates connegted thus are analyzed as follows. An

elliptical end plat'e to which rods are braced we shall consider
absolutely rigid. Only' the 'plate and the bracing rods are deformed

in operalion. *We shall assume thlat the rods are placed axisymmetrically

iorming a continuous force ring for a plate attachment.

' 

(

P a

(a) (b)

I Fig. 2.53. Diagram of a braced plate.
+ 

I 

A

The problem'is statically jndeterminate. We shall solve it
by the structural mechanics method of forces. Let us cut the

qystem at the spot where the rods join the plate; we compensate
for the effect of the rods by force R. An equation is set up using

the method of forces (see Fig. 2-53).
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If we find that Wmax • h, the problem is solved. Sometimes,

for this, we should install two or three rows of bracing rods.

In some cases, there can be no bracing.

With normal stresses we shall obtain large deflections which

shift the entire core along the axis. In these cases, we should

refine the calculation, using equipment which will take into account

the flexibility of the plate.' The main refinement would be to

examine the deflection and strain of the plat, not only as a result

of the effect of bending moment M and 14 but also as a result of
r

the tensile forces in the plate T.

With small deflections the effect of T is small. With large de-

flections the solution to the plate equation reduces to the dependence

EM I (2.76)

It is easy to show that the first term after the equality

sign corresponds to the bending of the plate as a result of the

effect of bending moments; the second term after the equality sign

refers to the effect of tensions T.

Examining figu,'? 2.54, we see that when (w/h) < 1, the nonlinear

contribution of the load creating the dpflection is small. The

deflection is wholly determined by bending moment. When (w/h) > I

the nonlinear contribution of the load causing the bending Is great.

'This will be discussed in greater detail in Chapter V.
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In this case, the plate must be cbnsidere flexible and analysis

is performed, with the formuias for flexible plates. ,

P69

Fig. 2.54. Calculation of a
flexible' plate.
KEY: (1) Rigid' plate; (2) 0OT
Flexible plates..

60-----

S /
I I

,'fecm'Kc .M8xue •
I nlacCMUHbJ 'MCiT"uHbi

(1) ' (2)
Example 2.6. Find the streis and leflectibn of a ýcircular,

rigidly sealed plate, braced by~axisymmetric.rods ,(Fig. 2.55) if
the following is given: '

at = 0.15 .,r; a2 = fl_ ,8 ; 1, = !.7 .ir; h 1.5.0-2 .•; I: = ,. .";
2

12= 0.22 .vt; F .- 70.10-4 .;2; F2 = 44.10-4 .112; p =4.2. "' 14/m2

"R = 2.2.1011 N/R2.

We assume that the elliptical end pl,.te to .ch,.the rods are
attached is rigid.

la I,

h2z

Fig. 2.55. Example bf calculation.
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I

, I- a I. ,

' We cut the ,system along the attachment, points-of' rods 1 and. 2,

we -compensate for the affect of the rods by thd forpes R1 and R
and we set up the canonical equation for, the method of for~es used a

in structural mechanics:

Z"2OP + t2jR1 +fL(t22-+ 4) J?2  * .

I I

If we designate -

a ?,ii+U~t----1 (1+ ; J22-t- =
a i I I a

fr~om system 6f equation'

0 ,W(I 4 .. 112R2 = N- OV, ,

11 21p, + ? (22),R 2 =-?20P
• ,we find R,' A

where 0 P 1 (1I
•wefi nd 20P (22)] ,

I 7

Let us find the stresses', pliability, and bends.

II I I

If ýhe plate were unbraced, .thej:stress in its unsafe sedtion
r b woulU be determined from formhla (2.68) and would be equal

tO a a I I % I

0, 75 p0- 0,75.4,2.'1072 -- 40 600. Iris Nr2n
zr' 406n0-11=h2 -- 1

This, stress is extremely high. Let us evaluate what kind of

I stress occurs in h plate cfter wp allow for the unloading action

a of the rods. a

The bend of the plate at the fiirst and second points from
,pressure p will be

a" IIa I
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p ((1. -a)- 4.2. I (1.-,72 n.452- 2
ý-P . 17 --- ,1 2,2. 10t". 1,5 t- - .-0,a.t

"24=2.1 1,('' 1.72 - 0I.482)2

The bending rigidity of the plate will be

Eh 2,2. 1011. 1 ,i3. 164
Dh 2) =-"6,8.'104 N-m.

"1 ( 12(--'2 ) 12(1-,, N

The power pliability of the plate will be

2[ a, (12 ?2) ( 2 42_,
.. ' -V'( a( + r2)I,-+

8,iD +' -209

I f 0.45 1',74- 0 ,]
S.3,14.6,8.104  20,4521n1-,- 2.i,724

=0.525.10-6 m/u;

032.-D 2 + (+=la 0,33-10- m/N;
:-- 2b2 .

21 a2 (12+r2) (b2-42)"

?22.= (a2+ r2)n a +r 2) ( =0,239.10- 6/N;
8:0 fb 212 mN

Z21 = ?q2"

The pliability of the bracing rods will be

, 1 0,28
EF3  2,2.10.7. O. 0,0192.10- WN;

t2 0,22

EF2  2,2.10".44.10- . /

Let us find the unknown forces of the bonds R1 and R2;

P, N( 1) (22) (0,525. 2 o 0-6 + 0,0182.10-5) (0.239.10-6 +.

+ 00227.10-•-,., I0- 1,o017. 10ý-12 m/N2

A - [(jOpt (22)- 6•OP121
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- (0,,i66.0,239. 10-6-0,484.0,33. 1-6)=0,05.10"- (m/N)n;

.-- [,o2pv (11)- ,OP211] = -- 3,45.10- (m/N)m;
R 065.i -2,9104 N;
A -- 0,17.10-12

R2--=- 203.-104 N.

Hence the moments from the forces in the bond!-, will be

h - ('-) - ---.22.104 Nm/m;

12,-.10 4 N'm/m,

The bending moment from the outer load will be

g .0 pb2 4,2-1G0,-..,72
..- - = - = _ 15.1()4 N. "m/re.

8 8

Total bending moment is

S --- =(-- 5 -- 0,.02 +12,6) 104 -- -2r2.•.04-N .m/m.

Maximum stress is

6M, 6.2, 62.10 4  2@rh2 2,25.10-4 7000.105 N/m

Comparing these stresses with those obtained earlier, we see
that the bracing of a plate reduces the level of stresses by more
than a factor of five.

Peculiarities in the arnalysi. of perforated reactor plates

The load-bearing plate of a reactor is a discontinuous perforated
plate of constant thickness. In a considerable part it is weakened
by the openings for attaching the fuel elements and for the passage
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of the heat-transfer agcnt or the coolant. This affects the value

of the full load acting on the plate, as well as the rigidity and

supporting capacity, and must be allowed for in calculations.

Let us estimate Lhe pressure decrease of the plate due to its

perforations. If' the pressure drop on the plate p is known, then
2

the force on a continuous plate (Fig. 2.56) P = prb

The force acting on part of the plate, with allowance for the

decrease in its surface due to perforatlons, isi.[ ~ ~~P. 11 (bM-nr)

where r and n are the radius and number of openings in the fuel

elements for the passage of the heat transfer agent.

Equivalent to this force, the conditional piessure which

acts on the perforated part of the plate, if we assume it is con-2 2 2
tinuous, we find from the expression Pn= plr(b - nr 2 p bn:

nr2N

p p 1--~i (2.77)

If the entire load-oearing plate is covered with openings,

then

The diagram of pressures on the load-bearing plate, thus, nas

a stepped character, and we shall deal with the analysis of a plate

with variable loading. Usually the radius at bn is near b; therefore,

pressure p is assumed constant.

Let us evaluate the reduction in plate rigidity.
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-n

Pig, 2.56. Determining the Fig. 2.57. Bend curves of solid
force acting on a perforated and perforated plates.
plate.

A characteristic of its strain under loading, established by

multiple experiments of various scientists, is important in evaluating

the reduction in rigidity of a perforated plate. This characteristic

is the fact that the shape of the deflection in a loaded perforated

plate is similar to the shape of a deflection in a solid plate.

Figure 2.57 illustrates the bend curves for solid and per-

forated plates under identical loading. In order to ensure identical

loading on a plate, a pliable field insert is used.

Fig. 2.58. Plate perforation
diagram.

I$

The degree of bending for a perforated plate depends substantially .,

upon the dimensions s, d, h (Fig. 2.58). A perforated plate, just

as a solid one, is in a two-dimensional stress state; its deflection.

is similar to the deflection of a solid plate; its supporting capacity
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is determined by the principal stresses ar and 11, which reach

their highest value on its surface.

Near the openings there is a certain concentration of stresses,

which is substantial for plates oi brittle materials. For the

materials of plates used in reactors this concentration of stresseý

can be disregarded.

Based on the similarity of bending curves for the plates, we

can write

W
Wa (2.77)

where y Js the coefficient of proportionality allowing for the

reduction in plate rigidity due to its perforation.

Let us find the value of y from a comparison of the deflections

of perforated and solid plates. For the plate shown in Fig. 2.57

the deflections

I&, p 12 -- r2)2 ;Wp(h2 -rj4)2
64D 64D

hence (w)/(wn), = y = (Dn)/(D).n n

Thus, the cylindrical rigidity of a perforated plate is equal

to the rigidity of a nonperforated plate multiplied by the coefficient

of perforations y. This makeF it possible, in the first approach,

to find the stresses of a perforated plate from formulas for a solid

plate, correcting for the reduction in rigidity due to perforation.

Cylindrical rigidities are

Eh3 9h1
Dý-- Dn=.

12(1!P)12(8
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In some cases, it is assumed that the reduction.in rigidity for

a perforated plate occurs as a result of the variation in E and p

of the plate. For the problems which we are studying, it is feasible

to attribute the decrease in rigidity to the decrease in plate

thickness, which we shall designate h., and we shall find from the

relation D. i4-- ---y - -- :
D h

ii.isVi , (2.78)

As has been mentioned, the value of y depends upon the geometric

dimensions of the perforated plate and is .determined from formula

[26]

y=O,25(3+k) I- (
(2.79)

wheire d is the diameter of the opening;

s is the step of the opening;

k is the plate rigidity coefficient;

k 
1,41

1+ s(2.80)

The variation in the coefficient k as a function of ratio of

plate thickness h to width of connecting neck (s - d) is shodn in

Fig. 2.59a. As is apparent from formula (2.80), it varies f,,om

zero to -1.

The variation in the coefficient y as a function of the ratio

of the diameters of the perforation opening to their step is shown

in Fig. 2.59b. Usually the values of y fall within 0.1 to 0.5,

which corresponds to the ratio (d/s) = 0.2-0.9.
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0 1 2 3 1 5 6 7 8 9 0-2 o 0)2 4q , 8 4 , 8 6 1 , • 6
(a) .:(b)

Fig. 2.59. Variation in coefficients k, h, y.

Thus, knowing the values of y, we obtain the final equation'

for calculating circular perforated plates. The initial equations

(2.64) and (2.53) for the calculation will-have the folldwing form

W 6pr4,. r 2  C4;

1r . - D1, " r
11 . =9 - Dy -I " .

r (2.81)

When the bending moments of an unperforatedd plate are comp uted

and it is necessary to determine the stresses in it after perforation,

in the formula of stresses (2.56) we should take the thickness of

the plate, with all3wance for perforation, hn hI, and compute2

the stresses from the formulas

rw !

For example, the stresses in a perforated plate, whose seal

has a diagram similar to the one presented in Fig. 2,57, will be:
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The s' fety cnoefficlent of a perforated plate is determined
'fromn the usual formula

4-" !

where

I .

I II

I '

-" !

I I
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2.2. RADIOACTIVE ISOTOPIC SOURCES OF E:.ERGY
FOR EXTRATERRESTRIAL ROCKET-ENGINES

It is common knowledge that a large amount ol heat is given

off in the decay of radioactive materials. This heat can be success-

fully used in a space power plant.

Most radioactive isotopes used are obtained artifically as

a result of neutron bombardment in ordinary energy reactors. As a

result of isotope decay, a monotonic decrease in thermal energy occurs
according to exponential law. These isotopes are simple and opera-

tiona ly reliable. The great difference in decay rates allows us a
widc .hoice of energy sources for the most varied purposes.

However, power plants on radioactive isotopes have several

disadvantages. They are expensive as compared with reactor instal-

lations since in order to obtain the isotope, uranium must be

consumed in reactors: isolation of the isotope is also a complex

and costly process.

Therefore, radiolsotopic power plants are advisable only at
low powers (less than a kilowatt). The use of isotopic elements

requires a number of safety measures.

Although the radiatiozn of a particles (protons) is comparatively

safe for man since it is extinguished in th'e materials of the
isotope itself and the ampoule, y-radlation (electromagnetic) and

$-radiation (eiectrons), which gives off y-bremsstrahlung during

collision with particles of matter, require protection.

An ampoule with an isotope must be hermetically sealed in such

a way that the seal is not destroyed in the event of a crash.

All a-radioactive isotopes in their decay products have gaseous

helium whose pressure, at the end of the service period, can reach

huge values which complicates the construction of the source.
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In designing a source it is necessary to reduce this pressure to

permissible values.

Frequently the isotope must be alloyed with other metals to

improve its heat conductivity and strength.

Curium-2112 is obtained a'tifically by bombarding americium-241

with neutrons. The specific thcrmal capacity is 122 W/g. It can

be used in generators with a service period from 3 to 6 months.
The problems of protection during the use uf this isotope are related
to the suppression of incidental a-decay of neutron and y-radiations.

In decay curium-242 changes into plutonium-238, which causes
the severe corrosion of ordinary stainless steels; only tantalum is
not corroded. Curium-242 is used as an alloy with americium-241
(45% Cm and 55% Am) and is further alloyed with a stabilizing metal,

for example, gold (1 part Cm + Am + 5 parts An), which improve
heat transfer in the alloy.

Helium is separated as a result of the decay of curium-242. If
we place an isotope in a hermeticaL.y sealed ampoule without extra
space, by the end of the service period the pressure of the helium
accumulating in the ampoule rises to 550 daN/cm2 (2110 days after
closing the isotope in the ampoule).

Table 2.3 presents data on the main isotopes used in extra-
terrestrial power plants.

As is apparent from the table, we can design a source which
will operate for different periods of time. Short-life sources
are used for research purposes.

Let us examine the structural diagrams of isotopic energy

sources.
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Table 2.3t;

flep'unitT uins
HalINIC- Uop~y~a C0oc6 nIYPa"- Tonaiimioe Mont-r

,aetyna 4 p.a coe tlilet Ilie C|OCTbBa. ,:e .p ac lla•' - ( a )( e T, 2ý/C.j13 sM I'

(1.) (2) (3 I cyroK) (5) (6) (7)

(8) nlAyoMlfil Pu238 a S6,4.i4. PuC; PuO 2  12,5 0,55
(9) Ueairl Csl13 7,y 33a. CsCI 3,9 0,325

(10) 'Ctpoiaril SrOO Vy 28n. SrTi0 3  4,8 0,112
(11) KMop"fi .Cm244  a, n 18.. Cm 20.3 11,8 2,54
(12) Ko6,al'r Co( ,6y 5,3a. Co 9 0,3
(13) 1lpoteVIR Pm147 P, y 2,64. PmO3  6,6 0,167
lk(Y"1Y)I•p,, tern P, y 28,5c. C6o2 . ,4 -1,9
( 1 5 ).Kiopii Cm.242  a,n 162c. Cm20 3  11,75 110-122
(1 6 ) nOJOHttl P0210  .a 13Mc. Po 9,3 140-170

KEY: (1) Name; (2) Formula; (3) Decay process; (4) Half-life
(years, days); (5) Fuel compound; (6) Density g/cm3; (7) Therma..
capacity W/h; (8) Plutonium; (9) Cesium; (10) Strontium; (11)
Curium; (12) Cobalt; (13) Promethium; (14) Cerium; (15) Cvrium;
(16) Polonium.
Designptions: n = years; c = days.

Design of an ampoule fo'r an isotopic heat
source

A typical design is shown in Fig. 2.60. The isotopic source 1
is placed in a shell 2 of steel, molybdenum or tantalum. This shell
can be covered inside with a protective material (tantalum carbide,
tungsten).

A peculiarity of isotopes is that immediately after they are

obtained in the breeding channel of a reactor, they continuously

radiate particles and heat. Therefore, after enclosing the isotope
in a shell and welding, which is done automatically using a
manipulator, it must be placed in a medium with intense heat
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removal, for example, in a container with water, dry ice, etc.

If this is not done, the temperature of the isotope can reach such

* values that transporting the ampoule will be extremely difficult.

-It can lose hardness or completely melt.

In the container the isotope enters the installation, where

it is Installed in the housing of the ampoule 4, screwed in by the

plug 5, and welded. The combination of threading and welding

ensures a strong and hermetic seal.

The thick-walled housing of the ampoule 4 is made of heat-

resistant material. The outer surface of the ampoule is conical,

which provides for simplicity of installation into the housing of

the station 6.

Fig. 2.60. Ampoule of an isotopic heat soe.ace.

The figure also shows other designs of ampoules which differ

only in the shape of housing.
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The ampoule must not breakc upon impact with thqgroUnd.

Figure 2.61 shows the'design of a 210 V1 isotope installation.
The working medium is the isotope strontium-90, te temperaequre of

the hot junction of the converte' is 530'C, and the temperature of

the cold junction is 3800C. The installation 1consists of a source

of energy 1, 2, the:rmal conver-ters 3,!4, 5, and a thbrmal capacity

control system 6, 7, 8, 9.

The isotopic source i and the thick-walled housing 21heats!

the liquid metal between the two shylls 31 and 1 of the installation's

housing and the hot junction of the thermal converter 5.' In the

initial stage of operation excess therzhal capacity is discaided into

space, for which the control system is designed. This system,

consists of a movable radiator-screen 6,1supports 7, and flaps

"which are turned relative to the immovable axes 8. T..e flaps are

opened by supports 7 during mdvemen't of the rAdiat~r-screen'as

a result of thermal expansiqn of the liquid metal and deformation of

the sylphon bellows 10. , *'

Figure 2,62 shows one of the possible designs of lbw-power

isotope installations-. I ,

Ampoule stress analysis

The analyzed modes of the ampoule housing ard:

- operating mode; the p~rinclpal 16ading of the ampoule is

due to the helium pressure at the end of operationq;

- technological mode; thermal stresses arising with the cooling

process in the ampoule walls during transport are examined;

- emergency mode; the s 1trength of the ampoule during fall i~s

examined.
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Let us consider the strength of the ampoule in the operating

mode. We shall assume that the ampoule is uniformly heated, i.e.,

the temperature gradient along the housing is ignored. For wall

thickness we take not only the thickness of an ampoule housing

itself (this is shown by the dotted line on Fig. 2.63b) but also

the thickness of the installation housing due to its diffusion

welding.

The rated helium pressure in the ampoule is determined from

the diagram of its dependence on source radiation time.

As is seen from Fig. 2.63a, helium pressure depends also on

the free space v remaining in the ampoule after installation of

the 'isotope. If this volume is small (v = vl) and is determined

only by the clearance with which the isotope is installed in the

ampoule, the pressure can be extremely high and the ampoule becomes

heavy. If the volume is large (v = v3 ), the ampoule can also be

heavy.

This diagram makes it possible to solve the p:,.obleiri in another

manner. By assigning the pressure in the ampoule (no more than 100-

120 daN/cm2 ), we can determine from the diagram tne required free

space and thus design a. source.

Ampoule elasticit. equilibrium equations

Figure 2.63b shows an ampoule of an isotopic source and an

element cut out of the ampoule with the stress vectors ar$ q), Oz

applied to it.

We know the dimensions of the ampoule a, b, 1, the parameters

p, t, T, and the diagram a = Es. Find ar' 0), a., n.

Let us take an element from the wall of the ampoule and apply

to its faces elasticity force vectrs (Oig. 2.611):
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N,= Ir dp;-
N, .(-N,,lr d$ + d (3,Ir dcp);

NM=a,! dr;

N, = *,r- d( dr.

We shall project these forces onto the vertical axis:

ilr do-L- ý,lr d. -ý- d (;,Ir d?) z ÷r'-- - O.
2

After reducing all terms by 4 and d,, and replacing sin d,) d)

and d(o rr) = do r + ardr, we obtain the equation

(2.82)

which connects the two unknown stresses. We have three unknowns;

therefore, we shall seek a second equation. Let us proceed to the

strain of this element.

.gr.+ dNrP'4 O' N/mn2  ••

2,

.* NM

I00040 h '"-•.

a)

Fig. 2.63. Ampoule analysis. Fig. 2.64. Ampoule
element.
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It is perfectly obvious that the element is in a three-

dimensional stressed state. The following dependences are valid:

I

I

B

We examined the strains of the element er and q•: its elongation

and the radial displacement of all points of its cross sections.

The radial displacement of points of the inner surface of the element

is designated by u. The points of the outer surface are displaced

along the radius u + du; thus, the thickness of this element

increases by du and the relative elongation of the material in a

radial direction.

d + du - dr du
dr dr

In the direction of peripheral stresses a the relative

elongation is

al b,--ab (r+u)d --r? u..

ab r

hence

I

E U9
r
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Since er and cP are determined through the same function u, we

find the strain equation. Let us differentiate c9 with respect to r:

d (rl)=± r =-du
dr dr (r dr

We introduce into this equality the values of er and e

dr E (2.83)

After differentiating the left side and reducing similar terms, we

obtain

Sd-;"" r E(2.84)

or, if we assume E = const and z= const

d - - - r (2.85)

Substituting into (2.811) the relation (2.82), we find

do? da, doC~
dT dr dr0

orr• or

5da- dop
S+ Tr 0. (2.86)

For a joint solution to equations (2.82) and (2.86) we shall

differentiate the first with respect to r and substitute into it

the value of doq/dr from the equation (2.86):
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dr dr, dMr, dr2 d,

d2or 1 3 dr

dr "r .dr (2.,87)

The integral of this equation will be ar = A + (B)/(r 2), which can
be checked by direct substitution. Analogously, we find

a= A2 S=A-(B)/(r2)

The constants A and B are found from the conditions for the

internal and external surfaces 8f a cylinder:

••r=-- ipip r=ai 0,--0 upH r=b.

npH = when

Then

pa2  ; B 0- 2pa~bA4 (- __ -

Using these values for the constants, we finally obtain forjnu?.as

for ar, o9 and az:

ra2 ( 1 _) pa2 (+41,2_:r ( .• a2) r2- " ; f - (12"-- 2) l r2

pa2 
*a I(2.88)

= 12 - a2

the stress az we find from the condition of ampoule loading in an
axial direction by internal pressure p.

Figure 2.65 shows diagrams of stresses in the walls of the
ampoule. Maximum stresses develop on the internal surface
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of the ampoule. It is important to note that radial stresses are
I 4

negative.

The ampoule safety coefficient is

It : I

al max

generalized stress a is found from the formula for the three-

dimensional stressed state:

' J/0,5[(,,- ,z) 2+(z 1.. (2_. 89)

The safety coefficient should be n = 1.1-1.2.

2.3. SOLAR ENERGY CONCENTRATORS FOR AN ERE

We know that the sun radiates tremendous energy. The density

of the solar energy flux beyond the earth's atmosph*ere '(called the

solar constant) is S = 1.4 kW/m 2 , and near the earth's surface at

the equator reaches 1 kW/m 2 .

A flat. surface is the simplest solar energy redeivpr. Mirror

concentrators give grea't density of solar energy and, particularly,

of thermal solar energy.

F'ig. 2.65. Diagrams of stresses
in ampoule walls.

The effectiveness of a concentrator is determined by the solar-

ray concentration coeffir-ien'. n, whi.,h is equal to, the, ratio of,

the thermal flux in the !ollector trap to the solar flux S incoming

from space. The value of is 80-2000.
201
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The quality of the device for'concentration and reception of

solar energy is defilned as the quantity of efficiency n..C,:which
is the produdt of the efficiency of the mirror and the efficiency

of! the concentrator trap. The effecinyy of the mirror is equal

to the ratio of the energy incident on the trap to the energy

incident on the mirror. The energy of the Itrap is equal to the

ratio of the outgoing trap energy to t6e incident trap energy. The

energy of the solar cgncentraftor for various de'signs and conditions

is OH 3-o,8.

We can show the following vaiues for the- specific masseý of

metal concentrators: y =.0.9-11.6• g/i

The;specifid power of solar concentrators for these types at

ja trap wall temperatur'e of 800-20000C is :N = 0.1-0.4 kW/kg.
I I A

The construption of solaV concentrators is simple but they do

havelsomeshdrtcomings: the basic design element - the mirror -

loses reflecting capacity d'urig operation due to surface damage;

&the concentrator does not operate.when shaded; it is not- expedient

to use such construction for powers above 20 kW because of its
large mass and cumbersome nature.

Basýed on structural form; all solar concentrators can be divided

into nonfolding and folding. 'Based on the shape of the mirror's

surface, cohcentrators are broken down into parabolic, conical

(Fresnel mirror) and3 sphpricil.
I

Structural diagrams of solar concentrators

3 I !

Figure 2.66a is a diagram of a nonfolding solar concentrator

with a conical mirror,striace..

The concentrator consists of h mirror 1 which is formed by

ring-shaped conical surfaces, a mirror base 2 which is the structural

force element holding the mirror to the steel power plant, a force

ring,3, three rdds 4', and. a thermal! trap 5. This design is the

simplest and can serve as an auxiliary, comparatively low-power,

energy source.
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Figure 2.66b is a diagram of the folding parabolic mirror for

a high-power solar concentrator. The concentrator consists of

mirror surfaces 1 and 2, a mirror base with a force ring 3, three

rods 11, and a thermal trap 5.

7 -

7..

a)b

( 1) ,* 5 -.. .5

Fig. 2.66. Structural diagram of solar concentrator.
KEY: (I) View.

To reduce the size of the mirror on launch, its upper part is

made in the form of leaves which can be turned on a joint 6 by the

hydraulic system and the power cylinders 7; in addition, each leaf

of the mirror can be turned relative to its own axis 8 (see View A).

After the leaves are turned to the working position relative to

hinge 6, they are unfolded to the working position relative to

axis 8 by hydraulic cylinder 9.

The dimensions of concentrators can reach 25-30 m in diameter

and create power for the power plant of up to 30 kW. An example

of solar concentrator mirror construction is shown in Fig. 2.67.
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The mirror surface, in this case, is conical (Figure 2.57a),

a multilayer rigid design. On the main force ring 1, sol-dere•. 1;o

the ring base 2, a stainless steel profiled surface 3 is inv.-ta]leu.

To improve the reflecting capacity of the surface, a layer o.

aluminum 4 (layer thickness 0.05-0.01 mm) is applied to it and,

to strengthen this layer, another layer 5, which is similar in

composition to glass (Si02 ), with a thickness of less than 0.2 mm

is also applied.

On the nonoperating side of the surface 3 a honeycomb 6 of

thin aluminum (wall thickness less than 0.-a mm, view A) is soldered.
Packed in the cells is fibre glass 7, a strong light insulating

material. The entire structure is connected by soldering. In this

way, a mirror surface is achieved which ensures high insulation

efficiency.

Figure 2.67b shows the design of the joints for unfolding the

mirror. To a leaf of m..rror 1 is connected bracket 2 with a pivot

on the erid. Bracket 2 is attached to rigid frame 3 which has

swing axis 4. Support 5 with axis 4 is attached to the rigid force

ring 6 on the mirror, which with the mirror base 7 comprises the

main structural system of the solar concentrator.

2

b). •-3

I (1

*3e

a) b) ý r

Fig. 2.67. Mirror
construction.
KEY: (1) View.
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I 'gure 2.68 shows the design of tbB thermal trap, joined with

the thermoermmission converter . The power of the installation is

500 kW; voltage is 28 V. The !rap consists of a housing unit 1, 2,

3, 4, a heat deflector 5, 6, cesium tanks 7, 8, 9, and forty

converters 10, 11, 12.

'he housing is made in the form of a multilayer pentagonal

pyramidý, between the shells 1 and 2 of which is mercury 3 and
between the other tw6 2 and 11 are the thermoemmission converters.

The welded heat deflector 5 with a packing of heat-insulating
material 6 is welded to the force ring 7 filled with porous nickel
8 and, at the same time, serving as one of the cesium tanks.
Spherical cesium storage 9 of similar construction is attached to
the summit of the trap housing. The thermoemmission converter
-consists of a cathode tin heated with mercury, and anode 11 cooled
by radiation from the surface of the trap, and a pipe 12 for channel-

ing the cesium vapors.

yjej7 r (1)

Fig. 2.68. Thermal trap.

KEY: (1) Node I (inverted).
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Fig. 2.69. Thermal trap
with controllable flaps.

Figure 2.69 shows the design of the thermal trap with flapsfor controlling the thermal flux. The trap consists of a ring 1for attaching to the concentrator the housing parts 2, 3, whichform the cavity 4 through which the liquid metal is pumped. Apeculiarity of this design is the possibility of controlling theamount of thermal flux by the flaps 5. The dashes show the positionof the flaps when the thermal flux is maximum. The device 6 whichcompensates for the variation in the volume of metal in the trap
during heating is shown in the inset.

2.4. FUEL ELEMENTS

A fuel element is the electrochemical device in which tiechemical energy of the fuel is converted directly into electricalenergy without intermediate conversion into thermal and mechanical
energy.

The advantages of thermal elements are:
- high efficiency. Theoretically the efficiency of thermalelements is double the efficiency of installations with mechanical

power conversion and can reach 60%;
- low specific weight of the power installation on fuel elements,it is considerably lower than a turbogenerator converter;
- comparatively simple structural shapes for the installation.There are no revolving parts as exist in installations, for example,

with mechanical power conversion.
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How! er, many aspects of fuel element operation have- not as y.t

been stur'ied and, particularly the problems of long1 pdrformance

have not been solved for th6 materials from which they are made!.

Fuel elements with catalyists fpr accelerat:,rg reaction lose

efficiency during operation due to irrdversible processes which

arise.

Let us consider fuel element classification.

Based o.. the method of using thý working medium fuel elements

can be divided into two groups; simple fuel elements or direct-

reaction elements and regenerative elements.

In the first, as a iesnilt of a chemical ireaction, electric

energy, thermal energy, and reaction products are obtained., The

reaction products are not used again in the fuel element. Such

elements munt have tanks with a working medium and tanks for the

reaction products. A typical example can be oxygen-hydrogen and

oxyg,,-r carbon fuel elements. The reaction' product in them is water

and carbon dioxide.

In regenerative fuel elements the reaction products after

regeneration are returned to the fuel element for reuse.
V I I i

Based on the type of working .mcdium, fuel elements cn be divided

into oxygen and liquid-metal. In oxygen fuel elements the process

is based on the oxidation reaction of the fuel (hyidrogen'or cairbon).

These are low-temperature devices. In liqUid-metal fuel glemnents

the reaction occurs in the metal alloys; these are high-temperature

devices. They have appreciably higher specific Indiods than 6he

oxygen fuel elements. However, the higher bemperatures and sometimes

pressure make their construction somewhat difficult.

The chief difference ii, the construction of a fuel element

is the physical etate of the working medium entering the fuelelement.
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ffased on this factor, fuel elements can be designated gas-has ' I,

(for example, hydrogen-oxygen fuel element), gas-liquid (lithium-

hydrogen fuel element), liquid-liquid (element on metal alloys).

All fuel elements have a medium which separates the electrodes
and assists the free transfer of ions from one electrode to another

but prbvents, the trdnsfer of neutral atoms. This medium is the

electrolyte, which has in its composition atoms of the working medium
,of the fuell element but does not dissolve, the electrodes.S 'I'I I

S! 1
Aased, on the type of electrolyte, fuel elements are divided

'into oxygen, alkaline, and liquid-metal. Electrolytes can be used
in a liquid or solid (quasisolid) state. In the latter case the

fuel element has~an ion-exchange, membrane., ,

STRUCTURAL DIAGRAMS OF FUEL ELEMENTS ,

Hydrogen-oxygen and carbon-oxygen elements with
a liquid electrolyte

This type of fuel elemeilt , includes several de'sigiis which differ
in mhterial 'and slape oi elctrode, electrolytc, and output.' The
n 2.I

structural diagram of su~h a fuel element is shown in lig. 2.70.
I 1 I ;

This fuel element consists of a fuel, chamber 'l, an oxidize~r
chamber 2, porout electrodes 3 and'4 (a cathode and anode,.respec-

-tively), an electrolyte 5. This is a direct-reaction element. It
has a low or medium working reaction temperature; the electro.lyte

is a solution dr melt'of salts, for example, potassiumn(KOH), soda
'(NayCO 3 ); the fuel is hydrogen or carbon and thd oxidizer is oxygen.

In the example of this fuel element, operating with working
mpdia which arelin various phase states (gas-l~quid-gas), wd find

the main difficulties in' creating a fudl e.lement.
I '

For the direct reaction of converting cheinical energy into
electrical, just as in a' galvanic cell, in a fuel element it is!
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necessary to establish direct contact between the three critical

parts: the working medium (for example, hydrogen), the electrode

and the electrolyte (for example, KOH salt solution). Obviously,

contact between such different types of media is impossible without

separating devices. In fuel elements with gas-liquid-gas working

media separation is accomplished by electrodes which are made in the

form of a porous body.

A sketch of such an electrode Is shown in Fig. 2.70b. The

central problem in designing the electrode is the evaluation and

selection of pore dimensions.

2+ (0

a

b

__ C ... _

-•H c 240

a) .b)

FMg. 2.70. Diagram of a hydrogen-oxygen fuel element.S~KEY: (1) Node 1.

rThe electrode pore dimensions must be such that in the working

mode of the fuel element the equilibrium of forces in the pores is

preserved: the capillary pressure of the liquid, the pressure due

to the surface tension of the liquid film, and the gas pressure.

In pores of extremely large dimensions .(pore a) the electrolyte

does not penetrate to the electrode because of the low capillary

pressure. Gas, for example, H2 and 02) can penetrate through the

pore to the electrode and form a dangerously explosive mixture.
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In extremely small pores (pore c) the gas does not penetrate

to the electrode because of high capillary pressure. The electrolyte

"leaks" into the gas cavity of the working medium, which disrupts

the stable operation of the fuel element.

Only the necessary pore size (pore b), as a result of the

proper selection of forces acting on the liquid and gas separating

surface, ensures the stable contact of gas-reagent, electrolyte and

electrode and, consequently, reliable operation.

The reason for the great structural differences of numerous

hydrogen-oxygen and carbon-oxygen elements becomes perfectly clear.

In addition to their difference in the electrode-electrolyte node

they have other differences in the design and output parameters of

the fue.l element. One of the first fuel elements is the Bacon

element (Fig. 2.71a). The most important difference here is the

construction of the electrodes, which are designed in the form of

porous nickel plates with different pore cross sections. In zone

2 of the plate, which is in contact with the gases, the pore

dimensions is increased and reaches 30 Pm. In zone 3 of the plate,

which is in contact with the electrolyte (KOH), the pores are

reduced to 15 Pm.

I-KCH
. HZ Fig. 2.71. Hydrogen-oxygen

---" Helements.

'H4O+2 HZ 0+0I

. a) b)

The electrolyte 1 circulates as a result of natural convection.

The fuel element operates at approximately 2300C and 30-70 at.

(It must exceed the vapor pressure of the electrolyte; otherwise,

the latter will boil and evaporate).
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Gas pressure exceeds electrolyte pressure by 0.2-0.5 at.
The high working medium pressures are a disadvantage of this fuel

element. Heating is accomplished by the thermal reaction which

occurs in the element. An advantage of the element is its high

current density, which is 0.8 A/cm2 . Voltage in the circuit is

U = 0.7 V.

Figure 2.71b shows a simplified diagram of a fuel element with
activated graphite electrodes. In literature it is known as the

Korden diagram.

The element is made in the form of a cylindrical sealed vessel,

in which two tube electrodes are placed. Gaseous hydrogen and
oxygen pass along the electrodes. The electrodes are of pressed
porous activated graphite. Pores provide both a separation between
the gaseous reagents and the liquid electrolyte and the diffusion
necessary in order to obtain ions, electric current, and water.

This fuel element operates at 50-70'C and atmospheric gas
pressure. The output characteristics of the element are current
density i = 1 A/cm2 at U = 0.7 V.

The design of a carbon-oxygen element differs little from the
elements examined. We know of such an elemcnt where soda N2 CO3

serves as the electrolyte. It operates at high temperatures (1000-
11000C). The operating time element is several hours. Melted
soda is agressive. It even corrodes platinum. The element is
also dangerously explcsive and is inferior to an oxygen-hydrogen
element in current density.

Hydrogen-oxygen element wqith an ion-exchange membrane

Liquid electrolyte in a fuel element (Fig. 2.72) creates a
4 number of specific difficulties with its location. The need to

provide a hermetic seal and packing, as well as the possibility

of the electrolyte mixing wAth the working medium, complicates
construction, makes it heavy and reduces reliability. This is
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why fuel elements with a solid electrolyte in the form of a ion-

exchange membrane have a considerable advantage.

5 )Fig. 2.72. Structural
diagram of a hydrogen-
oxygen element.

The ion-exchange membrane is an acid electrolyte in a quasi-

solid state. Its properties, just as the properties of the

electrolyte, include the fact that the hydrogen ions can move from

one side of the membrane to the other and the neutral atoms cannot.

Each side of the membrane is covered with a layer of platinum grid,

which is the electrode of the fuel element and its catalyst. Current

density i = 0.3-0.5 A/cm2 at U = 0.7 V. Membrane thickness can reach

0.8 mm, including the electrodes.

As seen from the drawing, the ion-exchange membrane 2 Is

covered with a platinum grid 3, which passes to the electrodes.

The water which is in the oxygen chamber does not wet or penetrate

through the electrolyte since it admits only positive hydrogen ions.

The membrane consists of a porous ceramic, mixed with a

polymer, into vfnich sulfuric acid is introduced.

212



Ii

The electrodes are made in either the form of solid platinum

foil up to A = 0.2 mm thick, or, to improve the diffusion of gas

through the foil, in the form of a grid of nickel wire, d = 76 Jrm

in diameter (60 openings per 1 cm2 ), coated with platinum. This

ensures the simultaneous contact of electrolyte, electrode, and

gas.

The disadvantages of this fuel element are as follows: the

element is expensive, has low current densities as compared With

other elements, particularly during long-duration loadl.,n (0 = 0.3
2mA/cm when U = 0.75 V, which is one order less than othei fuel

elements).

The lifetime of a fuel element depands upon the operation of

the membrane. Cracks in the membrane put the element out of service.

The hydrogen used must be very pure. The operation of the element

is improved if its operating temperature is above 400C, but this

impairs the operating conditions for the ion-exchange membrane and,

consequently, the lifetime of the fuel element. The advantage of

thic element is its small size. One element can be 1 mm thick.

Regenerative fuel elements

Very advantageous is the t:ype of fuel element where the chemical

reaction products are regenerated for. repeated use.

According to the diagram presented in Fig. 2.73, a fuel element

can be connected with a regenerator in which the reaction products

formed in theelement are restored to the initial reagents and fed

again to the element.

Obviously, the same amount of energy as Is produced in the fuel

element is fed to the regenerator. Usually regenerative devices

are thermal and, therefore, they are called thermal regenerators.

Also possible are other types of regenerators, for example, chemical

and electrochemica).
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Peazeemnl (l) Fig. 2.73. A regenerative fuel
element.

Peaeeftm2 (1) KEY: (1) Reagent; (2) Regenerator;
j L(3) Reaction product; (4) Fuel

element.

T T pam~o

LJfpo~yg~m '
peaKx•4

Thermal regeneration lies in the heating of the alloy which

has been formed during energy production to a temperature at which

the component possessing the lowest boiling point evaporates from

the alloy. Then the vapor is condensed in the condenser, collected

as is the depleted alloy, and returned along Reparate lines to the

fuel element.

It is assumed that the components have thermal and physical

properties which make their separation technically possible.

A fule element with thermal regeneration
(lithium-hydrogen)

This is one of the simple elements with tnermal regeneration

(Fig. 2.711). The system consists of a fuel element 1, 2, 3, 4
(in which lithium is hydrogenized) operating at 450 0C and a regen-

erator 5 operating at a temperature above 850'C, in which the

lithium hydride disassociates into its component parts. The

electrolyte is a melted eutectic mixture LiF-Li; the cathode is a

porous metal electrode 3, and the anode the housing of the fuel

element (1).

The structural diagram of the element is shown in Fig. 2.74.

This is an example of a fuel element where the working media are

in different aggregate states - liquid and gas.
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SFig. 2.74. Structural.diagpam of
a regenerative fuel element.

LiF--

Liquid-metal fuel element (mercury-mercury amalgam)

Sodium amalgam and mercury enter into an electrochemical.

reaction in the fuel element; (5, Fig. 2.75). The reaction products

are then thermally divided into the initial reagents by means ?f

distillation in the regenerator 2; heat for separation is obtained'

from heat source 1.

The basis of the fuel element consists of a porous ceramic
ion membrane saturated by an electrolyte of liquefiec sodium liaat.

The melt is held in the pores of the membrane by capillary forces.?,

When the sodium flows through the element, its atoms are transformed

into ions on the surface of the membrane, giving a negative c1arge
to the electrode. .

Simultaneously the sodium ions are transformed into atomA on

the surface of the second electrode where the.y react with the merc'ury,
forming an intermetallic compound of the Naxltg type. As a res.ult

of the overflow of sodium ions, the sodium concentration near the

negatively charged surface of the membrane decreases; near the
positively charged surface the mercury is saturated by a weak

solution of sodium.
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As a result' of the- process, the depleted .sodium andmercury

I. II

lamalgam leave the element. Then both of these flows are united and,

an e'lectromagnetic pump', are'pumped intc6 the r~generator 2.

W

lR I

*I ?a,"a Ig"

IM (1 o

SIn th separator of t regenoeratore dewhle ben hated fsdu admroman

thelam al ii

c lenser 3;hec eliquid. mherr boveh to thee fulow eleeunit.d Enrihd,

wit s~etodimgnthc aloymov aes tpucoped nser thandtener a fter each
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S 'with sodium, thd alloy moves to condenser 4 and, thence, after reach-

i nq tem ?eratures of "11750C, to the fuel element.

peculiarity, of the 'electric energy' regeneration process is

the 9~act that the transformation of cheumical energy into electrical

is accompanibd by the absorption 'of heat during the regeneration of

an .alloy and the release of heat during the condensation of mercury

vapor and tHe cooling of~enric~hed alloy.
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Since heat release is best carried out at the maximum possible

reagent temperature, the temperature of the radiator is set at 475 0C

(according to the working medium); this temperature, with which the

alloy and the mercury enter the fuel element, is determined by

the efficiency of the electrolyte. Actually, the optimal temperature

of the electrolyte is its melting point. In this example, the

melting point is 41600C.

The pressure of the mercury vapor leaving the separator is

-7 at. With the same pressure the enriched alloy of mercury amalgam

enters the fuel element. Thus, the membrane in the element bears

no loading from reagent pressure.

Figure 2.76 shows the construction of a hydrogen-oxygen element.

The ion-exchange membrane I is covered with a thin platinum grid.

Hydrogen is fed to the membrane through pipe 3, oxygen through pipe

4I. The closed cavity 5 holds the coolant supply. Elements 6 fix

the wall and hold the wick 7 which collects and drains the water

formed as a result of the element's operation. The membranes 1

are insulated by insulators 8.

Figure 2.77 shows the construction of a liquid-metal fuel

element. vi- 'on-exchangQ membrane 1 is soldered to the steel rim

2; it separ.. - two cavities of active metal A and 6 formed by thin

plates It. The membrane is attached with wires 3; they ensure a

uniform opening for cavities A and B. Parts 2 and 11 of the element
are insulated by a layer of A120 3 5. The metal alloy is drained

through pipe 6.

Figure 2.78 is a drawing of a lithium-niter fuel element and
a unit of such elements. The element consists of a cathode 1 of

vanadium, a magnesium electrode 2, and an electrolyte - lithium-

niter 3. The reaction product nitrogen is eliminated with filter 4.

The change in the dimensions of the element during operation is

compensated by spring 5. Heater 6 is provided to warm up the element.
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" Fig. 2.77. Construction of a liquid-metal
fuel element.

S~In this fuel elemnet the functions of the fuel and the anode

(lithium), as well as 'he oxidizer and the electrolyte (niter)

are coratbii,ed, which appreciably simplifies construction and decreases

the weight of the installation.
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Fig. 2.78. Construction o1f a liquid-metal regenerative
fuel element.
KEY: (1) Inverted; (2) Insulation + solder.
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CHAPTER III

!*

CON VERTERS

3.1. MECHANICAL CONVERTERS

Of the familiar methods of converting, thermal 'energy into

electrical, the turbogenerator method occupies *a peculiar position.
This method of obtaining elec~trical energy is historically
established and there has been considerab~le des~ign and operational

experience in this area of technology.

Thermal energy obtained, for example, from the c Iombustilon of
a chemical fuel or from the decay of a nudlea-r fuel1 in a reactor,
goes Wo~heat the working medilum and obtain the vapor ewhich 'brings
the turbine into operation. I

: jI

A turbine is the lightest and most compact ofiall known

machines for transforming thermal energy into mechanical. The
mechanical energy of a* turbine, in tu,-nj is converted, býr a generator

connected to the turbine, into de or ac current of various frequencies.
Such coi,verters make 'it pos~ikle, with limi~ted size factors2 , to

obtain high-power electrical current (100 kW and h~.gher). In

addition, with the mechanical conversion of- energy we ob~tain the
highest conversion efficiency (40-50%').

In extraterrestrial power plants with mechanical energy,
converters, the use of turbines operati.ng on the Rankine steam
cycle is proposed (the elficilency of the Rankine cycle approaches
the efficiency of the ideal Carimot cycle).
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Figure 1.3 shows one of the possible ERE systems with a power

planjt operating on the RanIine cycle [34].

S As working media in the turbine oP an extraterrestriai power

plant, we proposed the use of the yapors' f such mhetals as mercury,II, I iudmta

potassium, sodium, sodium and potassium alloys, etc. Liquid-metal

heat-transfer agents h6vehigh'boiling points with qomparatively lo,

pressures, which makes it possible to maintain lqw pressure in the

pow'r plants. This is partic'ularly important for an extratlerrestrial ,

plant, where the heai removal of the cyclT (heat; release into the

ambient medium),is only effective at high temperatures. The char-

apteristic processes, of boiling and condensation for such heat-transfer
agents and the high heat-transfer coefficients make it possible to

transfer considerable amounts of heat in small and'light weight

heat-exchange devices.

On the other han~d, thel use of these heat-transfer agents

poses the problem of the selection:of structural materials which

K will preserve sutfficiently high strength and corrosion properties

* :at high temperaturds in a medium of liiquid metals and their ,vapors.

I Bechuse of thd low viscosity of liquid-metal heat-transfer I

agents, comparatively low powers are required to pump the•n in

extraterrestrial power plants. 'This' permits the location of the

heat-ekchange apparatus away from the energy converter (which is

advantageous from the instaflation p ntWof view); of course, it

should be kept 1n mind that the mass of the heat-transfer agent

in the p.pelines can appreciably affect the specifi'c mass' ,of the
,entire system. ,

Selection of basic para,|mmeters for the
circulating part of turbines

A turbine must have high efficiency, be reliable in operation,

cempact, and light-weight. These reclulrements govern the selection

of working medium parametbrs and the basic dimensions of a turbine'.
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For extraterrestrial power plants we usually use axial (single-

and multi-stage) turbirnes since they do not limit power, have high

efficiency, and insignificant weight.

The main dimensions of a turbine inc.lude the diameter of the

rotor wheel along the average cross section of the blades (dc) and

the length of the blade (1).

- J

The diameter of the rotor wheel

60Ucl,

(3.1)

where n is the number of revolutions per minute (selected by gas-
dynamics analysis of the turbine based on the magnitude of stresses

in the root section of the blades);

u is the circular velocity on the average diameter of thecp

turbine.

Although for gas turbines the value of u reaches 350 and

even 450 m~s (when ýcp/l = 5-6) and is limited only by the conditicn

of rotor part strength (blades, disks), for steam turbines the

circular .velecity should be limited to a value of no more than

275 m/s (when d /Z < 5) because of the erosion of blades and othercp
rotor parts due to vapor condensation during expansion in the

turbine and the impact of the rapidly moving parts with the condensate.

The length of the blades (in m) is determined from the mass-

per-second flow rate G of the working medium:

1=
(3.2)

where p Is the density of the working medium at the nozzle output

in kg/m3;
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C is the axial velocity of the working medium in m/s. We• a
can assume C = 140-170 m/s.

The working part of the blades is designed according to the

velocity triangles known from gas-dynamics analysis.

With short blades (I = 10-20 mm) it is expedient to use active

turbines. The longer blades are a becter design according to the

principle of reactive turbines since higher efficiency can thus be

obtained.

The chord of the blade b and the pitch t are matched with the

length of the blade. As blade length increases I/b the axial

dimensions of the turbine stage decrease; however, the stresses

from bending and vibrations also increase. First-stage blades

operating under more difficult conditions are usually shorter

(1/b = 1.5-2.5) than last-stage blades.

By cascade solidity we mean the ratio b/t. To reduce weight

an attempt is made to increase the cascade solidity by decreasing

the pitch. Minimum blade pitch is usually determined by the spacing

of the blade shafts on tha crown 'of the disk. The maximum value of

b/t in the root lies within 2-2.2.

The chord most frequently is constant along the length of the

blade.

An increase in the chord b toward the periphery increases the

efficiency of the turbines; however, the vibrational reliability of

A the blade foil is reduced. Decreasing the thickness of the profile

sections of a blade improves the gas-dynamic qualities and reduces

the weight of the rotor wheel; however, stresses in the blades grow.

Usually blades are made with a variable cross-sectional area;

for long and highly loaded blades the ratio of the avea F(r 0 ) of

the root to the area F(R) of the end is F(r 0 )/F(R) = 4-6, and for
*a short and less loaded blades (ir 0 )/F(R) = 2-3.
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The areas of the intermediate sections change exponentially

(see below, "Stress Analysis of Working Blades").

Structural diagrams and designs for bracing
the working blades to the rotor

The bracing node holding the working blades to the rotor

experiences considerable loads mainly from the centrifugal forces

of the blades.

The requirements imposed on the bracing nodes include the

following: the spacing of a given number of blades with sufficient

bracing strength, blade installation accuracy, identity of blade

seal (ensuring a small spread of free oscillation frequencies),

the least weakening of the disk's crown by the bracing, the least

loading of the disks from the bracing, and ease of installation.

(b(a) (b)

ii ~ LUOG _

(c) (d)

Fig. 3.1. Various methods of bracing working blades to
turbine disks: a - with a "tree" lock; b - with a
cy]lindrical lock; c - with a "fork" lock; d - welded.
KEY: (1) Seam.
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Figure 3.1 shows working blades of turbines and various methods

of attaching them to the disks.

Of the dismountable bracings the most widely used is the one

with the "tree" lock (Fig. 3.1a). This is a union in which the

material of both the lock part of the blade and the disk is used

well; the small dimensions of the lock along the cii.cumference of

the disk enable the placement of a large number of blades on the

crown. Thanks to the free fit of the blade shaft in the groove of

the disk, the possibility of additional thermal stresses occuring

in the disk is reduced (due to the freedom of thermal strains).

Centrifugal force presses the blade shaft to the projection of the

disks all along the supporting surfaces; thus the blade is self-

aligning and a high degree of uniformity in load distribution is

ensured. These advantages of a "tree" lock are achieved by a high

degree of purity and precision in its manufacture (the disk grooves

are processed by drawing; the blade locks are obtained by accurate

milling or stretching with subsequent polishing). The free fit of

the blades facilitates their Installation.

Other types of dismountable bracings include cylindrical

(Fig. 3.1b) and forced locks (Fig. 3.1c). Iowever, these bracings

are inot widely used.

Fig. 3.2. Moving blades ol' a Fig. 3.3. Metal-ceramic inserts
turbine with bandage webs. in turbine housing to reduce the

radial gap between housing and
blade ends (on working revolutions).
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In a number of cases a nondismountable rigid bracing of the

blades to the disk is accomplished by welding (Fig. 3.1d). Such

bracing has high strength characteristics. However, we must

correctly select blade and disk materials from the welding point of

view and also check the quality of the weld and the accuracy of the

blade installation before welding.

Blades can be attached to the disk by soldering with high-

temperature solder. With small turbine dimensions blades can be

cast together with the disks according to the models to be smelted.

To reduce gas overflows through the radial gap and increase turbine

efficiency, blades with bandage webs are used (Fig. 3.2). Bandage

webs increase the rigidity of the blade and improve its vibrational

character. However, they increase the stresses in the blade foil

from centrifugal forces. Sometimes with long blades bandaging

can be replaced by metal-ceramic inserts on the turbine housing

(Fig. 3.3), which, on working revolutions, enable the radial gap

between the turbine housing and the blade ends to be reduced to a

minimum..

Turbine disks and connection with the shaft

Turbine rotors operate at high circular velocities and working

temperatures. For these operating conditions, disk-type rotors

with one crown are usually used (two-crown disks are used sometimnes

in quiet turbines or in turbines with very short blades to reduce

weight).

In multistage turbines drum-disk rotors are used since lateral

stiffness in such turbines is high.

For reasops of strength, an attempt is made to make disks with-

out central openings (see "Stress Analysis of Disks"). When central

openings cannot be avoided, disks are strengthened by thickening

them near the openings.

227

)L



Fig. 3.11. Union of disk
with shaft: a - with a
centering band and radial
pins; b - by welding.
KEY: (1) Force fit. (i)

n7pecco~afl
nocadira

(a) (b)

Joints between disks (in multistage turbines) and between a

disk and the shaft are critical points in turbine design. These

nodes must have high mechanical strength in order to transmit torque

and axial forces and ensure the reliable installation of adjacent

parts under all operating conditions as well as sufficient flexural

stiffness for the rotor.

Connections of disks to each other or to the shaft can be

dismountable. However, for simplicity and reliability these Joints

are better made nondismountable, for example, pressing the disk

to a central collar on- the shaft (Fig. 3.4a) or another di sk and

installing radial pins on the force fit.

The simplest is the connection of a disk to the shaft by welding

(Fig. 3. 11b) or by forging the disk and the shaft as one piece (with

small rotor dimensions).

Nozzles consist of nozzle blades forming a circular cascade

and bands forming the outer and inner walls of a ring-shaped system

for the working medium.

The dimensions and shape of nozzle blades are determined on the

basis of gas-dynamic analysis.
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Nozzles must have sufficient stiffness during turbine operation
in order that the output angle of the working medium flow does not
change (the efficiency of the turbine, its power and flow rat~e
through the nozzle depend on this); the attachment must provide
freedom of thermal strains to avoid the appearance of thermal stresses
and warping. Therefore, nozzles are not included in the turbine
housing diagram as load-bearing elements connecting the internral and
external housing of the turbine.

The attachment of the nozzle blades can be double-seat or
cantilever.

With double-seat attachment blades can be rigidly attached in
both binding bands (in this case, cuts are made in the band every
4-6 blades), rigidly fixed in one band while in the other tl.ey are
free, or, finally, freely set in both bands.

Usually nozzles are permanent - made by precision casting qf
sections with 2-11 blades each or in the form of a common casting,
as well as welded, by welding the blades to the bands. An example
of a welded nozzle is shown in Fig. 3.5.

The housing of a gas turbine absorbs the loads from the rotor
(through bearings) and nozzle apparatuses and transfers themil to
the adjacent housings and the thermal power plant system.? The
housing should have high flexural rigidity, which does not allow
the contact of the rotor and the stator during strain. The structural
form of turbine casings depends upon the location df the rotor
support, the means of bracing the nozzle apparatuses, and the means
of housing manufacture. The primary structure of the housing must
be shielded from the effect of the aggressive vapors of the working
medium by means of installing single or double shields and channels
along woich the coolant should be pumped. This also pertains to
the load-bearing elements which transmiL the forces from the bearings
to the external housing. The coupling points of adjacent e]ements
of the housing should have centering collars. In order to avoid
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warping, the material of the housing being joined is selected with the

nedessary coefficients of linear expansion and 6ooling is provided.

For the purpose of pressurization, joints are usually welded.
*1

Fig-- 3.5. Welded nozzle
apparatus with the-welding of
blades to an internal bindiipg
band: •I - external band; 2
ihternal band; 3*- elastic rim;
I - external housing;:5 - bearing
housingý 6 - elastic diaphragm.

2

I I

I,

r ~16-

II

I I

Rotor iiounts .

Up to 500 kW the rotor of a turbogenerator is:usually made to
be perdlanent; i.e., the rotors of the generator and turtine are
rigidly connected to each other. In this1 case, the rotor is double-
beat. At high powerA it is necessary to place the turbine and
generator on independent supports and transfer the moment from the
turbine to 'the generator with: the aid' of a clutch.

4!

The reliability and zervice life of turbomachines depend to
,a considerable 'degree upon the bearingsL

2 3
2'30
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Under conditions of interstellar flight, gravitational forces

are absent (this is the common state of an extraterrestrial flight

vehicle). A steady load does not fall on the bearings. I.,stead

of this, the bearings absorb forces which are variable in magnitude

and direction and appear as a result of the misbalance of the rotor

(which always takes place despite the careful manufacture of the

parts), variable forces which appear with a variation in the para-

meters of the steam in the circulatory part of the turbine, and,
finally, magnetic forces due to the eccentricity of the rotor

relative to the stator. Time-variable loads on bearings can cause

fatigue.

Gravitational forces can be created by revolving a spacecraft

around certain axes to get a constant centrifugal force. If this

force is sufficiently great as compared with the forces of disbalance

and other variable forces, the service conditions of the bearings

are almost the common conditions when bearings absorb static load.

Especially large loads appear on the bearings at the insertion

of a spacecraft into orbit when the accelerations exceed terrestrial

by several times. In this case, large vibrational accelerations

can also arise. If thf. converter system does not work during the

insertion into orbit, the problem of bearings is reduced to the

solution of common questions connected with strain and fatigue.

At elevated temperatures in a medium of a liquid-mietal heat-

transfer agent, common antifriction bearings cannot be used. Even

if these bearings are precision bearings and manufactured from

special heat-resistant alloys, their lifetime is short.

Bearings of dry and semiliquid friction with graphite inserts

(Fig. 3.6a) also cannot be used due to their rapid wear. Sleeve

bearings from titanium carbides and tungsten (Fig. 3.6b) have a

somewhat longer lifetime but are very brittle and during operation,
due to the friction of the working surfaces, they wear and change
their geometric dimensions. In order that the bearings be not

superheated, it is necessary to cool them; this is possible
by using the good cooling properties of liquid metal.
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(a) (b)

Fig. 3.6. Dry-fri'ction bearings: a - with graphite
inserts; b - with inserts made of tungsten and titanium
carbides.

