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ABSTRACT

A comprehensive survey of intense relativistic electron
beam physics is presented, including detailed discussions of
selected topics. The beam-generated plasma is characterized
through charge production rules for calculation of gas break-
down times, conductivity at breakdown, and current neutrali-
zation. Longitudinal electrostatic instability theory is re-
viewed in the context of typical beam-plasma parameters and
a model explaining the low-pressure transverse instability (the
frozen hose) is given. Transport phenomenclogy without ex-
ternal fields and with external linear pinch and solenoidal
fields is discussed and rodels are developed to define efficient
beam transport conditions. Transient electromagnetic (EM)
fields are calculated for the finite geometry of the beam-drift
chamber and simple rules are given to estimate the EM fields
in a finite cavity. Exact EM fields are numerically calculated
for a beam penetrating a plasma in a conducting pipe (the
current neutralization problem) and for a beam penetrating
an endplate into a neutral gas (the injection problem). Weakly
turbulent beam-plasma heating theory is summarized and con-
sistency requirements relating beam and plasma parameters
are outlined. Low pressure beam transport and collective ion
acceleration are discussed in detail and a model of synchron-
ized ion acceleration is presented.
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FOREWORD

The material of this report is an updated revision and extension of work per-
formed mostly during a one-year contract (1968-1969) with the Defense Nuclear
Agency (DNA). Much of the research was originally published as Physics Inter-
national Company quarterly reports and as a final report, PIFR-105, April 1970,
all of which have been submitted to DNA.

The major addition to PIFR-105 included here is the new work on beam
propagation in external solenoidal and linear pinch fields. The viewpoint of the
treatment on neutral gas propagation without external fields has been somewhat
modified to give more emphasis to coupled beam dynamics and electromagnetic
fields through explicit inclusion of the effects of beam transverse energy; the
beam current density is emphasized as an important parameter in beam-plasma
phenomenology, in addition to the more commonly used v/ ratio. The collective
ion acceleration model material has also been slightly revised from the original
report version, and includes a more detailed discussion of ion acceleration cutoff
mechanisms.

| have tried to present a rather comprehensive survey of the entire intense
beam field in this revision, and, to this end, have included a brief survey of diode
physics and a summary of steady state beam equilibrium models as well as a dis-
cussion of turbulent plasma heating. The style of the report is hopefully exposi-
tory and at a level useful as an introduction to the field. | have perhaps given too
rhenomenological an approach for many tastes in the report, but in many cases
no other work exists. Moreover, in this new and very complicated field it has
been my experience that such a viewpoint is often more relevant, at least to gross
beam behavior, than highly quantitative analytical treatments which necessarily
require many impractical assumptions to be analytically amenable. It is likely
that as the field advances and diagnostic techniques become more sophisticated,
detailed theoretical descriptions will have to rely on numerical simulation.

It is a pleasure to acknowledge the technical guidance and criticism of many
individuals. | would especially like to thank Dr. Andrew Sessler of the Lawrence
Berkeley Laboratery, Berkeley, California, who has given freely of his time and
offered invaluable criticism and guidance throughout the program. Dr. William T.
Link, who was the leader of the Beam Physics Group at Physics International
Compeny during the original program conception, encouraged me to embark upon
a beam research program in support of the experimental activities, and Mr. David
dePackh of the Naval Research Laboratory, Washington, D.C. supported the need
for such a program and gave personal encouragement.

Preceding page blank
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| wish to acknowledge many helpful discussions with my colleagues at
Physics International: Drs. Gerold Yonas, Philip Spence, David Sloan, James
Benford, Charles Stailings, snd John Guillory, and Messrs. John Creedon, Bruce
Ecker, and John Rander. Professor Wulf Kunkel of the Lawrence Berkeley Lab-
oratory has also offered many useful criticisms and suggestions.

| should like to thank my wife, Joyce Putnam, for her valuable assistance in
numerical analysis. To Mrs. Lila Loweil for typing endless equations and to Mrs.
Pat Shand for major production assistance, | alsc extend my deepest gratitude.

Dr. Jonathan Wachtel, currently at Yeshiva University, New York, N.Y.,
acted as the original contract monitor and his active interest provided much sup-
port. | express my appreciation to Lt. Col. Robert Sullivan and Major Benjamin
Pellegrini of DNA for their support as well as patience with respect to many
delays.

Physics Intesnational Company made possible completion of some of the
material with company support and the Theoretical Group of the Lawrence
Berkeley Laboratory provided use of computer facilities and hospitality for the
author as a participating guest member.
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SECTION 1
INTRODUCTION

The electron accelerator technology necessary to generate
the electron beams to which the research of this report is
directed is relatively new--five or six years old. The beam
currents of interest are in the tens of kiloamperes to megampere
range, with kinetic energies from a few hundred kilovolts to
about 15 MeV. The beam pulse widths vary from 20 nsec to ap-
proximately 200 nsec. We are thus dealing with intense, rela-
tivistic or near-relativistic, pulsed electron beams with total
energies ranging from kilojoules to megajoules and power levels
up to 1013 ~ 1014 watts.

Much of ths initial (and continuing) development of the
pulsed power technology for intense electron beam accelerators
was by J. C. Martin and his co-workers at the Atomic Weapons
Research Establishment, Aldermaston, England. Table 1.1 lists
beam parameters of some accelerators designed at Physics Inter-
national Company (PI) which more or less cover the range of
available machines. Other organizations in the United States
besides Pl with high current electron beam accelerators and
active research efforts in the intense beam field are the Naval
Research Laboratory, Ion Physics Corporation, Sandia Laboratories,
Cornell University, and Maxwell Laboratories. Several accelera-
tors have also been constructed or are currently under develop-
ment in the Soviet Unioi:;, notably at the Institute of Nuclear
Physics, Novosibirsk, the Joint Institute of Nuclear Research,
Dubna, and at the Lebedev Physics Institute.

1-1




TABLE 1.1
ELECTRON BEAM ACCELERATORS BY PHYSICS INTERNATIONAL

Electron Current Pulse Width
Machine Energy (MeV) (kiloamperes) FWHM (nsec)
312 2 25 20
738 0.2 to 1.5 170 to 250 40 to 50
1140 4 to 6 50 to 85 70
1590 6 to 10 300 65
B 0.4 to 8 200 to 400 65
DML 0.1 to 0.15 100 to 300 40
PIML 0.15 to 0.3 200 to 300 50
Mini-Marx 0.6 103 25
Snark 1 103 70
Aurora 15 to 20 1.6 x 103 120
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As one might expect, the beams and their self-generated
plasmas are a new regime in physics. The beam-plasma investiga-
tions of the past have been concerned with the physics of plasmas
perturbed by beams of milliampere currents, whereas accelerator
physics has been a study of beams of even smaller currents
slightly perturbed by plasma or collective many particle effects.
In our case the beam and plasma are strongly coupled and most
problems are inescapably transient. Many intense beam problems
are really problems of partially (space-charge) compensated
plasmas, a fascinating field of physics rapidly emerging in
collective ion acceleration studies, ion source development, and
in some new plasma containment system proposals.

Most of the accelerator development and beam research in the
past has been directed toward intense X-ray source applications
and studies of material response from rapid energy deposition.
The emphasis in these areas has been on efficient beam transport
and control of beam energy density. Recently considerable
interest has arisen regarding use of intense beams in several
new areas: controlled thermonuclear reactor (CTR) applications,
high power microwave generation, collective icn acceleration,
and highly stripped ion production, to mention a few.

Intense beams offer many possibilities as a direct or
supplemental CTR plasma heating energy source and recent experi-
mental evidence of Altyntsev, et al. (Reference 1.1) suggests
regimes of strong beam-plasma energy coupling at interesting CTR
plasma densities (up to 1014/cm3). Turbulent beam-plasma heating
is currently an active research area (Reference 1.2). Fleisch-
man, et al. (Reference 1.3) at Cornell have demonstrated beam
induced field reversal in an Astron configuration using a pulsed

intense beam and preliminary work on toroidal injection has also

1-3




been reported (Reference 1.4). A fruitful merging of intense
beam and CTR research can be anticipated in the future as these
and other techniques are developed.

Linear beam collective ion acceleration methods show promise
of being able to generate high fluxes of accelerated heavy ions.
Many such schemes have been proposed during the last decade,
notably by the Soviets (see, e.g., Rabinovich, Reference 1.5),
but their exploitation has awaited development of the electron
accelerator technology. The Graybill-Uglum discovery (Reference
1.6) of beam-generated and accelerated ions with energies up to
eight times the beam kinetic energy has renewed interest in these
approaches and has already demonstrated the potential for the
process as a highly stripped ion source. Higher charge state
ions are preferentially bunched and accelerated. Moreover,
several kilojoules of ion pulse energy can be extrapolated from
the data using higher energy electron accelerators currently
within the state of the art.

1.1 BASIC CONCEPTS OF BEAM-PLASMA INTERACTIONS~~HISTORICAL SURVEY

The first quantitative work demonstrating the dominant
infiuvence of the beam-generated plasma on overall beam properties
in the drift chamber was performed by Graybill and Nablo of the
Ion Physics Corporation (IPC) (Reference 1.7). They reported a
strong dependence of beam current density and propagation ef-
ficiency on background gas pressure, Their results, plus the
open shutter photography of beam-plasma channels, performed by
Link (Reference 1.8) showed pressure regimes where, with
increasing pressure from about 1073 torr in air, the beam blew up
radially, pinched, drifted in nearly straight lines, and re-
pinched again in the 100 torr range. (See Figure 1l.1). The open
chutter photography also indicated gross stability features of
beam propagation.
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Figure 1.1 Electron beam~gas interaction as a function
of pressure
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A partial interpretation of the beam behavior was made by
Graybill and Nablo using the Lawson uniform beam model (Refer-
ence 1.9). Assuming paraxial beam trajectories, the radial
equation of motion for a beam electron, including effects of the
radial electric space charge and self-magnetic fields, is

d 2
L5 = - % (v (g, - 1P r/ad (1.1)
dz B
- = I (amperes)
v = N, 17,000 (amperes) Br,
N = number of beam electrons/length
= beam current
BLc = average longitudinal (z) velocity of
electrons = B¢ in Lawson model
y = relativistic facter
r, = classical electron radius = ez/moc2
a = beam radius
fe E -pion/pe = fractional electrical neutralization
Pion = background ion charge density
Pe = electron charge density

The equation indicates fe > l/"{2 is required to avoid beam

space charge blowup, and, if the background pressure were
sufficiently low so that collisional ionization could not
achieve fe Z l/y2 over a substantial portion of the beam pulse,
the beam would not propagate. The radial blowup and beam pinch-
ing were interpreted in terms of space charge neutralization
using the Lawson model.

1-6
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The model was unable to explain the drifting beam mcde at
0.5 to 1 torr pressure, however. The nearly straight line
motion of filamentary beams in this pressure range, as evidenced
by the beam self photos, was suggestive of complete force
neutralization, and Dr. David Sloan of PI first suggested the
concept of current neutralization. The rising beam current
generates a dBe/dt, or inductive, longitudinal electric field
which drives plasma electrons in a direction to neutralize . -e
beam current. Link made an ad hoc modification of the radial
equation of motion in the Lawson model to account for current
neutralization:

2
d°r 2V 2
& l-f -8 l - f ] r
dz2 BZYaZ e ( m)
fm = fractional magnetic neutralization = Ip/Ib
Ip = plasma return current enclosed at the beam edge

If fe x fm ~ 1, the electrons drift in a force-free environment.

In order that fm ~ 1, one immediately realizes that the
beam-generated plasma must be a good conductor; i.e., the gas
must breakdown. Gaseous discharge theory and experiment suggest,
however, that a 0.1 torr pressure gas probably has a higher
breakdown conductivity than at 1 torr. The question then arose
as to why the 0.1 torr range showed pinched beams with maximum
magnetic field or minimum current neutralization. Creedon
(Reference 1.10) used the breakdown data of Felsenthal and Proud
(Reference 1.11) to estimale breakdown times due to avalanching
caused by the inductive electric field. He suggested that the
time of breakdown with respect to the beam current rise was the

important parameter, as long as the conductivity in the pressure
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rejime remained high enough to give magnetic diffusion times
exceeding the beam pulse width., In other words, when the gas
breaks down, the magnetic field level frozen in the plasma is
that due to the beam current at the time of breakdown. Breakdown
at nearly peak beam currents will result in fm ~ 0 and breakdown
very early in the pulse gives fm ~ 1. At high pressures (> few
torr) the plasma conductivity drops and, even though breakdown
occurred early in the pulse, the beam current 1s not substan-
tially neutralized. These ideas essentially completed the basic
interpretation of the Graybill-Nablo and Link data.

Yonas and Spence (Reference 1.12) subsequently performed
careful measurements of gas breakdown times as a function of
pressure and develcped a semi-empirical magnetic diffusion model
t. relate the net current to the beam current profile. Their
model directly utilized breakdown time measurements of Felsenthal
and Proud, (F-P) but their beam parameters required extrapolation
of the F-P data beyond its ranze of validity at low press' ves.
Moreover, the charge production calculations of Creedon gave
much too high plasma densities at the measured lower pressure
breakdown times of Yonas and Spence. A charge production model
was proposed by the author (Reference 1.13 and 1.14)) to explain
these discrepancies and to give a physical basis for the good
empirical agreement with F-P data in the 1 torr range. The model
basically suggests that electron avalanching is unimportant until
fe = 1. The space charge fields are too high (lO5 to 106 V/cm)
for avalanching, i.e., the secondary electrons generated by
collision-1 ionization become relativistic and, moreover, their
motion is primarily radial out of the beam channel. This simple
modi fication allowed consistant estimates of breakdown times in
agreement with the Yonas-Spence data.
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As higher current electron accelerators were developed, the
Alfven-Lawson current limit (Reference 1.15) for existence of a
7 uni form beam with a given kinetic energy was approached. This
limit is v/y ~ 1 for a space charge neutralized beam, independent-

‘» ’ -i ' . I

- ly of the beam radius. There are several physical interpreta-~

. ticne of this limit:
- <3t2>
% . A
'f <, ">
ii
E 2) vy =3
o L
: E
- - 3) V/'Y w Ee'm.
kin
where
2 2 .
<Bt >c = average transverse electron velocity squared
<BL2> 02 = average longitudinal electron velocity squared
r, = Larmor radius of gyration of beam electrons in
the beam self-magnetic field at the beam edge
E. pm = electromagnetic field energy/beam particle
ce or pexr unit length
Evin = kinetic energy/beam particle or per unit length

Most researchers emphasized interpretatio= (2) which states that
when v/y ~ 1, electrons will turn around over the radiivs of the
beam; i.e., not propagate. Graybill, Uglum, and Nablo (Refer-
ence 1.16) performed experiments which showed such beams would

not propagate, and for a time, the beam physics community was




astir with questions about the feasibility of propagating beams
with currents higher than the Alfven limit. The author suggested
(Reference 1.17) that current neutralization would allow propaga-

net .,
includes

tion of v/y > 1 beams as long as vnet/Y < 1, where v
the beam current and the backstreaming plasma current. Moreover,
Hammer and Rostoker (Reference 1.18) derived a hollow beam
equilibrium model (no current neutralization) which removed the
v/y ~ 1 limitation of an orbital interpretation. Production and
propagation of v/y > 1 beams was first reported by Yonas and
Spence (Reference 1.12) and later by Andrews et al. at Cornell

(Reference 1.19).

We also have suggested that the third interpretation of v/y
is the dominant limitation on efficient beam propagation (Refer-
ence 1,13). When Vnet/Y > 1, the electromagnetic self energy
dominates the keam kinetic energy, independently of the details
or orbit dynamics., Beams then strongly interact with cavities,
degrading their kinetic energy at the beam front over distances
comparable to the beam radius either by the space charge field,
or, in the case of electrical neutrality and partial current
neutralization, by the inductive field.

The average transverse beam particle energy is comparable
to the longitudinal or streaming energy when v/y ~ 1 and roughly

net
so when v

/y ~ 1 (interpretation 1). J. C. Martin and D.
Forster of his group were prokably the first to emphasize the
impnrtance of beam transverse energy (Reference 1.20) and Yonas
et al. subsequently performed careful measurements of the
average beam transverse energy (Reference 1.12). They also
ascribed the relatively poor beam transport efficiency (30 to

40 percent over meter distances) of v/y » 1 beams (even with

/y < 1) in neutral gases to loss of higher transverse energy

v
net
beam components. The rapid gas breakdown requirement for good
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current neutralization is in conflict with the requirement for a
high net magnetic field to contain beam transverse energy. A
"cold" beam (<Bt2>¢<BL2> € 1) with vnet/y € 1 is thus required
for efficient transport in neutral gases or pre-ionized plasmas.

To illustrate the implications of the statement further, we
can assume injection into a preionized plasma of high conductiv-
ity, thereby assuring that Vnet/Y € 1. The cold beam requirement
means that the injected beam electrons must be nearly paraxial.
We are then led to the concept of the critical diode current,

Ic' first introduced by Friedlander, et al. (Reference 1.21):

Ic ~ 8500 By (rc/d)v

with r, the cathode radius and d the anode-cathcde gap spacing.
Physically this current is the value at which an electron emitted
at the cathode edge would strike the anode tangentially under the
influence of the self-magnetic field, and with neglect of the
radial electric field. If I < Ic in the diode, the beam is cool,
and the onset of pinching occurs around I ~ Ic. The diode peak
voltage places a minimum value upon d to avoid impedance collapse
over the beam pulse width. This restriction in turn places a
minimum value upon r, for a cold beam. In other words, efficient
transport in neutral gases or pre-ionized plasmas piaces an

upper limit or beam current density. Benford and Ecker (Refer-
ence 1.22) have demonstrated major beam ene..gy loss upon in-
jection of high current density (~ lO5 A/cmz) beams into a pre-
ionized plasma. The loss occurred within a few centimeters of
the anode. The need to transport high v/y, high current density
beams thus led to investigation of external field propagation
techniques.

1-11
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Roberts and Bennett (Reference 1.23) first transported a
relativistic beam (v/y ~ 0.2) in a linear pinch plasma. They
observed nearly complete current neutralization and reported

efficient transport. Their work was extended by Benford and
Ecker (Reference 1.24), who transported hot beams (v/y 2,

. 10° A/cmz) with efficiencies > 90 percent. They also proposed
a single particle orbit theory model to explain the details of
beam propagation. This model states that beam propagation is a
superposition of injected electron orbits in the undictorted
magnetic field of the pinch at injection. Generally speaking,
we expect that efficient propagation will occur when charge and
current neutralization shurc out beam self fields, and that any
distortion of the external field-plasma system will result in beam
energy loss. Single particle orbit model conditions therefore
prevail with efficient transport. The single particle orbit
model is extended in this report to allow for field-plasma
distortion.

Beam propagation in external solenoidal fields was first
studied by Andrews, et al. (Reference 1.25) at Cornell using a
v/y ~ 2 beam. At present solenoidal transport work is underway
at PI, Naval Research Laboratory, Cornell Un:versity, Sandia
Laboratories, and Maxwell Laboratories (Reference 1.26). An
interesting result reported by Stallings (Reference 1.27) is a
reduction in transport efficiency as the external field is in-
creased bevond about 9 kilcgauss. Lee and Sudan (Reference 1.28)
have predicted a drop in current neutralization at high B, fields
dur to incomplete space charge neutralization, and a more restric-
tive limitation on the solenoidal field is argued in this report.

1-12
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Several experiments on beam combination and focusing have
been reported within the last year. Benford and Ecker have
combined two high v/y beams in a linear pinch plasma (Refer-
ence 1.29), and magnetic mirror compression experiments by
Davitian, et al., (Reference 1.30), have shown beam area compres-
sion of a factor of 3 with v/y ~ 2.5 beams. Cold beam geometrical
focusing experiments in a neutral gas transport system have been
reported by Kelley at Sandia (Reference 1.31), Martin (Refer-
ence 1.32), and Bradley (Reference 1.33).

We have surveyed the experimental and conceptual development
of intense beam plasma physics up to this point from the histori-
cal perspective of beam transport and energy density control.

As we have already mentioned, intense beams are currently being
studied for CTR applications and collective ion acceleration.
The discovery of collectively accelerated ions by Graybill and
Uglum (Reference 1.6) at IPC renewed interest in linear beam
collective field acceleration possibilities. Rander, et al.
(Reference 1.34) continued the IPC work with the use of nuclear
emulsion and magnetic spectroscopic diagnostic techniques and
Rander (Reference 1.35) correlated the beam front velocity with
the first ion pulse. Several models have been advanced to
explain the ion acceleration (Reference 1.36) and a detailed
presentation of one of them, the localized pinch model, (Refer-
ences 1.37 and 1.38) is given in this report.

Altyntsev, et al. (Reference l1l.1l) have reported strong
beam plasma energy coupling using a v/y ~ 0.1 beam injected
1 _ 1014/cm3). This
experiment has generated interest in beam-plasma turbulent

into low density-preionized plasmas (10

heating, and Lovelace and Sudan (Reference 1.2) and Guillory
and Benford (Reference 1.39) have recently proposed return




current anomalous plasma heating via ion acoustic modes. The
experiment of Andrews &t al. (Reference 1.3) on beam injection
into an Astron geometry is an important preliminary investigation
of beam confinement, as we have previously mentioned.

1.2 DISCUSSION OF REPORT

The material of this report is organized into three sections.
Section 2 is intended as a comprehensive, essentially self-
centained, survey and development of the entire intense beam
field. The viewpoint is mainly phenomenological, with an
emphasis on defining efficient transport systems. Section 3 is
a formulation of the quadrature of the electromagnetic (EM)
fields in systems without solenoidal fields. The objective of
this work was to explore the role of finite boundaries, finite
beam risetime, and transient effects. These effects have not
been treated in other thecretical work on current neutralization
(Reference 1.40)., Section 4 is entirely devoted to an analysis
of ion acceleration models and a presentation of the locaiized
pinch model, in particular. The material of this section is a
"zero-order" coupled analysis of radial and longitudinal ion-
electron electrodynamics.

The physics of intense beams can be broken up into several
sub- areas which, of course, must be ultimately coupled in a
se.f-consistent fac:ion:

1. EM field determination; i.e., given the beam current
profile, what are the EM fields with appropriate boundary
conditions?

2. Characterization of the background gas plasma - charge
density and conductivity as a function of time and space.
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3. Beam dynamics - formulation of realistic, but tractable

equations of motion of beam particles and/or the beam en-
velope.

4., Beam stability ~ definition of stable propagation modes
(longitudinal electrostatic and transverse modes) and in-
stability growth rates in unstable regimes.

The first part of Section 2 essentially follows the above
outline. We start, after a brief review of diode physics, by
developing a simple ad-hoc model of beam~-generated EM fields in
finite cavities, complementary to the exact formulations in
Section 3. The model includes EM fields due to variations in
beam radius with distance and time, endplates, changes in current
with time, and charge neutralization. In particular, we discuss
the effects of endplates and variations in charge neutralization
upon the longitudinal electric field. Aside from the implicit
inductive longitudinal electric field of current neutralization
calculations (Reference 1.40), the inductive field estimates
used in electron avalanching calculations in neutral gases (Ref-
erences 1.10 and 1.12) and the space charge field estimates in
the Rostoker and Graybill and Uglum ion acceleration models
(Reference 1.36), the literature of intense beam physics does
not consider Ez fields. (Most calculations pertain to steady
state equilibrium configurations.) The model thus gives a more
complete characterization of the transient longitudinal elec-
tric field in the finite cavities of practical beam problems.

We apply the cavity model in developing a procedure for
calculating gas breakdown times in neutral gases. The model of
Creedon (Reference 1.10) predicts background plasma charge
densities that are too high, according to experimental data, and
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Yonas and Spence used the empirical data of Felsenthal and

Proud (F-P) (Reference 1l.11) in their work on gas breakdown. Our
model justifies the data correspondence with F-P on physical
grounds with certain E/P (E/P is the electric field pressure
ratio) regimes and gives good agreement with experimental break-
down measurements at low E/P regimes where F-~-P does not. The
model recognizes that the high E/P values that exist before

space charge neutralization do not lead to significant electron
avalanching-secondary electrons become relativistic over dis-
tances of the beam radius or less and, moreover, the electric
field is primarily radial, driving secondary electrons out of

the beam channel, We propose a charge production estimate using
collisional ionization only until fe > 1, then using the induc-
tive field for avalanche calculations. The model has one unde-
termined parameter, the ratio of the background plasma secondary
electron density to beam electron density at breakdown. Empiri-
cal determination of this parameter from one data point gave
agreement with Yonas and Spence data at other pressures. Once gas
breakdown times are calculated, the conductivity after breakdown
and the fractional magnetic neutralization can be estimated. The
charge production model also predicts that beam transverse tempera-
ture should affect current neutralization and preliminary data
tends to support this result,”

Section 2.7 considers beam envelope motion in some detail
using the analytically tractable Kapchinskij-Vladimirskij envel-

ope equation for beams with finite emittance. Limits on beam
focussing imposed by finite emittance are discussed. A review

* "Private communication, J. C. Martin, January 197l.
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of high v/y beam equilibrium models is also included.

The physical implications of the dimensionless ratio v/y
used to characterize beams are outlined and it is arqued that
current neutralization accounts for experimental results showing
propagation of v/y > 1 beams. This interpretation was first
suggested during the program (Reference 1.17) and is now commonly
accepted in the beam physics community. We have further proposed
that the dominant restriction on high v/y beam propagation is
electromagnetic; i.e., even with current neutralization, vnet/y<l
in order that the beam not seriously degrade its kinetic energy
to magnetic field energy. This restriction is dominant in the
sense that it obtains nearly independently of the beam current
density distribution in radius. The original propagation limit
on uniform beams, v/y ~ 1, or the Alfven criterion, is essentially
an orbital limitation for forward drift of the electrons. Hammer
and Rostoker (Reference 1,40) removed this orbital limitation in
principle by deriving self-consistent "hollowed-out" current
distributions.

The longitudinal ES instability work of several authors is
summarized in Section 2.8, and we conclude that instability
heating of plasmas has not been important in most beam transport
experiments. Transverse instability modes of low pressure (0.1
torr) beams are then discussed and a phenomenological model is
argued which allows predictions of the instability wavelengths
in good agreement with the data. This model is the "frozen-hose"
model, first proposed by the author (Reference 1.4l1). The model
stems from a recognition of the need to utilize two characteristic
times in instability growth of beams in neutral gases. Early

times are defined as times before breakdown where the plasma is




nonconducting and post breakdown times are usually resistive
with characteristically longer growth times. This model led to
the concept of plasma channeling (Reference 1.13) and a necessary
criterion for beam combination in neutral gas systems.

The role of beam transverse energy is emphasized in the
summary of neutral gas transport phenomenology of Section 2.10.1.
A criterion is derived giving upper limits on beam electron trans-
verse energy at injection, and it is shown that this criterion
amounts to a restriction on current density. The transverse energy
containment criterion can also be expressed in terms of a dimen-
sionless parameter, B , analogous to the plasma 8:

B = beam and plasma transverse energy/volume/(Bget)z/Sn

net
0
tralization, is not a beam parameter, current density is perhaps

Inasmuch as B , the net magnetic field including current neu-
a more convenient parameter for beam characterization, in addi-
tion to the v/y ratio (which is independent of beam radius).

Transport phenomenology in linear pinch (BO) fields is cover-
ed in Section 2.10.2 and conditions are outlined for validity of
single particle orbit transport. In the single particle model
the beam propagation is a superposition of injected beam electron
orbits in the undistorted magnetic field of the pinch plasma at
injection. We consider pinch field-plasma distortion induced by
transverse pressure imbalance due to the beam. An "inverse snow-
plow" model is developed which allows estimation of the distor-
tion time scale for given beam and pinch parameters. This work
is the first modeling of distortion of intense beam plasmas and
fields within the diffusion approximation. Plasma and field
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lines expand while maintaining nearly constant enclosed magnetic
flux. The criteria for single particle orbit theory are compar-
ed with the experimental data of Benford and Ecker (Reference
1.24) and it is shown that their use of such a model is consis-
tent with experimental conditions.

The discussion of transport phenomenology concludes with a
preliminary outline of solenoidal field transport. A simple
uniform beam model explicitly considers paramagnetic and diamag-
netic beam and plasma effects due both to gyrorotation and rota-
tion about the system axis induced by space charge and B0 fields.
A diode flow model appropriate to large aspect ratio diodes where
the radial electric field effects are negligible shows that
v/y > 1 beams are nat paramagnetic and also gives the maximum
ratio of B0 to B, for uniform current density flow, Diamagnetism
and paramagnetism in the transport system are related to fe and
fm' and are shown to be additional beam energy loss mechanisms.
Also proposed is a new model giving upper limits on the applied
Bz field for efficient transport. The model carries over ideas
of current neutralization in the z direction to theta currents,
The perpendicular conductivity at breakdown has to be large
enough to allow theta plasma currents to neutralize the beam
theta currents. This condition in general gives a lower Bz
field level for efficient transport than the criterion of Lee
and Sudan (Reference 1,28) regarding destruction of z current
neutralization by high Bz fields.,

Section 2 concludes with a summary of turbulent plasma heat-
ing and a proposal for an intense neutron and X-ray source using
collectively accelerated deuterium ions. The turbulent heating
discussion outlines conditions necessary for consistent estimates
of anomalous plasma heating. Simple formulas for maximum plasma
electron temperature estimates are derived.
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The determination of the EM fields generated by general
beam current distributions (accelerated and non-accelerated) in
finite cavities is discussed in Section 3., We consider in de=-
tail the EM fields of constant velocity beams with finite rise-
times, pulse width and decay time in circular conducting pipes
with and without endplates. The EM guadrature is in a convenient
form for looking at endplate effects, and can easily be reduced
to the cases with one or no endplate., Numerical evaluations are
given for two interesting beam problems~--the current neutraliza-
tion problem (Section 3.2) and the beam injection into a cavity
problem (Section 3.4). .

The current neutralization problems considered by other
authors pertain to semi-infinite beams in infinite homogen<ous
plasmas (Reference 1.40). The beam has a zero riselength and is
suddenly "switched on" at t=0. Our work is the first exploration
of the effects of finite boundaries and finite beam risetimes, and
we explicitly determine the fields near the beam head. The blunt
beam and highly conducting plasma limits, which are the cases
treated by other authors, are quantitatively defined in terms of
beam, plasma, and chamber parameters.

A current neutralization problem is evaluated for a beam in
a finite radius drift tube which gives closed form expressions
for the EM fields and contains the dominant terms of more general
radial current density distribution profiles. The fields are
plotted as a function of distance behind the beam head in the
beam front region and show the essential rule of the conducting
boundary in determining the electric field attenuation behind
the beam front in weakly conducting plasmas (plasmas wherc the
plasma skin depth is of the order of the chamber radius).
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The Ez field is plotted in Section 3.4 for a beam injected
into a neutral-gas-filled cavity (zero conductivity) and the
effects of the endplate and finite drift tube radius are exhibi-
ted. We derive criteria for negligible endplate influence on
beam fields. It turns out that endplates have two effects on
the Ez field; the sign and magnitude may be substantially alter-
ed (this effect is primarily electrostatic), and the accelerated
surface charges of the conducting boundaries give rise to pre-
cursor radiation. If the beam is highly relativistic (travelling
at nearly c) the precursor radiation induces field oscillation in
the beam front region. The conditions for neglect of endplate
effects are that the precursor radiation front be far in front
of the beam head, and secondly, that the beam front and region of
interest be far beyond the E, field-reversal point near the cham-
ber endplate. An approximate expression is given for the point
behind the beam heat where the E, field reverses direction. The
formula involves both the chamber radius and the relativistic y
factor of the beam.,

The collective ion acceleration discussion of Section 4 con-
siders in detail some implications of experimental data with re-
spect to models of Rostoker, Graybill and Uglum, and Wachtel and
Eastlund (Reference 1.36). The Rostoker model attributes ion
acceleration to space charge fields near the front of a beam pene-
trating a neutral gas. Acceleration of the space charge well is
due to a decreasing charge neutralization time caused by precursor
radiation and electrons, and Rostoker argues a particular time
history of well acceleration which gives ion energies independent
of mass, in accordance with the data. Acceleration terminates
when the well has accelerated to a value where the space charge

field is no longer adequate to trap ions.
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Graybill and Uglum also suggest a one-dimensional accelera- i
ting space well model. Ion acceleration in their model does not
occur at the beam front, but begins near the anode window of
the drift chamber after fe exceeds l/yz. In our opinion they do -
not argue an accelerated well, however, but only a constant
velocity well moving at a rate determined by the gas breakdown L.
time.

Wachtel and Eastlund have proposed thc Veksler "inverse Ceren-
kov" acceleration process as an explanation of observed ion accel-
eration, The Veksler theory assumes existence of an ion bunch
whose dimensions are small compared to the resonant plasma wave
length, A =27 vb/wp; vy is the beam electron velocity and wp is
the beam plasma frequency. In order to extend the Veksler theory
to a non-bunched ion distribution (the background ion charge dis-
tribution) they somewhat arbitrarily define an ion bunch as ions
within the Debye sphere. The problem of the longitudinal phase
stability of the accelerating bunch is not considered; i.e., the
ion bunch is assumed to be rigid. We estimate limits upon ion
energies due to excitation of longitudinal electrostatic stream-
ing instabilities and conclude that the maximum ion kinetic ener-
gy is too small to explain the data. This approach obviates the
necessity of arguing initial formation of an ion bunch in order
to apply the Veksler theory.

A new model of ion acceleration, the localized pinch model
(LPM), is discussed, and it is argued that the model gives the
most comprehensive agreement with presently established features
of the data. In particular, the model can explain multiple ion
pulses; i.e., acceleration can occur either near the beam front
or behind it. The model proposes a two-dimensional electromag-
netic acceleration mechanism, in contrast to the one-dimensional
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electrostatic models of Rostoker and Graybill and Uglum. }!More-
over, LPM includes a self-synchronizing mechanism to keep the
ions in phase with the accelerating fields. The one~dimensional
models do not have this feature; the potential well, in a sense,
happens to accelerate properly to give partial trapping. The
synchronization is achieved in the LPM by the electric field
associated with a non-adiabatic pinching of the beam envelope.
The presence of the ion bunch locally shorts out the radial elec-
tric space charge field and the magnetic field then causes the
beam to contract. A longitudinal electric field in the direction
of electron flow results from the higher electron charge density
in the constricted region. With typical parameters of ion accel-
eration experiments the pinching field is large enough to degrade
the electron kinetic energy over distances of a few beam radii,
giving rise to additional electron bunching. This latter bunch-
ing provides longitudinal phase stability.

The rise length of the ion charge density enhancement of
the bunch must be of the order of the beam radius to allow rapid
(non-adiabatic) contraction of the beam envelope, and thereby
generate high enough fields to degrade the electron kinetic energy.
It is shown that the space charge well near the anode window can
form sharply defined bunches and a criterion for bunching is
derived which translates to an upper limit on gas pressure for
ion acceleration.

Various possible acceleration cutoff mechanisms are con-
sidered in the context of experimental data and it is suggested
that ion depletion is a likely explanation. The background ion
currents generated by the accelerating fields around the ion
bunch deplete the ion supply behind the bunch and an electrosta-
tic well is then re-established near the anode window, terminating
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further acceleration. As collisional ionizatinn continues the
process repeats. Experiments are proposed to identify the
nature of the acceleration cutoff mechanism.
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SECTION 2
GENERAL BEAM PLASMA INTERACTION PHENOMENOLOGY

In this section we discuss a wide range of topics in
intense beam-plasma physics from a point of view which hope-
fully will be practically useful, i.e., we emphasize basic
physics and show how relatively simple models can describe
most of the gross features of beam-plasma interactions. We
begin the discussion with a summary of the present status of
high current diode physics.

2.1 DIODE PHYSICS

2.1.1 Space-Charge Limited Flow. All of the pulsed
relativistic beam diodes for currents higher than a few

thousand amperes have field emission-initiated electron flow.

A variety of cathode surfaces have been used--needles, milled
metal with grooves, razor blades, roll pins, etc. As a general
rule, when the macroscopic electric field level at the cathode
surface reaches 2-3x105 V/cm, field emission occurs from micro-
scopic whiskers or roughened edges. The whiskers vaporize,
creating a "plasma cathode" that can essentially emit with a
zero work function up to the space charge limit. The emitted
current density is then limited to a value for which the
associated space-charge cloud in the anode-cathode gap reduces
the electric field to zero at the cathode. (The thermal energy
of the plasma electrons is negligible compared to the applied

voltage.)
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All analysis of diode flow has been confined to steady
state flow where dI/dt = 0, I is the diode current. In
practice, inductive effects decreases the electron kinetic
energy during current rise. The kinetic energy of electrons
entering the drift chamber is usually obtained as a funcgion
of time by subtracting the inductive voltage drop (L g%)
from the measured diode voltage profile. The inductance, L,

may be determined experimentally using a load resistor of

approximately the same radius as the beam. A further inductive

correction resulting from beam pinching (I g%) may be necessary

for rapidly contracting beam envelopes.

A diode should; of course, be matched to the generator
for maximum energy transfer. In steady state, this means
that the diode impedance should equal the generator internal
impedance. We must determine the type of electron flow to
achieve proper diode impedance. The two types of flow of
greatest practical relevance to high-current diodes without
external magnetic fields are planar space-charge limited, or
Langmuir~Childs flow (Reference 2.1), and parapotential flow

(Reference 2.2 through 2.4). A rough transition criterion is

whether or not the current is to exceed the so-called critical

current (References 2.3 and 2.4):

I, ~ 8500 v -1 (rya
where Ic = c¢ritical current in amperes
Yo = electron total energy/moc2
m, = electron rest mass
r, = cathode radius
d = anode-cathode gap spacing

£ 3
L is the ecffective beam-diode chamber inductance.
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The critical current is the current level at which the self-
magnetic field of the beam becomes large enough to cause the
electrons at the beam edge to impinge tangentially on the

anode. The derivation of Equation (2.1) is quite simple~-we

include it here to indicate the approximate nature of the
criterion.

We assume a cylindrically symmetric diode as indicated
in Figure 2.1, and neglect the radial electric field. This
neglect is probably not too serious for large aspect-ratio
(rc/d) geometry. Moreover, we take Be constant for the outer-
most electrons. Again, this approximation is not severe for
large aspect-ratio diodes. The radial equation of motion for
the outermost electrons is then

B
d = -8 i)
at (v v o= 6“ ) V2 ¢ $2.2)
o
with
21
B L.
6 cr,
v, = radial velocity component
Integrating, v eB .z
o
At the anode, grazing incidence means Br = B,
Yoz‘l
Br = (2.4)
Yo

with Yo corresponding to the anode potential, Voe Substituting
for B6 in Equations (2.3) and (2.4) gives Equation (2.1).
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Figure 2,1 The critical current geometry
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In spite of the approximations above, Ic is a useful
experimental guide for onset of beam pinching for intermediate
(rc/d) values., Clark and Linke (Reference 2.5) have shown that
pinching starts at about 80 percent of Ic for diode impedances
in the 5 to 10 ohm range and (rc/d) 2 6. However, experiments
by Ecker at Physics International (Reference 2.6) using
(rc/d) ~ 20 have shown that no appreciable pinching occurs at
I, which is perhaps not surprising in view of the derivation--
the criterion merely states that the flow is no longer laminar
and that outer electron trajectories start to cross near the
anode. If (rc/d) ~ 1, one would not expect the derivation to
be meaningful.

Below Ic the diode flow will be essentially one~dimensional
and laminar. Then one uses the Langmuir-Child impedance:

b4 = 136 (d/r )2 (non-relativistic) (2.5)
L.C. c
(o]
= 960 (d/rc)2 (ultra-relativistic)

where Z is in ohms, Vo in megavolts, and the cathode is assumed
*
to be a uniformly emitting circular disk. If (rc/d) is deter-

mined from

Ic 2r.c. ~ vo (2.6)

or LT

(r /d) =~ 1.16 o ' (non-relativistic) (2.7)
© (vo)3;2 (cold beam)

we theoretically have a minimum impedance, "cold beam" diode;
i.e., the transverse electron kinetic energy should be zero,

*_ .
See Reference 2.3 for a discussion of relativistic planar space
charge flow.




or at least very small. In practice, Equation (2.7) "works" ;
only if the current density is not too high--of the order of -

a few kiloamperes/cm2 or less, (The current density is
entirely determined by the diode voltage and gap spacing when L.

Equation (2.6) is satisfied.) If the current density exceeds

~ 104 A/cmz, the anode window vaporizes, forming a plasma

which can both supply an ion current and also effectively close
the gap.

Let us first consider the case where the anode behaves as
a high-density plasma with a relatively sharp boundary, station- .
ary over times of interest. The ions are accelerated back to the
cathode by the electric field, and we have the case of bipolar
space charge flow. As shown by Langmuir (Reference 2.7), the
constant in Equation {(2.5) is now reduced. In the case of zerc
work function for ion emission from the anode plasma, the elec-
tric field at the anode, as well as the cathode, is zero.
Defining

jo = electron current density in absence of positive ions
j_ = electron current density with positive ions
and ji = positive ion current,

Langmuir shows (non-relativistically) that

1
. . \1/2 3 d
(/30)"% = (3) / - 177 (2-8)
o (/E +a Vvw-=1- a)
where
. 1/2
o = Jifle
Je Ny
Ne (ni) = charge to mass ratio for electrons (ions).
2-%
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The completely space charge limited case is a = 1, and numerical
integration of the integral above then gives je = 1.86 jo. We
thus see that the maximum ion current in the space charge limit

is n. 1/2
ji = (1.86) jO (ﬁi) (non-relativistically)
€ (2.9)
zZ = 13 (9—) (bipolar flow)
My \Te

If one is interested in accelerating ions in the diode
(and recovering them through a hole in the cathode, for example),
the energy efficiency of the process in space charge flow, €,
would maximally be

€ = f Vo]idt// Vojedt
1/2
i
e
For Jdeuterons, ¢ * 1.65 percent. Recently, Friedman, et al.,
have performed preliminary experiments on ion acceleration in

(2.10)

the diode, using a laser to form a high temperature anode plasma
(Reference 2.8). Ion acceleration in the diode may indeed be a
useful way to obtain high ion currents, providing impedance
collapse of the diode and contamination effects from ions other
than the desired specie are not serious problems.

In high-current diodes where the beam pinches (I > Ic),
not only does the beam form an anode ion source as discussed
above, but the anode plasma appears to explode and the high-
density plasma moves hydrodynamically toward the cathode (see
Figure 2.2). This effective gap closure gives an impedance that
drops with time. Loda and Spence (Reference 2.9) have obtained

B kol

e




Anode plasma

/

Cathode plasma

d = actual geometrical gap spacing

(t)

off effective anode-cathode gap

v = anode plasma velocity

Figure 2,2 Impedance collapse phenomenoloav
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an empirical fit of diode impedance versus time by assuming a
constant velocity anode plasma moving at typical material motion
velocities (a few cm/usec) observed with framing canieras.

One can also expect cathode plasma motion to close the-gap,
but if the beam pinches appreciably, it is reasonable that anode
plasma motion dominates. These ideas of gap closure have led to
the use of hollow ring cathodes with pinched beams to extend the
time before impedance collapse. The anode plasma then takes
longer to short the gap, and diodes with an initial gap of a few
millimeters can be made to hold impedance for 100 to 150 nsec.

To summarize the above discussion, we expect for I < IC
that the diode impedance will initially follow Equation (2.5)

2
2L.c. ® ;VB_E(%;)
o]

When the anode becomes a plasma, the impedance should drop to

2 o~ 22 (A
as bipolar space-charge limited flow is established. If the
anode plasma moves hydrodynamically, the impedance should
further decrease as

2 2
2 « (deff) « (@ - vt)

with v the velocity of the anode plasma. The time scales of the
above phenomena depend on the current density or electron energy
absorbed in the anode.
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2.1.2 Parapotential Flow (PPF). When diode current
exceeds the critical current, the self-magnetic field causes
the beam to pinch and planar space~charge flow is no longer
an adequate approximation. The suggestion of a parapotential
flow (along equipotentials) was first advanced by D. C. dePackh
(Reference 2.2). Friedlander, et al. (Reference 2.3), and
Creedon (Reference 2.4) have carried out similar calculations.
We follow Creedon's exposition here.

The basic assumption of the PPF model is that the impedance
of the gap is essentially determined by self-consistent flow
along equipotentials within a region extending from the cathode
shank to a region slightly in front of the anode. 1If the anode
is an equipotential (conductor), electrons must cross equi-
potentials in a small region near the anode. The model has an
undetermined parameter since it does not treat flow all the way
across the diode. Figure 2.3 shows a sketch of flow lines.
Creedon approximates flow lines by cones converging to a point
at the anode. By assuming azimuthal symmetry and force balance
along each equipotential,

2 v
E=-'é'x§,

where B is the electric field and v is the velocity associated
with the flow line, a soluticn of Poisson's equation gives an
expression for the diode steady-state current:

2
8500 y_ £Ln [Y + (y - l)]
1 = I LI o (2.11)
em 8
In (tan 5—) - fn (tan 3)
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2.1.2 Parapotential Flow (PPF). When diode current
exceeds the critical current, the self-magnetic field causes
the beam to pinch and planar space-charge flow is no longer
an adequate approximation. The suggestion of a parapotential
flow (along equipotentials) was first advanced by D. C. dePackh
(Reference 2.2). Friedlander, et al. (Reference 2.3), and
Creedon (Reference 2.4) have carried out similar calculations.
We follow Creedon's exposition here.

The basic assumption of the PPF model is that the impedance
of the gap is essentially determined by self-consistent flow
along equipotentials within a region extending from the cathode
shank to a region slightly in front of the anode. If the anode
is an equipotential (conductor), electrons must cross equi~
potentials in a small region near the anode. The model has an
undetermined parameter since it does not treat flow all the way
across the diode. Figure 2.3 shows a sketch of flow lines.
Creedon approximates flow lines by cones converging to a point
at the anode. By assuming azimuthal symmetry and force balance
along each equipotential,

> v
E = -EX§,
where E is the electric field and v is the velocity associated

with the flow line, a solution of Poisson's equatiocn gives an
expression for the diode steady-state current:

2

8500 y_ Ln [y + (v - l)]

I = T n (2.11)
In (tan 59) - In (tan %)
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where Yo is the relativistic factor for the outer flow line
along 0 and the minimum angle flow line is 6 = §. It turns
out that the solution requires a current flowing interior to

6 = 6§, which is termed the bias current, Ib‘ Specification of

any one of the parameters 9m, Y.

n’ or Ib determines the other two.

Creedoun suggests

tan § = ES
Gm = 7/2
Ym = Yo (corresponding to

anode voltage)

and, substituting in Equaticn (2.11)

Equation (2.12) is also the solution which minimizes the bias
current. This solution would appear to require flow along the
cathode shank, since the inner flow line is taken as emanating
from the outside edge of the cathode. Recent experimental data
of Ecker (Reference 2.1(0)shows reasonably good agreement with
Equation (2.12) (Figure 2.4). His investiqations of emission
from hollow ring cathodes confirmed another aspect of Creedon's
parameter choice; namely, that ¢ is essentially determined by
the ratio of ro/d. By remcving inner emission surfaces of the
cathode, very little change in the steady--state impedance was
observed.




3. The current density is non-uniform and peaked in the
center when Bz £ By, even when no appreciable beam pinching
occurs (Reference 2.10). A tentative explanation of this effect
is that the outer electrons have a lower longitudinal velocity.
Certainly this would be the case if the electrons roughly follow
field lines-~the pitch angle of outer field lines is larger due
to the larger self field. When B, N By, the impedance is some-
what insensitive to cathode area whereas if Bz > By the current
density again becomes nearly uniform as the field lines "straighten
out." The diode impedance then follows Langmuir-Childs.

*
2.2 ELECTROMAGNETIC FIELDS IN FINITE CAVITIES

An understanding of the nature of the electromagnetic (EM)
fields generated by intense beams in finite closed conducting
cavities is fundamental to a description of charge production in
neutral gases and beam transport phenomenology. For orientation,
we first discuss a simple quasistatic model to estimate EM fields
including the influence of cavity endplates, variations in beam
radius and charge/length, and density of the background charge.
Plasma effects are included here only in terms of electrical
(space charge) neutralization. We assume the beam energy and
current profiles are specified as a function of space and time,
and do not consider coupling to orbit or beam envelope equations.
The immediate utilitv of the equations below is that one can
estimate EM limits on beam-transport efficiency for desired beam
and chamber parameters, excluding current neutralization effects
(in this section). Exact solutions of Maxwell's equations for
beams penetrating finite cavities are given in Sections 3.3 and
3.4.

*
This section includes meterial reported in References 2.13 and

2.14.
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Figure 2.4 Comparison of theoretical [Equation (2.12)]

and experimental results for impedance of
diode pinched flow. For this comparison,
experimental data were restricted to dI/dt = 0.
Experimental points correspond to various rc/d
and Vo values.
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1. There is an applied magnetic field level above which no
appreciable beam pinching occurs. Hammer, et al. (Reference 2.11),
have empirically found that if

Bz Y Te
'B—g > (\)) (ia') (2.13)
pinching is inhibited. Bz is the applied longitudinal magnetic
field value and Be is the maximum azimuthal self-field of the
beam. dePackh (Reference 2.12) has numerically solved the elec-
tron orbit equations, neglecting diamagnetic effects and electric
fields, and obtains the criterion

B 1/2

Z > /Z(l) (2.14)

B v

8

It should be noted that both of these equations involve the

parameter I
(amps)
17,000 BL

and the longitudinal velocity, BLc, has to be "guessed."

2. The beam rotates in the diode, indicating the existence
of a macroscopic theta motion. The azimuthal acceleration results
from forces

Fg @ % (vp B, - v, B
and radial velocity, of course, may result from either pinching
due to the self-magnetic field, or from radial electric fields
near the cathode. The radial electron rfield gives rise to dia-
magnetic rotation whereas the BG field generates paramagnetic
theta currents. We discuss these effects in more detail in
Section 2.10.3.
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Certainly this would be the case if the electrons roughly follow
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fields generated by intense beams in finite closed conducting
cavities is fundamental to a description of charge production in
neutral gases and beam transport phenomenology. For orientation,
we first discuss a simple quasistatic model to estimate EM fields
including the influence of cavity endplates, variations in beam
radius and charge/length, and density of the background charge.
Plasma effects are included here only in terms of electrical
(space charge) neutralization. We assume the beam energy and
current profiles are specified as a function of space and time,
and do not consider coupling to orbit or beam envelope equations.
The immediate utility of the equations below is that one can
estimate EM limits on beam-transport efficiency for desired beam
and chamber parameters, excluding current neutralization effects
(in this section). Exact solutions of Maxwell's equations for
beams penetrating finite cavities are given in Sections 3.3 and
3.4.

*
This section includes meterial reported in References 2.13 and
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The geometry is shown in Figure 2.5. Azimuthal symmetry is
assumed and the theta component of the beam current is taken zero.
Direct integration of the Maxwell equation:

. 1 9B
Vx E = - '-c- ﬁ
gives
SN LA 2B,
EZ = - / -a-—z—— dr' -~ -6 / -a—E—'- dr' (2.15)
r r
1h !

17
/ Be ———3 Z \
Perfectly

- conducting
walls

Figure 2.5 Beam chamber geometry.

where the boundary condition Ez = 0, r = R has been imposed. 1In
the quasistatic limit, the displacement current in the calcula-
tion of Be is neglected and the radial electric field is assumed
to be obtainable from the electrostatic (ES) potential. It is
thus required that the time for light to travel twice the longest
chamber dimension be small compared to times of interest. The ES
potential can be determined exactly:



R £
d = f r' dar' /dz' Glr,xr',z,z2')pl(r',2") (2,16)
o (6}
with

= 5, (8 5 ()
) R o R

n=1 A, [Jl(kn)]2 sinh (i%i)

ng

G(r,r',z,z2"') =

sinh <

A p
sinh (§2>(g-z) sinh -ﬂ-z', z >z

>
o}

An
z sinh —§(z-z'), z € z'

o

(2.17)

s

The charge density is p(esu/cm3) and An are the roots of Jo(x).
An ad hoc approximation for E. is now made to avoid the complica-
tions of Equation 2.16, The spirit of the approximation is to
note from the exact expression the term dropping off most slowly
in z, and then to find an approximate normalization factor. The
chamber radius R is to be restricted to a range such that the

z dependence is reasonably accurate for small z. This implies
that 1 < R/a €10, and 1 < R < 10 length units, which is hence-
forth considered the range for R. Assuming a uniform beam
current density and that the scale variation in z for beam
parameters is large compared to R/2.4 near the endplates or
compared to the beam radius "far away" from the beam endplates
(paraxial approximation), take

4
]

£(z)
(2.18)

= £(z)
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with £(z) = 0, z =0 ,84, The beam charge/length (which may also
have a z dependence) is denoted by A. Equation (2.18) is exact
at = = /2 for A constant. Two cases of interest are

(1) £ < R o £ (2) & 331%:51
(2) £ >R (2.19)
~2.4 z/R
£(z) ¥ L8, 2 < 2(R/2.4)
(1-e 7)
=1, 2(R/2.4) < z € 1~2R/2.4
loo=2-4 (2-2)/R

= ) , 4=2R/2.4 Sz S &
l-e

The Er profile for these two cases are sketched in Figure 2.6.

2)
2
|
('Er)l
(a) )

Radial field when 2 <R

Figure 2.6 Fields for a uniform electron beam
in a closed cavity.
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Returning to Equation (2.15), and using

Be = =%r,r <a
ca

%%, r 2a

an expression for Ez(O,z,t) is obtained when 2 < R:

(1) (2)
A

a2 (1 R\\ 4z (2 )\ 2\ 3a (4z(4-2)
= - = )| 2zix7z) ga (2z1%72z)

3z a

(8]

(

7
- 2) <§+£n
(5)

) (4)

D) & e -5

/—\>>
o
]
[ 8]
N
~ J
i
Nﬂ,
@
et
TN
Nj =
+
=
=3
—_—
=
— J

70

2 I 3a

If R <<%, a similar evaluation for Ez can be made using
Equation (2.19).

The terms of Equation (2.20) can be identified as follows:
(1) Electrostatic due to a variation in beam charge
density/length modulated by end plate surface

charges

(2) Electrostatic due to a variation of beam radius with

z modulated by end plate surface charges
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(3) Electrostatic due to induced (positive) surface
charges at the end plates which terminate the
field lines of adjacent beam (rnegative) charges

(4) Changing magnetic flux due to current variation
(L d1/dt)

(5) Changing magnetic flux due to containment of
current within a time varying radius (I dL/dt)

It is interesting to note that without end plates, (set
z = 2/2), Equation (2.20) reduces to

_ 2 3 [l R
Ez(O,z,t) = —2§-a<§+£n (5-)>, (2.21)
'L
(no end plates)

u = BLct-z

1/ Vl-Bi

BLc average forward streaming velocity of beam electrons,

if not referring to the beam head or tail and if a constant beam
radius with varying charge/length is assumed. Equation (2,21)
can be rewritten for the case Ib = IP (1 - e-au)’ IP = pegak beam

current:

P —
E (V/ecm) = (5)22 iréiggzg (% +Ln R/a) e oY (2.22)

L

i
o

r=

[\
B
N
ot
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We have defined (a_l) as a two e-folding current rise length:

o BLctr = 2

For IP = 5x104 amps, t, = 20 nsec, y = 3, R=6, a =1, and

B, = 0.8, E, = dx10° e™® v/cm.

If we are within the current rise portion of a beam of
electrons (3)A/du < 0) streaming in the positive 2z direction
Equation (2.21) shows that Ez is in the negative z direction;

i.e., in a direction to accelerate the front electrons,and is
opposite in sign to the Ez field behind the head when the beam
emerges from a conducting endplate. We remark that if one
transforms to the beam frame in the problem with no endplates,
uses Gauss's law for the now electrostatic problem, and then
transforms back to the lab frame, one also cbtains Equation (2.21).
To include displacement-current eifects, second and higher order

derivatives of A with 2z must be included in the electrostatic

problem in the beam frame. These examples point to a sufficient

condition for the validity of Lenz's law--changing magnetic flux
induces an electric field tending to drive current producing
fields to oppose the change in flux; i.e., aEr/Bz be negligible
over the length of interest.

The effects of ions at rest can easily be included in the
5 3 - » S - R |
above equatléns by replacing A by A(} £ £, = lpion/pelectron‘
is the fractional electrical neutralization.

If we take f_ = fe(u), then Equation (2.20) gives for
constant beam radius:
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- a2t axfr e\ o, e
Ez(O,u) = +2(2 + fn R/a) T ( 3 fe) A TTeN (2.23)
'L
and E, reverses sign when
of
e _ 1 _ A
'L,

If both x and fe increase linearly behind the beam front, Equa-
tion (2.24) is satisfied when fe = 1/2yi. Figure 2.7 shows
qualitatively the effects of ions upon Ez’

If fe = constant or a function of t, and the ions are again
assumed to have no z directed velocity, we see that
E = 0 if f_ = X (2.25)
z e 2 :
YL,
This is also the condition for radial force neutralizaticn of the
primary beam electrons. Thus, if Equation (2.25) is satisfied,
the primary beam electrons may drift in a force-free environment.

In other words, fe = 1/Y§ is a condition for beam "transparency."

On first glance one might suspect that if the gas pressure
could be adjusted to maintain fe = l/yi during a substantial

portion of the beam risetime, very iittle energy loss would occur
in beam transport. However, as discussed in Section 4, fe = l/YE
is the condition for ion acceleration, or, in other wecrds the
beam may be unstable. Physically, Equation (2.25) may be under-

stood by recalling that

BAZ

= - 9% _ 2
E, = 52 3t

Z

(9] Lo
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Sketches of Ez fields with and without ions.
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where ¢ is the scalar potential and Az is the z component of the
vector potential. In a rising current region of the beam profile
0¢/9z and 8Az/8t are oppositely directed. The presence of ions
such that fe ~ l/yi is the condition that 3¢/3z is shorted out
enough to exactly balance the inductive 3A/3t term.

Equations {2.21) through (2.25), have been derived assuming a
constant beam radius with z and t. Let us return to Equation
(2.20) and look at terms 2 and 5, again neglecting endplate ef-

fects or restricting z to values about /2. Denote these terms
by EZ:

- _ 2 _ Ja ABLC PL:
I.az (O,Z,t) = 'a— [}\(1 fe) S_EJ- c2 S-E (2.26)

If a=af(u), ua>0,

_ o200 [, 2
E;' (0,z,t) = T 55 [f 1+ BL]
_  2) 2a _ 1
- 2 (fe 2) (2.27)
Y,

When fe = l/Yi, E; = 0, and we conclude that changes in radius
with u, or the distance behind the beam head, also lead to

Ez = 0 if the positive ion charge density follows the beam radius
changes. 1If they do, the ion envelope velocity is, of course,

equal to the propagating velocity of the electron beam envelope.

To summarize the abecve field discucsion, we remark that the
fields have been determirned in a guasi-static approximation which
requires that the time scale of interest be long compared to time
for light signals to travel twice the longest system dimension.

o
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We have made an ad hoc approximation for E. ®o include endplate

effects that places a lower limit on the scale of z variation of
beam parameters. Our Ez expressions have been obtained for

r = 0; if we assume that Ez does not vary over the beam radius,

our error at the beam edge, r = a, is using

(% + Ln (g))r=o corm instead of (Ln (§>)r=a corm

for terms 1, 3, and 4 of Equation (2.20). If R = a, this error
is not serious; in any case, we are overestimating Ez and any
beam distortion due to Ez would be less than our results. When
fe ~ 1 everywhere, the electrostatic contributions of the EM
fields vanish, leaving only the inductive components { terms 4
and 5 of Equation (2.20)], The endplates can now be ignored.

2.3 EXACT EM SOLUTIONS FOR BEAM PENETRATING AN ENDPLATE IN A
FINITE RADIUS CEAMBER (fe = 0)- A SUMMARY OF RESULTS

The discussion above assumes that the beam has already
traversed the drift chamber. Now to be considered are exact
solutions of Maxwell's equations for a beam penetrating a chamber
endplate; sufficient conditions will be presented to justify
neglect of endplate effects. The material discussed is of
interest for low-pressure beam transport in ion acceleration
modes when electrostatic fields dominate, and it shows the im-~
portance of finite chamber boundaries. The details of the

calculations are given in Section 3.4,

ol
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An end plate has two effects on the EM fields. One,
primarily electrostatic, is to reverse the direction of Ez near
the end plate and short out the radial electric field. The other
is to generate a radiated field component as surface charges are
accelerated by the beam., This field gives rise to precursor
fields traveling at the velocity of light and, under certain
conditions, to oscillatory fields near the beam front. The
geometry for the calculations is shown in Figure 2.8.

4 O=m (0
Electron
beam —m

Precursor front
z = ct

- L /

Other //]

cavity
end plate

N I

!

Figure 7.8 Open ended pipe geometry.

A sufficient criterion for neglect of field oscillation is

that
\J(et)?-2.2 >> R/2.4, 1 < R ¢ 10 length units (2.28)

where z¢ is the beam front position. Another way of stating
Equation (2.28) is that the light signal must have traveled "far
beyond" the beam front, One would therefore not expect this

2=-27




effect to be important for low-energy beams. A typical oscilla-
4 A ‘e
1-MeV beam, 20-nsec risetime, and l-cm radius in a 6-cm-radius

pipe.

tion amplitude, for example, would be .,103 V/cm with 5x10

The reversal of the sign of Ez' as compared to the case
without end plates, is perhaps the most important influence of
the end plate, since this effect can seriously degrade the beam
energy and reduce the front velocity. The beam "blows up" radially,
resulting in large energy losses. Figures 2.9, 2.10 and 2.1l show
the E, field on axis for a beam with current in the positive z

direction penetrating an end plate. In order to illustrate the

details of the ES field near the end plate, an undistorted "slow"
*

beam was chosen. The parameters are

BL =~ 1/30

tp = risetime + 0.1 nsec

R=6cm

a = 1 cm (Gaussian radial current variation)

1P = peak current = 1.77x103 amperes, (The ES field

scales linearly with peak charge/length.)

The reversal of the sign of Ez occurs at the crossover distance,
Zqe and can be estimated from

z, ~ [(R/2.4) £n 2y + yz,)/(y + 1), (2.29)

In order that the field calculations be self-consistent with
beam motion, v/y~1 << 1. Section 2.10.1 discusses beam front
motion when this condition is violated, Scaling of field values
for other beam parameters is discussed in Section 3.4.1.
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where Ze is the beam front position (=~ time in nanoseconds in the
above example). Equation (2.29) is valid for a "blunt" beam when ‘e
z, L 2R/2.4. In order to neglect the electrostatic endplate
effect on the beam fields, it is therefore required that

ct/y , Zgr 2 > R/2.4 (2.30)

when R + =, one can also derive a manageable expression for
the Ez field. A straightforward electrostatic image method -
calculation (Figure 2.12) gives for the potential, ¢, on axis
(r = 0)

¢(z,L) = %{l [(I..-Oz)2 - (L-z)2 - 222] + f dw \/a2+m2

L+2
- f duw Vaz + wz}

z

{22(2L-z) + (L-2) ‘/a2 + (L--z)2 - (L+z) "/a2 + (L+z)2

mNI >

+ 22V a2 + 22 + a2 [£n (L-z + \/;2 + (L—z)z)

+ In <z+ a2+22)- In (Va2+zz-z)

\ (2.31)
- fn (L + 2z + \/a2 + (L+z)2)]}
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Figure 2.12 Geometry of electrostatic field calculation for a
beam emerging from an infinite conducting plane.

where A is the charge/length and is assumed constant from z = 0 to
z = L. The charge density has also been taken uniform in radius
out to r = a. The expression for Ez follows directly from Equation

(2.31):

_2)

= - ‘Z(L-z) + 2V a2 ;_;7*- JAZ + (L-z)2 -
a? |

J;2 + (L+z)2

(2.32)

we see that E, reverses sign and the potential well depth is

maximum for z = z, given by

(L-zc) + v a2 + zc2 = % [\/a2 + (L-zc)2 + ng + (L+zc)2]
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2.4 CHARGE PRODUCTION IN NEUTRAL GASES

For the purposes of a discussion of charge production
processes, one needs to realize that typical intense beams in
neutral gas-filled drift chambers have electrostatic (ES) space
charge fields in the 105 to 106 V/cm range before electrical
neutralization and inductive fields of the order of a few keV/cm
after fe %~ 1. As shown previously, the ES fields are primarily
longitudinal near the anode window and the downstream chamber
endplate, and primarily radial within a region of length =~ 2
(R/2.4) away from and interior to both the endplates. Depending
on beam energy and current risetimes, the ES fielid near the anode
window, which is always in a direction to degrade the beam
kinetic energy,may slow beam electrons down, sharpening the
front, causing the beam to "blow up" radially, and effectively
decreasing the current risetime. We then have a situation where
a relatively sharp beam front precedes an ic charge neutraliza-
tion front.* This process effectively moves the anode down tue
chamber, maintaining a primarily longitudinal space charge field
behind the beam front until, e.qg., fe ~1/2 Yi in the case
discussed in Equation (2.24), and then primarily radial until
fe ~ 1. Both the value of the ES field and its direction depend
on the "sharpness" of the beam and ion fronts, and may be inferred
from Sections 2.2 and 2.3, using a superposition of fields from
an electron and equivalent ion beam. As the beam collisionally
ionizes the gas, the secondary electrons move out of the beam
channel, leaving positive ions to neutralize the beam space charge
over a time scale ™N* When the ES fields are primarily longi-
tudinal, the sze force accelerates them out of the channel, or
when primarily radial, the electric field does.

.
These remarks are amplified in Section 2.10.1.
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During Ty < t < tr’ tr the current risetime, the electric
field is inductive dominated, longitudinal, and drops to values
of the order of a few keV/cm. We argue below in a charge produc-
tion model that it is this inductive electric field which has a
major effect upon charge production through electron avalanching.
The exponentiation of secondary electron density during avalanch-
ing causes the gas to break down, giving rise to the phenomenon
of current neutralization.

The plasma charge density may also be enhanced by the in-
fluence of ES instability-generated electric fields if the beam
parameters (temperature or velocity spread) and plasma density
are such as to allow rapid growth of instability oscillations.
We defer a discussion of instability heating to Section 2.8.1.

2.4.1 Direct Collisional Ionization. Good working values

for the impact ionization cross section (Oion) for beams with

energy in the MeV range are given in Table 2.1 (Reference 2.15).

TABLE 2.1
IONIZATION CROSS SECTIONS
Gas Oion (cm?)
H, 2 x 10:13
He 2 x 10
Ne 4 x 10739

A 9 x 1071°
N, 2.6 x 1o:if
Air 2.6 x 10 7

Using the cross sections above, the time for attainment of
electrical neutrality, Tye can be estimated. If we assume




singly charged stationary ions and that the secondary electrons
escape "instantaneously" from the beam channel, the ion charge CL

density, p; is given by
;E-i- = 3.53x120 5 5 P
- 353 x 109 2 (c/10) o, b o0
‘ ;;7 ion

with

jb = beam current density (assumed uniform) (statamps/cmz)

Ib = beam current in amperes

= beam radius (cm)
P = gas pressure in Torr

P

Integrating Equation (2.34) using I,=9g (t) IP, I = peak current

in amperes,

t
16 .
a“(t")
(o)
The electron beam charge density, P’ is
¥ g(t)
Pa 2
(10) ra BL
[Te) 0
t = . _ion
£, (t) o
a2 8 t
)
= 3.53 x 101 5. P L glt!) at (2.36)
ion g(t) a2 (£")
(o)

The time ™
Equation (2.36) for the linear current rise case (g(t) = t/t )

to attain fe = 1 can easily be obtained from

when no appreciable change in beam radius occurs over Ty?




© R SRR ST SRR

ir
l
l

~ 0.7 oion(air)
Ty (nsec) B, P(tore] &, —Tgas) (2.37)
2, Let us now briefly examine the assumption that secondary elec-

trons instantaneously escape from the beam channel. The secondary
i electron orbit equations are

.- v B
d - - & - 26
. at (v = m_ (Er c )
(2.38)
B
d . _e Veo9
»e -dT (sz) - n-'i;' (Ez + C )
i’ where v. (vz) = radial (longitudinal) velocity component of
secondary electrons. The energy equation is
dy _ - e
T = - c2 (Er v+ Ez vz) (2.39)
o

These equations can be solved analytically with specified fields
only in a few cases.

First, we note from :nspection of Equation (2.38) that the
radial acceleration will always be outward (positive) until

VZ
2 = (E,/By) (2.40)

w0
m

If the beam charge density is uniform in radius,

t

r . _lr'fe

6 L
Thus, since Bz < 1, the secondary electrons will escape to
"infinity" unless

. f > 1 - B, (2.41)




i

If Ez %= 0 (fe ~ l/yLz) and Er' B6 are c¢nly functions of r,
Equations (2.38) and (2.39) can be solved analytically for the
turning radius, Eor at which the secondary electron reverses
radial velocity. Denoting quantities referring to the initial

coordinates and velocities of secondary electrons with the
subscript "1,"

r r'
2 2  2e _ _e "y e
(yvr) = (le_):L -ﬁ;- f dr' [Yl ;—-;2- f Er(r )dr] Er(r')
T (o} r,
Y !
e " ”
+ - c2 [Be(r') / Be(r )ar ] ar’
o ry r,
r Be
- f (Y"z) e (r') dar’ (2.42)
1
T
and r
= - _& '
vy(r) = Y1 ;—;2- f Er(r')dr
(o) ry
r (2.43)
yw, = (yv,) - . B,(r')dr'
z 2", m c2 / 0
(o} r,

Let us evaluate Equations (2.42) and (2.43) for Yy = 1l in the
uniform beam case, assuming r, # a, the beam radius. We obtain

2
r
2 |1 1l 1 r
Yv e --——z+£n-—
z m c 2 2a a
0
. 2
£ b o
1 1 r
Y(r) = 1+(1--—9-)2|11 “"fe -—-2-+~Cn—
BL moc 2 2a a
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These two equations can be solved for ry:

2 (1“fe) 2
r, = aexpy|——z—- 1+ (rl/a) (2.44)
v (1-a%)

with .
l-fe

o = B
If we take a 1 MeV electron beam, v = 3, fe £ l/yz, and

1= a/2,Equation (2.44) gives r,B ® l12a. In other words, when
chamber radius R is < l2a, the secondary electrons would hit
the wall (at relativistic velocities). If we blandly ignore
the effects of Ez when fe > l/yz, a criterion for secondary
electrons to be lost to the chamber wall is

2(1-£,) rlz
e vy (2.45)

X

2Ln R/a < >
v(l-a")

Numerical orbit calculations are required to more carefully
justify the assumption that secondary electrons escape from
the beam channel over times short compared to ™N when fe 1.
Experimental observations of beam envelope profiles using ™
from Equation (2.37) show that the assumption at least gives a
good working estimate of space charge neutralization times,

2.4.2 Electron Avalanching and Gas Breakdown. Relativistic
electrons create secondaries with energies in the few electron
volt range. The ionization cross-section for further icnization
by these secondaries is in the 10-16 cm2 range and, if the beam
induced electric field is large enough to accelerate the second-
aries to ionization energies for the background gas atoms in a
distance of the order of a mean free path, these secondaries

create more electron-ion pairs--the condition for gas breakdown.
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In order t-at avalanching influence plasma generation in the :
beam channel, the radial electric (space charge) field of the .
beam cannot be too large, or in other words, the radial electric

field mnust be low enough to keep the transit time over a distance

of the beam radius not significantly smaller than the mean

ionization time for secondary avalanching.

If fe = 1,this condition is fulfilled. Moreover, when
£, > l/yL2 the beam is in a pinching condition, so the space
charge blowup is terminated and the beam radius can be assumed
roughly constant in avalanche calculations. The charge production
equation for secondary electrons can be written from the Townsend
discharge theory as

522 = I () + - - v.f 2.46
at ¢ 2 £ ) (2.46) :
Nassm, Nmete, S’ e, o
collisional avalanche transport
ionization term term

where np is the secondary electron density/cm3

I(t) = the beam current in amperes
a = the beam radius in cm.
ti £ mean ionization time
\-1
. _'(<vion> - <va>)
Vion = ionization frequency ‘
v, = electron oxygen attachment freguency in air
<> denotes a value averaged over the secondary
electron velocity distribution and the back-
ground gas velocity distribution
I' = the particle transport current out of the
volume element due to the electric fie.d
(mobility current) and diffusion
2-40
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a = 5.8 %107 (vorr) air {N,)| nhumber of ion pairs/
8.8 x 1016 P (Torr) He } ém3ygé¢/amp/gm?:

and @ is obtained using the ionization cross seéctions in Table Z;ft The

mean ionization time is a function of the E/P (electric field/pressure)

ratic and since E varies with t, t, = t;(t). We can integrate

Bquation (2.46) assuming a * cohstant, and neglecting the transport term,

f faer ]ff.._.at?' ft at’
Yo t t ty i L
e

P - oe ' ' . 2.
np (t) ;;7 A I(t*) dt + np(tc)e (2.47)
o

:591 is the sécénﬁary electron density at t = ta' If we break up
the time intervals into segments with approximately constant
electric fields, £ o= constant, and if I = if t/tr, a linear
rurrefit rise to a peak current IP,

( 5.8 x 1017 P (Torr) IP (amps) (ti)2 t/ti
n_ () = e -t/t.-1
P m (a(cm))2 t, i )
t/t;
1 (ai (2.48)
+ np(to)e (aix)
with a1l times in seconds.
1ok ﬁi {only collisional ionization),
17, 1P ¢
a (t) = 2.9 x100 pdy = (air) (2.49)
P Ta r

. a7 .ot 2.46 neglects recombination effects. These are not

. .x .¢ i%mportant at pressures corresponding to high conduc-
- 7 swaxdown,
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‘The mean LOﬂlzatlon times have been plotted as a function E/P
from: the data of Felsenthal and Proud (Reﬁerence 2.16) by J.

Créedon (Referénceé 2,17), Figires 2.13 and 2.14 compare air and
helium; and Figure 2.15 shows the mean ionization time in air
plotted as a function of pressure for two typical electric field
valdes.

A model of charge production is now argued to estimate
breakdoWn‘timéSs -Secondary eélectron orbit sketches and typical
field magnitudes are summarized in Figure 2.16 for a beam in a
drift chamber. The figure indicates that beam-driven electric

" fields vary several orders of magnitude from the time of front

arrival to gas breakdown time; ty, and that the highest fields
exist for t < ™* In fact, these fields are usually sufficiently
high at pressures of interest for efficient beam propagation

(0.1 to 1 torr) that the secondary electrons become relativistic
over distances of the order of the beam radius and the ionization
cross section drops to values around 10-18 cmz. This can be
compared to typical Townsend discharge theory whe.e cross sec-
tions are used for electrons with energies up to the kilovolt
range (~ 10'16 cm2 cross section). Moreover, until fe = ] is
achieved, the secondary electron motion is primarily radial and
the flow is out of the beam channel. Thus, it seems reasonable
to neglect avalanchlng in the beam channel untii f * 1, When

t > Ty , |E| = B, = 103 V/em, (typically), we consxder avalanche
effects to be important and the electric field is inductive.

With these arguments in mind, an ad hoc charge production calcu-

lation procedure for high current electron beams is outlined:

£ 3

The reader is cautioned about extrapolation of their data to
off-the-curve points, particularly toward the high E/P values.
These authors carefully delineate the validity of their
measurements,
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L the time for fe & 1, is calculated from collisional
ionization (1 (nsec) =S 0.7/8,P (torr) for air).

From the time the beam front arrives at the point of
interest up to t = Ty secondary electrons escape
instantaneously cut of the beam channel; no significant
electron avalanching occurs within the beam channél.

From t = 7, to t = tg; the breakdown time,

P
~ 21" (amps)
Ez (V/cm) = tr oYY (1/2 + Ln R/a),

assuming a linear current rise,

R = chamber radius
a = beam radius
tr = beam risetime

Using EZ above and the pressure of interest, ti' the
mean ionization time (Townsend discharge theory), can
be determined from Figure 2,13.

Neglecting the transport term and assuming Ez constant,

in Equation (2.48) gives

P /t. (t--rN)/t.
S - al i 1 -
n, (t - TN) = ﬂ-————az (—-tr) e (ti + TN) (t + rN)
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with
beam

e e s ce s - 1
é. ?rgakdownrxs defined as ne ,(tB) = §ny (tB)
Erpirically determined 6§ = 226

f. tB is obtained from the transcendental equation:
S | I T for air  (2.50)
ty P (torr) ti8y (ti + rﬁY

(All times are in nanoseconds.)

Breakdown time calculations from the above are compared
Yonas and Spence data in Table 2.2 (Reference 2.18). The
parameter range over which the above model is relevant

is not clear, inasmuch as detailed breakdown data exists only

from

the Yonas and Spence work. It is quite likely that widely

different beam parameters would require adjustment of the charge

multiplication factor, §.

TABLE 2.2

BREAKDOWN TIME CALCULATIONS

t t
P ™ ti (nsgc) (nsgc)
(torr) (nsec) (nsec) Calculated Measured
0.1 13.0 1.0 20.7 20
0.3 4.3 0.47 7.8 10
0.5 2.6 0.34 5.1 5
Agreement is within
experimental error
Parameters
IP = 4 X 104 amperes a2 = 2,5 cm2
r = 20 nseg BL = 0,54
2 = 2 x 107 volts/cm y = 1.5
1 R = a
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After gas breakdown the plasma bécomes a good conductor and
the electric field typically drops to the feii hundred V/cm range
or less. An estimate of further ionization can then be made from

an, (¢) ok, 2 ' -
—— o 2t > ¢t (2.51)
dat AWion B
where o is the plasma conductivity after breakdown and Awibn is
the enérgy required to create an electron-ion pair = 33 eV/ion

pair ® 5.3 x 10~ erg/ion pair. Equation (2.51) would, of course,

apply until the gas is fully ionized or the driving field becomes
negligible. In Section 2.6 we estimate the E, of Equation (2.51).

2.5 PLASMA CONDUCTIVITY

In order to use the concept of conductivity in a meaningful
sense and thereby simplify the plasma dynamics enormously, we
have to carefully characterize the plasma parameters and the
electric fields; an intense beam, self~generated plasma system
typically has electric fields varying several orders of magnitude
over the beam pulse width and, of course, the gas changes from an
unionized state to perhaps a fully-ionized, heated plasma. We
are most interested in the necessary conditions to use a scalar,
dc conductivity-~-the simplest case.

Before the gas is fully ionized, the conductivity contains
contributions both from electron-neutral and electron-ion

collisions. An often-used rule to calculate the effective con-~
ductivity is

1 1
- = + : (2.52)
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with -
op = total conductivity
Op.i = electron-ion conductivity
’
g = electron-neutral conductivity
14

n ez' 1 w 2 1
'3 o i,3 i,3

n
2.53 x 108 3~E— (sec‘l),*

i,j
where np = plasma electron density (cm-3)
wp = electron plasma frequency
vi,j = momentum transfer collision frequency (sec'l)

for (i,j) 90 degree scattering to direction of
electric field.

We list several restrictions upon use of Equation (2.53) which
have to be considered in intense beam applications.

1. vi,j > 0 (dc approximation), W, = maximum angular
frequency of EM field components with "appreciable" amplitude.
Otherwise, electron inertial effects are important and

2
¢ = olw) = £ 1. - i = (2.54)

4

* 1
o(sec ™)

¢ (mho/cm) =
l012
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Typically, w, %ﬂ i'lba/sec, The beam pulse width is tp.‘
P

2. vy 5 > w, (scalar approximation), w, = cyclotron
. 7. B .
frequency of secondary electroiis in magnetic fields. Otherwise we
must use a tensor conductivity aﬁd, for a Lorentz gas, '

T . )
o ® 9 1° oy \?
(=)
i,3

where ol(c") is the conductivity perpendicular (parallel) to the
magnetic field lines. 9 is given by Equation (2.53)., When no
external magnetic fields are applied, the "cyclotron" frequency
is the Larmor or betatron frequency of the net B6 field (includ~
ing current neutralization). This field is zero on axis and a
maximum near the beam edge. When beam transport efficiency is

(2.55)

high, the net current is typically such that Bget (r = a) 2 few
kilogauss. If we take Bget L2 kilogauss, W L3 x lolo/sec.

The collision frequency above has been tacitly assumed to be
strictly collisional, either electron neutral or electron-ion.
When the beam-plasma system is unstable to longitudinal electro-
static oscillations, an effective collision frequency, Voggr Can
be used in weakly turbulent plasmas to give a so~called anomalous
conductivity. This collision frequency represents wave-particle
scattering and may be orders of magnitude higher than v or

e,n

Y . If tne instability wave energy is dissipated by collisions

e,i
rapidly enough so that non-linear regimes and particle trapping
do not occur, Veff is taken of order of the fastest linear
instability growth rate,Im(w). We therefore additionally require

for validity of Equation {(2.53) :
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1 5

) % 6 x 19~ n, r ~3/2 (2.61)

v. .(sec”
e,if e

4
giving

o, i(sec-l) ~ 4.2 x 1012 ¢ 3/2 (2.62)

’ e

The two conductivity components above are equal when

n
L~ 1074 ()2
N e
o
. . -16 2 .
~ L] ’ O uatli . ’
i <’m> 10 2,52

c=~og_ . if
e,i

(gﬁ) > 107 (r)? (2.03)
o

.As an example of the application of the above remarks, let
us estimate the conductivity after gas breakdown for the Yonas
and Spence beam parameters of Table 2.2. We obtain the electron
plasma density at breakdown from our charge production model
[np (tB) ~ 200 ny (tB), n = beam electron number density] and
assume a temperature of Te ~ 10 volts, From Equation (2,63)
np/No x 10"2 is the equal Os 3 and o plasma electron to back-

o1 e,n
ground gas density ratio. The calculations are given in Table 2.3.

TABLE 2.3

CONDUCTIVITY ESTIMATES AT GAS BREAKDOWN

- -3 ~ ‘.l
P (torr) No (cm ) n (tB)_ n /No ot tB)(sec )
0.1 3.5 x 1050 4 x 10t ~107t o = 0 i ™ 1.3x10%4
'
16 L1300 L =2 _ o a
1.0 3.5 x 10 4 x 10 10 g = Ue,i’z oe’n/Z
¥ 6.5 x 1013

~y

{

e

o sim, ooy

A

:
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P

of a transverse magnétic field. ¥r.t présumably could be important
near the axis of a. Be field syst.~a shere B, %0, If n_ % 3.5x10%%7
cm3 P 2 0.1 torr, fully ionized, Té ~ 10 volts,'z = 1, (conditions
for rapid gas breakdown and .good beam transport), Equation (2.57)
gives E, < 700 V/ci. Suéh a field would correspond to plasma
current den51t1es, j...» of 27 b4 104 amps/cmz, assuming ¢ = ¢
and T 2 10 volts. The highest beam .ourrent den31t1es yet
attalned in the drift chamber are ~ 105 amps/cm . Thus; the’ E
field limitation for Equation (2.56) will usually allow use of a

scalar conductivity giving essentially complete current neutrali-
zation of the highest ¢current density beams.

e,i

Returning to Equation (2.38), we obtain expressions for
O n and Og i° The electron-neutral collision frequency is
7 14
defined as

ve,n = N <§mv> X No <bm>~vt;(vt > vd) (2.58)

where v is the electron velocity, No is the background gas neutral
density, <bm> is the electron distribution-gveraged momentum
transfer cross section. Equation (2.58) may be rewritten using
Equation (2.56) as

-1, 24 _ —
ve'n(sec ) = 2,1 x 10 \om> /Te (eV) P (torr) (2.59)

giving

-1 -16 Ry 1

P

(sec
P b (torr)
\0m> \/Te

) = 1.2 x 10

Ve ,n (2.60)

Typically <bm> ~ lO"15 - 10"16 cm2, and may be obtained for
various gases from electron mobility measurements (References
2.20 and 2.21). The electron-ion collision frequency for g =1
ions (Reference 2.22) is
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giving

SR - 12 , 3/2 62!
Og,i{s8C 7) =~ 4.2 x 1077 1 (2.62)

14

The two conductivity components above are equal when

n

£ =~ 1074 2
7 10 ° (7))
o
. o 1n—-16 2 .
assuming <o > ~ 10 cem-. Thus, from Equation (2.52),
o =0 3 if
n -4 2
(_2 > 107" (1)) (2.03)
No e

.As an example of the application of the above remarks, let
us estimate the conductivity after gas breakdown for the Yonas
and Spence beam parameters of Table 2.2, We obtain the electron
plasma density at breakdown from our charge production model

[np (tB) ~ 200 ny (tB), nb = beam electron number density] and
assume a temperature of Te ~ 10 volts.