Slider-type bearings, in which the friction surfaces are

separated by a layer of liquid, are more promising for use in the

turbogenerator of extraterrestrial power plants. Two types of

these bearings, differing in the means of obtaining bearing power

in the liquid layer, are used today. The best known is the hydro-

dynamic bearing, whose carrying capacity in thM carrying layer of

liquid is created during the rotation of the central shaft which

traps (because of viscosity) the lubricating liquid and drives it

into the wedge-shaped clearance between the center shaft and the

bearing insert (the housing).

II

During the rotation of the shaft, under the )ffect of the

difference in the hydrodynamic pressures of the lubricating liquid

in the clearance, the shaft comes up and the center line of the

shaft neck turns angle p in the direction of rotation (Fig. 3.7);
purely fluid friction is thus ensured. Figure 3.7 shows the typical

distribution of surplus hydrodynamic fluid pressure in the bearing
t

clearance. The resultant forces of the pressure during purely fluid

friction are equal in magnitude but reverse in direction to the

carrying capacity P of the bearing.

It should be noted that the necessary load-lifting capacity

* of such a bearing is obtained with fully defined rotational velocity

of the shaft (which should be lower th•a operating), a determined

clearance, and a determined viscosity of the lubricating liquid.
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With a low shaft rotation rate the bearing touches and dry
friction appears. In order to eliminate misaiignments and non-

coaxiality (which also leads to metal-to-metal contact and dry

friction), it is advantageous to use self-adjusting bearings.

The working medium is used as the lubricating liquid in the

bearings of ERE turbogenerators, i.e., the same liquid-metal heat

carriers as used in the main system. A number of difficulties arise

with the use of common oils, in-the first place, in creating gaskets

capable of preventing, over a long period of time, the break-through

of working medium vapors into the cavity of the bearings or the

flow of the lubricant into the -cavity with the working medium, as

well as lubricant leakage.

As we know, the viscosity of liquid metal is very low (absolute
viscosity of liquid-metal heat carriers is approximately 10-100 times

less than common lubricating oils). Therefore, the working

clearances in the fluid-friction bearing should be approximately

10% of the clearance in common oil bearings. In order to prevent

the metal-to-metal contact which is destructive to the bearing,

erosion, and the phenomenon of fatigue, we must strictly maintain

this clearance during the operation of the turbogenerator.

Figure 3.8 shows the construction of a hydrodynamic bearing
which handles liquid-metal lubrication. The bearing is a bushing
wJth a ring groove installed in a spherical seat. To prevent the

turning of the bushing, a pin has been installed. A bushing without

a pin (the floating type) is also possible. The clearances between
shaft and b.•aring and also between spherical ring and housing are

set by selection.

The bearing and uhe housing are made from an alloy of molybdenum

with tungsten and titanium.

Pressed to the shaft is a bushing of tungsten carbide. The

lubricant feeds through the opening in the housing, falls into the
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ring groove, and through the inclined opening in the bearing toward

the circular channel on the inner side of the bearing.

Fig. 3.7. The typical pressure fP
distribution in the lubricant
film of a hydrddynamic bearing
durivig, shaft rotation.
KEY: kl) Surplus pressure in
the lubricant film,

S~(i)

Ja&7eHue Cawe

* From the channel the lubricant enters the working clearance between
* the center shaft and the bearing. Such a bearing can work at a

temperature up to approximately 9000C. With a reduction in temperature
the viscosity of the wdrking liquid and the bearing capacity increase.

Less known yet is the so-called hydrostatic bearing. External
load in such a bearing at any speed (even at n = 0) is balanced
basically by the hydrostatic pressure in the carrying layer of the
liquid, ensured by the external (relative to the bearing) source of
pressure - a pump.

In hydrostatic bearings any liquids, including liquid metal,
- can be used.

The external load in the normal operation of a hydrostatic
bearing is absorbed by a continuous layer of liquid, which eliminates
the possibility of dry contact.
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The ability of hydrostatic bearings to absorb loads of diffderent

magnitudes is favorably combined with an extremely low &oefficient

of friction, on the order of 4"1o 6 -7'10 6[147].

"( -U ~ ~(2)-- -- •'(2) 00aa CM23KU :
A7-, ll9o&Madga noqa u CMaJKU(

S~(4) .
(6.floden u,'aK

. . . I

6 (01Ao7b 4 e~la

Fig. 3.8. Hydrodynamic bearing.
KEY: (1) Operator; (2) Channel of lubricant supply to
bearing; (3) Lubricant supply; fit) Pin (from turning);
(5) Bearing housing; (b6) Ring grocve.

To explain the prinpciple of the operation of a hydrostatic
bearing, let us examine Fig. 3.9.. The center shaft is rotated in

a fixed bushing which has on the side turhed tqward the center sh~ft

several insulated chambers. The workling liquid under initial pressur,-

PH is fed into the chambers fronmoutside through proportioning

openings (discharging jets). When eccentricity e = 0, 1clearances

at the output of all chambers are equal, the fluid ,pressure in

all chambers is equal, and the Yearing capacity" is equal to zero.

With a displacement of the shafý a certain distance ifrom the

axis, pressure in the chamber changes. In tIhe chambers toward

which thp center shaft approaches, ,hydrodynamic drag during the
outflow of liquid from them increases, as well a- pressure. In the

opposite chamber the pr.essure, on the contrary, decreasep as a

result uf the reduction in hydrodynamic resistance at the output

from the chambers.
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Albng with the variation in hydrodynanlic resistance during the

outflow of liquid fron' the ,chambers, the flow rate througH the

chambers' and the discharging jet at the input :to every chamber alsoSII i

changes!. Thus, in the chambers where the clearance .at output ip
decreased, the flow rate is also decreased and, together with this,

• esistance is reduced during the flow of lubricant through the
discharging jet, and vice versa. Allthis gives rise to a pressure

increment in some chambe s, and to a reduction inothers, which

preates' the tcarrying capacity which balanceq the external load.

I ,I-V.
A. 1 '••"() amvepbl -" (2).

die dA R'a'lyteobl I

17O&MUMfHI(a

(a) (b) (C)

V I

Fig. 3.9: ,Strudtural, diagram of hydrostatic radial bearings: a -
with c-%pillary compensation [1(1)/(d.,) > 10]; b - with diaphragm

compensation '[(I )/(d ) < 3]; c - 1 with slot compensation'(with
A A

reverse slot choking).
KEY: (1) Communica.Ang chambers; (2) Separated chambers; (3) Bearing
axis; (11) 'Shaft. axis.

Figure 3.9'show6 several structural diagrams of kadia,l hydro-

static bearings: with capillary compensation (a), with diaphragm

compensation (b), and with,slot controllable compensation (c). The,

operation of bearings with capillary and diaphragm compensation is

understandable from' the f~regoingJ 0

-Let us examine the work of bearings with slot controllable

compensation (c). Th'e working liquid in ouch a bearing first enters,

the chambers A, from which along the radial drillings and the hel'ical
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flutings on the outside diameter of the housing, it falls into the

diametrically opposite working chambers S. Circular channel B

serves for the aeaitional feeding of chambers A. The circular channel

F is provided with a drainage cavity.

With the displacement of the shaft downward the upper clearance

between the shaft and the bearing housing will increase and the

lower will decrease. In this case the filling of the upper chambers

A with liquid is facilitated and, correspondingly, the resistance

at input to the lower chambers A increases. Simultaneously, the

resistance at output from the upper working chambers 5 decreases

and at the output from the lower working chambers B increases.

All this leads to the appearance of a greater pressure differential

in the working chambers 5 and to the creation of lift.

The described diagram of a hydrostatic bearing with reverse

choking is more effective than a bearing with capillary or diaphragm

compensation.

It is necessary to note that with the misalignment of a bearing

its load-lifting capacity will fall because, in this case, the

relationship between the throttling of the liquid at input and output

is disturbed.

The operating principle of a thrust step bearing (Fig. 3.10)

is analogous. In the case of misalignment of the bearing, clearance

in the zone of chamber 1 is decreased and, accordingly, clearance

in the zone of chamber 3 is increased. Hydrodynamic drag at input

and output changes; pressure pl increases and pressure P 3 decreases.

The appearing moment of force will align the position of the rotor.

If the face of the bearing under the effect of axial force moves

strictly along the axis, then, in this case pressure will increase

simultaneously in all. chambers and balancing force will arlbe in

the step bearing.

The operation of oil-film bearings is connected with the

circulation of a certain quantity of working liquid (the lubricant).
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Friction and wear in such a bearing are very low. However, the

expenditure of power on the circulation of the lubricant is rather

high (special pumps are necessary). The supply of liquid to the

bearing ;should begin before the start of rotor rotation,

The use of a liquid-metal lubricant can damage the bearing

and shaft material, Erosion can be the result of the incompatibility

of structural materials with the liquid-metal lubricant or can be

caused by the washing of the surface of parts by the flow of high-

density lubricating material, for example, mercury. This is connected

with the low viscosity of liquid-metal lubricant, as a consequence

of which the flow can be turbulent despite a small clearance.

Turbulent flow gives rise to the onset of' a high dynamic pressure

for the lubricant on the surface of the part and to the washing out

of material with the fluid flow.

A-
Fig. 3.10. Diagram of a I
hydrostatic thrust bearing.

To reduce the effect of turbulence, it is necessary to increase

the purity of the working parts of the bearing (by polishing). To

reduce wear, obviously, special coatings are useful.

Fluid-friction bearings, in addition to their load-lifting

capacity and the expenditure of a working liquid are characterized

by stiffness, vibrational stability, and sensitivity to the direction

of the external load. By the stiffness of' the bearing we mean the

ratio of the variation in magnitude of e'xternal load to the variation

in eccentricity. Invest-tgations have shuwn that stIffness of a

hydrostatic bearing is h-gher than that of a hydrodynamic bearing.
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Vibrational stability is determined by the speed of the rotor

at which, as a result of vibrations, the completeness of the fluid

film in the bearing is disturbed and a ccntact between shaft and

bearing occurs. The higher stiffness of hydrostatic bearings

potentially determines their higher resistance to vibration.

With greater revolutions of a rotor installed on hydrostatic

bearings (10,000-30,000 rpm), we should consider the influence of

dynamic effect (the load-lifting capacity of such a bearing is

somewhat higher with rotation taken into account than it is without

accounting for rotation) and more strictly define the zone of

rotor equilibrium, taking into account vibrational stabilLty.

The sensitivity of hydrostatic bearings to the direction of

the external load, as was found, is substantially less than 1hat

of hydrodynamic bearings, in which it depends upon both the point

of supply of the lubricating liquid and the relative motion of the

rubbing surfaces which form the liquid wedge.

The effect of the supersaturation of vapor
and its condensation on turbine operations

Along with the difficulties involved in solving purely structural

questions in the planning of turbines for extraterrestrial power

plants, there is also the difficulty of solving such questions as
the supersaturation of vapor expanding on the turbine blades and

its condensation inside the turbine.

The essence of supersaturation is the fact that with the rapid

expansion the working medium does not manage to be condensed and

can be presented in the form of vapor although, according to the

condition of thermodynamic equilibrium, partial condensation should

occur. This reduces the efficiency of the turbine.

The radial extent of the turbine blades for the oversaturated

state of vapor should be less than for equilibrium. Therefore,

a turbine cascade designed with partial condensation taken into

account passes more of the working medium.
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The transition from the oversaturated state of the working

medium to equilibrium is accompanied by a reduction in the efficiency

of the turbine. Since the size of the heat exchangers which ensure

heat transfer into the system increases in inverse proportion to
the efficiency of the turbine, the consideration of the supersaturation

processes makes it possible to create lighter structures as a whole.

The extraneous particles in the working medium are the conden-

sation nuclei. Therefore, working media used in such a device must
have a minimum of such particles. Condensation is the consequence

of the equilibrium expansion of any saturated vapor. It gives rise

to a reduction in turbine efficiency and causes the erosion of

blades and other structural elements. Erosion is caused by the
collision of the slowly moving film of condensed fluid and separate

drops of it wtth the rapidly moving parts of the rotor. Experience

shows that in order for erosion to occur, the quantity of liquid

phase of the working medium in the turbine should not exceed 10-12% and

circular velocity of the blades must not .xceed 275 m/s [51]. High

speeds are permissible only in turbines with the additional heating

of vapor between the stages of the turbine. In this case, the

vapor remains dry. However, intermediate heating necessitates an

increase in dimensions and weight of the steam generator and radiator.

The use of even one or two stages of vapor reheating complicates

construction and increases turbine weight. Therefore, the superheating

of steam can be recommended only as an extreme measure.

Some features of electric generators

Electric generators for extraterrestrial powier units, as a rule,

are mounted on one shaft with the turbine (i.e., without reducing

gear) and have high speed - 20,000 r/min and above (speed is limited

by the maximum possible speed from the point of view of strength

and by the circular velocity on the ends of the working blades).

Approximately 5 to 20% of the power supply to the generator

goes into the heating of the parts of the generator (the winding
of the rotor and the stator, etc.). To remove heat from the generator
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a special system is necessary, whereupon the beat carrier i•s passed

through the channels directly in the generator's stator. In this

case, the windings should be well insulated from the heat carrier.

The winding material (copper, silver) can be heated to a

temperature of -7000C and since the windings of the rotor are located

in the field of action of centrifugal forces, they will work in

the area of plastic deformations.

I As an example of a system with a turbodynamo method of converting

heat energy into electrical energy, let us examine the diagram in

Fig. 3.11 [50]. The working parameters of a cycle are given on this

diagram. A nuclear reactor serves as the source of heat energy.

With the aid of a liquid-metal heat carrier (potassium and sodium

alloy) of the first system, heat f~om the reactor is transferred

to the steam generator.

The heat carrier of the second system in the steam generator

is heated, vaporized, and superheated and, in this state, it enters
i a mercury turbine which brings into rotation the electric generator

and the pumps of' the first and second systems.

The mercury which has passed through the turbine goes through

the condenser and supercooler; then it enters the mercury Pump and

further - for cooling tile generator - and into the bearings.

Figure 3.12 shows a section of a combined rotating unit. In

the unit on Qne shaft a mercury steam turbine, an electric generator,

• a mercury pump, and the pump for, the heat carrier of the first system
I (Na-K) [50] have been installed.

The turbine of the unit is a two-stage, axial turbine and

operates on a Rakine cycle; power generated is 7 hp at 40,000 r/min.

(
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The generator consists of a rotor with a six-pole permanent

magnet and a stator with a two-phase winding. To pievent the

penetration of the mercury, the stator has a seal. To a'void the

condensation of mercury in the cavity of the rotor, the generator

should operate at a temperature of 37000 or above. With a useful

electrical power of 3 kW efficiency of the generator is 80%.
4T

Voltage deviated from nominal by no more than .5% with a power

factor on the order of 0.8-1.0. To obtain the assigned frequency

(20,000 Hz) with minimum weight the optimum rotor speed of 40,oo6
r/min was selected. Output frequency is maintained with ,a control

system, with an accuracy of + 1%, with useful power varying from

0 to 3 k';.

. 8/•

7l

Fig. 3.12. The longitudinal plan of a turbogenoratoL?
with pumps of the f.irst and second loops: ' - generator

* rotor; 2 -. generator stator; 3 - turbine wheel; 14 - Na-K
Spump rotor; 5 - Na-K diffuser; 6, 7 - mercury radial

bearings; 8 - mercury thrust bearing; 9 - mercury centrJ.-
fuga] pump; 10 - mercury Jet-edge booster pump.

The mercury pump has a centrifugal-type impeller with a oiaameter 1
2of 8.7 mm. The pump develops a pressure of 12.3 daN/cm with a

flow rate of 20.211 kg/min and a total efficien'.y of 35%.

2
The pressure at pump input is extremely low - 0.112 daN/lra2

To prevent cavitation, a jet-edge booster, pump has 'been installed

before the entry to the centrifugal pump.
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The Na-K pump consists of a permanent magnet installed on the

end oi' the shafl of the unit and fixed ring-channels such as the

channels of the centrifugal pump. The magnet, while rotating,

carries the flo-w, of Na-:K after i# and forces it 'to be rotated in the

ring channels; because of th:is, the pump' woiiks similarly to a

centrifugal pump. Despite the fact that pump efficiency is a total

of -2.5%, such a method of providing circulation in thv loop is

tmplemented %h minimum coitstruction weight and the minimum resist-

ance al~ong the entire systemJ At a rated capacity of 32.5 kg/min

and a temperature of -5380C the pressure de.eloped by the pump is

0.133 daN/cm2. ,

Fig. 3.13. One ofithe variants, of a 't"urbogenerator rotor (sqe

Fig. 3.12): .1 - rotor ,of Na-K
pump; 2 - gemerator rotor; 3 - 2

I mercury radial bearing; It
mercury pumpj 5 - mercury thrust
bear'ings; 6 - mercury steam 7
turbine (blades are covered by
a band); 7 - mercury radial
bearing.

The rotor of a combined rotating uni, is Installed on two

radial bearings. To absorb-the axial forces ,of th~e rotor there is

a bilateral thrust bearing. Both the radial and thrust bearings

operate on mercury according to the principle of hydrodynamic

8iearings. The bearing capacity of the radial (Journal) bearings

is 22.7 dan and of the thrust (axial) bearing is 9.1 daN. The

flow rate 'of the mercury on the Uearings is 7.25 kg/min at 21800.

Figure 3.13 shows one of the, varliants of the rotor of a

combined rotating unit.

I •fn finishing the system node-by-node tests of all units are

conducted, characteristics are noted, and v~bratlonal tests are

SI * 2 111,



made over a frequency range from 5 to 3000 Hz with maximum loading

up to 25 g, simulating the conditions of orbit injection.

Figure 3.14 shows a sketch of a turbogenerator layout.

Stress analysis of working blades

The turbine blades are the most stressed and critical parts of

a turbine unit. They operate at high temperatures and experience

high mechanical loads from centrifugal and gas-dynamic forces.

Furthermore, the blades experience secondary stresses from the

transiency of operating conditions with rapid time variation in the

thermal condition ("thermal shock") and also from the mechanical

vibrations of the blade foil (especially in the presence of

resonance).

The determination of tensile stresses in the
blade foil from centrifugal forces

Under the effect of centrifugal forces in the blade foil there

will appear torsional, flexural, and tensile stresses, of which

the basic stress is tensile stress.

F Cn

(t)

Fig. 3.15. Coordinate system. Fig. 3.16. Streso analysin of
blade.
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Flexural stresses from centrifugal forces are used to compensate

the flexural stresses from the: effect of gas-dynainic forces (see

below). Torsional stresses r-e usually low and in tentative calcula-

tions can be disregarded.

The following system of coordinate axes (Fig. 3.15) has been

taken in the stress analysis of a blade foil.

The Ox axis agrees, with the rotor's axis of rotation and is

directed in the direction of the gas flow; the Or axis (or Oz) is

perpendicular to the axis of rotation (Ox) and passes through the

center of gravity of the root section of the blade; the Oy axis is

perpendicular to the Ox and Or axes and is directed so that the

smallest angle of turni ut to A c6incidence With the Or-ais 'is

obtained with a turn in the direction of the angular velocity of

the rotor,

Let us examine a method of determining stresses in the blade

fo.Ll. from centrifugal forces in the example of a blade with a band

web (Fig. 3.16).

For convenience in determining stresses a in an arbitrary

cross section (on radius r*) of a blade, let us divide the complete

centrifugal force C acting on this cross section by the centrifugal

force of the blade foil strictly COn and the centrifugal force of

the band web C6, Obv.• usly,

(3.3)

Let us find these forces, for which we take an element of a

blade wtth radiv- r and thickness dr. Then the centrifugal force

created by this blade element is

d C v = U,')Frdr,

where p is the density of the blade material in kg/in
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w is the angular velocity of disk rotation in rad/s;

F = F(r) is the cross-sectional area of the blade on the

current radius r in m2 .

The complete centrifugal Iorce in section r* from the mass of

the foil itself is

R
C,, (0 S,-Fr dr.

ore (3.4)

The centrifugal force of the band web is

C6 = -VR6 . (3.5)

where V is- the volume of the band web in m3 .

[ The total centrifugal force acting in section r* is

C=Q+ 6~'~(~'F.'ir+ ) 3.6)

Dropping the superscript '" with r, we obtain the following formula

for tensi'le stresses

'R
Pr dr

\ F + -F (3.7)

Formula (3.7) is the basic design formula for determining

tensile stresses on an arbitrary radius of a blade with any law of

variation for the cross-sectional area.

The character of the variation in tensile stresses from

centrifugal forces along the blade radius is shown in Fig. 3.17.
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The cross-sectional area of a b!"r usua2&y varies acgording

to exponential law:

R' :r

( (R) IF (re) - F() 1 (3:8)

The value of the exponent n =0 corresRonds to a biadel of cbnstarqt

I I I I

(for ordinary values F(e)/Fo(rr)es.-Q ds the maxdimumsbressetý

will be found not in the root section (curve b).,

If F =const, then

varition 1

2 (3.7a)

II

Maximum stress for such a blade will obviously be in n 3,secion

I!?2 _jr6% I./?6  I

Determining flexural stresses in a blade foil
from gas-dynamic forces

Flexural stresses from gas-dynamic forces occupy,the s~econd
place in value after tensile st0esses from centrifugal forces.

FrLet us first determine the gas-dynamic forces qbting on a blade,

Frthis we shall examine the operation of the cascade of the turbine
rotor wheel (Fig. 3.18).

249

.I°
Detrmnin fexualstrsss i ablae 2il'9



; I

' | * * I I j

I Il7

II I' * •,,

1' 1. Pa-e I - £ d ,~ .!~ I'

P INa tip

a

Cia

Oi C21!

Ot F

UU

Fig. 3.17.' Stresses from Fig. 3.18. Determining the gas
centrifugal forces in a blade ' forces acting on ýhe blade foil.

.,foil of variable cross section
'a - without the band web; b -
wit4 the band iweb.

U I

Fx~om gas-dynamic analysis of a turbine, the folowing gas ,(steam) ,

.-parametqrs are known:

',-.he projections of gas velocities onto an axis coinciding with
the axis of shaft rotation apd onto an axis perpendicular to it,

"c.a; clu; c2 a; C2u;

circular ?vdlocdities on a given rad' s u;, gas density (steam)

Pl and P2 ; gas pressure (steam) p1 ar•d',2'

The subscript "I" indicate,, quantities which characterize
the state of the gas at stage ifipwt, the'subscript "2" at stage
output.

We know that the sum df the extern'al forces acting on a certain
volume of gas is equal to the vector difference between the Momentum

'of' thie gas flowing in and the momentum of the gas flowing out through
,the control surface limiting this volume, (in hig. 3.18 indicated

.by dashes). I
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Assuming that the particles of gas flowing around the blade

move along cylindrical surfaces, we shall examine the cylindrical

layer on radius r with thickness dr (this assumption is equivalent

to the fact that the ring-shaped areas at input and output of the

"rotor wheel are equal). Let us separate a stream of gas flowing

around one blade and apply to the interfaces the forces of inter-

action.

A blade element acts on the gas with force dN. The force of

the gas pressure on the element is dP = -dN. The components of

this gas force are equal, respectively, to dPa (in the plane passing

through the axis of rotation) and dP (in the plane of rotation).
u

Obviously, dPa = -dNa; dPu = -dNu

Forces per unit length of the blade (intensities of distributed

loads), in the corresponding plane are equal to

dPa. dPu

dr (3ý9)

Let us find the components of load intensity. The mass of

the gas flowing through a surface element in a unit of time

(referred to one blade) is

2ir dr 2-rr dr
- - __ • .CIC a -- • 0 2C •a ,z z (3.10)

where z is the number of working blades.

After examining the change in momentum in an axial direction,

Swe obtain dm(c2a Cla) = (P 2 - pl)(27r dr)/(z) + dNal hence

dPa_--__d, _ 2 (rdr 2.rdr
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and, finally,

dPa 2.ir( 2r a

dr z z (3.11)

The positive direction of px corresponds to the direction of

the intensity along the flow (along the direction of the Ox axis).

We now find tse intensity of load distribution in the plane

of rotation. The change in momentum in the plane of rotation is

dm(c2u - clu) = dNu, hence

dPu .A 2-rr dr
z

and the intensity of the distributed load in the plane of rotation

is

P P = - T ?.I I la (C• u- C, u).z (3.12)

The positive direction of py, which can be determined from this

formula, corresponds to the positive direction of the vectors of

velocities c 2 u and ciu.

We should note that for axial compressors (pumps) py is

directed against rotation, and for blades of axial turbines, it is

directed with the rotation.

If we know the intensities of distributed load px and py, we

shall now find the bending moments. Let us look for them in a

certain fixed section r* (see Fig. 3.16): Mx reJative to the Ox

axis in the rOy plane and My relative to the Oy axis in the rOx

plane:

dMx =pudr(r - r*); dA1t =p.,dr(r-- r*).
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Integrating these expressions along the length of the blade from r*

to R, we obtain bending moments in the section r*:

R

A.r = $ P•(r - r*) dr;
fA

*4pn(r .r*) dr.r (3.13)

In the root section of the blade bending moments will be maximum:

A'I max -,( , r
ro

A49 11 iiax px( o

to (3.13a)

Bending stresses are determined separately relative to the

principal axes of inertia ý and n' for individual points of the

cross section furthest from the axes (Fig. 3.19). Such points in

the blade cross section are: A(9A; "A); B(9B; nB) and C(9C; no).

We shall find the moments from the gas forces relative to the

principal axes of inertia (see Fig. 3.19):

Mz =MAcos I+A1~sin p; Mr# =ALsinf--Macos I. (3.11)

'The principal axes of inertia pass through the center of
gravity of the cross section; for approximate calculations we can
assume that the ý axis is parallel to the chord connecting the leading
edge of the profile with tie trailing edge. The n axis is perpendieu-
lar to the g axis. For a stricter definition of the position of
the principal axes see reference [39).

The 9 axis is directed from the leading edge of the profile
of the section toward the trailing edge; the n axis is directed
from the back to the face of the cross-sectional profile of the blade
(see Fig. 3.19).
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Flexural stresses at any point' of the cross section are

determined by the relation

Al" . 11

(3.15)

where I and I are the principal moments of inertia for the cross
section of the blade, m

The signs of the bending moments in this equation must be
considered positive if they cause a bend deformation convex to
the side of the positive direction of the corresponding axis. The
signs of coordinates g and n correspond to the direction of the
axes.

Fig. 3.19. Determining bending ymoments relative to the principal
axes of inertia.

In writing formula (3.15) we assume the following rule of
signs for bending moments and stresses: tensile stress is assumed
positive and compressive stress negative.

Usually in turbine machines the principal moments of inertia
for blade cross sections are connected with the relationship
I > (10-15)IV, while the values of bending moments are of the same
order. Therefore, bending stresses, for example, at point A, can be
determined approximately from fnrmula
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(3.15a)

The bend of-blades from centrifugal forces

Under the effect of centrifugal forces blades bend when the
centers of gravity of separate sections along the length of the blade

do not coincide with tbe Or axis which passes through the center of

gravity of the root section.

Let us examine the bending of a blade under the effect of gas

forces Px and Py in the field of centrifugal forces (Fig. 3.20).

Let us assume that the axis of the centers of gravity of the unbent

blade coincides with the Or axis. Under the effect of forces P

and Py the blade will bend. Acting on the bent blade will be

the centrifugal force creating mc. wnts MxC and MyC, which attempts

to turn the axis of the blade to a neutral position.

Thus, the action of the centrifugal forces makes the total bend

of the blade less than it would be under the action of gas forces

only (see the dashed line of bend on Fig. 3.20). The bending stresses

of the blade will be less. These are used for unloading blades from

extremely large bending stresses by gas-dynamic forces. It is

possible to so design a blade that in the framing cr near it low

or even zero bending moment will appear.

There are two design methods for reducing bending stresses in

blades or, as they say, two methods of "unloading" the blade.

In the first case, a blade with a rectilinear axis passing
through the cross-sectional centers of gravity is installed in
framing with an inclination so that the axis is to the side of the
action of the gas-dynamic bending forces (relativ, to the axis
passing through the center of gravity of the root section of the
blade). Such a method is technologically convenient L•nd rrequently
used for unloading short turbine blades.
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Another means of unloading consists of the fact that the line

of the centers of gravity for the blade cross section is a specially

selected curve. The fit of the blade in the web is radial in this

case, without inclination.

The shortcoming of these methods of bending-moment compensation

is their one-nnde nature. Actually, bending moments from centrifugal

forces depend upon the rotational speed of the rotor, and moments

from gas forces on the density of the gas and other parameters of

the flow, which are different for various conditions of turbine

operations.

Usually turbines are designed so that the bending moment from

centrifugal force is a certain fraction of gas-dynamic moment, i.e.,

Mxc= -- Mx; =Mc--M,
(3.16)

where y is the coefficient of compensation.

The value of y is selected with the operation of blades in

various modes taken into account and usually comprises 0.3-0.6. A

blade with linear stagger makes it possible to perform the assigned

compensation only in one cross section, for which the cross section

with the greatest bending stresses is naturally taken. The root

section is usually such a section.

There is a more effective waý of unloading the blade by

centrifugal forces - the attachment of a blade in a hinged jtint

so that the total bending moment in the framing will equal zero

on any mode of operation for the turbine wheel. The blade, in this

case, can be lighter than with rigid framing. However, due to design

complexit,. this can only be done for cold blades (long compressor

blades) and only for the compensation of bending moments in the plane

of rotation of the disk.
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Fig. 3.20. Compensation of gas- M , '

dynamic bending moments bymoments from centrifuqal. forces.' "

Total stresses and safety factors of blades

In each cross section of a blade the total stresstis defined'

as the sum of tensile and bending stresses:

4 UP= + (T.u- (3.17)

The safety factor is determined from expression

a , (3.18)

twhere at is the rupture strength of the blade material taking

into account temperature and time.

Obviously the safety factor of the blade along the radius will

not remain constant; it will change depending upon the variation and

stresses a along the radius and the quantity at 3 ' due tT the

variable temperature of the blade (Fig. 3.21). Usually the mininium

safety factor is n = 1,2-1.5 and corresponds to the unsafe sections

of the blade. For turbine blades the unsafe section, . counting. from

the root, is approximately 20-30% of the length' of the blade.
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at which the blade obtained the initial crack) has a characteristic

flat polished surface. In the cross section where the blade was

broken and the crack has not yet developed, the fracture surface

is crystalline.

The breakdown of one blade usually leads to the failure of the

remaining blades and the turbine as a whole.

To prevent vibration breakage and control it successfully when

it does appear, it is necessary to correctly evaluate the possible

sources of the onset of the defect. For this purp% 4t is necessary

to determine the natural frequencies of blade vibration; to determine

the disturbing forces and to produce their wave analysis; to construct

a frequency diagram and reveal the possible resonant frequenciez

over the range of operating revolutions of the motor and find which are

the most dangerous. The various vibrational modes follow: flexural,

torsional, flexural-torsional, and edge vibration (when almost tne

entire surface of the blade is fixed and only individual poiits

on the edge, sometimes the closed areas of the blade, vibrate).

Edge vibrations have very high-frequencies and appear in fineý

blades.

Flexural vibrations are the most dangerous because their

frequency can be within the range of the working rpm. The other

wave forms o! turbine blades have a high frequency and do not always

fall within the range of working rpm's.

Edge vibrations have a frequency on the order of 10,000 vibra-

tions per second and can be excited with a certain combination of

nozzle and rotor blade quantities during vibrational combustion in

the combustion chambers. These vibrations as yet have not been

generalized.

Figure 3.22 shows the types of vibration cracks in turbine

blades.

Let us examine only the flexural vibrations of blades.
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Determining the frequencies of inherent (free)
vibrations of blades

In the vibrational analysis of blades let us use the following

assumption.

1. The blade is a rod one end of which is tightly sealed and

the other is free. The axis of the unbent blade (in free position)

is rectilinear and is directed strictly along the z-axis (Fig. 3.23).

2

a) a) L(b)(c

Fig. 3.22. Types of vibration Fig. 3.23. Calculation diagram of
cracks in turbine blades. a blade (for vibrati.onal analysis).

2. We shall examine blade vibrations only in the smallest

rigidity plane, i.e., relative to the principal side axis.

3. We assume the blade is not twisted but is turned a certain
angle 0 = const (there is no rotational inertia of the section).

I. There is no rotation, i.e., theie are no longitudinal forces
being caused by centrifugal forces (the effect of centrifugal forces

on vibration frequency in a blade will be discussed later).

The natural frequencies of blade vibration will be determined

by the method of the direct compilation of a freqiency equation

using the familiar D'Alambert principle.
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External loads during blade vibration are, the forces of inertia.

The linear load from the force of iflertia is expressed by. equality

f0¢2 (a)

or,

q = --QFtj, (a')

where opF is2 the linear mass of the blade (the mass of a unit

length of a blade);

ýp, is- the; dens!ity, of the b2!ade;,materia-1l-;

F is- the area .of the current blade cross section;

= n(z, t) is the bending func~tion (the equation of an elastic

line) o2 the blade.

The externf.l force of inertia is ba~anced by- the internal

elastic forces.

As we know, the bending moment during bending of a beam is

l-f

A ,dz2 (b)

or

•"M, "E IEV (b",

w.'ere E is the elasticity modulus of the first kind;

I is the moment of inertia of the cross sectional area of

a blade relative to the ý ax1s.;

1 nr is the second derivative with respect to z of the function

of deflection.
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Differentiating this equation, we find the expression for

shearing force:

d2M =

dZ' (c)

After we differentiate equation (c) once more, we obtain an expression

for linear load from the internal elastic forces:

d2M" __.-L = q =(EI~')". (d)

dz2 dz

Let us make the external linear load equal to the linear load

from -internal -forces- -[equations, (a' -) -and (d-)]; -then the general

differential equation for an oscillating blade will be written in

the form

(Ehi')" +eFI--=0. (3.-19),

To solve differential equation -(3.19) ].t us use Fourier t s

method - the separation of variables z and t. We shall introduce

designations:

Trjz, t)=u(z), g(W)=ug,

where u(z) is the function of deflection, depending only on the z

coordinate;

g(t) is the function of deflection depending only or time t.

If we differentiate equation (e) four times with respect to

z and two times with respect to t and substitute these derivatives

into equation (3.19), we obtain

,,,, , • ' -- (3.20)
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hence

QFU ~ % C fst (3.21)

In the left side of the obtained equality we find the function

(EI Ulf) It/PFu depending *only on the z coordinate, and in the right

side the function -g/g depending only on timelt. Both these function's

are equal at any values fbr z and t and 'thI~s is possible Ionlyi wi-qn
each of them is equal to the 'same constant value. We shall designate

this constant asw2

* From equatlion (3.21) we obtain two differential equations:'j I It. . ( 3... . .

Equation (3.22) is ixn equati6n of hazlmonic blade v'ibrations.

The period of harmonic vib'rations is

2.| 1

WC (3.211)

and vibration frequency is

(I-.-" - - - _ onst

- -2a ' (3.25)

where wc is the angular velocity of the natural oscillations of the

blade (this is also the physical meaning of the constant w c in

equation (3.21)).

The solution of equation (3.22) gives

g.=:-Acoswq1 B sin wlt. (3.26)1
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Equation '(3.?5) is a differentialequation 'in the form of.an

e'lastic line of a vibrating blade since it contains only geometric

and mass characteristics bf a llade and. the frequency o'f its free

oscillations. This equation is not ýolv~d ;in general form. We can
obtaih a solution of a uniformly heated '(or cold) blade of constant

cross section. Let us examine this case when F = const; EI• = corst. ,

We iAtroduce relative ,variable z = zYW. Let us note that!

2 U"
~~ [ /--(

a IV

. "(kT .); a

1; 1(3) ( ) (3.27)

Then equation (3.23) assumes the form ' a

A or

, , .i1 \' ". , .

(3.28)

whe-•re a'

c'~~a a (3-?9)

'is a parameter of differenfial-equation (3.28).

a I

aFrom eqpalitý (3,29) wb can determinýi the sqqare of the i~nherent
angular Ivelocity of blade vibr~.tions:,

Sa I

I

where a i~s still unknown.a
a26

a ,
isa paaee fdfe ga~qato (32)I

26'I a!
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Equation (3.28) is a linear differential equation of the fourth

order. A full solution is written in the form

u(-)== A cos a czB sin aF+Cch +DsZ+Dsha. a (3.31)

Instead of particular solutions cos az; sin ai; ch ciz and sh az,

A. N. Krylov introduced linear combinations of angular and hyper-

bolic functions which were given the name of Krylov functions [22].

Using these functions, we obtain from equation (3.31)
( AS (az) + BT (azz) +CU (-)-+ DV (a), (3.31')

where

S (a--. (CI a Z+ COS c;);
2

T (sha3+9.1rýz);
2

U (aZ)=i (Sh c5-cosi 5 );

2(sh --sini ). " (3.32)

'Remember that the hyperbolic sine and cosine are determined

by expressions:

ex - e-* e Si+ e-x
2 2

and their derivatives:

(sh v)' ='ch .2; (oh a5)' sh x.
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Functions S, T, U and V during differentiation have the property

of circular replacement, i.e.,

S" ( a)=2U (a-); S"'(a7)== 'T (a-);

T (aZ); T' (a)=aS (C);

T" (a )=•-•V ( 7s); T" (a)= L (Z);

U(c); U' ( a)=raT (jz);

U" (a) =a-s (aii); U", (Ci,•) =a3 " (a-);
v (Q); V' (a.) =au ()
V"/(a1).=u-T(a); V"(Z')=a3S(UZ). )

(3.33)

The use of these functions makes it possible to immediately

obtain a solution to equation (3.28) which satisfies the boundary

conditions. We have the following boundary conditions for our

problem:

1) " = 0; u(0) = 0 (deflection in-the seal is zero);

2) z = 0; u'(0) = 0 (the angle of pitch of the section in the

framing is equal to zero);

3) • = 1; u"(M) = 0 (bending moment at the free blade tip is

equal to zero);

4) -z = 1; u"0(a) = 0 (shearing force at the free blade tip is

equal to zero).

If we use the first two boundary conditions, we obtain A = 0;

B = 0. Then the solution to (3.31') will be

u() =CU(,;):+Dv (a). (3.31")

We shall use the third and fourth botu•dary condition.s (when 1 = 1).

From formulas (3.33) we obtain:
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U" (Q)=a2 S (a); o V" (a)=a2 T (a);

U"' ()=a 3V (a); V" I(c)=3S (a).

Substituting these expressions into equality (3.31"), accordingly,

for the third and fourth boundary condition we obtain

CU2S (a)-j- DO-T (a)= O;
CQ3V (a) +oDa3S (LV)=O.

The solution to this system of uniform algebraic equations

relative to C and D will have a nonzero- value -if its determinant is

equal to zero, i.e.,

S(a) Tr(a)=o

v (a) S(Ca)

or S2(a) - V(a)T(a) 0; hence, using equalities (3.32), we obtain

9

ch Ucos a=-l. (3.34)

Equation (3.34) has an infinite number of roots. However only

the first of them have any value for us:

, 1=1.87,5; a,=4,694; (a=7,855;

a4-10,996; as=14,137; C6=17,279 etc.

Each value of a corresponds to its own form of elastic lines (Fig.

3.24), accordir- to the number of nodal points, and its own inherent

circular vibration frequency, determined by equality (3.30).

For example, for the 1st form of vibrations the inherent

angular velocity of vibrations is
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1 JVQP (3.30')

Fig. 3.24. Forms of flexural UT

blade vibrationis. I
KEY: (1) lst form; (2) 2nd form; 0I- -jOpM1 (i).
(3) 3rd form.

014 J-opR.,,, (3)

0.
0,2 09 ý 0,81

Accordingly, the vibration fxrequency (in Hz) for this case is
n. j1; Bi

h -F

2 12 V (3.25')

-Integral method of determining the natural
frequencies of blade vibrations

This method of determining the natural frequencies of blade

vibrations, as indicated, is appropriate for only the simplest case

when a blade has a constant temperature along its length and the

cross section is constant. However, for the majority of the problems

this solution is not appropriate. Therefore, let us examine the

_general case of a vibrating blade which has F ý const; EI• $ const.

The initial differential equation of natural oscillations was

obtained above (3.o23):
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Remember that the left side of this equation is lineai' load

from the internal elastic forces. Let us integrate this equation.

We obtain the expression for shearing force

(EI.u")'=w 2 QFUdz+ Ci.
0

The integration constant C1 is found from the boundary condition:

when z = the shearing force is zero, t.e;,

"-hence

C, Owc QFudz.

Substituting the value of CI into the expression for shearing

force, we obtain

We" =Ftzdz j iFttdz -- (wJ S GFUdz.

Integrating this expression again, we obtain the equation for

bendiig moment

zZ

""I I we QFtZ.+C2 .
pg

The integration constant C2 is found from the boundary condition:

when z = Z the ""nding moment is zero, i.e.,

hence

WC Sf QFu dZ2.
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Then the bendinv moment is

EI•uu" f F O-)• d oj' Q) (oFtd2.
0 Oz z z

t ! !

If we designate e" QF ''in-- (the integral operator, proportional
z z

to bending moment), we obtain

or

After we integrate this equation, we find the angle of pitch

for the elastic line:

0

The integration constant C3 = 0, since u'(0) = 0 when z = 0.

Let us integrate the last time. We shall obtain the equation

for e deflection of a vibrating blade:

C e + Coo
0 00EI

The integration constant C4 = 0, since u(0) = 0 when z = 0.

Finally, the linear integral equation of an elastic line for

a vibrating blade iz

•z zz I

- dtQFtdz2. (3-35)

O0 zz
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We shall designate

00 - z (0.36)

Then equation (3.35) can be written as

U = W2 K. (37)

As follows from the theory of integral equations, equatioq

(3.37) leads to a Fredholm linear homogeneous equation pf the second

kind with parameter X

(z)=) K (zs) u (s) ds.
a (3.38)

which has a number of important properties allowing the use of these

equations for the solution of practical problems.

In equation (3.38) function y(s) i. unknown and must be

determined so that it is satisfied identicglly for all. values of z

in the range of a < z < b.

Function K(zs) is called the nucleus of this equation or Green's

function. The quantity X is called the parameter of the integral

equation, the eigenvalue or the eige-value of equation (3.38).

Equation (3.38) besides the trivial solution y(z) T 0, has
untrivial solutions in fully defined cases. The latter solutions
are called eigen or fundamental functions 6f equation (3.38).

c-rresponding to a given eigenvalue of X.

K(zs) is the nucleus of the integral equation Which determines

its fundamental properties and has a simple physical sense: this iA

the function of the effect of an elastic system, i.e., tne amplitude

value of the deflection of a beam at an arbitrary point z under the

effect of a single source applied at point s.
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J I

The peculiarity. of Green's function is its substance and

continuity along the beam, i.e. , , over the range

Furthermore, lfor any elastic system, Green's functions hdve

the property of symmetry or reciprocity,, i.e., K(z, s) = K(s, z).I I I

*In the theory of integral equatAons it is proven that:

a homogeneous integral equationhas an Infinite, set of eigenvalues

ifor X;

- all the eigenvalues of X are real. The physical sense of X

is the square of the natural frequencies pf a system:

a (dn2
* I

- each'eigenvalue df A corresponds to at least one eigenfunction;

the number of linearly independent.'eigenfunctions which correspond

to.a given eigenvalue is'finite;,

- the eigenfunctions of, an integral equation With a symmetrical

nucleu$ form'complete normal. and orthogonal (orthc-ormalized) sets

uf fundtions bound by the relation
a I

Sa.iyjdz

a " i pj (3 .39)

npH = when

where q, is the generalized transverse load..

The obtained linear integral equation (3.37) has the following

properties: I

- it has an infinite numbex'of eigenvalues c2 1' W2 2 c: w 2cl 02 •c3 ''

i.e., the 'ibrating glade has an infinite number of natural frequencies;

- eaph eigenvalue corresponds ýo a strictly defined eigenfunction

Ul, 'u2, U3 ... , ,i.e., its own form of elastic line;

S. 1 I 7

, 272

,I.



- all eigenfunctions form an orthogonal set of functions

1 0 IPH ij--
S ot•tutdz=={
o0 1 11pH i=j

(3.39')

npw : when

The last property is used in determining the natural frequencies

of vibrations and the form function for orders above the first

(i.e., wc2 and uk where k = 2, 3, 4 )( e. ck ...

Integral equation (3.37) is usually solved by the method of

successive approximation (simple iteration). The advantage of this

method is the fact that with it it is possible to calculate a system

where all parameters are given numerically (tabular). As a result

of calculation, along with the frequencies, wave forms are obtained

which gives a concrete physical meaning to the solution of the

problem.

If a certain function is preset numerically, it is first

necessary to normalize this function.' This means that each value

of the function is divided by its norm (usually the norm tj the

peak value of the modulus of the function in the assigned range of

variation), i.e.,

'To compare two different functions of one class the concept of
the function norm exists. The function norm is the numerical value
of the important parameter or a set of parameters inherent in all
comparable functions, sometimes simply the "scale" of the function.
The norm of the function is designated 1hull or ul.

A function whose norm is equal to one is called normalized. In
vibration problems for the function norm we usually use the highest
value of the modulus of a function in a given range cc variation, which
can be dasignated ulmax.
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Figure 3.25 shows the operation of normalization for a certain

function u(•). The curve U(z) is obtained from the curve u(•)

by dividing each value of the ordinates of the first curve by its

norm u(z)/ max. The second curve is normalized since its norm

U(Z)/max is equal to one.

The process of successive information will consist of determin-

ing eigenfunction u(i+l) and eigenvalue 2 if there is an

initial approximation of function ui, based on the formula of simple

iteration

S2 r

SK(3.41)

- 2

In this formula there are two unknowns: u(i+l) and 2c(i+l)"

The method of successive approximations enables us to find the unknowr".

For this we find integral operator Kui from the function of the

initial approximation ui" The first approximation will be obtained

by normalizing the result:

2- W+1 I/a (.2

Since the unknown number c(i 2) is in both the function andc(i+l)
the norm as the multiplier, it is shortened, which makes it possible

to carry out further calculations without determining it in the inter-

mediate stages.

After determining u(i+l) the operation is repeated and we find

the following approximation:

tt(t+2)-'=toCUi+-, Kato-o• ( 3.113)

etc., until two neighboring approximations give sufficiently good

eigenfunction agreement.
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The unknown parameter of mW is, found from formula (3.43) under

the conditions that the values of the functions of.the last two
approximations are equal:

,1 (3.44).

Then equation (3.43) has the form

- 2

Since the last equality must be Valid throughout the range of
function variation, it, of courde,-*will also be valid',for the
maximum values of the function, i.e., the norm. ITherefoOe, we can
write equality (3.431) as folloWs:

U(I+I)Imax=I'I+)K(+)mx (3. 391~
* I)I

hence " I

I +12, I 41 !

(3.•115)

The last expression is the calculation f9r determinin,, thd square
of the angular velocity of the natural vibrations of the blade.
The calculation is reduced to A table; the agreement accuracy of the
two successive approximations can be checked conveniehtly (at a
glance) graphically, for which the function U =,u(z) is plotted idr
the initial and subsequent approýximationq (see, for example,
analysis 3.1).

4 1

As we know, the method of successive approximation always leads

to a search for the smallest eigenvalue integral equation i he
lowest frequency of natural vibrations) and the proper form of the
elastic line regardless of the originally assigned form function
for the elastic line. ,
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' For plottfng the donverting proce§s. -of succes'siye "approximation

whe, speeking the highest: values of -natural. frequencies and the

.correspondingg forms of elasti9 inhe,, -the condition of ,orthogonality

(3.39') is used. The formula for determining the-eigenfunc'tion

k(i+)) ift~e function i, -is :know±,, will have. the following

fqrm: ,I

*I (3 t.465

where w c(i+l) is an approximation for the square of the: frequency

of k--th order vibrations.

The' integral cperator is I

K01k.i=)(I,*. 14 CPIu 1 + C2U2+. -+CX(34'()S, " C ~u,: " (3 .47 )

Swhrd" KUi s the intbgral opprator correspondi.Ag to the function

Uk i for the ,i-th approximation (determined according to. the fo-.ula
3 ,(3.36)); ,

, u1 ; 02 u2 ... are the terms-whiclh remove the effect 'of the

component form functions, of the lowest orders which appear in the

process of successive approximation;

C l; ,C . ape the coEfficients of orthogonality.

For a mope detailed definition of natural frequencies and form

functions for higher ordqrs, see refeiencd 10]. 'This reference

also discusses the methodolog7 of vib'rationai analysis for a blade

With a band web taken into account. Let us note only that any

addition of weight t9 a vibrating systemi (to a blade or, any other ,

elas'tic~system) rejuces the natural frequency of vibrations1for

the system.

Ekample 3.1. ,Firfd the lowest frequency of natural vibrations

fdr a turbine blade yhose parameters are indicat4d in Table 3.1.

The length of the blad6 is I = 0.142 m; the naterial is KhN7OVNTYu

(E1617) alloy; p 8.4-10 3 kg/m 3. In the analysis we take into

1276S276
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account variation in the modulus of elasticity due to nonuniform

heating of the blade longitudinally. the values of F and I
are obtained from gas-dynamic analysis.Ir "(Z)

Fig. 3.25. Normalizing a function. 2,0 '--

1,6 /

0, - 0 ).8- -- •

0,8 / 0,4 R•w

0 0,2 01 o,6 g8 1,0 o

Fig. 3.26. The initial and
two subsequent approximations t7
of the first form of the 10--
elastic line of a vibrating
blade (example of U, -calculation). -

0,6- - -

97 0

41 O24-----------

For analysis the blade is divided into ten equal sections

(generally we can take any number of sections and they do not have

to be equal). As the zero approximation we take the elastic line

of a cantilever of' constant cross section (function wIO), which
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satisfies the bounaary conditions of the r oblem (this function is

already normalized).

Fig. 3.27. Integration of
the f(x) function by the
trapezoid method.

The analysis will use formula (3.25). Integration will be

performed according to the trapezoid method.'

Integration in lines (8) and (15) begins from the blade tip

since according to the boundary conditions when 1 = 1, the shearing

force is equal to zero. Integrat:!on in.lines (9) and (16) is also
performed from the blade tip (wh.2n i = 1 the bending moment is zero).
In lines (11), (18) and (12), (19) we integrate from the beginning

of reading (since when z - 0 the angle of pitch and the deflection
of the blade are equal to zero).

Both the zero and the subsequent approximations of function
uare drawn on the graph (Fig. 3.26).

The angular velocity of natural blade vibrations is determined
from formula (3.45), taking into account the remote factor:

'As we know, the formula of trapezoids has the following form
(if the number of points of division is equal to n) (see Fig. 3.27)

f (.) dx - Ax (fo +- fI + 2f2 +... + 2f -, + f J), where Ax=- .

2 n

The greater n the more accurate the formula.
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I -I S89. 10
,413(0.142)406

8 1,4.1o-• )107571.1

hence

(aci= 2860 rad/s

Blade Vibration frequency is

fc]= -- =456 vib/s2n

The effect of revolution on the natural
frequency of a blade

In practice the frequency of natural vibrations in a rotating

blade is determined according to the frequency of a nonrotating

blade with a correction for rotation.

As has already been mentioned in the stress analysis of a blade

in a 1votating blade under the action of centrifugal forces moment

appears which strives to straighten the bent blade during its vibra-

tion (see Fig. 3.20). This is equivalent to ztiffening a blade, due

to which the natural frequency of a rotating blade increases.

Particularly strong is the effect of centrifugal loifces on the

lowest natural frequency (corresponding to th-. 'Lrst jending form).

The effect on the other frequencies is less substantial. Therefore,

it is of interest to calculate this lowest natural. frequency with

the effect of centrifugal forces taken into account.

LA ad/cen (1)

Fig. 3.28. The dependence of
the natural frequency of a blade
on the angular velocity of we
rotc: rotation.
KEY: (1) rad/s.

0 Wm9x t pad/cem
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The angular velocity w Aof natural vibrations,, with rotation

taken intc account, is determi.ned from formula

A C w+Bw2  (3.48)

where w. is the angular velo,,viy of natural vibrations in a nonrotating
blade;

w is the angular velocity;

B is the coefficient allowing for the effect of centrifugal

forces on the natural frequency of a blade.

Coefficient B depends on the geometric dimensions of the blade

and can be determined from formula

F(ro+ z) dz dz'•

(3.4 9)

where F is the current cross-sectional Area of the blade.

Figure 3.28 shows the character of variation in w as a function

of the angular velocIty of the rotor.

The effect of blade heating on the frequency
of its natural vibrations

During turbine operation from the moment of starting up to the

steady run the gas temperature and blade temperature vary.

Due to the increase in blade temperature with a change in w

the modulus of elasticity for the material is reduced, which leads

to a reduction in the frequency of natural vibration, as shown in

Fig. 3.28 (dashes).

If the blade temperature for each mode is known then we can

account for the effect of heating from formula
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'A '

= 1 1

I It
O! =Q) )/7

•I ' (3.50)

"where Et is,the modulus of elasticity at the assigndd temperature;
t!

o c and E are the natural frequendy and the modulus of qlasticity

for a cold blade, respectively.

Forced vibrations of blades. Reson&nce.modes

During the work of a turbine gas flow moves along, the circulatory

part nonuniformly. This nonuniformity is caused 6~y a change in the
direction of the gas in the nonrectilinear circulatory section ahd
also by the effect of various racks, flanges,, guiding blades, and

other structural elements which are located in the circulatory part.

The nonuniformity of the flow which actuates the hlades is caused
by the partial admission of gas in turbines with velocity stages.

The nonuniformity of flow creates alternation in the gas forces

which load blades during their cperation.

Because of this, forced vibrations appear I-n the blade.

In the time of one revolution of the turbine wheel the fdrce

which acts on the blade will change-according to a certain law,
whereupon it can be presented as the sum of harmonic, components

(Fig. 3.29):

P(t)= Po + P, si: (,,, + ,) + P2 sin ((,)2t + •2) +
±-- "-Pk sin(WAt+6k)+." (3.51)-

where PO' Pl'''' Pk are the amplitude valaes of each' of the harmonic
components;

l, €2, ... , are the angles of phase shift for the correspon-2 k

ding harmonics.
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Each of the harmonics of the angular frequ ency. of forced
vibriations cd is a multipl6 of-'ngular v~elocity w of the rotor;
the. order of harmoniic k determines thicIýultiplicity:

I.

Wkk~kT~iC,(3.52)

where k is the'harmonic number; k = 1, 2, 3, ..

is the number of revolutions of týLe rotor per second.

c

Ii a

Forced ýribrations by themselves will be dangerous if the value
of tche exciting force is high, able1 to cause *ignif'icant amplitudes
of vibrations. However,lin practice, the so-called resonance modes

I a

will- be dangelrous.

As we knowfthe dondition ofresonance is the equality of

forced frequencies W, W Wk t o the frequeficies of natural vibrations

a W.~c. a(3-53)

In this 6ase, even small forces are capable if causing

I a

vsibnfiatos ampis ~tudes of-vbatosanda vleadngty of blae breakown.

h .7n a turbine a large nkdmber of different harmonics of excitation

can ocur.e However not all thetse harmonics will be dangerous from

.'be point of view of resonance. To vstlablish th', degree of danger'
for any harmonic a frequency (resonac~nce) df ýgrain M(P.. 3.30) has

* been plotted for each turbine stage. The dia~x'ain is a graph of the
lependence of th Ie frequencie's of free [detek:Aneci oy eq-t~tiori (3.418)]
and Ikcrced [see equation1 63-52)] vibrations of a blade on the angular
velocity or the nmnber ox' revolutions o per second.

I'I a I

In A iew.. of the difficulty of obtaining curves P = P(t) when

pflottinga frequency diagram k and a preliminary evalusation of the

I . 2811
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danger of any resonance, we must take into account that the amplitude

of the force P and its harmonic components rapidly increase with a

decrease in the number of revolutions. Therefore, of practical

interest is an examination of forced vibrations in a range of

revolutions n = (0.8-1.05)n
max*

0 to.4 padlceK (1)

74 ~0V' I-•j P~l ••czkm

IIII

(1)B eMR odI/(/.eo~oYopofloc

(3)
2 fep~a5?etpMoHUM e'

(213oovtzpa~otuxvjopoomoj9 wopajjr,?t (1 )

11KG ~ o pad/ci( (1)
Fge.39 a $7 eapmosi F0d

h n (6f) 2rt h

the Sixh hrmoic;(6)(we1)

Fig. 3.29. Decomposition of Fig. 3.30. Resonance diagram and
tedistributing gas force into resonance modes for the first two

harmonics. tones of blade vibrations.
KEY: (1) Time of one revolution; KEY: (1) rad/s; (2) Zone of

*(2) First harmonic; (3) Second working revolutions; (3) Stress.
harmonic; (4i) Fourth harmonic;
(5) Sixth harmonic; (6) Twelfth
harmonic.

With the action of harmonics of one force, the harmonics of

the lowest orders are more dangerous. For clarity, along with the

frequency diagram, we shall plot a graph showing the dependence of

stresses on angular velocity w during forced o2cillations of a blade.
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At each of the points of interse-tion by a ray of exciting forces

with the graph of natural frequencies resonance will occur. In

these modes "bursts" are observed, .i.e., sharp increase in amplitudes

and an increase in stresses.

An analysis of the frequency characteristic shows which harmonies

of forced vibrations will be dangerous and makes it possible to

soundly implement the design of a turbine node so as to avoid

dangerous resonance modes.

The following practical methods of combatting resonance modes

in blades exist.

1. Elimination of the dangerous exciter harmonics. This can

sometimes be done by a small structural alteration of the turbine

unit. Let us assume that dangerous harmonic k = 4 (based on the number

of racks). If we change the number of racis, increasing it, for

example, to 5, then the dangercus harmonic disappears.

2. To build the resonance frequency out of the blade, i.e.j to

change the inherent angular velocity w.c. This can be done by a

certain variation in the blade's dimensions, however, so as not to

disturb the gas-dynamic characteristics of the turbine and not to
make a basic alteration of the turbine stage. It is possible, for

example, to use hollow blades, to cut the angle of the blade foil

in the periphery near the trailing edge, to use blades with band

webs, to combine blades into groups by connectors or'to cast blades

with band webs in groups.

All these measures allow the redistribution of mass and the

rigidity of the blade foil and, consequently, a variation in wc'

3. The damping of blade vibrations. There are several methods

of damping vibrations in elastic systems based on energy dispersion

of a vibrating blade. This involves primarily damping in the blade

286



material (becaupe of the internal friction), mechanical damping in

the blade join' j. It is possible to damp blades by the installation

of two adjace:. blades into one slot on the disk. In this case,

damping is created by the friction of the vibrating blades about

the plane on the joint of two blades. The vibrations of long blades

can be damped by passing a wire through the opening in the blades

on a free fit. During the rotation of a blade bundle with wire

binding whe~re vibrations occur at the contact points, friction,

damping the vibrations, will arise. This method of connecting blades

by a wire will also increase the rigidity of the blades and wc

There is also the so-calied aerodynamic damping based on a

change in the aerodynamic force during a variation in the angle of

attack and the relative -flow velocity. Aerodynamic-damping is-

effectiVe only with long blades and small angles of attack.