~ 1n=2
np/No ~ 10 is the equal O
ground gas density ratio.

From Equation (2.63)

i n plasma electron to back-

L4 [4

The calculations are given in Table 2.3.

and
%

TABLE 2.3

CCNDUCTIVITY ESTIMATES AT GAS BREAKDOWN

3

- = ~ -1
P (tory) No (cm 7) n (tB)_ n /N0 gt tB)(sec )
0.1 3.5 x 108 a4 x 10t ~1071 o » oy ® 1.3x10%4
!
16 L1302 _ o
1.0 3.5 x 10 4 x 10 10 0 =0, /2% o, /2
~ 6.5 x 10%3
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These estimates, of course, suffer from the uncertainty in T ¢
but the conclusion that the conduct1v1ty at 1 torr is lower than
at 0.1 torr is supported by experlmental data on plasma current
decay rates (Reference 2.23): * The change in ¢ after*breakdown
will depend on the value of o(t = t ), or equivalently, ‘the power
input to the plasma after breakdown. At p = 1 torr, we would .
expect the plasma ionization to continue and the conduct1v1ty to
increase somewhat. Detailed measurements of plasma densrtles

and temperatures are needed to verify these remarks.

[ N
». -

Cotido it S iy
Y

Bt

& o

A plot of electron drift velocity in air as a .function of
E/P for an electron-neutral dominated cocllision frequency is

given in Figure 2.17, from which % n can.be inferred:
y ’ .

vVa.n
o ~ 1.4 x 10”7 =4

e,n ) | E(V/cm) (“'64h

2.6 CURRENT NEUTRALIZATION '

We have already discussed space charge neutrallzatlon and |
its influence upon the electric fields. When £, > l/y (or 1/2 y2,
depending on the variation of f with space and time behind the
beam front), the E, field 1s<1n a direction to drive secondary
electrons back to the anode, i.e., oppositely to .the beam elec-
trons. The radial electric field component ie still.large,'how—
ever, and the secondary electrons are driven out of the beam
channel until f ~ 1. After f ~ 1, the field is inductivé
(L d1/4t) and we argued in the charge '‘production model the use of
the inductive field for electron avalanching ¢alculations. The
plasma electron "supply" is not large enough to provide a sub-
stantial secondary electron current until gas hreakdown occurs,

'*L i
If plasma parameters at breakdown are such that o

o always
dominates, this conclusion is, of course, also trué.
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after which time the net current in the chamber is held more or
less constant over the remainder of the beam pulse. In other
words, the beam current may be neutralized by the plasma return
current. We argue below a simple model to estimate the degree
of current neutralization for beams injected into a neutral gas.

If the gas is a good conductor after breakdown, as is
usually the case, the time scale for further charges in the
magnetic field, assuming a constant conductivity, is the magnetic
diffusion time, td:

47 oa2

td (sec) = (2.65)

c

o-in (sec-l). This is the time scale for changes in the magnetic
field to diffuse a distance of the order of the beam radius, a.
When the gas breaks down, the beam current has reached a certain
value depending on time of breakdown and has an associated By
value. The magnetic field after breakdown changes from this By
value over a time scale of td' If O 2 1013/sec, e.g., a =1 cm,
Equation (2.65) gives ty 2 130 nsec. Thus, if ty > tp, the beam
pulse width, the magnetic field and net current remain approxi-
mately constant and equal to values at breakdown. The magnetic
field is then "“frozen" or clamped and the plasma return currents
adjust to the changing beam current to keep the net current
constant. \n estimate of E, driving the plasma return current
for t > t

BJ.S

I (t) - I, (t))
E, ¥ 2——22— , (tg > t) (2.66)

p
Toha

where Ib = beam current.
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We define the fractional magnetic neutralization, fm:

I (r = a) I (tB)
- b
fm = 'E'f;'""' = 1 = -T;—TET (2.67)

Ip is the plasma return current over the beam cross section.
For strictly inductive electric fields, f < 1. An estimate of
f can be made from the charge production rules of Section 2.4,
whlch give an estimate of tys and therefore Ib(tB).

In order to achieve high current neutralization, we need
to fulfill two conditions:

1. The conductivity at breakdown, Oge must be high
(tg > tp)

2. Breakdown must occur early in the pulse (tB < tr)'

In the 0.1 to 1 torr pressure range, the second point is usually
dominant. At higher pressures current neutralization will drop

because op decreases. These remarks are summarized in Figure 2.18,

where we see that fm ~ 0 at 0.1 torr, even though g is higher

than o, at 1 torr (refer to Table 2.3).

B
Yonas et al. (Reference 2.23), have utilized the ideas
discussed above to approximately calculate the net current versus
time for a given beam-current profile. They break up the beam
profile into a current-rise region, a "flat top," and a decay,

and use the magnetic diffusion equation with this type of an
approximate source term (beam current) to calculate the net
current. Figure 2.19 shows an example of their calculated net
currents versus measured net current.
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Figure 2.18 Conductivity versus time after beam
injection sketch for two representative
pressures.
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Figure 2.19 Comparison of measured and calculated
net currents (Reference 2.23).
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We now present a summary of an exact EM calculation showing
current neutralization. Several authors have discussed the
current neutralization problem under various assumptions (Refer-
ence 2.24). All calculations assume a constant conductivity
plasma (except, recently, Swain, Reference 2.25), an assumption
which therefore restricts them to injection into preionized
plasmas; i.e., they completely miss the point for neutral gas
current neutralization phenomena discussed above. The most
practically relevant calculations for preionized gas injection
are given in Section 3.3 where a finite risetime beam in a finite
radius chamber is considered. We summarize below the results
of these calculations.

2.6.1 Beam Injected Into a Preformed Plasma. We make the
following assumptions in the calculations:

a. Azimuthal symmetry

b. B, =0, jbe =0

c. Undistorted beam moving at constant velocity,

d. jbz = jp = beam longitudinal current density
= f£(r) g(u), u = y(vt - 2).

e. glu)= (1-e~%%), (a-l) is the e-folding current riselength.

BLC ~ V.

Equation (3.64) of Section 3 gives us the vector potential
A= Az, from which we obtain Be = - 3A/3r, and the net current
A
n

-—r
I (r,u) = SrB (x,u) = 4nC,r H G (u) R (2.68)
n 7 ) 1t }E: Jl K} i]

where Jo (Jl) is the zero (first) order Bessel function, An are
the roots of Jo(x), R is chamber radius, and Hn is the radial
form factor:
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2
- {A /2Rb) 2.2
1 R n -b“r
H = - e for £(r) = C,e . (2.69)
D oR%pe A 1 !
R > &
= 2.7 (ﬁﬂ. ) for £ (r) = C.H (a-r) (2.70)
\ Z "1 \"R 1 *
n
H is the Heaviside function, and for u > 0,
2 =£.u
A 1l -au
1l ae e
G (u = 1- <-ﬂ) ( ) - (2.71)
n R a-nl “12 /g a+n2
2
A
= )2 n
2108, Y
L'L
k=-—5———
nl = /g-k
n, = vg +k

Equation (2.71) assumes a # Nye We note from Equation (2.71)
that when u » 1/q, l/nl, or, in other words, when we are far
behind the beam front In > Ib' as it should. For orientation,
we mention a typical ordering of the basic system lengths for
injection of a 40 nsec risetime, 1 MeV beam into a highly
conduvcting plasma with o = 1014/sec. Then defining
aYLBL c tr = 2 gives

o« = 6x 104 em?t

k = 6 x 108 em™?

-5 -1
n, ® 8 x 10 An/R cm

5 1

n, ¥ 2k = 1.2 x 10 cm-
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Rather than further discussing specific examples in detail here,
we simply remark that the beam-tube plasma has three ordering
lengths, a, Anc/R, and k, whose relation to each other substan-
tially affects the form of G (u). (The value of ) /R at the
cutoff index in the summation is denoted by Anc/R.) Some limits
are:

A H
1. 1low conductivity » k = ZWOBLYL/C < —% = 2.4/R

The variations in u are now geometrically determined with scale
length (Al/R)-l. Plasma return currents substantially flow in
the chamber wall.
c
2. high conductivity + k » -%—
Plasma return currents are now essentially contained within a
skin depth (k)1 around the beam channel.

Within these two cases are subcases depending on a. The "blunt"
beam case is o ¥ Nye and the "slow risetime" case is a < Ny '
. .

The net current expression, Equation (2.68) above, gives .
exact EM solutions for the constant conductivity case if the beam
is undistorted. These approximations are realistic only if the
conductivity at injection is sufficiently high to keep the
electrical fields small enough to avoid beam distortion and
substantial plasma heating. If we are interested in transporting
the beam a distance L, we require

eEzL <€ beam kinetic energy (K.E.)
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K.E. : (2.72)

. The other more serious practical restriction for use of the model

is that the beam must be "cold" at injection; i.e., the trans-
verse energy must be small enough to'pe contained by the low net
magnetic fields in thé plasma. We consider effects of beam

. transverse temperature in Section 2.10.1,

\Thq EM‘calculafions oﬁ current neutralization outlined
above,ma& be "fixed up" to cover the case of neutral gas injec-
tion with gas breakdown. The way to do this is relatively
simple. Take o0 =0, t < tg, 0 ® o, t > ty and use the
initial condition | L
| 21, (r,u(ty))

cr

i \ Be [rlu(tB)] =

The solution consists of ‘the sum of two, parts, one the decay
of Be (initi§l), which is a homogeneous solution of the vector
potential equation, and the other a solution of the vector
potential equation with the beam current after breakdown as a
source term. This latter term has a net current of the form
of Equation (2.68). | '

2.7 SOME BEAM DYNAMICS

So far we have considered the EM fields existing in a
beam-plasma system and charge production in neutral gases assuming
that the beam and gas parameters were specified. 1In reality, of

2-64

-4




Geddsune g T

EPETTY

At e e L

course, the beam motion is coupled to the fields. Our viewpoint
has tacitly emphasized the longitudinal electric field and we
have given expressions to evaluate its magnitude and direction
with or without finite chamber boundaries. We are thus in a
position to outline conditions for validity of the equations of

motion for the beam envelopes and steady-state self-consistent
beam equilibria discussed below.

2,7.1 The Kapchinskij-Vladimirskij (K&V) Equation. The
i K&V equation (Reference 2.26) is a self-consistent equation for
: the beam envelope including the radial electric space-charge and
- self-magnetic fields, and finite emittance or transverse beam

P Trratonn |

5 "temperature." The current density is taken uniform in radius,

. (but varying in z), so the forces on the beam electrons are

_ linear in displacement from the beam axis and the flow is paraxial.
i While these assumptions are restrictive and render the equation

irrelevant to many intense beam applications, the K&V equation
is analytically tractable.

[
i
!
:
!
!
¥
1
:
!
!

The K&V equation for the beam envelope, modified to include
current neutralization, is

dza 2
— = El’.....[l - £, - st (1 - fm)] -él-;- + &y (2.73)
dz B. 2y e a
L e
where
a, = bean envelope electron radius
- i
me = beam emittance or (r, dr/dz) phase space

area (cm~-rad)

Our inclusion of fm is only valid if E, is uniform in radius

E . which, in *urn, implies that the plasma skin depth is large
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i compared to the beam radius and that Ln R/a > 1. We rewrite
¢ Equation (2.73) as

2
' d"a 2
e A €
=z —— - (2.74
dz2 3 a,
where a = 21 - £ - g% (1 - £
BL Y

A first integral of Equation (2.74) can be obtained by multi-
plying both sides by 2 dae/dz, giving

a 2 *
a a
e _ e 2f 1 1 2 .
o = A fn (__.a ) - [ =3-—7]*+ v, (2.75)
o a a
e o
a, = beam envelope at plane z = z,

y = (i"is)
(e} 9z -
Z—Zo

Figure 2,20 illustrates these terms. Envelope extrema are
obtained from Equation (2.75) by setting dae/dz = (0, and the
constant radius case is daez/dz2 = 0. Garren (Reference 2.27)
has numerically calculated beam envelopes using a dimensionless
version of the K&V equation.

d..

-t

Figure 2,20 Beam envelope motion.
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Some of the gross features of beam behavior versus gas
pressure can now be qualitatively understood. Figure 2.21 shows
some typical beam features (I_ =~ 2.5 x 104 A, 3 MeV) at represen-
tative pressures. The beam propagation length in the photos is
~ 50 centimeters. We'repeat here some of the arguments of Link
(Reference 2.28). Referring to Equation (2.74) we note that the
transverse energy term is always > 0, so unless A < 0 the beam
blows up radially. Maximum pinching occurs when fe =1, fm =0,
Using the charge prcduction rules of Section 2.4, we obtain the
following ordering of fe ' fm over a substantial portion of the
beam pulse (pulse width ~ 50 nsec, t_ = 15 nsec).

r
P (torr) ™ (nsec) fe tB (nsec) fm ABLzy/zv
(space charge
blowup)

1071 7 ~1 ~ 8 ~0  -8.% (pinch)

1 0.7 1 ~3 1 ~ 0 (drift)
2 . *

760 ~0 1 ~ ~0 -BL (pinch)

*The beam blowup in Figure 2.21(d) after ~ 25 centimeters is
probably due to an instability.

Let us now address the question of beam pinching and
‘equilibrium radii in more detail. We consider two limits on
the beam radius or energy density; the steady-state, nonuniform
beam envelope case and the steady-state uniform beam envelope

case.
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Some of the gross features of beam behavior versus gas

pressure can now be qualitatively understood.

Figure 2.21 shows

some typical beam features (Ip 2,5 x 104 A, 3 MeV) at represen-

tative pressures.
~ 50 centimeters.
(Reference 2.28).

The beam propagation length in the photos is
We repeat here some of the arguments of Link
Referring to Equation (2.74) we note that the

transverse energy term is always > 0, so unless A < 0 the beam

blows up radially.

Maximum pinching occurs when fe =1, fm =0,

Using the charge prcduction rules of Section 2.4, we obtain the
following ordering of f_, fm over a substantial portion of the
beam pulse (pulse width ~ 50 nsec, t. = 15 nsec).

P (torr) Ty (nsec) fg
1073 700 ~ 0
107t 7 ~1

1 0.7 1
760 ~0 1

ty (nsec) fm
~ ~0
~ 3 1
~ ~0

2
ABL Y/2v

2
/vy,

(space charge
blowup)

-BL2 (pinch)

~ 0 (drift)

2 . *
-BL (pinch)

x
The beam blowup in Figure 2,21 (d) after ~ 25 centimeters is
probably due to an instability.

Let us now address the question of beam pinching and

.equilibrium radii in more detail.

We consider two limits on

the beam radius or energy density; the steady-state, nonuniform
beam envelope case and the steady-state uniform beam envelope

case.
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Case 1: minimum possible beam radius, a;§-= 0. \

s

Setting dae/dz = 0 in Equatién (2.75), for the envelope ex;reh@,‘
and taking A < 0 for the pinching mode,

[

a 2 2 a e | | ‘
T sz + |A] £n (;Q) = L:— (a_q) -1 v (2.76)
. \m a, m _

a, is the envelope extremum value.

n = 0 produces tight pinching, and
that '
2

a ' H
(&) >
) »1.

for the pinched beam, we write (2.76) as

- Recalling that fe =1, f

2 2 2 2'
. (ao) ' YE BL (ao) 2 §7$
ni{-—— 2-———-2- — ) .
am . . 2\>ao \2m '

where we have assumed vo = 0. ]
' . t it

Equation (2.77) is a transcendental equaéionlfor the'
minimum beam radius, which gives the physically reasonable
(but not realizable) result that a high v/y beam witp low
emittance should be focusable into an extremely small spot.

In other words, a high current beam produces a strong magnetic
field to drive the pinch, and the pinch-contihues to a'very
small radius if the transverse pre§sure is small, |

One of the difficulties in achieving tightly pinched high-
current beams arises from the fact that v/y and ¢ are not
independently variable in real beams. Educted high v/y beams
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invariably have 1ar§e emittances as a result of the interaction
between the electrons and the; se1f~magnetic field of the beams
in the diode region. Addltlgnal problems arise in the beam
chamber.: If the beam pinches very rhpidly, an axial‘electric
field due to I dL/dt can be produced that is large enough to
stop the primary beam in a distance qn the order of the beam
radius. This effect is discussed in ‘Section 4.
!

Case 2: gonstagt radiug ' r L
. . - \
The beam envelope radius is détermined in thislcase by
d“a /dz” = 0. From E?uat%oq (2.74), we obtain with A < 0,

(2.78)

3

L} I : . L] k] ; N
where ¢ is the beam emittance in cm-radians.' 21gure_2.22 shows

a graph of Equation (2. 78) for a 4 MeV 6 x 104 émpere beam with
£ =1, I =0, ‘
e \ |
. Case 3: Eonstant beam radius'wiih finite ion emittance

)

* In case 2 we tqcitly assumed that the ions had no transversé

energy. ' This case can be easily generalized to obtain beam '
equilibria when 1ons have finite emlttance. We éssume that the
verage longltudlnal velocity of the ions BL.c < B c. Then

u51nq an equation for ion envelope, a ’ 81m11ar to Equatlon (2.73)

and setting a, = a, =a, gives
20 _ oy 1 2 , 2 2 2
a, = 3 o Iy (Ge By, YMy 4 €z Bpy "‘i/z) (2.79)
[} (-‘-‘5) ' \ ) .
",
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5; . Figure 2,22 Minimum constant radius versus € for 4-Mev,
Bl 6 x 104 A electrons (beam in pinch mode).
?‘
where €y = the ion beam emittance
= the ion charge state
m, = the ion mass
The steady-state equilibrium electrical neutralization, feo, is

given by
o 1 1 ee2 BL T
fe ="t ( - 2) E“? 2 t2 , < (2.80)

Yy, Y/ €3 Bpy M/t ee T B Ymy

If ei ~ (0, we obtain feo = 1 as in case 2.




We can compare Equation (2.80) with the Lawson constant
radius, uniform beam model (Reference 2.29) where the beam
electrons and ions have non-zero angular momenta. Then

2
o_ 1 1 Bie > W
fe ==+ 1l - 5 ) ) (2.81)
L VL) Bee 7 Yyt Byy M/l
o
<Btez> c2 = average electron transverse velocity squared
<3ti2> c2 = average ion transverse velocity squared

We thuz see a direct correspondence between the emittance and
transverse energy in the uniform beam case.

2.7.2 Beam Envelope Equation With Longitudinal Electric
Space Charge Field. The K&V eguation has been generalized by
Walsh (Referince 2.30) to include E, space charge fields due to
faEr/az dr'. The modified envelope equation is (fm = 0)

a®a _ _2v (1-15 _,32)_1_+ e dvda
2 2 e L/ a p) 2 dz dz
dz BL Y . BL iy ¢
2 2
o S gy &y (2.82)
ZBL ym, ¢ dz a

V is the ES potential on axis (r = 0) and V has been taken as

vV = V(z,0) + r2/2 (82V/6r2)r= in deriving Equation (2.82).

o

®
The author is indebted to J. D. Lawson for calling his attention
to Walsh's work (private communication, August 1971).
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In uniform radius flow, Equation (2.82) gives an equation for

o
2
e a 2 2
2v 1 _ o a“v £
. .(fe..__:.).“2 - S35 (2.83)
LY L L M o
If fe =0, e 20, y =1 (non-relativistic), Equation (2.83)
becomes
2
3 - - A (2.84)
dz BLa

Using BL =g ==~ 2e‘V/m0c2 from energy conservation, Equation
(2.84) gives the Langmuir~-Childs space charge limited flow if
dv/dz = 0 at z = Z,e More general beam envelope profiles or
cases have not been calculated using Equation (2.82) to the
author's knowledge.

In summary, we have looked at beam envelopes and equilibria
for paraxial flow using the K&V equation that ignores Ez and one
special case of a more general, albeit more complicated, equation
which includes beam space charge Ez fields. This latter equation
[Equation (2.82)] would not be valid in regions near a chamber
endplate. Thus, in both cases, we have to be away from the end-
plate and interior to a drift chamber unless £, = l, If £, =0,
the potential well in the chamber must be "shallow" enough to
allow propagation. Finally, variation in beam current must be
slow enough to ignore the inductive fields over distances of
interest.

2.7.3 v/y And Beam Propagation-High v/y Beam Equilibria.
The envelope equations and beam equilibria above are all relevant
to "low v/Y" beams; i.e., v/y < 1. The flow was assumed paraxial,
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which implies that the beam radial velocity components were
small compared to longitudinal velocity components. In 1939
Alfven {Reference 2.31) calculated electron trajectories in
space~charge-neutralized current flow with uniform current
density in radius, and showed that the largest current that
could be enclosed giving electron drift in the direction of
electrons producing the magnetic field was I (amps) = 17,000 By
or v/y =1, Lawson (Reference 2.29) generalized this result to
include space charge effects and obtained that uniform beam
propagation required

2y (s, - 1)< 1 (2.85)
B v Y

If fe ~1, v/y £1/2, which is equivalent to the condition

that the Larmor radius of gyration at the beam edge in the

self field is equal to a/2. These propagation limits are

independent of the beam radius.

If we are to propagate larger currents than IA = 17,000 By it
is clear that the current density cannot be uniform beyond a certain
radius. Alfven also considered currents due to VR drifts out-
side the uniform current beam and found that the total current
passable through a plane perpendicular to the z axis is

I(r) < 1‘A (xr/a), r > a (2.86)

Thus, the current density ocutside the direct beam must be
« 1l/x.

Several authors have looked at self-consistent, beam
orbit-EM theory to discover steady state configurations allowing
I>1I, to flow within a fixed radius. Their approaches are
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essentially similar--an electron distribution function, fo' is
assumed having a specified functional dependence upon the
constants of motion. All quantities vary only with radius
(parapotential flow).

Bennett Pinch {Reference 2.32). Bennett derived a self-
consistent distribution for an electron beam moving through a
counterstreaming ion distribution. de assumed charge neutrali-

zation in the center of mass (® ion stream) system, and obtained
the relation

[I (stat amps)]2 = 2 Nk (Te + Ti) 2 (2.87)

where Te (Ti) are the transverse electron (ion) temperatures
(ev), N is the number of electrons/cm, and k is the Boltzmann
constant (ergs/eV). Although his model is collisionless, he
used the concept of transverse temperature. The particles drift
with constant z velocity and the density varies with radius as

n
n(r) = Q0 (2.88)

(1+n, br) ¢

n, = density on axis
ﬂez 8 2
b = L
2k ( L)
Te«’-'I‘1

It is interesting to note that Equation (2.87) is a condition

for equilibrium of beam electrons moving through a neutralizing
ion background having no z velocity in the Lawson uniform current
density model (Reference 2.29), As discussed previously,
Lawson's work is restricted toc v/y € 1/2, or equivalently,

<g, 2>
_._E_._<1




The equivalence requires the correspondence
2, 2,1 24 2
}mo<ste>c +ym <8 >~ kr, + kT,
One can also derive the Bennett distribution from MHD theory,

as is done in many plasma physics books. Then BLc is the
(constant) fluid drift velocity and <Bt2>7<BL2> » 1, or v/y ¥ 1.

S3Lp g Vit s Ly

Hollow Beam Equlibria. Benford, Book, and Sudan (Refer-
ence 2.33) have expanded upon Bennett's work, and obtained

other solutinns using essentially the same distribution function
that Bennett useZ. They assume

FRIvE A s e St

TV

fo x exp (- % H+ a Pz)

; H = ¢ (pz + mzcz).!5 - e
‘ = - &
: P, = Pp- 3Tl
!
. p = total particle momentum
] ¢ = electrostatic potential
A, = z component of vector potential
1 a,0 = parameters (a < a)

Their form for n(r) is

e« 2 [ (8)7) @

n is an arbitrary positive number and L is a scale length.
Bennett's solution corresponds to n = 1. The particle and
current densities diverge at r > 0 when n < 1, and n > 1
corresponds to hollowed-out density distributions. An inter-
esting feature of these equilibria is that the space charge
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neutralized flow condition with n > 1 requires a line cufreﬁt
flowing on axis in the opposite direction to the beam current.
This backstreaming current is zero for the Bennett case (n = 1).

(cf., the bias current in the parapotential diode model of
Section 2.1.)

Another hollow beam equilibrium solution has been derived
by Hammer and Rostoker (Reference 2.34). They assume

-

fo « § (H - ee) G(Pz - ymV,)

with
€ T T Vlz -e[¢(r) - BzAz]

BaC = Vz = an average longitudinal electron velocity, and
obtain a solution with most of the current flowing in a thin
shell of thickness c/wp, the electrical skin depth. The beam
plasma frequency is Wy Ifv/y>»1l, 1 = /377; fIA, Y, is a
relativistic factor at r = 0. In the Lawson model the propaga-
tion limit was v/y ~ 1/2, which meant physically that the Larmor’
radius at the beam edge was equal to one-half the beam radius.
The HR mcdel has currents confined mostly to a shell of thick-
ness c/wp <€ outer beam radius. One would therefore expect that
a much higher magnetic field could exist before electrons were
turned around with radius c/2wp. '

Yoshikawa Model. A beam model allowing arbitrarily high
current propagation for neutralized beams has recently been
proposed by Yoshikawa (Reference 2.35). The essential feature
of this model is that the beam has a macroscopic theta current

generating a self-consistent z component of the magnetic field.:
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An interesting feature of the equilibrium is that electrons move
almost parallel to the field llnes, 80 thelr motion is neariy
force—free.. The éhange den51ty is taken unlform in radius for
moderately relativistic beam energies. It is not apparent to
this author how. one wquld'prepare Yoshikawa's equilibrium.
Spon;anebus evolution of a high v/y be?m to a state with macro-
scopic theta currents seems Qighly'unlikely.

2.7.4 Steady State Flow with External B, Fields. Steady

‘state, parapotential flow 1n the presence of B B :fi1elds has been

exten51vely studied by high power electron gun de51gners. Their
analysis usually proceeds from the assumptlons of laminar flow,
radial force balance, energy conservation, and conservation of
canonical angular momentum in axisymmetric systems. (Also,
paraxial ray equatioh dnalysis has been used.) Many flow modes
have been investigated, fallfng mainly into two classes, iso-
rotatlonaL or rlgld rotor beams, and isovelocity or uniform
longitudinal ve1001ty in radius beams. Reference 2.1' e.g.,
cohtains a detailed dlscu551pn of these analyses.

We consxder here only a ‘few special cases of B flow.
Assumlng lamlnar flow, uniform current and charge den51t1ee,
and that B < BL' the radial envelope equation of motion is

i

! 2
d“a _ 2v_ f. _ _22y1 (% _ %
-d—}- = -———2- (l fe BL ) -a- a(-B—E) 1 (——7—-) (2.90)
z YBL L uf:! Bz
) 1
where: wy, = Larmor frequency = 1/2 cyclotron frequency
. Pa
2ymoc
| ,
—_ ' ' [ 2 -
o, = anBz (x', zo)r dr's= B, (zo) mr © = flux

enclosed at "birthplace" of electron now at a,z.
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In deriving Equation (2.90) we have used Busch's theorem
and assumed Bz uniform in radius, i.e., negligible beam dia-

magnetism. In an azimuthally symmetric system, the canonical
angular momentum is constant:

2 e _
ym,r 8 - cr Ae = constant,
(2.91)
Ae = theta component of

vector potential

If 6 = w = 0 where the electrons are born, and the electrons
rotate about the system axis,

e
W o= —— d(r) - o(r ﬂ (2.92)
21Yym_cr [ ° '
(o) Busch's theorem

If Bz is constant in radius, Equation (2.91) is

2
eB r
w(r) = =—>=2 |1 _(_2)
2ym°c r
r, 2
= wp l - (;- (2.93)

The only case of Equation (2.90) we consider is that of solid
beam Brillouin flow, which requires ¢o = 0, or that the diode
is magnetically shielded. Setting dza/dz2 = 0 and fe = 0 gives

W 2 .2 c2 (2.94)
L -~ T3IT7Z .
Y~ a
o
and from Equation (2.92), the flow is isorotational. Using
radial force balance, and energy conservation, one can easily

demonstrate that the flow is also exactly isovelocity. The !



practical importance of this flow stems from the above remarks,
from the uniform charge density and from the relatively modest
B, fields required. The perveance

E45s oAt oA Ch b

: I (amperes)
v (voits)j/fﬁ

V = potential at the beam edge, is relatively low from the point
of view of intense beam physics, however. Non-relativistically,
the maximum current flow condition is

S E TR e €0 g

N

FETR

I (amps) ~ 25 x 10768 y3/2 (2.95

o

Relativistic Brillouin flow has a lower perveance. Neugebauer
(Reference 2.36) discusses relativistic Brillouin flow in detail
and his calculations show, e.g., that a 720 kA beam with 1 cm
radius would only require a Bz field approximately 3 kilogauss

but the potential devpression over the beam radius would be ~68 MeV!

pxozocunl s

3 If the cathode is immersed in the magnetic field, the flow
E is no longer isorotational [see Equation (2.93)] and we have the
; case of hollow beam Brillouin flow; a lower perveance flow than

the solid beam case.

A finite beam emittance can be included in the envelope
equation following Garren's derivation of the K&V equation.
We treat the v Bz force term as a linear external focusing

8
force, thereby restricting ourselves to ¢o = 0:

2 w 2

d“a _ 2v e 21 (% €

v —2‘(1 fe BL)a ("“‘e c) a+ =3 (2.96)
Z BLY L a

-
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If g—§-= 0, we obtain for non laminar, but paraxial flow,
z

o

2.2
2
2 _ Bpce. | 2 2 e

4 Y By, 3

*

The flow is no longer exactly isovelocity.

The above equations all assumed electron rotation about the
system axis. If the electron motion is that of a guiding
center rotation about the axis, plus a fast cyclotron gyration
about the guiding center, it is most convenient to work in
rectangular coordinates. Andrews, et al., (Reference 2.37) have
considered a non-diamagnetic or paramagnetic uniform beam case
with Bt << BL’ using the two-mass approximation (longitudinal

electron mass *73 m,, transverse = ymo). The equations of motion

are

oo _ 2 .
X = -Q"x+ 0,y
e 2 o
. - e dAz o
3m c dt -
ZYL o
2 2V o 2
where 2 = 7; (5) (BL + fe - 1)
Bz
w, = cyclotron frequency = e W
Lo
v, o= 1/\/1- 8,2
BLc = average longitudinal velocity
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The last equation in EBquation (2.98) follows from the asuunpﬁion
that 8,/8, €1. A priori, one expects £ = 0 from the two

mass approximation when v/yL < 1. They show, moreover, an a
posteriori justification even when v/y » 1 with sufficiently
high B, fields. By defining £ = x + iy, Andrews, et al. combine
Equations (2.98) into

E' - lu g' + a? E=0 (2.99)
which has a solution of the form

£ = A _exp (1w t) +A_ exp (iuw ¢t

(2.100)
w, = - l+]1+ 24 2%
3 Vi Og
Several flow properties follow from Equation (2.99) .* If
2
287
We
the solutions are sinusoidal no matter what £ e is. When
W > 2 |af,
w+ ~ wc
92
w_ o~ = (2.101)
c

and the solution consists of a fast gyration of frequency W,
about the guiding center that precesses with freguency —Qz/wc.
The sign of 92 affects the direction of precession. Thus, the
particles move at approximately constant radius, Xy varying
only by the gyroradius r, (ﬂ/wc)z. The flow is consistent with
their approximations if

—
The solid Brillouin beam case [f_ = 0, BL2 < 1 (or neglect of
By)] corresponds to Q’/wc - - wc74.
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2B, (a)

- o 2
B; 6

€ 1 * (2.102)

' H 1 ]
A 3

2
BL ”+ f. -1

where B, (a) is the beap self-field at the beam edge. Thus, if
B, >'Be (a), the flow is predomihantly ltreaming (8 /B ' < 1), no'
matter what the values of f and v/y ere.,
i

Finally, we call attention to eone recent work by' ﬁoepfer
(Reference 2.38) who uses the relativiltic fluid equations for
electron beam motion. He considers examplee of rigid rotor
steady state beam flow allowinq diamagnetic effects and finite
temperature, and gives several numerical plots of radial qptrent
profiles. f ' .

- 2.7.5 High v/y Propagation with Intense Pulsed Boams. All '
of the high v/y beam flow modes discussed above uvere steady state

L flow and did not consider Ez: Even if E, effects are negligible,
it is most certainly likely that the relevance to experimental '. |
beam propagation would strongly depe?d on; the preperetion of the
beam, i.e., the flow generated in the diode. Also, of course, ;
one needs to consider the stability of the various models.

b sl hini

_ In practical beam transport problems with pulsed beams one
- has to operate at neutral gas pressures giving good current
- neutralization, or inject into a preformed plasma,“in order to
B minimize energy loss from beam-generated EM fields. Thus,

we are in a regime where the E, qfivﬁnq curtent neutralization
is essential and, in principle, the steady state flow patterns
would not be relevant until the plasma return currents: have died
L away. These times are in the microeecpnd regime--much lonéer
than the kheam pulse width. When substantial plasma return ,

¥ We also note that | the _model solutions correlpond to force-free
ta electron motion (j x B = 0).

{ 2-83 | - | |



currents dc:exfst, the Ba (r) distribution is that of a curxent
sheath ‘around the edge of the beam, a distribution somevhat
'ciuilar, but not identical, to the hollow beam modea. 8o, no

matter how wa prepare the beam in the diodc. we would further
have to consider evolut.ion through a plasna return current stage
to determine’ and jultify a relevant ltaady state glcw pattern for
pulsed beams. l ' g

. 1 i
| ! \

we might guess that a beam with plalma return currents will
have a,B, (r) 'field similar to the hollow beam equilibria with
f ~1 as we have just mentioned. . Then, one would not expect :a |,
dynamical or'orbit limitation on the net v/y; i. e.: v et/Y can
exceed unity. However, as mentioned in s.ction 1, the EM limita-
tion on propagation would still "hurt." Wwhen Y t/y > 1, the EM‘
field energy/particle exceeds the kinetic energy/patticle, or

equivalently, beams can lose all their energy over distance of ;

the order of a few beam radii. A simple calculation illustrates

1

this point. ' ‘ . '

!
! 1
1 !

Let us consider a beam *njected into 2 plaspa tube with a‘’
conductivity low enough that the inductive field of the beam
drives a return current givinglvnet/y > 1, and take f = ], ln

order to propagate efficiently, the power input to the beam-’
chamber system expended by the beam in setting up the magnetic
field associated with' v, must be less than "inertial" power .
' flow of the beam. The power input to the magnetic field is
, , ;nz ﬂ '
1 : o~ ;!- Ln (R/a) B¢ \

and we must have
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1) mc? Nse > G- £n (Ra) Be, a <R (2.103)
c

(v

N = number of beam particlas/length = v/ro
I, = classical electron radius

R = chamber radius

in order to avoid substantial beam distortion. Rewriting
Equation (2.103) we obtain

(y = 1) v>» \»m,:2 82 {n (R/a)

or
2

“net v 1 ’
(Y ) < (m) m 12.104)

If “net/Y >1, v/y > 1, and with £n (R/a) ~ 1, the EM critsrion
is violated.

These considerations led the author to suggest that the
relevant restriction for practical high v/y beam transport with
pulsed intense beams is Vnet/Y < 1 (Reference 2,13). The low
pressure beam propagation experiments of Graybill and Nablo
(Reference 2.39) have shown beam stopping when “net/V s v/y ~1/2.
Current neutralization was negligible in these experiments.

Yonas and Spence (Reference 2,231) have propagated beams with

Vnet/Y < 1/2, but with v/y £ 4-5 over meter distances.
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2.8 SOME TOPICS IN BEAM STABILITY

Current interest in beam plasma stability (or instability)
focuses in two directions. Efficient beam transport clearly
requires a stable beam, whereas plasma heating is enhanced with
a weakly-turbulent beam plasma system. We discuss three types
of beam plasma instabilities: (1) longitudinal electrostatic,
(2) transverse (hose, kink), and (3) filamentation or fluting
modes. The transverse hose instability seems to be the most
serious for high current beam neutral gas propagation, and the
fluting modes for transport with B, fields. When considering
neutral gas stability we have to recognize that the nature or
the beam-generated plasma may change markedly during the pulse,
evolving from an unionized gas to an ion-electron plasma (t < TN)
to a highly ionized few electron volt temperature plasma after
breakdown.

2.8.1 Longitudinal Electrostatic (ES) Instabilities. Our
discussion will consider the case of a pulsed beam plasma system
after gas breakdown, or injection into a preformed plasma. Only
linearized theory will be covered, implying that plasma in-
stability wave growth is sufficiently damped by collisions or
Landau damping to avoid non-linear regimes and strong particle-
wave trapping.

A typical ordering of beam plasma component longitudinal
velocity distributions (not to scale) is shown in Fiqure 2.23.
The system is a "hot beam, cold plasma" configuration with the
plasma return current flowing oppositely to the beam electrons.
The ion drift velocity and thermal speed are negligible compared
to the plasma electron quantities. ES instability theory con-
gsiders two types of instabilities, electron-ion (e-1i) relevant
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Figure 2,23 A sketch of beam-plasma system longitudinal
velocity distyibutions
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to interactions between the plasma return current electrons and
ions, and electron-electron (e-e) relevant to interactions be-
tween beam electrons and plasma electrons. Interactions between
beam electrons and plasma ions have a slower growth rate than
the e-e mode.

Electron~-Ion Modes. The two e~i modes are the ion acoustic
(Reference 2.40) and the Buneman mode (Reference 2.41).,

Ion-Acoustic (I-A). (vti < Vg < vta)

mok

Rew ~ 0,1 (EI) wp
n \3

Imw ~ 0.1 (1-1\2) Gy (2.105)
)

.

W

2n/% 0~ !;L ‘

w. = electron plasma frequency = 4wnpez/m°

k

n. = plasma electron density

m = ion mass

m_ = electron rest mass
Rew = frequency of fastest growing mode

Imw = e-folding growth rate of fastest growing mode

k = wave number of fastest growing mode = 2n/)
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IA waves are essentially due to induced Cerenkov emission from
drifting electrons when V4 exceeds the ion sound speed (™ vti)
and the Buneman instability is an electron-ion counter-streaming
mode. The effect of collisions on these modes has recently been
considered by Guillory and Benford (Reference 2.42), assuming a
Lorentzian electron distribution. Their conclusion is that
collisions are unimportant when vte/vd 2 0.1.

Electron-Electron Modes. These modes were first studied by
Bludman, Watson, and Rosenbluth (Reference 2.43), who considered
only the cold-beam case in the so-called weak-beam approximation
(nb/ynp <1, ny, is the beam particle density). Their theory
assumes a steady state uniform beam in mechanical equilibrium
with the plasma. E, is zero in zero order so no plasma currents
are assumed to be flowing. The plasma is further assumed to be
infinite in extent (as it is in the electron-ion mode theory).
This approximation is usually not bad since the instability wave-
lengths are small. A nice discussion of the physics of these
modes is given by Lewis (Reference 2.44), and the influence of a
beam velocity spread (warm beam) on wave growth is considered in

2-89



[‘—l—————'ﬁw"mmw, > A et
-
s

detail by Bohmer, Chang, and Rasther (Reference 2.45), using a
Lorentzian beam distribution function.

(1) Cold Beam. Quantitatively defining a cold beam requires
a statement about collisional effects. Ascoli (Reference 2.46)
gives

\J

v, W
v.?. < 0.76 g(.l) . (2.107)
o

where o = ;%; < 1. The numerical calculations of Singhaus
(Reference 2.47) show that

p ¥ iy

V; < (0.7 o wp/v) (2.108)

We define the cold beam limit as the case when Equation (2.108)
is satisfied and additionally require that vb/v° < u1/3.

1

There are several sub cases within this limit that we now
consider.

High-Frequency, Collisionless. (k ~ wp/vo. v € Imw)

Rew ™~
p

Ime ~ (a/2)1/3 ay (2.109)

High-Frequency, Collisional. (k ~ wp/vo, v > Imw)

Rew ~ w
P

Im ~ (a/2v)"% wp3/2 (2.110)
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Low-Frequency, Collisionless. (kVo < wp, Imw > V) !

Imw- = Imw(k) = oYf2 kv, b © (2.111)

Low-Frequency, Collisional. (kV6 < wp, v > Imw) -
k . 1]

avkv : !
Inw = Imw(k) = W (—1743) ' , (2:112)

The high frequency modes have a reduced growth rate with large
collision frequency whereas the low frequency growth rate is :
enhanced by collisions. '

(ii) Warm Beam. Collisions never completely suppress the
ingtability in the cold beam case but in the warm beam case they !
may. The warm beam growth occurs within the Singhaus criterion,
and with (vb/vo) > a1/3. The instability growth is now dependent !
on beam momentum spread and is "kinetic," rather than "hydro- .
dynamic" as in the cold beam case. The growth rate for fastest .
growth (Vok ~ ) is ' '

vo 2 i
Imv = 0.3 a (;;) wp - vc/Z (2.113)

!

Rew ™~
and p

The modes are stable when the Singhaus criterion (Equation 2.108)
is violated: '

v W g ‘ co!
(VE) > [6.7 o ;2] (stable modes) (2.114)
A .
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The singhaus critaricn has' baon cxperincntally chcckcd by
Bchner, Chang, and Rasther (Refexrence 2. 45) using low current
beans (™ 400 mA). They folund instability quenchinly as predicted
by the Singhaus critexion.,K The criterion,:if anything, is

.conscrvative.

2.8, 2 Be 55 Progagation and Longitudinal ES Instab;litics.

The growth rates, oscillation krequéncies, and wavelsagths for
fastest,qrcwth of ES instabilities have been summarized for
variqus orderings of beam and plasma’ parameters. We now deter-
mine conditions. for stable propagation of intense beams. To
attain stability of e-e modes, we desired to satisfy Equation
(2.114) , the srnghaus criterion. Stability' requires

1

. "l 2
\ 0.7 ¢ w \'/
% ()
° I
J : | '
5

Using v = v A &~ 6 x 10 [T (ev)]. 3/2 £rom Equation (2 61)

l(z-l), we can rewrite the abovc equations as

) 3 b
| an np |
with nb/an <'l (weak beam requirement).

-9 (Y ’ |
< 10 (-—e (e~e stability) (2.115)

AN

~ 1 (hot beam) , beam energy 1 Mev (y = 3)

If we take vb/v
12 3
electrons/cm”,

and current density ~ 104 A/cm RN ~ 2 x 10
Equation (2. 115) says that stability requires To (volts)

< 10n14 p (cm~ ). Efficient beam propagation occurs in the
0.1 to 1 torr range, so if we take n_ = 3.5 x lols/cm ' T ~ 35

P
volts.' .
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Stability of e~i modes for the plasma return current is
equivalent to requiring

-12
2 x 10

<
vqg < vte'(E Ec = "

and, since vq may exceed Vei? ion-acoustic modas must not
significantly affect the plasma conductivity. This requirement
translates into Ve,i > Im(w) for ion-acoustic modes, or from
Equation (2.105)

10 , 3

np > 4x 10 Te (insignificant (2.117)

I-A effects)

for a hydrogen plasma. If T, £ 10 volts, n, > 4 x 10%3/em?, or
P 2 0.1 torr. Using these parameters in Equation (2.116),
the Ez field driving plasma return currents should be less than

700 V/cm.

2.8.3 Transverse Instabilities--The Frozen Hose
Instabilit .* Several authors have recognized that beam in-
stability against transverse bending (hose, kink) may be a
serious threat to overall beam stability (Reference 2.48); experi-
mental experience %tends to confirm their predictions. Important
transverse forces giving rise to instability development are:
(a) the attractive electric polarization forces acting between

the ion and electron streams, (b) magnetic interstream forces,

(c) image focusing forces from the presence of conducting pipes,
and (d) a velocity dependent drag force arising from the resist-
ance of the beam~generated plasma to motion of magnetic lines of

®
This material contains the work reported in S. Putnam, Transverse

Instabilities of Intense, Relativistic Pinched Electron Beams,
PIIR-7-68, Physics International Company, San Leandro, Ca.,
March 1968,

2-93



g e TR I

T TR A

ren

T

force as the beam undergoes displacement. When the angular
frequency of the perturbation is much less than the plasma
conductivity . a(sec-l). or when the skin depth, s, of the mag-
netic field penetration of the plasma is of the order of a few
beam radii or less, we adopt the conventional terminology and
refer to the instability as resistiva.* The increasing gas
conductivity induced by the rising beam current suggests that
a non-resistive behavior may rapidly develop into a resistive
mode, particularly if the gas breaks down. Existing theory
considers only steady state beams with constant plasma conduc~
tivity and no net plasma return currents. More detailed inter

pretations of the experiments thus require further theoretical
work.

Figure 2.24 shows a schematic diagram of the experimental
setup to investigate transverse beam instabilities in the low
pressure pinched beam mode P(~ 0.1 torr).** The drift chamber
was 50-cm long and 25 cm in radius. The electron stream was
injected through a 1 mil-aluminum anode window into the electron
beam chamber, where the gas (air) pressure was held at 0.1 torr
for most runs. Aluminum screen tubes of various radii, R, were
also positioned within the large drift chamber in order to
obgserve the effects of conducting pipes on the pinched beam
oscillations. The electron beam was stopped in a graphite
calorimeter array placed at the end of the screen tube. The
calorimeter array consisted of 25 small blocks covering an area
one inch square. Two 90 degree stereo time-integrated photo-
graphs were taken of the light emitted from the beam path by the

.1 1] (]
Alternatively, the low frequency hose instability limit is

defined as g(w) > beam radius.
*

*
The experimental measurements described here were performed by
G. L. Hatch, W. T. Link, J. Murray, and H. F. Rugge.
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line and recombination radiation of the beam~generated plasma.
In all cases, the photographs and calorimeter data agreed
regarding beam position., The wavelength of the oscillation in
the pinched beam was measured from the stereo photcgraphs and
the relativistic electron current in the pinch was determined
from the calorimetry data in the one inch graphite array.

A typical hose-like beam instability at 0.1 torr is shown
in Figure 2.25., A suggestive interpretation is that the in-
stability develops during the early portion of the risetime of
the beam current when o £ 1010 - loll/sec, s > b/2, and non-
resistive instability mechanisms predominate. When the con-
ductivity of the background gas rapidly increases at breakdown,
the plasma damps the motion or, in other words, lowers the
oscillation frequency and increases the growth time, so that
the hose appears "frozen" over the intense plasma radiation
times (~ a few beam pulse widths).

O.1 Torr 4718 S
Figure 2.25 "Frozen hose" instability of a pinched beam.
2-96
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Rather ilealized theoretical models (Reference 2.49), for

non-resistive growth predict the wavelength of the £astest

growing transverse oscillation modes; Ainst

-* 3
A ~J_(.\l) a d<€Dp

inst ’ 1
vZ \Y |

(2.118)

~ ig; 62).8 D, d~D ! i Vr :

™ N1 o tm am R e

pae.

where d(D) is the beam (chamber) diameter. Fiéure 2,26 and 2,27
show experimentally measured wavelengths, showing reasonable
agreement with Equation (2.118). After gas breakdown, resistive !
7 mode theory (Reference 2.50)  suggests a growth rate = (td)
# where td is the magnetic diffusion time (Equation 2.65) . For

2 1013/gec, t ty 2 100 nsec, and the beam path developed in the |

non-resxstive mode thus appears "frozen" over times of the order
of the beam pulse. ' '

i
1

To summarize, a procedure is outlined to estimate instabil-
ity wavelengths for the low pressure case (tB <~tp, the beam
pulse width) : !

t
N |

' I
¢ From the charge production rules given in Section 2.42
the gas breakdown time at the pressure of interest
can be calculated, and the beam current at breakdown
time determined. ‘ ,
e The instability wavelength may be estimated by using
%he breakdown current value, to determine v in Equation
. 2.118).

stability growth can be made from the time of breakdown.
Earlier breakdown and lower net currents mean smaller
amplitudes. Figure 2,27 shows a pinched beam case where

> . ’ !
t t r

{* e A qualitative estimate of the "amplitude” of the in=-.
| B

ey
.
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The values of v/y are‘approximate rand aré obtained from multfple
calgrimetry. The beam kinetic energy is approximately 3 Mev,

. the chamber pressure 100 u,.and d= 2 cm.
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v/y is assumed to havée the apprbximately ‘constant value 0.3.
The kinetic energy is approximately 3 MeV, the chamber pressure
100 u-

Figure 2.26b Instability wavelength in guide tube.
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Figure 2.27 Transverse instability of a highly pinched
beam where tg ~ > tp. Beam parameters: pressure
0.01 torr: beam Current 25 kA; average kinetic
energy ~ 3 MeV; current risetime ~ 10 nsec.

This low pressure behavior is to be contrasted with the
transversely unstable, high-pressure (P > ~ 100 torr) propagation
where the beam is also pinched, but appears to rapidly blow up
into a smeared, filamentary structure (Figure 2.28). Although
current neutralization is small for both pinched modes, the
plasma conductivity is high at low pressures (¢ 2 1013 to 1014/
sec) and very low at high pressures because of the high electron
plasma collision frequency. The differences in the plasma con-
ductivity suggest markedly different growth-time regimes for
transverse instabilities. Thus, as stated previously, before
gas breakdown in the low pressure mode, the instability is non-
resistive, and, aftar breakdown, resistive. In the high pressure
case, a nonresistive mode would apply throughout the beam pulse.
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Figure 2.28 Transverse instability of high
pressure pinched beam
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2.8.4 Fluting and Filamentation Modes. Recent work with
beam propagation in Bz fields has demonstrated existence of
fluting and filamentation instabilities (Hammer, Reference 2.51)
and Stallings, Reference 2.52). A typical witness plate damage
pattern for such a mode is shown in Figure 2.29. Hammer has
congidered a picture similar to the picture of the frozen-hose
mode. He suggests growth of a classical flute instability
(Longmire, Reference 2.53) due to inhomogeneities in the external
magnetic field until gas breakduwn with a growth time, <t:

T % L ‘[;éi

p = beam-plasma mass density

L = scale length of magnetic field inhomogeneities
N = azimuthal mode number
Pl = perpendicular particle pressure

Until breakdown (p/Pl) is dominated by beam parameters, and after
breakdown, the ion mass dominates p, giving a much slower growth
rate. The fluting modes have not been investigated sufficiently
at this time to confirm the model. Some theoretical beam-plasma
fluting and filamentation instability studies have recently been
reported by Striffler and Rammash, (Reference 2.54) and G. Ben-
ford, (Reference 2.55).
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Figure 2.29 Fluting instability of a hollow beam.

2-102

2

poom————



Rl et * Kt it et S Ll i

-
= =~ £ s, R oW

L'-"'

| S

st aye e < x
@i,
‘

W7 iomionc §
»

2.9 PLASMA CHANNELING

Plasma channeling is the formation of a fairly well-defined
plasma region by beam electrons which has the ability to guide
subsequent beam electrons along its configuration. Any intense
beam will, of course, generate a plasma, but unless certain
conditions are fulfilled, the plasma will not act as an effective
guide for upstream beam electrons. We discuss these conditions
in a simple~-minded fashion drawing upon previous discussions of
beam-induced plasma conductivity and transverse instabilities,
and give some practical implications of plasma channeling.

In order for the plasma to be a plasma channel in our
context we require that:

1. The plasma region must have a frozen-in magnetic field
level at least high enough to guide beam electrons around
the smallest radius of curvature of the channel configvra-
tion.

2. The channel must be stable or, from the previous dis-
cussion, on the frozen-hose instability, ts » beam puls:
width. These two criteria are usually achieved when the
gas breakdown time, tB X beam pulse risetime, tr.

The experiments of Yonas, et al. (Reference 2.23) where
beams were guided by copper pipes with a radius of the order of
the beam radius are an example of channeling. The image forces
guided the early portion of the beam around the circles when the
skin depth was larger than or equal to the pipe radius. Then,
when the skin depth was smaller than or equal to the pipe radius
after breakdown, the plasma frozen-in magnetic field "memory"
guided subsequent beam particles.
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Yonas and Spence also attempted unsuccessfully to inject a
beam head into a plasma channel, as indicated in Figure 2.30.

Conducting

/ Pipe

Figure 2.30 The experimental geometry for injection
into a plasma channel.

An explanation of the failure is that the transit time of the
beam front around the ring was too long, i.e., the gas had
broken down, when the beam head reached the cross-hatched region
and the highly conducting plasma reflected the beam head to the
pipe wall, With the experimental parameters of v/y ~ 1, current
risetime ~ 20 nsec, pressure 0.5 to 0.75 torr, the breakdown

time was approximately 5 nsec. With a longitudinal front veloci-
ty = 0.5 (250 keV electrons), the transit timu of the front
around the ring would be 2 7 nsec.

These relatively crude physical arguments would suggest

that merging of the beams should be best achieved when transit
time of one beam to a merger point, ttr' satisfies
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Ty < tep € ty (beam merger cr}terion)

i
where TN and tB refer to the electrical neutralization time and '

breakdown time of the second beam at the merger point.. Recall '
from Section 2. 2 that only fe >1 - BL' is required for magnetic
interstream forces (attractive for currents flowing in the same
direction) to exceed the radial electric space charge repuls;on;
Our merger criterion is thus conservative. Pressure in the

10 torr range would satisfy the criterion, since then ™ 0, o
and the gas is not highly conducting (td N tr).

2.10 SUMMARY OF BEAM TRANSPORT PHENOMENOLOGY

In this section, we shall try to "pull together" the
material of preceding sections and, in particular, look at.
conditions for high beam transport efficiency in a gqualitative,’

but coupled fashion. Generally speaking, efficient beam trans-
port requires:

1. The beam generated EM fieldg to be minimized (charge:
and current neutralization),

2. The beam transverse momentum to be contained to prevent

particle loss to the walls (beam self magnetic fields or external
fields), |

1
3. Stable modes (velocity spreads in beam and appropriate

plasma parameters.

The EM fields are minimized with neutral gas injection by break-
ing the gas down early in the beam pulse to obtain good current
neutralization. This process is lossy for v/y X 1 beanms because

a high degree of current neutralization implies a low net Be field,
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which is,usueily unable to efficiently contain the transverse
womentum of the peak beam current. Injectioh of a beam into a
preformed, highly conducting plasme is the obvious way to mini-
miZe the EM fields, but requires an externally applied field to
contain the transverse momentum since the net current is now
even lover. 'Benfogd, et al.. (Reference 2.56) have demonstrated
that injection of a high v/y pinched beam into a pre-ionized
plasma results in very low transport effigiency. Most of the
beam is lost to the walls near the anode window. A cold beam

<8 2>7<B 25 < 1, should be able to propagate efficiently in a
pre-ionized media, however. 1lhus, if we use a diode geometry to
keep the peak current below the critical current (recall I

8500 /yz -1 rc/d), propagation eff;ciency should be high in a
plasma or a neutral gas at rapid breakdown' pressures. As dis-
cussed in Section 2. 1 high v/y, 'cold beams have low current
density (2 few kA/cm ), so if we want to attain current densities
of 104-10 A/cm2 at the downstream end of the transport systen,

1 the beam must be compressed. Beam' compression is currently an
actlve field of research. :

The most straightforward way ‘to transport hlgh current
dens;ty, high v/y, (hot) beams, then, is to use external fields
in plasmas. Two such configurations have been extensively
studled over the past two years: ' By, or linear plnch, transport,
and B, systems. We discuss neutral gas transport both with and
;without external fields in thls section.,

' 2.10.1 Neutral Gas Transport Without External Fields.
Transport modes ih neutral gas-filled drift chambers can be
conyeniently clasgified in terms of the gas pressure, as indi-
cated in Table 2.4.
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TABLE 2.4
NEUTRAL GAS TRANSPORT MODES

Beam, Gas
Parameters Characteristics of Transport
Low pressure ™ 2t ion acceleration (large beam
P energy losses)
Intermediate Ty <ty L t pinched (frozen hose) and
pressure drifting beams with high
O high current neutralization (maxi-
mum transport efficiency)
Vnet/Y <1
High pressure ™ " 0 unstable, pinched beam
propagation
t. + @
B
o low

N = electrical neutralization time

t = breakdown time

B

tr = beam current risetime

tp = pulse width

op = conductivity at breakdown

Low Pressure Transport. When Ty 2 tp, space charge fields
dominate the beam behavior and finite geometry (endplates) effects
are important. Perhaps the most interesting aspect of this pres-
sure regime is collective ion acceleration, which is discussed in
detail in Section 4. We discuss some general features of low
pressure trensport at pressures outside of ion acceleration con-

ditions.
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The electrostatic potential well depth, ¢, is sketched in
Figure 2.31, We can estimate ¢ from Equation 2.20 as:

60 I

¢ (volts) ~» —(28R8) (1/2 4+ £ p/a) (1 - &2+4 Pe/R)
L

z, £ 2(RrR/2.4) (2.119)
< <
1 ~ R~ 10 length units

z, = crossover distance for E, (Equation 2.29)

If ¢ (zc)'< beam kinetic energy, the beam propagation will not
be limited by tl.e longitudinal electrical field, although space
charge effects on radial motion must still be considered. If,
however, ¢ (zc) # beam kinetic energy, a length, EE’ is defined
by ¢ (EE) = kinetic energy and if the exponential factor in
Equation (2.119) is approximated by a straight line,

3.4 x 104 (t ) Vi+vP WP

r
¥ (amps) ty (1 + 2VP)

'z'c (cm) =~

(2.120)

¢ R/2.4 (172 . %n Rm) , T, L2 (R/2.4)

where vos peak electron kinetic energy in Mev, t. is the current
risetime, tv is the electron kinetic energy risetime, and IP is
the peak beam current. The voltage and current rise have been
takcn as linear, and BL > g, If P o 30 ka, tr/tv = 2,

VP ~ ] MeV, K>« 6 cm, and a = 1, then zc &~ 1,2 cm. One can
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P’beam front

electrostatic potential

zf = beam front

z, = position where E, reverses direction

Propagation requires Pmax < beam kinetic energy

-1
or v/y=1 << [(1 + 2 In R/a) (1 - fe)]

Figure 2,31 Electrostatic potential in drift
chamber (t < Ty
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estimate a front velocity (ch)ES by assuming that the front
travels a distance, Z _, over a time scale of 1

c N
Es . 25 - 2R
Bf = E; ' zc < -2-:-a- (2.121)

This velocity is very slow even for low v/y beams and places a
severe constraint on high v/y beam propagation efficiency at low
pressures., If E& from Equation (2.120) % (2R/2.4) propagation
would occur at a velocity det-- ined by the "interior" beam

kinetic energy; i.e., the ki «. > energy minus the potential
evaluated at z = 2R/2.4.

The discussion of the longitudinal ES field suggests a
qualitative picture of the beam-front velocity behavior at low
pressures above the ion acceleration cutoff., According to
Equation (2.121) the beam front moves slcwly until the charge
neutralization front has passed z = 2(R/2.4). Then the end
plate effect and the front velocity should increase. The front
velocity, however, will still be less than Bc and will now
depend on the "sharpness" of both the beam front and the space-
charge neutralization front. As the beam approaches the down=-
stream end plate, an increase in front velocity is again to be
expected since the field will reverse direction as ES force lines
start to terminate on the surface charges cf the end plate.

Intermediate Pressure Transport. As the pressure increases

and Ty < tB < tr' beam transport efficiency goes up as current
neutralization occurs early in the pulse. We now estimate some
limits on transport efficiency in neutral gases. The two con-
ditions we need for efficient transport are

v

(1) zet 1 (EM reguirement)

In
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_containment)

Bnet)2 . s , . ,
(2) g—%;—-——- 2 < kT>b + <n kT>b (transverge enexgy
where <n kT>_ 1is the transverse energy/&clume of the beam-
generated plasma, and <n kT>b is the averaée ;ransverse energy/
volume of the beam, here expressed in terms of an equivalent
temperature. The above conditions can be rewritten as '

H
'

> ! .
I (tB) ~ 17,000 BLY, (2.122)

8 P e
1079 52 <a k1>, + 2.5.&2_5_; <«xr> [(2.123)
, p ‘ B " a b

v

1 1 e e B N B @

where I (tB) is beam current (amperes) at gas b;ea*down, IP is
peak beam current (amperes), a is the beam radius,<hkT>b is in

; B eV/cm3, and kT units are electron volts. The transverse energy

| - of the plasma cannot always be neglected. Equations (2 122) and
i (2.123) can be combined, yielding ;

. %13, 17 € 44 x 10% 8 %267 - 106 %,2070 2%y <ake> ) (2.120)

;o where I, (t,) = 17,000 8 yé. The value of § has to be determined

. from the length of the desired transport system, subject to the
restriction of a maximum value unity. <kT>b is the equivalent

b

peak average transverse beam temperature (eV) generated in the

[ 2o

diode and anode window. |

We can follow the arguments of Section 2“7 4 to detefmine s.
The magnetic field energy in the system should be less than the
total beam kinetic energy:

2 s
Ib(tB) (amps) LF
100

2 | |
(y - 1) m ¢ N Lp > (2.1?5)
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' |

3 ! N = npumber of beam particles/iength o

' " L = beam'pulse lengéh defined such that the peak N
P times Pp = total number of beam particles

L = length of transport system ﬂ |
T ! F = .dimensionless form factor of order unity

- : : | = 1 (az + b2 - b2 - b2 fn 2 4+ pn R ,
! ' -T2 - b2 ;az-b:, at.p? D b

for a uniform current distribuﬁidy of outer radius a, inner

3
D

b . radius b, the chamber radius is R.
'we determine § for a 10 percent maximum energy loss:

. X
!z . ! _2 \)bp (‘Y - 1) l L.
6'~3.2'x 10 [ T B

By,

L
L

. gives a criterion independent of IY; J

' . L
«r>, < 2.6 x 104 B LD

’
I

<kT>b < total electron energy
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1 ! and; substituting in Equation: (2.124), we finally obtain
V i . *

Rewriting Equation (2.125)

(2.126)

«m>, 17 % 2,6 x 104 (-2) £ -1 1f - 15 %10 a% g <nkf>

(2.127)

If the plasma transverse energy can be neglected, Equation f2.124)

‘(5.128)

In reality, <kT>b‘is coupled to iF by diode dynamics. As an
example of Equation (2.128) , we determine the maximum average
transverse beam temperature for efficient transport (i 90 percent)

L. L. U=
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over a 1 meter distance with a 1 MeV beam, 40 nsec peak current-
weighted pulse width., With F = 1,

<kT>b £ 624 keV (2.129)

The diode configuration must be such that Equation (2.129) is
gatigfied, and, since diode "temperature" depends on current
density, efficient transport translates in the final analysis
to a current density criterion.*

When hot beams which violate criterion (2.128) are injected
into neutral gas chambers, one might expect that the higher
transverse momentum electrons would be lost near the anode, and
that the now effectively lower temperature beam would transport
efficiently thereafter. This is indeed the case, as demonstrated
by the experiments of Yonas, et al. (Reference 2.23), Table 2.5
shows their reported energy losses of a 250 keV mean energy
electron beam, propagating in a 1l-1/4-inch-diameter air-filled
pipe. Injected beam energy was ~ 300 calories.

TABLE 2.5

RELATION BETWEEN NET CURRENT AND BEAM ENERGY LOSS

Pressure Beam energy (cal) Net current Beam energy
(torr) 10 cm downstream (kA) at 10 cm (cal) at 100 cm
0.3 282 43 66
0.5 249 32 106
0.75 143 13 103
1.0 196 15 108

The results show that the highest net current (P = 0.3 torr)
mode is the most inefficient, indicating that EM energy loss

¥ The transverse energy containment criterion may be expressed
in terms of a dimensionless ratio: B = <n kT>b/(Bget)2/8n << 1.
Inasmuch as Bget is not a beam parameter, it is perhaps more

convenient to use the beam current density for beam characterization.
2-113
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probably dominates at this pressure (vnet/y > 1.8). A note-
worthy characteristic of hot beam transport after initial energy
loss within a few centimeters of the anode is that transport
energy decays exponentially. The e-folding decay length varies
from 1 to 3 meters depending on the beam temperature and ratio
of pipe to beam radius. This phenomenon is not understood at
present, but probably represents particle loss--electric field
losses would most likely result in a linear decay.

At intermediate pressures, beam front velocity is dominated
by the inductive longitudinal field before breakdown, and we can
make an estimate of the front velocity in a fashion similar to
that used for B?s. We deuote the front velocity in this case by

BfIc, and

I , kinetic energy of beam electrons

Be (ec) E, (inductive) t, (2.130)
nr (v-1) 1 t
I ) r
be T o F 4 TI/Z+In R/aT (%")
v BL B

where vp is v for the peak current and a linear current rise is
assumed. We require that zp > R/2.4, ™ < tB < tr' in order to
use Equation (2.130). The beam front velocity is the lesser of
BfIc, Bch, where the transverse energy limitation on the stream-
ing velocity for a neutralized beam is Bch:

< (s T)2> ~ (2.131)

f + v/~ *

The Lawson model has been used to cbtain Eguation (2.131). A
1 MeV, 50 kA peak current beam with t_= 2 t_ gives BfI = 2/3,
and since BfT ~ 0.67, the front velocity should not be limited
by inductive fields in the example.
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2.10.2 Beam Transport in External Field Plasmas.
Be-Linear Pinch Transport. The first experimental work

investigating beam transport in a preformed linear pinch plasma
was performed by Roberts and Bennett (Reference 2.57). They
transported relatively cold beams (v/y £ 0.2) efficiently, and
even transported the beam around a curved (~ 90 degres total
bending) pinch system. Benford and Ecker (Reference 2,58) have
investigated linear pinch transport in more detail, correlating
transport properties with measurements of the pinch BB field as
a function of radius at time of beam injection. Most importantly,
they have demoristrated efficient transport (2 90 percent) of hot
beams (v/y = 7) over distances of two feet. This result is to
be compared with a maximum transport efficiency of 30 to 40 per-
cent over such distances with neutral gases and v/y ~ 4 to 5.
Figure 2.32 is a schematic of their apparatus.

The previous discussion of neutral gas transport covers much
of the phenomenology of transport with a linear pinch system.
The important distinction between neutral gas transport at rapid
breakdown pressures and linear pinch transport is that the radial
profile of the Be field that the beam "sees" in the linear pinch
system is independently variable and depands on the pinch con-
figuration at the time of beam injection. Recall that the time
scale of pinch dynamics is in the microsecond range; i.e., very
long compared to the beam pulse width.

Linear pinches break the gas down at the chamber walls,
forming a current sheath, which "snowplows" the plasma inward
until the plasma has collapsed to the center, and the current is
"cored" with a radial profile similar to the Bennett distribution.
The pinch then bounces and may recollapse. [See, e.g., Glasstone
and Lovberg, (Reference 2.59)]. Some magnetic field profiles of a
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linear pinch system used by Benford and Ecker are shown in
Figure 2.33. Thus, depending upon injection time, the beam
enters a "hollow," sheathed current, Be field or a pinched
profile. In the figure, times in the pinch history up to
~ 3 usec are sheathed.

& e sk o e

Beam-Pinch Interaction Phenomenology. A single particle
orbit theory of beam transport has been proposed by Benford and
o§ Ecker; the beam propagation is a superposition of single particle
orbits of beam electrons in the (undistorted) magnetic field
configuration of the pinch at injection time, with initial con-

: ditions determined by diode flow.

H

o

- We assert that three conditions must be satisfied to use
*
single particle orbit theory in the above context:

4 2
mo;a .
1. td ~ -—:!—— > tp (beam current neutralization)

.V
‘ 2. T+-Lr—’ ir 2 <nkT>_ + <nkT>_ (transverse energy
; m P b containment)

v_ = radial collapse velocity of pinch current sheath

: n, = pinch sheath plasma density

i .

3. Negligible longitudinal plasma penetration when single
particle orbit theory predicts longitudinal reflection of
. beam particles (see Figure 2,38).

The last two conditions have not been experimentally confirmed.
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The last two features essentially mean that the Ba field frozen
in the plasma has to be sufficiently strong so that the beam
particle kinetic pressure, both transversely (2), and:longi-
tudinally when orbit theory predicts negative drift (3), is '
negligible compared to the existing plasma kinetic pressure. In
other words, the beam cannot "pierce its way" through the plasma.

The diffusion time, td' in a linear pinch plasma would
typically be approximately a microsecond, assuming a few volZ:,
fully ionized plasma, so the first condition is usually fulfilled.
Figure 2.34 shows the beam return current, Ibr' at a radius r,
under this assumption of constant Be(r). The total plasma currgnt
does not flow oppositely to the beam or "return" unless Ib(ro,t)
exceeds Ip(ro,ti). We see from the diagram that the beam will
actually gain energy (albeit only a few keV) from the pinch until
Ib(ro,t) exceeds Ip(ro,ti). The departure of Ez frc.: values gt
injection and its radial variation are maintained, of course, by
the very small changes in the net enclosed flux. The change in

current flowing in the external pinch circuitry is also very small.
Let us explore beam propagation for two representative cases.

1. Sheathed Pinch Current-Collagging Phase

We assume that the conductivity interior to the pinch sheath
is high; there is always some current flowing in the interior of
the sheath, and the beam would rapidly break the gas down in this
region, in any case. Transverse beam energy containment (condi-
tion 2) is attained in this phase because the pinch is in a state
of pressure unbalance and accelerating inward (snowplowing) and
also, when Rg > a,s (Figure 2.35) the beam effectively "cools."
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(The transverse energy/cm3 « aoz/a2 in the uniformn current

density case, for example.) Beam cooling implies that pinch
currents much lower than the beam current can contain the beam
in the collapsing phase when Rs > a_.. Benford and Ecker have

o
demonstrated c ntrol of beam current demsity by varying Rs at ti.

2. Partially Pinched Phase at Injection

In this phase the single particle model of Benford and
Ecker would predict positive z drift (propagation) or negative z
drift (reflection) depending on the detailed shape of Be(r,ti).
Figure 2.36 shows these regions for a nearly pinched plasma. The
radius R, is the radius within which one would expect the core
of the beam to propagate. If Be ~r, r % R, (uniform current
density), we can determine R, from the Alfven condition, Ip =

17,000 BLY amperes, or 5 RcBec =1, Rc in centimeters, Bec in

A

gauss. IA refers to the pinch current and Bp,Y to the beam
parameters. If the Larmor radius of the beam electrons is less

than Rc, we can use VB drift formulas for r > Rc.

Conditions 2 and 3, which are really coupled, may not be
satisfied at pinched or near-pinched injection. I1f the pinch
were steady state, e.g., the pinch field pressure would exactly
balance the plasma transverse kinetic pressure, and the ad-
ditional beam transverse pressure would not be contained without
field distortion. We illustrate these remarks in more detail
through example.

Let us assume that a beam is injected into an approximately

uniform current density region of a nearly steady state pinch,
that the beam radius at injection is equal to the Alfven radius,
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RA' and the beam current equals IA. Moreovir, we take the beam
to be zero temperature (cold) at injection. The beam moving in
the pinch field now becomes hot; i.e., <Bt2>/<BL2> ~ 1, The

beam average transverse energy/volume is <hka> nb /2,

where wT is the total electron energy. If this transverse

kinetic beam "pressure" is negligible compared to the plasma pres-
sure at plasma pressure balance (steady state injection), or, is
small compared to the (magnetic-kinetic) pressure imbalance of a
radially contracting plasma, we would expect single particle

orbit theory in undistorted fields to apply. In the steady

state plasma case we require

We, 2 x 108 I, 2 x 108 (I,) Wy (steady
nb T = -—-2—————-—- = y) -i— < <nkT>p S.tate
“RA BL BLn (RA ) pinch)
2 11 T
RA > 5,4 x 10 m—i;sg (2.132)
with W , <KT> in eV, n_ in cm-3, and R, in centimeters. If the

A
plasma dens;ty is lols/cm ' <kT>b ~ 10 eV, W, = 1 MeV, Equa-

T
tion (2.132) gives RA > 2.3 cm,

Let us continue and suppose that condition (2.132) is

violated at injection. If RA ~ 1 cm, = pinch radius, e.qg.,

W /2 ~ 1018 eV/cm3, compared with the plasma energy density of

l? eV/cm . We expect, according to our model, that the pinch
field will now be distorted, and that this distortion will
proceed by motion of the plasma particles with field lines "tied"
to plasma motion., Recall that in MHD theory with space charge
neutralization

[}

-
These restrictions are for analytical convenience.
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where we have used the expression sp = olE + 3‘x B/c] for the .
plasma current density. The conductivity has been shown to be
high enough that the change in Be due to the last term in
Equation (2.133) is negligible. The time scale of the ‘'radially
outward plasma fluid motion will critically depend on how many
ions have to be "dragged along" with the plasmd electrons; i. e.,
to what 2xtent the fluid is an electron or an electronflon £luid.
Snowplow pinch collapse theory assumes that all ione are pulled '
. along (by an electrostatic charge separation field). The 1on

L pickup in our case will depend on the plasma dens;ty outside the
main discharge.

A S S

———y
. .

We develop a model for the expansion velocity aseuming'the
expansion proceeds in a way to maintain eleétrical neutrality
with uniform charge density in radius. Ions move to maintain
neutrality as the pinch discharge region is "pushed" outward by
the transverse kinetic pressure of the beam. Let ‘dR/dt be the
' velocity of the outer radius, R, of the plnch dlscharge (and
beam) . [ See Figure 2.37.] The velocity of the expans1on ls con-
trolled by ion motion. We estimate dR/dt in sort of a "reverse
snowplow” fashion:

2
| ’Y‘“ n,° 2, 2 (dR)? o (Bg™) Ro
E_ 21R l —_— <Bt > ¢’ - (a‘E) + np kTp - -ﬁ— . -R-— |

s 8 oy
. ~

o
.

2

\' R 3

i =~ 9 °r_o ' ' ' , '

L at |™%; (R ) f dr" 2mr' v, (r', R) . (2.134)
o

v t

D;N
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=' magnetic field at injection (r = Rb)’

initial,beam‘number'densﬁty

initial plasma'ton'number density .

.
! ! . i

ion mass

,

initial plasma number density , '
plasha température

average transverse beam velocity squared

' i
; : »

.ion radial expansion velocity at radius r for

discharge radius R.

I
i

I

The electron plasma mass has been neglected on the RHS of
! ' !
Equation (2.134). With uniform density expansion,

!

) o

pingh shamber
wall

(aa/ae) ey mean ' , ’

o "

do T e

Represeatative
boan elestron trajeciory 1

I.-l‘-’nﬂ, bean radive at injection time
v‘(r)-ug radial velocity

'Figure 2,37 The expanding pinch model.
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and, if we neglect the last two terms on the LHS of Equation

(2.134) [ they balance at injection in steady state], we obtain
after integration

2 m °
dR
(EE) ~ %Y——-o ——nbo B2c2 In (&—)

(2.135)

o
-4 (T\ (P .22 R
& 8.2 x 10 (_ﬁf) (——3) B°c” £&n (ﬁ—)

ni o]

with mp = proton mass. If we let R = Ro + A, Equation (2,135) can
be integrated for A/Ro < 1:

. 0
A~3.3x10°3 822 21 b

1
t = (2.136)
my nio Ro
In our example, y = 3, nio & lols/cm3, nbo ® 3 x 1012/cm3,
R =1 cm, and with a beam pulse width of 80 nsec, Equation

o
(2.136) gives A =~ 20 (mp/mi) cm over the duration of the beam

pulse, corresponding to an average velocity of = 2.5 x 10-1
(mp/mi) cm/nsec. We emphasize that this velocity estimate is
a lower limit because of our assumption that the jon velocity
controls the expansion.

The external circuitry of the pinch system will also affect
the beam penetration rate. Our model basically assumed that the
discharge chamber was connected to the external (lumped) induct-
ance and capacitance via a resistive impedance transmission line
with electrical length long compared to the field distortion time.
The longitudinal electric field in the laboratory frame is




E, {(V/em) ~ -~ (300) (a—/?) (2.137)

maximally ~ 2 x 103 V/em in the example. As is well known from
linear pinch theory, this field may produce a large voltage spike
across the pinch chamber if the external inductance is large
compared to the chamber inductance, L. On the other hand, if the
external inductance is small, the voltage across the pinch chamber
will essentially remain constant, and the total discharje current
will change so that L dI/dt ~ - IdL/dt.* Experimental verifica-
tion of the model must therefore be performed with a carefully
defined system. Most importantly, the beam and pinch parameters
should be designed as in the model; motion of the plasma as a
whole is desirable, not merely an inner core where the effects of
its motion may be shielded frcm the outer pinch radius-chamber
electrode flux region.

The actual penetration process is undoubtedly much more com-
" plicated than our simple model where plasma and beam currents
were assumed uniform and coextensive, and the pinch expanded out-
ward while maintaining a uniform density. More generally, one

might expect an (r,z) or two-dimensional, penetration process, and

certainly not necessarily one that maintains a uniform current
density. Figure 2.38 illustrates the two dimensional penetration
where beam current is also initially injected at radii outside
the critical radius. The longitudinal beam "pressure" is genera-
ted by reflection of beam electrons.

-
We expect in this case that the pinch distortion time will be

somewhat increased if the signal double transit time in the
transmission line is short compared to the pinch expansion
time scale.
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We now compare our remarks with the experimental results and
discussions of Benford and Ecker. They report target damage
radii and enclosed pinch currents at various injection times using
a 160 kA, 500 kevV beam. The transport efficiency was reported
high (~100 percent), so we assume that all the beam propagated
within the damage radii. Moreover, although the Be(r) variation
was not exactly linear within damage radii, we will assume it
linear. The Alfven current for their parameters is 34 By, kA.
Table 2.6 summarizes the data. Rgalc is obtained from an esti-
mate from experiment field profiles for the product of the
radius and magnetic field to give I,, and the beam transverse
pressure column corresponds "o the maximum pressure (peak current)
within the calculated Alfven radius. The last column is an
estimate of the ion plasma inward-streaming energy density for an
argon plasina (nimiviz/z) with initial pressure of 300 ym. (All
their data referred to the collapsing phase.) This is a rather
crude estimate inasmuch as accurate plasma density and collapse
velocity parameters are not given. Our calculation assumed
collapse velocity of 1.5 cm/usec, and a discharge current radius
of 3 cm. These parameters are probably low for the 2.9 usec,
injection time; the velocity rises sharply as the radius contracts
in snowplow theory, and the effective radius of the discharge is
probably < 3 centimeters.
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TABLE 2.6
BENFORD-ECKER DATA COMPARISON

2
nmv
i'i
€ Ry " RgHe nCKTD,, =
(usec) (cm) (cm) (ev/cm®) (ev/cm?)
I: 2.9 1.5 1.2 3 x 1018 > 1018
2.4 2.0 1.8 1 x 1018 ~ 1018
i 1.7 2.8 2.8 5 x 1017 1018
'
i‘ The conclusions indicated by Table 2.6 are that single
particle orbit theory is a good approximation since the sheath

i‘ momentum can contain the beam and that the current should essen-
tially flow within their damage radii. The discrepancies between

- the calculated and experimental radii at later times are too

: small to be significant in view of the inaccuracy in the damage

' radii estimates, and also because of the calculational assumption

L of a cold beam upon injection. An experimental test of the beam

.. penetration model is therefore not included in the Benford-Ecker
i *
i data.

:' As a final example of the model, we design a pinch injection
) profile for transport of a 1 MeV, 2 MA beam at a current density
of 10° A/cmz. A magnetic field configuration should rise linearly

] * from the origin to about 3 kG at 2,52 cm. The maximum transverse
r- beam enerqgy density is then ~ 2 x 1019 ev/cm3 which implies an
3. argon plasma with nivr2 2 1030 eV/cm. A collapse velocity of
107 cm/sec and density greater than lols/cm3 should be adequate

! to contain the beam. If the plasma conductivity ~ 1014 sec™!

*
Recent data of beam compression in a tapered pinch suggests beam
e penetration in violation of single particle orbit theory.
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(100 mhos/cm), the beam would lose about 100 keV energy/meter of
transport. Figure 2.39 shows a sketch of this field profile,.
This example illustrates a basic feature of hot beam transport in
linear pinches; namely the high transverse beam pressure can be
advantageously contained by the collapsing pinch at much lower
pinch currents than the beam current. In a sense, we are utiliz-
ing the kinetic streaming energy of the ions, gained over a much
longer time scale than the beam pulse width, to maintain a con~
fining field configuration.

We conclude the linear pinch phenomenology by mentioning two
recent experiments to investigate other applications of linear
pinch transport (Reference 2.59). In one experiment, two beams
from magnetically isolated cathodes were injected into a pinch to
look at beam mixing (Reference 2.59). As expected, when injec-
tion was interior to the pinch current sheath the beams did mix.
Beam compression has also been investigated in a tapered pinch
configuration and preliminary experiments have not indicated any
current density enhancement. Moreover, the beam appeared to
penetrate the more highly pinched downstream field region in
violation of single particle orbit theory (Reference 2.60).

Y, - 10’ an/sec

Figure 2.39 A magnetic field profile for_transport of a 1 MeV,
2 megampere beam at 10° A/cm?.
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2.10.3 Solenoidal Field Transport. Beam trénsport in
solencidal, or B,, external fields has been exparimental%y |
studied over the past two years. The first work was performed
at Cornell University using v/y ~ 2 to 3 beams at current densities
of a few kA/cm2 (Reference 2.37). A beam transport efficiency of,
24 percent at 15 um pressure was reported using a 10 kG field,
compared to a 6 percent efficiency without the field. At 435 m
pressure the 10 kG field gave the same transport efficiency as no
field; the field apparently prevented space charge beam blowup at
the low pressure. This early work has been extended at Cornell
and NRL and efficiencies of 85 percent have been attained over 2
meters using similar beams (Reference 2.61). Hammer and Levine
have reported high transport efficiency with higher v/y beams
(~ 10) (Reference 2.62). More recently, Stallings at PI (Refer-
ence 2.52) has looked at Bz transport efficiencies with a v/y
> 10 beam over a wide range of magnetic field values (up to
~ 30 kG) and has discovered a substantial dropoff in transport
efficiency above about 9 kG.

The requirements for efficient transport in Bz systems are,
as might be expected from our previous discussions, that the EM
fields of the beam be rapidly shorted out Ly charge and current
neutralization (preionization or rapid gas breakdown), and that
transverse beam momentum be contained by the field. We have
already discussed charge neutralization and the role of current

neutralization in the z direction to keep Bget

low. So, as
without Bz fields, we want vnet/Y < 1 strictly from EM limita-
tions. The Bz systems have another dimension to consider, how-
ever. Effects of theta currents and diamagnetism or paramagnetism
have to be evaluated. The remainder of this section is largely

devoted to an exploration of theta currents.
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'Diode Flow. As already ﬁentioned (Section 2.1), no self--
consistent theory for diode flow with longitudinal electric fields
exists,lso’we are uncertain abéut the theta motion in the diode,
and consequently also about the beam injection conditions into the
trangsport system. vWe first briefly discuss .electron motion in
" the diode qualitatively. When electrons are emitted from the
cathode in the bresence of the field (which must fringe into the
giodf to avoid mirroring of high transverse momentum electrons),
the guiding center ¢of the electron orbit is accelerated azimuthal-
ly abcut the system axis by forces dge to the ‘presence of a
radial electric field and the Be self field. This guiding center
motion gives ris~ to a macroscopic volume theta current that
appéars as a rotation of the cathode emission pattern at the
anode window. The radial electric field contribution is dia-
magnetic, whereas the rotation due to the self field giving rise
to twisted magnetic fielp lines is paramagnetic. Experimental
, evidence shows that the paramagnetic volume theta current domi-
nates with present high-current diode configurations.* If one

believes that the guiding center motion in the diode approximately
' follows field lines and, recalling tﬁat the pitch angle will in-
crease with radiusland with current density due to the self field
(Be), we expect rotation to incréase with radius and current
density. Hammer has measured the twist of a strip cathode

pattern and found an approximately linear dependence of the angle
(up to ~ SO!degfees) upon I/y Bz. At a few hundred kiloampere
beam currents, current densities ~ 10 to 30 kA/cmz, and,Bz in the
.few kilogauss range, Vo and v, of beam electrons appear to be
comparable.