Experimental checks of natural vibration frequencies have shown

a significant deviation in actual frequencits from the frequencies

obtained by calculation, Actual frequencies ,'ave been lower than

those calculated [23].

One of the reasons for this is the fact that the calculation of
natural frequencies in a blade is carried out without taking into

account deflection caused by the effect of tangent stresses from

shearing forces and also without accounting for the inertia of

rotation of blade sections during vibrations [see formula (3.25')

for blades of constant cross section].

Another practically important reason causing a reduction in

natural frequencies of a blade is the effect of the seal. In

analyzing blades, we have assumed that the seal was absolutely

rigid. In reality during blade vibrations, not only the blade foil

itself is deformed but also the neck attached in the disk. This

effect is particularly strong in short blades (blades are considered

short if 1/i < 30 where 1 is the length of the blade and i is the

j radius of inertia of the blade root).
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The actual frequency of natural bending vibrations of the first

tone for blades of constant cross section is

12 YcF"(3.54)

where

* fpac',I

f is the natural frequency of vibrations found experimentally;

f peC is the natural frequency of vibrations found by calcula-

tions without taking into account the effect of tangential stresses,

the inertia of sect, . rotation, and the seal.

288



! IS

Stress analysis of turbine disks

Turbine disks are the main• load-bearing components of the ro~tor

and enable the development of high circular velo~cties' (up to 300-

350 m/s). Turbine disks, just As rotor :blades, 'work under very

severe conditions. The following stresses appear in them:

- stress from the centrifugal forces of the disk itself as well

as from the centrifugal forces of the bladesfixed to the disk;

- assembly stresses (when a disk is fit tightly'to a shaft;;

- bending stress (from the axial forces df tht gas acting~on the

blades and from the centrifugAl fobrces otf the blades with the

unsymmetric location of their centers of gravity relative to the

middle plane of the disk); '-

- temperature stresses (duibing the uneven heating of the disk

along the radius and thickness);

- torsional stresses (from the torque on the, blaoes being

transferred by the disk to the shdft)'. , *

Furthermore, it'is necessary to cdnsider that the physical

properties of the disk. material deteriorate with a temperature

increase - E, a.' -aT decrease and the tendency toward plastic

flows increases. Thus, the materialiof theiturbine disk must

resist creep and fatigue well at elevated temperacures.

Bending stresses and torsion, as airule, are'considerably le•i

than the others and are z.ot usually consid.ered ih stress analysis

of disks.
K!

Disk analysis is a domplicated, statically undefinable problemn

I I S •

There are three forinslof stress analysis for disIs.

1. Determining stresses in a disk of known shapes (check

calculations).

2. Plotting the disk shapeý acbording to a given law of stress

distribution ("disks of cohstant strength").
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3. Deterriining th sa'fety factor of a disk based on destructive

revolutions.

We make the 'following assumptions in disk analysis:

- the di!- is tliin and i:ts thickness varies little as compared

OIith the diame 7; ,

- the dis Ls circulhr and Isymm6trieal relative to. its middle

plaAe; -

- external, loads (from blades on oute2ý diameter an.d, when disk

is pressed to shaft, on the edge of the internal opening) are

distributed .uniformly al6ng the thickness of th'e disk and along the

circumference;

- temperatures are distributed uiliformly allongithe thickness

and the circumference of the cisk, changing only along tie radius.
I

Theselassumptions qnable Vs to assule that in the disk under ,

the, action of centrifugal forces and from nonuniform heating there

arise normal stresses: padial and :circular, ie.,, the disk is I,

"locat~d in biaxial stress (ýohgitudinal stresses are absent). There

is a fully tel'ined relatipnship between these stresses, which is,

'caused by the possibility of elastic deformation of the disk at a

given point. ' , I
I j

Basic, for 4isk analysis are tLe equation of equilibrium for 1a
lrotdtiný disk, and the equation of stzain cqmpatibility, which make

it possible to detei'mine these!,stresses. ,
SS I

* Derivation of equations

Let us first examine a Pold (more accurately, uniformly. heated)

disk loaded by centrifdgal forces. To deriv~e the equatl.on of

eq'Alibrium let us' distinguish in the disk ah elementary volume and ,

examine ,the c6ndition of equilibrium of all forces acting on it

, (Fig. 3.31).

-I 290
- SI

S' 290

- ,



ih

Fig. 3.31. Disk element and forces acting on it during
rotation.

-In a radial direction three forces act on the element:

centrifugal force applied at the element's center of gravity,

dPc = dnro-2 =wo2r2hd?•,r;

the force applied to the internal surface of element (on radius r),

dP, = *,rhd--;

the force-- applied to the external surface of the element (on radius

r + dr),

dP;, = aP, + d (dP,) = -•rhd? + d (,rhdd?) =

,rhd? + d (:,rh) d?.

In a circular direction two forces dP = hdr act on the disk

element.

W'hile projecting all forces onto the vertical axis, we.obtain

dPc- dP- dPI- 2pIP sin d--0.
2
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(In view of the smallness of angle d@ we can assume 2

Let us substitute into this equality the value of all forces:

,t t'•rrh__._) 'jT1 +~l -0 ,2 •I .t rdr (3-55)

Equation (3.55) is called the equation of disk equilibrium. In

this equation there are two unknown quantities: stresses ar and OTp.

In order to determine them another equation is necessary, which can

be obtained from examining the strains of the disk element (Fig.

3.32).

Fig. 3.32. Disk element before S

and after strain.

We designate the disk element before strain a6er and after

strain a'6'a'r'. We also designate radial displacement on radius r

in terms of u. Then on radius r + dr the value of radial strain

will be u + du.

Relative radial strain is

a'6' - a6 dr+u+du-u-dr du(

a6 dr dr

Relative circular strain is

az -- az (r + u) df- rdy UqV
= --v -- =- , (3.57)

as rdy r
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or

Ug8,r. (3.58)

Let us differentiate equality (3.58) with respect to r!

du d d +---- (er)--=r-Tr• + e,.
dr dr dr

Substituting the obtained expression from (3.56), we arrive

at the condition of strain compatibility:

du d

6,==-r -
ordr dr

dr (3.59)

In order to introduce into equation (3.59) stresses ar and
,q, we shall use the dependence of strains on stresses within the
limits of elasticity for a biaxial stressed state (generalized
Hook's law):

I l
"" •- (3.60)

when U is the Poisson's coefficient.

The equation (3.60) is valid for cold or uniformly heated disks
(for the equation for nonuniform heating see below).

Substituting the relationship (3.60) into (3.59), we obtain
the condition of strain compatibility expressed through stresses:
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d• .d~t _ 1 ._._.• •t--%)"(3.61)
dr dr r

Thus, in order to determine the radial and circular stresses

in a disk we derived a system of two differential equations (3.55)

and (3.61)

System of equations (3.55) and (3.61) can be replaced by one

differential equation of the second order relative to displacement u.

For this we solve a system of equations (3.60) relative to or and

a with equalities (3.56) and (3.57) taken into account:

E (du u u dE u
"-+1 _ + 1 ; ' -- 'iht'rJ" (3.62)

1 2 dr r I'~ dr

If we substitute equalities (3.62) into (3.55) we obtain a

differential equation of the second order relative to u:

d12 t I dhh ldu .drdh I \ u Isu2--- -- ' = -- Cr, (3.63)dr dr r ]dr h dr .r r F

where

C--•w2. (3.64)

If we can obtain a solution to equation (3.63) relative to the

radial displacement of u for a disk of any shape (defined by function

h = h(r)), then stresses or and 1f are determined from expressions

(3.62).

Thus, stresses in a rotating disk can be obtained either
directly from equations (3.55) and (3.61) or from expressions (3.62)

after determining u from equation (3.63).
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From the theory of differential equations we know that the

solution to equation (3.63) for a disk of arbitrary shape can be

written in the form

t (r) +Bp (r) +CT3(r), (3.65)

where •l(r) and 92 (r) are particular solutions of a homogeneous

equation corresponding to equation (3.63) [i.e., equation (3.63)

without the right side];

q3 (r) is a particular sulutton to equation (3.63) (i.e., equation
I3

with the right side);

A and B are integration constants determined from the boundary

conditions.

Coefficient C is taken from expression (3.64).

A'= const

I •

a) (a I) (b)

Fig. 3.33. Shapes of the radial cross section of disks:
a - disk of constant thickness; b - hyperbolic disk;
c - conical disk.

However, equation (3.63) can be integrated in the elementary

functions only for certain particular cases, for example, for a disk

of constant thickness (h = const), for hyperbolic disks, and certain

others.
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For conical disks equation (3.63) is integrated in hypergeometric

functions (in the form of infinite converging series). Turbine disks

virtually always consist of separate sections with different shapes.
With sufficient accuracy, the separate sections of disks can be
reduced to shapes of the following types.

1. Disks of constant thicknesz (Fig. 3.33a) h = const.

2. Hyperbolic disks; the cross section of the disk is bounded
by hyperbolas of any order (Fig. 3.33b). The thickness of such a
disk changes according to the following law

a
(D-

where a is a constant; m is the exponent; D is the current diameter.

The values of coefficient a and exponent m can be determined
for a curvolinear disk shape from the condition that the curve

pass through any two points on the profile with known dimensions.
Thus, If DI, hl, and D2 , h2 are given, then

hi a a

hence, taking the logarithm of this expression, we find

M = ( h2 i a==h, (D, )m h

It is obvious that a disk of constant thickness can be considered a
particular case of hyperbolic disk when m = 0.
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3. Conical disks: the cross section of such a dilk is a

trapezoid (Fig. 3.33c). The thickness of the dusk varies according

to law *

I I
h --'ho -

d 
,

where d is the diameter of the "complete" cone;

) -ý,l (9D2--D,). !

I i'

As an example, Fig. 3.34 presents a schematic representation of,

a typical disk for a turbine rotor. The disk can be broken down:

into three sections: Section I is of constantithickness; zSection II

is conical; Section III is of constaht thickness.

Fig. 3.34. Schematic represen-
tation of the cross section of I,
a turbine disk. It

In similar disks consisting of several secftons, stresses are

determined separately in each section; during the transition from

section to section their coupling conditions are used.,

Let iv. ex,)1ntne the method of determining stresses in rotating

disks of arbitrary shape individually for each of three basic types:

constant tl.ickners, hyperbolic, a-ad conical.

Disks of constant thickness can be considered a particuldr case

of a hyperbolic disk (when in = 0); theretore, we shall notipause

especially on them.
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Hyperbolic disks. If the, thickness of. such a'disk h = a/(D/2)m
is. substituted int6 equation (3.63), the solution for u is obtained
in the form (3.65), whereupon, in tjhis case, particular solutions

* q1  q.•' and (3 are elementary functions..,

The equations for strcssbs or and a 9 can be obtained from
formulas (3.62) after' sibstituting ih them the solutions for u:

* I .

- p 4 A 'n -- + /Yc7 :. q.. (3.66)

where p and q are coefficients depending on the geometric dimensions
of the disk cross sectioh (including exponent m), on the characteristics
of the disk materidl (E; p; p), on th6 angular velocity of disk

i otation and the presentifunctions of the diameter (or radius), on
which stresses are bding defined;

A and B are the integration constants;

* 2

LDuring practical dnalyses of disks ccusisting 'of several sections,

the stresses ar and ,ao on the current diameter D are expressed in
terms of the khown strepses arl and a91 on the initial diameter DI.
Such formulas can be obtained from formulas (3.66) if we determine
the constailts A and B from the follow~ng conditions: when D = D

S I
t r = al'; 09 I o91, and then again substitute thert into formulas

) I (3.66). The results are written In the following form:

(3.67)

wherg a; a; a; 0r 9; OC are the coefficients which for hyperbolic
disks represent lengthy algebraic expressions.

29.
S I '
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These coefficients are conveniently determined according to

special nomograms depending upon the arguments x = D1 /D and

z = h/h 1 (see Fig. 3.33b).

We should note that coefficients aC and a have a linear dependence

on the density of disk material. Graphs for a and are pLotted

for steel disks. In analyzing disks of other material the coefficient

a C and C3, determined from the graphs, must be multiplied by the

ratio p/pCT where p is the density of the disk material and pCT

is the density of the steel.

Coefficient T in formulas (3.67) is equal to

T (Dn )21
-~106)

where D is the diameter on which stresses are determined, mm;

n is the disk rpm.

If n = 0, the third terms on the right side of formula (3.67)

disappear and we obtain expressions for stresses in a nonrotating

disk loaded on the boundaries by external forces.

Graphs for determining the coefficients a and $ for hyperbolic

disks are given in Figs. 3.35-3.40.

For disks of constant thickness (m = 0; z = 1) the graph of

coefficients a and 0 are given separately as a function of one

argument x = D1 /D (Fig. 3.41).

Conical disks. The equation (3.63) for conical disks is transformed

into a hypergeometric differential equation whose solution is given

in the form of infinite series and, for practical use, can be repre-

sented only in the form of a nomogram or numerical tables.
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The solution can be written in the form (3.66) or with transforma-

tion it can be similar for hyperbolic disks, in the form of (3.67)':

I=a,•,. + CY- +a rd;
J + + (3.67")

Coefficients a and 0, as for hyperbolic disks, depend on the geometric

form, the disk material, and diameters D and D.. Numerical values

of the coefficients are given in the form of nomograms where they

are determined as a function of two arguments:

t= DIand t- (see Fig. 3.33c).
d d

Graphs for determining coefficients a and 0 for conical disks are

illustrated in Figs. 3.42-3.47. If the disks are not made of steel,

coefficients a and B1, as for hyperbolic disks, must be multiplied

by the ratio p/p CT In formulas (3.67') Td = (dn/106 )2, where

d is the diameter of the complete cone in mm.

In analyzing disks of hyperbolic and conic shapes we must assume

that in the center of a disk without openings up to a certain

diameter D < Da the thickness of the disk is constant (which usually

is the case). Coefficients a and 0 for hyperbolic and conic disks

are given for the arguments x = (D 1 )/(D) > 0.01 and t1 = (D1 )/(d) >

0.01.

Boundary conditions

For disk analysis differential equations of the second order

were obtained. Therefore, in order to compute stresses we must

have at least two boundary conditions.
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Let us examine two cases: a disk without a central opening (solid

disk) and a disk with a central opening.

Solid disk. 1. The first boundary condition will be the equality

of the radial and circular stresses in the center of the disk because

of the symmetry of the load, i.e., when r = 0 Or0 = a•0.

2. The second boundary condition will be that stress !s known

on the outer radius of the disk, i.e., when r = Ra:

a) ars = 0 if the disk does not have a blade and is loaded

only with forces of inertia of the mass itself;

b) ar = arj if on the crown of the disk blades are attached.

Uniformly distributed load from centrifugal forces of blades arn

acting on the cylindrical surface on radius Re (Fig. 3.48) can be

determined from formula

,_____ P+ 2Tr F1.,32 + 2tQ4P2u20

1f A R 2.rR=h, (3.68)

where aK is the stress in the blade root from centrifugal forces;

FK is the area of the blade root cross section;
z is the number of blades;

F2 is the cross-sectional area of the disk crown joint in a
plane passing through the axis of rotation;

4 F1 is the cross-sectional area of the transitional part of the

blade from the foil to the joint also in a plane passing through the
axis of rotation;

r' and r 2 are the radii of the centers of gravity of areas F1
and '2, respectively.
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Fig. 3.48. Determining the Fig. 3.119. Boundary conditions
intensity of .centrifugal forces for a disk with a central opening.
on the outer radius.

If the blades are made together with the disk or are soldered

(welded), the last two terms and expression (3.68) will, be absent

and radius R8 can be taken as the radius of the blade root. The load

from the blades is applied cdnditiona]ly to the cyllndridal surface

on a radius corresponding to the point of intersection of the middle

plane of the disk with the internal loop of the circulatory part.

A disk with a central opening (Fig. 3.119). 1. The first

boundary condition when r = Ra:

a) 0 ra = 0 if the disk has a free opening;

b) ara -p if the disk is fitted to the shaft with tension.

External load p is taken with a minus sign since it causes

compressive stresses at the spot where the disk is fitted.

2. The second boundary condition, as in a disk with a central

opening, when r = R

315I'
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a) arB 0 if the disk does not bear a load on the external radius;
b) are = ar .if blades are attached on the disk crown.

Allowing for nonuniform disk heating
(determining thermal stresses)

In turbine operation heat flux is propagated from blades through

the joints to the disk, and in the disk from the crown to the hub.

Thus, disk temperature rises along the radius from the center to the
crown. Due to this, thermal stresses appear in the disk, which

can be of the same order of magnitude as the stresses from centrifugal

forces, and they must be taken into account.

Thermal stresses can be determined separately for nonrotating
disks and then algebraically added with the stresses from centrifugal

forces.

In order to avoid high thermal stresses, the disk material must

have the smallest possible coefficient of linear expansion (thermal
strain will be less) and considerable heat conductivity (temperature

gradient along the disk radius will be less). The disk material

must have the appropriate mechanical properties with allowance for

their reduction at high temperatures.

In our analysis we shall assume that the temperature in the

disk changes only along the radius (on a given radius we shall assume

the temperature is constant throughout the -hickness).

The modulus of elasticity E and the coefficient of linear

expansion a will be considered constant within each of the sections

in which the disk is divided during analysis.

The equation of equilibrium for a nonrotating disk is obtained
2from equation (3.55) if we assume C = pw = 0:

d (,rzh)
dr "(3.69)
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The generalized Hook's law (for elastic streqgth) with allowance

for thermal deformation will have the form

-,=_-(z,-TV;) - .-a; =--, J,)--,+ (3.70)
BI

where a is the coefficient of linear expansion for thb disk materi4l;

t is the temperature.

On the other hand, according to equalities (3.56) and (3,57)

relative strains er = du/dr; eý = ./r. Allowing for this, we shall

express in formulas (3.70) "stresses ar and a in terms pf displacement

of u [analogously to formulas (3.62)]:

1- - d -r 1
E + "

pr2 (3.71)

The substitution of'these expressigns into the equatio)n nf

equilibrium (3.69) gives a differenbial'equation of'the second prder

*• relative to the radial displacement of u (analogously to equatiosa

(3.63):

d2u II-+.. ud~

•+ ,

dr2  \h dr r dr h dr. r r

'1k1 Ldr' + d7 (3.72)

Equation (3.72) differs from equation (3.63) only in the right'side.

Consequently, its solution will be .similar'to (3.65):

Su A(?'(r)+ 8(?" '(r)-f-fO, r). (3.73) ,

3i
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I ,

Substituting this solution into equation (3.71), we can find

ar and oa.

I!n order to determine thermal dtresses the disk is divided into

•septions with simple shape. Analysis is carried out through the
known stresses ar. and 19 on initial diameteV,D1 from formula

similar to formulas (3.67) and (3.67'):

*II

-, U,,J ' "ai 4- a LL +at (a)cpAt; }
S, - i " .(3.74).

I ~ I

Here coefficients a rs a; ior' and O• are the same as in forniulas

(3.67) and (3,67') ana are determined:from the corresponding

nomograms for disks of th'e thI.ee dbove types ('constant thickness,

hyperbolic, and conicai).
I !

Cdeffibients t and.ot are determined from nomograms as a

function of arguments: x = (D 1 )/(D) and z = (h)/(h 1) fr hyperbolic
*disks (Figs. 3.50,' 3,51) and t1  (D1/(d> and t = (D)/(d) for

conical disks (Figs. 3.52, 3.53). For disks of constant thickness

coefficients and 0, are determined from nomograms for hyperbolic

disks (when z : 1). I

* I

In order to calcul~te thermal stresses it is necessary to

assign the law of temperature variation along the radius (graphicdlly

or anAlytically)., In the rough calculations the la•i of temperature

variation along the radius can be expiessed bydependence

(3.75)

where to and ta are the temperatures in thle center and 6n the outer

radius Ra of'the disk;

r is the current radius; ,

* imI is the exponent. mI = 2-3.
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Fig. 3.50. Nomogram for determining coefficient in
designing hyperbolic disks.
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Fig. 3.51. Nomogram for determining coefficient
in desigrning hyperbolic disks,

The values of E and ca are taken as average on a given section

of the disk or corresponding to the averaged temperature on the

given section.

Boundary conditions

Disk without a central opening:
a) when r -- 0 r0

b) when r = R = 0 (since the disk is ntrttn)

A disk with a central opening:

a) when r= Ra ra =O0orara= -p;

b) when r = Rs ar = 0 (since the disk is not rotating).
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Fig. 3.53. Nomogram for determining coefficient in designing
conical disks.
KEY: (1) Note: diameter of full cone.
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Determining stresses with sharp variation
in disk thickness

In a number of cases the thickness of the disks changes sharply

with a small change in the radius (transition fr'om the strip of the
disk to the hub or the crown). Let us find the ratio of stresses

or and a at the site of the abrupt variation in thickness (Fig. 3.54).

Let the stresses be equal to ar1 and a0l on the diameter D1 for
the part of the disk with thickness hI. Average temperature of this

part of the disk is tlcp andjcorresponding to this temperature, the

modulus of elasticity and the coefficient of linear expansion are
E and acp. Accordingly, for a disk with thickness h* on this
same l~' th 1vrg eprtr

same diameter the stresses will be Oal and a* , the average temperature
of the section of the disk with a diameter greater than D1 will be

tcp, and the modulus of elasticity and coefficient of linear
expansion will be E* and a*c

lcp lc p

From the condition of the equality of radial internal forces
on diameter D1 we obtain

hence

r I " (3.76)

Fig. 3.54. Determining
stresses in a disk with an abrupt
change in thickness.

h3
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The expression for a* is obtained from the condition of

equality of radial displacements of u on diameter D1 for both
sections of the disk; according to formulas (3.57) and (3.70)

r

on the basis of these formulas we can write

tl( _l r, _

r! (+ajptjcý l .3cp

Hence we find, allowing for equality (3.76),

-B' Pt (3.77)
\hF -P:, Ei, ICP

where

,j (at\c ajcxiqtjcP - jptc.

For a cold or uniformly heated disk formula (3.77) assumes the form

-, 2  I,/hi 1)
"\-1  -. "(3.77')

Methods of calculating stresses in a disk

Method of two analyses

Stresses for a disk of arbitrary shape can be computed [see

s, stem of equations (3.62)] according to formulas obtained for the

"appropriate section shape. For each section we have two boundary

conditions: On the internal and external radii of the disk section

and the adjoint conditions at the junction site of the two

neighboring sections. In view of the fact that it can be very

[• 324



difficult to solve the systems of equations necessary for determining

the arbitrary constants by this method, the stresses in the disk

will be calculated by the method of two analyses.'

In the first analysis stresses in a rotating disk~are calculated.

Calculation can follow two paths - from the inner radius to the

outer (from bushing 4,o crown) or the reverse. Let us consider the

first path.

If the disk is solid (without, a central hole), then they are

assigned arbitrarily by the stress in the ýenterl of the disk. !

According to the first boundary condition a' = a (one prme

means that the stresses belong to the first analysis).

If the disk has a central opeping, then they are assigned

arbitrarily by the circular stress on the edge of the' opqning, i.e.,

(7a. The radial stress from the edge of the opening is know6i from

the bovndary conditions.

With the aid of formulas (3.67), (3.67'j, (3.76), and (13.77),
stresses in a disk up to the stresses on its outer radius

art' and al, are determined successfullyiaccording-to sections.

Obviously, stresses on the outer radius will not satisfy the second

boundary condition, i.e., a' r a a since stresses in the

center of the disk (or on the edge of the opening) will be arbitrary.

The second analysis is performed for a nonrotating disk (n!K 0).

Similarly to the first anallsis they are assigned aibitrarily by the

stresses in the center of the disk G" = a o a for a 'disk wit4r0 T•O {o " o a•skwt

an opening). Since n = 0, the last terms in equa.tions (3.67) and

(3.67') will be equal to zero (two primes indicate that the stresses

belong to the second analysis).

In this analysis stresses on the boundaries of all sections up

to the outer radius of the disk are determined. The obtained stresses

and all will also not satisfy the second bouhdary condition.
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, The'actual stresses on the boundaries of all sections can be

found from f6rmulas

* , + ; = k(3.78)

* The. constant coefficient k in formula (3.78) is determined from the

conditions that radial stress a re = arn on the outer diameter is

known (second boundary condition). Actually, radial stress

lnequali1Aes'(3,78), correspondipg to the external radius of the disk,

is

=r,,t.,•= + ks;,

hence: i

of I

@t.I (3.79)

After determining coefficient k from formulas ý(3.78) we find

the actual stresses on the boundaries of all sections.

The method of twol analyses is based on the property of linear

differential Iequations according to'which after adding to the

solution of a'nonhomogeneous equation any solution to a corresponding

hbmogeneous equatj5n kor a quantity which is a multiple of this

solution), we obtain the new solution td the nonhomogeneous equation.

In order tb determine stresses in a disk by the method of two

analyses, it is advisable to use a table (see example 3.2).

To determine thermal stresses the disk is'analyzed according to

the method of two analyses Just as in the determination of stresses

froin.centrifugal forpes. However, in the second analysis we should

assume the particular solution to the equation (3.72) is equal to zero.
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In practice this indicates that At in equations (3.74) will be zerL

In the second analysis, if the thickness of the disk changes abruptly,

stresses at the transition spot should be calculated from formulas

(3.76) and (3.77). To determine stresses only from centrifugal forces

at the site of the abrupt thickness change, instead of formula (3.77),

we should use formula (3.77').

Total stresses are found as the algebraic sum of stresses from

centrifugal forces and from nonuniform heating on the boundaries of

each section.

The stressed state of a disk is evaluated from the equivalent

stresses a 3KB* According to the third strength theory (the theory of

the highest deformation energy), equivalent stress is defined as the

criterion for the beginning of viscosity. For the biaxial stressed

state

? (3.80)

Example 3.2. Determined stresses in a -disk of 4Khl2N8G8MFB

,(EI481) steel. Dimensions of the disk are given in Tabla 3.2.
4 3

Given: n = 11,200 r/min (w = 1,170 rad/s); p = 7.87'103 kg/m3

ra r= 1,400 daN/cm 2; v = 0.3.

The disk is broken down into four sections. Using •,igures

3.41-3.47, 3.50, 3.51, we find coefficients a and $ and enter them

in Table 3.2. We determine the values of T and Td.

The temperature of the disk is taken from Fig. 3.55 and we

find its average value for each section. The values of E and a

correspond to the average temperatures in each section.
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Analysis of the disk using the two calculation method is

presented in Table 3.3. In the first calculatior stresses in the center

of the disk are given as a ' = 2000 daN/cm2 and in the second

calculation rOl = Ot= 100 daN/cm . Figure 3.55 gives graphs

showing the variation in stresses or and a9 along the radius of

the disk.

4 4 250 400 550 t0C

4 (6 1fc

2 2N

I/ I I

-4000 -36000-2000-1000 0 WOO0 ?000 JO000 4000
6daHicM2 (1)

Fig. 3.55. Shape of turbine disk, stresses and temperature
distribution in it along the radius (example of calculation).

KEY: (1) daN/cm2 .

Stress analysis of disks by the integral
method

The earlier examined method of analyzing disks is the most

accurate. However, nomograms for determining coefficients a and

0 are plotted only for one value of the Poisson coefficient u = 0.3

while its value in the temperature range of the turbine disk can

vary from 0.3 to 0.11 (maximum possible value of the Potsson coefficient

with plastic flow is umax = 0.5).

Although the effect of p on the value of stresses is not very

great, nevertheless sometimes it is necessary to calculate for the

values of P X 0.3, for example, when analyzing a disk with allowance

for plastic flows (see below).
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Widely used methods are those based on the solution of integral

equations of equilibrium and strain compatibility. Let us examine

one of these methods developed by R. S. Kanasochvili [17].

Boundary conditions for disks are assumed the same, i.e., when

r = Re = arn; when r = 0 (disks without a central opening)

arO =O0, when r = Ra (disk with a central opening) 0ra 0 (opening

is free of load) or a -P (disk is fit into shaft with tension).
ra

Using equality

d (3,hrdip) d (ao,h) rd•-q- g;,hjrd•p.

we shall transform the equation of equilibrium (3.55):

r_ d (a.( k,)+ err- 5T + Qwr•-- 0. (3.81)
h dr

For the equation (3.81) relative to ar with boundary conditions

taken into account we obtain the equation of equilibrium in the

form

r

•'-"T r (3.82)
Ra ~ RaI

The equation of strain compatibility is obtained in the follow-

ing manner. Let us examine the sum pc, + r . Allowing for

equalities (3.56) and (3.58),

d

Substituting the value of eT from equalities (3.70), we obtain

S L(a•-•7r'+BEf) +t + ( 'FEI_ __ _ )__

E 'dr
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On the other hand, substituting the values of c r and c. from

equalities (3.70), we obtain

r E E

Thus

!.L(%--, + Eat) , d r(16- r + Eao (I -- ) )[(I --±) +,.+ Eat)

dr E E

Let us multiply all terms of the obtained expression by rv:

E'+ Eat\
dir \E

1 + r•~l ,•),-Eat],
E

or

Sd •" rl+' s, t pl- '[j :,+a1O

atr + Eat]=O

Integrating this expression, we obtain
F F

Ra Ra

or

Ea Et

0 :L i-'9(tl0 (3.83)

Ra
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Solving the last equation relative to oG, we obtain .the

equation of strain compatibility

ir

r-atdr+A r1+A
Ra (3.84)

Here

(I, a 1 +E (3.85)

From a system of two integral equations (3.82) and ( 3 .84) stresses

ar and aT are determined by the method of successive approximations.

Let us show the procedure for these calculations.

To determine the first approximation of ar we assume in equation
(3.84) (ar)/(E) = const. Then thie equation (3.811) is easily
integrated and becomes

ri•• Orat*r - - al -L B E
r Srl+;& t (3.86)
Ra

where B is the new integration constant.

After we substitute from equation (3.86) the approximate value
of difference (a, - ar) into the equation of equilibrium (3.82),

we find the first approximation for a.:

1 (0 +P) E rkatdr- Eat h] dr-- O rhdr-+

SRar
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-B - dr +ha•,r 2S Ir

.1 r(3.87)

For a disk with a central opening ara is known. Constant B

is determined from the known load on the outer loop (when r = RB

a rB a Orn).

For a solid disk, in order not to pass to the limit when r = 0,

we assume that up to a certain small value of r = Ra the equality

ara = aqa is preserved (usually, in this case, we assume Ra = O.1Rs).

Then from equation (3.86) we obtain

'B=Ra, a•a- (3.88)

In equation (3.86) there remains one unknown quantity ara, which

is determined from the known load on the outer loop.

Usually no less than two approximations are made for ar in order

to assure the accuracy of the obtained results, especially as the

determination of ar2 does not require a large amount of computation.

Without making the first approximation of (Pl, we immediately

determine ar2' From equality (3.84) we find the difference

(a•I - arl) after the substitution into this equality of the value

of arl:

0] +,)EI
%i -- ,i = rl+,• r~aidr -- cit -- 1 - ) , -

RaP

•(l-Pl)-I r•'"dr-m-A

. r " (3.89)
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Substituting the difference (awl - a)rl into equation (3.82), we

obtain the second approximation for ar:

a L1 +1)d rcatdr-Eal hQtl Qw2 rhidr

h r dr ' "E

r-) rs dr-- (I -- #)z, -, L r r--LazrA 'E

Sfr~I~ * E r r2+IL
L Ra (3.90)

The constant A for a disk with an opening is determined from the

equation (3.90) with a known load on the outer loop. For a disk

with a central opening when r = R a = a and according to

formuLa (3.85)

A ==--• IA1--PY):,a+4-Eaaota].(3)
(3.91)

Substituting this value of A into equation (3.90), we determine

ara and then all the other values of ar2' After determining ar2
(and if this approximation is sufficient) we find the values of
a92 from equation (3.89):

,;2 -- E,.- (& - r•u dr -- E- a -- I " .) -
R a ,

I rl E r+ " (3.92)
Ra

For a solid disk the determination of aP2 should begin with
r = R and instead of the constant A, we. should substitute its value from

formula (3.91).
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For greater accuracy in determining Oa2 the values or a r2

should also be substituted instead of arl in all terms df equation

(3.92). However, while only slightly affecting the result, this

somewhat increases the computational work and Is expedient only in

exceptional cases when Cr2 differs considerably from arl'

Total stresses are determined from the cited equations. IJf

we must calculate the stresses only from forces of inertia (the disk

is cold or uniformly heated,, then all terms containing t and E

disappear. In determining thermal stresses we should assume w = 0.

Stresses in disks of constant thickness:

Disks of constant thickness are ubed in some designs ih spite i

of the loss in weight as compared with disks of conical and hyperbolic

shapes with identical safety factors.

The differential stress equations for disks of constant thickness

can be solved completely for the given disk parameters (dimensions,

material, temperature radial distribution, and boundary conditi.ns).

It is simplest to analyze the effect of individual factors on stress

using an example of such disks.

Figures 3.56 and 3.57 present graphs showing the distribution of

radial and circular stresses along the radius of a disk ,of constant

thickness: a) rotating, uniformly heated without a loop load (Fig.

3.56); b) nonrotating, but nonunifQrmly heated (Fig. 3.57).,

An analysis of the curves (see Fig. 3.56) leads tl the following

conclusions:

- circular btresses uq ave always greater than radial stresses
a r;

j - in a disk having an opening of "zero" radius (puncture),

stresses a9 double while stresses ar reduce to zero. In this case,

a 3K is twice as long as it is for a disk without an opening.

Hence the conclusion concerning the more rational shape, of a disk

without an opening.
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When r a ÷ 1 radial stresses approach zero while circular stresses

approach maximum.

In examining thermal stresses (see Fig. 3.57) we can make the

following conclusions.

- Thermal stresses are due to nonuniform heating of the disk.

With uniform heating there will be .no thermal stresses.

- Thermal stresses substantially distort the pattern of stresses

obtained only from the rotation of the disk, particularly the pattern

of stresses aq. On tne periphery of the disk with the examined

character of temperature variation negative (compressive) stresses

appear.

We should note that the strength of the disk will be different

depending upon whether it is heated or not, even if in the heated

disk there is no temperature gradient. If the degree of heating

determines the strength of the disk material, nonuniform heating

determines its thermal stresses.

Analyzing disk with allowance for plastic
flow

An attempt to obtain higher criteria for a turbine and reduce

its weight has lead to an increase in the angular velocit!.es of

rotors and stresses in the disk up to their operation in the elastic-

plastic region. In individual sections of the disk stresses reach

the yield point aT. Meanwhile, Lther less loaded sections are

loaded with additional forces. All this leads to a redistribution

of stresses in the disk and is particularly apparent at high tempera-

tures, since with an increase in temperature the yield point drops

continuously.

We should mention one more effect connected with plastic flow.

As a consequence of the plastic flow of material under elevated

temperatures, a continuous decrease in thermal stresses (stress

341



iJ

relaxation) occurs and with steady creep the thermal stresses

completely disappear.

Let us examine one of the methods of analyzing disks with

allowance for plasticity - the method of variable elasticity para-

meters [7].

Figure 3.58 is a tensile strain diagram. Below the stress

equal to yield point (point a) for most metals there is a linear

dependence between stress a and relative strain c

(3.93)

where E = tg a is the modulus of elasticity of the first kind.

Beyond the yield point (point b) where plastic flow occurs,

stresses can be written by analogy in the form

a e (3.9941)

where D = tgo is the modulus of plasticity.

The principal difference between relationships (3.93) and (3.94)

lies in the fact that the modulus cf elasticity E remains the same

for all points of an elastic body and does not depend on the amount

of strain. The value, however, of the modulus of plasticity D

depends on the degree of deformation and, therefore, is differ,,nt

at each point of the zone of the o-c diagram, where plastic flow

occurs.

In the general case of the three-dimensional stress in an

elastic body the following dependence also occurs, analogous to

(3.93):

-.(3.95)
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Fig- ,3.58. Strain diagram
for steel.

ice

0

In this formula

¢if En•z-)2 + (E2- e3)2 +(!1-'z• (3.97)
(33

where ai is the generalized intensity of stresses;

Ci is the s'train intensity;

ai, 02, 03 are the principal stresses;

el' £2, e3 are the principal, relative elongations.

As shown, for the case of plastic flow with any three-dimensional
stress a dependence similar to (3..94) occurs:

* =(3.98)

where D ýs the modulus of plasticity as in formula (3.94).

The relationship (3.98) also occurs in the case of simple stress.

This makes~it possible when analyzing any three-dimensional stress

(elastic or elastic-plastic), to use the a-c diagrams obtained
during tensile tests.
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In the examired theory during plastic flow the material is

assumed incompressible; hence it follows that the Poisson coefficient

P = 0.3 and P = 0.5. Therefore, the dependence of the strain

components on the stress components for a biaxial stressed state

of a disk [see formula (3.70)] can be written in the form

-. --- (,-...M O,.5)+ at; 00.. (3-99'

Research has established that stresses in an elasti2 disk when

= 0.3 and )j = 0.5 are virtually identical. Consequently, when
analyzing disks we can use formulas (3.,3) for strains both in plastic
and in elastic regions and, therefore, equations of equilibrium
and strain compatibility are also real for disks which have regions
of plastic flow.

Thus', an analogy has been established between the main equation
necessary for analyzing disks in elastic and elastic-plastic
regions. The principal difference is that when analyzing an elastic
-disk the modulus of elasticity E is known on each radius of the disk

2 and depends only on temperature while the modulus D depends, in
addition, on the value of strain on a given radius, which is not
known beforehand.

Elastic-plastic flow should be analyzed by the method of
successive approximations. For analysis we must have strain curves
similar to the curves in Fig. 3.59 for a given disk material.

(1)

Fig. 3.59. Strain diagram for d 200 C 300I
23Kh2NVFA (Ei-659) steel. 500

KEY: (1) daN/m 2 . So

50___600

2- - 700
800oC

0 o005 ,010 ,015 0020 e
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I j

Fig. 3.60. Plotting of
successive approximations
(disk analysis wi.th allowance
for plastic flow). .. *

I •C,

- *

We shall divide a disk into sections and calculate thepe strpsses,

assuming that the disk operates entirely in the elasticregion

(N = 0.5). The stresses obtained are used for the zero approximation'.
4J

Based on the values of or and a• on the middle'radius of eath'

section, ai is calculated. F6r disks the stress intensity is
computed from a formula obtained from'fornsula (3.96-) with

01 CT r; a2 a T; 03 0 [see formula (3:80)]:'

= ' I

'As the zero approximation we can also use str'esses coi~respon--
ding to thý? elastic state of the disk, calculatyd when pi = 0.3.1
However, the calculation of the first and following approx.inmations
is performed with pi 0.5.
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Let, us p w

I I ! •

Let, us proceed with the successive approximations. Let oifor'

"any,section of the disk correspond .to point ao, which lies on an
extension of" the initial linear segment of'the strain diagram

(Fig. 3.60)t Strain cO corresponding to point a0 satisfies'stress

S dOwhiah i' characterized by point do. , If we draw- ry Odo, then

D= tgo1  (adO)/(•O)' *

Similar calculations are performed for each s'ection of the

""disk. The values of Dl obtained ar§ used for the new values of the
modhlus of elasticity on each section.!

After this we perform a new analysýs of the disk as'elastic
(with modulusof elasdicity DI). 'As a result, we obtain stresses

ar and aq, in the first approximation. According to them we calculate

the values, of oi for thq average radius of each secti6n. Let these

stresses in, the examined section satisfy pointal, lying on the

extension of ray Ode. 2ssed on strain cl and stress aCd, corresponding

to point di we determine the . i ;alue of the modulus 'of plasticity,

for a! given'sectioni:I I I,

A 2 t9P2,= Od1S l * ,

Based on th,. values thus obtained for each section, wp analyze

the disk as elastic ih the second approximation, etc.

The process of successive approximations for the examined

section is illustrated by the line a0 ; a1 ; a 2 ;, ... ;,a. The

intergection point a of this linewith the strain diagram corresponds to
stress Ca aqd deformation a which occur in the middle of a given'

seci a a 1

section of an elas~tic-plastid dik.,
1 I

* The curves illustrating the prooess of successive approxiTations

for two sections differ in foim from the curive ao; a,; a 2 ; ... ; a;

even the; very curve corresponding t9 the, averaged temperature of
this section will be different.
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It should be noted that if stresses do not exceed the yield

point, this process is illustrated by a set of points c 0 '; Cl; c 2 ;

... , c, lying on the linear section of the strain diagram.

Usually, two or three approximations are sufficient for

analysis. After the results converge, radial elongations in the

disk on radius r a can be found from formula

E ( 3.i00)

After all the calculations we can find the boundary between the

elastic and plastic regions of the disk.

Stress anazM3sis of disks based on breaking revolutions

The reliability of the studied disk is determined by comparing

the stresses arising in it with the stresses at which the disk

breaks, i.e., the safety factor is evaluated:

I

Ca. max Ipa6 max

where at is the stress-rupture strength of the material withB,t

allowance for its operating temperature and operating time under

load;

W is the angular velocity of the disk at which breaking

stresses at arise in all sections;

Wpa6 max is the maximum angular velocity of the disk.

If n < 1 on a certain section Ar, this still does not mean

that the disk is broken since plastic flow occurs only in this

section, while in the remaining (elastic) part of the disk the

stresses are redistributed, increasing over those calculated.
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Rupture sets in only when plastic flow is propagated in the entire
diametric cross section of the disk. This is also the basis for

analyzing disks based on breaking revolutions.

Thus, the safety factor of the disk can be evaluated not
according to the stress-rupture strength at but according to

B ,T
the yield point CT:

0 39N max 16pa nmax

where wT is the velocity of disk rotation at which stresses

9orresponding to yield point occur in all sections.

Analysis is formed on the assumption that with the breaking
number of revolutions (or the corresponding anoular velocity w T)

centrifugal force of half the disk PC and the loop load P(ar)
are equalized by internal forces P(a T) acting in the diametric
cross section (Fig. 3.61). This condition can be written in the
form of a sum of the projections of all forces onto the vertical

axis:

P O r ) (, T + P e w T= -P O O, . ( 3 . 1o 1)

The subscript w T indicates that the condition is written for
angular velocity wT when the disk breaks.

Let us find the values of components in equality (3.101) (see

Fig. 3.61):

P (Or .) 2 f Rad?hI.•r (Or) cos ? = •:,j (w.)R 3Ii.
0

where

f Cos ?(I?-=.
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We are interested only in the vertical component. Therefore,

let us introduce the factor cos (:

Rn 912
pew --=2 "1" rdidrhl!rwcosy.,=2tu, hr2dr,

P (7,0)=2• adr.

Substituting the obtained expression intp eauation (3.101) and with

allowance for expression r,(Wr)-=Or.(O) (T 2 , we obtain

32r, (w) Rahn + 2 .w" hr2dr =--2 Saadr,

where w is the calculated angular velocity of the disk (usually

corresponds to the maximum number of turbine revolutions).

dp"
I IIdyL

Fig. 3.61. Stress analysis of a disk based on breaking
revolutions.

Hence we find the safety factor based on breaking revolutions:
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£@1hdr

.1 (o) hr r(3.102)

Usually, nr 1.2-1.5 and the safety factor is n .1.-1.8.

IAn
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Analysis of critical shaft speed

With the use of turbines of rapidly revolving shafts a

phenomenonf called "critical rpm" was detected.

It was noticed that during the slow rotation of a rotor no
noticeable vibrations are observed. The rotor rotates smoothly.

With the achievement of a certain number of revolutions the rotor
begins, without visible cause, to vibrate sharply, which can lead

to the breakdown of a clearly strong shaft. With a further increase

in revolutions the rotor again begins to rotate quietly.

The rpm at whic" a shaft loses stability and begins to vibrate

is called critical.

Stress analysis of shafts is studied in courses on the strength
of materials and machine parts. Therefore, in this section we shall

examine only the questions of transient stability of shafts.

Let us consider a shaft arranged vertically (for the elimination
of the effect of its weight) in the middle cross section of which

is attached a disk with mass m. Let us assume that the mass of the

shaft is low as compared with the mass of the disk; however, the

shaft possesses elastic properties. Let us also assume that the
center of gravity of the disk c is displaced relative to the

geometric center 01 by quantity e (Fig. 3.62). We further assume that
supports allowing the shaft to rotate freely are absolutely rigid.

When the rotor only begins to rotate and the elastic axis of
the shaft is still a straight line (Fig. 3.62a), then, as a result
of the displacement of the disk's c¢nter of gravity with respect

to the axis of rotation, there appears centrifugal force mew 2 .

Under the effect of this force the shaft begins to be deflected,
which, in turn, leads to an increase in the centrifugal force

2
(Fig. 3.62b): PC m(y + eOw
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Since the shaft is elastic, then, as deflection increases, force

P of internal strength (the elastic force), counteracting theY
centrifugal force of the disk, will also increase. Assuming the

deflections are small, we can consider that the elastic force

will be proPortional to the shaft deflection: Py = Cy (C is the

proportionality factor; y is the shaft deflection at the disk

attachment point).

The physical meaning of coefficient C has been explained in

the following example. It is known that the deflection of a beam

under the effect of force P, applied in the middle between

supports, is

P13

hence

P 49EI
y I

Thus, the quantity C is a force which causes a unit deflection

of the beam in the direction of its action. This quantity is called

the stiffness coefficient; its dimensionality is

unit force
[C] = unit length

At each given moment the centrifugal force of the disk and the

A internal forces of elasticity must compensate each other, i.e.,

m (y+e)W2=Cy.
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From this equality we find the expression for the def]edtion of a

shaft:

SM4 (3.'103)

in,

0

Y0 X

I I

I LI) (A

(b)

Fig. 3.62. A shaft with an Fig. 3.63. Deflection of a shaft

nbae d.62 .Ashatwwith an unbalanced aisk versus'

the angular velocity of 'its

rotation. .
Designation: 'K ritical

Figure 3.63 presents the dependence of naft deflection on

the speed of its rotation. On the graph it is apparent that when

the shaft is not rotating, the centrifugal force of the disk is

equal to zero and shaft deflection is zero. With an increase in

angular velocity the shaft deflection also begins totindrease. At

a certain angular velocity the deflection becomes infinite. Let

us find this value of angular velocity. From equation (3.105) it

is apparent that deflection y is equal ,to infinity if the denominator

of the fraction in the second term of the equalityis equal to zero,

i.e.,
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SI

hence

r M! rad/s ,(3.104)

designation i•p= critical

.The'va.ue of w in formula (3.104) has been called critical

jangular velocity. The correspond~ir critical rpm is

n~p= • = ,'55V m r/min

With a further increas6 in angular velocity (when w > %P)

the 1shaft deflection becomes negative, while in 'absolute value it

begins to drop; with irnfini~ely high rpm the deflection becomes

equal to-e.

The mi'nus sign indicates that wien w > wp the shaft is

deflected in a.direction opposite the eccentricity. When w =

the disk wALll rotate around its own center of gravity. Thus, at

extremely high angular velocity~self-ventering occurs.

'Le~t us observe the location of the center of gravity of the

disk at various angular velocities., Figure 3.64 illustrates the

mutual arrangement of points 0, 01, and C wi.th angular velocities

less )than (Fig. 3.64a) and greater than (Fig. 3.64b') critical.
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Fig. 3.64. Mutual arrangement
of the 0 axis of bearings, the Y
01 axis of the shaft at the disk

attachment point, and the center
of gravity of the disk at various We
angular velocities: a .

w Kw ;b-P. 00 X

a) (a)5)b

As experimental and theoretical studies have shown, at angular
velocities less than and greater than critical, the shaft is

dynamically stable. At critical angular velocity the shaft is

dynamically unstable.

It is conditionally accepted to call shafts operating in the

subcritical region rigid and in the supercritical region flexible

(Fig. 3.65).

As seen from formula (3.103) and the graph in Fig. 3.63, when
W = W the shaft obtains an infinite deflection. Actually, at an

angular velocity near critical the shaft deflections increase but

remain finite (see Fig. 3.65). This is caused by the fact that with

great deflection the centrifugal force of the disk is balanced not

only by the transverse force of elasticity but also by the force

directed along the axis of the deflected shaft.

Turbine operation at rpm near critical is not permissible. In

practice we assume that the opepiating angular velocity must be

w < 0"7wp or w > 1.3w p.

The effect of gyroscopic moment on critical
angular velocity. The concept of shaft
precession
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(1) NW, (2) U) 
'

HtieemNw Fidl'iul
idn 5ai7

Fig. 3.65. The concepts of Fig. 3.66. The precession of a"rigid shaft" and "flexible shaft with a disk.
shaft".
KEY: (1) Rigid shaft, (2)
Flexible shaft.

Formula (3.104) for critical. angular velocity is valid only
for the case when a disk is located precisely in the middle between
supports and during rotation the shaft is displaced in a parallel
manner without rotation relative to the diameter.

In the overwhelming number of cases a disk is locate2 a!,ymmetri-.
cally on the shaft and, simultaneously with the revolution around
its own axis with angular velocity w, it rotates along with the
elastlc line relative to the axis of the bearings with angular
velocity X. This can be represented as the vibrations of a shaft
rotating along with the disk with angular velocity w relative to
axis 01 - 01 in a plane rotating with angular velocity X relative to
axis 0 - 0 (Fig. 3.66). The projection of the disk onto a thick
plane will complete the oscillating motions (to rotate around its
own diameter). I

Such qomplex motion of bodies in mechanics is called precession
while angular velocity X of the elastic line with the disk is called 7
the angular velocity of precession or the angular frequency of
natural (free) vibrations of the rotating shaft. Two cases of
precessive motion are:
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forward preoession - if the disk and the elastic line o? the

shaft rotate in the same direction;

ireverse prtiession - if the disk and the elastic line of th,,

shaft rotate in opposite directions.

- • Particilar cases of precession are: forward~synchronos

S preoe8sion when X and'w are equal not only in sign but in absolute

value, and reverse synchronous precession whefi X and'w are opposite

SInsign but equal in absolut:6 value.

Pre~essive motin of a disk is connected with the summation of

two rotary motions, whciih leads to the appearance'of gyroscopic

•i• •' - =-•, • -moment:... ..

0 0.

a2) (a)' 5)(b)

Fig. 3.60' The effect of gyrosc6pic moment on a shaft-
disk system: a - forwara precession; b - with reverse
precession;

Let us examine the effect of.gyroscopic moment on a disk-shaft

system (Fig. 3.67). With forward precession (Fig. 3.67a) gyroscopic

moment tends• to decrease the deflectioh and turn the deflected shaft
-to a neutral position, i.e., increases system rigidity. Therefore,

in accordance with formula (3.104), we should expect an increase in

critical angular velocity.

With re versp precession (Fig. 3.67b) gyroscopic moment tends

even more to deflect the haft,, i.e., to reduce system rigidity,

which leads to a reduction in the critical angular velocity.
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Critical angular velocities- of a single-
disk rotor with allowance for gyroscopic
niornen t

Let the disk in a shaft-disk system be attached to the shaft

asymmetrically (Fig. 3.68); therefore, during precession gyroscopic

moment will act on- the shaft in addition to centrifugal force. Let

us ,make- the following assumpti6ns..

1)' The shaft is weightless -but it has elas-tic properties (the

mass of the shaft is negligible as compared with the mass of the disfk).

To reduce calculation error the weight of the shaft can be reduced

to the weight of the disk.

2) The shaft supports are absolutely rigid.

3) The forces of resistance to the motion of the disk and the

shaft are negligible.

During the precession of the disk its instantaneous position

in space can be determined by coordinates x, y, and z and projections

0 and 4 on the xOz and yOz planes of the angle between the tangent to

the elastic line at the disk attachment point and the z-axis.

To obtain equations of motion for the studied system we shall

ise a Lagrange equation of the 2nd kind;

- .(3.105)
dUti Oq Oq

where q are the generalized coordinates (in our case, x, y, wand o);
q = dq/•t-i-tie- gen-~lized velocity;

T is the kinetic energy of the precessing disk;

n is the potential energy of the system.
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Fig. 3.68. Determining critical
angular Velocities of a rotating i '
shaft with one disk, allowing t ,
for gyroscopic moment.

II I

II

z

- I 3

I

( al
(1) C• IaH/. (3) ••

Fig. 3.69. Explanation of the" physical meaning of rigidity
coefficients.
KEY: (1) daN/cm; (2). daN/l; (3) rad; (4) daNccm/l;
(5) daNccm/cm.
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We assume that the disk and shaft accomplish 'small vibrations;

, therefore, we shall not allow for variation in the z coordinate

the si~nes of'tht angles q and $ will be replaced' by the angles

th'emselves and the cosines by one. Then the expressions for 1kinetics
ond potential energy obtain 'the form:

1I 1

i II IsI

•; ,. , , J='1  ,,(x2+,,) +2c1 (x,•+ y&)+c 22 (.•+ •)] (3.107), ,
2.2)

where m is the mass of the disk;,

;J and J are the equatorial (diametric) and polar moments Of

inertia for'the disk, respectively;

c 1 ., c1 2 , c 2 1 , c 2 2 are the shaft rigidity coefficients.

Based on,the reciprocity theorem for displacement c 1 2  C 2V..

The pbysical meaning, of the'rigidity coefficient is dxplained in

Fig. 3.69.

Differentiating equations (3,.106) and (3.107)5with respect to

eac4 of the coordinates and substituting the obtained expresgions

into equatidn (3.105), we )btain four differential equations for

system Motion:

I.

"" Mi+'c-ýx+ C17=O

my + C1y,+ I12 -. O; , !== 0

- -: (3.108J

We multiply the. second and fourth equations of (3.108) by
1i = /T and add, in pairs, the first to the second -.nd the third to

the' fourth. Th'e followiidg substitution is used:
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w=X+ty; 4=-'+io. (3.109)

Then, instead of four equations of motion, we have only two:

mW +c11,+c, 2Ci=0;. .

n~w?" r2VJ-.C~h ()-(3.110)

The solution to the obtained system of two differential equations

can be written in the form

S= We'"; ' -V . (3.111)

where X is the natural angular velocity of this system in rad/s;

W and T are the amplitude values of complex coordinates w and p.

If we substitute solution (3.111) into the equation of motion

(3.110), we obtain a system of horrgeneous linear algebraic equations

relative to W and T:

(c11-M-)W +c12T=-O 1
c21W+(c22-- J•- ' •X) W=O. I (3.112)

The system of equations (3.112) has a nonzero solution if the

determinant of this system is zero, i.e.,

C11-mAX2  
C12

21 C2 2 - (3.113
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Expanding the determinant of (3.113) a complete equation of the 4th

power relative to X is obtained. However, it is extremely difficult

to solve such an equation.

Let us make some transformations for which we shall use the

substitution

(3.-114)

where s = w/X is a constant.

The geometric sense of this constant will be examined when we

analyze the graph of the system's frequency characteristic.

Allowing for the substitution of (3.114), the determinant

(3.113) assumes the form

Q-2) e -- mC1  C12  I ---- 0.

C2 c- [CA--ns 1 -4 (3.115)

If we expand the determinant (3.115), we obtain not a complete but

a biquadratic equation relative to %:

z•z (iY,- Y XJ.4- [,1c712  11. V,. -J~s)1 2 (c• 1c22--c•)=O. (3.116)

Equation (3.116) is called the frequency equation. It defines

the dependence of natural angular frequencies (velocities) of a

shaft with one disk for assigned parameters of a system.

It is possible to use this equation; however, it is more

convenient to use in computations an equation which has, instead of

the rigidity coefficients, coefficients of unit load or, as they

are called, coefficients of compliance.
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In order to find the relationship between the coefficient of

rigidity and unit load, let us examine a beam on two supports loaded

by force P and moment M (Fig. 3.70) Under the effect of the force

and the moment the beam at point 1 will be deflected by quantity y

and turned by angle a-.

If we use a "method of deformation," we can express the force

and the moment in terms of, deformations:

P=CIIY+C 1 2 a1; M=c 2 1Y1+C2 (3. 117)

where cl, c 1 2 , c21' and c22 are the i1tidity coefficients.

Fig. 3.70. Determining the rela- I
tionship between the coefficients
of rigidity and unit load.

From the system of equ.tions. (3.117) we find the value of

deflection y and the angle of turn a:

P~ C12L
Af I C22 IC22= I= - P-- -- M

C21 C22I

~1C
C21 M 21 P+ C11 M

JCH C12C1K2--C1 1C2-C2
cnc --c• ( 3.118)

On the other hand, if we use the "method of forces, we can

express the deflection y and angle turn a in terms of force P and

moment M:
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y=aP-P+a,2M; a 21aiP+a22M# (3.119)

where a1l, a 1 2 , a 2 1 , a 2 2 are the coefficients of the unit load.

(1) (1) (2)

((6)

Hzz (5)~a• (3)1 at. " a (6)

Fig. 3.71. Explanation of the physical sense of the
coefficients of unit load.
KEY: (1) daN; (2) daN-cm; (3) 1/daN; (4) cm/daN;
(5) daN'om; (6) 1/daN'cm.

The physical sense of these coefficients is clear from Fig. 3.71.

From the reciprocity theorem of displacements it also follows that

a12 = a 2 1 . Coefficients of unit load can be found by structural

mechanics methods, for example, the Vereshchagin method with the aid

of the Mohr integral (integral of unit moment) or according to the

Castigliano theorem.

Comparing the oefficients with P and M in equalities (3.1J.8)

and (3.119), we find expressions for the relationship between the

coefficients of rigidity and unit load:

- a22
e11C 22- C12

"" f. 1 2 2 a 2cl12 _ ¢2i 2 -- e,2

-,-.C21
CilC22 ... Ch2 ---a

(3.120)
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C11C22 C 12

If we divide all terms of equation (3.116) by (cllC2 2 - 2

with allowance for equalities (3.120), we obtain a frequenoy equation

written in terms ofthe coefficients of unit load:

m (a,,a22- a ) (J, -Jns) X4 _[a1 ,m +a 22 (J - J,,s)] X2. 1--. (3.12).)

Studying equation (3.121) (or equation 3.116), we can find

the horizontal asymptotes with the ordinates:

-- m (a, 14 -- a2 ) ±

and also one inclined asymptote X = (J n)/(J )W.

Let us assign varLous values for the coefficient s = w/X = const.

Then equation (3.121) Js solved as a biquadratic equation relative to

X for each given value of s and the roots of this equation give the

ordinates of the graph of the equation (3.121) x = X(w), the

frequency characteristic. The corresponding abscissas are found

from expressions w = sX.

Figure 3.72 shows a graph of the frequency characteristic.