-*The radial electric field is shorted out by the electrodes in
high current, larger aspect ratio (rc/d) diodes.
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The general trajectory of an electron in the diode is a
superposition of motion of a guiding center rotation about the
system axis and a gyrofrequency rotation about the guiding
center. The gyro-rotation gives rise to a magnetization or
surface current, type of diamagnetic theta current, and is ex-
perimentally manifested by a "smearing" of the projected cathode
emission surfaces over cyclotron radii. Stallings has shown that
the cyclotron radii may be of the order of those expected
for electrons with nearly total energy transverse to Bz.*

We can quantitatively estimate the relative importance of
the theta current contributions of rotation about the axis and
gyro-rotation with a simple model. The model is given to allow
a practical working description of diode flow and transport
phenomenology,; and we proceed recognizing the perils of crude
estimates. Let us assume that the radial electric field con-
tribution to rotation about the axis is negligible compared to
Be-self-field effect (large aspect ratio diodes), that the
current density is uniform in radius, and that the guiding
centers approximately follow field lines. This latter assumption
is equivalent to restricting the model to cases where the curva-
ture drift velocity is small compared to rotational velocity
about the axis. Referring to Figure 2,40, we obtain

v

e v, sin a (r)

Vlr = vz tan a (r)

By (r)
tan o (r) = -j (2.138)
with 2
Vie = perpendicular cyclotron or gyro velocity
Vip = perpendicular rotational velocity about system axis
—

These measurements were made a few centimeters beyond the anode
window,
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Figure 2.40 Perpendicular velocity components
in combined By and B, magnetic fields.

The longitudinal electron velocity as a function of radius, BLc,
is given by

8

\/qf+ sin2a + tan?a

where B refers to the total electron velocity. The average
longitudinal B8, <Bﬁ>, for uniform charge density is then

BL(r) ~ (2.139)

a

2 r' dr'
<B.> = 8 / (2.140)
L ;I o (l + sigigfr') + tanii(r'))l/i

We can define a condition for validity of the assumption of
uniform current density from Equation (2.139). Let us require

that
B - BL(a)

3 < 1/2

i.e., current density unifcrm within 50 percent. This condition
translates from Equation (2.139) into requiring a(a) < 1.

2~-136




[P - ﬂrmmﬁmmw

s foud Qg Qe SEm

Equation (2.140) becomes

8 2 2 1/2
1
c1 a<l
where
Cl = I (amps)
SaZB2

a in centimeters, Bz in gauss. When Cla ~ 1, Equation (2.141)
says that <g > ~ 0.78, and if C;a > 1, a condition C, zli1
defines an approximately uniform density core of radius a.

[ Recall the data of Stallings (Section 2.1,3) regarding experi~
mental observations of a peaked current density along the axis.]

Assuming that Cla 2 1, we proceed with the uniform beam
model. The rotational angular velocity about the axis, w, is

from Reférence 2.37, e.g.,

<Bﬁ> cBe cEr

w = e —— (2.142)
B, rﬁz
[T (amps)| ¢ p 1
T2 e _ 2
5a Bz <5L> YL,

and with fe ~ 1, C,ba < 1, w is approximately constant:

1
. = __.__P_..ll(gm s) | <> c (2.143)
S5a Bz
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The paramagnetic change of Bz along the axis, Asz, due to
rotation about the system axis, can now be estimated with a
rigid rotor model, assuming aBr/az negligible compared to

4n/c jbel

P oa 47 oy
ABz S Dyewa /2
. 2 (2.144)
~ n2a? Jp
25 B,

with jb the beam z-current in A/cmz. Similarly, we estimate the

diamagnetic gyrorotation contribution to Bz at r = a, ABzd:

d i d ~
ABz <:2BZ - ABZ ) & 8"nbwl(a) (2.145)

where Bzi is the applied field, ny, is the beam particle density,
and W, is the perpendicular gyrorotational energy at the beam
edge. Combining Equations (2.138), (2.144), and (2.145), we
obtain an equation of compariscn, evaluating ABzd at r = a and
Asz at r = 0:

~ X cos o (a) (2.146)
(AB p)2‘ v
4
d ~

. . d
and since the maximum, ABz occurs when Bz ~ ABz '

d
ABz

P
ABZ

coso (a) (2.147)

A
<f<]
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Thus, if v/y > 1, and rotational effects due to the radial
electric field are negligible, the model predigts a net para-
magnetic beam. Although we have restricted the model to

1

B, (a)
a =~ 0

1 B < 1

C

the geometry of Figure 2.40 suggests that the conclusion of
Equation (2.147) is probably valid f?r C,a 21,
!

Transport System Phendmenélogy, The first question which: L
arises in discussing transport phenomenology is the influence
of the anode foil upon injected beam orbits. If the foil .
essentially remains intact at solid densities during the beam ’
pulse and (mc/v) < 1, the beam-electrons enter the transport “
region with a multiple scattering velocity distribution about
their incident velocity vector at the anode. If § is the angle
the velocity vector makes with the B vector after scattering,
similar considerations as in Figure 2.40 give

Vi, ® vcos$ sin o (2.148)
Vo = v cos § cos a,
and tan o = IBgetl/Bz to allow for current neutralization,

Another important question regarding the transition rzgion

from the diode to the transport system is whether the particle
motion is adiabatic as B6 is reduced by current neutralization.
A non-adiabatic transition will partially convert dicde
rotational transverse energy to transport system gyrorotatiorn,
as can be seen from Equations (2.148), e.g., with § replaced by

2-139



~reec

t

the diode o value. If the transition ie adiabatic, ﬁquation
(2.138) indicates that the transverse energy in the transport
system will decrease, since a is diminished from the diode
value. Finaily, it is necessary to determine whether Bz field
lines are,"tied" at the anode window, or,. in other words,
whether the field diffusion time in the anode over distances

~ of the order of the beam radius is large compared to the beam

pulse w1dth

- A sketch of a beam penetratlng a neutral gas is shown 1n
Figure 2.41 for the case of a net diamagnetic beam channel, ‘and

. with field lines assumed tied at the anode w1hdow. The field ,
. line intersecting the outer cathode emitter is indicated. . The

configuration is an asymmetric double mlrror geometry with the
downstream end moving at velocity 8 fc, which we antlclpate to
generally be € Bc of beam electrons. Aside from the theta
electric‘field, the electric fields in the penetration front
region are as previously discussed without an external B field.
In the region z, 2z'% zy the electrostatic field ls prlmarlly
radial, from z, ; z N 250 E 1. L d1/dt, and for z < Zys

Ez2 =~ [I(t) - I(t )1 /70 a2, where I(t ) is the z-directed
current at the breakdown time tB, and Op is the conduct1v1ty
at breakdown along field lines. The E8 field is, of course,
in a direction to drive plasma currents to counteract beam

theta currenfs. |

In neutral gas propagation without B fields the beam
electrons ln the oenetratlon front are lost radially to the
chamber walls when fo < l/y . If Bz
however, the lcngitudlnal space charge field can prevent beam

is suff1c1ently:large,

" electron escape to the wall, 1In other words, beam electron mo-

tion is primarily azimuthal and longitudinal for large enough Bz'
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The space charge limitation on propagation in the 2z direction
is, from Section 2,10,1,

1 1
V/‘Y - 1) < 1+ ji In l'!/a) -‘T_T;T (2.149)

On the other hand, sinusoidal or radially contained beam
particle motion in the uniform beam approximation requires
for fe =0

vy < a4x10°® Bzza (2.150)

with B, in gauss and a2 in centimeters. With no space charge
neutralization, a 10 kilogauss field, e.g., could contain a

500 keV beam of radius 2.5 cm with currents up to about 300 kilo-
amperes (v/y ~ 10). The electrostatic field at the penetration
front can therefore cause substantial reflection of beam
electrons back to the diode.

We can express the criterion for particle reflection
generally using Hamiltonian formalism and conservation of
canonical angular momentum for axially symmetric systems. Non-
relativistically, reflection will at least occur for all
particles satisfying

o
P 2
2 +8a > 2m_ (E_ =~ AE - e |V{r,z)]) > 0
r c 6 o o ! ’
(2.151)
z > 2z,
with Peo = m,r 2 éo - (e/c)roAe = electrcn canonical angular
° momentum at z = 0
r, = radius of electron at z = z,
Ag = theta component of vector potential
E, = electron kinetic energy at z = Z,
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AE is the energy loss in transport up to z = z3 and V(r,z) is
the electrostatic potential for z > Z,. Let us rewrige
Equation (2.151) for a simple case where Bz(r,z) = Bz (r)£(2).
Moreover, if we assume no collisions in the anode window, Peo
can be related back to emission at the cathode. We obtain

p.° = —erazi (< 0)

where r, = emission radius at cathode, and § is taken zero at

the cathode, Such a Peo corresponds to electrons which do not

encircle the system axis (Reference 2.63)., Equation (2.151)

becomes
2.2
r 2c 2
f(z)r - —| > [=5+) 2m (E_ - AE - eV)
[ r ] (ele> oo
[(Eo - AE - eV) (eV)]
> 0,47 T ) (2.152)
[B,” (gauss)]

This equation is, of course, valid both for adiabatic and non-
adiabatic motion.

If electrons enter the penetration front into the region
where fe < l/yL2 the rotational volume beam theta currents shift
from paramagnetic to diamagnetic rotation [ see Equation (2.142)]
and electrons are displaced radially outward as they reflect.
Upon returning to the diode, the rotation due to Be(z < zz) is
now diamagnetic. If electrons are also electrostatically

plugged at the diode, »article loss occurs when diode voltage
begins to drop. Even 1f the beam front has reached the end of
the transport system and V = 0 throughout the channel, the
mirror geometry resulting from tied field lines at the end of
the transport system with a net diamagnetic channel will reflect

2-143



TR TRy

electrons because of energy loss AE. (An energy loss of
~ 100 keV/m would occur with a 105 A/cm2 beam with o * 100 mhos/
cm, corresponding to a fully ionized plasma of a few volts
temperature.) When a substantial fraction of beam electrons are
reflected near the penetration front, the front velocity Bgc, is
more appropriately calculated by a pressure balance argument
similar to the linear pinch penetration process:

2
(AE:) = I]-% m [<8Lc - (Bgc)>]2 (2.153)

[o/

where Ne is the average reflected electron density and BLc is
the average incident electron velocity.

Plasma Theta Currents. Beam~-induced plasma theta currents

will be diamagnetic with the exceptions of (1) those induced by
Eq
conditions, those due to axial rotation of electrons reflected

from the diode by electrostatic plugging. We neglect the latter

when the beam is diamagnetic and (2), under appropriate

plasma theta currents in our discussion; they would only be
important in low density plasmas or with very high Bz fields.
The characterization of the volume plasma theta current before
electrical neutralization for neutral gas injection may be

quite different than without Bz fields. Our previous assumption
(Section 2.4) that secondary electrons escape "instantaneously"
from the beam channel to the chamber wall until fe = 1 is not a
gcod approximation with high Bz fields. We use a simple model
to determine limits on Bz for escape of secondaries to the
chamber wall at radius R. The turning radius, Eyo must be
larger than the chamber radius, R. Referring to Figure 2,42,
and assuming negligible diamagnetism, Busch's theorem (Equa~-
tion 2.92) states
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(2.154)
L eB,
L 2 moc
when § = v, = vz 0 at r = r1 (electron birth). If we further

assume that the space charge field is primarily radial and due
to 2 beam of uniform charge density,

2
a“~r
y(r) = 1+ 2vb (l-fe) [—;;Il— + £n E], r>a (2.155)
Vp = primary beam v
Combining Equations (2.154) and (2,155), and taking 8 = By at
r=r.,
w 2 [y(r )X )]2-1
c 1"t
2]2
.2 (rl)
G = r 1] - —
t rt

We use r, ® 0 in Equation (2.156) for a representative secondary
electron orbit; we could insure that all secondary electrons
escape, e.9., by evaluating G at r, = 0 and y at ry = a. Equa-
tion (2.156) gives

oy R [, 1 2

Lo 1+ va(l—fe)(5 + Ln R/a)] -1 (2.157)

A

C
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B, (gauss) < 11,000 (amps) {[i + va(l-fe)(% + £n a/a)]2 - 1}*

r. 2 R
o This equation can be expressed in a form more appropriate for
- neutral gas penetration, where fe is increasing behind the front.
" Electrical neutralization will occur via secondary electron
. escape to the wall until

2_2
. R {
< 1 ‘L k%
vp (1=£g) T+ 2 In ®/a) -t -1
i

. ¥r, > R (2.158)

t -—

3 If the beam current in the penetration front is space charge
limited (Equation 2.149),

2
b~ :‘, 2 R %
(y - 1) (;L 5+ %) -1
}' c
] .
o or (2.159)
i B_ (gauss) % 17,0og§jamps) y¢ -1

. Z

When B, exceeds the limit of Equations (2.157) or (2.159), or
if 2N (l-fe) satisfies (2.158), secondary electrcns will no

| longer escape to the wall. In a similar fashion we can then
.- determine upper Bz or lower Vb (l-fe) limits such that

{ JES a < r, < R, as depicted in Figure 2.43:

A

< 17,000 (amps) e 12 _ U
B, (gauss) — {[1 +vy 1 fe)] 1}

-

a < re < R (2.160)

[
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Figure 2.43
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or in other words, an annular secondary electron "beam" with
inner radius > a is formed until

< szaz %
vb (l-fe) 5 + 1 -1

C

SaBz 2 %
m + 1 -1 (2.161)

As an example of the above equations, let us take Bz 3 kG,
a=2.,5¢cm, and R = 10 cm. Eguations (2.158) and (2.161)
give

v

r, 2 R, Vp (l—fe) 2.6

I

a S r, < R,

£ 2.4 < Yy (l—fe)

2.6

When an annular return current "beam" is formed, the
secondaries in turn ionize the backgrcund gas, creating addi-
tional seccndaries which are then expelled outward to the wall
unless B, exceeds a value of the order 17,000/5 (R-az), where
a, is the outer radius of the annular return current beam. The
neutralization process for this range of Vp (l_fe) and lower
values is thus of a cascade type. At still higher Bz levels,
or as fe continues to increase, not all secondaries will leave
the bean channel, and we expect the radial electric field to
increase again if the beam current is still increasing.* There~
fore, at lower gas pressures where breakdown does not occur early
in the pulse, or, if the perpendicular conductivity after break-
down is low and the beam current continues to rise substantially

x

Even if fg & 1, at some point during the beam current rise, a
space charge field may still be generated until the current
reaches its peak value,

2-149
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after breakdown, the net z current may exhibit oscillation due

to the re-establishment and neutralization of space charge fields.

{Recall that the EZ space charge field opposes the inductive
field during the beam current rise.) A summary sketch of the
radial motion of secondary electron currents generated by space
charge fields is shown in Figure 2.44,

Finally, we come to the case when B, is sufficiently large
that r, < skin depth = ¢/uw_, wy ghe plasma frequency. We see
from Equation 2.156 that (mL/mp) > terms of order unity to
entirely prevent space charge neutralization. Lee and Sudan
(Reference 2.54) have considered the current neutralizaticn
problem for an undistorted, nor-rotating beam penetrating an
infinite plasma with a frozen-in B, field. Their criterion for
25 1; the

physical basis of this criterion is apparent from our model.

destruction of current neutralization is sz/w

Whether in fact current neutralization may be completely
eliminated in a finite system is not clear. The EM cavity model
(Section 2.2) showed that in a long tube away from the endplate,
E_ is indeed in a direction to accelerate beam electrons when

fe £ 1/2 YZ. In a finite system, however, the chamber endplate
would cause generation of a large E, field to drive a return
current even when fe ~ 0., So it appears that substantial

current neutralization might cccur in .a finite sygtem without

charge neutralization if B, is large enough. 1In fact, one ex-
pects that the space charge limit of Kq. (2-149), with v replaced
by Voetr Would given an upper bound on the net curreat.

We can now estimate the plasma volume theta currents, jpe,
induced by space charge fields. To do tnis we need the secondary
electron charge density, pp, as a function of radius and w(x):

jp = pp(r) rw(r). The charge density zan ke evaluzted explicit-
ly from radial force balance and Poisson's equation. The first

case we consider is a £ r, =R for all secondary electrons.
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this straightforward, but tedious, evéluation, we 'shall estimate

H Jp

'

~' - §/4n

8

i

b

P

p

P

I
H

2m

v

.. The determination of & 'can be obtained from

a

| pp(r’)

’fe Ab

2 2
e, ax

™

f 4
o 21/ X1
K %*(f“) .

1

{f pp'(r"r-]_)drl 21rri}

normalization factor

-~

beam charge/lenéth.

5 assuming negligible radial variation in pp(f):

an approximate expression for w(r) can be obtained from

Equation (2.154) determines W(r). Rather than proceeding with

1

Equation (2.154) by averaging r, over the beam radius. The

1
H

!
. is then ;

[
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Rewriting the above eguation, we obtain

AB (v,) 2
zZ b . 2 a

5 = 2 fe = 1 3 % 3 Ln a2/al
z wfa,” - a;

a < ajra, < R (2.162)

The upper limit on fe in Equation (2.162) is given by Equation
(2.161), and a, is determined by (2.156). The equation is
strictly valid only if ABZ/Bz 2 0.1, since we have assumed a
constant B, field in its derivation. The space charge limit on

Vp in Equation (2.162) is
o_ . [é (f_,f a,a., R)]°% (2.163)
y-1 e'"er’ 1727 *
where
F = (l-fe)(l + 2 fn R/a) + 2fe (l—fer) Ln R/a2
+ £ (l-fer)
£ = fractional electrical neutralization of

er the return current channel.

When fe exceeds the limit of Equation (2.161) and r, <a
for most secondary electrons, plasma theta currents can be
estimated by assuming that the plasma return current channel is
nearly coextensive with the beam channel, but displaced by a
skin depth, c/wp. In this case, secondaries created by further
ionizing collisions essentially form a hollow Brillouin-type
annular beam with the beam edge as a cathode and with radial

thickness inversely proportional to 52 and (y - l/2f%. Classical
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space charge flow theory for hollow Brillouin beans shows that
their diamagnetism is at most a few percent (Reference 2.1).

We have argued above that the radial electric field of
partially compensated beams can generate substantial diamagnetic
plasma currents and that return current electrons in general may
have energies comparable to the primary beam. The space §
charge diamagnetism may greatly exceed classical space chargé
flow diamagnetism because of partial charge compensation

behind the penetration front. In order to achieve efficient
beam transport, the space charge fields must, of course, be
rapidly shorted out (TN < t. the beam risetime). At pressures
such that ™ S 2n/wc, the plasma electrons non-adiabatically
pass through the space charge front and it seems reasonable to
assume that their diamagnetic volume theta currents are essen-
tially determined by Bget. If Ty > 27r/wc the transition will be
adiabatic and the volume theta currents will also be determined
by Bget beyond fe = 1,

The diode flow model which we have previously given,
together with similar arguments for plasma currents, allow

us to determine the net ABZ, ABZT, of the beam channel for

Ty ¢S tB. The only paramagnetic contribution to ABz in

general is the volume beam theta current after fe > l/yL2
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We obtain

T

i
4B, (r)

Bz(r) - Bz

21n 2q
~ b ew (a2-r2) G ] ey (az-rz)
C b C P

s Yo H2 - grfnw () + oW (x) %-Bi (2.164)
z T STIpN) b Ro"iep z .

where the b(p) subscripts refer to beam (plasma) quantities and
ch is the perpendicular gyrotational energy. We rewrite
Equation (2.164):

2
2 4 . 2
T, oy ~ T 3b (1 e 42 .22 i, .53
AB, (r) 55 —§; (1 £o° (@7-r%) + {(BZ ) - 10 <BL>3b [ybg(r)
n % :
‘b . 2 i
+ Yp (H—) £, sin a(r)]} - B,
P
Ty St <ty (2.165)
with
fm = fractional magnetic neutralization
<3Lc> = average longitudinal beam velocity
tan® <5>
g = for a non-adiabatic anode transition
cos a(r)

tan2 o (r) for an adiabatic transition

-3
<§> is the average scattering angle with respect to Bnet
ghet
tan a(r) = —Q"B-QE)—
z
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The beam current density jb is in A/cmz, B, in gauss. A "strong"
sensitivity to the current density and degree of magnetic
neutralization is exhibited by Equation (2.165). As an exanple
of the equation, }et us take fm = 0,1, le =~ 5 kilogauss,

jb =5=x 103 A/cmz and g = 0,25, Then Equation (2.165) gives
ABz(r = 0) = 1,6 kilogauss and the beam channel is net para-
magnetic., On the other hand, if we inject the same beam into a
preionized highly conducting plasma so that fm ~ 1, Equation
(2.165) states that the channel will be diamagnetic with

ABz (r = a) = (~) 200 gauss, Our estimates have, of course,
neglected space charge induced diamagnetism under the assumption
that ™ San/mc. Finally, we note that when fm + 1, the anode
window transition may be important in determining the nature of

the channel ABZ.

A rough criterion to ensure a net diamagnetic channel may be
obtained following arguments used in the derivation of Equation
(2.146). A more general version of this equation appropriate
for a non-adiabatic transition at the anode window is

d da 2

i
AB,~ (2B," - AB,") ~ (Z:':.C_) (l) ~ (l) _?_tanzé (2.166)
(aB,P) 2 Vie/ \¥/ \V/ sin®a

Thus, a sufficient criterion for dominant channel diamagnetism

under the assumption that guiding centers follow field lines is
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tan § > ‘/§ sina (a) (2.167)

The remaining task for completion of our discussion of B,
transport phenomenology is to couple ABz to beam energy loss.
The method is analogous to the Be discussion with z-currents,
only now we additionally include Ee and de/dt. We explicitly
consider only one case; namely, when ABT = B, is diamagnetic and

dominated by the surface currents associated with gyrorotation.
The theta electric field is then:

5rAB
Z

E (V/CM) - KETHEEET (2.158)

0

A rough criterion for the validity of previous calculations of
ABz where Ee was neglected is

E, (21a) < ixgél (10%) (2.169)
or
4
AB, (gauss) < lg—;é1:£l At (nsec)

and ™ N At < tB’ the breakdown time, for diamagnetism near the

beam penetration front. After breakdown the plasma currents are
w . . . .

collisionally dominated and in a direction to oppose further

changes in Bz' Then Ee may be estimated from

jbe(t) - jb (tB)

E6~

5 (t > tp) (2.170)

The radial drift velocity of the beam-plasma system across

B, lines for the case of a highly ionized plasma aftexr breakdown
is approximately:
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Ee (V/cm)
v, (cm/nsec) = (2.171)
10 B, (gauss)

Conditions for Efficient Transport with B, Fields. Our

discussion has related beam and plasma induced changes in B, to
space charge fields (fe) and the self-magnetic fields (fm), and
indicated the coupling between these parameters and energy loss
due to AB,. The models showed that when £, < l/YL2 the beam
channel will be net diamagnetic (low pressure propagation) and
when £, ~ 1, the channel will be paramagnetic unless £, ~ 1.

The complications of the general transport problem with B, can be
largely circumvented in outlining conditions for efficient trans-
port in neutral gases. The arguments are very like those r jarding
current neutralization without B,, except that we additionally
require the transverse conductivity after breakdown to be high.
Then ABz is small and losses due to Eo are minimized, and space
charge relaxation of the beam may proceed after breakdown with
increasing beam current. The model essentially defines condi-
tions for wvalidity of single particle beam orbit theory.

Recall from Section 2.5 that the perpendicular conduc-

tivity for a Lorentz plasma (electron/neutral collisions or
negligible ion motion) is

) 1
L B (@ /v) 2

9, (2.172)
where 9 is the parallel conductivity, v is the effective
collision frequency, and 6& is the cyclotron frequency associ-
ated with the B, field at breakdown. To minimize net theta
currents, we desire o) large (= o") in the sense that
4ﬂcla2
tdl R — » tp (2.173)
¢
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where tp is the beam pulse width. This condition translates to:

1. o" large at breakdown (or injection with preformed
plasmas)

2, w /v <1 * x

If we assume the plasma nearly fully ionized (v =1Vg i)'the
I
requirements w /v <1lis

»

B, < 3'x 10712 -2377 t (2.174)
Z ) - . ,

. e ' '
where ﬁz is the Bz field value at breakdown. Thus, if we assume
a fully ionized plasma at 1 torr, Té ~ 5 volts, ﬁé 29 kG, a
value close to the level above which Stallings observes a,
decrease in transport efficiency (Figure 2.45). Whether or not
this criterion is in fact relevant to his data depends, of
course, on the plasma parameters. Our guess above :appears
reasonable in view of the minimum requirements on o for the
high transport efficiency at the optimum transport field.
Equation (2.174) is in general a more severé constraint on the
maximum B field thL - the Lee and Sudan result, (w /w )

Also, the condition is independent of whether the channel 1s

net diamagnetic or paramagnetic.
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2.11 PLASMA HEATING

Plasma heating and/or confinement using intense relativistic
electron beams and their associated electric and magnetic fields
is a relatively new interest of the plasma physics community and
both the experimental and theoretical work to date in this area
is rather preliminary. The major direction of intense beam
technology in the past has been in the areas of efficient trans-
port of beams of controlled energy density; beams have merely
provided an energy source for X-ray production or material
response studies with rapid energy deposition. Substantial
plasma heating would correspond to poor beam transport and has
therefore not been of interest.

Electron beam accelerator technology has advanced to the
point where beams exist or are within the state of the art with
total energies from kilojoules to several megajoules and with
electron energies from tens of kilovolts to 20 MeV. Thus beams
represent an interesting energy source for direct or supplemental
heating of plasmas. Also, these beams may be used to collective-
ly accelerate ions (deuterons) giving several kilojoules of ion
energy plasma heating. Another application has recently been
suggested by Yoshikawa (Reference 2.35), He proposes using a
force-free beam equilibrium distribution to generate strong
magnetic fields for plasma confinement--analogously to use of
superconducting rings.

There are, of course, several aspects of potential plasma
heating schemes which affect the nature of the optimum beam and
the problem areas with respect to present day technology. For
example, if we desire to heat a confined plasma for controlled
thermonuclear reactor (CTR) application, the question arises
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whether the beam is to be internally or externally generated.

An externally generated beam immediately confronts us with an
injection problem, whereas an internally generated beam is
probably more severely energy limited than an external beam,
assuming inductive acceleration. (Use of electrodes in a low
density CTR confinement system would present plasma contamination
problems.) The injectior. probiem appears difficult but feasible.
The Astron field configu:ration, e.g., is designed to accept and
trap a relativistic beam of relatively low current (kiloampere)
from our point of view. An intense, pulsed beam must necessarily
extract an equal plasma rzturn current from the confinement
system to avoid buildup of large space charge fields, and al-
though the net current may be very small, injection could result
in a serious distortion of the magnetic field configuration
simply to allow the return current to flow out the beam channel.

The problem areas are quite different for heating high B8,
high density plasmas with limited or no confinement. Such
plasmas would be of more interest as intense radiation and
neutron sources than for power production. [Recent calculations
by Eden and Saunders (Reference 2.65) have estimated ~ 109 joules
trigger energy to give useful energy return.] Since plasmas with
densities in the 1019 to lozo/cm3 range and temperatures of 1 to
10 keV require (pulsed) megagauss fields for even partial
containﬁent, and therefore are limited to times at most of the
order of 100 nsec, beam energy deposition rate is a dominant
congsideration. The dense plasma focus (DPF), e.g., 1s a plasma
with limited confinement (50 to 100 nsec) and Mather and Rostoker
(Reference 2.66) and Friewald, et al. (Reference 2.67) have
recently performed initial studies on electron beam enhancement
of DPF plasma heating. Beam injection into the large magnetic
fields of the DPF is also a major problem here. D-T pellet
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ignition with electron beam triggering and with no external
confinement fields has been proposed by Winterberg (Reference
2.68) and further studied recently by Babykin, et al. (Refer-
ence 2.69). The major beam problem is achieving the required
power densities; current densities of 108 to 109 A/cm2

appear to be necessary. The present state of the art for
relativistic beams is ~ 105 - 106 A/cmz.

A beam plasma heating technique currently under study is
turbulent heating of low density (~ 1014/cm2) plasmas. Altyntsev,
et al. (Reference 2.70) have injected a 4 MeV, 15 kA, 50 nsec
beam into a plasma with a solenoidal field and report electron
temperatures from 10 to 100 keV at densities from 10ll to 1014/
cm3. We consider turbulent heating in detail in the next section.

2,.11.1 Turbulent Plasma Heating. A considerable effort
has been devoted to the study of turbulent heating and anomalous
resistance effects in discharge plasmas (Reference 2.71).
Recently several investigators have looked at turbulent heating
using relativistic electron beams (Reference 2,72). Basically,
all these efforts are directed toward enhancing the energy
deposition rate over the Coulomb collisional transfer rate. The
importance of doing so can be seen by looking at the single
electron stopping power, dE/dx, in a plasma. For electrons (test
particles) moving at velocities in excess of tne plasma electron
thermal velocity,

2 2 2
2 w e

dE/dx = —5—5—— L (2.175)
2718 ¢

where w_ is the plasma frequency, Bc is the incident electron
velocity, L is the Coulomb logarithm (Reference 2.73), and
%2 is the charge state of the plasma ions.

2-163

ey




SR

s PO, ST T T TR Y Catlh it R e |

B DR S SR Y

Prentice (Reference 2.74) has evaluated L numerically for
relativistic electrons (and relativistic plasmas) including
effects due to excitation of longitudinal and transverse plasma
waves. Taking 2 = 1, Te = 5 keV, np = 1019 cm3, hisobtgins
dE/dx ~ 15 eV/cm for a 1 MeV electron. At n_ ~ 107" /cm™~, (CTR
plasma density), dE/dx = 1 5 x 1073 evV/cm sopthe 1 MeV electron
range would be ~ 109 cm. If we consider many electrons or a
beam, this range is reduced many orders of magnitude by collective
effects. The longitudinal electric field driving the plasma
return current after gas breakdown is in the 100 V/cm range,
depending on the plasma conductivity and current density, and
1l MeV electrons are now stopped over 104 cm with a Coulomb
conductivity (v = ve,i)' If one injects into appropriate plasma
densities, we may reduce this collective range orders of magni-
tude further by inducing longitudinal electrostatic instabilities.
The plasma conductivity is now lowered by an effectively higher

collision frequency due to instability wave-particle scattering.

As discussed in Section 2.8,1, the beam may generate
electron-ion modes (plasma return currents) or electron-electron
modes (beam and plasma electrons); i.e., plasma electrons may
scatter off plasma electron-plasma ion waves or plasma electron-
beam electron waves, or both. Let us consider a possible heating
sequence in a beam-plasma system with return current equal to the
beam current.

For simplicity assume a hydrogen plasma, fully ionized at
injection, with an electron temperature Te = 1 volt. The heating
process will start with the Buneman mode if v, 2 Veg+ (We use
the same notation as in Section 2.8.1). This requirement is

satisfied if

To < 1022 (jp/np)2 (Buneman mode) (2.176)

¥ “The classical electron range amounts to energy transfer to
plasmas well w§th1n the Lawson fusion feasibility criterion:
npr 2 10l sec.
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with j_ = plasma return current density (A/émz), nb = plasma '
density (cm-3), and Té in eV. The -heating rate/volume,(jpz/c)

1 { !

may be determined from : . .

a Inm v.i2 n3kr |- ' ‘ ' :

!
Tl R R iy jpzxueff \, (2.177)
s 1

where Coff is the anomaldus conductivity equaliﬂg wp2/4".1/ve£f=
(sec'l), and T is the 90 degree gcattering, time for electrons
off ES instability wdves. Equation‘(2.;77)|assumes*;hat the
plasma electrons are thermalized "instantaneously." The Buneman
80 we assume that the streaming and

> .
mode corresponds to Vg ~ Ve

thermal energies are approximately equal, giving

1

%? T, (eV) =~ 7.4 x lq21 (%5) ‘v:ffl(Bgneﬁan)‘ (;?l7é)
where jp = plasma current.density (A/émz) | | ,
n, = plasma,density (cm-a), | | | ;

1
“:ff = Buneman mode collision frequehcy | .

T mi ! \ 4

For a hydrogen plasma, VB, =~ 500 /A, Substituting in Equation
eff P ,
(2ol78) r WEe Obta‘in - ' \ R

t
02l (B 2\ 2 iy g
T () ~ 7.4x 10 ("eff/“p) f 3g (&) at
| t

o.
]
t N .
24 ‘ ‘
~ -3-'2}7%-"—— / jg (t') at’ (2.179)
Bp 't -

; .
Recall that the electron-electron collision frequency is

1836 v_ .. )
e,i : N
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_The' heating rate:will silow down when Equation (2. 176) is
no longer satlsfzed as the ion-acoustlc transition occurs when
ds <vq < vte' The ion sound speed is denoted by C = AEFTT“'.
\ In a hydrogen plasma, we now require T ~ (43) 10 (3 /n )2

We neglec* the drifting energy to thaxn a heating rate for the

: , * ion-acoustic mode- ' .

dTe(eV) !

) ! v

The unrts are 'the same as for Equation (2.159) and vI?f is the
effectlve colllslon frequency for ion-acoustlc wave scattering.

The form ofxvi%f shggestedlby‘Sagdeev is (Reference 2.75)

i ]
o H ] )

. T v \ [ ! ) I
: L IA -2 T [Va
a ‘ Vegs ~ 10 iﬂ'(;:;) e T > T, (2.181)

, \ : i
)

Other authors propose different forms and some experimental data
appear to agree with all of these various forms (Reference 2.76).
Gulllory and Benford (Reference 2, 42) have looked at the transi-
tion regxon between Buneman and ion-acoustic modes using a
‘LorentZLan plasma electron velogity distribution and use an

"optimistic" value for'hydrogen: ’

| (0.055) S
eff 1l +5.9 vte/vd P

i

They obtain Equation (2.182) by assumlng Veagg © maximum in-
stablllty growth rate.
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A lower limit on the plasma density for return current
anomalous heating follows from our assumption that jp s -jb,
which requires the magnetic diffusion time, td' be long compared

to the beam pulse width, tp. If we take t, R 2tp,
4 1 4.5 = 100 ¢
. c(sec™™) > L (2.183)
; ra
3 i ré
: with t_ in nsec and the beam radius, a, in centimeters. Equa-
! tions (2.178) and (2.181) indicate that Vegs © wp, 80
& 0« /7;. The Buneman mode, for example, requires .
J £\
: n_ 2 1.75 x 1012 (‘PT) (2.184)
&z P ra
- A final constraint on return current heating is that the driving

i electron field be low enough to allow the beam to traverse the
{. system length, L:

i 3
; ] ~eEzL = 5(52) 1. X beam electron kinetic energy (2.185)

We illustrate the above discussion with an example. Let

T —
i,

ljbl = jp & jg t/tr where jg is the peak beam current density,
{ =% 10" A/cm”, and assume a linear current rise with tr = 50 nsec.
Take a cross-sectional area of 10 cm2

for the beam=-plasma channel
and a hydrogen plasma with density of 1014/cm3, fully ionized
with an initial temperature of one volt. From Equation (2.176)
we see that if jp = ljgl, the Buneman mode would cut off at

Te = 100 volts, and we see from Equation (2.179) that we are
essentially in the ion-acoustic mode throughout the beam pulse.
Equation (2.180) has an I-A mode cutoff temperature of 4.3 keVv,
In view of the uncertainties in vg?f, we shall estimate the
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heating rate conservatively, i.e., use the smallest collision
frequency in Equation (2.182), obtained by taking (vte/vd) at
the IA cutoff (~ 43). Equation (2.183) gives the lower bound on
o:0 2 2.2 x 10 /sec for t_ = t. = 50 nsec. Substituting for
I?f in o gives 2.4 x 1014/sec, 80 we are well above the lower

bound. From Equation (2.180)
t

T () ~1.6x109<1) frt3/3dt~27volts
e'r :—7
by o

This temperature is, of course, not interesting for CTR applica-
tions. If we use an optimistic collislon frequency, (v /v ~1
[ Equation (2.182)]), 0 = 5.6 x 10t /sec, and we only marginally
satisfy the lower o bound criterion. 1In this case, Te(tr) & 1.1
keV. The sensitivity of the temperature estimate to the ef-
fective collision frequency is apparent. For a given Vesg? the
temperature is optimized by decreasing the plasma density to the
lower bound.

The remarks up to this point have been directed toward
return current heating. Simultaneous e-e mode heating may
occur, or even dominate the heating process, provided the beanm
velocity spread is not too large (Reference 2.77). The £iaghaus
criterion (Section 2.8.l1) requires for e-e instability growth

Vi \2 W, n .
2)Jor B2 (2.186)
Yo V' Tn
p
where

n, = beam number density

v, = Ims beam longitudinal velocity spread

v, = average longitudinal beam velocity
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Equation (2.186) further indicates that the e-e mode may be

initiated by return current heating if not originally present.

Both Ve i and v:?f are decreased by increasing temperature.
’

Assuming (vb/vo) ~ 1, Equation (2.186) gives

v < 4x10%—2 (v /v, ~ 1) (2.187)
p
with the densities in cm'3. Taking n, ~ 2 x 1012 cm3 from the

example above and y » 2, v < 4 X log/sec. If we determine v:?f

from Equation (2.182) with Ve /vd ~ 1, Equation (2.187) is
satisfied for both Ve i and Veff'* The heating rate is
’

2

dT_(eV) 3
e = 22 ) e-e
T—— 1.5 x 10 (np> \)eff (2.188)
where 2
n v
e-e b 0 -
P

a maximum value, The parameters of the example give

Vzif & 1.7 x log/sec - v/2

and, taking the minimum value of veff' Vef ~ 1.7 x 10 /sec.
f 4.2 keV and the

e-e mode is dominant over the I-A heating in this example.

The additional e-e heating then gives T ee

If we consider a confined system where plasma return cur-
rents have decayed, estimation of the e-e mode heating requires

=
We are assuming a linear superposition of e-e and e-i modes.
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a knowlédge of the level of turbulence; i.e., the amplitude of
the ES waves. Lewis (Reference 2.44) discusses the heating in
the linear limit.

2.11.2 A Plasma Heating Technique Using Collectively .
Accelerated Ions." Recent generator and diode development work
has shown the feasibility of constructing electron beam ac~
celerators with several hundred kilojoules of beam energy
(Reference 2,.78). One such design would employ a large annular
cathode, a design particularly convenient for collective ac-
celerations of ions. We describe a technique for plasma heating
using collectively accelerated deuterium ions. An important
aspect of the scheme is that it utilizes only reported experi-
mental results both for ion production efficiency and plasma
parameters. Any optimization of ion fluxes generated by the
electron beams would, of course, increase the efficiency of the
system. In view of the small effort in this area to date, it is
reasonable to assume that further experimental investigations
directed toward understanding the collective ion acceleration
process will lead to higher efficiencies. This plasma heating
technique must ultimately be compared, for practical purposes,
with efficiencies of plasma heating using high power 002 lasers
or the electrons themselves.

A 300 kJ electron beam accelerator, for example, can be
used in a low pressure neutral gas mode to accelerate deuterons
to energies of 2 MeV. With many small copper pipes emanating
from magnetically isolated cathodes, evenly spaced around an
annular ring, we can assume generation of 1014 deuterons/76 kA
with 500 keV electrons or 1014 deuterons/100 kA for 1 MeV elec-
trons. These numbers are obtained from published data for ion

*

This material has been reported in S. Putnam, An Intense Pulsed
Neutron and Kilovolt X-ray Source, PIIR-33-71, Physics Inter-
national Company, San Leandro, Ca., July 1971,
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production using v/y = 2 as the criterion for reproducible
deuteron energy from each pipe accelerating channel (Reference
2.79). Thus, a 1 MeV machine could be expected to produce
1.92 kJ of deuteron energy and a 500 keV machine could produce
5.06 kJ.
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We can argue the above experimentally reported deuteron
numbers from simple physics, somewhat independently of the
acceleration mechanism (see Section 4). The number of accelera-
tion ions, Ni' can be estimated from

2

N, = n f; ma ‘L (2.189)

where

n, = electron beam density

f; = fractional electrical neutralization of

the ion bunch

a, = average beam radius

L = bunch length at the start of acceleration
For 2 MeV deuterons, Bé°n, the maximum ion velocity/c is

® 4,6 X 10-2. During acceleration (in the case where the beam

front and ion bunch are coincident), 32 < B;°n, where 8: refers
to the electron streaming velocity. From Equation (2.189),

N > 4.5 x 10° T LI, ) (2.190)

ion

where
Ib = beam current

If I, = 7.8 K 104, Ny, > 3.5 X 1014 TL. We know that T,

exceeds l/y , let us take ? = 2/y . Tnen for 500 keV electrons,

Nyog 2 1.8 % 1014 1, (2.191)
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The bunch length, L, should be of rhe_orcer of the beam radius '
(~1 cm). The ion number could be doubled if the beam pulse

were long enough to accelerate two ion bunches. These ,8imple
arguments imply the perhaps obvious conclusion that higher, ion
numbers are obtainable from higher-current, lower-enerqy electron
beams. Also, the estzmate sugqests that if desired ion energies' ' '
are not too high, we can use higher currents per acceleraqing '
pipe (and therefore fewer pipes) without degrading the number of
accelerated ions. The current value per pipe above was chosen
to stay within experimentally verified parameters.

!
8

The individual pipes are to be geomerrically focused toward :
the heated plasma region with or without an intermediate trans- |
port system such as a linear pinch. The ion bunches and electron
beamlets would be transported at first within the pipes until the
pipes converged to contact and then would be transported simply
in a large tapered drift chamber. A tapered linear pinch could
be used for additional focusing as a final stage before plasma -
injection.

i i

} ' )

As an example of an application for this' intense ion 'source .
to plasma heating and neutron production, we considefr a readily ' l
obtainable plasma which possesses many desirable features for ion o
injection--the dense plasma focus (DPF). The magnetic field con=-:
figuration of the DFP increases the 1on aperture up to several | :
centimeters, and contains a 1019 to 10 /cm3 density plasma at a ! |
few kiloelectron volts over containment times from 50 to 100 nsec.
Some experiments are already underway using electrons to heat the
focus plasma, (Reference 2,66),but there are two serious problems _
in using electrons rather than ions. Perhaps the main difficulty @
with electrons is injection. The 2 MG or so magnetic field | '
containing the plasma reflects all but a small fraction of the
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electrons along thé axis if the electrons are directed toward
the anode from the exterior, If the electrons are injected
through ‘a hole in the anode, the field defocuses the electrons.
Second;y, the electron energy deposition range at 1 MeV is

2 10 meters, and collective enhancement of energy deposition

. does ﬁot appear to be significant with these plasma parameters

unless thq beam;has a very small velocity spread. The velocity
spread ¢riterion for electron-electron instability modes (the
Singhaug criterion) would refer to transported electrons enter-
ipg the plasma focus at any 6ne time. 1In view of the defocusing
effect of the DPF magnetlc field for anode interior injection,

.it appears difficult to argue a small velocity spread in the

plasma, even 'if a suff1c1ently cold beam were injected (Refer-

ence 2 67).

!
!

a In cgntrast to electrons, the 2 MeV deuterons have a range
of < 4 cm in a 10 /cm3, 1 to 10 keV plasma, and can be focused
by the 2 MG magnetlc field if injected through a hole in the
anode. (The Larmor radius, ~ 1.4 mm, is the approximate radius
of focal plasma.) Thus:eight to nine radial oscillations of the
deuterons in the ktypical) ~ 1.5 cm length of the focal cylinder
will deposit all their energy. Both the ion energy and specie

can be altered, using this scheme, to achieve complete energy

deposition within the plasma region for varying plasma parameters;

in fact,' the ions themselves can be used as a diagnostic tool to
characterize the focal plasma and "tune" the system.

Approximately one-tenth of the injected ion energy, or
190 to 500, joules, will be directly transferred to the plasma

F 20 i I
Collective enhancement of electron energy deposition is suggested

as a plausible explanation for observed neutron enhancement with
electror beam injection inside the anode.
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SECTION 3
ELECTRODYNAMIC CALCULATIONS

3.1 BASIC EQUATIONS

The purpose of this section is to formulate the quadrature
of the EM field equations; i.e., to express the fields in terms
of integrals over beam-current-source functions. We do not
explicitly include external fields, although the external field
of a linear-pinch transport system may easily be superimposed
upon self fields for analysis of the current-neutralization
problem. Several investigators have considered EM fields genera-
ted by an undistorted beam pulse passing through an infinite
plasma. Chandrasekhar (Reference 3.1) and Yadavilli (Refer-
ence 3.2) have evaluated field expressions in the wake of the
beam pulse and Zwick (Reference 3.3) has investigated the region
behind the space-charge neutralization front. The general formalism
used by these authors can be used, of course, to determine
fields over all space. Somewhat different techniques have been
used more recently by Hammer and Rostoker (Reference 3.4) and
Cox and Bennett (Reference 3.5) to look at the same problem.

Our work is directed toward geometries more relevant to experi-
ments of beams and drift chambers; in particular, we investigate
the effects of finite boundaries and finite beam risetime. The
field expressions are derived for the following boundary condi-
tions:

1. Long pipe with no endplates

2. Long pipe with a single endplate

3. Closed cylindrical cavity

3-1
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In these three cases the plasma conductivity is taken to be
constant. We also formally evaluate EM fields for the case

"of a conductivity varying with distance behind the beam front.

CALCOMP plots are included for EM fields of a finite risetime
beam in a long pipe filled with constant conductivity plasma
(the current neutralization problem) and for a beam entering a
long pipe through a conducting plate (anode window), i.e., the
beam-injection problem. A summary of the results of these
calculations has been given in Section 2.6.

We begin by formulating a qauge useful for problems with
azimuthal symmetry and unpolarized beams (no theta component
of the current density). The Maxwell's equations are

yxB = §1(3b+3‘p)+%-g-§- (3.1)
VeE = 4r (pb + pp) (3.2)
VxB = - % %% (3.3)
and V o § = N {3.4)

The "b" subscript refers to beam quantities and "p" refers to the
plasma counterparts. If we assume a scalar conductivity, o, and
take

3 = ob , o = ol(r,z,t) ,
P
the equations defining £ and B are
2 B 4 +
13 3 dmg 9B _ AT (g x § + Vo x 3 (3.5)
UxVxB+ s 2esB+ £ = 2 b
;7%2 ;’2"31:
2 dn GdE , 47 2 3o ar 33b 3.6)
VXVXE+-L5-§—7E+—7-T€+;!§§E—=—?§%— (3.
¢ ot o c
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We immediately see that B= By & E= E, ér + E, éz, and that if
Vo = 0, the equations decouple. However, even if Vo = 0, it is
not convenient to solve these equations directly since the E, and
E, equations do not decouple in cylindrical coordinates.

Perhaps the most convenient approach is to use the vector and
scalar potentials, R and ¢, with

B = ¥x2&
1 5
We obtain
> 2
+ . 470 3A 13_%
VxVxRAd+ 22 4 =
G2 3t Ty

giyb-v(ﬂ’ﬂ+%-"i)+ﬂ§ﬂ (3.8)

The radial component of Equation (3.8) is

2 2
2P 2P famo 13\l , .
- 5 g2 320r c c c at

4r . 3 [4mg . 13 4r 30
=y - 5?'(?3‘ + 2 §E>¢ il (3.9)
and the z component,

19 (FB\ 15 [FOR
ro3r\ 9z ) rar\ or

4n . 3_ (410 . 1 3 47 (30 1
c Jbz T 3z (75-'+ c 8t>¢ te (az) ¢ (3.10)

~—
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We now choose a gauge: A, = 0. Then Equations (3.9) and
(3.10) yield

2
il Y S 4o, 13 ), , 4130, (3.11)
0Zor c ‘b, r c 3/ttt % d
A A
12 z 4rg . 13 11 T2z _ 4n -
TEW T +(c +E'a'£)3ﬁ:" s b, (3.12)
) 4no 139 47 (30
?E(T*ES‘E)‘”E"\"E)"’ (3.13)

If 0 = o(t),

dA
4no , 1 3 _ 4 ‘ 2z
(C +""§'.E'>¢ = ‘c—f jbr ar -H-'Ff(zct)l

where f(z,t) is an arbitrary function. Substituting Equation
(3.13) into Equation (3.12) gives

2 2
_ 9 AZ _ _]:. -a-— raA 411,0, aA . _ 36 = g
% T - =3 3t -2 "T c b, "%z F

Equations (3-13) and (3-14) are our basic equations; we need
only solve for Az = A, inasmuch as ¢ is ‘etermined from

¢ = ¢ efamodt’ 1l e"'f"dt"[- -gi:- + Q] + H(r,2) (3.15)

where H is an arbitrary function. Equation (3.7) now gives

— = (-

o BT 0 T
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E, = (3.16)
. .3 _13a
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3.1.1 Green's Functions. Eqﬁatioq (3-14) can be splved .
using Green's function techniques for several interesting begm
problems. If the beam travels at constant velocity v in the : ;

o |

T positive z direction we can rewrite Equation (3.14) in terms of
I the variable u = y(vt - z), where u is the (positive) distance | ,
1 - behind the beam front: L ‘

W
¢ v 2.2 vk YA = s ' (3.17)
E ~ E: r " 3 ! e ' e

- 2n0yv - -
i- k & -—;%— r O constant. ! |

Let A = W e%; then ' , | : \ !

2
2 9 2 -ku
(Vr +-a-—§'-k>w‘= S e i
u
The Green's function for Equation (3,18) satisfies ]

2
2 .93 2 S§(x-x') !
(vr + _..2. -k ) C = ....._?-—. 6(u u )

and 0 0

W = f r'dr’ / du' G(r,r',u,u') s'(r',u')
o 1

[ 18
]

S'(xr,u) (3.19) !

'

The evaluation of G for a beam in infinite space, G, is
simple using standard techniques:

—————— ——
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' : ® 2 '
-/A +k§ u-u' :
R f Ae | ; | 3, (r) 3 (x') ax (3.29)
) 0

" where Jozis the zeyo order Bessel function. Another useful case

which can be obtained simply is the Green's function for a beam

ini a long conducting pipe of radius R, filled with plasma of

constant conductivity:
o :

G = = (%)
ong = (52)
pipe

' . _ '
A is defined by'Jo(An) =0, n=1, 2, ... . The boundary
éondition’Ez = 0 at r = R is satisfied by the vector potential

defined by Equation (3.20). i

The two Qreen'é functions above solve the inhomogeneous
vector potential equation [ (Equation (3.14) when the source

‘function, § = S(r,vt - 2z)]. If the beam charges are accelerated,
. the problem is more difficult and we use a slightly different

technique toisolve Equation (3.14) for S = S(r,z,t). Again we
assume a constant conductivity plasma and take the case of a
lohg conducting pipe. Expand A and S in radial modes:

|

| ' Arxr
' S (r,z,t) = Z S, (z.t) I, (%)
| o - n=l (3.21)
A.r
’ | A (r,z,t) = Z A, (z,8) J, (%)
n=l

S

=

— -

L
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where 3, (A ) =0, n=1, 2, ... n. If jbz or fz jbr dr' are

not zero for r = R, we define £(z,t) = £(R,z,t) so that S(R,z,t) = 0.
Equation (3.14) gives

2
2 2 A
[ (@) ]n - en o
c t c

Taking the Laplace transform with respect to z + s and t + p,
we obtain

S (p,s)
w2
32 - [ir (p+2mg?)+ (Eﬁ) ]

+ (homogeneous terms involving initial
conditions and boundary conditions at z = 0),
2
A

wnz = (ﬁﬂ) c2 - (2nd)2

A, (p,s) = -

(3.23)

We take the homogeneous terms to be zero, since the method pre-
sented in the closed pipe problem below (Section 3.3) allows
superposition of the proper homogeneous solutions to satisfy the
boundary conditions at the cavity end plates and the initial
conditions.* The inverse transform with respect to z gives

z . 1l 2 2
S(p,u) 31nh|~ (p+270) “4+w (z-uJ
A (p,2) = (=0 ./” du c.\[f n ,

n
(o) \/(p + 2170)2 + wnz

*

In other words, by using Equation (3.24) for the solution of the
inhomogeneous vector potential equation which is the complete
solution for a pipe without endplates, we can obtain the solution
for an arbitrary current distribution in a closed cavity by
adding homogeneous solutions using the method of Section 3.3.
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Finally, taking the inverse transform in t,

2 t
f du f ds s (u,s) e~ 270 (t-8)
° °

-3, (wn \I(t-s)2 - (“—';1)2)3 [ (t-o) - (‘-’-’53-)]] '

where H is the Heaviside function;
BE(x) = 1, x>0
= 0, xS0

If wz < 0, Equation (3.24) is changed by replacing Jo by Io' the
modified Bessel function.

We complete this discussion of EM quadrature formulations by
including for reference the well-known Green's function for a
static charge distribution in a closed cylindrical cavity. This
static potential is useful for determining the EM fields in a
cavity when ions are present before the gas breaks down and current
neutralization effects are important. In other words, before break-
down the EM fields can be approximated by a superposition of the
beam fields (obtained with o = 0) and the electrostatic fields of
the ion charye distribution. We desire a solution of

V2¢ = = 4mp,

|G G

D

>,

{

/= T T

-~
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with B.C.

(+R,2) =

%) tvu:
N

Y (r,0) =

L is the length of the cavity.

7% = 478 (r-xr')/xrl 6 (2-2') and

R

<
i

(o] (o]

Using the representation of S

©0

G(r;r') = _2__2_ Z

n=1

)

we find

G (r,r', 2,2') = %ﬂ

A

. n
sinh 7

0 (3.25)

2 (r,u) = o0,

12

The Green's function satisfies

L
‘/.zﬂ dr! ./az'G(r,r',z,z') p(r',z').

r-r')

rl [4

1

T;I.7;:7T§ Jo(i%f) Jo (iﬁfi)

o 3 (Anr)J (Anr')
o) R o) R

AL
n=l} 2 . ( n )
Ay [Jl(ln)] sinh \ &~

(3.26)

A
sinh (Ea)z sinh Eﬂ (L -2'"), z < 2
A

A
(L - 2) sinh §5 z', z > 2!
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3.2 EXACT EM FIELDS FOR A BEAM IN A LONG PIPE FILLED WITH
CONSTANI CONDUCTIVITY PLASMA--THE CURRENT NEUTRALIZATION
PROBLEM

We discuss the exact EM fields generated by an undistorted
beam passing through a long straight conducting pipe of radius R,
filled with a gas of conductivity o, and present CALCOMP field
plots. These fields are of interest in low temperature beam
transport problems with a pre-ionized gas or in multiple-pulse
experiments where previous pulses have ionized the gas. We allow
a pulse with finite risetime and explicitly evaluate fields for the
case of an exponential current rise. The current density profile in
radius is taken of the form Alr

Jo (‘ﬁ‘)

a function which gives closed expressions for the fields.

3.2.1 Assumptions

a. The gas pressure or plasma density is high 2nough to
justify using the concept of conductivity (p 2 0.5 to 10 Torr).

b. jbe = Jp, = 0; i.e., the radial and theta beam current
density components are negligible,

c. Azimuthal symmetry.

*

The material of this section was reported in S. Putnam,
Theoretical Electron Beam Studies, PIQR-105-3, Feb. 1969,
Physics International Company (submitted to DNA).
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SN glu) = (1-e"% , u>0 | .
' (3.27)
’ " = ;
: i 0 0 <0 ‘
4 !

where u is the distance behind beam fronts (positive)=y(vt-z), C,
~ is the current normalization constant,:Al is the first .zero of Jo’
- the zero order Bessel function » 2.4, Figuxe 3.1 shows the radial

ie and u-dependence of jb . '
V4 H ]

r - ) . >‘l -
f_ --»---Cl g(u) —_—— :‘-" bl Jo(ﬁ- r) |
] - ' ' ~ I -3, (u)
; -3, () . _ L S
‘e 2 \\\\\n t : u >0 ' oux 0 :
' : — u=0 '

. §
Figure 3.1 The radial and longitudinal profiles: for jbz'

The radial form dependence of jbz is chosen fot mathémat%cal
simplicity, and because it has the aépealing properties of a
E maximum current density at r = 0 and zero at éhe pipe fadiué.

Also, this zero order mode will usually dominate .the EM field

expressions with more general radial profiles.
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: . 13.2.2 Basic Equations and Discussion of Model. The |
equ?tioné that the EM fields satisfy with the ' above assumptions,
are ' ' ‘

| - T2y ) a2 L ' '
1a(a> 3% 1 3 41r03) i '
= —_— + + = )A = =3 (3.28)
| ( T oT\" 322, o2 pt2 o2 OF e b, C
. ' i ) ' [ R
' \ “fams . 1 3 Y b
| (-c_ . 5‘5) 6, = - 32 (3.29)
: . 1
1 | ~a¢ ‘ !
, B = 3¢ ‘
J ) ] \
! = _ 3 _ 12 !
By = 9z " &3t  (3.30)
I . ! . _ -'aA ! ¥
By 2

' ;
! ) !
' where. A is ‘the z-component of the vector potentlal
. $ is the scalar potentlal
0. 1is the conductivity (a constant). ; '
H ) l . ' |
Rewriting Equations (3.28), (3.29), and (3.30) in terms of the

variable u gives '
1 ' i
1

o | |
[ 13 d "9 4
i fr2) - S5+ 2k ) A = AT (3.31)
] \ r dr ( ) 3u® au) ¢ by "
- 2moyv
. ko= S
’ c
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caiag

-gu
¢ = £ / e 3R g5, ¢ = ZK_
8 N 9s Y252
= ]3¢ _ g 32
E, = Y[au 8 8u]
A
We now take A = J (-—-r) A(u)
0 \R
A
= 1
¢ = JO(R r) ¢ (u)

and Eguation ({3.31) reduces to
2

(3.32)

(3.33)

(3.34)

2 A
[__ 2?_ + 2k _g_ﬁ +(E]_',) ] A(u) = (— -40—1T-) Clg(U) = S(u) (3.35)

The solution of Equation (3.35) is

u
Alu) = - {e"“/g‘k)“j 8 -Ks giqas
2/E

u
_e+(’/€+k)u/‘. e"(/g +k)s S(S)dS}
+®
2
A
with & = k° +(§-1-) .

Substituting in Equation (3.35) for S(u) and referring to

Equations (3.30) and (3.34) gives

3-13
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T

_ _ 4w A Al
! (fr) Jl(r*’)

nNsu
1 o &Y Lo _}
2/E n,(n,to)
1 [, 2 (1 e‘”lu) ,J
2/E ("2 M1 ‘
3.3 U

—

:-"---

} SR

t‘,—".' —

where n, =vE -k , (>0) |
d
n, =v&+k |
-
Similarly, using Equations (3.30), (3.32), and (3.33), L
|

n,u
A A 2 b

Ey =(_%1_r Cl(ﬁl)Jl(f{J;r) ; = u <0
28YE (e+n,) (ny+a) :
n,u
_ (_ﬁ)c (il) 3 (_A_l r) a e &Y () (el Loe®)
c 1\R I\R 28/F Yn2+a) (e+n2) k(nl—m) Ye:--nl y
(1) .
. (ny+n,) (e~ %Y.~ EY)
r u>0
(ny-a) (ny+a) (e-a)
A\ J
Y
2
(2) (3.38)
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and finally,

L aac Ty gt iirg ey

Fo 1: A o n, (u) n
E ' BE = -y J _..]_'. r _4.1 .__.l o e 2 l 2 - B , u < i}
A z o \R c 2/E n2+a B €+T'I2
R
‘ ( -n,u  -€u
] . oy (31 )411 1 fo[ 12 \Mm® e /et
i de o \R Jc 2/E B In;-a €-ny (n2+a) Te+n2)
3 - . v -/
3
| 1
S 1) (e (1) (3.39)
~-1) (ny4n - n
- o 1l "2 1 ge~0U. -Eu
(ny-a) (n,+a) €-a
- 1 2
\ v
- -ou (2) nlu
TR e - e @ _-ou
. - Ble + e , u>20

At this point, we remark about several properties of the

above field exprcssions. As expected, Er vanishes at r = 0, Ez
is a maximum at r = 0 and vanishes at the pipe radius, and

By = 0 for ¥ = 0 and increases out to r = R. The ilectric fields
decay exponentially to zero behind the beam front, whereas Be

; approaches the value from the beam current only. The fields

. extend in front of the actual beam head, and are attenuated in

P ]
. '

. front of the beam. The e~folding length in front is L = 1/y
L. (»/ﬁ2 + (Al/R)2 + k)-l, indicating the effects of both the plasma

relaxation length (1/k) and the geometrical factor, R/Alh If
6 = k =0 in the medium, as would be the case near the head of a
beam propagating in a neutral gas, L = 1l/y R/Al.

®
When o0 = k = 0, Er does not vanish far behind the beam front.
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The field configuration moves with velocity v, the beam velocity,
and the penetration ahead of the beam is compressed or expanded
about the beam front depending on y. As Yy increases, the fields
compress about the head, and in the limit y + «, the leading edge
is "blunt."

The field expressions for u > 0 change form when the beam
drives the tube plasma at resonances; i.e., when any of the
denominators in the equaﬁions vanish.* For example, if n, =a,
Equaticn (3.37) for By with u > 0 becomes

A A -0 .1
By = (:f?l)cl(i‘l')Jl(i'l‘r>"l‘" l"'l‘(l‘e 1)
In; =« 2T "2 %1
-ou e Y
- ue - n2+a ,u> 0, (3.40)

The resonant forms for Er’ u > 0 are given in Table 3.1.
Refer to the numbered terms in Equation (3.38).

*
All expressions in Equations (3.37), (3.38), and (3.39), are

finite as given. We merely rewrite the equations in a more
convenient form at resonant conditions for use in computer

evaluation of the field expressions. The term resonance is
used because the beam current drives the plasma tube system
at eigenmodes of the homogeneous vector potential equation.
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TABLE 3.1
Er RESONANT TERM REPLACEMENTS
Resonance Replace By
Tll = a
1+ 2 e-au _.~€fu
€ # a e
(n2+aYKe+a)
-ou
- - ue
nl o £ 14+ 2 n2 e
Ny # a L ) n,u
— u e
k! : o (2) LT u e M
€ = a (n,-a) (ny+a)

Finally, we look at the resonant forms for Ez with u > 0,

Equation (3.39).

Again referring to the numbered terms and

using Table 3.2, the Ez equation changes may be obtained for the

various resonances.
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TABLE 3.2

Ez RESONANT TERM REPLACEMENTS

Resonance Replace With
nl =0
1 yoe og o FY
€ # o (1) + (2) (e-a) n, + o
(3) e (au-RB)
nl =0
1 ou
(1) + (2) e (ou-1)
£ = g (n2+a)
(3) ™% (+qu-B)
n, # o
1l -n,u
1l 1l
(1) ( e (n,u-1)
€= nl-a) 1
1l
n, # o
(ny+n,)
1 '2 -ou
€ = 0 (2) " Tnp-o) (n ¥y © (eu-1)
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The above equations have been programmed to obtain CALCOMP

plots of Be, Er’ and Ez for a given set of a, k, B; ai/R
parameters, including all resonant conditions.' Several plots are!

given below. To obtain field values use

A A

By = (-) B THETA (%-TL)Cl (El)Ji (ﬁ%'r)g(gaussg
I
47 A, Al ; ‘
E. = (=) ER —=C; (g7) J; (g7 xr) x 300 V/em (341)
E_ = (-) EZ am c, J (ii r) x 380 V;cm :
2 o] l "o 'R . i ;

where B THETA, etc., are the ordinates of the plots, and

peak

A a ; ‘
¢, - Iy, 20(amps) i!2.0 . %A‘) . 3.42
m . \R 1'% ‘ .
47mC ' ' ’
and cl = (0.923 IE/RZ,‘ R in cm. ;

1f 1°°%% _ 5 x 10% amps, 4uCy/c = 4.6 x 10%/8%, and, e.g.,

A A )
_ 7 "1 1 (
EZ = 1.4 x 10 ;2- Jo(ﬁ- > EZ V/cm .

i
We also plot a function that indicates whether the assumed

beam profile function is constrictive or divergent; i.e., whether

the radial force on the beam electrons is inward or outward.
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_The radial force on a beam electron for constant z directed beam
velocity, Fr; is ;

§"- — -
F_ = -e [Er g Be] (3.43)

 Thus, if Er'- Be > 0 the beam electrons experience a pinching force.

We have'

Constriction: Er - BB6 > 0 or (ER - BB THETA) < 0
H !

Divergence: Er - BB6 < 0 or (ER -~ BB THETa) > 0

1

.\ piot of (ER -~ BB THETA) = ERBT accompanies the field plots for
|

H
each case below. Table 3.3 gives the parameters .or the graphs.
! ; '

TABLE 3.3

' Case ‘g B k A,/R
1. 1072 0.7 6 1
2 1072 0.7 0 1
3 1072 0.7 49.995 1

| 4 1072 0.99498  49.995 1
5 ;1072 0.7 6x10% 1

The o value 10"2 corresponds approximately to a current two
e-fold;ng time of 7 nsec. We have taken two 8 values correspond-
ing to ~ 200 keV and 5 MeV electrons. The three k values correspond

to conductivities of

3-20
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0 (vacuum)
3x1010/sec (weakly ionized gas)
50 2.4x10ll (intermediate conductivity)
6x10% | 101 = 100 mhos/cm (fully ionized plasma

of ~ few eV temperature)

The graphs exhibit many interesting features with physical
application. First of ali we note that Ez is small and negative
for u < 0, and reverses sign when ¢ # 0 just behind the beam
front, Recalling from Equation (3.41) that the graph EZ values
scale directly with Ez at the center of the pipe (r = 0) where
JO = 1, the field peak for case 4 (5 MeV electrons) with Ipeak =
5 x 104
course, bunch electrons near the center of the beam, with the

amps, e.g., is ~ 9x104 V/cm. Such an Ez field would, of

maximum bunching determined by the electron kinetic energy. Near
the pipe wall where Ez is zero, the electrons would precede the
center electrons, suggesting the formation of a current sheath
near the pipe wall in front of the beam core.* Beam electrons
would be bunched near the center until Er rises to overcome the
V x B force (ERBT > (@), when electrons would be lost to the pipe.
In other words, we see the crude outline of the beam penetration
process and a possible ion acceleration mechanism near the beam
front. The actual ion energies attainable may be considerably
higher than the primary electron kinetic energy, depending on the
duration of the fields or the trapping time. The duration
depends on the effective penetration velocity in the medium and,
for the cases where the beam ionizes the gas, the breakdown
distance. We consider these guestions in more detail in Section 4.

This variation in E, with radius points out an essential dis-
tinction between beams in large cavities and in pipes with radius
nearly equal to the beam radius. The current sheath effect in
pipes has many interesting implications for stability and beam
bending.
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The By plots indicate the time or distance behind the beam
front over which partial current neutralization decays and thus
where the By values approach those of the beam only. As B THETA

approaches (n1 n2) , bPlasma currents become negligible,

A finite heam length as well as multiple pulse fields, or
any cother desired superposition of currents may easily be
calcuilated for the assumed radial current function of the model.
The results given by the model may be experimentally verified by
low pre-ionization of the gas, We can ensure that electron
avalanching will not occur, and therefore that the conductivity
remains roughly constant, by keeping the E-fields below deterx-
mined levels for a given gas pressure. Equations (3.37), (3.38),
and (3.39) then directly give the required conductivity to
achieve this criterion. The wall currents, plasma neutralization,
etc., are given by this theory.
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1 4
- Case 1. Weakly Conducting Gas
ix
ﬁ, Parameters:
‘ g =~ 3x lOlo/sec ~ 3 x 1072 mhos /cm
;” E = electron energy = 200 keV
- R = 2.4 com
. t = 7 nsec
) x
i Ig = 5 x 104 amps
o Be(r,u) = -8 x 103 Jl(r) B THETA (gauss)
- B (r,u) = - 2.4x20° 3, (x) ER (V/em)
- Ez(r,u) = - 2,4 X 106 Jo(r) EZ (V/cm)

S
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Parameters:

Be(r,u)
Er(r,u)

EZ(r,u)

Case 2. Vacuum Propagation

g = 0

E =~ 200 keV

R = 2.4
tr = 7 nsec
% = 5:<m4ammms

- 8 x 103 Jl(r) BTHETA (gauss)

6

- 2.4 x 10 Jl(r) ER (V/cm)

- 2.4 x 10° J_(x) Ez (v/em)
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Note that EZ is in direction to accelerate beam electrons.
Space charge field dominates inductive component.
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- Case 3. Intermediate Conductivity, Low Energy Electrons )
g : 1 '
S
oL
§ ‘ Parameters: o : .
£ 7=
3 N i-d t ] ‘
‘ . 11 . :
] v 0 = 2.4 x 107" /sec = 0.24 mhos/cm , |
s E = 200 keV '
3 ;

i R = 2.4 cm ‘
¢ 3 t. = 7 nsec '
P_ 4
r E Ib = 5 x 10 amps
s Lo i i
P 3
; } By(r,u) = -8 x 107 J,(x) B THETA (gauss) - . \
:
Er(r,u) = -2.4 x 106 Jl(r) ER (V/cm) .

E,(r,w) = -2.4 x 10° J_(x) BZ (V/cm)
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Case 4.

Parameters:

Be (r,u)
Er(r,u)

Ez(r,u)

Intermediate Conductivity, High Energy Electrons

= 2.4 x loll/sec 2 0,24 mhos/cm
= 5 MeV

= 2.4 cm

= 7 nsec

= 5 x 104 amperes

-8 x 103 Jl(r) B THETA (gauss)

-2.4 x 10° 3, (r) ER (V/cm)

-2.4 x 10° 3 (r) EZ (V/cm)
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Case 5. High Conductivity

ot Do g

cr e T R TR R T RS R

E z Parameters:

|
; _ 1014 . |
i - ¢ = 10" '/sec = 100 mhos/cm |
L '
; E = 200 keV

E .

g o R = 2.4 cm

| =

: t. = 17 nsec

. r

% Ig = 5 X 104 amps

- 8 x 103 J](r) B THETA (gauss)

Be(r,u) =
Er(r,u) = - 2.4 x 106 Jl(r) ER (V/cm)
By(r,u) = - 2.4% 106 5_(r) B2 (V/em)
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Case 5.
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3.3 THE CLOSED CAVITY PROBLBM*

! i i

3.3.1 Introductidn. The solution of the exact electro-
magngtxc (EM) equations for a 3 parameter beam (finite rise time,
pulse width, and' decay time) crossing a drift chamber of finite
radius and length is presented. The chamber is filled with a

plasma of constant conductivity and the walls are assumed perfect-

1y conducting. Two beam current density radial profiles are
considered: a uniform current density out to the beam radius,
~and a Gaussian profile typical of pinched beams. The problem is
set up to handle any orderipg of beam and chamber lengths.

The solution is obtained in terms of a single infinite sum
.of radial modes; each mode contains a translationally invariant
part which gives the fields for a long tube without endplates,
'and a finite integral which derives from the radiative fields of
the‘sﬁrface.charges!accelerated by the beam fields as the beam
passes through the cavity.'

; The endplates considerably complicate the mathematics but,
of course, must be.included in any theory which attempts to
compare with experimental geometries. The endplates have a major
effect on the electric fields when the fractional electrical
neutralization, fe < 1l; the perfectly conducting endplates "short
out" the radial electric field near the plates, and the magnitude
and; indeed, the direction, of the longitudinal electric field
are‘changed by the existence of endplates.

x .

This material has been reported in S. Putnam, Theoretical
Electron Beam Studies, PIQR-105-4, Aug. 1969, Physics Inter-
national Company, (submitted to DNA).
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3.3.2 Mathematical Development. The basic EM field

equations for azimuthal symmetry that we need are
; ¥ 2 2
] 12 ( ? ) ] 1 2 410 3 )
— - = r - — + A = S (3.44)
i ii ( r or \" 9r 22 o2 a2 G2 Ot
E
- - - 4T . _ 00
2 z; s sourze function 5 Jbz o (3.45)
A :
e L Q = %—1 /J’b ar' - £(z,t) (3.46)
e o
] 4mg . 13 22
{ (-E_ + 3 gg) $ = -3z +Q (3.47)
§ )
i
2 : _ _ a¢
E, = 9T
3¢ _123a
_ _ 9A
By = -3¢
where A is the z-conponent of the vector potential

¢ is the scalar potential
o is the conductivity (a constant).

f(z,t) is an arbitrary function which is useful for specifying

boundary conditions at r = R. This function derives from the choice
of gauge and will be taken zero below.
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We transform variables above for mathematical convenience.
Let u = y(vt-z) = distance in the beam frame, which we assume
moves with constant velocity v. Let

uo = yvt

= +
u u, + uy

\11 = "'Yz

In these variables the equations above become

2 2
13 3 \_.223 2,2 3 d _ 47
[rar (z ar)Y;;i*YB -—5”"53;]“ = & Jp, 99

1l auo
9 ) 1 23A
(auo B ul
k=2_"9_;_!,e=% (3.51)
c BTy
'\
E, =-3
r or
- ) _ JA
Ez = Y[—a-% BW—] } (3.52)
o
B =-.§..A..
e or

We have taken jb =0, or Q = 0, in these equations for mathematical
simplicity. Therradial beam current component can easily be

handled in the methods developed below, but since the main point
here is an exposition of boundary effects, we take jbr = 0 in our

beam model.
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The boundary effects (surface currents and charges) give
homogeneous contributions to A; i.e., Equation (3.44) with 8§ =0,
and since they are not translationally invariant,we must keep
u, and u, as independent variables. However, the particular, or
inhomogeneous part of the vector potential, Ap, deriving from
the beam current,is translationally symmetric under the assumption

of constant beam velocity, and we write Equation (3.49) as

2
N WA T P _ 41
[ r odr ( ) '—7 + 2% 5_] Av o= 3 Jbz (x,u) (3.53)
The vector potential, A, ¢, and S are now expanded in radial
modes:
P An 7
A = E An JO (—ﬁ'?)
n=1l
S = E S, Jo (-ﬁ—r) (3.54)
n=1
[ -]
A
¢ = 2 : *n o (§£ r) /
n=1

where An are the zeros of Jo' the zero order Bessel function. The
Equations (3.53) are appropriate for a conducting wall or Ez =0
at r = R, Substituting Equation (3.54) into Equations (3.49),
(3.50), and (3.53),

2 n
ST <§->] .
2 2
423 2+Y2329__7+ 2k 3 (ﬁﬁ) = 0 (3.55b)
duy
3A
(a_+ E) o = .é__a__rz {3.56)
duo n ul

S L. e e dad A
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g

|

where f
A, = aPu+ Anh -

Anp = Anp (u) , the particular modal component -

Anh = Ahh (uo, ul) , the homogeneous modal component [ﬂ

If we consider a finite perfectly conducting cylindrical cavity
(see Figure 3.2) the boundary conditions are

Er = 0 | (3.57)
ul=0, - yL

or, if Anp = Anp (u) = f1 (uo) fz(ul). the factorability implies
that Equation (3.57) may be satisfied by taking

BAn !
’GT = 0 l (3.58) r )
1 u1=0l - YL ’
This is obvious if we integrate Equation (3.56):
-€u u
(o) (¢} dA
- e €S °'n
o z f e -——aul ds (3.59)

T
AT te T
| N

Beam current conducting
profile u, =0 u -YL walls

L

N -~
i
[\

Figure 3.2 Cavity geometry.
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The initial values of Er', E, and .IBO must also be specified
for all0< zsLatt=u = 01 to define the problem. If we
assume the beam front to be at z = 0 for t = 0, An and 8An/au°
must equal zero:at t = 0 for all uy inside the cav;lty if the end
plates are perfectly conducting, as we assume.’ \ !

We now proceed to determine Anp for'a beam with finite rj.se
and decay times. We assume a beam profile

jy = flx)gu)

z | : "’.(
with
f(r) = <cCH(a=r) = C, 0=r<a |
= Q, r > a
and ) . I
) . ’
glu) = 0, us<0 ‘ ' , (3.60)
( ,-alu) . ' '
= - s us
1 e : 0 u Tp 1
~G,u - -1l ’
_l-e 1 ) <l-ea2(Au)) :
-az(A-'r ) _ .
l-e P
sus< A
'p
= 0, uzA J
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Figure 3.3 shows the function g(u). Note that the square wave
pilse limit is obtained from Equation (3.60) ' by letting a * @,
a, > =, A+ 0, with az(A-tp).reﬁlaining constant as the limit

‘ : is’ takeno !

(u):

Figure 3.3 The u dependence for jb'z

We obtain the source function for the nth radial qug, Sp¢
from ‘ | | '
' ‘ Ar!
4n . - 4m 2 1 ; ' vy g | -B
S T =3 =_g(u)[7 ’/)irt(r)c‘R
R ¢ -b c 7 i li
Zn R Jl (An) (o}
o o4n [2 ' c . a lJ }-’la’ g(ﬁ) | (3.61)
IR RN 2 \R/"1 \R
n [Jl(J\n)]

| = Fp g(u)

and Equation (3.55) becomes
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B j
i -32+2ka+3‘1‘-2 AP = F_g(u) (3.62)
E aui Ju R n n 9 .
' E.. The quadrature for Equation (3.62) is
b
4 ] u
1 F -n,u n,s
- Anp - n_J, 1 j‘ el g(s) ds
s 2/F / o
n,u A =n,s
. -e / e g(s)ds (3.63)
I3 +“
: with 2
N = 2 n
) E = k% + (ﬁ")
nl = /E- - k
L
n, = /& +k
[.
. Although each of the constants defined in Equation (3.63) is n
%_ dependent, we will not explicitly denote them as such. Using
g(u) from Equation (3.60) in Equation (3.63) we obtain after
| straightforward integration:
- f n,u N
* 1‘1 e , s 0
-n,u -a. 0 n,u
F l—-+-—+r2e1-r3el+r‘4e2,0$usr
' AP . n M2 LN
n 3 41
I —mu nau otzu
e I‘5+I‘6+e 1‘7—I‘8e , T.Susd |
:
- =-n,u E
rge b, uz (3.64)  J
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The constants defining the longitudinal beam profile are

~a_A -n,T -N,A
A 2 (a,=n,) 1 (a,-n,)A 2p __ 2
Pl = Q :—-_-_—n—- e 2 72 p—e 2 72 ""e n L= (3.65)
2 '2 ' 2
( -nzrp) -(n2+al)‘rp
s M - e _1-e ,
N2 Ny + oy
-04 T
a - 1l -e l'p
- -GZ(A-T )
l-¢ P
a
P e
2 nyiny=ey
R | 1
3 nato;  NyTey
- 1 1
r E T, ==+
4 1l n2 n2+a
. e-a2A+(nl+a2)rp enlrp
r = Q -
5 nl + a2 nl
(ny=a,)T ) (n'r )
) (e t1p.a) \elP.,
M~ % 5]
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P7 = Qe 2 £d-- l—
N7 My
A -, A
- 2 1 1
r Z Qe
8 (nl-m2 n, “2)

n My =~ %

R nlA nltp azA
+q {8 - e _e .

n Nyt

(ny+a, )4 (nyto,)T
(e 179277 T2 p)

The above equations for Anp satisfy continuity of the functions
and their derivatives with respect to u at u = 0, rp, and A, as
required by EM field continuity.

We digress briefly to remark that we have now obtained the
vector potential for the case of a finite pulse with current profile
given by Equation (3.60) traveling through a long conducting pipe of

radius R, filled with a medium of conductivity o :

00

A r
Alr,u) = ZAnp(u) 3, (-—2—-)

(long pipe) n=0

with Arp(u) given by Equations (3.64) and (3.65). This result is
a generalization of the problem discussed in Section 3.2, where a
semi-infinite beam filling the pipe [radial current variation
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« Jo(klr/R)] was considered. We have directly obtained the wake

fields in the pipe from Equations (3.64) and (3.65) (u®A), and could

easily continue the calculation for a second pulse in this wake.

We return to the finite length cavity problem and determine

the homogeneous vector potential terms to be added to Equation(3.64)
in order that the boundary conditions, Equation (3.57), be satisfied.

The equation for Anh is

2 3% A \2
29 2,2 ) “n h
-ys T tYE 7+ X 5 *\R A, (3.55b)
3ul ou o)
o
With aa aa P aAnh
— = + = 0 ,u, = 0, - yL (3.66)
aul aul aul 1l
Let us define a function Wn(uo, ul):
- h k
W, # A" exp (Ej;f uo) (3.67)
which satisfies
2 2
109 3 _
1 (o}
W (0,u,) = A (0,u) (3.68)
e | n i | “
awn aAnh k
‘a-\‘l"o" (0,\11) = -a-u——' (O,ul) + ;2-;7 An (0,\11)
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17

h
)uo 3An

aul

¢ o (- ()
By R B 2

" (x/8%y?
du; (Uorty)= e

)

u =0,

o The initial conditions are then that all fields in the
cavity be zero before the beam enters the cavity, or A ¢ OA /au = 0
for u = 0. We can easily make A, P ana 22 p/31-1 =0 at u = 0 by

subtracting A P for u < 0 from A, P of Equation (3 64).
A P for the cavity problem, A P,

It is convenient to take the beam head (u = 0) at u, = 0 when

Define a new

4 O, us<?0
1 1 M Bt ke u
HI"'FZ-""Pze -I‘3e + (1‘4-I'1)e ’
0sus 71
F -n.u PRV o,u
AP = B < re l+r +rorpe? -rge?; g
. s us A
" P
n
-N.,u 2
9
\ ]
(3.69) §
3
%
i
i
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For the mcment let us not worry about the form of th when u = A;
Nou

the homogeneous function will remove the divergent e 2 term.
The initial conditions for W, are now
oW

S—rl =
Wh(o,ul) auo (o,ul) 0

In order to solve Equations (3.68) we use the Laplace

transform technique and transform with respect to u,s

2 W
9 2, 2 _ 2 n
- 2 + 8% (p°+Q) Wn(p,ul) = B%ip Wn(O.ul) + 35— (0,uy)
ul (o]
= 0 (3.70) .,

The boundary conditions therefore enter only in the homogeneous

solutions of Equation (3.70) which we write in the form

cosh B/p§+Q (ul+yL) . fz(p) cosh B/p2+Q u, (3.71)

8/p2+Q sinh 8/p2+Q yL 8/b2+Q sinh B/p2+Q 1L

Wn(p,ul) = fl(p)

where fl and f2 are functions of p chosen to satisfy

0BT -k/Py? ug Wy
+ e ° 5=
aul uy
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0 ;u<o
r 1
-nlu -a,u nyu
- nlrz e + al I'3 e; + nz (I‘4--I'l) e H
I
=P
aAn _ Fn 4 0su=x<r
Ju ]
1 2/ -n,u “2/u a,u
- nlrs e + nz (1"7-R1) e - a2I‘8 e i
L
: T <us< A
!
= Nyl © - npfy e L AL
(3.73)
When ul =0,
aAnP Fn -nluo :-aluo , n,
= (u_,0) = =)= n,T, e + a,I', e + N4 (l',-T,) e
8u1 o) 2/F {[ 1'2 1°3 ? 4 "1
* H (uo) H (Tp - uo)
[ -niu N .0,
+|- anS e 1% + Ny (r7-rl)e 27 - azrs e 2 o] H(uo-rp) : H(A-uo)
[ -n.u n.u ]
170 20
+|- n1F9 e - n2P1 e ] H (uo-A) } H (3.74)
H is the Heaviside function.
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similarly, when u, ==~ YL,

an P ' F -n,4_  n,yL -a,u_  a,YL
n . ‘= n l0 |1 170 "1
Tu, or - YR oE {[’ M, e e tolye e
! r n2uo -nZYL
+ nz(rq-rl) e e H [uo-yL] H [yL+tp-qu

nzuo -nZYL

-n,u_. N,YL
1% 1

+ [-nlrs e
. : a,u -0 yL]
, - 270 2 T -
, “ZPB e e H [uo YL rp] H (yL+A u)
] .
' -n,u_ n,yL n,u. -n,YL
10 _'1 2°0 2
+ [- n1P9 e | e - nzrl e e ] H (uo-yL-A)} (3.75)

We are now in a position‘to determine the fl(p) and fz(p) of
Equation (3,71). Inspection of Equations (3.74) and (3.75)
reveals that we need the Laplace transform (L) of the function

e © H(uo-G) H(W-uo). Elementary integration gives

=-vu

=¥ (v+1 )
Lle © H(u-9) H(‘P-uo)] = 5}\) {e““\’*m- e P} (3.76)

Equations (3.71), (3.72), (3.74), and (3.76) give:
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Bao b o,

&

-

~tp(n1~k/82Y2+p))

F -n,T (1-e
oW n 1" 2
o 1 2/k p+ (n - k/8%y?)
-t (0;-k/8%y2+p) -t_(p=n,-k/82y?)
L. p ) p (PN, Y
nz(r4-F1) l-e

@0y
+ 2] 73
P+ (o) - k/B"Y") p - (ny, +k/B%Y)
-1_(n,-k/8%y%4p)  -A(n,-k/B%y%+p)
-n,T e P 1 - e 1
15
+
p + (nl - k/givz)
. 2.2 2.2
. n2(17-rl) (e—rp(p-nz-k/e Y )-e-A(p-nz-k/B Y )>
p~(n,+ k/82y?)
2.2 2.2
) azrgé : (e-rp(p-az-k/e Y e‘A(P‘“z‘k/B Y )> (3.77)
p- (o, +k/B%Y°)
n.T ~-A(n -k/82Y2+p) n,T
19 1 _ 21

e e

p+ (n,-k/8%y?) p- (n,+k/62y%)

Similarly, using Equation (3.75),
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A

-

+

+

-
p- (a2+k/ B:YE)

, P n,YL
g-g— (p,~yL) = = fz(p) R : M..T
1 2T {p+tn 1—1:/521 )
- o sa2.2 a; rk
e (yx.ﬂp) "‘1 k/8%y +p))+ "lra‘ + e-yr.(al-k/ezyz
P"‘(&l“k/BEY!)
) e- (YL-H'p) (al-k
n(r-r)e-nYL ~YL(p~n.-k/82y2 2,2
2V 4™ . YL(p nz k/8°Y®) “(YL+TP)(P'ﬂ2-k/B Y")
p-(ny +k/ B:Y!) ¢
n, YL
nlrse 1

Lt
p+(n, ~k/8%y?)