Assigning any value to s, we cut, as it were, the frequenc,
characteristic with ray s = (w)/(X) = ctg aI and find the intersection

points of this ray with the frequency characteristic. This is the

geometric sense of the-coefficient s. Obviously, s can change

within the range < s <
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(1) ((2)
O~7~C.• o~P'7t7- A O6/UC/Mb npP•ffol
.006 npeteccuu "npeqeccuui

Fig. 3.72. Complete frequency I
characteristics of a single-disk
system. AcuMnmom1a (3)
KEY: (1) Region of reverse
precession; (2) Region of forward inro•JIT -

precession; (3) Asymptote. fix-
S(3)

RCUN7momMa (3)

((3)~

(2) Ot ponacmb pp ."p0acmb Opam#)npeqeccua npetqeccua

(1) (2) (2)

0=Mbacm oftOam- O,7-1acmb npOMoa1 DJ,'zcmb npRmou
Ma f npeqeccuu npeqeccuu . npeqeccuu

0
0 W

a) War

O§., acmb o§p=mýiA
•: llnpeq•eccuu, 1'

(b) 6)

Fig. 3.73. Frequency characteristic of a single-disk
system.
KEY: (1) Region of reverse precession; (2) Region of
forward precession.
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The frequency characteristic is symmetric relative to the

origin of coordinates. This means that the curvesicoincide exactly'

in the ! and III and in the II and IV quadrants. Therefore, they

are bounded by its representation only in the two neighboring

quadrants: in I and II (Fig. 3.73a') or in I and IV (Fig. 3.73b).
The latter representation more accurately eýresses the physical

essence: for a given direction of shaft rotation'(we assume it is

positive) both forward (positive values of X), anrd reversp precession

(negative values of X) occur. However, from the mathematical point

of view, it is more convenient to deal with continuous curves, i.e.,

with the representation of characteristics as shown in Fig. 3.73a.

Analysis of the frequency characteristic shows that in the

examined single-disk system each value of angular velocity

corresponds to two natural angular frequencies (velocities') in the!

region of forward precession and two in the region ofreverse

precession. For the entir, set of angular shaft velocities-there -

is an infinite number of natural angular frequencies.

Fig. 3.74. Shapes of the elastic
line during the vibration of a
rotating shaft with one disk.

a~ .(a) 6)(b) '

When w = 0 there are two frequeucies of bending vibrations for

forward and two for reverse precession.. Since the shaft is not

turning there is no gyroscopic moment and the frequencies in the

regions of forward and reverse precession, by pairs, are equal

(in absolute value).

When w > 0 in the region of forward precess'ion, the ntimerical

values of X are greater than when w = 0, an in the region of reverse,

precession are less. This is explained by the effect of:the gyroscopic

moment which, during forward precession, increases shaft rigidilty

and during reverse decreases it.
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Wihen X = w, forward synchronous precession' occurs, and when

= -w, reverse syncqhronou6 precession occurs.

The frequency' characteristic has two branches. Branches with
the :lowest frequencies coirespohd to the first shape of elastic

l•ne (Fig. 3.74a), while branches with the highest frequencies
correspond to the second shape of the elastic line (Fig. 3.74b).

In many1 practical cases disks can be assumed thin. Then

J'/IJ 2 or Jn 2 J

In addition', for forward synchronous precession X = w, s = 1and equation (3.121) 'assumes thle form
a J

1 w(aa -,j a[2 ) I~k44-(a 1m--a22J),) .2---1 0, (3.122)

hIence I

a a

1 au -- 1a alm,-a..)JI
2 m(ai a /.2 a72)I .

a a1 J4 M aia-a 2 1(ic 22 a)J (3.123)

In thiA case, tde resonance rotational velocity w is equal

a•" to -critical w a '

*For reverse synchronous precession X = -w, s = -1 and
the equationl(3.1.21) assumes the fbrm

3m {a,,a22- a2• lJA.•- [a,,). (n 3a2., +• 0
i I

hence

79 allm+ 3a22Jx

P 2 3m(ajja22-a~2 )Ja-
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3 a -1 amtn +a3a2n2lI "" 1

(3.125)

Example 3.3. Determine the angular velocities of a shaft on

two supports with & cantilevered disk for forward and reverse

synchronous precessions. The dimensions are clear from the sketch

(Fig. 3.75). The weight of the shaft is disregarded. The disk

will be considered thin (J /J = 2). The mass of the disk is
2nm = 0.158 daN's /cm. The diametric moment of inertia for the disk

is J. = 42.5 daN's 2 'cm. The shaft material is steel,
6 2

E = 2.110 daN/cm

Let us determine the coefficients of unit load with the aid

of the Mohr integral:

al x2 dx +jj (l12)

132

+ .(13- x)2 dx -4,57.10-6 cm/daN

, .'.,S

4)2 d.-- + dx+ j12$dx-0,O279.10-6 1/daN'cm;a•2= E,, . 2 12+•I• •.t

a,2== 1.1- 12 3 1
a. , = -a1 "-! x'T-,"X dxr + ý2 xgdX ..+

+ 2 ( 1 3 - I x ) , x = -o • X 1 0 -6 l/ d a N

a 1a•-- a- 2= 4,57.10-6.0,0279.10-6--(-0,337.10-6)2=0,014.10-12 1/daN
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For forward synchronous precession, based on equation (3.123),

we find

/ 1 4.57- 10-6.0.15S -- 0.0279.10-6.42,5

V 2 0.15S.42,5.0,014.10-12

+ 1 4,57"10-6'0.158 --0.0279-10 6.J25 12 ,_ _.___,'5__-_ _ 1 _--

4 0, 158O42,5.0,014.10-12 0, 158.42,.5.0,014.10-12

1/2,46.106+ Y.6,06.1012+ 10,6.1012 = 2560 rad/s.

Foi reverse synchronous precession, based on equation (3.125),

we obtain

f/1 4,57.10-6.0.158 + 3.0,0279.10-6. 42,5

"'p2,2 V2 - 3.0,158.42,5.0,014.10-12

/ -r,57-10---0,158+.3-0,0279-10-6-42,5 12 1
- 4 .3.0,158.42,5.0,014.10-12 3..0,1.58.42,5.0,014.10-12

= y/7,575.106-' -)f57,2.1012-.3,54.1012;
"-'7,575.106 -- 7,3:10606 495 rad/s

"Wp2= 1'7.575.106÷+ 7.33.106-.-. 60 rad/s

I•=8¢oM I, = 797C.Af

Fig. 3.75. Calculation diagram
of a turbine rotor (for the 8.9,Scm
calculation example).

Natural frequencies of vibrations in a
rotating shaft with allowance for
distributed mass

Let us examine a straight shaft with hinged supports on the ends.

We assume that the lineatr mass of the shaft is ml, the moment
of inertia of its cross-sectional area is I, the modulus of elasticity

for the n.qterial is E. Tic shaft rotates with angular velocity (o
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(Fig. 3.76). At distance x.from'the leftl support let there be

de'flection,,y with dynamic equilibrium.

The equation for dynami'c equilibrium of toe shaft is

El ('3,126)
dx4

We introduce dimensionless coordinate i = (x)/(Z).

After designating
64l1

El' (3.127)

fr-om- equation (3.126) we obtain.

YIV- (A49 (3.126')

The common integral of the bquation (3.126'), - .

y.=A cos x+Bsin a--Ccha.+Lshav, (3.128)

where A, B, C, and D are aIrbitrary :constants determined, by the

boundary conditions.

Fig. 3.76. Determining the

critical rpm of a shaft,
allowing for distributed mass.

ly'

For the assumed design) of a shaft on two supports the boundary
conditions will be:

when -=O g(O)=-b; e"(O)--O1

when x-1 y(l)=Q; y"(l)=-O; (3.129)
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I- I'

substituting the boundary conditions, into equation (3.128) we obt'4n

four equalitieswhich defihie the constants A, B, C, and D:

* - A+C=O;

A cosu-+B s~na+C~ha+Dsha=:o;
-ACoscz-Bs~npu+CCha+Dsha=O,(31)

hence it follows thatA =C% 0 and equalities (3.130) apsume thb

form:

SI I

~ I

Bsina+Dshpx'O;

,~ si a,, -,+ Sh a
* os-Bsnia+iCschuOsh.;:

The determinant of thia system of equatibrss is

&()==2shasna. (3131

War, Ineese in a zeosftowfc masta hf

resc-ciiinear shape.i Then'efore the determinant (3.131)
of ystm (-131) ustbe~equal to zer9:

Sazeo ,Jut.n wi , men'tah hf

(3.1310'

We need only t1~e reali roots, and equaJ~ty,(3.13P') assumes the
"formT

, s hla sn0. . (3.132)

I II

This means thateD 0; quantity Ba however, remains arbitrary. The

I ootsofs equation (3.1321) are other than zero , nd ,quai

SI 1( . 3172

,, I I
2 I

I I :
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The corresponding equilibrium forms of the elastic line (F1ig. 3.77)

2n

V gY1=B slni 2•x =B sin-;

(3.134)

. . S S S * S *

Each value of a corresponds to its own value of angular velocity

(at which the shaft will vibrate), determined from formula (3.127):

V m144 (3.135)

Thus, the rotating shaft with distributing mass theoretically

has an infinite number of natural frequencies of vibration.

Fig. 3.77. Forms of the shaft's ,
elastic line during vibrations.
KEY: (1) form. -

t5 (-0 qpopma
(1)

S~1)1
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When analyzing the natural frequency (or natural angular

velocities) of rotors with distributed mass, the mass of the sha"'-.

can be taken into account by reducing it to the mass of the disk.

A simple adding of the mass of the shaft to the mass of th, .•

disk is too rough an approach. 'The best approach is the method

of reducing the mass of the shaft to the mass of the disk basc" 3n

the assumption that the kinetic energy of a rotating shaft is "qual

to the kinetic energy of a certain reduced mass concentrated r

the spot where the disk is attached to the shaft. With thic ,(

assume that the elastic line of the vibrating shaft has the same

form as during static deflection under the effect of a unifo,,t'.y

distributed load. This method of presentation does not tak., into

account shaft rotation.

A stricter accounting for the mass of the shaft at certain

critical velocities, proposed in reference [20], requires a very

large amount of computation.

As studies have shown, the critical velocity of a system without

taking the mass of the shaft into account will be higher than the

first natural angular frequency of the system with mass taken into'

account. Disregarding the mass of a shaft can lead to particularly

large errors (up to 50%) in systems with long shafts.

The mass of short rigid shafts with a low frequency of vibrations

can be disregarded and this, of course, appreciably simplifies the

problem of determining critical velocities.

Critical angular velocities of complex systems

The frequency equation (3.121) makes it possible to calculate

critical angular velocities and vibration frequencies for a. shaft

of a single-disk system with allowance for gyroscopic-moment. An

equation of the 4th power relative to A is obtained.
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If the number of disks in the rotor is more than one, the

frequency equation is made considerably more complicated. Thus, for

a two-disk system the determinant (3.115, will have the form

C2 1  c2--(hi -- JUs) C23 cC24

f3l f32 ('ý 34

C41 C42  C43  C44 (JVA2 JnS) Il

(3.136)

and the frequency equation will be of the 8th power relative to X
2

(or of the 4th power relative to X

For a three-disk system the frequency equation will be of the

12th power relative to Xetc. These equations become-difficult to

solve by ordinary methods.

It should be noted that high speed computers, however, can

solve this problem. There are other methods also which, if we use

some approximation, enable us to determine the critical angular

velocities of complex systems. Among these methods is the solution

to integral equations of free vibrations using the method of

successive approximations.

The integral equation for free flexural vibrations in a rotating

rotor on two supports, having an arbitrary law of variation for the

cross-sectional area of the shaft along the length and a load-

carrying raw of disks located arbitrarily along the length (Fig. 3.78)

has the form
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Vz

7M 7 ' z (KR--K-)

z z (R (3.137)

where M is the linear integral operator, proportional to bending

moment (M(z)' = w M)

),u"Jdz- (QFydz + MOO )

1 Y'j~ - .-. 'R.. t:[J (l)o -(1--ZR:);Q I),)1+-z -- zal

+ -R2 2  JIwR1I Q01

Fig. 3.7L-. Diagram of a two-
support rotating shaft. Y(O)

ZMa
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Here the'linear integral operators are

• Ka,--a-- dA• KV- T-V- d_-;

S0 00 (.3.139)

p is the mass density of the shaft material;

I is the moment of inertia of the cross-sectional area;

E is the modulus of elasticity of the shaft material;

F is the cross-sectional area of the shaft;

mi is the mass of the i-th disk;

JAi is the diametric mass moment of inertia of the disk;
Ci; CR1) R are unit functions;

= O nP1: 4< _.mL 111 < ZRI
= rip z>zmlti. Z>ZRI

flpm = when, mnm = or

Q() is ýhe total shearing force on the shaft end only from

inertial load;

MM( is the total bending moment on the shaft end only from

inertial loads.

Formula (3.137) enables us to find the critical angular velocity

of a shaft on two supports, taking into account the gyroscopic

effect of the disks and the mass of the shaft.

If the first support corresponds to the origin of coordinates,

then in formulas (3.137) and (3.138) we should issumo ZR 1 = 0. If

the rotor does not have cantilevers, then zRI = 0 and zR2= 0. If

a nonrotating shaft is studied, in formula (3.138) the term
i
•J~lylcl is equal to zero.

See reference [10] for a more detailed application of integral

equations for detlrmining critical velocities.
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The concept of forced vibrations. Factors causing
the vibration of rotating shafts

If a periodically changing external load acts on a system, the
system will accomplish forced vibrations. The amplitudes of these

vibrations depend on the value of the exciting force, its frequency,

and the elastic-mass characteristics of the turbine elements. Usually
in working turbines the frequency spectrum of exciting forces is
rather wide. Therefore, all turbine elements continually oscillate

as a result of which dynamic stresses develop in them and determine,

to a considerable degree, the reliability of the turbine as a whole.

Frequencies Q of an exciting force can be very different.

Usually they are connected with the angular velocity w of the rotor

by relationship

Q=ku, (3.14o)

when k = 1, 2, 3, ... , n is the harmonic number of the frequency of

the exciting force or a multiple number of the frequency of this
force.

Exciters of forced vibrations can be gas-dynamic forces acting

on the working blades and being transmitted through the disks to the

shafts, as well as various alternating shearing forces which arise

as a result of inaccuracies in the manufacture of parts of the rotor,

gears connected with the rotor, etc., misalignment of the rotor

couplings, nonuniform tightening of bolts along the flanges of rotor

components, different shaft rigidity in two directions, etc. The

most dangerous exciting force is the shearing force from rotor

unbalance, always present to some extent. With unbalance the vector

of the exciting force will rotate with the same angular velocity as

the rotor and, consequently, the angular frequency of this force

will be equal to the velocity of the shaft rotation (in this case,

the multiple number k = 1).
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*Fig. 3.79. Resonance modes for
a single-disk rotor: w with
forward synchronous predessi6n;

and w•3 with 'reverse
syhichronous pr~cesslion.,

%f44

(i I "

Forced vibrations are mdst dangerous when the frequency of the
exciting force bec6mes equal or near the frequency of natural vibra-
tions. The amplitudes of the vibrations cafn become very high even
wit4 a low value for the driving force. The resonance condition for
a rotating rotor is

"9 .(3.141)

i.e., r'esonance sets in when the frequency Q of~the driving force
is equal to the frequency X of ndtural vibrations of the rotor for
a given angdlar veJocity w.

SII I

As has Ibeen discussed, the iost dangerous frequency of exciting
fopce is the frequency from the vector of the inherent unbalance of
the rotor (k = 1); In the case of resonance, ( = X = w ), forward

i synchronous precession occurs. Angular velocity w'p-is called
critical angular velocity.

'If forward synchronous precession 'can arise in any rotor :beca,,sp
of, inherent unbalance), reverse synchronous preceision (Q = = -L),
azi all other resonance modes, will appear only In the presence oe
an-exciting force of corresponding frequency in the system.
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Resonance modes can be shown on the frequency characteristic

of a single-disk system (Fig. 3.79). For this, along with the

angular frequency of natural vibrations, the freq'iency of the exciting

force will be plotted on the axis of the ordinates. The intersection

points of the "excitation rays" with the curves of the frequency

characteristic give the values of the resonance frequencies for the

natural vibrations of the system and the corresponding angular

velocities of the rotor.

Methods of combating critical modes

When designing, it is necessary to adopt measures for non-

resonance turbine operation, triroughout the range of working rpms.

Sometimes resonance canno. :', avoided. Then damping is used to
decrease the amplitudes oi' vibration. Let us examine measures which

are designed for Liiis.

1. A shift of critical modes to the region of high rpms. An

increase in critical rpms is possible by increasing the rigidity of

the rotor during bending, which is achieved either by enlarging the

* shaft's cross section or by introducing additional supports.
4

2. shift of critical modes to rpms below working rpms. As

is known, rotors whose critical rpm is less than the working rpm are

called flExible. Such a shift of critical modes can be achieved

by reducing shaft rigidity during bending. However, ar excessive

decrease in rigidity can lead to inadmissible deflections of the

shaft and make it difficult to maintain clearances in the circulatory

part. In adaition, since, in this ,ase, the working rpms are higher

than critical, it is necessary to ensure passage through critical

velocity during acceleration and stopping of the rotor. Rotor

operation in 'he supercritical region is tempting because, in this

region of velocities w >> p [pa6 = operating; tp = critical],

the rotor is self-centering and this leads to a decrease in the

load on the supports. Therefore, in spite of the above difficulties,

the use of flcxible rotors is advisable. For a safe transition
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through the critical mode during acceleration and stopping of such

a rotor, special devices which limit the deflections of the shaft

are used.

A shift of the critical modes to lower rpms ca*x be accomplished

by introducing into the design of the supports special devices which

restrict the rigidity of the support while preserving slifficient

rigidity and strength of the shaft itself,

Usually, "elastic" supports are not purely elastic since they

are also the location of vibration dampers. In order to show the

effect of an elastic support, let us examine the diagram in Fig. 3.80.

Critical velocity of a rotor with an elastic support can be

determined from the equality (without allowing for gyroscopic moment)

Cp I/(3.142)

where cnp is the cited coefficient of rotor rigidity at the point of

disk attachment (with allowance for the pliability of the support).

The coefficient of rigidity

C. = -- ,.
"C yp (3.-143)

where y = y6 + Ynn is the displacement of the shaft at the

point of disk attachment under the effect of the force P;

YB and y on.np are the displacement of this point because of the

deflection of the shaft and the deformation of the elastic support,

respectively.

We shall express displacement yon.np in terms of the deformation

of the support itself (Fig. 3.80a): yon(11/1). On the other hand,

Yon Pon /c on, where Pon = P(Il/1) is the reaction of the elastic

support. Consequently,
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' C

•. -p. 4

Yon no'. ern12

a..(a) 6) (b)

'ig. 3.80. The effect of support pliability on the
critical rpms of a rotor: a - with a disk located
between supports; b - with a cantilevered disk.

Hence

+p PS Y,,p p I

or

+ +,
Cnp P %n C" Co-:np

- • Y"(3. 144)

where c is the rigidity coefficient of the shaft during bending

at the disk attachment point;

C c n is the rigidity coefficient of the elastic support
reduced to the disk attachment point.
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For the rotor diagram presented in Fig. 3.80a,

3811
Ce = '(2 -102

-Similarly, for the rotor diagram in Fig. 3,80b

Cnp en .Canup

where

3, 8!-11 ; 1=eo

This diagram amounts to a rotor without special elastic elements

in the supports if the latter are not absc" _y rigid. Therefore,

when the elasticity of the supports is commensurate with the

elasticity of the rotor, the critical rpm must be determined with

support pliability taken into account, i.e., it is necessary to

examine the single "rotor-housing" elastic system.

Damping critical rotor modes

In the revolution o,' a turbine rotor various forces of resistance

act on it. They includa forces of friction in the, bearings, the

forces of friction between the rotor elements and t'.: medium in which

it is rotating, the forces of internal friction in rh-e shaft material,

etc. These forces create moment of resistance to rolation which is
overcome by the external torque but does not affect the amoun; of

shaft deflection although it prevents the precessive motion of the

shaft and iweduces its deflection.

These forces of resistance are used for damping the vibrations

if the resonance modes are in the working range or must be passed

through in the process of starting.
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'Existing methods of damping art reduced eithe1' to the intro-

duction of additional resistance, which prevent,5 precessive motion',

into the "Yotor-support" system or to a change in the dynamic

properties of the system during the ,buildup 9f deflection.

Figure 3.81 shows an elastic-dampiný support!w.iith a linear

characteristic, made in the form of a thin ring installed between
the rim of the bearing and the housing of the turbine. 'The necessary

pliability of the ring is ensured by sdlecting its.thiqkness and

fitting a combination of projections formed by grinding the faces'

on the outside of the ring and'rounding it off on the inside. The

second ring Is solid and unshaped. 'It intensifies 'the damping

ability of the first ring because of. the gap between it and the

outer rim of the bearing. .

Figure 3.82 illustrates the design of an elastic-damping

support with a nonlinear characteristic. After the gap h is eliminated

and a rigid shaft sleeve -is ýncluded, the sqpport changes Ats

characteristics; now its rigidity becordes greater. Sipce the g4

h is small, the working fluid in it dampens the vibrations.

Figure 3.83 is the diagram of a shaft with a rigid support 1 and

a dampened support 2. Upon th6 displacement of the suppor.t a piston

noves in a cylinder filled with A viscous liquid which- flows through

special openings in the pistons and:absorbs the energy of the

vibrations.
I.

12 Ib1c7nYao 0, Is. I#'

Fig. 3.81. Diagram of an elastic-
dampened support with a linear to 3""
characteristic.
KEY: (1) Projections.
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Fig. 3.82. Diagram of an elastic-.

Fi~gure 3.314 phows one df the wide used designs for a dampened

support. Here between the in'sert of the bearipng and the housing is
located a packet of several thin steel tapes .with a certain clearance.

ThI6 gaps between the plateslare filled withe1 lubriLcant. Because

of the very low i'igidity of the tapes ~the shpport has insig~n'..ficant

elasticity. However, the elt~sticity of the support can change

widely, increasing ,the thickness of the plates and the number of thpm.

A II

y i , , !"

Sucha support has a'nQn1±near characteftstic, i.e., the

dependence of the forc6 acting on the support on the displacement of
support h~as a noh~linear character'.

Fig. 3.83., Diagram of damping Fig. 3.8-4. Diagram of dampedi
device. support with nonlinear characteristic.

I~.

J I I
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Vibrations in rotors on hydrostatic bearings

Vibrations of the rotor on hydrostatic bearings has the

following peculiarities. With a given drop in the pressures of the

working fluid on the bearing (difference in feed and discharge
pressures), the rotor below a certain rpm accomplishes only forced

vibrations with a frequency equal to the velocity of its rotation.
When the frequency of free rotor vibrations agrees with the angular

velocity, undesirable critical velocities and resonance vibrations

are possible.

With a further increase in the rpm simultaneously with the
forced vibrations there arises rotor vibrations with a frequency

unlike the velocity of rotor rotation. Such vibrations, not connected
with external excitation, are called auto-oscillations. A rotating
rotor on hydrostatic bearings has the property of self-excitation;

therefore, it is an auto-oscillatory system. Self-excitation and

auto-oscillation of a system can lead in certain modes to a vigorous
growth in vibration amplitudes. Externally they are similar to

resonance modes of rotor operation; however, in essence, they differ

severely from them since they do not bring about rotor unbalance.

Frequently these modes are called modes of shaft stability loss.

Before proceeding to a calculation of rotor vibrations, let us

examine the forces which arise in a hydrostatic bearing.

Forces acting on the rotor pivot

Let us assume that the rotor axis is displaced relative to the

bearing axis by a quantity r, the rotor rotates with velocity w,
and the center of the pivot has a forward velocity v relative to

the center of the bearing (Fig. 3.85). This velocity can be due to

the precession of the shaft in the beari 1 ga or the vibrational

motion of the shaft which appears from the action of external forces

on the rotor.
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In the calculation of forces, we make the following assumption.

We shall assume that the flow of the working fluid in all elements

of the bearing is turbulent. This assumption is valid since lubri-

cation is accomplished by a liquid-metal heat carrier with low

viscosity. In addition, the high angular velocity contributes to the

turbulent flow of the lubricant. We shall assume that the motion

of the fluid in the bearing is quasi-stationary, i.e., the calcula-

tion of nonstationary forces in bearings is performed according to

formulas of stationary flow. This is valid if the ratio of the

Reynolds numbers for the stationary and pulsating components of the

flow is Re nyAbc/RecTaH = 0-1.0 [nynbc = pulsation; CTaH = stationary].

Usually this relationship is maintained in the designs being studied.

It is further assumed that the working fluid is incompressible,

the viscosity of the fluid is constant, and there are no breaks in

the lubricating layer.

With these assumptions we shall set up an equation of the flow

rate for the i-th chamber of an N-chamber hydrostatic bearing with

diaphragm or capillary compensation (Fig. 3.85):

S- 2Q ri+ Q +, j+1+ Q j, -1  + Q3.l = 0,
(3.145)

where Qi is the flow rate through the nozzle, cm3/s;

QTi is the flow rate through the end connector of the chamber;

Qi i+l; Qi i-i are the flow rates along the connectors with
i + 1 and i - 1 chambers;

Q Bi is the flow rate of the liquid displaced from the i-th
chamber, caused by the forward speed of the pivot.

The first three terms in equation (3.145) can be represented
in the following form:

387



SQTi •-fT 1 (O,0625VI)Y+1-0, 1-(p-pc-P,-0$062ýVj

QJ

n-I' , (n n)Q ~ u1(3.146)

Qi, i-, is written similarly to Qi, l

V=- cos
2

- I

0

711

Fig. 3.85. Diagram of forces acting on rotor pivot.

In expressions (3.146) we have used the following designations:

PM3 P Ti are the coefficients of flow rate through the nozzle

and the end of the chamber;

f M, fTi are the areas of the nozzle and the end slot of the

i-th chamber, cm
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PS, PC are the pressures at input and output of the bearing,
daN/cm2 ;

Pi is the pressure in the i-th chamber of the bearing, daN/cm2 ;

w is the angular velocity of the rotor, lus;
v is the forward speed of the pivot, cm/s;
u is the ratio of the average velocity of the velocity profile

in the slot to the maximum. For sufficiently high Reynold's numbers
(Re > 1000) this quantity varies from 0.8-0.9;

p is the density of the working fluid, kg/cm3;

6 is the radial gap between the pivot and the bearingi, i+lalong the middle of the connector between the i-th and the (i + l)-th

chambers;

zK is the length of the bearing chamber.

The change in the gap between the pivot and the bearing with
respect to the angle of turn is described by formula
6 = (10 + e Cos 0 ), where 60 = (D0 - D)/(2), e - (Z)/(60).

The system of reading angles is such that the position of
the i-th chamber is determined by angle

while the angular positions of the middles of the connectors between
the i-th and the i + 1, (i - l)-th chambers are

( j) ';jj=x (I= 1, 2, )
9•V- N-= . .

where N is the number of b-earing chambers;

T is the angle between the direction of the forward speed of
the pivot and the direction perpendicular to the center-to-center

distance (see Fig. 3.85).
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During the forward speed of the pivot v, the pivot displaces

liquid in the direction of motion and frees a place for the working

liquid. In order to write the flow rate of the displaced liquid,

we assume that on the half of the pivot towards the direction of

motion sources of working fluid are located and on the other side

are drains. The flow rate of the sources must be equal to the flow

rate of the drains and the total flow rate of the displaced liquid:

Q=vD(L+I),

where I is the width of the end connector, and L - z + Z.

We assume that the intensity of the sources and the drains

along the angular coordinate changes according to sinusoidal law:

q.9) = qo x sin ((-p

From the condition VD(L + Z) * q(;)d we obtain

4~z0
q°=v 2

Then for the i-th chamber

S"'1.1+!

Q3= q (c)dsp.5 (L +I1)(cos( 9 +1 ')cos (,~,-PJ
91 - 2 (3.147)•" •'i,i--I

We shall introduce designations:

I /i Pe ; V=2 2 'P; V 0 =.-;VOh•~ = ;t --p .9Ap

where Ap = PC -

The quantity hi is the relative pressure in the i-th chamber

counted from the pressure of the drain and referred to the difference

in the input and drain pressures. This difference is called the

pressure differential in the bearing Ap.
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The quantity V* has the measurement cm/s and is a characteristic

velocity which depends on the pressure differential in the bearing.

V0 and v 0 are the relative values of circular and forward velocities

of the pivot (related to velocity V*).

With allowance for these designations and equations (3.146) and

(3.147), from equation (3.145) we obtain

J4-h- + Bil/, +Cg1/~ DI7+ 1t'T-h1 +E~hLI I+Gi=O. 3118
A,.I,_,8,h+C,(3-148)

The coefficients of this equation are:

2 1 b.1+1+P*.f* bt-ju I. Ve - Vo COS (w.1i--

SI 21
Pt'fw u ,.t +I [w-- 1V-V CO,-(?1t~ .1 I•)

i-.i- [JV - vo cos (TI.t-I -

21,tiI . DT {OfO62.10 o--tocos()p-l 2

- O [2f! 1 0,0625 cos (?i--)+ 4h44 .'

T'9 2
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The coefficients of hydraulic friction in. the lslots along the
connectors between the chambers has been determined from formula

4

"'2'

! I

where A is the height of the projections on the surface of the

bearing;

X1, l is calculated similarly to Xi," +l. .

The coefficients of flow rate through the end slots have been

calculated from formula

? V. 2.3 + ti

where

1 - 4
26+5,1 Ig Z. 2

The problem of finding the forces in a hydrostateic Pearing
will be solved if we find the relative pressurest in the bearing
chambers hi. To find N of unknown hi we can set up for each chamber
an equation in the form of (3.148) and obtain a system of N equatiohs:

A/I,._,+ Bah 1+C4 1i'i7 ly + -h- ±Eih }+Q
(i,2, . .. ,N). (3.149)

The radicals signs in the system of equatidns (3.149) are
determined..by the signs of the radicands. For unknown h! the
relationship hi+N = hi, i.e., h0 = hN, hNIl = hl, is valid.

The system of equatic.is (3.149) should be solved by the method
of successive approximations (Newton's methoa,,. Ih the zero
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approximat.±on we assume hi 0 "= 0.5 (i = 1, 2, ... , N). Calculation

,continues until the error for all roots is less than 1%.

SIased on the calculated values of hi, we calculate the

dimensionless radial F and tangential t components of the force

acting on the rotor pivot in ia hydrostatic bearing. The.radial

force is directed along the line of!the pivot and bearing centers,

!'vhile, the Itangential force is~perpendicular to the line of the centers.

The quantities F, and Ftlare determined from formulas:

F~=si~y~Iicos-i; Ft=sl
± IN

(315)I (
4!

If we, introduce the quantity of relative flow rate through the'I I

bearing

isxei in (3.151)

its expression in terms of,hi will be

'N
Q0 (3.152)

I I-

With assigned geometric dimensions for the bearing the values

of cdefficients with unknowns and equations (3.14R) depend only on

the relative eccentricity e, the relative rotational velocity of the

pivot V0 , the relatie. forward speed of the pivot v0 and the angle

which determines the direction of the forward speed of the pivot.

Consequently, t14e values of relptive pressures in the Chambers

hi:and thei-values of dimensionless forces Fr' Ft and flow rate Q0

will depend only on the indicated parameters c, V0, 80, and P.

The values of dimnensionless forces Pr and Ft with forward

pivot velocity v = 0, which correspond to the stationary values
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of forces in the absence of pivot vibrations and depend only on

c and Vwe designate Fr and F t

F'O -Fr(8, V0, VO =0); PtoFt (8, VO, voO0).

Then the components of the forces in the bearings which arise
during the forward displacement of the pivot can be written in the

form F rl :=F r- F r t, Ft-Fto.

Tlhe projection of these components onto the direction of the

forward velocity of the pivot is designated F., while the projection

onto the perpendicular direction is F l

JcýFiicos V -P.rIsin'iV; P., =Pjsjf * +Prlco§f)

The characteristics are calculated on a computer. The .,lues of

N, D, Do., L, Jim f M , I K, b, 1, A, U and the values of the parameters

C' v0, V0, and ~pare given as the initial data. For each of the

parameters a series of values is given, and for all combinations
of parameter value the quantities F rand F are computed.

Usually the e1irection of the projection of force F onto the
vector of forwar'j pivot velocity V is opposite to this vector and
does not depend upon angle ýi. The projection of this same force onto
the direction perpendicu~lar to the forward pivot velocity Tc is also

independent of angle p, but, In magnitude, is less by one order than

the component Tc and is commensurate with calculation error. There-

fore, the quantity F c can be disregarded.

Thefore FrO acting along the center line is directed from the
center of the pivot to the center of the bearing, while the force

F t acting perpendicularly to the center line is directed from the
center of the pivot in the direction of rotor rotation, as indicated

in Fig. 3.85.
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4 Fig. 3.86. Dependence of dimensionless forces -ro, Ft0
on eccentricity e.

The third equation of the initial system of equations (3.146)

is valid only for the range VZK 6/12 Q = 0.2-18, i.e., cannot be used

for the case V0 = 0. When V0 =.0, instead of the third equation

of the system (3.146), the following equation is used:

j Qt.,-, =• 1.1"/~+1 0.l'1. I--PI.
(3 .153)

Then the same solution method is used as in case V0 • 0.

The typical dependence of dimensionless forces Fr0T F onr Fto
relative eccentricity e and relative rotational velocity V0 is

presented in Fig. 3.86. Figure 3.87 illustrates the dependence of

dimensionless force Fc on relative forward pivot velocity v0 andp e ,

• parameters £, V0.

These'dependences are obtained in analysis of the bearing

suith the following data: N = 8, L = 4.7 cm, b = 1.09 cm,
A = 1.5'04 cm, D = 3.785 cm, Pf f 2.06'i0-2 cm2, = 0.3 cm,

u = 0.88, D0 = 3.8 cm, 1. = 4.4 cm.
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To solve the problem of the vibration of a rotor on hydrostatic

bearings we need ýhe analytical dependence of forces on displacements
and rates of displacements of the rotor pivot relative to the
bearing.

In hydraulic bearings the dependences of dimensionless forces
on relative parameter, e, V0 and v 0 are continuous functions and
can be approximated sufficiently well by power polynomials,

Thus, function F (e) can be, for a certain range of relativerO
velocity VO, approximated by an analytical dependence of the form

Pro=azje(I +Pj8 2+Vie4),

where -a, I, -l-are coefficients which depend on the geometric
dimenslons of the bearing and the relative rotational velocity VO.

Fig. 3.87. Dependence of '8 2)E=g8=
dimensionless force Fc on 4) 6=0,8;VOg5
pivot velocity v 0 . I7.4)E=L8;V=zo

0,5-
4-

* /

-• • , _.

& o O' lo0.10o

For practical analyses Fro(c) can be expressed by a simpler
linear dependence
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The selection of any form of approximating dependence depends

on what kind of problem is being solved. For example, in solving

the problem of small vibrations in an unloaded rotor we can limit

ourselves to a linear dependence if the form ( 3 .1 5 4). If, however,

we are examining the effect of forced vibrations on modes of auto-

vibration of currents or we are examining vibrations whose amplitudes

are commensurate with the value of the radial gap in the bearings,

we must take into account the nonlinearity of the characteristics

FrO ()

Dependences F to and Fc can be approximated by the linear

relationships:

PtAO=aU 2eVo; FcaWVo. (3.155)

A transition from dimensionless quantities F, c, V0 and v0

to dimensioned quanti'ies F, r, w, 6 is effected with the aid of

the following relationships:

F.=F.pDL,; r=E.0 to); w=
D Q~;=~V

By themselves the dimensioned forces can be written in linear

form: F1 = kIr; F 2 = k2 wr; F3 = k 3 v, where subscripts 1, 2, 3

correspond to the former subscripts r, t, c, respectively.

Coefficients kl, k 2 , k 3 are connected with coefficients a,, c 2 ,

ca3 by relationships:

) L L r 1)L
L o A ,;2=C2 2; 3==3
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I k i =

Ib the projections of displacement r and forward pivot vel.ocity
v onto the axes of a recta..gular system of coordinates udre designatedx, , •d , y ten heprojections of forces PI F2 and. 3°tZi

the same axes, with allowance for the directions of the forces, are

Y|

AA

F1., - kzx F2•=-- k~ y; Fa.= -- '~1 }J
Vibrations of a symmetric rotor. i o

Let us study a rotor as a weightless shaft with ant unbalancsed

disk in the center of the span. A diagram of such a rotor and the

system of coordinates used are shown in . .i. 3.88.

Fig.e 3.88.e Diagra of ah dsycm);L rot oare intaled poeton so

a I

Whe dislcmntroduc the fiollocing e d e lgative 0o isthe baigcenter of

the) beyarin;01i the prjceinte of the rotorpivomet; ofi the geometric
center of the disk; 0eatv is the center of ms fthe disk;ing is m);

398

centrgo the8 m igasso the dis (cm);r:• roto0 re inthled pr ons f

th e d ipcmntr ofuc the piotlo cente reigatives to tshe bernc ente r o

cetro h aso h ik(cm); x0, y are the projections of tedslcmnso h emti

center of the disk relative to the center of,. the bearin~g (cm);
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I;, I 9;

xl, yl are the projections of the displacementsbf the center of

mass of the disk relative tol the, center ot the bearing I(cm); w is

the angular velocity of shaft rotatdion (1/s).

Coordinates x, y, and x and Yl ar6 connected by relationships:

5 9

x,=ix+Aicos(wt+qo); Vt_-Y+Atsin(.d+po). (3.157)

Equations of motion for -the studied rotor can ;be ob'tainqd if

in accorddnce with d'Alembert's principle, we equate the-disk's forces

inertia tb the shafts forcesof elasticity and the shaft's

forces of' elasti'city are equated to the forces in the hydrostatic
b'earings. Finally we obtain the system! of equations

nzy, + c (y - yo) =o;

', c (x- xo) = 2kIxo+2kct,,yo +2k 3xo;

C (y - t) = 2k y-2k-w o+ 2kay0 .1!/0 7 6.158)

Let us introduce further designatioAs:

* ~2k1 t 0:

0 2 2

-=n,-=n1 , r=x~i.
2M ra •.(3.159)

Taking into account these designations and expressions (3.157)
system (3ý158) can be reduced to alnonhomogeneous equati6n

S! ,-•* °l'"•€2 2 0 n, ýO n .. ,,

r0 ±io-o---O +-o- ro++2ro--iwnro +
I '2 w2) I

-tzro= AI~ttoe (3.160)
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The general solution to (3.160) consists of a particular solution

to the nonhomogeneous equation and a general solution to the

corresppnding homogeneous equation. The particular solution of the

nonhomogeneous equation describing forced vibrations is

ro.= Aoe1 (wI+ •e+9) (3.161)

If we substitute (3.161) into (3.160), we obtain

.A, )4- n, -;,)

-[I.• (3.162)

The general solution to the homogeneous equation corresponding
Sto equation (3.160) is
t9

'02'

r-=-a0e (3.163)

If we substitute (3.163) into equation (3.160), we obtain the

characteristic equation

2" 2 2 (3.164)

The quantity s is, in the general case, a complex quantity:
S = V + in.

If among the roots of the characteristic equation (3.164) there

is even one root with a negative imaginary part, the system described

by equation (3.160) will be dynamaically unstable, i.e., vibrations

with increasing amplitude will occur in it.
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The question of system stability can be solved using the Routh-

Hurwitz criterion. For system stability it is necessary and

sufficient that a matrix made up of the coefficients of the frequency

equation and the even-order diagonal minors of this matrix be

positive. The Routh-Hurwitz matrix, in this case, has the form

w -2, -, own2 0 0
0 (,2+W2  0 -(02(02 0 01 2 - 1 2

0o OMI 021t O 10202 0
0 0 w+0)2  0 -0 2  0--V2 1'2 0

0 0 -6 -ai 1  O* n (on, (d

12

For system stability the foll*owing conditions are necessary

and sufficient:

(w.2 4) >0; ,n(.,4,, O.,>0;
• 2 "2 (,- 1 +2) >O

- w)2h2(.)8 (02+ W;) +n 2e4Oci)>0,~2''

then the system is stable when

,t>O, WK n, (3.165)

For the self-excitation rate w* = (n)/(nl)wo0 , in all roots

s of the characteristic equation n > 0, the vibrations described

by expression (3.163) will be attenuating and only forced vibrations

will exist in the system. When w > wc in the system, along withc
forced vibrations there will also be autovibrations described by

expression (3.163).

The quantity s on the boundary of the autovibrations can be

found from equation (3.164) with allowance for the fact that

on the boundary wn1 = W0n:
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(3.166)

Thus, near the boundary of stability the general solution to

equation (3.160) has the form

ro- Ae

where

a,(f)= aoe-•T'

when w > w* function a(t) will be increasing and when w < w*
C C

decreasing.

From the cited expressions it follows that in the rotor studied

on hydrostatic bearings it is possible for self-exciting vibrations

to arise. Near the boundary of autovibrations the autovibration

frequency is equal to the natural frequency of vibrations corresponding

to the conservative system

2I 2

'el + 02

which is defined as both rigidity of the rotor c and the rigidity

of the bearings kI. The rotational velocity of the rotor at which

autovibrations arise is proportional to the natural frequency of

rotor vibrations:

n
(0 -

Autovibrations occur in modes in which the work of nonconserva-

tive force F2 becomes greater than the work of the force of resistance
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F 3 . The value of the work of nonconservative forces in the system

when w > w* is positive, and this means that work is supplied to
C

the system. This work is expended on increasing the amplitude of

vibrations.

Since positive work is performed only by hydrodynamic force F 2

which depends on the angular velocity of the rotor, the energy of
rotation, i.e., the power of the drive, is spent on vibration.

From this analysis we can obtain a few more results if we

examine the effect of the pressure drop on the characteristics of

the bearing.

Earlier it was shown that coefficient k1 is proportional to

the pressure drop in the bearing Ap, while coefficients k 2 and k3

are proportional to

($)I = (tx 1 n* =

where wlX' nx, nx are the corresponding quantities during pressure

drop Ap = 1.0 daN/cm.

Then the natural frequency of rotor vibration depends on the

pressure drop in the bearings:

(02 + &.)2 AJ2'

W h en Ap -0 w0 - 0, w h i le w h e n Ap - c w0 4 W2 "

For rotors of pumps and turbogenerators in an extraterrestrial

engine with high rigidity and a high frequency of natural vibrations

on the rigid supports, in order to reduce the expenditure of power

on the vibration of the wurking medium through the bearing, we

attempt to rctkce the pressure drop in the bearings, i.e., in order

that
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2 1z or 2..
.• .. :. • C .2,e. .. . .

In this case,

O2I ~~ Xi6= A.P• -. ,,,.p

If the rigidity of the rotor is greater by one order than the rigidity

of the bearing (k1 = O.lc), the rctor can be considered absolutely

rigid. Error in determining the natural angular frequency, in this

case, does not exceed 5% and we can assume that the natural frequency

of vibrations is proportional to /A-. Since the ratio wc//W = n/n 1

= n /nlx does not depend on pressure drop in the bearing, the revolutions

of autovibration appearance are also propoi'tional to /•:

Sn.ix

In hydrostatic bearings the role of the damping coefficient is

played by expression n - n1 = (nx - n )VJj i.e., with forced

vibrations the value of damping in hydrostatic bearings is proportional
to VAFp.-

For a rigid rotor the formulas for amplitude and phase of

forced vibrations (3.164) assume the form

I"I

+,, (n -hi.))AP

tgc,= wl (.r - nIx) V Ap
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In the mode w= wxAp we have

A0 -- A1io ; 2•nx - nlz 2 1

i.e., in a rigid rotor on hydrostatic bearings in the mode

W = W•i VA, the amplitude of forced vibrations does not depend on
pressure drop in the bearings. With a change in the pressure drop
in the bearings the resonance frequency of t), rotor also changes.

405



I

3.2. THERMOEMISSION ENERGY CONVERTER

Converters in which the electrical current is obtained as a
result of the emission of electrons from a heated cathode to an

anode are called thermoemission converters. If the gap between the

anode and the cathode is a pure vacuum and does not contain ivapors

of any element, such converters are called thermoelectroflic.

A thermoemission converter is formed with a hot cathode and a

cold anode arranged opposite each other with a small'gap." With an

increase in cathode temperature the kinetic energy of the electrons

also increases. They overcome the forces of attraction of the

atomic nuclei, escape from the surface, and form an electron cloud

around the cathode. This process is called thermoemission.

After flying through interelectron gap and hitting the cold

anode, the electrons create negative, potential on it, while the
cathode is charged positively. By closing the circuit eledtric

current is obtained.

If the gap between electrodei is filled with vapors, for example,
cesium vapors, such a converter is called a thWermionic converter.1

These converters have the following advantages.

Comparatively high efficiency. In present developments it is

determined on a level of n = 10-15% and in the future can reach

hiL er value (this efficiency is half that found in a turbogenerator).

Systems with thermionic converters are appreciably simpler,

than mechanical converters. They are simpler in design and lighter,

since they do not contain rotating elements, turbines, or complex

devices.

'Since thermionic converters are used widely, they are frequently
called simply emission converters.

S406

)o



if i i

*. I

a I

! ,I

I . I I

However, the use of thermibnic cohverters *still involves many

, ~difficulties including the following.

Cefptain problems of the ,oberating process'of converters have

been poorly studied. I

I

, Cathodes 6f the converters,operate at temperatures above 1 400 0C
*In contact Vith cesium 'vapor .whose corrosiveness is well known.

Under" these conditions, to sel~ct material rhich will operate for

a long period of time Ps difficult.

The anodes of convertersmust have an insulation which, on the

one 'hand, will not break at high temperatures and, oh the otherI I

hand, has high heat conductivity •for cooling the anode. Such

insulating material is diffitult to'find..

A ccnverter is more effective the .Less the gap b~tween the

anode and the ca'thode. Th.e gap is 0.01 mm and reaches 0.5 mm or

more.

With'such a comiparatively small gap thermal strains in the

converter are commensurate withithe gap, which fact complicates
S, ~design.

And, finally, in the manufacture of thermionic converters many

unresolvbd technological problemhs arise Which determine the function-

*lity of the design (for example, to solder or weld multilayer con-

struction'of different types- of material.L- '

All thea nionic converters can be broken down into three large

grouph based c, design:

'i ,. converters combined with:reaptor fuel element;
I!

converters cqmbined with a radiator;

converters combined with a heat exchanger.
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STRUCTURAL DIAGRAMS AND DESIGN OF CONVERTERS

A thermionic converter combined with a reactor
fuel element

Figure 3.89 shows the design of such a converter. The fuel

* element combined with this converter is called the electrogenerating

element. As is seen from the figure, this element consists of

elements of the fuel element itself and elements of the converter.

The fuel element consists of the fuel pellets (for example,

UC) 1, the fuel shell 2, the neutron moderator 3, placed into a

pressurized cavity of two shells 4 and 5 and a reflector 6. The

radial reflector is not shown here but is made as an ordinary

* reflector of the reactor. Between the fuel shell and the reflector

is the converter which consists of cathode 7 ana its insulation 8,

anode 9 and its insulation 10.

The heat flow from the substance being divided heats the

cathode to 1300-20000C. The gaseous fission products of the fuel

during reactor operation are carried thrcugh the openings in the

pellets 1, the shell 2, and the commutation busbar 11 through the

nozzle 12 to the outside. The liquid metal (sodium, lithium)

washing the shell 4 of the fuel element maintains the temperature

of the anode within 600-800 0 C.

The anode and cathode, conn ed in series, have openings for

the passage of cesium vapors, which ensures the neutralization of

the space charge. Waste cesium through the opening in the reflectors

6 and the discharging jet 13 is carried from the housing.

Current from the extreme anode, by the commutation busbar 14

and rod 11; enters the commutation plate 15 installed in the reactor

tank on insulator 16.

The anode can be made from stainless steel, niobium; the cathode

from molybdenum, niobium; the commutation elements from beryllium
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copper; the retarder from metal hydride; the reflector from

beryllium oxide.

F

12- 1 S' '4

159

•. 
2

Fig. 3.89. Diagram of a thermionic converter combined
with a reactor fuel element.

The combination of a thermionic converter with a reactor fuel

element has irrefutable advantages. Among them is the very light-

weight construction. The transmission of heat to the thermionic

cathode is accomplished by the shortest path, which allows us to

use a low-temperature anode and moderator during high cathode

temperature.

The design allows the use of reactors of different types -

high-speed and thermal. The development of a system with a large

range of Dower is possible.

The design also has shortcomings: the reactor fuel element

and the converter are a permanent all-welded structure, organically

involved in the total structure of the reactor. This complicates

its finishing and testing.
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In the creation of the design serious technological difficulties

appear because it is necessary to connect a large number of

heterogeneous materials, on which high strength and tight-seal

requirements are imposed.

For instance, the anode package is a complex structural element.

In it the shells which cover the substitute, the layer of insulation,

and the anode itself have been assembled and should operate jointly.

If we heat these shells to the same temperature, then the shells made,

for example, from stainless steel will so expand that the layer of

insulation, for example, beryllium oxide which has a coefficient of

linear expansion half as low, will be extended. And since beryllium

oxide has low tensile strength, it can crack and the entire unit

go out of operation. In order to overcome this disadvantage,

contraction stresses should be created in the beryllium oxide before

installation of the anode package in the reactor.

A thermionic converter combined with a radiator

Figure 3.90 shows a diagram of a thermionic converter combined

with a radiator. Thq converter consists of the cathode 1 installed

by means of a layer of beryllium oxide 2 on the external wall 3 of

the heat trap of the solar concentrator. For uniform heating of

all anodes the converter of wall 3 is heated by liquid metal 4, for

example, vluminum, sodium. Anode 5-6, which is also the radiator,

is installed by the central part 6 on three spherical insulators 7

of aluminum oxide (A1 2 0 3 ). These insulators ensure the proper

clearance between anode and cathode.

The anode has been split in order to guarantee the soldering

of the corrugated membrane 8 to the insulator 9 which serves simul-

taneously as the bracing spot of the cathode to the housing of the

heat trap.

The membrane 8 insulates the dischaige gap from outer space.

The gap is filled with cesium vapor which enters during cathode
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warm-up from the accumulator 10. The accumulator is porous metal,
for example, nickel impregnated with liquid cesium and placed in
a sealed ampoule welded to the anode. This ensures the precise
metering of cesium in the gap and convenient installation.

The anode is braced to the housing of the heat trap by means
of an elastic element 11, which is a thin-wall sealed box filled

with argon,

The anode is made from molybdenum, the cathode from tungsten,
the shell of the heat trap from molybdenum, the others from stainless
steel, the insulators from aluminum and beryllium oxide.

t: 10

R- 1234

Fig. 3.90. Diagram of a thermionic converter combined
with a radiator,

Such a thermionic converter design has certain advantages. It
is simple; it allows theofinishing of the converter itself
independent of the energy source.
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The nortcoming in this design is the impossibility of,

obtaining the optimum dimensions of the converter. 'Phe dimensions

of the anode and the radiating surface are close. It is known

that the maximum power which can be taken from the iadiating!surface
at anode temperatures does not xceed. Thus, the radiating

capacity of the anode surface will limit the structural parameters.

Thc use of a nuclear reactor in the form of a power source

in this diagram leads to the necessity for increasing the temperature

of the liquid metal with identical convertdr parameters in order

to compensate the heat dissipation' durLng the flow of the working

medium along the pipes. An increase in the temperature of the
liquid metal in the reactor is undesirable since this complicates

the design of the most important unit - Xhe power plant of the

engine.

A thermionic converter combined wl'th a;heat
exchanger

Such a converter consists ofia housing (Fig. 3.91), two tube

boards, and a set of electrqgeneratirgtelements. .

These elements coozist of an internal hot shell 1, insulator
l

2, cathode 3, anode 4, insulator 5, and 1outer cylindrical shell 6.

The electrogenerating element is attached to a two-layer

pipe board 7, 8; in the gap between the ;ayers c~sium vapors pass,

The heating of the converter is accomplished by lithium Which,

flowing along the internal cavity of the shell 1, releases heat'to

the converter cathode. The anode can be cooled by sodium which

enters twocollectors 9 of the heat exchanger housingi Since

niobium and stainless steel weld badly, an intermediate ring 10

is provided in the design. The electrical current from all cathodes

is collected on the commutation plate 11.
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A~g. 3.9. *Diagram of a thermionic gener'ator combined
with a heat exchanger.

I !" I p I

' dvantages of this design lie in the ease of finishing and

operation. Optimum dimensibns of the converter can beseleicted

both for the anode and cathodebe us the'radiator does not deter-

mine the amount of heat released; the heat capacity of the reactor

is not connected with the overall s.ze of the anode unit.

The shortcoinings are the increased thermal mo~de ofithe reactor

;and the large mas of the entire structure as compardd with the

earlier examined diagram.

One of the installatigns des~cribed [41l], with'a podwer o 27 kW,

has cathodes from thoriated tungsten and anodes of tungsten. The

neutralization of the space charge is acnernplished by introducing

cesium plasba ifto the clearances. The diameter of the fuel element

of uranie m camrbide is d h 2.5 mm. The combined area of the

electrodes is 8r 2So0nccm .. Cathdde temperature 'to u727i C and

anode temperature ta = 7270C. The value of specific powere W 10

W/cmO and installaatio efficiency nrib 9[47, mass G p 64r0 kg.

1113
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Fig. 3.92. Overall view of reactor-generator: 1, 2 -
current leads; 3 - regulating rods; 14, 5 - metal input
and output fittings; 6 - emergency rod; 7 - fuel elements;
8 - cesium tank.

Another installation has a power of 11 = 300 kW. The sizA of
the active zone is D x I = 32 x 28 cm. The number of fuel elements
is 5116, reactor mass is 264 kg. The overall efficiency of the
installation is 12%; the efficiency of the thermoemission elements
is 111%. Specific power W = 11-12 W/cm2 with a current density

i = 8 A/cm2 . Cathode temperature t = 181500 and cathode material
is UC-ZrC. Anode temperature ta = 982-I094OC; specific mass

y = 1.91 kg/kw. The overall view of the installation is shown in

Fig. 3.92.

There is information on a thermoemission installation where

the motive power is a radioisotope of curium Cm212 with a half life

of 162 days and a heat-liberation value of q = 15 W/g. This
installation with a power of N = 100 W has a cathode area of

Ii 1l



S 80 cm2; cathode temperature t = 9270C and anode tempcrature
ta = 4270C. The mass is G = 10 kg and operating life one year.

There has been described in literature [41] an installation
with a power of 40 kW and pore dimensions of D x L = 149.5 x 120 cm
without a heat carrier.

The heat passes to the cathode through the walls and from theanode is released into space by radiation. Temperatures tK = 20270C,

ta = 14270C, t 4AY4aT = 12270C [H3ny4aT = radiation]. Voltage is
V= 24-28 V.

14
A-A

,234 5

2

S8 5 7

Fig. 3.93. Structural diagram of an electrogenerating
element.

The thermoemission converter combined with a heat trap, whose
structural diagram is shown in Fig. 3.90, has the following basic
parameters: cathode diameter d = 3.8 cm radiator 10.2 cm2

t= 18270C, power of one element N = 85 W, current I = 64 A when
V = 1.3 V; efficiency n = 15%, specific mass y = 3.4 kg/kw. The
interelectron gap is 0.13 mm and the anode is nickel. Specific

2power of the element is W = 8 V/cm
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Figure 3.93 is a diagram of an electric generating element
of a reactor [52]. The fuel pellets 1 of uranian carbide UC have

been set into the cathode shell of converter 2, made as one with

the tungsten anode. Thermal separation of the cathode and the

anode is provided by a large number of openings 3, which also

serve to feed cesium vapor into the gaps of the converter. Alignment

of converters is accomplished by washers 4 and rings 5 of aluminum
oxide A120 3. These elements are good thermal and electrical

insulators.

Anodes are installed in cylindrical shell 6 on insulators 7
of BeO. Commutation current is ensured by rod 8 and plate 9 of

bronze. The material of the end reflectors 10 is beryllium oxide
BeO. The electric generating element is fastened to load-bearing

plate 11 by welding; diaphragm 12 serves as the support of the end
of the element; sodium is fed and bled through openings 13, cesium

through openings 14. Cross section A-A shows the channel in the

end reflector for the passage of cesium vapor.

Figure 3.911 is another diagram for an electric generating

elemdht of a reactor. I

The fuel pellets 1 are installed in the shell of cathode 3
which is made as one with anode 5. The shell of the cathode
rests with one end on insulating disk 4. Anodes 5, by means of

insulator 6, are placed in pipes 7 and 9, which limit the moderator

8. End reflector 2 is also placed along the edges in pipe 9.

One end of the electric generator is attached to load-bearing
plates 11 by welding, the other rests on diaphragm 114. The current

is switched by rods 10 and plates 12 insulated from the reactor
by disks 13.

Stress analysis of converter parts

Many converter parts are similar to reactor parts; therefore,
they should be studied according to the methodology presented in
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Chapter II. A new element is the anode unit which experiences

thermal stresses.

.1 1

Fig. 3.94. Structural diagram of an electric generating element:
1 - fuel; 2 - end reflector; 3 - cathode-anode; 4 - insulating disk;
5 - molybdenum disk; 6 - insulating layers; 7-9 - steel shells;
8 - moderator; 10, 12 - switching rod and plate; 11 - support plate
of reactor; 13 - insulator; 14 - support plate of reactor; 15-
cesium input and output; 16 - lithium input and output.

Analysis of thermal stresses in the anode
package

6he anode package is a multilayer cylindrical shell which

experiences thermal stresses during warmup and operation.

Let us analyze the thermal stresses of a three-layer shell

shown in Fig. 3.95a. The initial data are given: geometric

dimensions, material, temperature gradient throughout the thickness

of the package. We should find the stresses •l' O'2' C(3" Our

analysis is basedm the assumpti.on that tne shells are tightly

soldered to each other. We sha~.l disregard stresses arising in

the axial direction, i.e., axl " 0. This assumption is permissible

in the first rough calculation which we shall study. Also we shall

disregard the differences in the shell radii, assuming R1 = R=

= R3=R.
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We shall set up one of 'he shell sections arbitrarily (Fig.

3.95b) and examine strain in the package relative to this section.

Obviously common deformation of the rings can be simply represented,

as shown in Fig. 3.95b. From the figure it is apparent that thermal

stress of the package leads to an increase in radius R. On the

other hand, common deformation leads to the appearance of different

reactive forces P of the layers (Fig. 3.95c). It is known that

with thermal strain the full strain is

tin + s"$

where et = aAt; At = t 1 -t 0.

Since e y= a /E, then

•+nl2 -+U -" 2 A12;

, 8yn3 ='ý+%A3 . (3.167)
B3

R20p2+ R. i

---

(a) (b) (c)

Fig. 3.95. Calculation of the anode package.

Conditions of strain compatibility in the circular direction

are
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•ynl = 6 :;n2 -- E~fn3 --- Eggn •IJ

(3.168)

or •.kGO if we assume that

hi.

where k is any k-th layer (number of layers i; 1 < k < i). Obviously,
these two conditions make it possible to solve the problem posed.