- (1L+15) (n)-k/8%y 24
(e ) (ny~k/8%y%4p)

‘nzyL

b~ (ny+k/82y2)

-azyL

azrse

L nliL
nlrge

< c (YI+7 ) (p-n,-k/8

- - 2.2
(e (yL+'rp) (p a2+ kB8%Yy )_

p+(n1'k/82

( - (YL+2) (nl-k/82Y2+p>
I -
;
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-e

= (YL+4) (p-uz-k
e

-1
n2rle

2YL

e
p- (N, +k/B4Y2)

YL{n °k/3212+p)—(t y
e 1 P

+p) $

/Bzvzﬂﬂ) [

= (YL+4) (nl-k/BzYz'*'P)) i

,,...w\

(3.78)

- (YL+4) (p-nz-k/82Y2)>

/szv2>)

- (YL+2) (p-n,-k/82y? ;




}
We have now completely defined Wh(p,ul)%\ Th;‘terms of f1 and f2
are of the same form and we need to invert tol(uoul) space functions

of the form i ‘
|

. L i ) . |
C * cosh B¢pi+Q (u,+b,) =b.p . ;
171 -1 e 3 ;

8/p+Q sinh B/poHQ vL , . \ !

where C, bl' bz, and b3 are constants. Denoting the inversge
transform by 1™! we have, ' ' S
u .
-1 ‘/'Q , .
L-(6)] = ds h, (u)h,(u_-y) (3.80)

(o]
S - 8vp2+q (uy+b))
with h,(u)) = <—) L :

)
B 8/p24Q sinh BVp2+Q YL

-b ) -b (u -b )
-1 1 3 2(857P3 |
h2 (uO) = L [51-5; e ] = @ | H(uo-‘-b3)‘ . )

We can write hl(uo) as

t

. ,
o ° / 2 2 .
hl(uo) = -5/0. Jo Q(uo -v®) .f3(v)dv‘ '

(3.81)

_q rcosh Bp(u,+b,)
with £i(u) = L7t i1 ] .

sinh Bp YL

BT~y
« .

P P
. '
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In order to ovaluate, f3 (u°} , We write :
, }
! | . 1 - | .
sinh gpyL , <26pyL ’
l-e ! :
¥ } } ;
and obtain g :
1 ! ' [
l‘ : , ’ . . l
fa(u) = §(u -8 (yL-u,=b,) - ZBme) !
\ , 0Sm<u o/25w:. , ‘ '
» ‘ : B (3.82)

'

Equation (3.81), we have

§
!

i

|0

nl(uo? -

|

Osnsuo/ZByL

14 lc(u\o-B'(YL-l-ql-i-bl) - 28yLm),

P

! t

. ‘ JO ’Q [u 0’2.'[ B (YI‘-ul'bl):

. lH[uo"B’(lYL-ul-bl)

, 2 i
.t Jogo[uc -[,B(Ymufbl)‘

e H [uo,-a (yL:+ul+b1)

L
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: ?BYLm:; 2] f'!

where m is an integer and & is the delta function. : Returnipg to

—

=

]
2 ByLm]

. .
_ZBVLmJZ]‘;

2Bymj} (3.83)
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We are now in a position to explicitly write out A = 'A'np-o-ann;

for notational convenience let us define a function G:

G(k,v,K,¥) = Gl-sé

Vo u (v-k/8%y%)s
E-B—- f ds e H (uo-s-ac)
(o]

1 - ' H[‘l’-(uo-s)] Z Jo Vﬁ[sm(ul-zvm)}a
' ; 0sms<s/28YL

B H[s-l-Bul-ZBYLm] + Jo( [32-82(27L+u1+27m)§)

b . Gl(h,V,K,‘l’)

* H(s-B (2YL+u1) - ZBYLm]] ’ (3.84)
? % i -V (u,=yL)  u, (\)-k/Bz'Yz) 8
SRR Gz(k.\),lc,‘l’) = 8 3 / ds e H[uo-s-(l(-l-YL)]
o

_ * H{¥+YL - (u-8)] { E [Jo \ﬁ[sz-sz (YL-u1+2YLm)2]
: _ 0<m<s/2BYL

. H[s-B(YL-ul) - 2B8yLm] + Je (\/Q[sz-ﬁz(YL+u1+2YLm)2])

. H[s-B(YL+u1) - ZBYLmJ]} . (3.85)
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We obtain for the complete vector potential of the n~ radial mode:

-n,u
- 1l -
n 2/5-{ "1 ¥ -—)B('tp u)H(u)+T, [c +B(tp u)n(u)+nlc(k.n1,o,rp)]

-Glu ﬂzu
ryle Y wEmIseek,a),0,7)] +rerp [0 P Ber )

: -n,u
nzs(k.-nz,o,tp)] + I‘s[e H(u-'rp)H(A-u)
+ an(k,nl,‘rp,A)] + I‘6 H(u-rp) H(A=-u)
nu
+ (T=T,) [e Hlu-t ) H(d-u) - n, G(k,-nz,rp,A)]

au
- r8[° H(u-tp) H(A-u) - ¢, G(k,-uz,tp,é)]

-nlu
+ rg[e H(u-4) *+ Ny G(k.nl,A,ﬂ)]

n,u
- I‘l[e 2 H(u-4) - n, G(k,-nz.A.w)] }. (3.86)

t

In order to verify that A satisfies the boundary and initial

conditions we note some properties of the G functions:
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ey

acl -vu ,
EEI = e H(uo-x) H[Y-uol P Uy =0

(3.87)
= 0, v, = - YL
362
SEI = 0, 0, = 0
3.88
-v(uo-yL) ( )
= e n[uo-(lcwx.)] n[‘l'+yL-u°] b Uy =~ YL
(3.89)

aGl an
E‘o- (olul) = 3‘_1; (olul, = 0

Equations (3.87), (3.88), and (3.89) show that A of Equation

(3.86) does indeed satisfy the necessary conditions for fields

in a closed cavity.

Let us consider the properties of the solution to Equation

(3.86) when YL+*, Referring to Equations (3.84) and (3.85) we see

that m = 0 and

and

=vu (6] 2.2
o (v=k/B“y")s8
lim G1 - e 5 f ds e H(uo-s-n) H[‘l’-(uo-s)]
YL+ o
. 3 < 0(82—82u12)> H(s+Bu,) (3.90)
lim G2 + 0.
YL+
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Equation (3.86) should reduce to Equation (3.64) when yL-+w;

o n

u sy i,e., A +Anp, the translationally invariant form for no

-

1 8

|

)

o

end plates. To recover this form we require that

F

" 1t U
G(k,-n,,A,») +> —a
2 nz ’ U
lim
YL+ < G(k,-nz,t ) + 0 (3.91)
igien P 1
O bod
G(hc'ﬂzr 0, Tp) g 0
.
r
n2u° u

lim G, (k,~n,,5,o)= &
YLN 1 ’ 2 187 B

or, letting

n.u
e 20

‘YL-no

and all other G functions to approach 0. Equation (3.90) gives J
-Bu,
|

o

=4 2 2 [
© " -(n,+k/g“y")s
o n2*tk/e%y . (\/Q(sz_ 2ulz)dsj_,
s26%,? , L
U
{
- (ny+k/82y%) AP+87u, 2 C\

/w!+B!u 2 [J

i

- L

l
fu-0)2-6%,
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Then :
R e el
N2Y%
lim  Gy(k,=ny,8,0) + e wee 3, (/Qw)aw
Yl o -‘6!+B!u1!
u_-rw o
° -d
u
n,u n2-1
= 29,8 (3.92)
N2

where we have used the known integral

® -a/xz-ry! -y/a!+b!
/ - Jo(bx)xdx - ——

° /x!+y! /a!-!-b!

with y > 0.

Now let us look at the case of a semi-infinite beam (A,'rp-m)

in the limit as yL+~», We address ourselves to the question of
whether A, of Equation (3.86) reduces to the form for a semi~

infinite beam in a long pipe with no end plates as u el We want

Fn nzu
liman-*—- T'le , s 0
2/
yYL+® :
1 .1 mu Te,u
u v n_£+ﬁ;+r2° -T"3e ,u=0
vwith
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TP'A”
g o1 3.93
2 = lim Pz ‘.- ﬁITEI:EIT = rz (3.93)
TprA*“
Iy = T3 = Ta=a;) tng#ay) I3
Tt 4
P
(I‘4 + 0 as rp, A +%,)
In terms of Equation (3.86) for A we require
r
G(k, nlt 0, ») - 0
lim
E:IZ Y Gk, 0,0, @ » 0 (3.94)
nzu
Gk, =ny, 0, =) = =
. 2

In a similar fashion as above we can verify that
Equations (3.94) are indeed satisfied. We summarize the

above discussion:

3-72

- =T o T

[ — —
L .

r-‘s




o
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s . : H
(1) If u, < gyL, then end plate at u, = - vL can be neglected

(11) If (i) is satisfied and -

H

(u° - A)2 - 82 “12 >> 0 (finite beam of length A/yv)

2 2 2

=8y > 0 (semi-infinite beam) !

then the end plate at u, = 0 can be neglected. These comments, of
course, are relevant to the vector potential A and are correct for
By. The electric field components involve a time intégral'of A
through ¢. They do not reduce to the no-endplate case when ¢ = 0
unless --Bu1 + o,

We complete this discussion with an.observation about the
effects of a finite conductivity (k ¥ 0). We have tacitly assumed
that ' '

2 :
o - (@) () e

If k=0 =0, or, if for a given k the mode number is large enough
this is always so. When

A\

2 . ! !
;'h’(a—")"?‘“
Y .

and the above formalism carries through with thevrgplaceﬁent of
Io by I, in Equations (3.83), (3.84), and (3.85). If Q = 0i, the
G functions then become simple exponentials. We can draw an 1
analogy with respect to the nature of the various Q orderings
above by relating the cavity eigenmodes to a harmonic oscillator

with viscous damping: '
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Q >' 0 <+ underdamped
) . t '
‘ | Q ='0 + critically damped

' L ‘ ) Q <0 +l overdamped
3.3.3 'Discsssioﬁ. .The'mathsmatical presentation above is
complicated by the rather general form of the assumed beam pro-
file and the allowed arbitrary ordering of beam and chamber
lengtiis. It'is a simple mattsr to reduce the formalism for any
of several inter;sting beam transport problems. The reduction
of the G functions for a single endplate has already been dis-
cussed and is explicitly considered 'in Section 3.4 . Such a
case would be relevant to beam injection into a very long pipe
for times before the beam nears the-end of the tube. The pre~
'cursor signal which travels ahead o6f the beam at velocity c and
which could cause precursor ipnizaqion effects, can then be
easily obtained. We also point out that a less general beam
| prgfile.(wé hayve a 3 parampter profile) substantially reduces

thelnumper of terms in each radial mode.

The number of importaht radial modes depends on the beam radial

', profile. We have derived the formulas for the Heaviside radial

functjon which would be applicable, for example, to problems where
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the beam uniformly £fills the conducting pipe. Another case of
interest is a Gaussian radial profile, cdrresponding to experi-
mental profiles for pinched beams where R is much greater than

the effective beam radius. Then we have

= oy &S e m

3 = f(r)g(u)
b, g

fn e e

2.2
if with £(r) m-Ce DT (R >> §) (3.95)
3 - R 2_,2 .
-b“r!? Axr!
" = ﬂ = ﬂ .2— c n
g { and §, ¥ 3 jbz - g(u) {Rz T 00 /r' e Jo( R )dr-
1'"n o
L. = F, g(u),
R [}
or, if we approximate f dr' () by / dar' () ,
o
’ 2
‘ ' . - (A /2Rb) )
] C e
n c 2 2 2
, R*b [Jl(kn)]

The formulation follows through by replacing Fn from Equation (3.61)

by Equation (3.96). The radial mode convergence is now very rapid.

For example, if Rb = 10, corresponding to approximately a ten to one

—_—
s e &

ratio of chamber radius to beam radius, a few terms of the infinite

radial sum, up to about A =~ 20, are adequate.

e
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If one is interested in times before gas breakdown when o is
small and current neutralization is negligible, an approximation
for the EM fields may be obtained by taking ¢ such that the charge

relaxation time, To? calculated for a conducting medium is equal

. to the electrical neutralization time calculated from secondary

ion-electron production due to collisional ionization by the beam

electrons:
T,, (nsec) = 109 0.7 (3.97)
N dno BP (Torr) ' *

where o is in gaussian units (sec'l) and the air collision cross
section has been used [ Equation (2.37)]. This procedure gives
the same time scale for the decay of the radial electric field in
the two cases. The algebra of the formalism is simplified if

¢ = k = 0, corresponding to vacuum or very low pressure heam
injection. The large electric fields generated by typical high
intensity beams when g = 0 (~ 108 V/cm) would restrict the
validity of the calculation to low v/y beams where beam distor-

tion would not be severe.

The actual evaluation of the EM fields from the above
formulas is best accomplished numerically. The fields can be
plotted for given beam and geometry parameters at specified r and
z as a function of time over a specified time interval. Although

the expression for A, are tedious in the general case, they
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involve only two types of functions. The particular component Anp
contains only algebraic sums of exponentials, and the homogeneous
component Ahh has only sums of terms of the form

' 2 —_—
-au a, s
e ° / ds e 2 Jo \/Q(s2 - a32)

by

Standard computer packages exist for the Jo and Jl functions and
for the roots of these functions. In many cases of practical
interest an asymptotic evaluation of the above integral will be
entirely adequate, and this can be done analytically.

3.4 SINGLE ENDPLATE, ZERO CONDUCTIVITY PROBLEM--
THE INJECTION PROBLEM

We now reduce the formalism of the closed cavity problem
explicitly for the case of a beam entering a long conducting pipe
through a single endplate. We shall take the plasma conductivity
to be zero, which implies that the EM fields are relevant to the
initial penetration of the beam into the drift chamber before the
gas is appreciably ionized. The radiative fields of the ac-
celerated surface charges are included in the formulation; i.e.,
the precursor fields which travel ahead of the beam front at
velocity c. The problem therefore complements the cavity model
EM fields of Section 2.2 where we estimated the fields in the quasi-
static case with the beam across the entire chamber length. By
superposition of the fields calculated here with the approximately
static fields due to ions, very good estimates of the EM fields
can be obtained for times before gas breakdown or for t £ 2(L-z)/c
(see Figure 3.4).
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Figure 3.4 Open-ended pipe geometry.
We assume
(1) 3, =£f(rig(u) , u = y(vt - 2)
2z
(i1) j = j &= 0
°r K 2.2
-b"r 1
(iii) f(xr) = C e ¢ (R > S) (gaussian radial profile)
(iv) gu) = (1-e ™ ,u>o0
finite risetime
= 0, u<?o

From Equation (3,96),

F

n

A
e

c R§b2

Ny

lJl()\n)
2
e )

2/5 ;2- W (3.98)
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. e aen o wware i 6 = 3e < e s

v T TR ENTNTA

where IP is the

peak current in ampéres. We |
B THETA: o 2 \
n ' ,
P <« ‘(}'ﬁs) A
R = (E) = gy 2 Lj,j": ( )
n=1 I I ‘
2 1
[- -(A_n—.) }
EZ2 = E = l : 25 E 2% J (ig.a
2z SR zn [J 0\ )]2 A, ©\R !
n=1 1''n ‘ ‘ ‘
- -(f.rz_) ,
P 2Rb A
11 n
BTHETA = (-B,) = & =5 z A J (—r)
0 5 2 n 1l R !
R n=1 [Jl(lnq

with ¢n' Ezn

, and Kﬁ functions

= yvt and'ul.- -yz.

1

of uo

Equations (3.86), (3.90), and (3.93) give with ¢ = 0 ,
}

SR

o,u,>-Buy
Bu

1"Y% Y%

A
A r.n

n 2
IR B

u°+8u1 -
e

n u +Bu
P o ./' -as ;5
o]

e 1
R

asc® 3, \/Q o o) 2-620; 7]

n
<-Bul} \ 1

° I \/;](uo-s)z - B?ulzl ds
\/Q [(u(')-s) 2
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H

e L

1 r n .- QR ) ' \
" ﬁ
¥ ' 1 An xn + aR U
2 \ . . | |
S 2 LI . i
| ‘p N aR :
PR SR - | (3.202)  []
3 \ } 2 ‘Ani)‘n GRT : : ,
i I i
’ 2
| » 2\ R 3 \2 }
R LG
' 3, * . |

T =am -+ ¢ 2 F 277

i ‘ ‘

™

i

| | | fh | ' . 1 oR P .
n E p E p = _Ln H ~
zZn + Ezn ’ Ezn Y—B- 3u v and‘ U

& h 1 )‘ 2 uO h \\‘ ) : “Z
3 ' o= ‘s p -3) - , | L

! " . Ezn -YF ‘(R : [ .ds An (ulls) . . | |
. : o

' I -~
! : ' ! . ¢ U
l , ,  Substituting from Equations ' (3.57) and (3.58), P :

Siun b iy b £ g
- t..w

|
"
.y

i
1

] P A b— u A | -A_xlu ! . {N'
g P o L {npyn.R - (__q) n "R
i Ezn Y8 R rl e h( u) +) [ R I'2 e; , L
H l .
] ! 1 ' ‘ L | ‘}
| + ar® et ¢, | ' ' (3.103) !
! 1 :
) ! '
1 ] X

3 l . ;

1

' !
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and
n 0

2 J
A r
n .1 (YN 2 .2, 2
Eon W(_R) “)—8 [\/[(u+s) Bulllds
O,u>"8ll
"3“1 uo,u <-gu,

.“-n' [\/ [u, -)? - 8%’ ]ds

r n u°+8u1 51
2 2
+ T f Jo[\/Ql(uo-s) "Bulllds
o
R '
- %(%) / 3 \/0(32 - 8%, Jas | m(u+8up | (3.104)
_Bul

We verify the convergence of the last term of Equation (3.104) as

u, * . Let wz = s2 - Bzulz, then we can rewrite the term as

Vuo -B ul w Jo (m w) . eBulP,a
lim / dw =
(o]

u e \/;2 R Bzulz /Q

*See, for example, Lebedev, §g§cial Functions and Their Applications,
(Prentice-Hall, 1965), p. 133.
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Finally, we write out the expression for 76n of ER: B

- p h

1 "Fn = 3.Il + $n ’ U j
§ |
1 i
' P . 5P |

[ A*/8 (3.105) d
1
/ u = h L‘ '
h 139 ° = h 1/R 2 aEzn ,
; Wt B / Nt I n

o

A /R u (

| =%‘-{-I‘len ,u°+eul<0 L

(A_/R)u o L

rye Mo° -\ /R)s B3 ( Q(sszulz))

! + H (uo + Bul) - 5 [ e FGI' ds }
;o u ...
- o
! -(A_/R)u ‘
- (A, /R) (u_+Bu;) T, e T ° Yo (A\_/R)s 3J (M}_

-T.e N o _ ds e D o x
B 2 B LIy ,
| e |

f -au

o] u 2 2 :
1 e-a(uo+8u1) . 1'3 e o s o08 aao( Q(s -u, )) ‘
1 3 '—-B_—_' S e aul .
x Bul {
~. .!
i u ] b2 o2 2
{ _ 2R _2r o SJO ( Q(s“-8 u, ))ds ’
DN W :3 u, (3.106) |
n n -Bul 1
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3.4.1 Numerical Evaluation of EM Fields for Injection
Problem. The equations above have been programmed to calculate

the EM fields and draw CALCOMP plots at specified r and z as a
function of time, or at specified r and t as a function of z.

To avoid convergence problems in the numerical integrations
involving the zero-order Bessel function, the integrals have
been taken from root to root of Jo(x) = 0. The radial sum of

the Gaussian profile has been cut off when the term falls below
1/150 of the first term. The parameters for Figures 3.5a through
3.5k, which show E, versus t at various distances from the end-

plate, are

= s5x10%a

y = 3 (1 MeV electrons)

r = 0

R = 6cm

tr = risetime = 20 nsec

b = 1 (cm)'l ~ (beam r:ad.tus)-1
a = 2

Y8 ctr

2 in centimeters is indicated on the curves,

Ez is plotted for a positive current; therefore, for an electron

beam, Ez is the negative of EZ in volts/centimeter. All times
are in nanoseconds,

Figure 3.6 is calculated at z = 50 cm for the same parameters
as Figures 3.5a through 3.5k, except that vy = 1,2 and r = 1,
Figure 3.6 is presented to show by comparison with Figure 3.5k
the effect of a different y upon the influence of the endplate.
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In Figures 3.7a through 3.7c, we look at the'Ez field on axis
as a function of z for varicus times after injection. The param-

eters for these figures are:

Ig = 1,77 % 103 A (Corresponds to same beam

charge/length at this lower B as for peak

current in cases of Figures 3.5a through k.)

1

Yy = 1.0005 (B =~ 30
r = 0

R = 6
tr = 0,1 nsec

These parameters have been chosen to illustrate the modification
of the electrostatic contribution to Ez as a result of termina-
tion of the negative beam charges by positive surface charges at
the endplate for small z. The 8 value for Figures 3.7 is such
that the time in nanoseconds is numerically equal to the z for
the beam front. We have taken a blunt or fast risetime beam to
approximate the case where the beam risetime has been shortened
by the large Ez fields near z = 0 in the low-pressure injection
problem.

The fields scale linearly with peak current, so the fields
have been calculated for all peak currents. Different risetime
effects can be approximated from the curves by correcting for
different "L g%" ; i.e., calculate the inductance/length, L, in
henries/centimeter at the radius of interest, then for tr = trz'
a = ay
-azt

at e )

p =as
zlt o Ez(graph) + LI* (ce a,

2

The time t is to be calculated as the time after the beam front
arrival at the z value of interest, and a is the graph value
corresponding to tr = 20 nsec,
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3.4.2 Discussion of Calculations. We now discuss some of
the physics exhibited by the graphs. The effect of the endplate
is primarily electrostatic, leading tc a reversal of the direction
of Ez from the case of a beam in a long pipe without endplates,
and to an increase ia E, and a drop in E. near z = 0. By examin-
ing the magnitude of Ez near z = 0 and its dropoff with increasing
z, many of the low pressure beam propagation characteristics may
pe understood.

First of all, we note from Figures 3.5a and 3.5b that 1-MeV
electrons at the peak current level would be stopped within 5 mm
in the absence of ions. Alternatively, one can deduce that at
about a 3000-A current level, the beam would shut off" because
the Ez field would be large enough to degrade the electron kinetic
energy.

Another important point that the graphs illustrate is the Y
dependence of the endplate effect. We ncte that in Figure 3.6 at
50 cm, the Ez field has the shape as would be expected without an
endplate, i.e., the field is reversed in sign and decays with
distance behind the beam front as e-t/tr. The vy = 3 plot at the
same distance downstream (Figure 3.5k), shows that the field has
reversed from the z = 0 direction, but that the curve shows an
oscillatory behavior near the beam head.* These oscillations are
even more pronounced at z = 25 cm (Figure 3.5j).

To understand these differences, we return to Equation (3.103)
and (3.104) We rewrite Ezn in terms of t and z variables, for
the simpler case of t. ” 0.

¥
The fields are not accurately represented in the oscillatory
regions since the graphs are plotted by linear interpolation
between specified time points.
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A Y !

n n . 3
= y{Bct-2) = y(Bct-2) ~ '
r 'E’zn = 7% eR H(z - Bect) + e R : H(cf.B-z) | ' g
; (tr"O) ' l ! ;
(1)

i . !

Nl R

o

= sy

B -y w J,(w) dw ‘
. Ii A Az \? e
; i’-‘- Ylct)2-22 , ct>z w2+(T) ,‘%

(2) ¢ Vv ‘1
i
i |
: Ay - .
( 'ﬁﬂ (ct) 2~z [-}‘-9- ct - m‘+<£9:>] ‘
i +y / e BY |R R w qo(w) dw
0 A
\ w“-(f-‘-) z?
" (3) : S !

1 A

1Nt SRR
wJ_{w) dw
a - % / N - (3.104a)
0 A 2 ‘
wz+(-R—n) z?
(4)
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terms are the end?lhte ‘contributions. When /{ct)?=2z7 >> R/An
‘terms (2) and (3): approach zero, and

A
, ; n
w Jo(w) du "R

, , + - 2yve
v ' , ' A \? '
Jw+ §9- |

i

- An/R)/(ct)F-z!
-ZY /
0

)

We can now obtain criteria regarding absence of endplate effects

by noting\that the fundamental mode (n, = 1) drops off most slowly
with increasing z. Negligible endplate contributions to the Ez

field require for a zero-risetime beanm,
! ' .

(a)’ Vict) -z .2 >> §<__ ’
. 5 1 (no field "oscillation")  (3.107)
~ 10 X

. 2.4

where z. is the beam front position at time of interest, and

(b) e 1 >> 2ye (no field sign reversal)
B l H '
I1f tr %~ 0, the crossover point, Zy for the Ez field is
2.4y 2.4
- = (2.-2) , - =2
e R f “c = 2ve R "¢

~ (R

,or z, = (I:Z'£n 2y f yzf)/(y + 1), PN < %%Z (3.108)
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The criterion for absence of field oscillation simply states
that the light signal from the anode at z = 0 has traveled
far beyond the bcam front. We note that the E, sign reversal

point in Figures 3.7 is predicted very accurately by the above
criterion and we also gsee that

el ol et M B

F i 2 . 7 2 & St o~ (predicts
‘ § Figure 3.5k -+ /(ct) ze & Y ~ 17 =7 3.4 oscillation)
!
18 Figure 3.6 + %E ~a2~ LR (no oscillation)

-

These remarks have been noted on the graphs.
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3.5 BEAM IN A LONG PIPE WITH PLASMA CONDUCTIVITY VARYING WITH
DISTANCE BEHIND BEAM FRONT

As a beam penetrates a nonionized gas at pressures sufficiently
high so that the collision frequency is large compared to the in-
verse beam risetime, and so that the avalanche charge production is
negligible, the gas may be characterized by a conductivity which
varies with distance behind the beam front. 1In particular, if the
beam fills the pipe radially, a good approximation is

o = cl(l-e‘““)+c2,u > 0

(3.109)
o = C, u < 0

with u = yY(vt - z) (see Figure 3.8). C, # 0 corresponds to a pre-
ionized coaductivity level.

LIS LSl LS
-jbz(u)

u
—>
v

[ 777777777/ 7777777777

o (u)

N-C,
0

Figure 3.8 The conductivity function.
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Recall from part A of this section, Equations (3.11) and (3,12),
that if o has spatial variation, the equations for A and ¢ do not
decouple, If we expand A, ¢ and jbz in radial modes as in prezious
sections, the basic Equations (3.11) and (3.12) give for the n

mode coefficients:
82 4Tayv 9 xn 2 4noy 90
[_ by ‘;il‘ 2+ (ﬁ_) A = s +4m2de (3.110)

L 3A
k I <9J§'+%!gﬁ->¢n = Yﬁ£+6n (3.111)
4

)

o

Here we define Sn such that

4n . _ ‘n
ot dp, () = 2 sy(w I (R )

n=l

o Pme—
. N
>

and henceforth drop the "n" subscript. Substituting from
Equation (3.109) in Equations (3.,110) and (3.111), and defining
c,=¢C, +¢C

3 1 27
2 A (2
97 L, 4myv, 3 _ 4myv -eu 3 (D =
[ o2 * 2% 5% %= Cjoe et (R ) ]A
u C C
(3.112)
4nx ou
S + c C1 ae ¢
and
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Qa1

4nC 4nC
3 _ 1l -ou _ yv 3 = JYOA
S == e + s ) 135 +Q (3.113)

If we let w = au and take the Laplace transform of Equations
(3.112) and (3.113) with respect to u, we obtain

- ®[p% A) - paco) - ac0) + i£§! Cya [pA(R) - a(0)]

(3.114)
2
A
- $§§! ¢o [ 2@+ a@r)] 4 (22) a) = s(e) 4 45X ¢ a6 (p+1)
and
4nC 4nC
—2 ¢ (p) - —= o (p+l) + A a[p¢(p) - 0'0)]
(3.115)
= va [pA®R) - A(D)] + Q(p)
Rewriting Equations (3.114) and (3.115) , we have
Ay A(P) + A, A(P+l) = F(p) + Ay ¢ (p+l) (3.116)
Ag #(p) + Ap ¢ (pHl) = A Alp) + Q(p) (3.117)
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with A, = (;ﬂ) - o van Yo p L
c .

= _ 4nyv
Xz S :%—Clu (p+1)

T (o) = gnyv 2 4nyv
Sp) = s(p) + [-;%— Cyo = a’p —:%— Cla] A €0)
'" a2 a(0)
A = 4ny C.a i
3 - c 1l
4nC
= 3,
J\4 - c + c_ %P .
41C
- 1 !
Ag 2~ —5 ,
)\6 =  yoap . .
g(p) = Qlp) - yaa(0) + X2 g(0) " (3.118)

Equations (3.116) and (3.117) arel two coupled equations with four
"unknown" quantities, A (p), A(p+l), ¢ (p), ¢ (p+l). 1In general,
they cannot be decoupled. We proceed by first expressing ¢ (p) and
¢ (p+1) in terms of A (p), A(p+l), S (p) and Q(p). From Equations
(3.116) and (3.117), -

3-107

eary

- ST A




with

€ A(ﬁp) + €, Alp+l) + €3 A(p-1) =‘

€4

S(p) + s

i

Equating (3.120) and (3.121) gives an equation for A alone: ‘
. : ‘ |

! i J i
1 ’ o
! o3
! Al Az "s’ ) ' | i
$(p+l) = x;g(p) + T-A(pi-l) - —gl ‘ (3.119) SERE
Ae Ay An g
-1 °5\1 2 5 .
op) = (ag = TRy AR - T, AR+ Sle) r‘r "
- 6 3 4 | , 3. 4 e
Y |
| - Q ) ¥
| ] _ﬁ’l. (3.120) J
I . ; P | }
Now replace p+1 in Eguation (3 119) by p and denote this : : ; '} !
:transiatlon in the Al s by the subscrlpt (p-l). Then | ad
f 1 } “
U T sy ~.§
olp) = (5= A(p-1) +(5=) . alp) - 512——l| (3.121) TRk
? (p-1) 3 (p-1) 31. | | | LQ[ :

st
k SR

!

—
w
—
N
N
A
gy
e

S(p-1) + 86‘6(9)

Sy
=

Ty
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3(p-1)

5 - X (3.123)

The e¢'s are all rational functions of p and S, Q are source
functions involving A (0),3A(0)/3u, ¢ (0), and 3¢ (0)/3u, the
boundary conditions at w = 0, Equation (3.122) can now be inverted
back to w space giving an integral equation for A(w). Let us
denote the inverse transform of € by fi (w). Then

w Ny
/au [A(u) £, (w-u) + e Y A £,(w-u) + e™ a(u) f3(w-u)] (3.124)
o :

\
= j{ du [S(u) f4(w-u) + e S(u) fs(w-u) + Q(u) fs(w-uﬂ
o
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cwiyvi s odat £ sy

or
W .
fdu A(u) [fl(w-u) +e " fz(w-u) + e f3(w-u)]
o
(3.125)
w
= fdu {g(u) [f‘(w-u) + ev fs(w-u)] + Q(u) fs(w-u)}
o

The actual inversion of the fi's is straightforward, but tedious,
and we shall not include the algebra here. It turns out that
Equation (3.125) is a Volterra integral equation and its solution
can be obtained by well-known techniques.
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SECTION 4

COLLECTIVE ION ACCELERATION .
BY INTENSE ELECTRON BEAMS IN LiNEAR GEOMETRY

Collective acceleration of ions has attracted a significant
amount of interest throughout the world in recent years. The
goal of this work has been to find an alternative to present day
accelerators in order to achieve ultrahigh energy protons, more
than GeV, or GeV heavy ions. The possibilities of collective field
acceleration of ions were first outlined by Veksler in 1956
(Reference 4.3). A group or collection of charges (electrons)
create accelerating fields, and the magnitude of these fields is
proportional to the number of charges. These "second generation"
accelerators would be capable of generating accelerating fields
in the range of 105 to 107 V/cm, or several orders of magnitude
higher than fields in conventional accelerators. Moreover, large
ion fluxes (1013 to 1015 ions/bunch) of different ion species can
be expected from a collective accelerator. The collective field
concept currently receiving much attention in several laboratories
is the electron ring accelerator (ERA) (Reference 4.4). The
Dubna Laboratory has reported acceleration of nitrogen ions to
about 60 MeV by controlled expansion of a compressed and ion-
loaded ring.

A relatively small effort has been directed toward studying
collective acceleration of ions by intense relativistic electron
beams in linear geometry. This simple technigue involves inject-
ing a beam into a drift chamber filled with a neutral gas at low

*
Much of the material of this section has been reported in
References 4.1 and 4.2.
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pressures; the electron beam ionizes the gas and bunches and
accelerates the ions. The process was discovered by Graybill and
Uglum at Ion Physics Corporation (Reference 4.5) and verified and
further studied at Physics International Company by Rander, et al.
(References 4.6 and 4.7). To date, ions with an energy up to
8 MeV/Z%, 2 being the charge state of the ions, have been reported

+14

for several ion species. (A is the highest charge state

observed-- (Reference 4.8).) Minimum average accelerating fields
of lO5 V/cm have been experimentally demonstrated. Although
several models have been advanced to explain these results (Ref-
erences 4.1, 4.9, 4.10 and 4.11) the acceleration process is at
present essentially unconfirmed. The process is therefore prob-
ably not optimized from the viewpoints of either efficiency or
ion energy. Even so, the experimeatal data have already estab-
lished the utility of thls qome as a highly-stripped ion source
and as an ion sou;gﬂrior plasma heating. If the acceleration
cutoff prqrqss can be ideutified and the acceleration length

extemded, the technigue can be used to directly accelerate heavy

**ions to Gev energies.

An important use of the acceleration process would perhaps
be in the area of plasma heating where more than adequate deuteron
energies (2 to 5 MeV) have been attained. The emphasis of further
research here should be directed to increasing the ion number/beam
pulse, or the efficiency. Reported (energy) efficiencies range
from 0.25 to a few percent and, if one extrapolates present data
to larger current (5 to 10 MA) electron beam machines presently
under development, several kilojoules of deuteron energy/beam
pulse can be anticipated. Such a deuteron pulse could be injected
into a dense plasma focus, for example, where a 1019 to lozo/cm3
density plasma passes through the focus field for 50 to 100 nsec.*
Without appealing to anomalous range shortening effécts, 2-MeV

E 3
See Section 2.11.
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deuterons would deposit all of their energy in the small focal

l plasma volume (~ 10'2 cm3) , effecting perhaps an order of magni-
tude increase in ion temperature and a concomitant 103 increase

i in thermonuclear D-T burn rate. In short, the narrow ion pulse
width (~ 10 to 29 nsec) and the large ion flux make the ions an

{ interesting energy source for heating high-density, high g plasmas.
These plasmas would at least provide an intense 14-MeV neutron
and kilovolt X-ray source. The deuterons could also be focussed

s: geometrically on a thick tritiated target to directly produce a

. 14 MeV neutron source (~ 1012 to 1014 neutrons).

] The use of heavy ions (nitrogen, neon, argon) of several

“ ? hundred MeV/nucleon for medical applications (cancer therapy) is
currently of great interest in the bio-medical community. One
such proposal, the BEVALAC, which is now under study at the

‘ Lawrence Berkeley Laboratory in Berkeley, California, would use
- the Bevatron to accelerate heavy ions (Reference 4.12). Here,
se as in all heavy ion accelerators, the ion source is perhaps the

f . limiting factor on beam intensity. A linear electron-beam ion

j source, using demonstrated experimental data, could provide

f 1013 stripped nitrogen ions/electron pulse with ~ 2 MeV/nucleon
for injection into a linear accelerator stage. An important
aspect of the experimental charge-state distribution for both
nitrogen and argon is that the charge state peaks toward more
highly stripped states, in contrast to conventional ion sources.

Ce v e
By
L] - L]

Bonvchon g
-

The potential of the acceleration technique for higher
energy heavy ions (or protons) is not as clear at this point.
Although the energies achieved for N+6 (~ 30 MeV) and Ar (mean
energy ~ 25 MeV) are within a factor of two or less of ERA
results, the extension of heavy ion acceleration to higher
energies rests upon obtaining an understanding of the acceleration
cutoff mechanism. Several possible cutoff mechanisms have been
suggested (Reference 4.2) and present data are encouraging. We

4-3
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can also cite two features of the accelerating process which are
encouraging independently of the details of the accelerating = !
mechanism: (1) the data indicate that the full beam pulse width is
not used for ion acceleration--ions are accelerated and the |
process cuts off rather abruptly--and (2) the electron-beam
streaming velocity limit on ion velocity should allow GeV or

higher heavy ion energies. '

Other techniques for collective ion accele ration have been '
suggested by various authors, such as ion drag acceleration .
using high-density electron bunches, impact acceleration of
plasmoids, and ion trapping in traveling magnetic mirrors. The
reader is referred to the review articles of Sessler (Refer-. \ ‘
ence 4.13) and Rabinovich (Reference 4.14) for a discussion of
these proposals.

We discuss the experimental results for low-pressure: neutral-
gas ion acceleration, somec proposed acceleration models, and
suggest a model which agrees with presently established features
of experimental data.

4.1 EXPERIMENTAL RESULTS

An electron beam is injected through a thin metallic anode
window into a right-conducting cylindrical cavity with‘a‘small
hole in the center at the downstream end (see Figure 4.1l). The .
beam and ions pass through the hole into a magnetic field where
the beam and ions are separated; the ions are then diagnosed with
time-of-flight, magnetic-spectroscopy, and nuclear-emulsion .
techniques. Various neutral gases at controlled pressures (10 to
200 microns) are ionized by the beam. '
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Figure 4.1 Schematic of linear beam experiment
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For reference, a summary of the experimental data from the
4 experimental groups of Graybill and Uglum at Ion Physics Corpora- L
3 tion {(IP) (Reference 4.5) and Rander at Physics International
Company (PI) (References 4.6 and 4.7) is given below. We assume )
that the data refer to the same accelerating process although

there are differences in the nature of the beam front propagation: !
1, The peak ion energies are proportional to Z, the ion
charge number, as would be the case if ions were accelerated -
by a stationary electrostatic field. The particle energy
per unit charge is proportional to Iz, where I is the beam »
current. The experimental uncertaintiec allow a current

dependence'from I3/2 to 15/2.

2. The ion energy is nearly independent of filling gas

pu——

pressure over a range of a factor of 6 in pressure. The
proton pressure range for IP is from about 50 to 200 pm.

e

Graybill has recently reported a pressure dependence for
hydrogen and deuterium (Reference 4.15).

PO

3. The ion pulses are formed and accelerated after the
3 fractional electrical neutralization.

£ = (-) ion charge density
e electron charge density )

|

3 becomes greater than l/y2

1 - sez, where y is the electron
energy, E/mocz. The condition for radial force neutraliza-
tion and the onset of beam pinching is fe ~ l/y2.

4. The proton energy spread (full width at half-maximum)

is < 20 percent, the limit of the spectrometer resolution.
This eneryy spread for PI covers two proton pulses.,
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5. The total number of accelerated ions per ion pulse is
in the range of 1012 to 1015 particles. The ion pulse
widths range from 3 nsec for protons and 5 nsec for deu-

terons, to about 10 nsec for helium and nitrogen.

6. Multiple ion pulses (two) have been reported by Rander
et al. This feature can be accounted for by approximately
twice as long beam pulse width for the PI beam as compared
to the IP beam. The pulse separation is inversely propor-
tional to the filling gas pressure for H,. The pressure
dependence of the pulse separation is shown in Figure 4.2
(Reference 4.16).

7. The first ion pulss may be moving with the beam front
(Reference 4.15) or behind the beam front (Reference 4.13).
The different behavior of the beam front propagation with
respect to the first ion pulse is most likely due tc the
higher v/y of the PI beam., The IP beams were typically
v/y ~0.8, whereas PI beams were v/y ~2.

The data summary above pertains to ions accelerated by

intense relativistic electron beams in neutral-gas-filled drift
chambers. Sessler (Reference 4.13) has pointed out the data
similarity to the ion acceleration results of Plyutto, et al.
(References 4.17 and 4.18), who observed ions of various species
in the few MeV range from a vacuum diode with a gap potential of
200 to 300 keV. The similar features or Plyutto's data are:
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1. Ions are accelerated in the direction of electron flow,
in opposition to the applied field

2. Multiple bursts or pulses of ions

3. Beam pinches when ions are accelerated

4, Same order of magnitude of current density ~ 10

4 2

A/cm

5. Approximately tpr.. -ame ion energies and number of

ions/burst

4,2 SOME SUGGESTED ACCELERATION MODELS

4.2.1 Inverse Cerenkov Radiation. Wachtel and Eastlund

(Reference 4.11) have suggested that the "inverse Cerenkov
radiation" acceleration mechanism first proposed by Veksler

(Reference 4.3) may be responsible for the energetic ion produc-

tion. Veksler's formula for the average accelerating electric
field seen by a bunch of ions of charge number N in an elec-
tron beam plasma is

where w

eNw 2 vb
-—-Jg- Fin (== (4.1)
Vb P

is the beam plasma frequency
(non-relativistic)

electron longitudinal velocity

beam electron density

electron mass

4-9
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F = a form factor of order unity for bunch dlmen-‘
1 sions which are small compared to the resonant
g plasma osciilation wavelength, 2nvb/w

D = the Debye length of the electron beam plasma. '

The theory requires that the bunch dimensions be small compared

to 2nvb/wp, and that the ion bunch perturbation of the beam be . L

small. Thus, for typical beam plasma freguencies of. 1011 to

lolz’sec, the bunch dimensions must be in the millimeter range,

and to obtain interesting accelerating fields we would want thé

bunch number for protons, e.g., to be 1012 or more. These
g requirements are formidable indeed, as was recognized by Veksler.

,...-
f

Equation (4.1) may be derived quite simply by trahsforming
to the beam frame and applying the usual "dE/dx" enérgy-loss

YT MY

formula for a test particle (the ion bunch) in a plasma (Refer-
ence 4.19) for the case where the test particlg velocity is much
greater than the thermal velocity of the plasma particles. . {,:
, , )
We present a somewhat different approach to the problem of
determining maximum energies attainable by ions in a beam plasma
resulting from the electric fields associated with the resonant i
plasma waves. Though relatively crude, the work does allow a ‘
definition of the upper limit and avoids complications of extend-

ing a test particle calculation to the resultant ion beam, which
we have in the frame where the beam electrons are at rest.

The electrostatic instability calculations of Bludman,
Watson, and Rosenbluth (Reference 4.20) .are applicable to the
situation of practical interest here; namely, to an electron
beam traveling through a plasma containing either secondary ‘ T
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electrons and ions or simply ions alone. ' We obtain the high-

' frequency -instability growth rates and wavelengths from the
i
theory:

2 1/3 |
Im }w) ~ 0.69 (mtwi ) . (ion plasma)
5 1/3 x . ,
Im (w) = 0.69 (w_,“ ®w_) ' (electron-ion plasma in (4.2)
. t P \
collisionless limit) ~
5 2"Vb‘ ‘

. Mnstability ~ T ~  (ion plasma)

| (4.3)
21rvb |
. R (electron-ion plasma)

where Im (w) is the e-folding rate, and

! ' ‘2
. 2 . izn e | _

p l mo )

‘ 2 ‘ - . ’
. 2 ) 4ﬂnbe j ‘

t ym,
2 2
w 2 - 41Tnizi e v ! 1
! i m,

1
|
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n, = beam particle density

n, = jion particle density

s ]
"

secondary electron density

A = the wavelength of the fastest growing instability

oscillation
m, = electron rest mass
m, = ion rest mass
Y = the relativistic factor for beam electrons.

In the ion experiments where the beam ionizes the gas, the plasma is
first an ion plasma until £fo is approximately 1, and then the secon-
dary electron density builds up and the plasma effectively becomes
an electron-ion plasma. Let us optimistically estimate the growth
time for an ion plasma.* With I = 50 kA, beam radius, a, = 1 cm,

vy = 0.7¢c, fe = 1, and Zi = 1, we obtain

10

w, = 7.1 x 10 rad/sec
w, = 2.8 x 109 rad/sec
Im(w) = 2.8 x 109/sec (ion plasma)

A = 47 cm (approximately the experimental
chamber langth)

*
We assume that Landau damping of the oscillations is negligible.
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If, on the other hand, we consider later times after gas breakdown,
and take npe = 10 ny.
11

w = 4 x 10

pe rad/sec

Im(w) = 8.7 x lolo/sec,
and A = 0.3 cm

The equation of motion for an ion in the E, field associated
with the charge density modulation of the instability oscillation
is

2
d%z Ze
Z = e— = ——= AR (o0 ]} (kz - wt)l (4-4)
dtz m, z

AEz is the amplitude,

and the kinetic energy (non-relativistically) is

K.E. = zm (2)? (4.5)
If we take z = 2 = 0 at t = 0, the solution of Equation (4.4)

for z gives

2

m, AE k
K.E. = = [w -‘V/wz + 2%9— AEz sin (kz wt)] ’ w2> 2ze mz

2k i i

(4.6)
5 ZeAEzk
If w™ < 2 o , the ion is trapped in the wave, and
i

4-13
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2
. =1 wmy
(kz - wt) < sin (- EEEZE—E) (4.7)
4
m.w2 m.

and the maximum K.E. = -lf— = fi b2’ which is outside the non-
2k

relativistic approximation. We now estimate an upper limit for
AEz. Assuming the electron beam kinetic energy to be 1 MeV

bE, ~ 10°/(r/4)
~ 8,5 x 104 V/cm for ion plasma
% 1.0 x 107 V/cm for electron-ion plasma
2ZelE_k
Now -z . i (4.8) x 1019 for protons
m, 2
i A
w2 = L. x 1022
A

Thus, in neither case are the protons trapped, as, of course, one
would expect since the fields are not high enough to accelerate the
protons to B = 0.7 in a wavelength. Returning to Equation (4.6), we
can obtain the maximum kinetic energy of the ions

—2

m, / 2 Zek AE

K.E.max = —12- W - ‘V 0)2 - _—Tn——-z-
2k i

max

KB = 1.1 x 10”% 3L2
m.c
1
x5 x 107/

For protons the maximum kinetic energy is about 500 V--very small

indeed.
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We therefore rule out the electrostatic instability fields
as the mechanism responsible for the observed 5-MeV proton
energies. In any case, an experimental check could be made by
injecting the electron beam into a pre-ionized plasma, a condi-
tion which vould not give rise to ion acceleration in the other
rodels. Then the plasma would exist over the entire beam pulse,
Also, one would expect a relatively broad ion energy spectrum from
a drift chamber comparable in length to the beam pulse length.

4.2.2 Accelerated Space Charye Potential Well Models.
Rostoker (Reference 4.9) has proposed that ions are accelerated
by the moving space-charge potential well associated with the
beam front as it moves across the drift chamber, ionizing the
neutral gas behind it. Uglum, McNeil, and Graybill (Refer-
ence 4.10) have independently suggested essentially the same
mechanism with somewhat different assumptions about the beam
configuration at the start of the cceleration process and the
mechanism of well acceleration. Both theories consider only
longitudinal electric fields and one-dimensional beam motion.

In our discussion of low pressure beam propagation
(Section 2.10.1) we derived an approximate expression for the
distance from the anode, Eé, which an unneutralized beam could
propagate:

4 t V P
z (cm) =~ 3:Ax10 <—£> ’G*VP v (4.8)

¢ Ig (amps) ty 1+ 2vF
. R/2.4 1 % <2 (R/2.4)
* 1/2 + Ln R/a ' c '
4-15
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where tr = the current rise time
t, = the electron kinetic enerqy rise time -t
Ig = the peak beam current

the peak electron kinetic energy in MeV
beam radius

o o o

L}

The voltage and current rises were assumed linear in deriving
Equation (4.8), and the electrostatic potential (retarding beam
electrons) at EE is equal to the beam kinetic energy. 1If

Ig = 30 kA, t /t, = 2, v = 1Mev, R=6cm, and a = 1 cm,

EE = 1.2 cm. Beam electrons are thus reflected back to the
anode by the virtual cathode at Eé, and the beam envelope

"blows up" radially.

As the beam "hovers" near the conducting plate, the back-
ground gas is ionized by collisions and electron avalanche over
a time scale TN The ions short out the electrostatic field and
the beam moves forward. 1f no ions are created in front of the
beam by electrons that have spilled out of the potential well
(typically a few kiloamperes) or by radiative ionizacion, the
velocity of the front, B?S c =V, is approximately EE/TN and
would remain constant, barring substantial changes in the beam
energy. The kinetic energy of ions trapped in the advancing
front can be estimated from

m. m. Z
~ i 2 L 1 c

and if E& = 1 cm, N 10 nsec, protons would achieve the rather
uninteresting energy of 50 keV. The maximum energy that protons
could attain by a sudden acceleration to a constant beam front
velocity would be 1 MeV, corresponding to = 2 nsec.

4-16
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We therefore realize that to attain ion energies in excess
of the beam energy, ions must be trapped in an accelerating

potential well, or, in other words, T, must decrease in time.

N
Moreover, to obtain ion energies which depend only on the 2 of
the ions, the acceleration must be "just right." Let us inquire

how 7. must change with time. If

N
vp i zc/TN(t) (4.10)
then _
av . z dr dt
P -y o~ Sf-LlL Ny o, (-l N (4.11)
dt p ™N ™N dt P Ty dt

Ions will spill out of the well if

. [ ] o
v, 2 V ’ (4.12)
p pc m

Hi

where Eo is the electrostatic field at the ionization front =

106 V/cm in our example, since the electric field will no longer

be strong enough to accelerate ions at the same rate as the beam

front. Substituting Equations (4.11) and (4.12) in Equation (4.9),

m, m, 2
max _ i 2 _ i 2 1
T, dt
N t=t_
where t. is the time of spillout. Thus
2 2
i © 1 N
T dt
N =
t—tc
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: The bracketed term in Equation (4.13) must therefore be «/mi72
to have energy dependence only on the Z of the ion. Another way »
of expressing this requirement is
. b4 2 , "
vpc o« ,-n-: « (vpc) x (4.14) !
ro
and a way of satisfying Equation (4.14) is to take Gp @ vp2 whichI . -
requires ' ‘
- 1 Zc
) L ooy
where A and B are constants. Then | i‘
|
TN « B - At (4.16) |

a not unreasonable form, which is precisely the one proposed by

Rostoker.

where

and

PRSI

In fact he argues that ;

n, * :
A = + (4.17) -
Dy,
n,* ’
_ b
B = Te + TI (l + H;_)

nb* is the ion density ahead of the beam front

n, is the beam density ’

Te is the time required for the electrons to escape
from the pre-ionized (neutral) region as the beam
front advances, [this time is negligible compared to

Ty (1 + nb*/nb)],

1. is 1

I at t = 0.

N
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Using Equation (4.17) , Rostoker obtains,

]

n
K.E. X (—P-*-) MeV
n
b
n, (4.18)
tc ~ nb; T1

and takes nb/nb* = 5 to obtain agreement with the observed
. proton energies. However, the assumed ratio of nb/nb* gives
t = 50 nsec, which is not in agreement with the data when one

c !
uses the acceleration length of 9 cm which follows from the

theory.+ If we assume a smaller ratio nb/nb* to be more in
line with the timing, data, we, of course, lower the energy.

.Estimating nb/nb*,lwhich is the only parameter entering into

the kinetic energy formula, is very difficult a priori. To
illustrate the point, one could perhaps argue equally well that
n'b*/nb = 0, since r§diative ionization is much too slow, even
with radiation intensities comparable to those generated when
the beam is stopped in the anode. Moreovef, as electrons in the
region of the well are decelerated and the charge density in-
creases, the beam "blows up" radially over distances comparable
tolthe beam radius., This radial blowyp would imply that the
front is very sharp and that a significant number of electrons do
npt precede the front to pre-ionize and decrease ™"
' Ion acceleration in Rostoker's model cuts off because the
well acceleration reaches a value such that the electric field
is no longer high enougih to trap the ions (Equaticn 4.12). We
thus would expect to sée a continuously accelerated beam front
up to a velocity determined by the electron beam energy (and
transverse energy). Moreover, the icn bunch should be very
narrow (< 1 cm), although space~charge effects after ion separa-
tion from the electron beam could widen the ion bunch, as sug-

gested by Rostoker.

+Seé References 4.5 and 4.10.
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Uglum, McNeill and Graybill (UMG) also consider an
accelerated~-charge potential well, but they assume that the
process starts when fezl/yz, the condition for radial force
neutralization, in accordance with the data, and calculate the
electrostatic field for a uniform charge density beam in a right
cylindrical cavity. With R=10cm, I =5 x 104 A, a = 1, they
obtain Ez ~ 2,5 x 105 V/em for 0 <2z < z, > 5 cm (see Figure 4.3).
However, the potential well depth is then of the order of the
beam kinetic energy and the beam would be stopped and be blown
up radially. Nevertheless, if the field is assumed to be approx-
imately the same as for z < Z,0 the well will move with increasing
background ionization, as discussed in the Rostoker model. UMG
suggest well acceleration due to gas breakdown and obtain a
breakdown time tB from extrapolation of the data of Felsenthal
and Proud (Reference 4.21). 1In the opinion of the author, how-
ever, they do not argue well acceleration, but a constant
velocity well moving with velocity = E;/tB. One could perhaps
argue an acceleration by invoking preionization by the beam
ahead of the breakdown front to decrease the effective breakdown
time. Also, since the well shorts out over the electrical

neutralization time, it would seem that their well velocity is
too slow (TN < tB) .

In summary, the accelerated-electrostatic space-charge
potential-well models can account for the observed ion energies.
It is not clear at this time if a more careful and detailed
coupled longitudinal-field and beam-motion calculation in the
spirit of these models could explain such features of the data
such as the current dependence of the ion energy and multiple
pulses. We proceed to a different model that offers detailed
agreement with experimental data.
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4.3 THE LOCALIZED PINCH MODEL

Recently this author has proposed a different ion-accelera-

tion model, the localized pinch model (LPM) (References 4.1 and
4.2). This model features a self-synchronized mechanism to keep

gor-——

the accelerating fields in place with the accelerated ions.

Moreover, it is not necessary to invoke pre-ionization in front

of the effective beam front, i.e., the acceleration can occur }
behind or with the beam front, or more precisely, slightly behind )
the beam front. The following aspects of the acceleration ' 1

process will be addressed in the LPM: e
1. The accelerating mechanism-generation of accelerating . J
fields, synchronization, and bunch stability 3

2. Ion bunch formation

3. Acceleration cutoff ’ !

4,3.1 The Acceleration Meqhanism. We first consider an : J

idealized situation to illustrate the physics of the mechanism.
Consider Figure 4.4 where we have a beam traveling in a long
conducting tube (no endplate effects) with constant radius and
charge density. Within the beam envelope we postulate a uniform
background ion density such that fe = feo < 1, except within
region 1 where we imagine that a slug of ions have been injected

at t = 0, giving a higher ion charge/length, Al = Aio + Axi.
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Figure 4.4 The

localized pinch acceleration model.

= longitudinal B of primary electrons
upstream from the ion slug

= longitudinal B of ions

= length of moving ion slug

= primary electron curren+

= radius of beam entering the region (1)

= radius of ion slug

= theta component of magnetic field
= radial electric field
= background icen charge/length

= increment in ion charge/length in region (1)

4-23

RS N

Y ST W= T N




Y

.
i

1

Upstream from the ion "slug" in region 1, the electron beam
radius, ag is determined by the electron and ion emittances. 1In
Section 2.7.1, Equation (2.79), we ohtained expressions for ag

and feo from the Kapchinskij-vVladimirskij (Reference 4.22) equa~
tion: ' '

sl = L[-—2—) € m, + e omsm, vy <)
1-1/vy,

! ' (4.19)

wher=

a
1]
m

Z = ion charge state

ion mass

=]
0

Ej = the electron and ion emi;tancgs
In region 1 where Ai > Aio' the beam radius will not be
equal to the ion radius. Therefore, we really cannot apply the
K&V equation since the radial force for beém and/or ion particles
is no longer linear in displacement from the axis. Nevertheless
we shall use the K&V equations in order to obtain an estimate' of
new equilibrium radii. Straightforward algebraic manipulation
of the K&V equations for electrons and ions gives
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. L L
o where ael is the electron beam equilibfium radius in region (1), :

‘ v (3 L] ' - (] » &
3 i assuming :4 is large enough for achievement of equilibrjum.
' Similarly, the ion radius in region (1), ail' is given by ! :

& e g
.

!

: \ 2 A, + A, | '
’ 2 2 o i i), 2
' (a- ) = a (l"f ) + > a ) ,
r .. i, | o e IAel : CH (4.21)
' s !
1 - Let us now assume Ce ~ 0, then feo & (l/yLz) from Eéuation (4.19).
'Equations (4,20) and (4.21) give

ﬁ s . : ' ao , IAeI ;5 . !
. ; a ® =TT 4,22 3
: ey Yo \ Aot 83 ( ) .

a. & a

If A.O+ AAi =) ,a = (ao/YL), or, in other words an increase in

, i e’ “e,
‘ i
the ion charge/length to give equal charges/length for ions and
electrons in region (1) reduces the beam radius by a factor (l/yL),
with the result that
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Let us now consider the beam envelope motion dynamically.
When the beam electrons stream into region (1), the higher ion
charge/length shorts out the radial electric field, causing the ;
beam radius to collapse. The radial motion generates an E,

field, the magnitude of which we now estimate. We assume below that

Ae is constant, AAi constant within region (1), a; = a, = constant,

and (38;,/3z) ~ 0 in region (1). The E, field along the axis
generated by the beam radial collapse, Ezl, is

e s
S S

f

P —
1

A
. - Le e sa 2X aae (4.23)
ca, ot a 9z .

R

in the quasi-static, paraxial approximation.

Transforming Equation (4.23) to the ion rest frame gives (non-
relativistically),

28. B 3
c 1 _ Le Li ag . ZAe aae e > 0
z a e aui ae 3ul i
with u, = z, - B ct. If B or B << 1,
i Ll Li Le
2A_ da
) e e <
Ez 5;— EG; , ui # 0 (4.24)
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We use the K&V equation (Equation 2,73} to estimate
8ae/8ui in region (1), assuming that a; = ag,

azae 82a
—y- % —3
32 Ju,
i
or
2
9 % _ _ 2V
2 2
du, Y8
i Le
_ 2V
- 2
YB
Le
A first

A a C
o i e _ 1 e
<fe + ) —— 5 + 3 3 3 Y

2v ( 2\ 1 e

l1-€¢ -8 = +

YBZL e Le ) ae ‘2’c2 3
e

J2 L)

a
o (4.26)

integral of Equation (4.26) can be obtained analytically:

a

2K a K
2 + 2 in e _ 3 1 - 1 (4.27)
e Kl ao Kl a a i
e o)
AX.
2v o i ) 1
£ +
2 e 2
Y8y, < 12l / ag
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K, = Ce
37 g 22
Le

Equation (4,.,27) can be written in dimensionless form by defining

s = (ae/ao), x =u, /KJ:

i 1l
9§2=1-52+p£ns2-o i (4.28)
dx s2 ’ *
with P = 1 I3
2 £ o) + e
YL e |Ae|
o] 1
(=° - .7)
Q = XV
£0 4 &
e IA |

The dimensionless turning radius for the beam envelope, Sgo defined by

(%%) = 0, can be estimated from Equation (4.28):
s=8
t

L4

Sy Q, Q> e~1/2P , P <1

(4.29)
~ oV e m1/2P
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Let us now determine a, from Equation (4.29) with @ = 0, v,~ = 3,

t
AX,
i 12 1 o 1l
itz fe Y7o
e YL YL
2
YL (} o B}
. el P TT—T)
aet = stao = aoe e|
. 2o
100

which is a small radius indeed!

Equation (4.28) allows us to obtain an estimate of thke turning

length, Xy by taking a, = 0, pP=Q =0,

t
1
~ dw . T
Xe / > ® 2
(o} l-w
or
-3
~ T 1 _ " 2V o AAi
L/ 1 Le e

A qualitative sketch of a_, (u;) is shown in Figure 4.5.
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Figure 4.5 Sketch of the beam envelope in region 1,

Let us now examine the implications of the assumption in
Equation (4.26) that the ion radius = a, = constant. Denoting

2
o, P\ L 2 1L
ISR IV ACY A L

by F, we see from Equation (4.25) that larger positive F values

correspond to larger inward radial acceleration of the beam envelope.
If

Aio+ AAi > 1 Z Ymo/mi 1

+ &
2 1 +(Zym_/m,) 2
1Al YL o’ i Yy,
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the initial inward radial acceleration for the beam envelope will
be greater than that of the ion envelope, 80 we really need only
inguire about the effects of changing ion radius with a; b a,.

When

Al ,a
ai = ao = const., F = <¥e° + 1)( e%) - ;

|)‘el ao YL ae

AX,
a. = a_, F = (f o, i _1_ 1\5 o,
i e e : 2 a

Al v5 e

so we see that our calculation gives an estimate of the minimum
radial velocity and Ez field. The maximm radial velocity occurs
for a; = ags in which case the dimensionless radial velocity is

R - -p?ienp? -0 - 1] )

a u A,

- _©o = _1 2v o i _ 1

where p = a, A 4 a, -—8-—2' <fe + ™ "'"7) >(4.3l)
TPy el i
e
¢
o 1

£° - __,)

The turning radius and length do not appreciably differ from the

ase a, = a_ constant,
cas i °

!
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Chalats

The Ez field of.Equation (4.24) may now be written as

- 1ds
E, = 2 Ae /KI s dx
or X
6 [.3/2 AX
1.4 x 10 V o] i l) ds
E, (V/em) = ( £+ =1&8
2 B a I/f)(e ) (s)dx
Le © . 2l
X
% AX. N
~ -1.“106(.\1) 1/1'__;_77"_.7_ g0, 4 y 1 gg
Y ao e lxel S X
where we have used
BL = ""'—"B ’
e 1+ v/y
and
lds _ 1 _ P 2 _Q /1 _
lds . '\[:7_ 1+ =3 fn s = (.5 1)
. s s [ s

An approximate average field, E

}-d—s-z-l_l__g__]_'_
s dx 2 x m
t
giving
- 3 AA, 2
E, ® 4.4 % 10° (%) EfE;E%EZI fe° + —2 ) (v/cm)
o X
e
< ay
for 0 < u, S kit
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Typical experimental parameéers of I =5 x 104 amperes, a, = 1l cm,
B9 W
- i 1
YL - ‘3, lA i : R
and ’ | ’ e L
' £9 & 1
€ V.
i ‘L
‘give E_ = 9 x 10° V/cm, in which cdse the electrons would essentially

lose all their kinetic energy over a distance equal to the beam

radius. Our approximation that agL /aui =0, 0 <u, Su,

i [

t
is, :of course, violated. This example leads us to the concept of

a strong inductance-dominated pinch collapse. Generally speaking
if v/y << 1, and the beam enters a region of higher charge neutral-

. ization, the pinch rate is slow and u; >> a_, whereas if v/y ~ 1,

t O

the pln"h is strong-1nductance~dom1nated, i.e., the magnetically
driven beam collaose is so fast that the "I dL/dt" Ez field

 degrades the electron kinetic energy over distances of the order

of the beam radius. The current drops, retarding further pinching.
This condition is a "saturation" condition in the sense that further
increases in the charge neutralization or the effective v/y do not
apprec1ably increase E,. Moreover, the strong-inductance dominated
pinch is the state where essentially all of the magnetic energy of

a beam in a pipe (1/2 LIZ) could be extracted by a localized charge

density inhomogeneity. The saturated E, field value is

Ezat . §0':(amgs) (V/cm) (4.34)
o

obtained by taklng oa /at . For I =5x 104 amperes,

sat

E;%" = 3 x 108 V/cm.'

L is the inductance/length. This analogy to linear pjnch phenome-
nology is somewhat ambiguous. The Ez pinching field in the 1on
frame is electrostatic, whereas to a stationary observer in the lab
frame, the field appears as an I dL/dt field when the ion bunch

- passes the observer.
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2A
A contribution to Ez from electron bunching (u —-3)

therefore arises in the saturation case and this fiegglis re-
quired for the mechanism to "work." Roughly speaking, the
pinching field gives synchronization and the concomitant electron
bunching contributes to longitudinal phase stability. 1In the
saturated case, of course, these components cannot be treated
independently. The electron bunching field, which we call Ezz,
) is of the same order of magnitude as Ezl, the pinching field.

In fact, in the saturation case where the electron streaming
velocity is significantly reduced, one might guess that Ez2
actually exceeds Ezl around u; = 0. Both Ezl and Ez2 have the
same limit, given by Equation (4.34), but the pinching limit is
actually necessarily lower inasmuch as a completely radial
velocity would cause Be to vanish, and Be, of course, "drives"
the pinch. That Ez2 is a maximum around u, ® 0 may be argued
by analogy with Langmuir-Childs diode theory (Section 2.1). The
position u; ® 0 corresponds to the anode and Uiy to the cathode.
The pinching of the beam envelope is analogous to diodes where
the current exceeds the critical current.* (The fact that ions
are accelerated in the same direction as the electron flow in
our model points to the essential distinction between inertially
driven and externally applied fields.)
ion comes from the variation
in ion charge/length in region 1. 1If zi is the rise length of
the A\,, and KT; is the peak value,

A further contribution to E,, E

aAAi A i
~ — and
Bui li
A _A-.-,...-
. A
ion _ _ il .
Ez = 2 —T; (2 + Ln R/ao)

The experimental observations on beam pinching in diodes with
gap spacings of the order of Ui, £ 1 cm gives us some confidence
in our approximate analysis.
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In order to use the beam envelope collapse analysis above, we
must have zi 2 ag, otherwise the envelope collapse is adiabatic.
To be more precise, the adiabatic limit pertains to envelope
changes over a length scale » AB’ the betatron wavelength.
Equation (4.30) shows that the turning length is ~ AB ~al when
v/y ~ 1 and

k
£° + éﬁi
e ke

is of order unity, as it is with the experimental parameters.
Although the beam envelope equation we used above did not include
a variation in Axi with u the analysis should be quite good if
9 < agi i.e., in the non-adiabatic limit.

The total Ez field about the ion bunch, Eg, is

T _ 1 2 .ion
Ez = EZ + Ez + I:.z
2\ 2a A AX,
e e e i
ag aui e aui ai
A sketch of the contributions to EZT is shown in Figure 4.6,
reflecting the remarks above regarding Ezl and Ezz. Ez(l) rises

from zero at u; = 0 because of electron inertia and keeps the
electron bunching leading the tail end of the ion bunch (ui ~ 0).
EZ(Z) prevents loss of ions around u; = 0. These two componunts
added together maintain a relatively uniform EZT, the one peaking
where the other vanishes. This discussiocon requires further
quantitative support, of course, but hopefully at least makes the
synchronous mechanism plausible. Part of our motivation for
invoking a two-dimensional beam motion in the fiist place is now

perhaps apparent. A one-dimensional model such as Rostoker's

MM\M‘J‘¢L_.M. .
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4 Longitudinal electric fields of the synchronous
1on density enhancement.
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which utilizes electron bunching near the beam front (an Ez2
field) has the desired longitudinal phase stability. However,
multiple pulse data, where the beam is definitely extended in
front of the second pulse, requires some othsr way to maintain
electron bunching. (It is also difficult %o see how a one-

dimensional ES well can impart significant net eneryy to ions

of a second pulse. The electrons would gain energy as they

approached the bunch and lose energy when they passed it.)

Radial stability of the pulse at least requires that the
outward v x B force on the ions not be greater than the inward
space charge electric field;

8 <
L, BLe Be Y

(4.36)
If vy ~ 1, B, ~ 1,

AX,

i ~ 1 £9 ~ 1
N 2 " Te 2!
e Y1, L

we have radial stability for BL < 1.
i

More quantitive statements regarding the stability are

outside the analysis above. A linear stability investigation

currently underway should give mcre insight into the important

questions of pulse stability, growth times, and pulse lifetime,
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4.3.2 Ion Bunching. Let us now address the question .of the
initial formation of a non-adiabatic beam collapse pondiﬁion. An
obvious way to do so would be, of course, to inject a pulse with
rise length of the order of the beam radius. We can argue bunch-
ing in the experimental situation in several ways. Basically we
require ¢a electric field gradient or a localized electric field
large enough to accelerate ions out of a region faster than

|

T T o
CM!

]

3

v
L}

collisional ionization can restore an approximately uniform ion
density. The electric fields can arise from electron space charge

bunching and/or beam pinching. We consider below space charge
field bunching and defer pinching effects to an instability analysis.

rETRTY

A bunching arises even in an open-ended potential well

; (Figure 4.7) simply because ions are formed at various distances
within the well by collisional ionization. ,To illustrate this
point, we estimate the ion charge density in an open-ended well
assuming uniform ion production over the well and well velocity
; vp < Bgic where Bgic is the velocity corresponding to an ion

: accelerated over the full width of the well. Within a width

- . . 1 .
< < ~ Y . N
dzo, zy zy S 2y the collisional ion density, Apxon’ is

1 Aot l}‘el dz,
‘ pion"’ﬂai ™
o

and the density of ions created within the well as a function

of z is 1
]
' Z
i L) = me\ Dol 1 4z 1
ton 2%e | 12 2 Ty ° V(D VI(zT]
. o Zl (o]

(4.37)
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Figure 4.7 Bunching in a slowly moving open-ended
potential well
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If v(z) = E, (z-zl), Ez assumed constant, we obtain

%)
1 (z) = fi— E 'Ael 2_ /z=2 2, K2 <2 (4.38)
Pion 2%e z . p) Ty 1'% 2 *

o

The total ion density within the well is obtained by adding the
contribution of the upstream ion flux incident upon the well,

p?. This contribution varies as (z1 - z)";5 by similar arguments.
In the actual experimental situation, this relatively weak bunch-
ing effect is augmented by the partially closed nature of the
well. Because of radial electron loss, the well near the beam
front is more like that shown in Figure 4.8. (Recall also from
Section 2.10.1 that even without beam loss, the EZ field reverses
direction behind the front in a finite cavity.) We derive a

simple criterion for bunching in this case, assuming AV/V <€ 1,

If jion is the z component of the ion current due to the

space charge field and apion/at is due to collisional ionization,
bunching will occur when

33, 99

ion “ion
Rewriting this inequality,
o
Aol £
I el e BLic 5 |Ae| dfe _ !lel £-
z ﬂaz Ta dt va: T
c N
or
o)
fe PL ¢ L
- 1 > = (4.40)
Zc N
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Figure 4,8 Bunching near the anode with a partially

closed well
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with Bgic, the velocity an ion obtains after acceleration over
the full width of the well. If we use the space-charge limited
value for EE,

X
3/2
= vV (MeV)
z, (cm) = 85 a |~ DS
and with
0 5 | 2mp :
B, ¢ (cm/sec) =~ 1.4 x 10" | — vV (MeV)
i ‘ i
Equation (4.40) becomes
211 (™ y-1 *
1, (nsec) » vy ?~'(—£—) = (4.41)
N I Zmp 2

The beam current density jb is in kA/cmz, mp is the proton mass,
and fe ~ l/y2 was assumed.

Let us compare this formula with the Graybill-Uglum data on
the high pressure cutoff for proton acceleration. If we assume
that the experimental beam radius was approximately the cathode
radius, their maximum jb =~ 8 kA/cmZ,* Equation (4.41) gives
N > 3.2 nsec. In order to obtain direct agreement with the
experimental data, the inequality has to be replaced by a factor
of ~10. In view of the approximations in our discussion, as
well as uncertainties in estimating Ty it is not worthwhile in
pursuing a data fit further.

* , . . . /FZ"'
This assumption is strictly valid only until I ~ 8500 /y -1
(rc/d), or until about 15 kA.
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We have given a physical argument showing that the longi-
tudinal space charge field is adequate to bunch ions, so when
the beam front passes the beginning of the "pinch-active" region,
z 2 R/2.4, the radial electric field is no longer shorted out by
the endplate and, if fe > l/y2, the preformed bunch may begin
synchronous acceleration according to the LPM. Growth cf the
bunch ion density will occur until v > Bgic, at which velocity

background ions can no longer be picked up by the coherently
accelerated bunch.

The LPM model is itself suggestive of an instability growth
of bunches; i.e., the beam appears unstable to ion density in-
homogeneities when l/Y2 < fe < 1. The instability would be two-
dimensional EM in contrast to the well-known ES longitudinal
streaming instabilities. Moreover, such an instability would not
appear to be stabilized by longitudinal beam velocity spreads
since the pinching force is magnetically (or current) driven.

We defer a detailed treatment of instability bunch growth for
later publication.

4.3.3 Acceleration Cutoff Mechanisms. Experimental
evidence indicates that the acceleration process rather abruptly
terminates at a length Lacc (Figure 4.9). The PI data show

< <
Lice ~ 7 cm and the IP data suggest Lacc ~ 20 to 30 cm. We now
consider possible cutoff mechanisms and suggest some relatively

simple experiments to check these speculations.
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Figure 4.9 Bean-front velocity as a function of distance
from the anode for a beam penetrating a neutral

gas.
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The ion velocity is certainly limited by the electron
streaming velocity, and within the context of the LPM, there
exists a more restrictive kinematical limitation for the ac-
celeration mechanism since the electron envelope requires time
to contract. This limit would roughly correspond to ion
velocities of Be//f. In view of the constancy of the observed
ion energy/charge state for protons as well as nitrogen and argon,
this acceleration limitation appears unlikely.

Perhaps the most obvious reason is that the accelerating
fields somehow lose synchronization with the ion bunch and
accelerate "fresh" background ions. (This would be the case if
the potential well reached an acceleration value such that field
becomes too low to trap the ions, a cutoff mechanism proposed by

N. Rostoker.,) The process could terminate acceleration for the
IP beam where the beam front precedes the ion bunch, or for the
second ion pulse with PI data. In any case, the mechanism is not

relevant to the first PI proton bunch siuce the beam front stays
with the ions.

If a well does accelerate and leaves the coherently ac-
celerated bunch behind, one would expect to observe at appropri-
ate pressures a distribution of ions with energies in the tens
of keV range generated by the well as it proceeds to the end of

the drift chamber. The energy spectrum would, of course, depend
cn the acceleration history of the well.




o

Let us consider the IP proton data to illustrate this point.

The observed proton energy was 4.8 ¢+ 0.9 MeV, corresponding to an '
: ion velocity = 0.lc; the drift chamber. length was 50 cm and

’ Lacc was approximately equal to 25 cm. We need to know the kinetic '
energy given an untrapped ion created in a potential well of depth
V as the well moves by it. For simplicity, we considér a well
moving with constant velocity, Bc, and obtain from relativistic
kinematics an expression for the kinetic energy, K.E., imparted

to ions as the well moves by: "

PR RS Lt A s A b o wmh«‘@?%‘:gﬁﬁ.ﬂ
t —

[ amaen !

Srihreis
Bumessiry

[
[FOPPRE

K.E. = M. {yz(l-a) ~ 1-gy [Yz(l-a)z - 1]1/2} (4.42) b

where Mi is the ion rest mass, y = l//I:ET, o = ZeV/YMicz, and . .
V is the well depth. If o €1, Equation (4.42) reduces to K.E.

] = [ g2 (eV)Z/Miczl 1/282. Thus, for protons, and B # 0.1,
; eV = 1 MeV, the background ion energy from the accelerating wéll
is < 53 keV. The time for such an ion to travel the remainder

of the drift chamber (~ 25 cm) would be = 78 nsec, during which

e —————

time the beam would have éé&féini?wneutralized the potential
barrier at the downstream end of the chamber at the 300 um ' T
pressure value. It would be important in any experiment to

rule out background ion acceleration from beam inductive fields
which might be important after space charge neutralization. : 1
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Another possible acceleration cutoff would obtain if the
beam electrodns precede the ion pulse by a sufficient distance
to give fe ~ 1 in front of the ion bunch. Secondary electrons
then "short out" or damp beam envelope oscillations, This possi-
bility is again relevant to the IP ion pulse and the second pulse
for PI. It seems unlikely that this mechanism is operative,
however, inasmuch as it would imply ion energies inversely

proportional to chamber pressure and would rule out multiple
pulses.

A cutoff process relevant to the first PI ion pulse, where
the beam front and .ions travel together, would occur if the ion

© velocity eventually reaches values such that fe of the background
drops below l/yz. In other words, the collisional ionization

rate due to the beam electrons and accelerated ions is no longer
sufficient to maintain the fe0 ~ l/y2 as the beam front penetrates
the neutral gas. One can easily show that for ion energies

Igreater than a few MeV, the accelerated ions themselves can

maintain feO 2 l/y2 for typical experimental ion pulse lengths
of 10 cm and Bi ~ 0.1l. In any case, such a cutoff mechanism

would be pressure sensitive and would give a higher energy for
the second ion pulse than for the first. Moreover, this cutoff

.could be overcome by a pressure gradient in the drift tube.
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Finally, we come to a mechanism which appears to be a
likely possibility in the present experimental configuration--
depletion of the ion supply behind the accelerating bunch. The
ion supply may be depleted upstream from the pulse sirce ac~
celerating fields moving in space generate a wake ion current

during pulse growth and acceleration. The electrostatic potential

well is reestablished near the anode as the ions are removed by
the wake ion current, and the electron kinetic energy is degraded
downstream, thereby terminating acceleration. Such a mechanism
would explain multiple pulse formation; the bunching and ac-
celerating process repeats as the ion charge density again grows
near the anode from collisional ionization. Also, this mechanism
would explain the inverse dependence of pulse separation upon
pressure, since 1 « (pressure)“l.

We express these remarks in a slightly more quantitative way:

t
acc dq.
ion _
/ [Iion —-a-E-—] dt = K (4.43)
t
o
where
Iion = average wave current behind accelerating bunch
inon
=5 = ion producticn rate within effective supply volume
K = effective ion supply
tO = time of start of acceleration
t = duration of acceleration
acc
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Let —-a%——' = Cl/TN, and
Eﬁ
~ i o %
Iion © fé s ¢ Ca EL. = (2/m;)
Le 1l

where fé is the average background ion density during accelera-
tion and EL ¢ is the average wake ion velocity. Then Equation
(4.43) becotes

tacc - tO ~ At - K ['CE—Z—"EL—-:——CVT -' (4.44)
i »!

If collisional ion production is negligible compared to the Iion
term over At, Equation (4.44) says that At ~ (mi/Z)%, which,
in turn, implies that the final ion enerqgy is independent of the

ion mass, in accordance with the data.

An experimental check of the ion depletion hypothesis can
be made by measuring the electron kinetic energy as a function
of time. The number of beam electrons with energies of the
order of the injected energy should drop significantly when the
acceleration is terminated.* It is important that these measure-
ments be performed in the chamber interior to the electron-
accelerating space charge fields near the downstream chamber end-
plate.

If the ion supply depletion hypothesis is experimentally
verifield, the »bvious question remains as to how to extend

L i.e¢., how can the ion supply be enhanced? A method of

ace’

*
The bearm current cannot "shut off," however, because of
inductive effects.

L 5T,




' . N '
effectively doing this would be to inject an accelerated ion

bunch into a second accelerating stage. The wake ion current

is inversely proportional tc the injected ion velocity, and the
acceleration time in the second stage proportional tq the in-
jected velocity. In principle, the average wake current could:
be reduced until ¢ Eii ~ Cl/rN in Equation (4.44), a condition
where acceleration would no longer be supply limited.

H ) . \
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SECTION 5
SUMMARY

The theoretical beam research described in this report has
been undertaken in support.of Defense Nuclear Agency-sponsored
experimental research at Physics International Company and has
been reported to the beam physics community and Defense Nuclear
Agency in a series of papers and reports, notably PIFR-105,
April 1970. We briefly summarize the contributions of the pro-
gram below.

1. Characterization of the Background Gas Plasma. A
procedure has been developed to predict gas breakdown

charge densities and conductivities and degree of current
neutralization as a function of gas pressure, constituency
and beam parameters. We can thus predict conditions required
for beam pinching or drifting.

2., Definition of High v/y Beam Propagation Limits. An
explanation of the propagation of v/y > L beams in terms of
current neutralization or vpet/Y, and the dominant

role of the electromagnetic interpretation of vpet/y were
first presented during the program.

3. Explanation of the General Features of Beam Instability.
The qualitative character of beam instabilities as a func-
tion of background gas pressure has been outlined. 1In
particular, the important "frozen hose" instability of
pinched beams at low pressure has been explained and in-
stability wavelengths may now be predicted.

4. Development of the Concept of Plasma Channeling. When
a beam breaks down the background gas, a highly conduct-
ing plasma channel is formed with a “frozen-in" magnetic
field, which serves to guide subsequent beam electrons.
Understanding the properties of the plasma channel has
important applications in beam bending and combining.

5-1




"N

e

Eane Tat Vo,

G T AT T AR T T T TR T

e

5. Role of Current DensisgI%gggg%Egés The importance of
the current density, in a on to the V/Y ratio, has been
explicitly exhibited in neutral gas and external field
propagation.

6. Transport in Linear Pinch Plasmas. A complete phenomeno-

logical exposition of beam transport in linear pinch plasmas
has been presented and a model of beam penetration of pinch
plasmas in violation of single particle orbit theory has
been developed to estimate plasma expansion due to trans-
verse pressure imbalance. Criteria for efficient beam
propagation of high V/Y, high current density beams have
been presented.

7. Solenoidal Field Transgort. A model for determining
upper limits on B, fie or efficient transport has been
proposed along with formulae to estimate beam channel dia-
magnetism or paramagnetism and its concommitant energy loss
effects.

8. Calculations of the Electromagnetic Fields of Beams
with Various Boundary Conditions. EXact electromagnetic
field expressions for finite beams in drift chambers of
finite radius and length filled with a gas of constant
conductivity and in long conducting pipes with conductivity
varying with distance behind the beam head have been
developed. Quasistatic electric field expressions have
been derived including variation of beam radius with dis-
tance and time, endplates and charge neutralization,

9. Development of Ion Acceleration Models and Analysis

of Low Pressure Beam Transport. 1lon acceleration mechanisms
have been surveyed and a new accelerating process has been
proposed which gives detailed agreement with experimental
data--the electric fields associated with the non-adiabatic
pinch collapse of the beam synchronize the acceleration
process.
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