If we substitute the equation (3.167) into (3.168), we obtain

-_±aIAr1 --+2A2 ..

j9'l + a. at, + U,23 04
E1  -B- 3 T22

F, E3

(3.169)

Let us repres..nt this system in the form

E3 -- E, 3 = EE3 (a3A' -- fi At);
OGJ, + a92h2 + OfA 3 =C. (3.170)

If we solve the system relative to the unknown stresses
0qi' aq2 a T@32 we obtain

Al j2 A2 . 0j3ýA-

where

419



E3
e2, --e1 , o

A= B3, 0 --E1  E(lzEh+Eh)

h, h29, h3

E2 -- 2[E12 (ca2At - a1Art) + E3fh (a3&t3 -, at Al);

A2 = E1E 2 E61h, (alAf1I --a2At 2) + E h 3 (a3 At3 -- at 2)];
A3 = 1.E 3 [Elh I (a, At, - a.At 3) E h1.(aiAt2 "--uAt3)J.

Hence !

zi 
o

•I := E1 E.,h 1 (a1-A, - u:Af2) + E34h(a31!t 3 - a 2.t2 ).

2V2Elhil + E2h2 + -E343 .

a#--.E ~=E3 hj (aoht - (01-) + EA 2 (kaft2 - a3ta)Eth, + E2fi2 + E3~3
I I

E3 Blh! + E2h12 + E3/43

The stress in the k-th layer of an i-layer shell is

.1
V rjhj ((qtAti -- ctAfk)

SEihi (3.171)
I

whore the subscripts k, i are the numbers 1, 2, ... , k .. , i, which

is the solution to the problem.

The first evaluation of shell strength can be the general

formula for the safety factor

where n > 1.1.
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3.3. THERMOELECTRIC AND IHOTOELECTRIC

CONVERTERS

The pperation of a thermoelectric converter is based on theI I
thermoelectric effect.' If in a closed circuit, for example, of

* two different'semiconductors, we heat one junction and cool the

other,la potential dif!erence arises between them.

Thermoelectriic convertershaie a number of advantages. They

are compara~tively simple in design since they do not contain rotating

unbdlanced parts, as, Ior example, mechanical converters, and the

operating process is performed at low temperature, which simplifies

itheir use.

Disadvantages are :as follows.

Low efficiency. In present prower plants it'is 2-4%. This is
very low efficiency for power blants usdd in an extrateriestrial

engine.

All semiconductor materials of the' converters sublimate in
* outer space; therefore, they must bd•protected.

They have high specific weightiregardless of the capacity of

* the power plant.

SSince the mast of the power plaftt is proportional to its power,

these converters are used for generators of low and medium powers

(pp to 5 kW).

We presentla table of thb main semiconductors used in extra-

terrestrial electricrocket engines (Table 3.4) [41], [46].

P s is apparent from*the table, the gerzrnium-siiicon element

operates at comparatively high temperatures of the cold and hot

junction, Xs the most stable of all others in Vacuum, but has the
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worst efficiency. In the table the products of the quality factor
z times the temperature of the hot junction (t rC), which
characterize the efficiency of the element, are presented.

Table 3.4.

(2) (3) Teumiicl)ai..Ypt 0 G .t•O6l)AT
118 I~t~l(,1i111! V IOCTblla.•el', l~i i"el, ilm nlila 4opli,•.ia Xt~O'ln ropA~lerA l~'

ro CHa1H char s I
(4)- (5) (6)_

(7) fej).%iajiteIpe.oiutienbiii GeSi 210 850 0,6
800 0,4

(8) CniwjI'ejil ,oTe..l.p'p( B 'i PbTe 175 530 1,0
400 1,0

(9) rel)yaiiilesPle.!ii:enb~ii, l'tlun- GeSiPbTe 247 820 0,8
lATV.'VPOPU'i 800 0,8

(3O)CuI:lltuoBov.l'.1BTe.1.ypoBntii PbSnTe 2C0 650 1,0
C50 0,9

KEY: (1) Temperature OC; (2) Semiconductors; (3) Formula;(41) cold Junction; (5) hot junction; (6) Quality factor zt;(7) Germanium-silicon; (8) Lead telluride; (9) Germanium-
silicon, lead telluride; (10) Lead-tin telluride.

A lead telluride element has high efficiency but is not stable
in vacuum; the temperature of the cold junction is low, which makes
the radiator heavy. Two other elements have average properties as
compared with the first two.

Let us examine the classification of' thermoelectric converters.
Based on the structural diagram, they are made on converters which
are combined with a nuclear reactor or an isotopic source of heat,
converters combined with a radiator, and converters combined with
a heat exchanger.
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STRUCIURAL DIAGRAMS AND DESIGN OF CONVERTERS

Thermoelectric converter combined with an
isotopic source and a radiator

As is seen from Fig. 3.96, the heat source in this design is

a radioactive isotope 1 located in ampoule 2 and transmitting heat

to the hot Junction of the converter through the heat-conductive

packing 3 and the heat-conductive shell 4. Semiconductor elements

5 are installed on insulators 6 and are contained in hermetically

sealed shell 7, which is also the radiator of the device.

The materials in this design include the following: shells,
stainless steel or mc'ybdenum; insulators, beryllium oxide; heat-

conductive material, beryllium. Since the housing is sealed, it

is possible to use the highly effective lead telluride element.

The advantages of such a design are its simple and lightweight

nature; the disadvantage lies In the fact that it is difficult to
combine in one structure optimal cold-Junction temperature, which

is determined by the size of the radiating surface, and optimal

hot-junction temperature, which is determined by the power of-the

source and the heat-conducting capacity of many materials. We

should keep in mind that the radiating ability of the converter's

surface is not high. Obviously, it is difficult to in;roduce the

necessary parameters into this design since it is not easy to separate

into separate elements.

Solar thermoelectric converter combined with
radiator

A design using solar energy to heat the hot junction of the

heat generator is shown in Fig. 3.97.

Sun rays passing through the transparent cover 1 of silicon

oxide heat the heat-conductive plate 2 of molybdenum or aluminum

and the hot Junction p-n of element 3.
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Fig. 3.96. Diagram of a thermo- Fig. 3.97. Diagram of a thermo-
electric converter combined with elec'ric converter combined with
an energy s-urce and a radiator, a radiator.

The heat passing through the p-n element proceeds toward its
cold junction. To avoid dissipation, all p-n elements are placed

in insulation 4, usually fiber glass. From the cold junction the
heat is eemoved by plate 5, which has good heat conductivity, and
then by the brass honeycomb 6, which creates a stiff housing for
the entire structure and is fill-Rd with heat-conductive materials
for withdrawing heat from the radiating surface of the converter 7.
The radiator 7 is also covered with a thin layer of silicon oxide
8 to protect the surface from damage. As seen from the figure, this
device is not very thick, which ensures its successful use in
auxiliary power plants.

Thermoelectric converter combined with heat
exchange

A thermoelectric converter (Fig. 3.98) consists of shells 1
and 3, connected by corrugated spacer 2, insulator 1I, and a unit of
p-n elaments.
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In the figure we see internal commutation 5 of the stubs of

semiconductors and layer 6 which ensures the connection between

the different materials. The plates 5 are made of molybdenum;

the unit of p-n elements has the properties of ceramic materials.

The space between the stubs is filled with insulation 7.

The shell material is stainless steel or niobium depending

upon the woiing medium. The insulator is made from beryllium

oxide, the internal commutation from molybdenum, the external from

beryllium bronze, and the insulation from glass wool.

The advantage of this design is the optimal temperatures of

the cold and hot junction, the possibility of finishing the converter

in a "pure" form without other parts of the installation, the

I possibility of giving a transformer unit any applicable shape -

flat, axisymmetric, etc.

Fig. 3.98. A thermoelectric
2 ,$ converter combined with a heat

exchanger.

We know of a design [4ll of thermoelectric generator which is
mounted on a reactor without a liquid heat-transfer agent. The

reactor has a cylindrical core consisting of fuel elements in the

form of pr'ates of uranium dicarbide UC 2 with 90% U 235 enrichment
and graphite. The charge of U 235 is 49 kg. The core with maximum
temperature in the center of 177000 is circled by a radial reflector
of beryllium with four control rods located in the reflector.

42 5



A thermoelectric converter consists of .several thousand semi-

conductors filled with germanium-silicon alloy, arranged on the

outer surface of the reactor housihg, having a temperature of

10000C. The thermoelectric generator has four groups, -each Of which

includes four parallel circuits oftherinoelements. IThe powerof

the converter is N = 500 W with a current intensity of I = 88 A.

Heat removal is effected by cooling fins. The operating time of

the installation is 4000 hourý. The desipn of separate elements of

the installaticn is shown in Fig. 13.99.

Soldering (surfaces r, x) is a poss'ible'method oI connecting

the semiconductor elements , with the hot 2 and dold 3 uni~ts.

The purpose of the sylphon 4 in thiA designiis to hermetically

seal the cavity of the semiconductors. The main disadvantage of

this unit is the difficulty involved in soldering a large nuMberI ,I'

of unlike elements.

/ 3

r A . ..... .....I--'• ~-- ,, 4,:7 •Z 17 .. . "-' n!"

Fig. 3.99. Design of thermo- Fig. 3.190.. Design df a dismount-
electric converter elements. able thermoelectric converter.
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Figure 3.100 shows a simpler design for the unit connecting

the converters with,the housing parts.a The hot surface of the

conierter 1 and the hot surface of the 'housing 2 are not soldered.
A parting of the designbalyog the hot Joint, while simoplifing

' construction, leads to consaidesably higher heat loses thanswould th

Soccur in the prevvous case. he construction of a double sylphon

drin provides a sew f9r the7 cavity of the semiaondwrctor eoements

rand eufficient reinforcement of converter unit clamping during 8
: / ~warmup., ,!

a I

Figure 3.i01 showsu another method of Jowining the converter wlthr
Ithe housing parts. Semicondjctors 1 are tightly soldered to the

, = hot 2 and cold 3 shells of the housing27. r
I I

SleShell 2 is heated by liauid sodium, which is located in cavity

d. torrugated e e ement .4 compensates for the thermal strains oy f the

* a,

are Varlation in the volume of sodium during warmup is co upensated

of by the corrugated element 5.2 This same elemett,sby moving wal 6
during warh,!up, with foids 7 provides thermal power control. 1 The

a reverse motion of wall 6 is accomplished by pneumatic spring 8.3
42I

• From literary sources [4!1]' the following data on thermoelectric

; ! generators are known: operating temperatufres Tir = 582-59300; "
T• = 177-2O090; useful power N = 3-5 W; heat source power

*' ' NT= 96 W, efficiency n = 41-5%. The battery consists of,27 thermo-

, elementq of lead solenoid and.provides voltage V = 2.5-2.8 V.

!} ' Another instal~atiorq has a useful power of N = 250 W.' Thermo-

S~eledtric elements are made of PbTe (n-type) - GeBiTe (p-type);,they
•, , are instal'led •on the outer surface of a reactor housing (,32 groups

S; ~of elements, 211 pieces'in each group). 'All 768 elemehts provide , ,

,a voltiage of 28 V; Tr = 614100; Tx = 344°C0.

SI I
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Fig. 3.101. Controllable thermoelectric converter.

The following data pertains to a thermoelectric generator
combined with a radiator (Fig. 3.102): thermal power of the reactor

35 Kw, electrical power 500 W with a voltage of 28.5 V. Converters

are made of GeSi; temperature drop is from 1168 to 310'C. The

generator consists of 111,1100 elements which provide a power of

0.37 W and a voltage of 0.1 V each. The operating time of the

installation is 1 year.

1128

$



F

Fig. 3.102. Thermoelectric generator combined with a
radiator: 1 - reactor; 2 - radiator; 3 - thermoemission
power converters; 4 - piping.

Fig. 3.103. Generating element.

A unit of each generating element (Fig. 3.103) consists of

its own converter 1, piping with liquid hot meta'l 2, radiator 3.
The shape of the piping 2 is cyl ',drical to reduce the heat loss

and evaporation; a compensator for thermal strain in the form of

corrugation is welded to the radiator 3.
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Photoelectric Converters

In a photoelectric converter, frequently called a solar battery,

potential difference between positive and negative parts of the

semiconductor arises under the effect of light quanta. This is

caused by photons knocking out a certain number of free electrons.

Photoelectric vonverters are a widely known type of converter

for low electrical powers. They are widely used in various space

vehicles. Their advantages are the following: they are simple in

design and operation, provide "free" solar energy, and, therefore,

in some cases are irreplaceable.

KE): (() LIght.

3) 0,02.40

+ mAx6uIOXIO1-oxirOMM

Fig. 3.1041. Design of a photoelement.

KEY: (1) Light.

The disadvantages are the drop in efficiency of these elements

as a result of their irradiation in space by flows of charged

particles and the change in the composition and properties of a

semiconductor, as well as the degrading of the photoelectric proper-

ties of elements upon an increase in their temperature. It is

known that heating an element by 800C leads to a triple drop in its

power.

A photoelectric converter is made of selenium, germanium, or

silicon semiconducting elements. The most widespread are se.licon

elements because of their good spectral sensitivity to solar radiation

and also the highest specific power.
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Photoelement energy, by which we mean the ratio of useful

power to the power of the incident light, is determined by a number

of factors:

- the spectrum of the incident light,

- the optical properties of the surface,

- the technological factors and the quality of the semi-

conductors.

Photoelement efficiency is 7-10% [46]; the efficiency of a

power plant on photoelements reaches 4%. The voltage in these

elements is V = 0.4 V; current density is i = 1.8,10-2-5.10-2 a/cm2 ;

specific power is W = 0.72.10-2-2.0 x 10- 2 W/cm2.

Figure 3.104 shows a single photoelement. As is apparent from

the figure, the photoelement is a multilayer ceramic plate. On top

on the working side, it is covered with a glass-like optically

transparent composition 1, which strengthens and protects the element

from the effect of outer space. Also provided are an interference*

filter 2, a binding substance 3, a semiconductor of the 4p-type,

a semiconductor of the 5n-type, and commutation plates 6 and 7.

The base of the element is a silicon plate 5 with a large

nuiber of n-type impurities. On the top is a thin layer 4 of p-type

material. Layer thickness is several microns. Electrodes are

soldered: at the bottom, plates 6 to the entire width of the element;

at the top, only strip 7 to the p-element. Weld-'- io performed

after the application of the nickel coating to connect the ceramics

with the metal.

An external load is connected to these contacts. During the

illumination of the photoelectric converter a positive current

proceeds from the upper contact through the load to the lower contact.

The battery of the photoelements, with an area of 1 m2 and a
2useful area of 0.7 m located in a flow of solar radiation with

density S = 1000 W/m2 , makes it possible to obtain electrical power

431



of 140 W with allowance for all losses. The mass of the battery is

10 kg. The operating time is one and a half years.

A

F

A-A 5-5
•s 4 5 2 3 -

Fig. 3.105. Battery of a photoelectric generator.

Figure 3.105 is a possible version of the design of such a

battery. The photoelements 1 are placed in housing 2 of a light-

weight alloy by insulating layers 3 and 4. Layer 5 of a lightweight

corrugated foil provides the necessary panel stiffness.

We know [41] the parameters of batteries being developed or

being used on various earth satellites. The battery for a space

vehicle has the following data: area 2.76 m2 , power 150 W, mass

34 kg. Other photobatteries have an area of 21 m2, electrical

power up to 1 kW, and a mass of 130 kg.

In conclusion we should mention that it is advisable to use

photoelectric converters at comparatively low power (up to 1 kW)

and an operating period up to 2 years.
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CHAPTER IV

HEAT EXCHANGERS

4.1. RADIATOR-COOLERS

The purpose of a radiator cooler is to release heat into outer

space.

The radiator is an integral part of a space power plant since

heat radiation is the only method of heat exchange in outer space.

The radiator in size and weight occupies a considerable space

in the power plant. Radiator designs frequently determine the

effectiveness of the power plant as a whole and should be based on

the following considerations.

Radiator dimensions are inversely proportional to the fourth

power of its surface temperature. Therefore, the temperature of

the radiator must be the highest possible in order to reduce its

weight and size.

Under launching conditions the radiator must have the smallest

dimensions possible for installation in the carrier rocket. lt

must satisfy conditions of vibrational stability and pressurization.

In outer space the radiator must occupy a position which is shaded

by the reactor shield. Devices are provided which shut off a

certain section of the cooler when the pressurization has been

impaired due to meteorite punctures or other factors.
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Radiator coolers are divided into several groups baped on their

structural diagram. With respect to the physical state of the heat-

transfer agent, coolers are broken down into coolers with liquid

and coolers with gas heat-transfer agent. Exteaterr~strial rocket

engines usually use liquid-metal coolers in which the heat carriers

are metals. There are coolers with heat transfer by s'olid'walls

with no liquid heat carrier in the system.

Based on the component dia6ram, all coolers can be divided into

folding and unfolding.

Each of these designs can be made independent of the 6ther.

design elements, but can be combined with various units of.the power

plant or power converters.

Finally, liquid-metal radiators can have a sirgle-ph'ase or

multi-phase working medium, for example, two-phase when the radiator-

cooler is combined with a condenser and liquid metal is in the liquid

and vapor state. Let us examine several typical structural diagrams

for radiator-coolers.

STRUCTURAL DIAGRAMS OF RADIATOR-COOLERS

Conical rigid unfolding radiators

Figure 4.1 presents the diagram of such a radiator. It cornsists

of two collectors 1 to which liquid metal flowing along the pipes 2

is fed and drained. Pipes 2 are welded with radiating membrane 3

and, for rigidity, are fixed by frame 4. Shield 5 Is installed on

the inside of the radiator to protect the elements wilhin.

The adlvantages of this radiator are the design simplicity

and the possibility of using automatic welding for the units and

elements.

4¶4



!3

!5

I I

II

S| !

Fig. 411. Conical'rigid unfolding' radiator.
'II

The disadva'ntages aile the comparatively heavy construction

and'the ineffective use of the surface of radiation - heat exchange

i is performed on one side. The large space. inside the radiator is

virtually'unused. Sometimes, in this spaces starting .pumps and

heat compensation tanks are installed; however, the completely

empty space is nyt used. Such a design is applicable for low-power

extraterrestrial rocket enginbs [ERE].' Radiator dimensions are

outlined in the fairing of the launching carrier rockets,

There are considerable temperat.re gradients and, consequently,
stresses in the radiator in working mpde. We should consider this

factor when the radiator*is switched to the power circuit of the

power unit; 4nalysIýs should also include launching conditions if

the radiator is receiving launching loads.

Cohical flexible unfoldin'g radiators

In this diagram (Fig. 4.2) the pipes 2 carrying the heat-transfer

agent and collectors 1 are welded into one unit, which bears no load

during launch except ýhe load of its own mass. In the operating

state the pipes experience thermal stresses which musý be calculated.
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Fig. 4.2. A conical flexible unfolding radiator.

The stressed frame which connects the radiator with other

elements is a closed thin-wall conical shell 3, which, in order to

increase rigidity, is under the pressure of neutral gas. The shell

has rigid flanges 4. The side surface of the shell is a supplementary

radiating surface. The shell is welded to one of the collectors.

The a.vantages of this system is the low weight of the radiator

and the possibility of reducing thermal strains as compared with

the preceding diagram. The disadvantage is the one-sided use of

the radiation surface. This diagram, as the preceding can be used

in a low-power ERE.

Flat unfolding radiators

These radiators (Fig. 11.3) consist of two collectors 1 to which

the F tal is fed and drained, cooling pipes 2 to which !he radiating

surfa es 3'are soldered. Each plane of the radiator consists of

several (four on the diagram) panel sections connected by hinge 11
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The hinge 4 and its gasket 5, 6 provides for the hermetic seal

of the radiator in launch conditions, the folding of the radiator

and the hermetic seal and attachment of the sections in working

folded conditions. Usually there are valves in the hinge unit

which cut off the output of liquid metal wheni a radiator pipe is

punctured.

I A-A

Fig. 4.3. A flat unfolding radiator.

The two planes of the radiator in launch position are folded

along the axis of symmetry and are kept from unfolding by a light

shell which is eJected in space.

The advantage of this design is the possibility of obtaining

an effective radiator of practically any size. The •wo-dimensional

shape of the radiator is convenient for the best use of the radiating

surfaces and for protecting the reactor from radiation.

A disadvantage of this design is its great complexity as

compared with the previous design discussed. Metal losses are

inevitable when unfolding to operating mode in space.
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Folding conical, radiators.

As seen from Fig. 4.4, these radiators cons'st of a toroidal

frame combined with collectors 1 and 2, radiator prnels 3, hinges 11,

,ahd flexible elements 5.

Fig; 4.11. Folding conical radiator.KEY: (1) View.

In the launch state (Fig. 4.4a and b) radiator panels 3have

the same contours as the carrier rocket fairing. In operating state

the panels unfold at hinge 4 of "dry" design, without being washed

( by liquid metal, which is an advantage. The seal of the panels and

Scollectors 1 and 2 is effected by corrugated -element 5. The pipes

and the membranes of pangl 3 are made as in the earlier discussed,

diagram.

The advantage of this radiator is the comparatively simple

des3ign. The entire surface is used for radiaticn. There 'is -no metal

loss in the unfolding mode.

' ~The disadvantage ib th. difficulty in protecting the radiator from

reactor radiation; therefore, its use is limited to power plants where

the ir'radiation is permissible. Tise co!,.paratively large mass is also

a disadvantage. This radiator is used in low-power installations.
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High-power unfolding conical radiators

A conical radiator (Fig. 4.5) folds along collector 1 located

perpendicularly to the axis of symmetry of the, radiator. The

diagram shows the flow of the working medium along pipes 2 connected

by connecting pieces 3.

The advantages of this radiat•r are the small launching size,

the almost complete use of the surface for radiation, and the good

positioning of the radiator relative to the shade screen of the

reactor. We should note only the somewhat complex design of the

radiator, as a whole.

F

I

I~ti _________ /

Fig. 4.5. High-power unfolding conical radiator.

Radiators combined with thermoelectric power
converters

The diagram (Fig. 4.6) gives an example of such a radiator.

Heat removal is accomplished by fin 1, made of aluminum and protected

from sublimation in vacuum by a. special coating. Heat passes to

the radiator along a brass stub 2, soldered to the cold end of the

thermoelectric generator 3.

Such a design is applicable for radioactive isotopic sources.
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energy converter..
KEY : (1) View.
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Radiator element design

Figure 4.7a and b shows the typical design bf assembled r:adiator

collectors. The shape of the co.llectors is determined by the method

of assembly and inspection. Obviously, a seam can be welded and

checked reliably when the structure enables. inspection from tWo

sides. This is particularly important for the seam holding piped

1. This is why the pipes are welded to halfof the collector 2 i

first and th',: the collectors 2 and 3 are welded. For ,this both,

halves of tte collectors have' special crimps.

The shape of the radiating surface is shown ini Fig. 4.7b. A

thin aluminum or steel shell is welded oi. soldered to stainless

steel, niobium, or molybdenum pipes.'

The critical element of Ithe radiator is the binge, joint which'

provides for the unfolding of the radiator sections in spaced.

44o
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-Fig!. 4,.7. 1Design of, radiator elewants.
KEY: (1) View.

In ~Fig. 4l.,7d this joint is shown in t' bower p'lant starting
stage. The vacuum of the radiator and tt . h~ermetic seal of' the
'units are ensured by 'a thin membranf 1_, -elded to' two 'of its sect-ions

I II

2 and 3i This membrane does not in ' rwith the' unfolding of
* ~the radiator after launch. By intensifying spring 4j t~e sections

are unfolded in -space. In drder to facilitate breakaway, the

"1 I I ,

'membrane is notched.

a I -- TI-

The,clearances uih the hinge af'ter unfolding are sealed by

N I

baffle 5. 'rhisiseal is, not clompletely airtight.,'It isx designed

I II

* * to operate qnly during warmup and launch. The hermetic seal of the
4 4

hig nti okn oiin is vddb liud-ea isea

I I '

a 1

* 'Fg.,7:eino rd ato lmns
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point does not exceed the temperature of the heat carrier in la nching

conditions. If this temperature is 150-2500C, the metal of the

seal can be lead (melting point approximately 3000C).

During warmup of the radiator in space the metal melts. The

increase in its volume during melting and warmup leads to tight

clamping and to the subsequent welding of shell 6 to pin 2. Thus,

the hinge unit becomes completely airtight during the operation of

the insulation.

Stress analysis of radiator elements

In radiators the thermal loads causing thermal stresses are basic.

In studying thermal stresses in radiators, we shall, as before,

assume that a steady flow of heat is passing through a part. Thus,
the temperature gradient along a section of a. part will also be
steady.

We shall further assume that radiator elements are operating
in the elastic stage, i.e., plastic deformation will not be studied.

The stresses obtained are compared with the characteristics of
the stress-rupture strength of the material, i.e., we shall determine
the strength (f radiator elements with allowance for their temperature
and'operating time.

Radiator pipes are heated nonuniformly, which is the reason
for the occurrence of stresses. For their first approximate
evaluation the radiator diagram can be presented as shown in Fig. 4.8a.
A certain number of pipes having different temperatures are joined
with the collectors. Let us assume that the cross sections of pipes
F and the coefficients of linear expansion a are identical. During
power plant operation the average pipe temperatures are different,
which causes axial loading on individual pipes and can lead to
stability loss in the compressed pipes. There is a substantial
nonuniformity of temperatures along the axis of separate pipes, a
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nonuniformity of temperature distribution along the cross section,

which leads to additional stresses.

For the first evaluation of radiator pipe strength the following

calculation should be made. Tensile and compressive stresses for

the most heavily loaded pipes, which appear as a result of nonidentical

averaged temperature, should be evaluated. Based on the forces of

compression, their stability should be evaluated. Then we should

evaluate the stresses which appear as a result of the presence of

temperature gradients along the axis of symmetry of a pipe and its

cross section. And, finally, the stresses occurring in the pipe

where it is braced to the collector are evaluated. The last calcu-

lation will not be studied in this section. Similar problems will

be examined in Chapter V.

Fig. 4.8. Radiator diagram.

Thermal stresses in radiator pipes with
nonuniform heating

The ends of the pipes are rigidly attached. This case is of

interest from the point of view of the appearance of stresses in a

pipe under the worst possible conditions. The following are given

E, a, F and At, where At = t - to.

Temperature At is averaged.' This temperature along the axis
of the pipe is a variable quantity,
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~'~;+ f~dx.
0

The subscript "cep" [cp = average] with t will be omitted below.

We know that relative strain in heated parts is

where et is the thermal strain of a free part due to heating;

ey is the elastic strain of a heated part, which appears as

a result of constraint and overlapping of connections.

The separation of these strains is one of the problems of

analysis since the stressed state of the element is determined only

by component ey. The value of strain t is known.

In the studied case the rigid attachment of the part results in
= 0; then = - = -aAt and stre.3s in the pipe is

a=-EnAt. (14.1)

Thus, with a rigid attachment the pipes thermal elongation

leads to the appearance in the attachment of compressive forces

of reaction (Fig. 11.9).

Example 4.1. Find the stress in a steel pipe rigidly attached

on the edges during its heating to 1000C. It is known that

E = 2.106 daN/cm2 , a = 10"10-6 1/ 0 C. Obviously, a = -10'2"100 = -2000
2daN/cm

As is apparent from the example, thermal stresses can be
considerable even at such low pipe heating temperatures. In practice

considerably higher temperatures are encountered; the preservation

of design functioiality is explained by the fact that under actual
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conditions there are no absolutely rigid pipe fastenings and also

the plastic deformations which occur lead to a redistribution of

stress.

L ~AL

Fig. 4.9. Determining thermal Fig. 4.10. Determining thermal
stresses. stresses.

Let us examine stresses in pipes which have a movable attachment

(Fig. 4.10).

The stresses are in two pipes connected by collectors. The

following are given: al, At,, El, F1 . Find al, V 2, PlP P21 a2J

At 2 , E2 , F 2 . Initial conditions will be:

al=sq; Ep,=-O. (4.2)

Generalized strains e are made up of thermal and elastic strains.

Thermal strains in the pipes will be

A ---La ItI; -112 ==La2tt2.

Elastic strains in the pipes, caused by forces P, will be

Al11 2 =P 2 L

We allow for P1 + P2  0 or P2= -Pl, .s well as P = oF. From

the first condition
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P l -- u A - - a .' •
U1 1.

- I± -+

EIFI- E2F2

Finally,

al.At - a)t 2 6 l.ll - a,.At)

F:1 + 12 +
( ( I I

( IF -- 2 ( Ki +F IP-2F2  (4.3)

Thus we obtain the unknown forces and stresses in the pipes.

With a larger number of pipes the problem is still so)Jed similarly.

Mobility of the attachment appreciably reduces stresse. in the
pipes, which is apparent from the following example.

Example 4.2. Find the stress in pipes which have the same

parameters and operate under the conditions in the preceding.

example (example 4.1).

Since al = a2; E1 = E2 ; F1 = F2 . formula (11.3) will have the

form

U 0 =-aM- -S1t2" =- Ea(tl t2),

2/E

where At1 - At 2 = t1 - to - (t 2 - to) t1 - t 2 .

Thus, the free attachment of two pipes reduces the stresses

in them by half.
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The stress and forces in pipes in the general case. Let us

examine three pipes.

The following are given: al1F 1Atl; a 2 F 2 At 2 ; a 3 F 3 At 3. Find

a1, 02, a3.

The basic initial conditions for setting up a system of equations

reduces to the two equations:

AL- +AlV= const.
•PI=O, (4.4)

or, in simpler form,

2,,•+z,=-const; j Pj=0.

Let us write expressions for thermal t and elastic eyi strains

in the pipes. All strains and elastic forces are considered positive,

i.e., oriented on the x-axis (Fig. 4.11). The actual sign of the

forces and strains will be apparent after solving the system of

equations.

Thermal and elastic strains are

PI PI

-7 1  _E Ai*

' ~P2., •12 ==•2•2;92 =' I'-,.42

A3

where A1 = 1El; A2 = F2 E2 ; A3  F3 E3 .
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Fig. 11.11. Determining thermal_______
stresses in the general case. t

In accordance with condition (4-41), we set up the following

system of~ equations:.

A1  A2

A1

P 1+ P2 +P 3 = 0.
Or, in more detail,

P1 A2 - P2A1 =AiA2(a.,At 2-a1 At,);

p I+ p2 + p3==O.

Hence

Al p..~
.1A' A

where

A,; -A; 0

A3; 0; -A1 -IA -- 2 A)

A3 = I A3 (~ (a1At1 -Sa.t3 +- A2 ( '2A," - cz3At3)1.
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SHence I
I

.A A 42 (C-t 2 - aCL.t) + .43 (a-•3 -- alart)
P, A Al +.42 +A 3

P2 - A'Ai (C - a2!-%12) + .43 (a3-ts_3 U2 -162)
. -"2Al + A2 +A3

Al +A 2,+ A3

I !

The condition in the k-th pipe in the presence of i pipes

I I

I~ ~ ~ 2 A n('Yf-h~h
I' ,

1 9 I I I

where subscripts n, k, i are the numbers;n = 1, 2, 3, ... , k, ... , i.
4 '

The value and sign ofstresses are thus:2L _ ;, =. ..
- 2  P3 *Pk

I For extended pipes the safety factor is determined from formula
I I

1= 1,=-2-----.
Gma:

SThdrmal stresses in radiato:r pipes with a
temperature gradient in the cross section.

4
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In the cross section of pipes and radiator elements a certain

temperature gradient is established which leads to the appearance of

thermal stresses.

The following is an approach to solving this problem.

We shall fix the element rigidly in the axial direction. Then

elastic and thermal strains will equal each other, i.e., AL =A.

Let us find the stresses in the element in this position.

The application of bonds leads to a disruption of the boundary

conditions of a free system. We restore the boundary conditions by

applying to the system a force equal to the reaction arising in the

attachment, but opposite in direction. Let us find the stresses

from this force. They will only be elastic.

Y 3'

Fig. 4.12. Symmetrical temperature gradient.

It is completely obviously that the sum of the stresses of the

first and second calcolations gives us the real thermal stresses

in the element.

Examples of gradients can be very different. Let us examine

the first case when the temperature gradient is symmetric (Fig. 4.12)

relative to the axis.

In the presence of such a temperature gradient throughout the

cross section in a free, unattached elemen't, thermal stresses arise.

We shall evaluate these stresses.
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Fig. 4.13. Determining the stresses with a
symmetric temperature gradient'.

Let us assume that this cross-sectional temperature gradient
will be preserved for the entire length of the element (Fig. 4.13).

The following are known: E, a, At; find stress a.

If we represent such an element in the free state, its elongation
as a result of healing will be proportional to the temperature
gradient; c -- aAt, where At = t - t0 is the temperature variation

with heating. If attachment is effected, compressive stresses

(1 = -EaAt arise.

The diagram of compressive stresses will accurately trace the
temperature gradient and will be identical in any section of the
fixed element.

Let us find the stresses arising in the element if we free it
from attachment. For this we apply tensile stresses to the ends of

the rod, which ensure zero stresses on the ends.
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o> Fig. 4.14. Stress diagrams
during an asym~metric •temperature , 7p. .. radient, M"

y P

•-These st~r~esges can he created by force

hiPRK

--= E l dy,

wht>.h at a sufficient distance from the end cause uniformly distributed

stresses

h1 2

-#:' ( 4.6 )

Thus, nonuniform symmetric heating of a free element along its'cross section" leads to the appearance of stresses which'are de.ermined

from formula

h2

P-a~i dy,(4.7)
-h12
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Figure 4.13 shows a diagram of stresses along the cross sectInn

and alonit the axis of the sample.

If' cross-sectional temperature distribution is not symmetric,

we first proceed as before. After implementing a rigid attachmnht

for the element (Fig. 4ý.14), we obtain, as earlier, stresses ifn-

the cross section a1 = -EaAt.

Now we free the element from its attachment; in order to preserve

the boundary conditions, we apply to its ends tension P.. We obtain

hj 2

=. - .r EU.Atbdy.
-•h 2

Bending moment M, which arises due to the asymmetry of the

stresses on the ends, is

h12

. EcAtbydy,

and bending stress, as a result of this moment, is

h12F. EaAby dy.

This, full stress !.n the section is

1012 h,2

-I~ Eattb dy.+ EaMtb dy.
-A/2 -, -... ... . 4 i-8 )

The stress diagram is presented in Fig. 4.114.
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1 I

Thermal stresses in a flat radiator panel

I I

The-purpose of calculation'is to find a based on knoi~nE,

a, At.

a) Pure -bend. We sha~ll, derive the eqdation for the foi'ces of'

elasticity in a rectangular plate.

We know that if we heat a free- quadratlic rectangular plate so

that the temperature through the *thickness will vary accor~ding to

'linear law, and -in the plane parallel to the: plail~es surface the

:temperature, ~wi-rl, -be- -constant, i eformat-ion- -of--the- -layers- -re-at-i-ye- ito-

the~ middle surface will be A'- :ric and thmiddle surfac?- will
have the shape of a spher~e,. *

A similar character of plate deformation is obtained when

distributed bending moments are applied along, the odees of'a free

plate.

In those cases the bend of the plate iic two.mutuanly perpedicularle

directions will be a pure bend similar to the bend of a prismatic

rod in accordance with therhypothesis of the preservation of a two-

dimensional shape for the- cross sec~tions and their rotation relative

to the neutral adxis and their normality to the elastic curve during

bend. This case is well known; thereforen, we shall begin- with it.

Let us examine the bend of a plate by distributed bending

moments applied along the contour.

Let the xy plane be combined with the middle surface of the

plate until its deformation. The x- and y-axes, will be-directed,

as shown in Fig. ch.5, along its edges. The upward dir6etion is I

taken as th~e positive direction of the z-axis. Through ff W&
designate the bending moment per unit length acing along the edges

parallel to the y-axis. Moments will be positive if they are directed,

as shown in drawing, i.e., compression occurs on the upper surface

I !

of the plate and extension on the lower. The thickness of the plate.

n i

to te nutrl. &is nd heirnoraliy t th *s credrn

bed hscs i elkon teeoe esal bgnwthit



wit the ote iesin.1

I

I S

a A

is designated h; •e sh~ll assum• it to have a low valie. as compared

S with the Qther dimensions. i

Fig. 4.15. Codrdinate axes. H

a I " IIsZ

We shali ýexafiein an element-taken from the platel as shown

in Fig. 4.16a, with two pairs of surfaces parallel to ýhe xz andc yz planes. Since distributed moments act on the plate contour

(Fig. 4.15), only these moments will act at any point.

Let us assume that during bend the1 lateral faces of the element

,remaih flat and turn relative, to the neutral axes in such a manner '

that they remain normal to the curved middle ,surface of the plate.

This means that the middle surface will not be subjected to

a stretching during thelbeqd and that, consequently, the middle surface

will. be the neutral. surface of the plate at the sameitime:
a I a

d I

Ila

dz2

' aI

Fig, 4.16., Plate element.
1 I A4 I55
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We shall use Hooke's law for a two-dimensional stressed state:

or

Let i!rx and !/r designate the curvature of the neutral
x . y

surface in sections parallel, respectively, to planes xz and yz.

Let us find the relative elongations- in ,directions x and y for

elementary layer abcd, which is distance. z from the neutral layer
(Fig. 4.16b):

a'b a-ab (r 1 +z) d--rxdq "- ;z

ab- ex. dq

similarly y-= (z)/(r y).

We obtain stresses in the layer:

Ez I

p2 IL
ryJay z I+1 L . (4.9)

Thus, stresses ax and a y are proportional to the distance z

of bhe abcd layer from the neutral surface aitd depend on the curvature

of the curved plate. Stresses (4.9) caused bending moments Mx and

My, which &re applied to the plate (Fig. 4.16c):

I/2" h12
ax= z dy 7,uz dx dz.

-.42 --'h12

-456

456



We substitute the value of a- and y and allow for the fact thatx y
x= (Mx)/(dy), My = (My)/(dx). Then

h/2

-- --

-- h.
12D ---- ( -

rx "+ ; (4.10)

similarly

-- "+ I

E43
where D is the cylindrical rigidity; D =

w is the deflection of the plate in the direction of the z-axis;

rX ry

The expressions obtained enable us to conclude that the maximum

stresses are obtained on the surface of the plate with the substitution

of z - h/2 into equation (4.9):

i2 )MAX

In the problem which we are studying, Mx = My = M; then

r 12r(I-F)
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i.e., the plate bends along a spherical surface whose curvature

is defined by the quantity 1/rx = r = 1/r. The stress

ax cay =a= 6f/h2

- A tc

b ~tb *At x ~ 3 8 a

4Z

) (a)

Fig. 4.17. Determining the temperature gradient.

Let us examine the deformation-of a plate during thermal loading.

If we read the temperature from the middle surface of the plate,

assuming that on one side it is heated and on the other cooled,

it is natural to concluae that the thermal deformations of expansion

and contraction will be proportional to the distance from the middle

surface. Consequently, we arrive at the same deformation law as in

the pure bend of a plate by bending moments.

If heat is supplied to and drawn from-a plate which is uniformly

heated to temper, .ure to, as was shown in Fig. 4.17a, it can be

established that in the steady thermal mode the temperature variation

along the thickness will be linerr, while the temperature of the

plate's neutral surface will remain constant, i.e., be equal to

Such a temperature variation in a section causes analogous

thermal deformation. These daformations in an unattached plate will

be proportional to the distance from the middle surface; thus, the

law of variation for thermal deformation is completely identical

to the law-of deformation with a pure bend by bending moments.

Figure 4.17a shows the temperatures of a plate element during such

heating.
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In the calculation the following temperature gradient, will be

encountered: Atc (z), At and At., determined according to the

formulas

where At (Z) is the current value of the temperature gradient along

a panel cross section;

Atc is the limiting value of the temperature gradient along
apanel cross section which, for the problom studied, is identical

on both surfaces (a and b) and differs only in sign;

At is the total temperature gradient - the difference in tempera-

tures of surfaces a and b of the panel.

This gradient is easily determined experimentally. The strained

and stressed state of such a panel, free from support or attachment,

is easy to find,

The thermal deformation of a section is

it(Z 1 _=z-

2 h12 h7

h

Such a panel will be zero since there is no containment by these
deformations (Fig. 4.17b). Obviously, thermal stresses arise when

thermal deformations are contained. Let us examine the extreme case

when-a panel is rigidly attached along the perimeter. In the

attachment reactive moment arises (Fig. 4.17c) C = 0; =-et;

if we equate the known values of e and et, we obtain

z a1z
- - hence

hr '
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then
"- D(0 + ) B&3 ( +,u) aAt EAh!ac

r 12(1 - )'

hence

6,1! Ealt EaAtc

h2 2(- -JA-
(4.12)

As is apparent from the formula, the stresses are identical to

stresses occurring in rod elements. The factor 1 (1 - p) shows

that our element is a plate.

Let us examine what kind of stress and strain state there will

be in a panel if the temperature along its cross section changes

according to a more common but linear law.

The law of temperature variation shown in Fig. 4.18a differs

from the earlier examined law in that the neutral surface of the

plate is heated.

ta

Atc(z) X (b)

t P R~- 0R)(C)

a) (a).

Fig. 4.18. Determining stresses in a plate.

Let us examine the stresses and strain of surface a when the

panel is free from attachment. The temperature gradient will be

equal to the sum of the two value-
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Altat 10o/cp + Atc to &tcp±+A4t,

where At is the gradient occurring on the neutral surface of thecp
panel as a result of its heating. Thermal strain is

-=a.--aAtCP + aAtc.

Stresses in the panel a0  0, since e = st + cy = Ct. The shape of

the panel after warmup is shown in Fig. 4.18b by dashes.

The limiting value of thermal stresses is found if the panel

is rigidly fixed. Then if we examine surface a,

-!, y= aAt '- a~tc. (413

Stress

Ealtcp EaA~e

I -• 0 -P)
(4.13)

For surface b

EaAtcp! Epa9

b) The bend of a free plate with an 4rbitrary law of temperature

variation for the cross section (Fig. 4.19). The strained state

of the plat. depends on the temperature gradient on its surface and

through its cross section. With a cumplex nonlinear law of temperature

variation in the cross section, thermal stresses in a free plate

will not be zero. The temperature gradient in the cross section

At(z) t - to.
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Then instead of At(z) we shall write At. In order to find

the stresses nearer the edge of the plate, we proceed in accordance

with the general rules examined above.

ta i
z t z pi

p, XP

,A P H. 1/

t At(z) 41

Fig. 4.19. Determining stresses in a plate.

After attaching a cold plate rigidly along the edges (Fig.

4.19b), we heat it. Compressive stresses will arise:

East

and in the attachment there will be the forces and moments of free

action Px, Py, Mx, My. In order to ensure the boundary conditions
of a free plate, we apply the forces Px and Py to its edges; we

obtain near i.ts attachment the tensile stress

h12

OY2 1 EaAtb dz,
-hj2

where F = bh.

The formula for ay2 will be similar.

Let us note that for a rectangular plate ax2 can be un-

equal to ay2" After applying bending moments Mx and M which

"compensate the asymmetry of the temperature field, we obtain the stress

1462



-. ~ I

h12
!

I =3 EaAtbzdz.

4

The value ofay 3 ; is written similarly; thus, ifinalily,

-IV ! l EdAtbd: \ - \ Eutb.
-h12 -h?2

(4.14)

The safety factor: of the plate is

I a t__L- "" where z 3 -- M

Ima

I

4.2. AEA[ EXCHANGE EQUIPM1ENT

', I
.As was shown, in-Chapter III, the thermal energy obtained in

any energy source (for example, in a nuclear reactor) goes into

heating the working medium and obtaining vapor which drives the steam

turbine .and the electrical generator connected with it. Such a

power cycle of convepting thermal energy until electrical is not

possible without a continuous heut supply from the energy source to

the receiver. Energy transfer can be effected directly by the
1working medium (heat transfer agent), but more frequently it is

performed in heat exchange equipment with the aid of a heating

and a heated transfer-agent.,

Based on the type of thermal process, heat exchange equipment

can be divideainto the following three groups.
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Heat exchangers in which the heat transfer agents do not undergo

a change in aggregate state (regenerators, coolers of gas turbines).

Condensers and evaporators in which one of the heat transfer

agents changes aggregate state. In the first case, the heating

transfer agent is condensed and in the second the heated agent

is evaporated (condensers of steam turbines, regenerative preheaters,

various evaporators).

Condensers-evaporators in which both heat transfer agents undergo

a change in aggregate state; condensation of the heating agent

and evaporation of the heated agent occur.

As heat transfer agents in space power plants, as a rule, liquid

metals are used (mercury, sodium, potassium, sodium and potassium

alloy, lithium, bismuth, lead, lead and bismuth alloy, etc.).

¶ Liquid-metal heat transfer agents have relatively high boiling

temperatures, which makes it possible to maintain low pressures in

the power plant loops. This is particularly important for space

power plants where heat removal is possible only at high temperatures.

Moreover, the extremely high intensity of heat exchange in liquid

metals provides high power output from a unit volume of the reactor

core. Liquid metals, as simple substances, are not subject to

decomposition and allow a virtu'.ally unlimited increase in the tempera-

ture and intensity of irradiation in the installation.

On the other hand, the high necessary temperatures of the liquid-

metal heat carriers and the requirement to provide high reliabilit?

for heat exchangers intended for extraterrestrial power units (because

of their operation without servicing for a long period of time)

leads to strict requirements on the design of heat exchanging equip-

ment.

This equipment should ensure the most effective process of heat

transfer with the ininimum design weight and acceptable hydraulic
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resistance in the channels, as well as high reliability during;

prolonged operation.

Operational reliability is achieved by an absolute seal

to prevent, the mixing of the heat transfer agents in the

first and second loops. This is connected with the induced y-

activity acquired by the heat carrier of the first loop in transit

through the reactor as a result of the action of neatron flows.

Furthermore, with a breakdown in the coating density of the nuclear

reactor fuel elements, the heat carrier of the first loop can be

4 loaded by nuclear fuel fision fragments.

Through the active reactor core, along with the heat carrier,
pass the products of the corrosion and erosion of the structural

elements of the first loop. The radioactive isotopes formed in this

case can settle on the walls of the piping and the heat exchanger,

raising the radioactivity of the loop (to control this phenomenon

in the first loop a special purification system for the heat transfer

agent is usually provided).

Strict requirements for the seal of heat exchange equipment

are also dictated by the danger of the contamination of the heat
carrier in the first loop by foreign matter from the power loop,

which can cause a breakdown in reactor operation.

To provide a seal for the heat exchange equipment during prolonged

operation it iZ recommended to weld all connections. Seal is ensured

by the selection of appropriate manufacturing procedures and quality

inspection methods (operational control) for the welded Joints. To

check the seal vacuum tests are made on the item as a whole and

the welds are inspected with a helium leak detector or by other

means.

Most frequently damage appears at the location of welds on

pipes as a result of thermal stress occurring during operation.

Therefore, in addition to quality welding technique, it is nece3sary

to provide structural measures reducing these stresses to a minirnui
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I I
which is done by introducing into the design various compensators

for thermal strains. : -

It goes without saying that the materials of neat exchange

equipment should satisfy the requirements of compatibiltty with'

heat carriers and possess good weldability, high thermal conductivity,

and sufficiehn strength.

Structural diagrams of heat exchange
equipment f

In nuclear space installations recuperative (surface) heat

exchange equipment is used, as a rule.

There are various structural diagrams for heat exchangers. The

simplest is the pipe-in-pipe (Fig. 4.20, -4.21, 4.22). Such heat

exchangers have only one channel for passage of the heating and the

heated transfer agents. Equipment of this type with straight pipes

can be rigid (Fig. 4.20a), with compensatiQn by flexiblev elements

(Fig. 4.20b) for-the difference in lengths and with the use of'a

reverse hieat exchange pipe (Fig. 4.21).

r~i

(a) a) (b) 19

Fig. 4.20. Straight pipe-in-pipe heat exchanger:
a - without compensator; b - with compensator.

Equipment with bent pipes can be of different designs. The

simplest is the U-shaped design (Fig. 4.22a) and 'the design in the -'

form of flat (Fig. 4.22b) and spiral coils.
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, I II

~tt J acket-and-pipe heat exchan}ger wqipmen is tue deelpmnt boe rigi

: ' '(Fig. 4:23) with csmpen~ation for the thermal elongation'by flexible

,elements (Fig•. 4W.24a), with a hloating, head (Pig. I4.24b)land with

, ~reverse heat exchange| tubeb,(Fig. 4.24c).

--- -- - - --- &.

I

N

Fig. 4.221. Hieatexhnge-itpinl rvre heat exchangeý:a Usae!

I, pipeI

I I I

Jacg.et22.ndPpeiipe e heat xcageexchaznget i a -dU-shapment 'o !h

'b -c n the forn, of a flat coil. t

Equipment3with c ent pipes must have U-rhaped pipes, a common

elempe Fanelan 2 cylindrical Jacket (Fig' h..25a); U-sha(ed pipes andw
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a U-shaped jacket (Fig. 4.25b)-; n-shaped pipes (Fig. 4.25c); pipes

arranged between the parallel pipe panels in a cylindrical jacket

and having a sinusoidal bend (Fig. 4.25d); flat coils (Fig. 4.26a)

and spiral coils (Fig. 4.26b).

Fig..11.23. Jacket-arid-pipe
heat exchanger with straight
pipes of rigid construction.

a) (a)

Fig. 4.24. Jacket-and-pipe heat exchangers with compensation
for thermal elongations: a - with pipe covers and compensator
on jacket; b - with floating head; c - with reverse heat
exchange pipes.

To increase heat removal and heat exchange effectiveness we can
develop the heat exchange surface by increasing the perimeter and
and length of the channels separating one heat exchange agent from
the other or by changing the shape of the channels (Fig. 4.27) and
increasing their number or yet by forming an additional surface
with ribs, pins, coils, etc., (Fig. 4.28). The effectiveness of
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the additional surface depends on its geometric s!pe, the heat

conductivity of the material, and the method of jotning elements

to the main surface.

a, I
a) (a)c0(b

Fig. 4.25. Jacket-and-pipe heat exchangers with bent pipes:
a - with U-shaped pipes and a common pipe panel; b - with
U-shaped pipes and a U-shaped Jacker; c - with fl-shaped
pipes; d - with sinusoidal bend.

For this purpose there are installed longitudinal and lateral fins of

various shapes (Fig. 4.24b, 4.29) or pipe covers which increase the

path of the heat exchange agent in the interpipe space (in the first

case) or increase the rate of flow of the pipes with the heat carrier

of another loop.

In order to ensure the normal operation of a heat exchanger under

weightless conditions during space flight, devices for twisting the

heat carrier are found in each tube.

All these measures in,'.rease the heat transfer coefficient and

reduce the size and weight of the heat exchanger.
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The mechanical strength of heat exchanger design is affected by
thermal elongations of the parts, thermal shocks and vibrations,

particularly during alternating modes and emergency jettisioning

of load, (the heat carrier temperature variation occurs much more

rapidly in nuclear installations, in some cases, than in ordinary

power systems). Therefore, in the design of the nodes, compensation

for thermal elongation must be provided. This can be done in various

ways:

- installing a compensator on the housing (see Fig. 4.24a);

- connecting the pipe panels to the housing through flexible

elements (Fig. 4.30);

using a "floating" pipe-panel (see Fig. 4.24b);

- using reverse heat exchange pipes (see Fig. 4.21, 4.24c);

- using U-shaped pipes in cylindrical (see Fig. 4.25a) or in

U-shaped (see Fig. 4.25b) housings;

- by giving the pipes a bent shape for self-compensation in

operating conditions (see Fig. 4.25c, 4.25d).

LI

f I
a (a) (b)

Fig. 4.26. Jacket-and-pipe heat exchangers: a - with flat
coils; b - with spiral coils.
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£D (a)

) (b)

Fig. 4.27. Increasing the surface of the channels:
a - by distorting the channel axis; b - by radial
corrugation.

Ziai

C.

7 7 3 5 6 7

Fig. 4.28. Different methods of increasing pipe surface:
1 - circular pins with a staggered arrangement; 2 - circular
pins with a corridor arrangement; 3 - elliptical pins with
a staggered arrangement; 4 - elliptical pins with a corridor
arrangement; 5 - short disk ribs; 6 - high disk ribs; 7 -
short spiral ribs; 8 - high spiral ribs; 9 - smooth pipe
with two longitudinal ribs.
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All the welding seams on the pipes must be butt-welded for the

convenience of quality check using x-ray and gar.,lagraph equivalent.

Thermal shocks occurring during the emergency jettisoning of the

load are usually a threat to the pipe and housing joints of the

heat exchanger. Therfore, branching should be done by extending

a short branch from the main tube, to which the drain is butt-welded

(Fig. 4.31)6 Drain pockets can also be made in a similar manner.

Branch pipes with Jackets are used as a protective measure (Fig. 4.32).

Welding elements which differ considerably in thickness adds to

the complexity of the manufacture of heat exchange equipment. With

a thickness ratio greater than '!:l for the welded elements, there

is a danger of burning up the thin wall and insufficiently burning

the solid section.

Such a connection is the welding of the pipes to the pipe panels.

Figure 4.33 shows some methods of welding. The best is joint II.

With a pipe wall thickness less than 2-3 mm argon-arc welding is

performed with a tungsten electrode using method III.

Method I gives the highest quality welding, but it requires
tedious mechanical processing of the pipe panel under the weld.

Moreover, such a joint is suitable only for flat pipe panels.

Fig. 4.29. Jacket-and-
pipe heat exchanger with
lateral partitions for
ensuring the movement of
the medium and the inter-
pipe space.

Joint IV can be recommended during the repair of equipment when

the earlier applied seam must be completely removed.

442



0I

Fig. 4.30. Heat exchanger with the connectfon of the pipe
panels to the housing through flexible elements

After welding, the pipes are E:xpakvded to the Pull depth of the

pipe -panel to ensure good therma) contact and prevent the formation

of slot corrosion.

To protect the reactor core from soil the internal surface

of the heat exchangers must be made with a high degree of purity.

For this purpose, in the design of heat exchange equipment only those
materials can be used which have, in addition to acceptable strength

properties, resistance to corrosion under the long use of heat

transfer agents. The composition of the inert gas. (argon) used

during welding must be monitored since the degree of argon purity

determines the quality of the welding of a seam.

After preparing all internal surfaces the equipment must be

carefully screened of welding traces, dirt, and grease by mechanica.

cleaning, degreasing (dichloroethane or other solveat), rinsing,

and drying.

4' a '

1,

Fig. 4.31. Welding pipe draIns Fig. 4. >2. branrh pJpc ,iith
to the main pipe. Jacket.
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.jn the design of a heat exchanger there must be provided special

lines for rinsing all cavities. Drainage and filler tubIes must be

arranged s9 as-.to eliminate the formation of gaý pockets during the'

filling of the heat exchanger with the heat carrier. I ,

Fig. 4.33. Welding pipes to pipe panels.

As an example of the heat exchange bquipment made for space

power plants, let us examine the steam generator of an energy con-i

version system [50]. The mercury steam generator (Fig. 4.34) with

a thermal capacity of approximately 50 kW is designed 1o heat,

evaporate, and superheat 0.141 kg of mercuiy per second. The steam
generator is made in a single-flow design and serves to obtain dry

superheated vapor both in earth's gravity and in weightless conditibn.

This steam generator is a Jacket-and-pipe design;:seven pipes

through which mercury flows are enclosed in A pipe (Jqcket) 51 m*
in diameter, filled with a sodium and potassium alloy. To improve'

heat exchange under weightless conditions the steam generator is

made in the form of a spiral. In addition, devices are installed

for twisting the mercury.

Fig. 4.34. Pipe-in-pipe steam
generator in the form of a
spiral coil.
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( In one version of steam generator" qn average heat flux of 31.-4
kW/m was obtainedduring the boiling o'f the mercury.

Materials for heat exchange equipment

'Materials acceptable for heat exchange equipment in nuclear power,

plants must satisfy the following conditions:
I -':be corrosion- and erosioni-resistant in the medium of the

* heat tr. nsfer apent;
- have high mechanical properties at a given thermal mode;

possess high oxidation-resistance and stability under'
operating conditions at high temperature;

wuld welli and undergo mechanical processing well;
- have satisfactory thermophysical characteristics, particular1ly

a high heat conduc.tivity factor;

- be sufficientoly inexpensive.

These requirements are llesb strict tharn the requirements on the

materials'of reactors which operate at higher temperatures; however,
they are more strict than the Pequirements on materials of heat

exchange *equipment for common pqwer purposes.

" iI I

Lf the heat exchangq equipment is located in the reactor housing

or within its shield, ,there is also . requirement for radiation
itesistance.

At temperatures below 5000C most of the acceptable liquid-,net-.l.
heat carriers have an insigni;ficant efCect on the structura! rn.te! 1.)

At higher temperature the question or material sýlection is much nzre
copiplex to solve.

K. '.

The' otrength 1of materials in a liquid-metal medium is strongly

* affected by various impurities in tne neat transfcr ag(ent (parti 2ular-y
oxygen and nitrocen) and also by the considerablc *empet'ature :--op

in, the circulatory loop of the ,,eat cec'rier, which CPr....•. Irnten- r'ed
mass transfei' in the system.

i. '4 7 5
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.The following types of corrosion are distinguished:

- solution, which usually i& accompanied by the precipit ion of

solutes on the colder section of the system (thermal mass transfer);

- the transfer of the components of one structural material to

another through the heat-exchange fluid in systems of heteroge.neous

materials (isothermal mass transfer);

- the penetration of liquid metal inside the material.

In systems from austenitic stainless steal on alkaline liquid-

metal heat carriers the thermal mass transfer becomes noticeable

at 500-6000C with the temperature contrast in the system on the order

of several tens of degrees. In this case corrosion damage is

localized at points with maximum temperature and the rate of material

solution is pr.,.,o±o'lonal to approximately v0'8 where v is the

velocity of ), - .:arrier motion. In systems with boiling liquid

metal, solution and mass transfer develop to an even greater

degrc--.

Thermal and isothermal mass transfer is intensified when oxygen

exists in the liquid metal. In this case, in the system are formed

both oxides of the liquid-metal heat carrier and complex oxides of

the components of the structural material.

Many high-melting and heat-resistant metals (Nb, Mo etc.)

are subject to strong oxidation. Therefore, in a liquid-metal

heat carrier which is in contact with these metals oxygen content

should not be above 0.0005%.

Let us introduce some of the most important recommendations con-

earning the main liqui_ metal heat carriers recently in use.

As compared with other heat carriers, alkaline metals are more

aRggressive with respect to structural materials; the corrosion

resistance of materials in sodium, potassium, and their alloys

differs little. Potassium facilitates a certain speed gain of

mass transfer in loops of steel and alloys containing nickel. The

most widespread materials in these media are stainless chrome-
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nickel steel of the austenitic class, which can be used for

continuous operation at temperatures up to 6000 C. No more than

0.01% oxygen content is allowed in the heat carrier. These

steels weld well! and have other satisfaatol'y technological properties.

8-

At temperatures higher tnan 700 0C it i. possible to use oxidati.on-

resistant and heat-resistant metals and alloys.

At temperatures of 800 0 C and above the use of refractory metals

(tantalum, molybdenum, niobium, tungsten, vanadium) and alloys based

on them is promising. It is necessary to watch that the oxygen

content In the medium of the heat carrier is i)o more than 0.01%.

The presence of nitrogen in liquid metal impairs the anti-corrosi~o
properties of high-melting structural materials.

At temperatures of 800-10000 C, for operation in a medium of

alkali metals cermet materials based on tungsten carbides, tantaLuwn,

and titanium, can be used.

Lithium with respect to structural materials behaves more

aggressively than sodium and potassium. The corrosion resistance
of materials adversely affects the impurities, especially nitrog,:%

and oxygen. The oxygen impurity begins to show when its content

in the lithium Is 0.5% and in the material is 0.02-0.05%. The

nitrogen impurity is even more dangerous.

For operation in a lithium medium it is not recommended to u.se

steel and alloys with a large nickel content. Stainless steels

with a content of i5-18% Cr and 10-15% Ni, as well as austenJtic

alloys based on Cobalt and nickel, can be used at temperatures n,

higher than 500-6000C. At such temperatures and above (7'l0-8,'0•C)

stainless ferrite and chrome steels (OKhl3, MKh13, 2Kh13, IKh.2M2I3P,

Kh25T) without nickel are preferable. Steel 1Khl2MVhB has satisfactory
durability at 8000C.
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To •clean lithium q the oxygen and nitrogen- impurities hot traps

with zirconium as an absorber are used, facilitating the decLIeration

of the structural material corrosion. Thus, for chr6me steel with

the use of traps the rate of corrosion is reduced by a factor of

approximately 10.

To operate in a lithium medium thr ,following high-melting alloys

can be used; 99%-Nb + 1% Zr; 99% M + 0.5% Ti; 7,4% W + 26% Re;

90% V i 8% Ti + 2% Hf*

Stress- analysis of the elements of heat
exchange equipment

For -most- elements- of 'heat exchange- equipmernt "the main l6ad is

uniform internal or external pressure.

In addition, the vehicle is subject to the effect of additional

loads - inertial loads connected with the injection of the vehicle

into orbit, as well as forces and moments arising because of

different thermal expansions in various parts of the vehicle. Stresses

caused by the additional loads can sometimes exceed the stresses

from the main load. To reduce the effect of these loads it is Dossible,

for example, to install alditional supports and compensators on The

conduits, but sometimes it is necessary to increase the thickness

of the element.

Loads can be constant, cyclic, or chort-term. Therefore, during

structural design the form of loading and the ability of the structural

material to deform must be taken into account. The main elements

of the heat exchange equipment operate, as a rule, under conditions

of steady loads and are made from plastic materials. In this case,

structural efficiency is more properly estimated according to

maximum loads (the evaluation of strength under maximum stresses gives

somewhat higher results).

However, if the loading is cyclic or the appearance of plastic

zones in the metal is inadmissible (for example, because of corrosion
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considerations) ahd also if deformations of any element are determined,

the method of maximum loads can not be used. In this case, calcula-

tion is performed usingithe method of "elastic calculation" (i.e.,

on the assumption that the parts work in the elastic region) with

the determination of maximum stresses.

:Fig. l 4.35. Circular cylindrical
element.

For structural design it is necessary to know the service condi-

tions of the equipment - its structural diagram, form, character,

and value of' loads (main and additional), as well as working

temperatures (selected on the basis of thermal and gas-dynamics

calculations), the structural material and its strength characteristics,

taking into account opera._.ag temperatures and time under load.

Let us analyze the main structural elements in heat exchanging

equipment.

1. A circular cylindrical element with internal pressure [29).

Wall thickness (in nu) is determined from formula (9ig. 11.35)

S= pD$ ¢
2300CAo -- P (41

or

S = pO. + c,
230?axo. p.
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where p is the permissible working pressure, daN/cm 2

T is the strength factor of the cylindrical element (taking

into account the weakening of the structure due to weýding and-

als6 due to the perforations in both the circular and longitudinal

directions); K

c is the wall thickness allowance (for corrosion, minus tolerance,

etc.);

a is the permissible stress Of the structura'f mdterial taking

into account the operating conditions of the element; a n =

here a* is the nominal allowable stress for a given structural
IAon 2t

material, daN/mm2 , (I daN/m 2  100 kN/m is the correction '

factor, taking into account structural and operational pe~uliarities

of the element and the method of stress analysis (in this analypis

n=l).

The calculated strength factor 9 of a cylindrical elehent is

used for solid (not perforated) cylindrical elements equal toI ' 'P a

(strength factor of weld seam). The value -of q•c depends on the

type of welding: with one-way hand welding !c. = 0.7, one-way

automatic welding 0.8, one-way hand welding with packing rihg i0.9, r

hand welding with auxiliary welding from the top of the seam 0.95,'

automatic welding with bilateral penetration,l.0. For the perforated

cylindrical element there is also considered the weakening of the

element in the longitudinal (Pi) and circular (2) directions.

Table 4.1. I

AlOflYCIC Ha TOJiUIy CTeiIF, mM (2) a.i Ka.%tep* IF(3) 1.I Tpy6

-0,015 0,18 0,20,
---0,010 0,11 0,15

-0.005 .0,05 0,10 •

KEY: (1) Wall thickness tolerance, mm; (2) for chamber; (3) for
pipe.
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Additional tensile (compressive) stress is

Q
Ploop

where Q is the stretching (compressive) force on one element, daN;
2

F is the cross-sectional area of the element, cm

Secondary bending stress is

where M is the bending moment, daN-cm;

W is the moment of bend resLstance, cm3.

"- Secondary stress from torque is

Mk

100?,
where M is the torque, daN'cm;

-W is the resistance to torque, cm3

For a round section Wp - 2W .

The condition of strength in the presence of secondary loads is

(2 + 0,87.)'+ 3r < ,2n-7

2. A convex elliptical bottom under internal pressure [29).

Wall thickness is determined from formula (Fig. 4.36)

S= pDR D. .,
S 400 a.jo--p i C ' (4.16)

where z 1 - (d/D ) is the coifficient allowing for the weakening

of the bottom due to the opening.
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In planning we must bear in mind that the distance from the

edge of the opening to the edge of the bottom (measured according
to projection) should not be less than 0.1D, + S. If there are

several openings in the bottom, the distance between the edges of

two neighboring openings (also measured according to projection)

must not be less than the diameter- of the smallest opening.

Allowance c is 3 mm when (S - c) < 10 mm; 2 mm when (S - c) < 20

mm; 1 mm when (S - c) : 30 mm; when (S - c) > 30 mm c = 0.

Permissible pressure is

FOO (S -c) z:,o hipP-D, = ho ($--C) Don

D sD

Here a = no n = 1.05.

Reduced stress is

p[ID + 2(S - c)] -~
.. D. D,.

Opp OO(S-e)z Z' 3

Fig. 4.36. Convex elliptical
bottom.

Maximum permissible pressure of hydro t~est is

D,+2i(S--) I,"
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Calculation formulas are valid under the condition:

a) for bottoms without openings 0.2 < (he)/(DO) < 0.3;
b) for bottoms with openings 0.2 <_ (h )/(DS) < (0.3)/(z) < 0.5.

If (h,/Do) > 0.3, the wall thickness of the bottom is determined

• according to the strength conditions of the bottom's rim.

3•. Round pipe grid (panel) [32]. Reduced thickness of pipe
grid is

' • (4.17)

where q = 0.9(1 - 0.905(d 2 )/(t 2 ) with triangular division (Fig.
14.37a);

= 0.9(1 - 0.785(d )/(t ) with squared division (Fig. 4.37b);
S is the minimum actual thickness of the grid.

a) Pipe grid with U-shaped bundle of pipes (see Fig. 4.25a).
Maximum stress in center of pipe wall is

Minimum actual wall thickness is

S= 3,1o1. •3ps3  G50:1

b) Fixed pipe grid (wall) - straight pipe bundle - floating

pipe wall (see Fig. 4.24b). Maximum stress

6Mmat
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where Mmax is the maximum bending moment which can be determined

from Table 4.2 as the function of the parameter of system compliance
C.

Fig. 4.37. Arrangement of openings in pipe grid (panel):
a - triangular division; b - squared division.

Table 4.2.

- m~i

S (1) Tpyfan peiueTza (: ocKa) Tj [py61aq I)eWeTXa (,oc,)

c cii•i•,posaina I naIapiomua9s (-1VIpKcSpOBalfltalR ti1a a soiaR

4M nxo'pD2 4Mma. 18z'p

0,5 0,128 0,207 6 0,0280 0,0456

1 0,127 0,206 7 0,0208 0,0388

2 0,112. 0,178 8 0,0156 0,0322

3 0,0853 0,112 9 0.0153 0,A291

4 0,0570 0,0726 10 0,0146 0,0258

5 0,0386 0,0556

KEY: (1) Pipe grid (panel); (2) Fixed; (3) Floating.
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The compliance parameter is determined from formula

Si'P V7 lTD D !Ep

where dcp is the average diameter of the pipes;

I T is pipe length;T

D is the average diameter of the housing;

n is the safety factor;

ET and E are the moduli of elasticity for the material of the

pipes and the panel, respcctively, daN/cm

U S .,a 3

Minimum effective panel thickness is

/ Mm&,
Ss=,3-*

c) Two fixed pipe grids of one thickness (see Fig. 4.23).

Maximum stress is

6MiAx
S'm,,x S• 21 

--'•

* Maximum bending moment is

_4 (I) +-s (a -fJ) (8)AAS400 L D2 D2p '2 '

where 2___ 4 //dCp ST S, p n E,,

S, P O V•

6DSK s
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E T and Ep are the moduli of elasticity for the material of
the pipes and the pipe grid;

SK is the housing wall thickness;

a T and aK are the coefficients of linear expansion for the

pipes and the housing, respectively.

Function f(e) is determined from Table 4.3 as a function of

e and 0.

Minimum effective panel thickness is

Table 4.3.
f I" ) " 'I ' '(')

£-o I .3=O,ClS • --' I 5 =O,.5l.

0 0.205 0,204 4 0,020 0,012
I. 0.200 0,190 5 0,015 0,005
2 0,140 0,120 6 0,010 0,001
3 0,040 010,30 7 0,007. 0

Stability analysis of thin-wall cylindrical
shells under the effect of compressive loads

Critical lengths can be determined from formula [12]

L =1,642 VT12D __

or from the graph in Fig. 4.38.

Case 1. The shell is loaded with external force (Fig. 4.39).

4
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-KI 1-

2I - log L0 VJ

SI '

Fig. 4.38. Graph for determining Fig. 4.39. Thin-wall circular
critical lengths of cylindrical cylindrical shell under the effect
shells, of compressive: loads.

a) Critical external shearing preissure (theoretical) for a
long shell (L > L ) can be determined from Bresse's formula

[36):

Et jS :' 3KP 4 1-r

(4.19)
* I

where r is the radius of the shell.

b) Critical comprehensive external pressdre (theoretical) for a

short shell L < L can be determined from Mises' formtila [36]:

I)VES 11

2jL2_2L L22'
2 + 12(1-IL?)r2 ( 0.t0

The positive integer n is selected so that pT has the lowest

value. The dpproximate value of n can be determined fror.; the

graph (Fig. 4.40) or from aporouxiate formula [12]
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A I L

~~~~~~1, P 2"• ¢ o7, i•

Fi.4.$ rph'x deter -nin vaueofn,on0 \, (L\> ) _.X • i i'8,0 Nk 3 X IV

A 11

'O 1i 012 0'1 0, !0 1!

Fig. 4.40. Praph for determining value of n.

!eCase . 2. the shedl is loaded with an axial load (pigt t.41).

r eds L. L/ wIthrsrie ns

a) The critical axial force (acdordlng to Euler) for a very
Slong 9hell (Li> 40D) is

1 I

-K=t3 E (S)3. - D') 2
:b) Critical stress with axial compression foi a short shel]

S ! ;" ican be determined from Al~kseyev's tormnula [33]:
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Case 3. The shell is loaded simultaneously by axial compressive

stress a and lateral pressure p (Fig. 4.42).

The stability condition for this case [33]

@59 Pq~

where a is determined from formula (4.21), PpT fro formula (4.19)
T f oP

or formula (4.20).

% I I

SFig. 4.411. Stability losses in Fig. 4.42. Stability losses in a

Sa long shell over the action of cylindrical shell with the Joint
axial force. 

action of lateral p.ressure ad

Saxial compressive stresses.

iCase 4. The shell is loaded along the ends by bending moment

(pure bend) only, as shown in Fig. 4.43.

Critical stress [11] is

0,2E S
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Stability of cylindrical shells reinforced
by closely arranged circular stiffening
ribs (Fig. 4.44)

Critical comprehensive external pressure is determined from

formula [36]

P F' S 1 2 __+___+

N'P - (n2 -t 12(-(1 2 - r2

22-
+ 

a

U + n2) Sir 2  J(42) S(W +')• t,.•(4.22)

where.

.•r 1281;

I is the moment oft inertia for the cross section of an elastic

rib together with the connected band, mm4

I is the distance between neighboring reinforcing ribs.

Ft.g. 4.43. Stability losses Fig. 4.44. A circular cylindrical
in a cylindrical shell wtth pure shell reinforced by circular ribs.
bend.

1
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The value of n for thin cylindrical shells can be determined

apprc~ximately from formula [36]

where

EBs, 3_ES4
ratl 12 (1- 10). •

For all cases studied bhe actual critical pressure is determined

from formula [36]

pA =rl- p

where qI is the correction factor characterizing the imperfection

of the geometric shape of the shell; n, = 0.65-1.0;

n. is the correction factor characterizing the deviation of shell

material properties from Hooke's law at the moment of stability

loss.

The value of coefficient n2 can be determined from the graph

(Fig. 4.45) where the solid line is plotted for the case OT /a 2
T Hp T-

and the dahes for the case a a aT > 2; critical yield limit is

IP S NP

The stability reserve of a shell is determined by coefficient N,

which is equal to the ratio of the actual critical pressure pA
Kp

to the working pressure ppa' The numerical value of coefficient N

is recommended as no less than 3.0. During hydraulic tests it can

be N =2.5.
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1-11

7 1K5 I kuaoi

Fig. 4.45. Graphs for determin- Fig. 4.46. Primary creep curve.ing correction factor. KEY: (1) hour.

Stability of thin-walls cylindrical
elements during omnidirectional compression
under creep conditions

The stress corresponding to working pressure (below the yield
limit a T) is determined from formula

'pD
Op =.(4.423)

Critical stress with elastic stability loss is

p'DI %~-•

Ir _2S'

where p A is the actual critical pressure with elastic stability
loss.

Critical strain with elastic stability loss is

"--- 3 Pl•D

"IC 9 83S
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In the general case, critical time is determined on the basis !of

the primary creep curves (Fig. 14.46), which are plbtted for the'

steels selected, the prescribed temperature, and constant stress*-

a (assuming that the creep properties for uniaxial extensipn and

compression are identical). On the axis of ordinates the creep flow
e, equal to e is plotted. Critical time T is the abscissas.
Section a6 is the first (transition) period of creep) characterized

by a decrease in creep rate. Section w; is the second period of I
creep (creep rate constant). Specifically, for this developed section
of uniform creep the critical time (in hdurs? during stability loss
can be determined from formula :

( 4 )fl1

where n is the creep index with uniaxial tension;
BI is the creep factor with uniaxial tension, 1/h (idaN/cm2)n.

Prolonged creep eccurs generally in the second period and is '

characterized by comparatively low stresses at low temperatures.

The formula for critical time is derived op the assumption that
stability losses occur under conditions o£f prolonged creep when
creep fl'ws, accumulated in the fivst period, can be~disregarded
since they are small as compared with the total strain of thelelement.

Fig. 4.47. Diagram of a torr
compensator.
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,f I Ii'

ifI

Analysis of compensators ,

1., Torr compensator (Fig. 4.47). 'Analysis ib performed in the

presence of axial force P and pressure p. The follbwing parameters

are introduced:
if I I if

-r-- PO =-- 12 1 t1g2) o%,t

wher I I ,

wh'ere II is the Poiston coefficient'; when P = 0.3 =3.

if I *

ififi , ,a) The actioniof axial fbrce P.

Axial displacement o~f the compensatgr A (in cm): 'I I I

when k>4 .A-- P;

if I'if•I I if

when X 4 <A Ii pI
I • II

2u0OSE
I I i

where cI is the coefficient depending upon parameter X (tee below)i

M1aximum circular stresses (at points E = 0): I,
I

if ,,aX 0.518 . whn'*< ;''=0.•550 -o-
when X>4 > 4 i 1 jp 'go, when '.)4 -. -T ,

if I

where ik0 is' the. coefficient depending 'pon parameter X! (see below);
I I

I I ) f

Maximw' meridional ýtresses are:

:1ax 0.75-
'when X 4 e,Ma (at. points 0 .-- )

A f if 20k/
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when ).<2,3 ;nax.=(C.-C 3 )j 0 (at points O '-4 );

2

when 2,3< X < 4 c 3  -- o (at points

O=±-4 arc sin~~ /+.J

Here coefficients cI and c 3 are functions of parameter A.

In the cited formulas the following designations were used:

• N1

k°=-; c 1=-; C-=-

where

Do=(1,74+0,126 ,2) 10"; 'Vo-= (4,36 + 0,0273X2) 101002;

N, = (1,74 -+- 0,0170 X2) 10"; N3 = (3,64 + 0,0038 V)2 10• 2.

b) The action of pressure p.

Maximum meridional stresses:

12 +Oo•M.p- 2 I+uop
AllP

Maximum circular stresses

where u= (pr)/(S).
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The graphs in Fig. 4.48 present the dependences

_max 0 maZ

-- %"-.- and •.__

on parameter X. The character of the variation in these quantities

indicates that it is not advisable to design torr compensators with
parameter X < 4 since, in this case, meridional stresses rise sharply.

Total maximum stresses must satisfy the following conditions:

max
13 .. L :rnls < aen.l

1,4 ALP Xon

(:max offat

where a*o is the nominal permissible stress for a given structural

material, daN/cm2.

it I

0 2 ,4 S 0 is it t# ii ifI AJ 9-ý

Fig. 4.48. Graphs showing the dependence of ..__ and "•- .•
on parameter X. %

2. Lens compensator (Fig. 4.49). As for the torr compensator,

analysis is performed for axial force P and pressure p.

a) Action of axial force P in the elastic region.
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Axial displacement of compensator:

A=2kkr P

where

k(- 0,290 (_ z
z2(1 + Z) Ran-

Maximum meridional stresses:

"'.P- S2

where

ky 0,48 R'.-R'-
R2

When

r 0,01 kvl k-o,48(z- l).
R,

b) Action of pressure p in the elastic region.

Maximum meridional stresses:

where

P, 065 (i1)

Analysis of a lens compensator with allowance for elastic-plastic

deformations.

498



Fig. 4.49. Diagram of a
lens compensator.

Displacement of the compensator from the action of axial force P:

where kfO,264 -1 41n 2zN

= kz~ 22-)

Maximum meridional stresses from pressure p:

S2'

where

Total maximum stresses must satisfy the following condition:

"Atop IP AUl
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CHAPTER V

MOTORS

5.1. PLASMA MOTORS

In plasma motors thrust is created during the outflow of th,1

plasma of the working medium. Plasma obtains acceleration upon

interaction with its own or an external magnetic field.

Plasma motors have a high specific impulse InA = 20-100 km/s,

exceeding the specific impulse of liquid and solid propellant rocket

engines.

In the creation of plasma motors there are substantial difficult-

ties; the problems of the continuous operation of individual thermally

stressed e-ements, electrode erosion, etc., have not been solved.

Materials which could resist high thermal loading for a long period

of time remain to be developed.

Let us examine briefly the classification of plasma motors.

They can be divided into three groups: puZsed motors, ac motors,

and do motors.

In pulsed motors the generation and acceleration of plasma is

accomplished by the energy of capacitor discharge. The advantage

of such motors is the possibility of obtaining a comparatively

less stressed anode-cathode unit with respect to thermal and power
stresses. In pulsed motors it is easier to guarantee the protection
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of the anode-cathode system from overheating by spreading the

discharge contact spot on the surface. The problems of cooling,

repeated switching of the motor, and frequent use are simpler to

solve. The disadvantage is the comparatively heavy weight of the

* ,capacitors.

These motors are generally used for correction. High-thrust

motors can be used for individual cosmonaut use.

In dc motors the generation and acceleration of the plasma is

accomplished by direct current. The motors can be electromagnetic

or electrothermal. They can be both sustainer motors for inter-

orbital flights and correction motors. A 3haracteristic of these

motors is the high-temperature operating mnode of the anode-cathode

system.

Ac motors are electromagnetic motors in which the generaticn

and acceleration of plasma is accomplished by alternating current.

They include motors with a progressive magnetic field, high-frequency,

superhigh-frequency, and electrothermal motors. They can be designed

for various purposes.

The high temperatures of the plasma require particular attention

be given to the coolant system and the selection of the materials,

which in turn requires the solution of a large number of' co'apl.x

structural and technological problems.

The type of working medium (solid, liquid, or gas) determines

the structural shape of the power supply system and the plasma

generator.

Based on the arrangement of the cathode-ancde system, these

motors are divided into coaxial, face and track.

STRUCTURAL DIAGRAMS AND DESIGNS OF THE MOTORS
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Pulsed pinch plasma motor

This inotor (Fig. 5.1) consists of a plasma generator unit,
accelerator, and system for feed, cooling and electric power.

I I

HIM!

2 18

14 0

Fig. 5.1. Diartram of a pulsed pinch plasma motor.

The plasma generator unit is the pinch type and consists of
cathode 1, insulating spacer 2, anode 3, and elements for supplyihg
the coolant and current.

The cathode and anode are made in the form of connected two-
layer shells with a toroidal surfacet. The anode gradhally becomes
a cylindrical nozzle.

The accelerator unit is the track type and consists ot insulating
plate 4, anode 5, and cathode 6. Electrodes, as in the plasma
generator, are two-layer for the supply and removal of the liquid

coolant.

The feed system unit consists of a gas cylinder with the
controlling gas 7, the pressure divider 8, the container 9, with the

working medium (argon) equipped with a barrier diaph6agm,'and the
dosing device 10.
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t I

The electric power. ystem consists of the current supply 15,
condensers 16, disdharger-mod•lafor 17, and the ignition device 18.

To the terminals of the anode and cathode and to the discharger-
modultor vo1tage is fed. Then the reducing valve 8 of the controllrg
gas cylinder 7 is opened'; theworking gas from container 9 through
the dosins device 10 moves to the discharge gap of the generator.

* The a rc is ignited, by device 18. The purpose of the discharge-..
mcdulator 17 is to ensure a certain cyclic discharge of the capacitor;

-I I
thus, the operating mode of the motor and its thrust is controlled
within a wifde range.

Ionization of gas in the discharge gap, with the aid of devices

* * 17 and 18', leads toithe discharge of the capacitor of the plasma
generator over the entire gap' between the anode and the cathode and
displacement of *the. plasmoid along the generator channel; during the

, * pla'smoid.'s displacement it is pinched,: i.e., formed into a torus ciý
ring, and the ejection from the nozzle portioh of the anode into the

* accelerating system of the motor occurs. In the accelerating system

there is a synchronous discharge of the accelerator capacitor, which
leads to the defgrmation of a magnetic field in the accelerator,

!acceleration, and ejectidn of plasma into space.

Then overcharging of the capaciltor' leads to a repetition of
this' process.

L.*jxial plaima dc motor

This motor consists (Fig. 5.2) of a plasma generator unit,
accelerator unit, and 6ystems for feeding the working medium, cooling,

.0 and electriq power supply:
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In the plasma generator unit the evaporator 1 is welded to
cathode 6 and comprises with it the main force part. The plasma

generator itself includes part 2 and nozzle 3, which is also the

insulation spacer between the plasma generator and its accelerator.

The accelerator unit consists of anode 4, cathode 6, and the

winding of the electromagnet 5. The cathode 6 is common for the

plasma generator and the accelerator. It is a multilayer all-welded

shell construction of heat resistant material and has a preheater
7 of tungsten. In the feed system is the container 8 for liquid

metal, electromagnetic pump 9, and dose device 10.

The cooling system consists of container 11, electromagnetic

pump 12, metal distributor 13, and cooler-radiator 14, 15.

The electric supply system ,onsists of a dc source 16, control

system, current distribution and commutation.

Fig. 5.2. Diagram of a coaxial plasma motor.

The working medium of the electromagnetic pump is fed to the

4 distributor, then to the collector of the evaporator housing of

the motor and to the cooling system. The vaporous working medium
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enters through the injector into the plasma generator where it is

ionized in the interelectrode space. From the plasma generator

it enters the thermal nozzle and then into the coaxial accelerator.

The electrode system is cooled by the working medium in radiators

insulated from each other. For insulating the cathode and anode

unit separators of thorium -ide or aluminum are used.

On the anode is placed a profiled solenoid with a winding of

copper wire insulated from the anode by the application of a layer

of aluminum oxide. The purpose of the solenoid Is to create a

magnetic field for plasma acceleration. Along with this there is

an improvement in the temperature mode of the plasma and an Increase

in motor efficiency.

In the first design of coaxial motors important charact•,:istics

were noted: the length of electrodes, particularly the cathode,

after a certain value affects somewhat the effectiveness of motor

operation. The cathode is subject to strong heating and erosion.

The face of the electrodes has considerable significance in obtaining

thrust.

Figure 5.3 is a simplified diagram of the equipotential surfac%.

of plasma on the face of a coaxial motor. If there is no external

magnetic field, the plasma is heated by the heating effect of the

cirrent which increases in the walls of the cathode. Its ewn

magnetic field presses the plasma to the surface of t:.e cathode and

before the cathode. On the face of the cathode the form of the i":

bunch is similar to the form of the electrode; the temperatuie effecb

on the face of the cathode, leading to its erosion, is the greatest.

8?

Fig. 5.3. Simplified diagram of M•

the vectors of current, field,
and forces in a coaxial motor.
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If an external magnetic field is created by the solenoid, then,

apart from plasma acceleration, it leads to the stabilization of

the processes of heating and plasma displacement. The appearing

axial solenoid magnetic field leads to the appearance of a circular

component of force acting on the plasma element and to the stabilization

of plasma particle rotation. The Hall effect on the face and the

more uniform plasma temperature distribution along the radius of the

interelectrode gap ihip'Ovi motor operation, increase its efficiency,

and decrease cathode erosion ind temperature.

The characteristic bunching of the plasma behind t~he cathode.

as it were, extending the cathode, makes it possible to shorten it

somewhat without substantial losses.

Coaxial ,plasma dc motor-with shortened
6cathfaode

This motor consists of a plasma generation unit,.an accelerator,

a fuel feed system, and systems for cooling and electric power

(Fig. 5.4).

The plasma generator unit consists of superhigh-frequency

current inductor 1, discharge chamber 2, and heat nozzlet The

discharge chamber is formed by two coaxial cylindrical shells of

quartz glass welded on the faces to the collectors of the liquid

coolant supply. Usually this is an organosilicon liquid.

The discharge chamber is covered with a copper inductor

connected with the high-frequency current supply. The inductor is

cooled by the same organosilicon liquid. The discharge chamber is

connected with the accelerator by an insulator having the form of

the heat nozzle.

The anode of accelerator 3 consists of two molybdenum shells

connected with a fluted adaptor and cathode 4 of the coaxial type,

which can be cooled and is protected from erosion in the radial part

by its own magnetic field and by the aluminum oxide applied to the

surface.
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22

Fig. 5.4. Diagram of a plasma coaxial motor with
shortened cathode.

The feed system consists of a tank with working medium 5,

electromagnetic pump 6, evaporator and doser of the working melium 7.

The coolant system consists of a tank with organosilicon liquid,

electric pump 9, distributor 10, and cooler-radiator 11.

The electric power supply system consists of a superhigh-

frequency generator 12 and a dc generator 13.

The working medium is fed by the electromagnetic pump into the

evaporator-doser and then in vapor state to the plasma generator.

In the generator under the effect of high-frequency currr 'ts the

vapors of the working medium are ionized. From the generator the

plasma proceeds to the heat nozzle and then to the accelerator.
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forces acting on a plasma f 0Fig. 5.5. Simplified diagram of

particle. F

K -

&

; I

Figure 5.5 is a simplified diagram of .orces acting on an
t.

4 elementary plasma particle. The forces illustrated compress the

plasma into a band in the center and reduce the effect of the- thrust,

on the face of the anode.

Some shortening of the anode does'not affect appreciably the

forces acting on the flow of plasma in the accelerator.

Face-type dc plasma motor

Figure ý.6 shows a diagram of a plasma motor with a face-type

layout of the anode-cathode system and a lquia working medium.

The main advantage of this design is thb rational form of the'cathode

which presents the contact of structural materials, with the central

part of tiue plasma bunch having the maximum temperatures.

This motor consists of the folloiing main unitb: an accelerator-

generator, working medium feed, cooling systemi, and poier supply.'

The accelerator-generator 'anit consists of a ring-shaped

molybdenum cathode 1 which can be cooled'by the organosilicon liquid,

heat-resistant insulatcr 2, and tungsten anode 3.

The working meditim supply unit conri'ts of tank 14 withI compressed

gas, tank 5 with the working medium and the heater, doding device
6, and injector 7.
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Pulsed plasma face-type motor with a
solid working ,medf'um

Pulsed motors can also be made with a solid working medium.

This motor (Fig: 5.7) consists of an accelerator-generator unit,

a feed unit, and a power supply system.

The plasma accelerator-generator unit includes cathode 1,

insulating element 2, and anode 3. The feed unit includes gas

cylinder 4 with the controlling gas, reducing valve 5, container

with controlling fluid 6, dosing device 7, drive 8 for moving the

,working medium, and working medium 9 (teflon). The power supply

system consists of capacitor 10 and power source 11.

Fig. 5.7. Diagram of a pulsed f 11111-
plasma motor with a solid
wofking medium.

2 3

When operating voltage is fed to the cathode and the anode,

on the surface of the face of the teflon ring there occurs a surface

discharge, evaporation, and ionization of the teflon evaporation

products. Forces of the emerging electromagnetic field act on the

forming plasma, accelerate it, and, as a result, create the thrust

of the motor.

To compensate for the expenditure of teflon from the face there

is a working medium feed system. Compressed gas through the reducing

-valve 5 presses the working liquid out of tank 6 into sealed, freely

expanding chamber 8, thud ensuring the displacement of the grain

in the discharge gap.
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Pulsed plasma motor with combustion chamber

In the motor shown in Fig. 5.8 the grain of solid fuel 2 of

teflon forms a discharge chamber between the cathode 1 and anode 3.

Surface discharge in the chamber leads to evaporation of the teflon,

ionization of Its vapor, and ejection of it from the nozzle, which

is the anode of the motor.

Figure 5.9 shows the design of a plasma pulsed motor for the

orientation of an artificial satellite in outer space [9].

I$

Fig. 5.8. Diagram of a pulsed
plasma motor with ablating
chamber.

The motor has a thrust of 10 sn, specific impulse 50,000 m/s,

pulsed frequency 10 Hz, working medium flow rate 0.002 g/s. The

working medium is teflon, 10-hour lifetime, capacitance of tim.

capacitor battery 0.005 F.

The motor consists of a plasma accelerator-generator unit,

working medium feed system, and power supply system.

The accelerator-generator consists of two copper electrodes 1, 2,

In which the grain of te solid working medium 3 Is placed; ignition

device 4 is on one of the electrodes.
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The grain of the working medium is moved by rod 5, controlled
by the pneumatic-hydraulic cylinder of the feed system. The

electrode bracing panel is the wall of the motor housing, in which
are located capacitors 6 and discharge initiator unit 7. The motor
housing is made of argon to improve capacitor operation.

Figure 5.10 shows the design of a plasma pulsed motor operating
on a liquid working medium. It consists of cathode 1, anode 2,
on which initiator 3 is located, a tank with the working medium 4
and a porous rod 5, and capacitors 6. The working medium, heated

in tanks 4, through the porous rod 5 is drawn into the interelectrode

space of the motor. The high-voltage discharge between the cathode

and the initiators 3 generates a plasmoid which is then accelerated
in the interelectrode gap of the motor.

Stress analysis of motor elements

The stress analysis of a motor reduces mainly to finding the
coefficients of safety for parts operating for a long period of time

j in conditions of high temperatures and high t~mperature g-adients.

A peculiarity of this analysis is the study of parts from high-melting
materials - tungsten, molybdenum, ceramics, etc.

There are a large number of cylindrical shells in the motor.

Let us analyze the shells.

Steady-state equation of the elastic
forces in a cylindrical shell

The geometric dimensions of a shell, r, h, modulus of elasticity

E, are given; it is necessary to find the stresses ax, a9 and bend

in the direction of the z-axis, w.

Let us assume that the forces of internal pressure p act on
a shell element. We apply to it forces which compensate the element

interaction forces (Fig. 5.11).
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Fig. 5.9. Design of a plasma motor.

Fig. 5.11. Element c a T -tcylindrical shell. r x * x
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Along the faces of the element forces T• and moments Mq wili

act in a circular direction. They are equal to each other along

both faces due to the axial symmetry of the shell.

In the axial direction forces Tx, Qx and moment Mx will change

along the selected element since, in this direction, there can be

no loading symmetry. Usually forces and moments applied to the faces

are examined as loads distributed along the length. We shall designate

them with a bar. Obviously,

T= T~,rd~p; T ,+ dT =7T.r df?4.d (fsr d);

Mx= M"rd?; M1 + dM, =J1tr dy+-0d (Mr dy);

QX= - d,?; Q. + dQ. = Qxr dip + d (Q-xr dyp);

T,.=T9 dx; MI= Mdx; P=prdy dr.

Let us project all forces onto the x- and z-axes and find the

sum of the moments relative to the axes parallel to y and coinciding

with the right face of the element. We obtain

d(TFrdq)=O;
- d (Q.r d)- 2Tdx sind. + pr dp dx =0;

2
d (Mar d?) +Qr dpdx=o. (5.1)

The first equation of system (5.1) indicates that forces T are

constant. Let us consider them equal to zero. If they are othtur•

than zero, strain and stresses from them are easily computed and

can be summed with those which are obtained from the solution of

the remaining two equations:

A

These two equations ,contain three unknown 'quantitles: T Q a-Q'and E.

Let us examine the strain of the middle surface of the shell unuer

the action of forces
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Forces T e, while acting normally to the cross section of theS I
shell in a circular direction, create circular "membrane" (moinentless),

stresses a9 T/h 9 A.

We must determine T@ as a function of aeformation w. For this
we should find stresses a as a function of deformnation w.

Let us calculate the relative strain of the eldment C (Fig.

5.12a):

a' V - ab (r + Wu) d - r d?
ag-" "b r dip

Hence

r r (5.3)

We find moment loads and stresses of shells from these loads.
* While examining the shells under the actionl of bending moment M.,

we reach the conclusion, based on symmetry consideration, that the

curvature along the circumference remains constanti the curvature
however, in the x direction will be d2 w/dx 2.

M°

qy

0j a) I

Fig. 5.12. Obtaining relative strains of the shell.
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I .

This is obtaine.d as a. result of the deformation of the plate

by bending moment distributed along the edge (Fig. 5.12b). The
edge of the shell can be represented as an element of this plate.

The curVature of the plate as a result of the effect of bending

moment is
V

r.dx2
I ,

which agrees with thb formula for rod curvature.

I . I I

*Stresses will be determined from the familiar Hooke relationship

for a plate:

7 E

Relative ;train, x is founO from Fig. 512:

X % W A6r d r , •

Since the deformation of a plate in this direction from bending

momexpt Mi d6es not occur,

Ez d2W
.- dx;'( ((5.5)

i

and bending moment is

Shi2 h12

. - ,..,dz z 2dz'
SI --h!2 A -12

I-

51.7



where D - 12 "). Let us return to equation (5.2). Dropping

Qx, we obtain

=M - and then M4,-I-..'

hence, with the aid of equations (5.3) and (5.6), we find

dx2 dr2! r(5.7)

This equation enables us to solve the problem of cylindrical shell
deformation.

Analysis of a cylindrical shell uith constant
parameters

In the majority of cases, the thickness of a shell h, cylindrical
rigidity D, and modulus of elasticity E are constant quantities.
Only pressure p is variable. Equation (5.7) will have the following

form I

.. , E_ l, pD
'v rD (5.8)

4 B/a 3 (-i _=)or, if we designate , 2 -- h-4r2D r2h2

w5V +4V,4w- P." (5.9)D

This is a linear nonhomogeneous differential equation of the fourth
order. Its integral contains the sum of the solutions of the
equations without the right side and the particular solution:

w =e- P,(C, sin .3x +C2cos, x)+ePX(C3 sin x+

"4-C4 cos Px)+ w, (5.10)
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where w 4 is the particular solution to equation (5.9);

CI, C2 , C3, C4 are the integration constants which are determj.nAd

from the conditions on the ends of the shell.

Let us examine the particular cases of solution for this

equation.

Case 1. Stress and strain of a free shell loaded by pressure.

Let us consider a shell without supports, loaded by pressure

(Fig. 5.13). We know p, h, r, E. Find oa, w, n.

Fig. 5.13. Shell loaded with Vs
pressure. 

IV,

aN,.

P2

!"'

Strains and stresses in the shell. from surface loading are

determined by the particular integral of equation (5.9). For the

types of surface loading encountered in practice w TV = 0 which is

valid for a load whose action is expressed by the law p = Bx

where B is a constant arid n < 3.

This condition is satisfied by a uniformly distributed load,

for example, gas pressure, hydrostatic liquid pressure, a load

arising during the thermal loading of a shell. Then equationSl~r2)
(5.9) will have the form (Eh)/(r )w = p and the bend cf' the sh(i1

under the effect of this pressure is Eh_ -- p

r 2
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It is significant also that when n < 1 the particular integral

describes the stressed and strained state of a momentless shell

since quantity w" which characterizes the moment stress of the shell

is zero. If pressure p = const, then bend, slope angle, and the

second derivative will be equal:
S~r2

W--z,--q-.p; "w---; w"--0;

III IV
also equal to zero are derivatives of higher orders: wI = w = 0.

The expression obtained shows that radial strain of the shell will

-be--constant for all its sections. There will be no sag or bend,

which also follows from the fact that the slope angle of the tangent

to the elastic line -of the strained shell is equal to zero (on

-Fig-. 5.13wI = 0)-. Stress is- found from-dependence (5.3):

r

We easily find the bend of a shell from external pressure

when it changes as a function of x according to law p = B0 + BlX.

Then

""r2 g, rOBI ifW w=w a (B x B); -j;w=-W 1V 0.

The form of the strained shell is shown in Fig. 5.13.

In these examples stress does not create moment loading on the

shell, wnich is easy to establish from the fact that the second

derivative c.f' ouead •: is equal to zero, i.e., stresses will only be

membrane stresses. They are determined from formula

*r - (Bao+4 x).
h
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Variation in pressure on the shell can be described by a more comple.,
2

law. For example, p - B0 + Blx + B2x2. We find the value of the

bend from this pressure in the form

94

w%1Ao+AiX+A 2X 2.(l2w•= A+ A~ + Ak'2"(5.12)

The values of coefficients:

r2  r2
A=-- B0 ; A,=•- B,; A 2=- B2.

Bend is

W-W r2 BX+ r2.B"X?.
4 Eh Eh E--lk-- • z

Such loading will not be momentless since the second derivative

w, characterizing precisely such loading, will not be equal to zero.

Membrane stresses a( are usually basic, determining the strength

of the shell. In approximate calculation we are frequently limited

to finding these stresses. Strength evaluation will reduce to a

comparison of the obtained stresses aP with the ultimate strength

of the material, obtained on samples with allowance for the time

of their operation and temperature: n = a o ./a Condition n > 2,
B T

should be fullfilled.

Case 2. Temperature stresses and strain in a free shtll.

The quantities h, r, E, At are given. Find 09, w, n.

Let us assume that the shell has constant parameters h, r, S.

The modulus of elasticity E is considered equal to its average

value. Temperature gradient At is a variable quantity and depends

upon coordinate x cf the shell. In general form,

At=1 -- to= Bxn,
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where B is a coefficient;

n is the exponent equal to 0, 1, 2, with uniform heating,

linear and quadratic variation in the temperature gradient, respectively.

We further assume that the temperature of the shell isiconstant

throughout its thickness.

As indicated, the relative strain of an eiement during heating

is determined by formula

SS • 88t+8 y,

tt

where stis the thermal strain of a free element;

Sis the elastic strain of an element due to the constrictionS~y
of its deformation.

For a cylindrical shell relative strains in the circular

direction e = e + C are substantial and are easily converted

to radial strain w with formula w - re., ginally

W=Wt+Wy.

Free thermal strain wt is known (Fig.:5.14d):
t|

w=rv= raAt.

It is also known that the stress in the shell creates the7 elastic

component of total thermal strain in the element w-. Finding it

involves considerable difficulties.

Elastic component of shell strain is fdund by common procedures

for a temperature problem.

a) We impose on a cold shell rigid bonds in the form of a

rigid housing and then heat it to temperature t. Thermal expansion

of the shell does not occur, compressive stress arises in it, and

on the surface a reaction from the rigid walis in the form of pressure

•Rt" The same eff'z;6 tn be obtained if we compress a shell expanding

to wt =rcAt by external pressure up to the initial parameter.
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-I

a• I It is known that ýuch a rigid attachmenti of the shell correspor)d-

to the'conditions when elastic and thermal strains are equal buit

opposite in sign:

W O; W1-- --- rAt:
S, (5..13)

Tn4 asterisks ildicate that bends are obtained during'the ýigid

attachment of the'shell. Let us find the wall rea~tion "Rt' which

holds t1e shell in a compressed pndeformed state. ,Shell deformation

,from pressure PRt' in general'form, is

S•'--=A'AIt=ABx",
where A'is a coefficidnt.-

z

Zf At,
r• , 9) ( a ) A D 0 ( , ." )

Fig. 5.14.

S, , wIV
SFoý the itudied case w = 0; then bend w* caA be jetei'inined'

I' from equation ,

"U)*-fV E v=
r2D, •D

assuming w*IV' O:=0

W =W'-1+944-44, since w0 =0 , and -w-=O, H -U, Da .. , ' 9 P t
0 rl i 'D .

a hence
- 52 3
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Bend w is an elastic bend of the shell as a result of pressure

PRt" This bend is known from relationship (5.13): w* = -rcAt.

Equating those values of w*, we obtain the pressure P~t' which holds

the shell in a compressed state as a result of the application of

a rigid bond:
r2 

I

and

PRI= -7'a7A.r

The obtained shell deformation w* = -w* = -raAt and reaction
y t

forces -PRt differ from the actual since actually there is no rigid

attachment. The shell is free.

b) In order to obtain the pure deformation of the shell, we

should apply the load arising in the shell during its attachment

but with opposite sign. We find the bend of the shell from the

reaction Pt = -PRt from equation

A.D D rD (5.14)

c) The sum of the two deformations obtained from equations

(5.13) and (5.14), which we shall designate Wp, gives us the elastic

component of total shell deformation during its thermal loading:

wy = -rcAt + wp.

Hence we find the stresses arising in the shell from thermal

loads:

r r (5.15)

d) The numerical value of total thermal deformation by heating

a free shell is found from relationship

w = wt + Wy = raAt - raAt + w = wp. (5.16)
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Thus, the bend obtained from equation (5.14) is the total bend of

the shell as the result of its thermal loading.

The procedure for determining w y and wp is shown in Fig. 5.111.

Let us examine the stress and strain of the shell as a result

of a given temperature gradient At.

If the temperature gradient is a constant value, i.e., At const,

then from equation (5.14) it is apparent that wIV = 0. Then

w = w0 + W = w ; w0 = 0. Furthermore,

Ehý Eh ast .

r2D rD

hence

=wq-=raA; w' -w" =w'-W V= O;

W =-raat+W 0;=O;
W = -- W w=raAt.

Thus, uniform heating of a free shell does not cause thermal

stresses in it; shell deformation is equal to unconstricted thermal

deformation.

If the temperature gradient varies according to linear Iaw,

i.e., Ar B0  x Blx, it is apparent from equation (5.14) that

w1Y=O; W•--w+Wq='w,,; U'-=-0;

W Wq---!raAt--ra (B. + BIx);
•dz.-=ra . 1 ; W"= 7A"' =w•IV=~O;

w = - wy w= raAt =ra (Bo + 81x).
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Thus, a linear law of temperature gradient variation along the
axis of the free shell does not cause thermal stresses. Its strain

is equal to unconstrained thermal strain.

Let us examine the case when the temperature gradient varies

according to parabolic law At = 0 + B1x + B2 x2

Since w = AAt, then wIV = 0; further

w-=wo+WqW' ; wo=O;

W •--R = raAt-- ra (8o + BIx + B 2'C2).

However,

wT =ra(BI+282); u,"=2raB2,

i.e., with a quadratic law of temperature gradient variation the
shell will not be in a momentless membrane state. Thermal stresses

will arise in it. Deformations of a free shell are shown in Fig. 5.14c.

Case 3. A shell is loaded on the edge by distributed moment

and shearing force.

The quantities E, h, r, Q0, M0 are given. Determine aq, Ux, w, n.

Let us examine a long cylindrical shell (Fig. 5.15) to the

edge of which are applied bending moments 10 and shearing forces

Q0; these forces and others are uniformly distributed along the

edge of the shell, i.e., when x = 0. For the sake of simplicity,

the bars over Q and M are eliminated.

Pressure p = 0; therefore, in the general solution (5.10) we

should assume w = 0 and seek the general integral of the homogeneous
differential equation (5.9), i.e., solution to the equation without

the right side.
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It is known that, in this case, the integral (5.9) expresses

the edge effect, i.e., the effect of radial distributed forces and

moments acting on the edges of the shell. Since the applied forces

droduce local bend, rapidly diminishing to zero as the distance from

the end increases, we conclude that the second term in the right side

of equation (5.10) must be zero. Therefore, C3 - C4 = 0,

w=e-PX (Cisin Px+ C2cos x). (5.17)

Constants C1 and C2 are determined from the boundary cmnditicns:

when x = 0 Mx = 0 = Dwt; Qx = Q0 = Dw". If we differentiate

equation (5.17) three times, we obtain

W1 = Pe-,-x [C, (COs;,x-Sill e)-C CO i"xj

i"= 2eP[-C1 cosIpx + c 2Sifn Pl
" "-- 2.. 3e- [C1 (cos ,x + sin px) + C 2 (cos •x-- sill 3X)].

We substitute into these equations the following boundary conditions:

cl=_ ---o ; C2=-.• P(o+ý o)
2V2D 2PSD

Finally,

W=e--P" [•m0 (COS ýx - sin ýX) + QO COS PX].

20• (5.18)

Maximum bend on the loaded end is

W(0)- (Mo0+Qo).
2.3D (5.1,9)

The slope angle of the tangent to the elastic line rin the

loaded end of the shell is found by differentiating exprassion

(5.13):
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;' -- e---

-1= (20MO cosVxJr- Q0 (cos ?X+ sin Pt)]
22D ('(5.20)

and, finally, when x = 0

(5.21)

If we introduce the following designations:

.?=e-P(cos Px+ sfn.x); +=e-Px(cos px-sin x);
O=e-Pxcosx; .= e-P-Ixsii ,x,

the expressions for bend and its derivative can be represented in

the following form:

2D

TD I

D (5.22)

The numerical values of functions q, I, 0 and 4 are presented

In Table 5.1 [38].

Functions q and * are presented in Fig. 5.16, function ý in

Fig. 5.17.

From the curves and the table it is apparent that the functions
determining shell bend, with an increase in quantity Ox, approach

zero. Consequently, bend has only a local character, as suggested

initially, in the calculation of integration constants.
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Fig. 5.15.

010

0,41 Z, 2 j1

0,2

a , .., • Jc... t -

Fig. 5.16. Graph of functions Fig. 5.17. Graph of function C.
Sand p.

The curves presented make it possible to establish boundaries
which distinguish a long shell from a short one. From formula (5.17)
it is apparent that shell bend w and its derivatives are attenuatIng
curves. Wave length is

2-1- 2 54,8
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Table 5. 1.

3x __ _ _ V '0I I !

0 1,0000 1,0000 I 1.,0000 0

0,1 0,9907 i 0,8100 0,9003 0,0903

0,2 0,9651 0,6398 .0,8024" 0,1627

0,3 019267 0,4888 0,7077 0,2189

0,4 0,8/84 0,3564 0,61ý4 0,2610

0,5 0,8231 0.2415 0,5323 0,2908

0,6 0,7628 0,1431 0,45339 0, 3(;99

0,7 0,6997 0,0599 0,3798 0,3199

0,8 0,6354 0,0093 0,3131 0.223.

0,9 0,5712 0,0657 0,2527 0,3185

1,0 0,5083 0,1108 0,1088 0,3096

1,1 0,4476 0,1457 0,1510 0,29V7

1,2 0,3899 0,1716 0,1091 0,2A07

1,3 0,3.355 0,1897 0,0729 0,2d'26

1,4 0,2849 0,2011 0,0419 0,24.30

1,5 0,2334 0,2068 0,0158 0,2226

1,6 0,1959 0,2077 OC059 0,2018

1,7 0,1576 0,2047 0,0235 0,1812

1,8 0,1234 0,1985 0,0376 0,1610

1,9 0,0932 0,1899 0,04•4 0,1415

1 2,0 0,0667 0.1794 0,0563 0,1230

2,1 0,0439 0,1675 0,0618 0,1057

2,2 0,0244 0;1548 0,0652 0,0895

2,3 0,0080 0,1416 0,0668 0,0748

2,4 0,0056 0,1282 0,0669 0,0613

2,5 0,0166 0,11 .4 0,0658 OOt 3

2,6 0,0254 0,1019 0,0536 0,0383

2,7 0,0320 0,0S95 0,0508' 0,02 8

2,8 0,0369 0,0777 0,0573 0,0204

2,9 0,0403 0,0656 0,0534 0,0132

3,0 0,0423 0,0563 0,0493" 0,0071

3,1 0,0431 0,0469 0,0450 0,0119

3.2 0,0431 0,0383 0,0407 O,v(,24
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Table 5.1.' (Continued),

i PI

3,3 0,022 '0,010(i •u,0334 " OL05s
3A4 0,0409 0.02-37 0,0323 0,008.5

3.,5 0,.389 0,0177. 0,0283 0.010i
.,6 0,0366 0,0124 0.0245 0,0121

- 3,7 0,0341 0,0079 0,0210 0,0131
0,031;4 0,0040 0;0177 r,,0137

3,9 0.028'9 0,0008' ' 0.0147 0,0140
4,0 0,0258 0,0019 0,0120 0,0139

With each half-wave (for example, sinusoid in Fig. 5.17) the

amplitude of tle function 'changes sign and decreases in absolute

magnitude by a factor of 23.14.' Ifthe maximum of all functions

agreed with the origin of coordinates x = 0, we could conchude that

with.a cylindrical shell iength of I = 1/2 = 2.14v•h, its calcula'ion

as.a "long" shell, without allowing for thý mutual effect of both
edges, leads to error no't exceeding 5%. However, since the maximum

amplitudes of these functions do not always agree with the edge of
the !shell, for ordinary calculdttions a cylindrical shell can be

assumed "long" if I>

After finding moment Rx and bend w, we find from expressior

(5.16) momernt M and the value of force T from equation (5.3).

It is obviou's that the outer cr.oss section will also be the
most ptressbd. On it are the following bending moments and forces-

moment Mx Dw"Mo; moment Mq1= p.Mx; tension

.Bhw Eh, r2 D o + Q0 o).

According to these lodds, stress'es are

Ew 6MV

-' h2 h2 (5.23)
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Hence generalized stress is

SV2= f ± + (A)+o+2- :,., (M) +

The coefiicient of safety is n=- -' ; n>I.
61 max

As seen from Fig. 5.15 and 5.18, tbe most stressed spot of

the shell is the circumference passing through point A.

Case 4. Stresses in a supported shell loaded with pressure.

The edge of the shell has a hinged support (Fig. 5.19). The

quantities r, h, E, p are given. Find ao, 0x, ar (M), w. The

initial equation is

w , e-P-c (C, sin' .x +C CO oX). (5.24)

The following solution sequence is selected. We determine the

deformation of a free, unsupported shell under the action of pressure

p. Then we apply to the end of the shell force Q0 so that total

shell deformation at the support point is zero. This procedure

makes it possible to use the results of the preceeding calculations.

Deformation of a free shell is determined by the particular

integral

Eh

where 6 is the bend of the free shell under the action of pressure p.

Fig. 5.18. Diagram of shell Fig. 5.19. Stresses in a shell
stresses. with a hinged support.
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The bend of the shell as a result of force Q0 is found from the

general solution to equation (5.17) obtained during the solution

of equation (5.9). Integration constants C1, C2 of the general

solution are determined from conditions:

when x = 0 w0 (0) = -6; w"(0) = 0, since = M(0) = 0.

Then from equation (5.19) we find the necessary reaction Q0 for

fulfilling these cznditions"

OIw~)-Qo-" - •; Qo = - 2j 3D&.

Now we find

•= e-•xQ0 Cos PC + r
2P3D E h

,? C-P" Qo(Stn.•x +COs • )
2A2D

11-= -- Qosin ýx.

According to formulas (5.23) we can find

• - E (11p11 v:'= 0 Ci-- 0);
r

h2 01)

(npA = when

The stress diagram is shown in Fig. 5.19.

The edge of the shell has a rigid attachment (FJg. 5.20).

Sclution is found from formula (5.24.). The deformation of a free

shell from pressure p is

pr5
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Let us 3train a free shell loaded with pressure so that the

boundary conditions of a shell with a rigid edge attachment are

"satisfied'. The boundary poniditions of such a shell wiil be:

when x = 0 w(O) = -6; w'(0) = 0.

We find the necessary values of 1O and Q0 to satisfy these
cohditions from- equations (5.19), and (5.21):

I(o) 4 ( Q0)

SW"'(0) = (2,Mo + Qo) 0o;
S2P2D ,

A10  20?Da; Q0  -41,3D&.

,g. '5.20. Stresses in the shell g
w ith rigid attachments.

As a result, we have obtained the positive bending moment

and the negative shearing force acting as shown in Fig. 5.20. When

we substitute these values into expression (5.22), with the use
of the table the bends and bending moments can easily be computed

for any distance from the end of the shell:

W. e [ýA, (cis jx- sin ,.x)J-- Qo cos 'xl+ Zp2

[2eM- 8 os C. + Qo (cos 1Vx - sin SX)j;
232D

., . r(5.25)w=" ? [.,AI 0 (cos x + s+ , S ) + Qo sil I'.( 5
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Stresses

Sh2

The stress diagram is shown in Fig. 5.20.

Case 5. Stresses and strains of a shell having supports,

as a result of thermal loading.

The edge has a hinged support (Fig.. 5.21). The quantities

r, h, E, At are-given. Find a., ax W".

a) Shell deformation with thermal loading is

W=Wg+Wy, where wg=raAt.

-b) Elastic deformation in the shell with the application of

rigid bonds is
w=O; wY=--vt=-raAt.

OJb)

Fig. 5.21. Analysis of a cylindrical shell.

c) Elastic deformation of the shell from pressure arising as

a result of the application of bonds is determIned from formulas

(5.8) and (5.14):

I~v + Eh Wp•A.__
Sr2D rD "
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Solution is sought from formula

'W1,=•o0 +w,=e-,,.(C1 sin px.C 2 c.. ; ,-e.

We assume that At = Bxn, where n < 3, then

wIV=0 and g,.--rat-=-.

We have obtained the deformation of a shell for a case in which
there are no supporting devices. We designa•te this. deformation 6.

But the fact is, at the support point reaction Q0 arises, which does'

not allow the edge section to be moved. We shall find the value of

the general solution to the equation for wo:

wo= e-P(C 1 sin, +xC2 cos x).

Integration constants C1 and C2 are found from conditions:

when x=O W0(o)=-&(o); wo(0))=0.'
C II *

Here 6(o) is the value of the particular integral w• on the

edge Of the shell 6(o) = rcAt(o), where At(o) is t.he temperatuize

gradient on the edge of the shell.

From equation (5.19) we find the reaction of the support

Q0o=--2p33 D(o)

and ';he unknown deformation

e -9xQ0cos Sx +ruA.t Too+ 7&

d) Let us find the elastic deformation, and its'derivative for

determining stresses in the shell:
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ftI f

* I
ft 2 i I

I. ,

w'y- rac&t'+w =ow = e-P- QoCOS sX;
ft 2iFD

S, ~ e - 'p x ,. e - lx ,

,, =-. Qo(sinpx+cos.X); w;=- Qo sin f.t

2A2D PrD
ft f f t I

The curve of y variatix)n is shown in Fig., 5.-Lb. Circular stresses

in the shell are,
I I If 1

'; ft ft ft •

,Let us note that they will be the greatest when x =0.

. Stresses in the shell from bending; are

: :2' ' ... 6Mr 6•D'•" '

The stress curve is shown in Fii. 5.21c.

e) ,Total !shell deformatlion is

As in other cases, total deformati.., is the result of the

soluti6n to equation (5.111). T' ehhracter of the total deformation
ft I * lt ft•

curves id seen in Fig. 5.211, .

'The edge has a rigik. .ý.chment. Let us introduce formulas

' fot calculating strains and stresses.
4 2

The 'strain of the shell durIng thernal loading is

a w,=.w.+ w=rat.J-Pw•. ,t , ,

Elastic deformation of the shell is
ft I ,

2 , -- raA.+w% •..
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The value of wp is found from formulas (5.14):

Wp-t v+ w, = e-PX C1 sin :ix + C2 cos :ix) -,W,

where W = raAt.

The integration constants C1 , C2 are determined from the

conditions:

x=O; wo(o)-----(o), wj'(o)-O, where 6(o)=raAt(o).

We find M0 = 26 2 D6(o); Q0 = -46 3 D6(°). Then we calculate

w, w', w", o0, Gx3 a( (M) according to formulas similar to the

formUlas in Case 4 and the total deformation of the shell is

w = w + W = w
t y p*

Let us examine an example of the calculation.

"T MM

0,4

0 lw -- Wý'

1 o5 207 i

-0,2 - - a

Fig. 5.22. Analysis of a cylindrical anode.
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Example 5.1. Find the stress and the coefficient of safety

for a cylindrical anode whose dimensions are shown in Fig. 5.22

if the following is given: material is Khl8N9T steel; E = 1.45.10'
daN/mm2; a = (21.2-22.2)10-6 I/C. The left end of the anode is

rigidly attached. The temperature along the length of the anode

is distributed linearly.

1. Law of temperature variation along the anode is

At = B0 + B1 X.

From the condition when x = 0 At = 430'C; when x = 1 At = 58000

we obtain B0 = 430; B1 = 4.3.

2. Let us evaluate the length of a shell:

.• - 3 1 rh= 3 J 50.0,-5=1 .1..t,

i.e., the shell is long; Z = 35.

3. We find the reaction Q and MO. If the shell did not have

an attachment, its deformation would be equal to the deformation

of a free shell, i.e., 6 = rcAt; at the attachment point

6= raAt 0 = 50'21.2*10- 6 "130 = 0.455 mm.

Since the shell is attached, we deform its end by quantity

60= -0.455 and find what force QO and moment M0 should be applied

for this. We solve the system of equations (5.19) with boundary

conditions:

! ~~~x = O; zt, (o) =- , '(o) =

V (0) (3Mo +QJ) =- to, W'(o)=---L (31MIO 4-Qo)=O
w -2.sD 2:"-OD

hence

M 0 • 2,.N = 2.0.9-:572.••N6,3.0,455 = 10,02 daN mm/nmm;

Qo -'1-31)-,, -=- 1.0, 2573.166,3-0.455 =.-5, 14 daN/inn.
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We determine

1.29 1.29

D' Eh3 1,45 104.0,53 166.3 daNmm.
1i2(1- •,) 12(1_o,.2)

L4. We find

P -o j1Afcs Ix-- sin ýx) + Qo ros •xj + • lo +t•;
" 2jP3D

0ý=- , where wy=wp-raI.
r

Calculation is reduced in Table 5.2. Let us determine the
coefficients:

2PD = 2.0,2573.166,3 = 5,65 daN/mm2;
fo -- 0,257.-10,02--- 2,58 daN/mm;

E - 1,45.104 290 daN/mm3 .

r 50

The bend determining the stress in a cylindrical shell is
found in line 10. Actually,

w p r.CAl; sincewP = u0 + t and ? raMf, then Wy = WO.

Figure 5.22 presents curves of w0 , wy, 6 and the total anode
bend w, as a result of its heating.

5. We find

w" [- [}M (cos 3x + sin Ox) + Qo sin Sx];

6Dw'•=h2I .' %(M) = Pox.
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The calculation is presented in lines,16-23 of Table 5.2.

Let us determine the coefficients:

:D = 0,257.0"6,3 = 42,6 daN/ram;
6D 6.166,3 2

- - .3980 daN/mmh2 0,52

Stress distribution along the anode is indicated in Fig. 5.23.

Case 6. Thermal stresses in a free shell. The quantities

h, r, At are given. Find al, ax, a (P (M), w.

It is known that thermal stresses in a free shell cccur if t!he

law of temperature variation along the length is nonlinear, i.e.,

if At = Bxn when n > 2. We assume At =B + Blx 2 .

Deformation of the shell is

WWt+JWy, where wt=raAt.

We find the elastic component of the deformation.

With the application of rigid bonds

w=O; w.=-wt=-raAt.

Deformation of the shell from the str'ess arising as a r...ult

of the application of bonds i3 determined from equation (5.114):

E~i EhaAt
+ ~ rD

We obtain

WP=wo+.w, =e-(Ci sin +x+C2 coS , V) +

+- (G3 Sin X+C 4 cos •X)



Table 5.2.

(2) '(3) --

CT- p 1. ,INI'•I.R W1U" x 5 10 20 30 x-=3.

po- Te.1 b

I .x i 0 1,285 2,57 5,14 7,71 8,99

2 e-Px 1 0,275 0,0765 0,0059 0,0094.5 0,00012.3

e-•x/2.3D 1 0,177 0,0486 0,0 C35 0,00.05 ),00097O 0,0000218

4 sin.Px 1 0 0,958 0,5403 -0,909 0,9901 0,4169
5 cos'1x I 1 0,2837 -0,8415 0,4169 0,14)3 -0,909
6 (5)-(4) I 1 -0,'i713 -I ,3818 1,3259 -0,8494 -1,3259

7 AMo(6) 1 2,58 -1,73 -3,55 3,42 -2,19 -3,42
8 Qo(5) 1 -5,14 -1,48 4,3.3 -?Ž,14 -0,721 4,68

9 (7)+(8) 1. -2,56 -3,21 0,77 1,28 -2,91 1,2i
10 (3)(9)= WO 1 -0,455 -0,156 0,0104 0,00134 -0,0003 0,0000

11 At 1 4.30 451,5 473 516 559 5E0
12 a 10-6 21,2 21,5 21,6- 21,8 22,1 22,2

13 w=-raA t 1 0,455 0,485 0,511 0,562 0,617 0,643

14 w.%--(10) +(1 3) 1 0 0,329 0,,' 1 0,553 0,617 0,643

15 f =f(10) 1 -132 -45,3 30,2 0,39 -0,037 0
r

16 e-Px'ID 1 0,0235 0,00645 0,0018 0,01.Olt 0.0000 0,0000

17 (4)+(5) 1 1 1,2447 -0,03012 -0,4921 1,1304 -0,4921

18 AMo17) 1 2,58 3,21 -0,776 -1,27 2,92 -1,27

19 Q0( 4) 1 0 -4,93 -2,78 4,67 -5,09 -2,14
20 ( +P)+(19) 1 2,58 -1,72 -3,56 3,40. -2,17 -3,41

21 W"=(16)(21) 1 0,0514 -0,0113 -0-,qoi46 0,00018 0,00002 -0,00001

V2 1x 245 -45,1 -25,8 1,9 -0.09 -0,04

23 o9,(M) 1 73,5 -13,5 -7,75 0,57 -0,03 -0,01

KEY: (1) No.; (2) Function; (3) Factor.

Let us find w . Assuming that wI = 0, we obtain

W, - ru.*t = ra (fB + Btx2) = Ao+ Ax 2.

We find the general integral w0 .
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Integration constants C1, C2 , C3) C4 are determined from boundary

conditions:

when x=O Ulo)=t 0)=;

when X--1 W'; (t) - ( -0.

80) -0
,a'x

Fig. 5.23. Stresses in 4c
a cylindrical anode.6(M)
KEY: (1) daN/mt•n

S-'I -0- _

*'30OC 58D'C

--120

4-132

"If we differentiate the general solution for wp three times,

we obtain

+ elx sin Px (?C3 - p-C4) + ep-x cos •x3  + C. +2A "x;
= =e-v sin Px (2'2C2) + e-r cos 2xj(- 2;2C,)+
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. ir sin P ( 2P2C 4) + eP cos ,x (2•2c 3) - 2A,;

w•==e-•Xsn •x(2•sCt--2) 3 C2)+e-PX cos •x(2' 3Cj+2C33C2)-
UI Le PrsIn-,,x2,3j29)- V--ePzsinS• (--2"•3C3- 20C,) +ePxcos'JxX' !,

X (2.•3C3- 2•33C). (5..26)

After substituting the .,undary conditions into these equp.tions,

we find integration constants C. The problem is simplified by the

fact that for a long shell we can determine them independently.

When x = 0 we find Cl, C2 , if we assdme C = C= 0. Then

S(o)-e-P sin ýx(2'2 C2)-e-• cos ,x(2,• C)-t fA ,O,

or
-2P 2C,+2A,=O;

w' (o)=e-Px sin ?x(2, 3C, -23 3C2 ) 4e-zcos ex(23 3 C1 +2•3C 2 )- 0,

or C1 + C2 = 0.

When x = v we seek 03, C4, after assuming Cl = C2 = 0:

w,(I)=.eP! sin pI(-2i2C4)+ep' cosPI(202C3)+2A -=O;

"wp (1)= -ep 1 sinl/(--2PsC3 -- 2,3 C4)-+e' /cos(2ý3C3-2• 3C4)=0.

Thus, integration constants CI, 021 c3 , C are defined. From equation

(5.26) we find the values of wp and w", and then the elasticP P

deformation and stresses in the shell:

wY =raAV + wo'" rat= wo;
S•vy ° 6Mr 6Dtv "
S• E a; = •-2=-j2; (M) 11x.3:

r h h ..5
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j. I

Total deformation of the shell Iis
w=raAtw, =raA +

t

Let us plot the curve for the shell's coefficient of safety n-

t
1 The quantity a P 1will be vaz'iable since the temperature along

the axiis of the shell is variable. A variable qt~antity also is

1/0 [a, + a a? ,

I

If we ?lot both df these culrvs and their ratio, we obtain

the curve for the coefficient of safety n =-

-ExamplT e 5.2.it Ft ind b aial ic thera ttes nafemeraylindeialon

shell (Fig. 5.24) if the foalowing is given: a = 6.510t deg-

2 ' g2
9 + 2.83*10q daN/c m ;p 0.3; At =2160 + 1.73x

I) IV o

Elastic defor+mation of t+-e shell is w, w rt .

I I

. I * I

Let ux find deformation wt from equation (5.114):

pf

shel (FWig. (C4 fingx + C.g COS=X) +

S+ 2.•'I06 dN/cm2 (Csi=J 0.3 Ct =2160 + 1.32

PaEaticular solution, of wty

1r~=l126., 10-6 (2 160 + 1,3X2)

* 1770. 10-4+1,41 1 C'-4X2~=AO+Ajx2.

I I

SLet us find the general solution to equation (5.114) wit:oit

the' right si de.A

2p |

We find the quantities a,' L, and then the., co• fici 's ." ., '

03P C4 from boundary sonditions:

* I

when u 0 fi (0) gee(a) 0; when Y*= e at p (e) withou

th• rigt 54de



NI,_ . l90 _. h-ID

-rcz Lit 'w.
a) (a),6 (b) )(C)

z

dAt

MQfl

C) (d) Fig. 5.24. Anode analysis.

On the left end when x = 0 we find Cl1 C2, if we assume

C3 =C4 = 0. On the right end when x = I we find C3, C1, if we

assume C1 = C2 = 0.

Thus, when x = 0 -2 2C1 + 28.34'10-5 = 0; C1 + C2 = 0; hence

C 1  10,8.!0-1 ¢.; C -=:-10,S.10-4 C.W.

When
.= -,3,12(--22C 4) -- 2.5,8(212C 3) -I- 2g,31.10-5 •0;

-3,12 (- C3 - C4-- 2.5, R (e,3 -- C4) = 0;

hence

C3 = 0,46.10-4 c.1r; C4 =- 0.. 10-4 C.q
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and bend is

C~e-x •in ~•� • Cos Ix .+ C~ex s;n ,.-Cte? cos.V

(1,,k. 1O-4e- v si, Ifx--. 10,8.10- epx ros~x +

-0,'6.1O0-4epx SiltmX+ O,33.10-4epx cos Px.

Calculation is reduced in Table 5.3. After computing w0 in

line III and w in line 16 we find total def'ormation of the shell

in line 17 according to formula

W ,w + Wy = raAt + Wo

and tensile strength in uhe circular direction according to !c•rmrula

w0  2,83". 105
a =E -- wo=22,5 10-..1

r 12,6

We determine w" according tc formulas (5.26):
p

= (2PFC 2) e-x sin ix - (2f-?C,) e-Pr cos Ax - (2pC,) e'xsinpx +

-(2'2Ca)2eex cos0.x + 2A =- 28,3.310-5 e-,Xsin lx--28,3, 10-;e-Px cosx--
--0 ,865 .l-1e0 x • n {x + 1,2. 10- 5501.r cn p 1. , - 2 ,1 1 ,l : 0--i.

Computation of' W0 is presented in "Linc:s l)-23 , f Table 5.3. I.n
p

lines 24-26 we find the stresses ax. aq (M), aq, caiculated

according to formulas

6Mr-.x- h2- ' rAe Mx-'Dw",=2,59.lO5S. wf;

a (M) (M. :(A) 0. 3a.r (M);

a ".. - % + 09 (M );

(2*,OC1- 2',3C2) eX s in 4x. (2r'Cl ~C)e~ A ~

- (2*,•C 3 + 2P3C 4) e x sin Px + (203C 3 - 2 3C4) e X cosx

203 e-, sin px - 7,5 epXsin x 4. 1,21 cx cos Px.

547



Computation of w'" is made in ,lines 27-30 of Table 5..3.

Vc-; find the stresses, • •Q) in line 31 of Tale 5.3 computed

accordifig to formula

TX (Q)-3 ,Q =h- 2,59.ho0w";

•,• ~ Xx(Q) =_0,11 1 03l6W•'11.

As is apparent from the •table, the value of shearing stress

is;not. high. lr Ithe futur6 we shall 'disregard it. Generalized

and the c6effici'ent of' safetyn =-S' ' "at MAI'

Figure 5.24c shoys the obtained coefficients of safety and

stress curves in the shell.

Analy.sib, of a cylindricil shell with variable
parimeters

Let us solve 'equation (5.7") for a shell whose parameters are

arbitrary.

The quantities E, h, a, At are given. All these quantý' es

p can be variable. Find 09, )x, a (M), w.

We shall examine a case when the left end of the shell has a

r'igd attachment and the right is free (Fig. 5.24d). Let us assume

V,.U che shell is long. It is possible by direct integration of

A.rffrential equation (5.7), witt allowance for boundary conditions,

.Aliln a nonhomogeneous linenr integral equation and to solve

Z.. im-ethod of successive approximation. Since equation (5.7)
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belongs to the class of differential equations containing a large

parameter, the process of successive approximation will be slowly

convergent, which is 'not convenient in approximate calculation

when calculation is performed on ordinary digital computers.

,r

It is advisable to return to the calculation method already

used: to represent the stressed state of the shell as the sum of

the m6mentless stressed state and the stressed. state as a result of

local loads causing a moment stressed state rapidly -ttenuating as

the distance from the loading zone becomes greater. Thus, the

solution to equation (5.7) will be composed of its particular

solution and its general solution without the right side,

Wp = w 0 + w

The initial differential equation (5.7) for the case of

thermal loading assumes the form

(Dw'* + 01 hEaAt
S"='r2: T r (5.27)

Let us free the shell from attachment and find it, deforuL.ion fron,

heating by temperature At, i.e., the paiticular solvtion. If we

assume that At = f(xn), where n < 3, I.e., quantity (DwN)" 0 ; ther±

Ell h E•am

"r1r

hence

We shall find the common solution to equation (5.27) without the
right sida:

(D+ E =0.
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Table 5.3.
(2(2) (1 l10

~t'YII~UII INh 0 3 6.I _ _ _ _ _ _ _ _IC'I f, I ___.__ I __ _ _I '
x I' ,,,I - " [' I

2 1 0 1,087 -2,,73 3.26 1
sin x 1 0 0,8853. 0,8233 -0,1199 I

3 cos I1 1 0,4651 -0,5676 -0.9927

41 1 0,337 0, i14 . 0,039.AI

15 e 1 2,964 8,8 126,0
6 epsinx A 1 0 0,2986 0,0936 m-0.0046 ,

7 o-sx o 1 1 0,1572 -0,0646 -0.0:182

8 ePXsinPx 1 0 2,625 7,25 -3,12

9 .ePXcos x 1 1 1,381 -.:4.99 -25,8

!O. 10,8() 0-4 0 3,22 1,o19
0-, -I,.7--10,8 -- I,7 ,,9 .. 0412,

12 0,46 (8). 10-4 0 i,21 3,34 -- 14.•
13 0,33 (9) 10-4 0,33 0.455 -1 -z,ý5 -8,25

-14 Wo I0-4 -10,4 3,18 "3,39 -- 9,59
15 1,41 7 ,x2  104 0 12,8 .51 115
16 WV(15)=1770 10-4 1770 1782,.9 '821 1885
17 1760 178;i 1824 1875

18 1_-.235 71,5 76,3 -,216
r

19 -26,3.(6) 10-5 V -9,45 -2,64 0,13
20 -28,.3.(7) 05 -28,3 -4,45 + 1,92 +1,o05
21 -0,805.(8) 10-5 0 -2,27 -5;26C 2,7
22 1,2 (9) 0-S 1,2 1,66 -- 5,99 -. 34,0.

'2: w- = 8,34 + (19) + 10-5  3,24 '14,83 15,27 1,22

+ (20) + (21) + (22)
24 +20 +240 +246 +19,7

25 • (,11) 1 +6 + +72 -- 4 +5,9
26 1 -229 142 150 -210

27 206.(6) 10-6 0 61,5 19,2 -0,903

28 -7,5.(S) 10-6 0 19,6 -. 54.5 23,4

29 1,2.1.(9) 10-6 1,24 1.71 -6,2 -. 32
.30 Wp" =(2't)(28) + 10-6 1,21 43,6$ -41,5 -9,5

+ (29)

31 TX(Q) I 0,21 1+7,53 -7,13 -1,63
KEY: (1) No.; (2) Function; (3) Factor.
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I i

* I

Let'us designate

Eh (5.29)

We shall integrate this equatidn four times.

The first integ-ral * *1

£
. Dj --I A~.J.. ," " •

* I~~ (Dv);,' - w(I + 4'(JCJAri.

9 I

From the conrdition when x y 0 (Dw)' =Q we find C QO;

from the condition when x = ? (Dw")' : 0 we obtain0

i

Q *- I

0 0

Fro th codto x 0o, we f== In M Fo

S I .

'~O Qx V9" 0 "

-- w dxAw dx= iR I ,.3o0
I9

dThe second integra

I Dv' QdxS C2.d

* I 9•

9 I~

From the condition x = 9O (D~w") = NO, we find 6'2 =.M0 . Vr-om
,the conditioln whe'n x ='l., (Dw•z) = 0 we obtain

I I

5!;

( S

I, I



We integr'ate this equation once more:

w; fL-j> .A dx±-
0

For long shells, if it is necessary to find the bend of the shell w
and stress a, it is advisable to use the condition when x = La

w%(Z) = 0; we- obtain C_ M and, finally,

.3 D
0

Mj

j 0 0
• ¢•x dx= --%.

(6. (5.32)

The next integration leads to the result

jo - - w.dx-j- C4.

For a long shell it is advisable to find C4 from the condition when

x = w(l) 0. Then C4= S dX and

- x

SWo=-J wx"t ± wdx-- ( w'xdx-- iW:!x). (5.33)

The solution to equation (5.33) should be reached by the method

of successive approximation. For the initial equation we can take

any function which satisfies the boundary condition when x = 0

w0 = -6; when x = I w = 0. Usually a rectilinear function is used.
After two or three appro&imations a sufficiently accurate value
for d'eflection w0 is usually obtained.
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Full deflection of shell wp = w0 + w . Stresses in the shell

are determined by the elastic component of the bend

S= w -P- ra t=Wo+ W%-- rcAt.

Since w. = raAt, the function w0 will be the elastic bend. The

usual form of bend and stress diagram is shown in Fig. 5.24d.

Example 5.3. Find the circular stresses of a cylindrical

anode by the integral method. The conditions for the problem are

the same as in example 5.1. Calculation is presented in Table 5.11.

Let us find the bend of the shell w0 from formula (5.33). The

initial function w0 is a straight line with a bend at the attachment

spot %0 = raAt 0 = 0.455 mm. This quantity is found in the "factor"

column.

We obtain the bend w0 1 in the first approximation in line 10

and in the second approximation in line 19. This Loend determines

stresses a in the shell (line 21):

E
j-Wr

Full bend of the shell we find in line 22: w = w0 + w = w0 FrAt.

Bends w are shown in Fig. 5.22 by the dashes.

Stress in a shell in the presence of
temperature gradient through the thickness

Let us assume that temperature gradient At through the thickness

of the shell changes according to linear law (Fig. 5.25) and is

identical on its entire length. At points located at a consicerable

distance from the ends of the shell there is no bend. The shell

element is in the same stressed state as a plate with nonuniform

heating.
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Table 5.4.

_ _ _ (3) i A I I() ) Kit)I f) ( U 1 .s 28 . .

I U'o Bo -1 -0,8 -0,6 - 0,.1  -0,2 0
2 fAwodx -4A0(I/10) 0 -1,8 -3,2 -4.2 -,-5,0
3 Qx -AZJII0) 5,0 3,2 1,8 0,8 0,2 0
4 SQxdx -A z0 (yIOp2 0 8,2 13,2 15,8 16,8 17.0
5 .Mx -A,)D(IP0)2 -17,0 -8,8 -3,8 -1,2 -0,2 -o
6 W' -A,)oID(/1O1)3 0 "25,8 -38,4 -43,4 -44,t -45

7 wx -AboLD(/1[O)3 45 19,2 6,6 1,6 0,2 0
8 w -A• 0 /D(1/JO)4 0 64,2 90,0 98,2 100 100,2
9 Wx --AkID(I:O)4 -100,2 -36 -10,2 -2,0 -0,2 0

10 Wo, 1 -1 -0,36 -0,1 -0,02 -0,0 0
I1 Awcldx -A?,c(I/1 0) 0 -1,36 -1,82 -1,94 -1,9--1 ,96
12 Qr -A •o(l/10) 1,96 0,60 0,14 0,02 0 0
13 fQxdx _A6•o1/10)2 0 2,56 3,3 3,46 3,48 3,48
14 MX -A~O(z/1u)2 -3,48 -0,92 -0,18 -0,02 0 0

15 w' -Ao/D(1/10), o -4,4 -5,.5. -5,7 -5,72)-,72
16 w'x --A 0 joD(/IO)3 5,72 1,32 "0,22 0,02 0 0
17 w -A 0 tfD(Ij10)4 0 7,04 8,58 8,82 8,84 8,84
18 Wu. -ADoOD(l/10)4 -8,84 -1,80 -0,26 -0,02 0 019 I -1 -0,205 -0,029 -0,002 0 0
20 Wo2= w 1 -0,455 -0,093 -0,0013 0,00 0 0
21 1 -132 -27 -0,3 "0 0 0
22 w i 0 0,382 0,51 0,562 0,617 0,64.3

KEY: (1) No.; (2) Function; (3) Factor.

Stress on the outer surface of the shell at points removed
from the ends, by analogy with a plate, is

EaM iEaAt=2 -) (1 (# 2 (1-F) (5.34)

if

Ai=t-to and t>to.
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Near the faces of a shell there will occur a certain bend

as a result of the effect of its attachment.

Let us examine the stresses in a shell if its ends have no

support. In this case, stresses a, on the end will be equal to zero.

Since the stresses (5. 3 4) can be obtained as a result of applying

bending moment to the face of the shell, we shall apply moment

M0 = , which is attained by a rigid attachment of the shell eril.

With allowance for the sign,f A40o= -- X; A1o,= -S ax#2EuAth2

12(1 (5.35)

In order to create the same conditions as exist without
attachment of the face (ax = 0), Jt is necessary to apply ctistribated

moment of the same magnitude but of the opposite uign. Stresses

in a free end will be defined as the sum of stresses determined bý

formula (5.34) and stresses caused by moment M0 (Fig. 5.25).

II

ai) (a) 6) (b) o (c)

Fig. 5.25. Determining stresses in the presence of a
temperature gradient through the thickness.

Loads in a free shell causecd by moment M0 applied tc the end

are known:
JPra.ýt2:- 6,1 ;

12(1-p.)' -

AL~o(O) =v,' 0o= Ea~th2.u." " •÷(Al).z •.,. ('l);

a 12(1--p.)
T, (0) Lh [E (0)]=L M 0•_o

r r 2-2D

- h 1- . - "(5.36)-

i( .35



These formulas show that on the free face maximum thermal

stress acts in a circular direction. If we add stresses a from

formula (5.34) with stresses a. caused by moments M. and force T,

[formula (5.36)], we obtain

Eau~(____ S-- F + (I-
-. (5.37)

When p = 0.3 this stress is 25% greater than the stress (5.34)
calculated for points at a great distance from the faces.

In brittle material we should, thus, fear cracks from the ends
of the shell and not in the middle. Figure 5.25c and 5.26 show

stress diagrams for the end and the center part of the shell having
a temperature gradient through the thickness.

rmdi

MMV

Fig. 5,26. Thermal stresses Fig. 5.27. Moments acting on an
in a cylindrical shell, element of a "conical shell.";

Analysis of conical shells

A conical shell experiences internal pressure and thermal loadings.
Let us consider an axisymmetric problem. Therefore, the unknown
stresses and strains of the elements are functions only of coordinate
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x or r (distance al- g the generatrices of the shell from the

summit of thE -one to the examined section).

Figure 5.27 shows the positive internal loads applied to an

element cut out of a conical shell. Let us find the membrane stresses

a, and a and strains of the shell.

If fae assume, for exariple, that the internal pressure on the

shell is constant and acts on the entire internal surface of an

uncut snell (Fig. 5.28), the axial force in an arbitrary section

is determined by radius r:

-N., = p;Tr2 sinl2 0, •.n .(5.38)

where 0 is the angle cf the generatrix of the shell with the x-ax).:

Axial force N x causes normal stresses constant along the

perimeter:

nrh sin 20

where h is the thickness of the shell and generally variable.

Particularly, when Nx is determined from formula (5.38),

pr t•r-• tg 0."

Let us find circular stresses a., We shall examine the eqLili-

brium of the shell element (Fig. 5.29) separated into spherAcal co

conical section.

Projecting the external and internal forces onto t!e normal

to the surface of the shell, we obtain plidpdr -OahdrdcI,
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pR _prtg-
ii h (5.39)

where R is the shell's radius of curvature.
P II 

I

00 0

Fig. 5.28. Determining the Fig. 5.29. Equilibrium of a,
axial force of a "conical shell." shell element.

Membrane stresses ar and a are the reason foi' the appearance
of deformation. The greatest stresses a lead to shell deformation
in a radial direction:

% R pr 2

B! tg ~ .( 
5 1 4 0 )

Radial displacements toward an increase in-the shell's radius'
of curvature R are assumed positive. Pressure p acting on the internal
surface of the shell from the center to the periphery is also assumed
positive.

As in a cylindrical shell, we express al' strains and internal
forces in terms of full radial displacements of w.

Thus, the relative deformation in a circular direction is'

55 rtgf
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Squrvature variation along the generatrices is

d2tL'
* dr 2

Curvature variation in a circular direction, connected with

the variation in the shell's radius of curvature R because of a turn
of the elements by angle dw/dr,

I dw
"r dr

Theilast expression is derived in the following manner. The

initial curvature of the shell in a circular direction is 1/R = 1/r

Ug 0. Due to the turn of the generatrix by angle dw/dr, the rad.us

of curvature acquires a new value:

rsinOrsInO
; dw
cos~+Cos 0 dr

fi

hence t•he variation in curvature is

1 Idw: ~~~~k ;-•--=. .S RHoU R r dr

pi

We shall disregard the curvature varia tion because of dplacm,,r~t

I i

Full circular normal stresses are

rtgO0

linear bending momenrts are

D , +k) D j

AI&=D (kv+ jikrj=L?[
i (5. ..15
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K i...

Linear shearing forces, obtained from the condition that the

morments acting on the shell's element are equal to zero, are

A,4'-rd'i + •-' dr) (r + dr)+ '+drdO +-Qrd Odr ==O;

1 d1
dr r r rdr r

Finally, the solving differential equation will have the form

[rD 2 d dD dw 1 E (5.42)
dr2 dr2j-dr dr dr -Ir-g 2 O

This is a linear differential equation of the fourth order with

variable coefficients. L1et us consider how it can be simplified.

If the shell thickness along the length is constant, i.e.,

h = const and D = const, equation (5.42) assumes the form

V , (,II )\ + EhW _ A
r 'D rtg20 - (5.43)

or in transformed form

{r [-L (rw')] +~Y, (.1r ,r Jg28 D (5.44;

;When 0 = 7/2, equations; (5.42) and (5.44) are transformed into

differential equation for an elastic surface of a circular plate

loaded by an axisymmetric load.

To integrate equation (5.44) we expand it [16]:

rw 2w" " W' + 4 W1 'V

zIV +2wI~U (5.415)
r rr2 Eh
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where 4 4

2-tgo ro

r 0,. R0 are the initial radii of a truncated shell.

The obtained equations (5.44) and (5.115) are basie for the

stress analysis of a shell under the action of applied pressur',.

Le' us examine the case of the thermal loading of a she.L! if
there is, an axisymmetric temperature field, variable along the

length, with a constant temperature along the thickness of th- g:alL

(Fig. 5.30).

The stressed and strained state of conical shells can "p"

determined according to the same procedure as ftr cylindric.i -

We assume the system is axisymmetric. The unknown stresses ,,

strains are functions only of one coordinate, x or z.

The general, total strain of a shell with thermal loadinr

is

wnere w,. Ra~t is the thermal deformation cf an unres*..,,ined
mheli ;

Wy is the elastic deformation of a shell due to the con, a., u-,

of its deforntation.

Elastic deformation is found as the sum of deformr*-:tlonq - -
deformation of a rigidly fixed shell w and its elda'tic de:',x-,•

as a result of' the application of reactive forces ocnurrinf 'i. g
the rigid attachment. From cond.'tion w =6

wy= -w,= - Rcz•.
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1.1: deformation correspondz to-the pressure fixing the shell.

Let' uz find it.. Assumlw.ýi iziat At = n where n' =; 0, 1, 2 we obtain

•---Ar in; 9'r.[-L 0,;) '

I *-

D
then , t,•yrpmt;

jOr>tJg2 0, D

r tg2 Ot p,

Ek (B)

Equating the expressions (A)'-and (B)

•• • _•.-RcAt= " e,,,

i I
we obtain the pressure ýrisirg during the rigid fixation of a shell,

_EhaAt ; EWzAtI

. irge M I'I
If we apply this pressure Pt:= -P t to the .se.l, weobtain the

deformation w which restores the given boundary conditions, from
P,

equation

Ir [L(ruiv )D1i+ Eh'P
r ( ) -Drt ' D (5.46)

rw1V --2." --. -- Vt W4 0'-4[M•--• W" ' = 41gA, (5.47) i
or(5or4 =

Fig. 5.30. ____- _________ "_"

I cAt

X5\
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F, I

The elastic deforratj.on'of the shell, causing the stresses,
:pW -RmAt+w

y Pp

Cir'cular stresses caused by these deformations are

alpR (5.4,8)

Total deformation of the shell!

-Ws+u ,=*raAtbrAtV+a,=u,

Thus, the problem reduces to solving equation (5.47); determihing

the precise integral of this equation, in the genera2l case, is
difficult. This is a linear nonhomogenc'ous equation of the fourth

order with variable. coefficients. Let us examine two methods of

solving it.'

The general, procedure for solving equation (5.147) will te

similar to that for sol4ing eq-iation (5,7) of a cy~iridrical she-!.

The solution to equation' (5.47) will be

twp=WO+W4,

where w0 is the general solution to equation (5.47) without the
right side;' J

w, is the, particular solutiion to equation )J.7).

We shall fina the particular solution.

Usually temperature variation alopg the anode can be dec'rb,1
by law 'At = B0 + Blr-. If we represent the bend as w I A 0 + Ar,

iwe find from equation (5.47)

Gr (r l =. and, E - r Ehu-At
,r D Otg2 D rtgO

hence,

IW,=rtgfeLA1t2Gt56
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The assumed law of At enables us to obtain the particular

solution characterizing the momentless state of the shell.

With a more complex law of temperature variation the value of

coefficients A0 , A,, A2 should be found by the method of undetermined

coefficients. Let us assume that the law of variation for At is
described by formula

A-t=Bo+Bjr+B2e,

and the particular integral by equation

% = Ao +A r+A 2r.

Substituting the expressions into equation (5.47), we obtain

1w;=A,+2A2r; W=2 r; u=wu4V=O.

Consequently,

-~=2"r +-Bo + Br + B+Or),

hence
A0--; A1=--tgOB 0; A2=Gtg9B,.

Finally,

w,=atgO Bor+atg@8r 2.

Let us find w0 . According to the method of asymptotic integration

[16], we shall seek solution to a homogeneous equation [equation

(5.47) without the right side) in the form of w0 = *e kp, where

k=±(l ±1)p; (5.49)
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Shbere p isavari-r.t', quantity;

S$ is the func 1.)n r.

S ~Function ¢.represented by an asymptotic theory

k " "' '

The integr, ".Ion of the homogeneous equation is performed onl

the assumption •..at 0 is a sufflciently large quantity (ý > 1), I~e.,
i~g solution is intended for shells with a small cone angle (9 < 600)

Sand little rel tlive wall thickness (hRO or h/r 0), which usually

corresponds t,, anode design.

We substitute equation (5.49) and its derivatives into the

homogeneous equation corresponding to equation (5.47) and equate

to zero the terms with identical powers of k, assuming that k and

are of the 5ame order.

Fron! tne condition that terms of the order of'k 4 a-,-- equal

Sto zero, a~zsuming that k 4 4B -44, we obtain th, equatioý

hence

Ar

0 (5-50)
ro

From the condition that terms on the order of k3are equal t.o

zero, we obtain the equation

I0

r 14 (QI)3 ,$o +• 6 (Q')•"e• -?0- 2 (Q) o-0.

Hence, using equation (5.50), ie determine
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Thus, the solution to the nonhomogeneous equation (5.47) in
Lhe first approximation, which is sufficiently accurate for practical

calculations, i.e., when the asymptotic series , is replaced by

the firSt term, function q,, assumes the form'I
Wo=1-J[e-Q(C 1 sin Q+ C2 CosQ) 4-eQ (C3 sin Q+C 4 cos )],

where, unlike expression (5.50),

&

Analysis of dependence (5.51) shows that the terms oe-P(CI sin

p + C2 cos p) represent radial displacements, which are maximum near

the edge r = r0 and rapidly decrease with an increase in r. The
0

terms %0eP(C sin p + C2 cos p) describe the radial displacements

which are maximum near the edge r = z and rapidly decreasing with

a decrease in r as compared with r1 .

Thus, if the shell is long, we can determine constants C1 , C2

assuming C3 = C4 = 0, and, on the other hand, determine constants

C3' C4, assuming C1 = C2 = 0, which considerably simplifies calcula-
tion without introducing appreciable errors in the obtained results.

The length of a conical shell will be evaluated in a manner
similar to the length of a cylindrical shell. Let us examine the
function

FO17 AA (5.52)

We multiply the numerator and derominator of this expression by
(r / + yrO) and introduce the substitutl.ons r tg e = R, r 0 tg .= RO,

r -r 0 = ; we obtain

2.561
S= -• + !"R-T'
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Hence the length on which a full cycle occurs in the variation of

functions sin p or cos p is

2,5•

The shell can be considered long if the following condition is

fulfilled

*I> 1,5 (1. k+ 1h-);

or if verification is made along radius R = R0

i.e., the formula fully agrees with the formula determining the

length of a cylindrical shell.

• (a) b)

Fig. 5.31. Analysis of a "conical shell."

Example 5.4. Find the circular thermal stresses a i;n an anode

of a motor by the asymptotic integration method if the foliowing

Ls given: material - graphite, E 8*10 daN/crm2 ; a = 3.1'liO- l-'•

P = 0.34; anode temperature is trO 11433.5 0 C; to 13650,';

tr,= 1226.3 0 C.
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The diagram of the shell is shown in Fig. 5.31. Calculation is

performed along the sections r 0 , rl, rI:

r0 =12,8 C.A; r,=15,1 cI. rt=17,4 ex; 1=4,6 c.u; 0 =45V; h-0,4 CAL

1. We shall find the law of variation in the temperature field

along the length of the anode:

At-Bo+ +B2.

Let us determine B0 , B1 , B2 from the conditions:

when r = r 0 t = to0 • 1433.5; when r = r1 t =t = 1365;

when r = r t t = tI = 1226.3.

We shall set up system of equations:

Bo+ +iro + B2 2r i 1433,5;

BO + B.ri + B.r = 1365;

Bo + Birt + B2Ir2 1226,5,

hence we find

to ra rf

' I r -rj

Bo - ror2-=2,,Bi=l*5; B2=-"6,64

and the temperature field

At-528,5 + ISIr - 6,QMr.

2. Let us find the particular solution w 4 to equation (5.46).
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We assume w.= A0 +Alr + A2 r2 + A 3r3; substituting this value

into equation (5.46), we obtain

w,= A, + 2A2r 4.3A30; w, 2A2 -6A3r; wV i= 6eA; 5=0.

Substituting the values of wL; w'; w"; w, 1 wq into equation (5.46)
1i 4 14

and equating the terms with identical functions relative to r, we

obtain

A. = 0; A, = a tg OBo;" A2 = a tg.e OB; A3 = a tg 9D2 .

Finally,

u,,, = 523,5 a tg O.r + 151 a tg , 2 - 6,6la tg Or.

3. Let us find the general solution to equation (5.46):

lp = !o[e-0 (C, sin + C2 cos Li) + eQ (C3s;InQ+ C4 CO- Q)0 + w,.

Here

'-ro)

23 F 12 (1 tL2)

2-, t9 11

Let us establish the length ,; the shell from formula

jj 3 VfoI.

Usually, in the problems which we are examining the sheils are

long. In our example, the shell is short since

1, 3V0,412,8 5, 7R c..e.
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Tne z?.ell dimension~, in our problem, is 1 4. cm.- however, for

tne first evaluation of stresses we shall cohsiaer it' ldng. 'Maxlmurn

ztreZsseZ arise in the right, rigidly attached end of the shell. Then

the conditionz for finding unknowns C 3 and 1,4will be'

Unknowns 0 3 and C 4 are obtained from equations:

P= % e0 (C'3 sin + C, c's o) +..1 1r + .Ir! + 43r3;
_L0.25 2

z.=e C'3 [sqin Q ("-0)+ 'UQ'P Cos 01 + cQC 4 ICpsqq( + ki' )I+
+ A4 + 2A,)r +,3" 3r2;

0.25ro

These equations for ws and w are sufficient for detelmining 03

p

and C4.

Let us introduce the values of w" for determining C and C4fithe

shell has hinged supports:

, .; +2e0(Q3 + inoQ") +e- C.3 n. s (1 [r +2r- ' +2 . s 'S

-e r C4 Sin o. [-oQ + 2 .,t' + 2!'O (Q',)21+

+eQC 4 cns CQ (,e; -12-j"o' + 'o)2. + 2 A~ r

.0 2; + 6Ar ,.r1r;

,. .•,75 -1.71 , 0 53 ._Is
"endr r

We shall find 3 and Cfor conditions:

r = r; w (rfj ---(; u-'(rj) =0;

-n~ 117,12;

j f $ tv; t /t~

12,

"570



0!

= (I
roo

k¥} -ig 4B.I- t r,,I- ')=1.0.o6,0: ;
""~~ ~ ~~~3.5 1/• n1"- :00-.-,AV;--6-1-6.6 t=r-..2,.1" ,

.4 -atg e • =3.• n e 17 r2- .102 -R- r 3 o1 o1 - - . .

U., ()j = ( .OR [e21•'s 1C3 si,, 2,265 + C, cos 2.266)1 +
+ I. g. I oý-3r + n.,546' 10-34i-2. 1084.r

('1.RiR. 9..S (- C3O -,64-- C40,77)+ I,8.1.10-317,4 +

+ 0,516.10-3.302.8 - .22.10- 5. 526 0,

-,~nce '13,62C
3 +7,C4 0,210•;

0,2.5 ,'

-0

"ZL (r) 9,.58C3 (--011) [p,0154 + 1,08 (1 + 4.,5503+

+ 9, 5RC 4 (--O,77)10,0G.54 + 1.01(4,55-- I)] +

+ i ,83.1 0-3 + 2.0,546.10-;. 17,4 -1- 32. 10- 5 .17, 42.

We'obtain 36.8C3 + ý8.4CII 0.02068. Solving this system, we find

C .0.0558, IG 4 0.073. Finally,
/r \0.-25

S+ 46. lO-3 r0- 2.10 Sr3.

Substituting the yalues' of r0, rl, r,,,we obtain w(r 0 ) 0.138 cm,

w(rl) * 0.1104 ,,m, w(rZ) -.0.
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Stresses in a circular diret.ion or

05; (ro) = E u3 +

-80. 10. 3.5.10-6.1411,5 + 12,) = 4,b2 daN/mm2 ;

22,(rj)= 1,77 6aIl.m.0.; c•(r)=--3,44 daN/mm

Fi; .ire 5. ?i shows the tends and stresses of an anode.

Integral method of solving the equation
of a conical shell

As 13 apparent from the example of shell analysis, the asymptotic

method is rather cumbersome. In many cases, calculations should be

r-erformed according to the integral method.

Let us examine a case when the anode parameters h, E, D are

constant and the only variable is At.

The initial equation will have the form

(r' )"--r WO + DrtgOe =Dtg" (5 .54)

The procedure for solving the problem remains the same. We shall

seek a general solution to equation (5.54) as the sum of its

particular solution and a general solution without the right side:

Wp = W0 + Wr.

Let us find the particular solution. We assume that the temperature
& 2gradient is given by formula At = B0 + Blr + B2 r

We also assume wr = A0 + Air + A2 r 2 + A3 r 3 . Let us substitute
this expression into (5.54), equate the terms with identical

functions relative to r, and obtain the values for AO; A1 ; A2 ; A3

and, consequently, w :
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A0 = ; A =atgOB0; A2 =atgOBI; A3 -=atgB62 ;

W4=-a tgBor+ .a tg6Blr 2 - a tg.'O B2ri. (5.55)

Let us find the general solution. We shall consider equation
(5o!54) without the right side:

+ Drtg"- '" O (5.56)

designating Eh/Dtg 2 = A, we integrate the ,equation (5.56) once:

(rw. ~? g)' T-

r (5.57)ro ro

'0d

Fig. 5.32. The integral method
of shell analysis.

At

Ro

~-. 0  "-..

•ie find the arbitrary integration of C1 T'L'cTI the boundary condizion.
We shall examine a shell with a rigid attachmiezt on the rigi, end

(Fig. 5.32). The boundary conditions for such a shell, ir. order.

to determine C, and then C2, will be

when r = r0 Dw" = 0, or' w" = 0; Dw" = 0, or w"'= 9. (5.58)

Substituting into equation (9.57) boundary conditions (5.53) and

assuming that (rw")' : rw"' + w", we find (rw")'r = r 0 and

C1 = 0. Let us turn our avttnt.ion to the following d-endence:-
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w lW 2- W-

=--, -- (); r- '=r g "I ;
rr ro r r0

if we suOtitute this dependence into (5.57), we obtain

rw' +r Awdr

or

W+ (). .,, -I drI•&•"""r) r; r --- r (5.59)

r.

We integrate this eqoation once more:

r • r r
vI, IW'o) r' dr 1, + 1' d 2 -

r70  r J r J - (5.60)
rg re to re

Using condition (5.58), we determine C2 = 0. Allowance is made

for

I W,(÷.,)I-;U, - --:-.

W, it -_L _ (rw' + w')= _ (rwf)'.
rr r

Substituting these dependences into (5.60), we obtain

2(",(o) _d," L Aw
-L.(rw')' -- w)' (o) dr r . .r.

r ro ro r
re re re

or

w' (o) r I Aw dr2
(r') (5.61)

5r7 r
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We integrate this equation once again:

r r jr
rr'• o) r - r - r --- dr a s,

ro re re ro re

or

U,(O dr A_w-r 1- 'r
II,~ = - ý,•(__ r 1 -- dr---- r J''ýUdrs+ .,

ro.r (5.62)
ro ro or ro ro

Boundary conditions for finding C3 and then C4 will be:

when r=r, zi'()=-0; z;.(1) =0. (5.63)

It is advisable to also allow for the fact that when r r -

IV, (0)=-C3
C:

or

C3=w' (o) ro,

where w'(o) is the slope angle of the tangent to the elastic line

of the shell at the origin of coordinates.

Equation (5.62) will assume the form

x-M(O) nI'- + eo•J'~ ~ W ==(---t -- W,+"° (0) = W' (0), 4I-I' 71- •'

where

r dr ;

ro to

Ir r "r 'I -,AwdM
W4 r ~r r

,o ,o ro (5.64)
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I, * I I

Suzt-ttuting conditions (5. 63) ii~to (5. 62), we obtainI M

r'(o) dr - r wr 8

Ni

/

Jl I I

whr
I

-- _ j 3d r 1. ' '
ro . ro (5'.6")

S• ___ / v-T •'O--n 5.66Let us i(t

thefat ha te -qanito w(o has% beeno=O deie b sadi

ro r(

r'O0

Thwau ftherostn is on rmcniin 56) h

n;"--I-L- 'rdr ;
"i rl

i rOn re d of t .

oW sl d gna it

i wet ubsint tein equatio6 (5.67) thelvaue. of alloThus,

; W~o)w o).

n I ro

roo r e "("5.67)

ifLe substintegute inoequa tion (5.6 7)fo theivlasuie. of r lo rfoTus

576



Briely'J~ equation,~ (5.6).J can'b written as'

0 ~where ,

"+3- [*~ r(K)r. dr;
ro .,

re.

Io r0 70 o ro - (5.69)

Tf d s~stiut ito eqaýon (5.68) conditions (5.63), we o Lain

,hence, *

r:I/' ere

rl r dr
, ror ~ r) r
r, - (I . ~ ~ r r

Waff r ý-L 1Au..dr4.

'Equat,don (5.68) mikes At pos5ýLulf ic finallj~lpbbi,\in, she-I de-f~phtion.
B~riefly it can b-~ v'ritten.a, v = 1.w. S~im~ilarly, we can oL1;ain an±

equaition for ctki.-r type., of-vheil ahlr

W, 7
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The obtained equation is a homogeneous linear integral equation.

It is solved by the method of successive approximations. Methods

of solving integral' equations are examined in reference [7].

Fig. 5.33. Thermal stresses in d •

a "conical shell."

The typical distribution of thermal stresses in a conical shell

is shown in Fig. 5.33. The most stressed point is point A.
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5.2. ION MOTORS

In 'on motors the thrust is created as a result of the ejection

into space of positively charged particles of the working medium

with their subsequent neutralization by electrons.

Ion motors have a maximum specific impulse of 50-250 km/s. They

possess high efficiency. However, ion motors have comparatively

low thrust from the midsection.

We shall briefly examine the classification of ion motors.

Based on the method of working medium ionization the motors are

divided into two groups: motors with surface ionization and motors

with volume ionization of the working medium. The first group is

subdivided itato two subgroups: motors with high Ionization on

porous tungsten and with ionization on smooth tungsten. The second

group is subdivided into motors in which working medium ionization

is accomplished in an arc discharge, motors with ionizatJon by

superhigh-frequency currents and with ionization by oscillating

discharge.

Based on the design of the ion-optical system, the motors are
divided into grid, plate, ring.

Based on the method of work-ing medium feed, ion motors can be

classified into several groups: with forced feed of 1he working

medium by inert gas, with a wick feed syst,?m, with dosing of rhc

working nedium on the basis of the elctrolytic princive, with

working medium fed by the inherent pressure of sat'4raed vqors.

In view of the small expenditu.e of working mediunm, the feed

system provides fine regulatlon of flov rate, which is a'e-mpiished

by various methods -- capillary, valve, etc.
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PRINCIPAL AND STRUCTURAL DIAGRAMS
OF MOTORS

Ion grid motor with surface ionization
and forced feed of the working medium

This motor (Fig. 5.34) consists of an ion emitter-ionizer unit,

the ion beam shaping grid unit, the feed system unit, and the power

supply.

The ionizing unit consists of a sealed niobium chamber 1,

heater 2, ionizer 3, which is a plate of porous tungsten shaped in
the form of cylindrical surfaces - bands 3 - between which are soldered

plates II to protect the extraction grid from ion bombardment. In

the ionizer unit there are also screens 5 which reduce heat losses.

lo

"• ~Fig. 5.34. Diagram of ion grid motor.

The ion beam shaping unit consists of an accelerating (extracting)
grid 6, retarding (shaplrng) grids 7 and beam neutralization grids 8.

~~1-
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Each grid is a tungsten filament tightened to the frame 9 by means

of flutted adapter 10. The frames are braced to each other and to

the motor housing through insulating plates 11.

The working medium feed unit is designed on the principle of

working medium displacement by the pressure of inert gas. It

consists of tank 12 with neutral gas compressed to a high pressure,

transforming valve 13, working medium container 1A4, dosing devicc 15,

and evaporator 16.

The electric power supply system consists of current supply 17,

18, to provide the energy of the electrodes in the ion-optical jysnem

and motor heating.

After feeding vo)tage to the terminals of ;he Lon-optica! syst'V91

the motor is ready for operation. Then the transforming valve ±i

of the gas cylinder 12 with the controlling gas is open. To th.e

membrane of tank !4 liquid cesiumi is drawn throUgh the proportlor'.n_

valve int. evaporator 16 and chamber 1 of the motor ionizer by gas

pressure. The porous tungsten plate of the ionizer, heated to 1200"K

by radiation of the tungsten grid of heater 2, ionizes the ce.Uum'

vapor, positive particles of whiceh are extracted throlugh the pureZ

of the porous, tui.gsten into' tne ion-opt-ical system where they are:

accelerated up to the necessary velocity.

The team of po~it~ve particleI. ;. neu.ra.Lt.zed o,' el. c-,-, ns

emitted by the heaLed tungsten grid 8.

The advantage of this system is its simplicitLy. The dIsad vx:t:

of the motor iJ Srid erosion, as wc-I as the high.r nest 1 5ss" tlxo(,th

the porous tungsten plate.

Motor with a plate-type ion-optical system
and surface ionization of the working medium

'ih•* motor (Fig. .' 35) consl:-." of the ionizer unit, ti. .r;a-

optical •ystem, the f, td :ystem, i d Ci.d &. t:hinI oy.yt ým, i. J

the eleotrical po ..-.. s;ystem.



The ionizer unit consists of the ionizer housing 1, ionizer

heater 2, ion emitter 3, plate 4 which is soldered to the ion emitter

to protect the extracting plate from erosion. In the ionizer housing

are installed screen 5 to reduce heat losses of the housing.

The ion-optical system unit consists of an accelerating electrode

6, shaping electrode 7, neutralizing electrode 8. Each electrode

is a plate with openings, connected to the ionizer housing through

insulator 9.

The motor feed unit is designed on the basis of the electrolytic

prfnciple of dosing. The working medium (cesium) is inclosed in a

ceramic capsule 10 with heater 13 protected by screen 12. When

the capsule is heated to 700 0 K, the ceramics takes on the properties of

an ion emitter. Pt this temperature the cesium begins to evaporate

from the ceramics and under the pressure of the saturated vapor

is directed to the ionizer housing. When a potential difference is

created between the working medium and the electrode capsule 11, the

cesium flow rate can be controlled very accurately.

Repeated on-and-off switching of the motor is accomplished by

cutoff valve 17 controlled by enert gas and located in gas cylinder

114 equipped with a pressure reducer 15 and cock 16.

Power is fed to the motor electrodes and the working medium tank

of the neutralizer is heated by electrical power system 18, 19, 20,

21.

The motor operates in a manner similar to the preceding.

The main disadvantage of these two motors is the high average

temperature, which leads to high heat losses and design complication

in order to ensure long operation. The temperatures of the ion

emitter, heater, and housing can reach t. = 1200-12500C, tH = 1700-

17500C, t = 10000 C.
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Fig. 5.35. Diagram of ion :notor with surface ionizatior o,
wor~king medium.

Ion motor with surface ionization on
smooth tungsten

This motor (Pig. 5.36) conslists of an ionizer unii.. a beara
shapLng grid unit, a feea system, ancG a motor power 3upjiJ.yj 1,",Ate,,i

Tne Ion!zhng unit consist.: of fi.ed electrode I., tzbes with .:.ttd

op-.n~tg3; ionizer 2, a stainless ztetAl , lAte covered '.dth t.gctv';

and heater ]. Unlike the prI-vtous ionr.atton diagrams, *.. this orto

bombardmsint by molecular par'tlcles of tne working med.u.ur 'ceium'

of the heated snioclti, surface of turyste,', is achiev'ed.

Th-. accej.eeting, aystein conslsts of an ac(.LL,-ratr,1c r, rode i.

tnV form of a grio %vtvn tungsten segments 4 qold,-red on it ani

neutrallzation grid ¶ aluo of tungsLen. Bot,, grIds are moun!cd ,,n
frame-, conne,!ted with the housing by Jnsulatnrz.

The cesium feed bytem is!' force- !'i byv the pressure of th at,

vapor cf tht "..or,!ng meildu-n. It con:'.*-1t c: a tanh with tnu worki-p

A.-
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medium 6 and heater 7. The working medium is fed' tothe ionizers
by system 8, 9, 10, 11, similar to that shown in Fig. 5.35. The

power system and electric heating is shown, by positions' 12, 13, 14.
I 9

4 5

1,i1. 5.36. Diagram of an ion motor with counterfiow working
medium feed.

This motor has advantages over the preceding. It is strucjtura~lly

simpler. There Is no ionizer unit of porous tungsten. The surface

of the tungsten is polished, as a result of'which its sblf-radiation

as compared with porous tungsten is reduced by a factor of approPi-

matoly three. There are no heaters having higher temperature than

the emitting surface. In tht7 design'the heater is combined with

an emitter and, therefore, the tungsten and th.t heater temperatures

are near.

However, this design is not as widely used because of a number of

discdvantages. The motor has comparatively low efficiency since

Insrss: from particle -cneleration ai~e greater, than in the design

i-Ath porous tungsten. The working medium has a low usage factor.
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"There are ,aiffiaulties in prcvidin~g the feed of the molecular

beam Tfrom t'te slot on the emItter surface. Nonuniformity of flow,

and nonuniformity of mirror heating are possible and can lead to

* overheating of the ionizer., Secondary processes are complex. Since

* the ion beam passep through the molecular beam, collision and

.overcharg4 ,ng of particle. are unavoidable and lead to losses. The

problem of protecting eleqtrodes from erosion is more complex

than i:, the.design with porous tungsten.

Ion' motor with volume ionization of the

working medium by an oscillating d6scharge

Thij motor (Fib. 5.37) consists of an ionizing unit, an ion-ol:t"'i-2

* system electrode unit, a working medium feed system, and a power
Jupplyl sys tell.. '

,The ionizing unit consists of housing I made in the foPm of a

cylindrical chamber with openingý on the-end wall, cathode 2 of

tantalurn plate, cAthode helater 3, anode 4, sthbilization winding 5.

The ioniopticdl system consists of electrodes: acceleratinr. g,

shaping 7, and neutralizing 8.

I I

The feed system ii forced by the pressure oý the saturated

cesium vapor. The cesium tankyi has heater 10 whicli ensure:z cel!,

evaporation. Fiecis,e control of the fee6 ir accompiishvrf b, -

capillary 11. The power supply system consist.; of powe, scumrz.; '2

w:hich provide power to the heater of' the service tank 9, vol.!

13, 14 .aupplying power to the main electrodes 2, 4, 6, and e

15 of the cathode, nettralizer, and solenoid 5.'

With the heating of the tantalum plate of. the motor cathide, t.

e.ectroni cloud which alises; oscillates in the chamber betwe,'i the

cathode and the'anode, ionizing the working .nedium, which •an be

cesium vapor, merc.ury, or gase. - argon, etc.
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Fig. 5. 37.

The positive ions are extracted through the openings of 'the ion-

optical system as in the other ion motors examined above.

This motor has two appreciable advantages. First, it is low-

temperature. The hottest element of the ionizer, the cathode, heats

to 700-7500C if the working medium is cesium or mercury and to 550-

5600C if the working medium is argon. The provisional temperature

4 of the motor housing does nc", exceed 25000 in the first case, and

C

10000 in the second. Thus, thermal losses in this motor are minimum.

Second, the motor has the property of automatic control. With

an Increase In the temperature of the cathode, ionizatior decreases,

and with a decrease in the temperature it increases (th* ý.athode

operates on the decaying side of the characteristic in accordance

with the Langmuir curve).
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An advantage of thi- mo';or is also the possibility cf a broad:.-

choice of working mediums.

The disadvantage is its Ja i- ize as compar-d -with similar motors

based on the principle of sur.fac• ionization.

MOTOR ELEMENT DESIGN

ion emitter and ionizer unit

The bracing and the shape of the porous tungsten plate arc shown

in Fig. 5.38.

IFor versions a, b, and c ni the figure I', is characteristic that
the ionizer itself is made from one piece of pcrous tungOL-n hvt:

rectangular, square, hexahedra], or' circular shape. Alonr t!,e

perimeter the ionizer is joined by welding or soldering .ot.ih t ,.I,

molybdenum, or niobium shell. To shape the ion beam molytdenum or

niobium plates are soldered to the outer shaped surface of porrus;

tungsten.

The advantage of ti- ts bracing deslgn lies in tire fact tha. tih.,:

length of the conneti:tg :urface of tLhe lonizer houz:'ng and tni(ý

,,rous plate is the i:r,alLest.

As is known, porous tungsten is very brittlc, while• the steel,

molybdenum, or, nilobium .shell is plastic and pliable. T' o-

of such a pair Is complicated. Even electron-beam ;%e-din..- -'es ti
ensure the absence of cracks and burning of materla. at zhe joWý.

Welding by the cl-ectron-beam method is performed automatically,
maintaining a constant rate of seam formation. On the angular :-,1,a..

of tie weld seam a programmed automatic device is necessary t,: vF ,p

the we~dIng rate con.-.,ant. This is why angles in a porouS plate

are rounded off.
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Soldering the porous plate with the housing is more desirable

since cracking of the emitter is less likely. In soldering, the

housing and the rmitter are heated simultaneously.

) (a)
(b) 6

ow C) (d)

Fig. 5.38. Icn emitter design.

The shape of emitter plates, illustrated in Fig. 5.38a, b, c, has

disadvantages. The high temperature of the plate (12000C) requires

an even higher temperature for the heater (up to 17000C) and,

cknsequently, the work of the motor is accompanied by large heat

losses since the porous plate is comparatively large.

The emitters shown in Fig. 5.38a are also bad because of the fact

that their uniform heating cannot be ensured. The drum-cover plates,

installed for beam shaping, have temperatures, unlike porous tungsten

temperatures, which correspond to the appearance of cracks in the

unit.

A more perfected design is presented in Fig. 5.38d. The radiation

surface is reduced to a minimum. Some increase in the length of the

soldered surface as compared with the preceding designs is compensated
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by the perfected circula, shape of the emitters, convenient for

electron-beam welding and soldering.

Ion-opt'cal system :-nit

Figure 5.39 shows elements of the ion-optical system of grid

design. Grid 1 of tungsten, molybdenum, or tantalum is mounted on

frame 2 of stainless steel. One end of the grid filament is weldt:d

to the frame; the other, in order to compensate for thermal elonga-

tions and the creation of tension, is attached to bellows 3. The

bellows must be two-layer as shown in the figure, if it is to com-

pensate for the tension of one filament, and one-layer if two fi!dmients

are compensated. The frames are attached to each other b. bushlr,8

4 of aluminum oxide. The bellows are not required for grids whose

design is shown in Fig. 5.40. The electrodes here are made ,in th.

form of rigid hollow tubes. Such shape allows the use of the lntetniia

cavity of the accele,'ating electrode pipe as a beam neutralizer

For this, it is covered with tungsten and has an additional heater.

An example of a plate electrode design is shown in Fig. 5.111a.

A plate with openings 1 is attached to the motor housing J. by Tieans

of a thin rigid stamped shell 2 and three insulators 3 of al.,Ziinum

oxide. Metal eleinent: are soldered to it to pro:ide reliable cnue.

andi insulator bracirg.

!.'requently the openings of the plate electrodeý are the L'.acing

spot of the i.eucrali:er; Fig. 5.4111 shows various version. of

neutralizers.

Heater unit

The simplest possib]e heater design is shown in Fig. 5. 11:a. On

a ceramic plate 1 are installed tungsten filamenr;s 2, fixed In

their seats by an opcn plate of beryllium oxide. The disacvarntage

of the heater is the hith heat los,.
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2

Fig. 5.39. Design of ion-optical system elements.

The heater in Fig. 5.42b is made directly on the ionizer housing.

The tungsten wire is insulated from the housi.ng by ceramic washers.

•j 

J

3 

Rq-R

Fig. 5.40. Electi ode
design.
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,Figure 5.42c shows the des4gn of a platel heater. The construction

of the tank and the servicing equipmenti for the working medium

is shown in Fig. ,5.43. The diagram illustrates the servicing devIce

1, the tank with the working medium 2, a porous diaphragm 3, and

'a porous membrane 4.

Figure 5.44 prqsent Is an+ ion motor designed for the.:or1,entqtlo,-,

ofjearth satellites.. Cesium vapor is ionlzed on the surface of

the ion lemitter 4 ,of porous ttingstedn, heated'to 12300 C, and extracted

by accelerating electrode 6, heated to i13000,. Beam'shap'ing :is

accomplished by decelerating electrode 7 solderings'8 for ion

neutrallzatibn.N

The Cesium is fed from tank 10 under'the pr~essure of the saturated

vapor, for which i't is heated to 100-1501C. Dosage is acconplished

by t'he porous diaphragm 12 of ceramic, with the use of the electr•j.t'c

effect of the diaphragm. On the outer wall of the diaphragm a Aiihn

film of copper is depdsited. Fine control of working medium flowrate

is accomplished by changing the vol3tage of the "bopper iayer-plate."

F 5gure 5. 45,present's the pverall view of,the motor [91], developing

thrust R = 7'10-3 N; current in the ion beam is 12 mA; potential

of the accelerating el<-ztrode is 8 V, of the decelerating ,electrVdo

4I MV. Figure 5.4I6 sh,,,s th;h overallview of a motor wilth *volumeý

iontzation. The cesium in vapor state through Opening 1 passes

ti.r'obgh distributor 2 into the discharge chamber. Cathode 3, an&!,.

LI, and anticathode 5 create the conditJors for 'ioniz.nj, i2lec'L,':,

whose ions are ext.racted by the accelerating electrode 'grid 6.

Stakilization of the ion beaiq is eflectc•1 by the electroma .

coll 6.,

Figure 5. 117a arid c shows the d;esign oi] ion :motor units w:.th vl'u,,

Iopization of cesium vapor.' Cesium vapor is ionized in chahiber 1

as a result of the oscillating discharge- between cathode 2, a- flat:

tt.ngsten spir~al, and rung;,ten anode 3 in the form of a ring 'The

9athodt and the anode are insulatea from thechamber wa2Ls 1,y

insulators 4.



i,,

6".R1 1B)

Fig. 5.41. Plate electrode design.

Positive particles of Ionized plasma are extracted, accelerated,
and neutralized by the ion-optical system of the motor 5, 6.

Liquid cesium is fed by forcing it from the tank under the pressure
of compressed argon in the gas cylinder. The compressed argon

through the transforming valve acts on the deformable diaphragm,
feeding cesium to the dosing valve.

The peculiarity of the valve design is the fine control of the
flow rate, using bimetallic plate 8. This plate, if its temperature
is changed by the heater 9, bends and opens a path into the ionization

chamber 1.
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Fig. 5.42. Heater dt'sLgn.
KEY: (1) View.

Figure 5.418 shows a version of' ion motor design with voJLIme

lonJ zation.

The rtooor consists of a hollow cathode 1, cy.indricnl an)d- .',

extracting elet'ode 3, neutralizer 4, and bracing element 5. %ii&e

huated w.or~ing mieJium, leaving the cauhode copning 2: 1:" o.I': -
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electrons from the cathode and then is extracted, accelerated, and

neutralized by the electrode system 3, 4.

Fig. 5.113. Structural diagram of tank with working medium.

/0 II

.. .. ... ._ •. .

Fig. 5.44. Ion motor design: 1 - housing; 2 - heater; 3 -

screen; 4 - porous plate; 5 - cover plate; 6, 7 - electrodes;
8 - neutralizer; 9 - insulator; 10 - tank wall; 11 - heater;
12 - porous plate.
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Fig. 5.115. Overall view of ion motor: I -cesium flow., valve,
2 - tank with working medium; 3 -. switching tape; 4j-hec~
5- ionizer; 6 - accelera~ting electrode; 7 -decelerating ;jnd
neutralizing electrode.

4 6'

Fig. 46 M4otor with volume 'Ion--zatlon of work'Lng wLu
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Stress analysis of motor elements

Axisymmetri3 shells of comp]ex form are encountered in motors.

Let us analyze them.

We separate from the shell, by two meridional and two circular

cross sections, an eltment with dimension dxdy (Fig. 5.49). Internal

forces and moments are applied to the faces of this element.

Through Tx and Ty we designate the tensile stresses per unitx y 7
length of the corresponding section; •x and 0y are lateral forces;

S is shearing force. These force factors are given in daN/ram.

The same designations are introduced fur relative bending moments
Mx and 14 and torque H. They are given in daN'mm/imn; p is internal

pressure, in daN/mm

Positive directions for forces and moments are indicated in

Fig. 5.50. These forces and moments, expressed through relative

values, will be:

P-- //x d!1 ;

T dy; T, + T' = ( T.,+-'L

Qr=T(1Y; Qý JdQ t=(Qr'+1:3. dx'r dy%',,x

.S 'V, d; S as:(. O-fx) iu'; I
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11f- 4- i;W +j ,y dl

.14. 1 d ; ti( 5,72)

It is characteristic that in the expressions for forces and

moments in the form of deformation axial symmetry, the values of •.

in the front and back parts of the element are equal to each other.

Segments dy to the right and left are different since their defoiva!uIon

in the direction of the axis can be substantial.

It is easy to show that

Sdx)N

External forces acting on the shell are assuined to Le as~m,,it';

therefore internal forces do not have the properties of a:'ial.

symmetry. If the loads are symmetri3, the internal i'crre faetcir"

will not depend upcn y.

Steady-state equations are composed f(-r j; d r,.izmd sheli, •i.,.,

we shall assume that due to the rather !.-rge lcal "d]spiL•,"ern.,r.t

in w, tch_ radiii of curv'ature for t.,e miu-.1c fr , l, "

noticeably and acquired the vaiues of H, an( , .

59"
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Fig. 5.47. Motor
unit design.
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Let us project all forces acting on the element onto the normal

to the middle surface. If we disregard quantities of the highest

SQdx-(Q~ d()X 0,'

hence, after substitution of dy' and transformations, ve find

Ty r + 27s Qx a_ __--_- - _-

R- , O y R 2-g- S ( 5 .7 3 )

z 11+dH/ Ty+dr

S+dS
P My•d /a+4

A -tic

Fig. 5.119. Axes of coordinates. Fig. 5.50. Loads acting on ashell element.
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This equatit.n enables us to allow for the noticeable change in

shell shape during loading. Its distortion leads to a twist of t,.

middle surface, and the forces S give components along the normal.

However, usually the fourth and fifth terms are disrcgarded and

steady-state equations have the form

Tx - - _ =o.
R ax R1  Ox(5.70

Let us find other equations. We shall project all forces in

the direction of the tangents to the arc of the meridian and the

arc of the circle. This gives

+S ' Ox S dx- -

k~R ()y @ ax -

+ Sdx d'y, Q dly di+-r.y@ - dX~=O.
"R"g 0x \R a

* * Hence

___ +___ LS 2ý_ Q, ýý 0~;

R.~, 9S9 o0 Qxo ga i a~~~ 4-u Lf .- +2 QX ý"_._=O. I ' •

Let us take, finally, the sum of the moments of a12 fc,''coF ve.-,.t.ke

to the tangent to the arc of' the meridian ,nd the tzngent to ,,':' a.'z
of the circle:

2 oOl

1 (1 dx Tl dr xm ---y d

00
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(' l1dx dy '-7dx =0;

Ox=O Rý tgO

±~+(1+'dy) dx-7dHO
hence

,- o, ,- , 67, RI-2.

"• R'tg- Ox -?y " Rtgo

'lWe shall disregard, as above, the quantities

2H1R2 tg0 and (M' -- MYf,)/I? 2tg 0

Then

Substituting -y and Q-x into equation (5.711), we obtain

r_• Px o•¢x 2 -l •j- O

Curvatures I/R• and l/RI diff'er from l/Rf and 1/R 2 , respectively,
2 2q~ 2  2n 2 12by quantities 02w/ax and a d/y. Thus

I 62w 1 I 02W

TI/? j R1  Tx 2 F2 T2 0y2

Finally, we obtain

- 1 02W \-I N 2

MH 02.41y~

O .V2 Ox ay O12 (5.76)
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Equations (5.74), (5.75), (5.76) should be fulfilled by the

equations of shell deformations.

Let us examine shell deformation. As already indicated, the

geometry of a shell is wholly determined by the radius of curvature

of the arc of the meridian RI, by the second principal radius R2,

and by angle 0 between the normal to the middle surface and the

axis of symmetry. The shape of the middle surface after deformation

is called the elastic surface of the shell. It can be characterized

by three projections of the full displacement of point A onto the

x-, y-, and z-axes. Let us designate these projections it, v, and w,

respectively (see Fig. 5.49).

dxd

AAB d

Fig. 5.51. Finding the radial deformation of anl elemlent.

The x-axis and the di•splacement of' u are directed atlong the ta4ngvent
to the arc of the meridian, y and z along the tangent to •'. aoc c
the circle, and z and w along the normal. If shell '7ef rm,,t'3r if
axisymmetrAc, displacement od v vanishes.

F.We shall express the deformation arising in the shell In terti.

displacements of u, v, and w. We find the componento of d.,forr..a:' ic.

CX, Cy., and yxy in the middle surface and designate them %c.' Co),

C cxy
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The quaotity Scx consists of three terms. The first term is
conditioned by dis'lacement u. The left end of ,the element dx

PI d X
(Fig. 5.51a) obtains displacement u, and, the right end - u + -x.

dx
Displacement w is considered, for the present, equal to zero. The
length increment rf the element will be (Ou/Ox)dx and •the corresponding

elongation per unit length Wu/ax.
I I

The second term is conditioned by displabbment w (Fig..5.51b).

If before deformation the length was dx, after deformation it will

be dx + (wdx/R 1 ). The length increment is wdx/R 1 and the correspondingi

elongation will be w/RI.

Finally, the third term is conditioned by tlhe turn of the element

dx in the plane of the arc of the meridian (Fig. 5.51,c) in the

absence of displacemernt u. Segment AB' is larger than segnient AB

by she quantity (,dx/cos e) - dx. Corresponding elongation is

(1 - cos 0)/cos 0 - 02/2. Since angle 0 = Ow/ox, elongati6n is
I /0t'•.2

This quantity is a quadratic functioh of bend. With snall bends

it can be disregarded.'

St •C'#I a+ d--

Fig. 5.52. Finding t1he ' Rzt;0

circular deformation of A"
an element.

IA

Summing the obtained expressions, we find

OU W_.. 0 27 .
OX- 2Z ,± -(ax (5-77)
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Sirlilarly, we can set up an expression forec £ Here we shouldb

however, add one more term.

Let ,us examine the element dy (Fik. 5.52): If both ends of this

eleient achieve displacement u, segment AC is extended by

u(du/R2 ig 0). 'Relative elongation Will be u/(R2 tg 0). The first;

three terms are W.itten similarly to ecx We shall'obtain

avL:+ TOW\2 a
.- &x A R2tg (5.78)

In order to find the angle of shift, Ycx, we shall examine, e~einent

dxdy in'the plan'(Fig. 5.53a). During deformationfthree points ABC

occubied the position A'B'C':.

S.. y . Y

d v d Y C
B '

U~dy Vs7
'Y v~ dx

I I A

Fig. 5.53. .
I-

The angle between the se.gmentsA'B' and AB yh 8v/a . Tih. ,: ie

between the segments A',C' and AQ is

IV

, -"~~1 ..- Y d - .v " - y - d ii1. I'•=d

Y2fy [t'h duyt

Disregarding quantiti~s of the highest order, we 'fir..'

Ou da Ou V

'Iu ay R12 tg 0
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The angle of shift is the variation in the angle BAC and is
equal to the sum of the obtained angle:

• Ou Oa p

V1-i 2 x + y- R2 1g0

To this quantity there must be added one more term, caused by
bend w. Let us examine Fig. 5.53b. Due to the fact that the
segments dx = AB and dy + AC are rotated, respective]y, by angles

aw/ax and Ow/ay, the angle between them does riot remain a right angle.

It changes exactly by the quantity of the unknown term.

ifx

Fig. 5.54. Finding the com-
ponents of deformation. d

YL-i

As we know, the cosine of the angle between the two straight
lines cos q = 112 + m1 m2 + n1 n 2 , where Zl1, z2, ml, m2, nl, n2 are the

direction cosines of the lines forming angle p.

In our case ?=900 -- VS;
I-=1; m=O; ni==OCw/Od;

2--O; m2 -=1; n-- Ow/Oy.

aw ,aw
Consequently, cos (900 -yg) Yg-ox O "

Thus, in the middle surface the angle of shift is

Ov , O( v9)
"V x72T 1 R2 tgO OY
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We find here deformation cx, Cy, Yxy in layers which are distance 7

from the middle surface. Let us assume the hypothesis of the

invariability of the normal, assuming that the points on the normal

to the middle surface remain on the same normal after deformation.

Then the disolacement of the point which is distance z from the mlddle

surface will differ from u and v by quantities z(pw/ax) and z
(0.a/0y) (Fig. 5.54).

Thus,

uz=u-Z -; vz='v-z T; wz=w,

where uz, vz, wz are the displacements of the point which -is dis-r(t•,

z fromn the middle surface.

In addition, at this point we should assume, instead of HR and R

the quantities R1 + z and R2 + z and, accordingly,

R1 R1 0 R?2 + ZR 2  P 2 J

Here from expressions (5.77), (5.79), (5.79., we easl'v Itnd, L,

components of deformation in all layers of thu ,Aiell. For this V.

substitute, instead of' u, v, and w, the quantities uz, V , and i"

Finally, keeping the first powers of z, we obtain

I Ow + u

Oy2 U id R.hv22 1 a
O~' R2 2 ROJ 2  ()X

- 21,07
C'



V Iv

Yvox a, R&tgo Ox Oy

z 2Ow+ 2 +g 0 artO
OX 2.x 'r R2 tg0 R2 gO y0 )

Terms with the factor z are deformation caused by the bend and

twist of the shell.

In practical calculations, in expressions for flexural deformation

the terms w/R2, w/R22 do not have a high value; the terms u/R 2 tg e
and v/R 2 tg e are also very low. With allowance for simplifications,

we finally obtain

O w I Ow\ 2  0w
zX=--t----+-I -- z-;x R1  2 \Ox I O 2

Ov o .Ou .Ott Ow 2. 02w
O R1 )(5.80)

Error connected with simpJifications~does not exceed 2-3%.

Thus, there are six equations for finding the six unknown

equations of elasticity. It remains to be found what the stresses

Oxi ay and Txy are equal to.

* Let us examine the side face of the element dxdy (Fig. 5.55).

At distance z from the middle surface, we distinguish on these faces

elementary bands with a width of dz. Stresses ax, Gy, and Txy within

each band remain unchanged.

Force

S .dy-- a.,dy dz;
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since dy within the face remains a constant quantity, then

h2
•' -= , '• ~d.z;

2

similarly,

h:2 h;2

TI C. dz; S== f Stdz.
•hl2 -h,2

Moment

h12

The minus sign indicates that positive stress with positive cz g4V 3

a moment which is opposite in sign to that which waz ex-mined whci

we were setting up steady-state equations (see Fig. 5.50).

Sdz

Fig. 5.55. Finding stresses.Ix

Thus,

h12A'l=---_5 •.z dz.

12

Precisely thus we find My and H. Finally, we obtain

* 11' h/2

-h 2 -hJ2
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h 2 h 2
7 3- iY dz; 1Y=- ( -,,z dz;

-h'2 -h 2

h,2 h2

"S= i.•,,/,; H= -• 3 'r dz.
*I (5.81)

Let us proceed to an examination of specific particular cases o1 shell

analysis.

Analysis of a torus-shaped shell

Torus-shaped shells are used in feed systems and motor control

systems. The peculiarities of the shell is the variable value of

the second principal radius of curvature R2 (Fig. 5.56).

Fig. 5.56. Torus-shaped (
shell. _. _ : Z

% z

The angle of slope for the principal radius of curvature is

U=O; R2=:oc; a=-C, R2-=a+R;
2

'A a=----; R2=a--R; R, =. R= const.

Let us set up the steady-state equation of an element cut by two

planes normal to the surface. For this we find the values of radii
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S ; R= ; r=kR2sina=a+Rslna.'
R in a

Projecting all forces onto the z-axis, we obtain

N,, sf n a2 nr - p.7 (r -- a2) =0,

or, substituting the value of r,

No sin 2.-r (a + R sin a) =p-1 (a +PR sin a)2--a2l

and

Nv = pR(2a + Rsin a) ; PR 2a+2cinca
2(a+ Rsin a) , 2I= a.Rsin- (.82)

From the main equation (2.30) we obtain

V 2-PR ; 7 R- ' (5.83)2 2

As is apparent from expressions (5.82) and (5.83) the greztest ,'t-t

00 arises at the internal points of tLe torus-shaped eh'el" when

S= - r/2; in a particular case lwhen a -: R, stress 's ( =q

Thermal stresses of a spherical shell

Stresses in a spher.ical shell are determined from formulas [E. i.

I I-:'t [(r 3 -- 2 r3i
"0-a"-_r Ar dr-

aa--r A .Iar• dr ;

irr3



F

2Ea / 2r 3 + a3 , A
G _ L(aa3) 0 Ar ' "

S.rr2ddr At

2r3' 2 A I
2 (5.84)

Let us examine stresses in the steady flow of heat going from the

center to the outer surface of a sphere. We shall designate the

temperature on the inner surface At and the 'tempdratube on the outer

surface will be zero.

Let us assume that the temperature changes according to linear

law:-¶)
i= a Ib

b-a r

If we substitute this value into formula (5.84), we obtain.

Eala ab A 21 I 22Ih I

E-,a•'a 3 a -. b--(•'b.• •r

Ea'a[ab +a b - (a2±+ab -. b2) .. ±
•=--L / 3-a 3 L b 2r 20-b - .(5.85)

As seen from the formulas, stress ar is zero when r - a and r =1b.

It becomes maximum or minimum when

3a212

a 3 +&b + 62

Stress a(p when ta ., 0 increases with an increase in distance r.

When r = a
Ful" E b(b -a)(a+2b)

2 (1 -- I) 1,3 -a 3
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"I II

Eafl, a (h - a) (2a + b)
when xd = b ,•=

2 (1 1:• 3-0a
2(-I

o If the Phell has little thickness, we assume b : (I + m)a, where

nm is a small quantity. ,Sub'stituting this value into formulas a

and co and disregarding the highest orders of quantity in, we find

L LM

wheni r aý :--2(I-) ' 2J

w when r = b ---- a 1 2M.

I (1 3

If we disregard quantity 2m/3, we. shall arrive at the same valutes

for circular strespses as were ob'tained fo:' a. cylindrical zhell and
for a tpin plate with attached edges.:

Analysis of flexible plates

By flexible we mean those plates which'are free and under the ac~ion ýf
external forces noticeably change their s'iape witnout disrupting
the elastic pro~erties of the material. U'Jually, such plates have

a valup for parameter w/h > 1.

The dlfl'frence between such plates and those examined above l.!o•
in the fazt that to of the bendihg stresses are acddI ttiJ',- 17

compressive stresses of the middle surface, due to large defli•otiD,,

(Fig. 5.57a).

In deriving the basic equations examined below, we retain the

hypothesis of tne Invariability of the normal to the m~ddle ;urface
and the. problem is solved within the limits of el:taicity.

Let us set up steady-state equaticns for a plate element. t. witcn

we shall give two meridional artrc two conlc zectio:,,, .,itth

*I ,
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dimension r, dr. We apply to the element external loading P and

the forces and moments which act along its edges (Fig. 5.57b).

The diagram of force action is similar to that presented in Fig. 2.50,

only distributed normal forces Tr and T are added. -',te

element is presented in strained stave.

I I r

2T+dTr. N r+dA.

Mr+d/4

s- ,T d-( +dMM(r +drd; d dI
T) T r dTd

A'l'--z, N• Nrd~,--a+'M)rar)?
.4/l÷~~~~ d=l'. drAf=p dzr

z YFig.55~ oad actng o an (b)

Fig.5.5. Lads ctig o anelement of a flexible plate.

The values of the force factors are

61

Q = r 1 (Q (Q) = (+dQ)(r+dr)dc;

T,.2,d; T,+ dT = (T, + IT,) (r +dr) d?;

T.;= T,.dr;

Al,. M,rdic; Air ± A 1, (Alr±dTl,) (r +dr) dc;

A1..; dr; P =Pr dc?dr;

A 1(P) =-L/ff d ird~r; Al (Q +dQ) = (qidQ) (r +dr) d~pdr.

Let us project all forces onto the z-axis:

Qr dre - (Q2 +. Q) (r -I dr) dy + pr d?~ dr + Tr ~p -0-

U (r + (/I?,)(r +. dr) dy (0i +dA) = 0;
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here, instead of the sines and cosines of the small angles, are

substituted angles or units, respectively. After transforming

this equation, disregarding small quantities of the second order,

we have

Ir (TI-6+ Q)] 4ri, (5.86-1

or

r (?" ).F(r), where F(r)==C+- prdr.

Let us project all moments onto the y-axis:

d?,r d•--(J,+d.,)(r + dr)dp+ 2M, dr -

2

After simplifications similar to those of the first equation, we

obtain I

.iT-(M,r)n'- -gr. (5.87)

The equations obtained do not enable us to determine force T;

therefore, we shall set up one more Pquation,-projecting all forces

onto the normal to the middle surface of the plate:

•Q-r (I? - ( -L dQ)(r.J+ d) d? p/r ,;•,p;r - 7,r d• -9s
2

-( +, ef,)(r+ dr)" d" dr di ,2
hence

Pr -,ro- (Qr)' - O10.5
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We drop • from equations (5.86) - (5.88). For this, we substitute

the expression Qr = F(r)-T re obtained from equation (5.86) into

equation (5.88). Since

P'(r)=pr; }r-j =(r'. (5.89)

equation (5.87) assumes the form

(5.90)

We have obtained two equations (5.89) and (5.90) of equilibrium

for the forces acting on the element and there are five unknown

quantities: M., Mt1 Tr , Tt, 0. To find the equations we lack, we

shall examine plate deformation.

r u+dw

Fig. 5.58. Deformation of an B'
element of a flexible plate. I

di' 9O+dO A

AA
POA

Figure 5.58 shows an element of an arc of the meridian before
and after deformation. Full displacement of any point of the arc

of the .meridian can be decomposed into two components - with respect

to the direction of the axis of symmetry w and with respect to radius

v. The third component, due to symmetry, is zero.

The length of the arc after deformation is AB" = dr(l + erT),

where c rT is the relative elongation of the middle surface with

respect to the direction of the arc of the meridian.
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We shall project the closed hexagon BB"B'A'A"A onto the direction

of the radius r and onto the axis of symmetry:

v. -dr (I I-,r)drcosO-(vd'v)--dr=O;

substituting cos 0 = 1 - (0 2/2), we obtain

er =I+ (5.91)2 2

The projection of the hexagon onto the axis of symmetry gives

= --. (i. 92)

Calculation of relative elongation in a circular direction lxa..s

to the results

- .. = v / r( 5 .9 3 )

and

r=0-r. (5.91)

We find here relative elongations Ez ard e at ,:1n t. on thý- pl,.t

which are distance z from the middle surface, as a rezu-t .f a

deformation Pelative to the neutral plane. Earlier (Section 2.1)

these deformations were determined. They a,-c:

0

=rzz-- r

Hence total relative deformations are

r=--z T-+--r (5.95)

and, thus, total stresses are
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1-IL'L

+ z

in 2 El

A. 2

_h, 2z-BT~)

o,-1_€ ('~-1,2-lm)z0+,

h,2

"[,T-i dz +] (t

hence

C -

Then,

Ant r s o\ -es rd z O f, Ih. )

. t I r

h2

M= z 'r (5.98)

-- h, 2

where D &

12 (1 - ii2 )

Assuming thickness h is constant, we replace in expression -(5.941)

Cand c by dependences (5.97). Then

T, - d- -DT.-(~) .INOr"' 1

61h 2

h'• "2

•-=1 ,•:.-'° -6'"q



Let us substitute here T~ from equationl,(5.89'):

Ei 
2

hence' ,

S retun tor r)Tr'(~) +T~ Eh (5.99)

We etrntoequation (5..90)'and drop from 'it r and M,,taken
:from formalas (5.98). Then

r D!

D r

and after transformation-

* * I

F (r) T*,r

r D•

I * r D 'D(5.100)

LeThus, we finally obtain two equations (5.99) and (5.100) wit:

two unknowns T,, and 0. These ejuatigns are nonlinear s_'.nc&.. the

first 1equation~ lnc2udes the square of an Winknown function 0 ind toe

I second equation inpludeo the derivative of unknown TO.

II

I I

hien. 5.59. !'inding [orce P .

IP
* 7,

Iertrioeuton(.0'addo fro*'i p[ an Mt; e

* I

IL ~619 .



Function F(r) can be found from the condition of equilibrium

for the central part of the shell. Thus, for example (Fig. 5.59),

when it is loaded by hydrostatic pressure p, under the condition of

equilibrlum for the central part, it follows that:

- 2r 7'- 6,a2r + p.rr2 - 0;

r (T0 +OQ) = F (r) 2r_

When the plate is loaded by concentrated load P, we obtain

-Q2ar- T, 2:rO + P=-0; 2.,r( ,)--P.

Equation (5.100), if pressure p is acting on the plate, will

have the form

r" _ _- pr+ -- -

r 2D D (5.101)

Finally, in shortened form, the obtained system of equations is:

r r, -- E ;

r- [ (5.102)

where T = Trr.

Equations (5.102) are equations of a plate in large displacements.

They are nonlinear. The first of them includes the square of

function 0 and the second the derivaetive of functions T and 0.

Bends and stresses in a flexible plate

One of the widely known methods of finding the deflection of a

flexible plate is the following. It is assumed that the surface

620
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of the plate during large bends is similar to the surface of a

rigid plate; the character of the bends is the same but the dependence

on external pressure ý is more complex than for rigid plates wherc.,

the bend is proportional to the pressure. Such a method provides

satisfactory accuracy if w/h < 4.

Let us find the bend of a plate, assuming it is rigid. ThenrT 0 and the first equation of the system (5.102) is dropped while

the second assumes the form

pri;~( 0r)' pr

We integrate this equation twice. Two integration constants n,,e

sought from conditions: when r = 0 6 X -; when r - b 0 = 0; i.e.,

we shall examine the case when the edges of the plate have a riiu

attachment. We obtain

S= (r'- b•r) 11- (T3 r

!6D

where r = r/b.

This value for The angle 6 of the tangent anu the ela.,,, .ut,>,

of the plate can also be obtained directly from formulas (2.61).

We a3sume here for a flexible plate

o=C(r3 -);3

the quantity C does not depend upon r and i- an unioown iunctl'en

pressure p. Substituting expression (5.1.03) into the fi,•t utri-

of the system (5.102), we obtain

r r (rT)' H h

r 21



We integrate this equation twice. The value of two arbitrary

integration constants is obtained from the boundary conditions

corresponding to a rigid attachment of the membrane along the outer

contour;

when r = 0 T = 0; when r = b O = 0, v = 0, c. = 0.

Then, substituting the result into the second equation of system

(5.102), we obtain C = 4ww0 /b, where w0 is the bend of the plate in

the center and the final dependence of the bend of the plate on its

parameters:

ph4  1(h 21 I- -h (5.104)

or when V 0.3

Jy 4

• E-h4 '

P 100

600 2 A6 0 6

Fig.¢ 5.60. . Riiiyo lxbepae
nfaC ) <1 ) (b

/i. rufyue 2iiiyoffeilepae

KEY: (1) Rigid plates; (2) Flexible plates.
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Dependence (5.104) is plotted in Fig. 5.60a. Pre'ernted also

are the result of the analysis of a plate which can be displaced it,

a radial direction (without ';urn) and the result of analysis accorJill

to formulas for a rigid plate.

Thus, maximum bend of the membrane and pressure p are connected

by a cubic dependence. With small bends the term containing the

third power of ratio w0 /h can be disregarded; dependence (5.1011)

converts to the earlier presented dependences for a £'igid plate.

The curves in Fig. 5.60a show that with a growth in bend the

rigidity of a flexible plate increases. With bends of w/h > 1 the

plate should be assumed flexible.

However, this method of analyzing deflections Qf a flexible pt.f,-

is not universal. It has good agreeme,- with precis( calc:lat.ion

and practice when w/h < 4.

The method requires refinement if the deflections exceed this

value. Actually, when examining the elastic surface of a olate,

as deflections increase we can note a displacement of the [2.ih-r

point toward the contour and at the limit its agreement .:iill ,:.t

attachment, which contradict, the oasic assumption conct:.,.1ng th,

similarity of large bends to benas of a rigid plat,-.

We can pr-scribe the 3hape, of the elast ic surface [n tbh f,.r.f ( r)3 oc 05-7).)

This expression differs from expression (5.103) by the fact t'..,t

here, instead of the exponent 3, there is introduced an undeterm.Lne.,

index z which can be determined each time as a function ol uhe

specific relationship between load and plate thickness. On'ittinv

SJthe transformations, we .,býain

pb A IfWO -LA3ly-0)3I nEh4-- th ) "a k3 h-3
ka" 5. 0""
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Here A1 = (2)/(3,)(z + 1)(z + 3);
A=A2 z I I 2z3 4- 922+ 167z± (5.107)

A3=2 1 'j~ -(-2z+1)(z +2) (z +5) (5-07

in order to solve equation (5.106), we should determine the

quantity w0/h from expression

I--• (5. 1O8)

here B depends upon z:

+ I) 3)
13- (2-9)(+ + :

IR;- -- .90.-; -L 217-4 -7Q9:3 J R33.- + 12726z + 4011

2(z+ 1)2(z+ 2)r(z + 5)21 (5.109)

Thus, the problem of finding large bends of a plate reduces to the
following. If we prescribe parameters z, we find quantity B

according to formula (5.109), and then ratio w0 /h from expression
(5.108). Then with known z and w0/h from formula (5.106) we determineU 4
rigidity pb /Eh or pressure p.

Calculation can be shortened if we use Table 5.5 and the graph
in Fig. 5.60b for p = 0.3. The table has been compiled for a plate

having a rigid attachment. The graph presents results for rigid A

and free 5 attachments.

Experience indicates that the calculated characteristic thus

obtained gives a better agreement with experiment during bends on

the order of 15-20 thicknesses.

Stress in a flexible plate

Maximum stresses arise on the pinched contour:
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"-h / h2 (5..110)

Table 5.5.

z w.,h j pb4/Eh4 jj z wo'h j pb4"Eh4

4 1,029 8,569 19 5,953 749,9

5 1,488 19,91 21 6,554 989,3

7 2,224 50,88 23 7,151 1273

9 2,384 99,56 25 7,748 1607

11 3,514 159,8 27 8,345 1995

13 4,134 265,4 29 8,942 2442

!.5 4,759 395,8 31 9,534 294

17 5,351 552,5 33 10,13 3518

A plus or minus sign is taken depending upon the fact .i-at for

each surface of the plate stress is determined.

With a rigid attachment of the plate on its contour

••-=-(Z÷Jr)=- 0, hence :;'-r*

We find a max = cr, from fcrmula [431:

max WO + (~\ 1 1 (?)] ~ l~5, =1.2 1-- h) I f 2 (z +3) ChlJ

The order of stri'- analysis is as follows: based on giver

preasure p we calculate quantity pb /Eh , then we find from tatle

z and w0 /h and, finally, accordlng to formu'a (5.1.[) we find ti.

stress.
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Absolutely flexible membrane

If a flexible plate has negligible riýidity during bend, if is

called a membrane. In practice, these are flexible plates which

have wo/h > 10. Let us examine a membrane having a rigid attachment'

along the internal opening and loaded with pressure p (Fig. 5.61).

A differential steady-state equation for the membrane is obtained

from system (5.102), assuming D = 0:

(r)''- _Ell62 •0_•pr_2
r22 (5-.112)

The angle of deflection for a section of the tightened i.ermbrane,

with sufficient accuracy, can be expressed as

0 =of. (5.113)

We substitute this value into the first equation of system (5.112)

and integrate it twice.

The integration constants are found from the conditions: when

r = a Er = 0; when r = b r =0; we obtain

W Cb(i 1).2
2

Substituting the obtained result into the second equation of system

(5.112), we obtain

_-21- where a=-b

and the dependence between load and bend in the center of the mew 1branes
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i hrere ,
T 3

.3 1.1 4

.• pb-7 13j h pb ('316)

Eh hEl

AThis result scarey differ from the precise result

J • ~The depen~dence of nemhrand bend on effe~t.•ve pressure is s;r.•';,

! in Fig. 5.62.

•• [ stress in the mnembrane' _s:

-i " Eb,5 - =-bC

3 a a16 k'7

"13L -- +a

4:; a a

a~---

f a he b
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500 4j-./

0 2 4 6 6 1C y1a

Fig. 5.61. Plate with opening. Fig. 5.62. Rigidity of flexible
plate with opening.

Bellows analysis

The bellows, or fluted adapter, is a cylindrical body with wave-

shaped folds applied along the circumference. The shapes of the

folds or corrugation, in axial cross section and with various

designs of bellows are shown in Fig. 5.63. The most widespread shape

of corrugation, which has the least rigidity, is shown in Fig. 5.63a.

Bellows with such corrugation are called packed bellows. Techno-

logically simpler forms are encountered (Fig. 5.63b, c). If in

the internal cavities of the bellows there is a liquid or gas

under high pressure, the corrugation is fastened by rigid rings

(Fig. 5.63d).

The main advantage of the bellows lies in its ability, under

the effect of a small end thrust, to give noticeable elastic

elongation or compression depending upon the direction of the

effective forces. This has brought about the widespread use of

bellows in the most varied elements of motor design.

628

i



a

£ L af L'I
I L

a) (a) 6()8 C

e)(d)
Fig. 5.63. Bellows design.

Most frequently they are used as elastic couplings of piping
with angular and axial displacement; they are irreplaceable as
temperature compensators for displacements of individual parts of
the piping, while preserving the complete seal of the latter.

Bellows are used for sealing movable couplings in taps, valves, hnd
various distributors, and they also serve as the clascic lmniter1
of various media in the compensator, frequently with larý,e vartati-'ns
In the volumes of these media. The walls of the bellows can be botn
siiigle-layer and mult!-layer, simple or armored depending u ý:,!
requirements for system sealing or upon the fluid preosure a tne

4 pipes or vessel.

Let us discuss some of the general properties of bellow:i.
Obviously the movement of the limiting plane of hhe bellows under
the effect of axial loading, with other condltions remainlr!g conetanf.n
is directly proportional to the number of corrlations on it Z urf-/

and inversely proportional to the cube of the wall thickne s n.
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Movement of the bellows also depends on the ratio of its

diameters. in the first approximation, this dependence can be

assumed equal tc the square of the ratios of the diameters:

)-2 a l )I a 2

To calculate strains and stresses in the walls of the bellows,

it io considered a system of circular plates bound on the external

and the internal contours by cylindrical inserts •Fig. 5.63e).

M

40 (b)

Fig. 5 .641. Determining the rigidity of a flexible element.

For the internal diameter of the plates we should take the internal

diameter of the bellows 2a and for the external we should take the

external diameter of the bellows 2b. Plate thickness h is assumed

constant. We further assume that all plates operate under identical

conditions. The angle of turn for the plates on the external and

internal contours is zero. Bends of plates are considered small -

ti-A bend of any plate does not exceed its thickness h. This is

the first approach to a more accurate solution.

Thus, we seek the stresses and strains of a circular plate with

pinched contours under loading by axial force P (Fig. 5.64a). Using

the steady-state equation for the forces of elasticity of a rigid

plate, we derive a formula for calculating a circular plate [43]:

W a2 [k2-_ k2 ln'k]
4 k2
k2-- (5.117)

where wa is the bend of the plate on radius a; k b/a.
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Elongation of the bellows will be greater by a factor of 2,, than

from formula (5.117)

. ,a~n[---l k2 In2k]
-- ., 14 - (5.118)

where n is the number of complete waves of the corrugation; the

number of plates is 2n.

The greatest bending moment occurs in the plate near the intern~a

contour:

r 4n k2- 1 (5.I19)

If we eliminate from equation (5.12-9) force P, wu can establish

the function of bending moment as a function of the axial disp2,ace-

ment of the conduits:

A '=L Eh3 4 (2- I k -- k- +'I)
ra 2n 12(1-- 2 )a 2  (k2- 1)2U2-4kn-k

bending stress is

fiMrý A1. Eh 2k2 In k -(k2 1)
h2 1l (1--_1 2)a 2  (k2--1)2-- A.Aln.2k 5 0)

or

•L. EhCra A- E kla,
n 1- 2)a2

where kia is the last fraction in tne equation (5.120).
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The coefficient kla! calculated for variou• values of k, is

presented in Table 5.6. Hfere and henaeforth the obtained~stresses
are calculated based on the absdlute value wiphout a mov'e precise

definition of their signs.

Let us introduce the formula for stresses near the external

contour:

AL Eh k2-_ -. 211n
or n (--p2)a2 (k2--)2--k21n2 '

(5:.121)

or

_AL El I kn 11- O)a2

The coefficient klb is also giveh in Table 5.6. We introduce

the formulas for analyzing a bellows with its ,angular deformations

(Fig. 5.64b).

The angle of turn of the center with a fixed external contour

i s

A! (k2 + I)Ink--k2+1
4.-D k2+ 1 (5.122)

the complete turn of'the ends of the bellows is

Mn (k2I )Ink--k2+ I
Oa- 2.0 k2+1 (5-123)

bending moment in a radial direction on radius a is

"-~ __D-4 a ________k2- I

Ila (k2 +1)Ink k2-1
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bervlinglo tress is

W (/,2 + 1)1fk.k2+ 1 (5.124)

+E 1 I 1 '
II

`be mildrly to stresses near Phe'outer contour b

p a- n + a h(k1 +1)Idk--2 +1 (5.1E25)

ior

*(D g' h

Irb n ~ bn a

Ther values thek las fr Cio kn aepeqa on (.14) inTbl A

a I

Tabl.e 5a2a.a

k _____ _______ 1,15. 1 .,30 1.a35, 1,40

7I *a 155 a70,0 .39,9 a25,9 118,3 1.3,6 16,7

S5 o, 4

If, in addition to dispacement compensations, the bellows is

1 oaqed by pressure and the unloading pressures 9 h ig aenr

been esvablishes , It is necessary to chea k the stesnses abccording

t~o the formula foý ciracular stresses arising in a cylin~drical shell.

33 1

"-I
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Fig. 5.65. Stress analysis
of a bellows.

Experience shows that Tfailure of the bellows under the action of
internal force precedes the complete disappearance of the internal

curvatures of the corrugation and the unfolding of the external ones

(Fig. 5.65).

Circular stresses in the shell are a, = ph/b. Evaluation of the

coefficient of the safety' the bellows in a circular direction

is performed as above for cyiindrical shells.
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"APPENDIX

STRENGTH CHARACTERISTICS OF MATERIALS
USED IN EXTRATERRESTRIAL ENGINES'

Uranium

Uranium is a light soft metal with high density (P 18.9 g/cm3);

it is easily oxidized in air; however, a brown oxide film of uraniumi

shields metal from further corrosion at room temperature. It melts

at 11330C. The cbefficient of linear expansion a = 15.2710-6 ;

16.2"10- 6 ; 20.5l10-6 I/0C at temperatures25-125; 125-325; 325-650 0 C
respectively. The heat conductivity of uranium can be calculated

using the formula X : 241.11 + 0.?3t W/m°0 . The average indices of

elastic properties at room temperature are: the modulus o elosti -1 ty

E = 2.0.106 daN/cm2, the Polsson coefficient p = 0.2, yield strength

a0.2 = 20 daN/mm 2, ultimate stress a, = 60 daN/mm2. Short-term

strength of uranium at high temperatures is given in Table A-.!.

The spread in the strength values is caused by the various uranium

processing techniques used.

The variation in the modult.s of elasticity tild the Poispon

coefficient as a function of temperature is shown in Fig. A.lI

IV. S. Chirkin. Thermophysical properties of materials in nuclear
technology. Handbook, Atondizdat, 1968. High-melting mraterials ir
machine building. Handbook, M., "Mashinostroyen-ye," 1967. ich-
melting metal materials for space technology, coll., ied-vw "1 .1r,"
1966.
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Table A.l. Mechanical properties of uranium.

Te.:nepaTypa oc Crpe e.inPOOCT,, I-pe.ie TeyqecT,,II OThoC1,T, Hoe

(1)(3 (2IN)vi1

20 4.3-77 17-30 6-13

300 18-43 10-12 3;33-49

500 7,4-7,8 3,6-.:-3,9 57--.60

KEY: (1) Temperature, °C; (2) Ultimate stress daN/mm 2; (3) Yield

strength daN/mm2 ; (4) Relative elongation, %.

Pure uranium can be used in low-temperature reactors. At approxi-
mately 6600C its density and mechanical qualities change sharply.
At higher temperatures uranium oxide and carbides, which have the

best mechanical qualities, are used.

Some strength characteristics of these compounds are presented in

Table A.2.

.1D0-a)H/c t (1)

2,02 -

,H9 S<, L 0,805

1,9- -- ~0,22f ,---* ,8 • E I-- .zi
1,7 ." -- 020 O2a 0,4

1,61,5 I I I i- I -,-

0 10'0 ZO 300 b C 0 200 400 600 6"0
a) (a) f)(b)

Fig. A.I. Variation in the modulus of elasticity for uranium.
KEY: (1) daN/cm2 .

Uranium monocairbide UC is one of the materials used. It has the

best strength characteristics, heat conductivity, and a greater
uranium content than UO2 . However, it is more subject to oxidation.
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Table A.2. Characteristics of uranium compounds.

S~ Coilep-

C.- -- U <., o

(1. .'..-.
wim

.- s 00-- -. 1

U 04

I 00 2020 0

300~~-1,7 20- 1 500 12 9-1-3

-~ 1 -S5

UC? 10, 67 2pr80 9,2rie0s b1w0-e25 0-19 20- 80,2

.30- 4 ,5 00 1 2,215200- 12, 500- 0
604200-2 282 0 1000 2

UC2Ir8'24701 90 1 9 10 200- 11,7- 200Ž- 13,

11 1 2000 29,3 20001

MEY: (1) Compound; (2) D~nsity, g/cd3  (3) Mciting polthi, CC;

(11) Content U; (5) daN,'crr,-; (6) daN/nun ; (7) W/m0C.

Uranium dicarbide UC 2 has medium properties ihetw(een U02 ando UC.

The heat conductivity characteristics, niodulus, of elasti•Ity,

ultimate stress, and rupture strength of UC2 are shown in . A.2,

e, b, and c.

Graphite

Graphite has low dens<ity (p = 1.5-1.9 g/cim3 ), hig-h heat c(--ucti,,'t.,
(X = 16.8-33.6 L./0,i C, near that ot' metals, aud high re.3hiotvt$

to thermal loads.
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.(ii (2)A, 6r,/M,.ajpa £'40- 6dH/cM'2

307 2,3

I E

200 400 'q600 800, 1000 1200 1400 6004
(a)

((3)

5 615000 C
(3).

I Uc

0 400 800 1200 00 101 jgi 10,1qjjC (4)

6)" w 8) (C)

Fig. A.2. Strength characteristics of UC2 .
KEY: (1) W/m'deg; (2) daN/cm2 ; (3) daN/mm2 ; (4) hour.

The main characteristic of graphite is the increase of its
strength with an increase in temperature 2000-2500oC; in this
temperature range it is stronger than any other known, material.

The good mechanical processability makes it possible to manufacture
parts of various shapes and dimensions from graphite. Gd'aphite is
distinguished by chemical inertness to the effect of many aggressive
media, including the vapor of liquid metals.

However, there can be a wide spread in the properties of the same
batch of graphite. There is substantial anisotropy of properties
in directions parallel and perpendicular to the direction of compression.
Its ultimate compressive strength almost doubles the ultimate tensile
strength.
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(1)

d,. lO •£ l0-6daH/cM2

12 z

C 4.'C 800 1260 1600 2000 24Ot°C

A. 1.r/t.?.ep (2)

14 C-r -

a0 49% 600 1200 1600 2000 2400 t°c

6s dgaHIM (3) 6daI/Mm2 (3)

4 4

0 140 e0o 1200 t OC f02 I -0
T: 'ac(%

Fig. A.3. Strength characteristics of graphite.

KEY: (1) daN/cm2 ; (2) W/mndeg; (3) daN/mm2 ; (4) hour.

The characteristic of graphite's elastic properties Ls non1 .near.

The modulus of elastldty vven under normal conditioln. grows frr,..

what with loading. In the temperature range 1000-22,1.0 C thl:i growtl.

is insignificannt, as a result of which we can tentatively ,ss;•ume

E z 8"102 darlmm2

Graphite has high emissivity. We can assume during calculations

that the emissivity factor is e = 0.9. The coefficient of linear

expansion for mean temperatures is a = 3.15 x IU-6 I/"C. Th. coeffi-

dcent of heat conductivity for the same temperatures can be taken

orn the average as 3 = 50 W/m 0C. Tne Polason coefficient is it
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A shortcoming of graphite is the nonpreservation of properties

during reheating, which is the result of sintering and graphitization.

Some data on graphite has been given in Fig. A.3.

Berillium

Berillium is widely used in retarders and reflectors of reactors.

ft is characterized by the small absorption cross section of thermal

neutrons and has good strength qualities and corrosion resistance.

A shortcoming of berillium is its toxicity at the stage of

technological processing.

The basic strength characteristics of berillium are shown in

Figures A.4a, b, and c.

Stainless steels

Stainless steels are widely used in extraterrestrial engines.

The most widely used is Khl8N9T. Its characteristics for short-,

term and long-term strengths are shown in Fig. A.5. The strain

diagram is illustrated in Fig. A.6.

Figure 3.7 in Chapter III presents the graph of a variation and

Figure 3.15 the graph of variation in modulus E based on temperature.
Curves of rupture strength and plasticity for this steel are presented
in Fig. A.7, a, b, and c.

:I

Figure A.8 shows the curves of rupture strength for'other stainless
steels having higher strength characteristics.

Niobium and its alloys

Niobium has many positive properties which enable its use in
extraterrestrial electric rocket eng .aes.
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~10 1 2- 7 8 9 1 tC1-

60

20 2 ~l ~ .. c ,~Jd1~

5 0(b) 5)

6BailC4 Li' 4a HIMN

20-- 20--
10---

0 100200 -3,740 500 6 0 700 toeo

Fig. A5.,) Stegt haractteristics of bh8Tseeiliu.I ~ ~~KEY: (1) da/nfeg (2) da/cou()r.!; l) a/nr

(5) ho61a



0 (1) (2)

6-16- 2 [K1/MM 240 i!•

I •-'" • 200C

0G_ 0,00 400 41020C 400C

10 •.. ......... ..

15

o o,005 o,01 olof oo10o oo

Fig. A.6. Stress diagram of stainless steel.

KEY: (1) N/m2; (2) [kgf/mm2 ]; (3) Steel Khl8N9T.

It has a small thermal neutron capture cross section (1.1 b/atcm);

high melting point, high strength characteristics, and plasticity;

comparatively low specific weight; high chemical stability with

respect to aggressive media, for example, lithium.

Niobium alloys have even higher strength properties. Small

additions of zirconium, molybdenum, tungsten and other elements

appreciably increase the rupture-resistance of niobium.

Table A.3 presents some properties of niobium and its alloys.

The content of the main additive is indicated by the digit in front

of *he formula of the element. For example, lZr is a niobium alloy

with 1% zirconium. The effect of temperature on 10-hour rupture
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strength is shown in Fig. A.9. The digits on this figui-e corresponG

to the numbers of the alloys in Table 3.

d daH/MMf2

(10
S20" --- 7oo

10 ,

0,1 1 10 100 1000c (z2

SdaH/MMZ (0) a)(a)

22L=8ii'r -

10 10 100 1000fUIa (10210

2!

Fig. A.7. C0rves ,)f rupture sti-ength >" ;,aiWues, st.=!
0 - 700OC; b - BOO°C; c - 9000C.

KEY: (1) daN/mm2 ; (2) hour.

Figure A.10 presents the strength charact.::ristics ýor niobnir,

alloy 7, having additives of tungsten and titanium (28W, 7 1i).

This alloy has different char'acteristics with re."pect tI :1k(at

resistance. Figure A.11 slows the rupture strength of this al';y

(7) and two other alloys (1, 2).

Some characteristics of niobium a-e given in TabeJr A.4.

6113



E ( 1 dafi/MM 2 U) 2_ou .

Iv 5000 1ac
-(2)

20-

10

700 800 100o

Fig. A.8. Rupture-strength curves -or chromiu h-hickel alrloys:
1, 3 lloy 5, 8o bar; 2, 6 - casting; 7 - sheet.

'KEY: (1) d'aN/ im 2. d(2-) hour,.

6�4A- (1)
60 

-2)

eYIO

30 --- JO

20- 1 -

10 Nb _ _Nb___

800 1000 7200 t1 c800 logo 1200 6 '_

?i. .~. Strength curves of' Fig. AA0L. Hligh-temperature strength
nio ium alloys, of' uiobium alloy.

2 2
KEY (1) daN/mm .KEY: (1) daN/mm ; (2) hour.
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Table A.3. Properties of niobium alloys.

- I \(21t 0,2 % CoCaepwcaui" e
Xn. rC 0.2 c NO C 0aao

- ~ ~ ~ ~ ~ ~ a O3Oa'q.ui.; -%1) ______ _________

I,ý

I21 - 33,1 36 1093 100 13,4 1Zr

1093 - 16,2 16,2 1093 500 7,7

S1204 - 13,4 13,4

2 21 - 38,6 - 1093 10 17,6 0,75Zr: 33Ta

1093 - 21,1 - 1093 100 12,7
1316 9-,- 9 :, :9 1093 500 9,8

3 21 :68,9 70,3ý 15 982 230 10,5 1OMo; 1OTI

1093 17,2 21,1 -25- 982
1316 6,9 -7,1 15 982/

1427 4,9 4,9 13

4 21 - 88 10 1093 5' 14,1 66Mo; 2W; JOTi
1093 37,3 Z3-2 26

1371 - 17.6 35

-5 21 19,8 88 25 1Q93 10 29,5 lZr; 5Mo; 15W
1093 29,6- 45 18 1093 100 24,6 (
1204' 21,1 .35,2 22 1204 10 16,8 (Ca.Mfbi 1pOtl-

1204 11,9 - i,,iit cnzaB)

6 21 56,3 83,8 25 1093 10 19,0 Zr; o
1093, 2.4,6 35,2 2 10931 14,1 1-V; 5TI
1204 19,7, 24,6 11,2

100 7,7

7 1204 29;8 33,8 18 1264 5,6 17,6 ,28W; T'1 I
1 1371, 16,9 1)19,7 5 1204 9 13,? "

8 1204 9,0 '9,0 7 999 ,50 10,,5 3V; WA

9. 21 39,4 46,4 1093 10 7,0 0,8Zr' 7TI

J .. 1093' 9,8 11,2 50 1093 100 4,4,

KEY: (1) Alloy no.; (,!) Add:ltie Content %; (3) daN/nr1 2 , (11) hcur;
(5) Strongest alloy.
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I3

Table A.3. (Continued)'

(1a) tc I 34si
Cri~laija IC • % • [

vac oaH/.,If.- 0OaW'.,10133. 4) . (3),' .

10 21 49,2 61,8 `26 1204 2,3 17,6 5Zr; lOW

1204 23,2 27,4 25

11 23, 4!,8 -57,1 32 1093, 0,5 '177 4V
1093 21,3 23,0 34
1316 9,1 9,6 55,4

12 (4,0 809 1204 0,9 19.1 5V; *5Mo; IZr
11093 10,8 45,7 28-
1204 24,6 28,1 46-

13 19,6 21,8 71.,

13 23 74,8 ýý92,7 18 1204 0,55 21,1 5V; Ql"; lOWV

1316 19,0 21,1 34 1f9 19,3
24 17,6,

14 21 66,8 73,9 14 1093 158 '11,9 0,5Zr; 12W
109.3 28,8 1j, .3 131 1,316 10 9,1

136 - 16'.2 40 '1427 10 ,7

1538 8,4 9,1 71

15 21 43,6 54,8 15 1093 100 8,4 5Zr

1093 19,0 24,6 35 1204 190 3,5

1371 8,4 10,5 120

1 1204 24,0 2-3,1 - 1499 2,5 5,5 1OW; IOTa

1427 16,8 18,6 -, 1632 2,4 3,5

1649 7,4 8.3 - 1760 2,1> .2,7
17 195 - 7,1 1095 '0 1 3,1 10Nb I

1205 - 6,5 1695 100o 2,18

I 3

KEY: (1) Alloy no.; (2) Additivb cpnten't %; (3) daN/mm2 ; (4) hour.
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I I I

'1 I

1 01 c i 2

Fig. A.11. Rupture strength of niobium alloy.
KEY: UI) IdaN/rmn2; (2) hour,.

-I -K l t

i I•

I I

{ ~~~45 ...

40

25

8 g 1000 1100 1200 /0 1400 tC

I I !
I . - -I

Fig. A.42. Short-term strength of' niobium alloys.
KEY: (1) d6Nknm 2.

6 4 7 .
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Table A.11. Characteristics of niobium.

' C Oan!.i•t 2 It °C /40-4 t° C J . 106 1 0C

200 2.3,6 20 1,1 20 7,0

.300 24,4 200 1,08 300 7,38
400 23,3 30P 1,06 400 7,54

500 25,o 400 1,06 500 7,61

550 22,7 500 1,0. 600, 7,86

600 1,07 700 8,02

700 1,07 P100 •8,18
1027 1,07 IP27 8,0

1527 8,6

2027 9,1

KEY: (1) daN/mm2

d, daH/M 1

100-

20";0 40 6080100 2.00 400J 600 1000 2000* 40•00 8000

Fig. A.13. Rupture strength of niobium alloys.
KEY: (1~) dV,N/mm2 ; (2) hour.
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Figures A.12 and A.13 present curves of short-term and long-term

[rupture] strength of niobium alloys, plotted as a result of processing

many literature sources.

Molybdenum and its alloys

Table A.5 presents the mechanical properties of molybdenum and

some of its alloys, and Table A.6 gives data on the modulus of

elasticity and the coefficient of linear expansion.

Figures A.14 and A.15 illustrate the curves of short-.term and

long-term [rupture] strength for molybdenum alloys.

80---- -

II70 -- -- -

60-.---. .

50

600 W 1100 WOO1200 V100 1600 M~OO VCý

Fig. A. lit. Sho~rt-term strength of' molybdenum~ alloys.
KEY: (1) daN/mm'?.
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Table A.5. Mechanical properties of molybdenum and its alloys.

cniaaa Ci10 ac Oau'.4ig.12

(3) J14'(•) (3)

1 1095 30,9 1095 100 9,6 l00Mo
1315 9,1

1095 40,0 1095 100 23,9 0,STi

1205 26,0 1205 100 12,7
1315 13,4 1315 100 7,0

3 1095 40,7 1095 100 28,2 1,25Ti; 0,15Zr;
1205 38,0 1205- 100 21,8 0,15C

1315 27,4 1315 100 14,7

4 1095 54,8 1095 -103 35,2 0,Si: 0,O8Zr;

1205 45,7 0,08C

V315 38,0

5 1095 49,2 '1095 100 29,8 0,05Zr; 0,02C
1205 100 14,4

1315 15,5 1315 100 -7,3

6 1095 13,2 1095 100 30,7: 25WV; Q0!Zr;

1205 57,6 1205 100 23,2 0,05C

1315 51,6 1.315 109 8,,6

7 1095 56,2 -- 1, 27Ti;0,29Zr;

1205 49,9 .... 0,3C

1315 42,9 1315 ICO 13,0

8 1095 61,8 1095 100 40,1 1,5Nb; 0,25C

1205 54,1 1205 • 100 24,6
1315 .15,0 13,15 100 8,6

KEY: (1) Alloy no.;. (2) Additive content %; (3) daN/mm2 ; (4) hour.
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�1 ______ 
______

f-I±able A.6. Modulus of elasVhity and coeffThient of linear expansj.on
for molybdenum.

________________________ ___________________ _________________ ___________________________

ivan J��2 11CC

20 3,2

.1 � KEY:; LE.1M 2  IciL'" _________ ______________

113E

6

10. 2tP 40 00 &)I Fig. A.15. Long-term [ruptur'e� strength oi' rnolybdenu'i a2loy�3.I KEY: (2) daN/mm2.; (2) hour.

I
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Tungsten and its alloys

Figure A.16 shows the dependence ofultimate stress in tungsten
and its alloys' on temperature. As is apparent from the figure,
the alloying of tungsten increases its strength at comparatively
low temperatures. Table 7 introduces the- strength characteristics
of tungsten and its alloys, ard, Table A.8 the modulus of elasticity
aid coefficient of linear expansion for tungsten.

""•a d,,IMM2  (12

40- - - -

20

3J00 160(1 1900 2100 24001 0e•

Fig. A.16. Dependen',e of ultimate stress in tungsten alloys
on tempera'ture. 2
KEY: (1) daN/mm.

Fig. A.17. Modulii of elasti-
city for various materials. h
,KEY: (1) daik/mm2 . -

-bn

0 200 400. 600 800 1o0o 1200 tc
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Figure A.17 presents; the -modulii of elasticity E for various

materials, and Table A.9 the properties of several structural

,materials.

Table A.7. Mechanical propertied of tungsten and its alloys.

"- I Co,'Iepmanne

° °C Uenita~a Oa,/.•.U21 $I 4'Z C oaa~o.

1 1095 23,9

1370 35,1 120.3 10 15,4 NOW
1650 14,1 1203 100 13,3

1927 7;0 1095 100 15S,5

2204 4,5 1370 100 7

2 1370 34,1 12ThO.
1650 26,0

1927 19,7
2200 9,8

3 1370 24,9 1370 10 20,4 2"rhO 2
1650 20,7 1370 100 15,4
1927 18,7 - -.

22)0 12,3 - - -

4 1370 30,9 1482 100 I7,7 IOMo

1650 19,7 -.. .
'1927 7,7"---

2230 3,5 - --

~ 5 1370 27,1 15MO

1650 17,6

1927 9,5

2200 4,9

KEY: (1) Alloy no.; (2) Additive content %; (3) daN/mrm2 ; (4) hour.
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Table A.8. Modulus of elasticity and coefficients lof linear
expansion for tungsten.

. • i i i i .i i i "

£ 0C f.1 t °C aC106

daul/mx2 I / 1/C

20 .4,1 20-.327 4,5
527 3,8 20-1027 5,1 (5,2)

1027 3,2 20-2027 5,4 (7,2)
20-2427 5,8

KEY: (1) daN/mm2 . I
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