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I ABSTRACT

A comprehensive survoy of intense relativistic electron
beam physics is presented, including detailed discussions of
selected topics. The beam-generated plasma is characterized
through charge production rules for calculation of gas break-
down times, conductivity at breakdown, and current neutrali-
zation. Longitudinal electrostatic instabilit theory is re-
viewed in the context of typical beam-plasma parameters and
a model explaining the low-pressure transverse instability (the
frozen hose) is given. Transport phenomenology without ex-
ternal fields and with external linear pinch and solenoidal
fields is discussed and models are developed to define efficient
beam transport conditions. Transient electromagnetic (EM)
fields are calculated for the finite geometry of the beam-drift
chamber and simple rules are given to estimate the EM fields
in a finite cavity. Exact EM fields are. numerically calculated
for a beam penetrating a plasma in a conducting pipe (the
current neutralization problem) and for a beam penetrating
an endplate into a neutral gas (the injection problem). Weakly
turbulent beam-plasma heating theory is summarized and con-
sistency requirements relating beam and plasma parameters
are outlined. Low pressure beam transport and collective ion
acceleration are discussed in detail and a model of synchron-
ized ion acceleration is presented.
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FOREWORD

The material of this report is an updated revision and extension of work per-
formed mostly during a one-year contract (1968-1969) with the Defense Nuclear
Agency (DNA). Much of the research was originally published as Physics Inter-
national Company quarterly reports and as a final report, PIFR-105, April 1970,
all of which have been submitted to DNA.

The major addition to PIFR-105 included here is the new work on beam
propagation in external solenoidal and linear pinch fields. The viewpoint of the
treatment on neutral gas propagation without external fields has been somewhat
modified to give more emphasis to coupled beam dynamics and electromagnetic
fields through explicit inclusion of the effects of beam transverse energy; the
beam current density is emphasized as an important parameter in beam-plasma
phenomenology, in addition to the more commonly used v/, ratio. The collective
ion acceleration model material has also been slightly revised from the original
report version, and includes a more detailed discussion of ion acceleration cutoff
mechanisms.

I have tried to present a rather comprehensive survey of the entire intense
beam field in this revision, and, to this end, have included a brief survey of diode
physics and a summary of steady state beam equilibrium models as well as a dis-
cussion of turbulent plasma heating. The style of the report is hopefully exposi-
tory and at a level useful as an introduction to the field. I have perhaps given too
phenomenological an approach for many tastes in the report, but in many cases
no other work exists. Moreover, in this new and very complicated field it has
been my experience that such a viewpoint is often more relevant, at least to gross
beam behavior, than highly quantitative analytical treatments which necessarily
require many impractical assumptions to be analytically amenable. It is likely
that as the field advances and diagnostic techniques become more sophisticated,
detailed theoretical descriptions will have to rely on numerical simulation.

It is a pleasure to acknowledge the technical guidance and criticism of many
individuals. I would especially like to thank Dr. Andrew Sessler of the Lawrence
Berkeley Laboratory, Berkeley, California, who has given freely of his time and
offered invaluable criticism and guidance throughout the program. Dr. William T.
Link, who was the leader of the Beam Physics Group at Physics International
Compeny during the original program conception, encouraged me to embark upon
a beam research program in support of the experimental activities, and Mr. David
dePackh of the Naval Research Laboratory, Washington, D.C. supported the need
for such a program and gave personal encouragement.

Preceding page blank

IV



r
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Benford, Charles Stallings, snd John Guillory, and Messrs. John Creedon, Bruce
Ecker, and John Rander. Professor Wulf Kunkel of the Lawrence Berkeley Lab-
oratory has also offered many useful criticisms and suggestions.

I should like to thank my wife, Joyce Putnam, for her valuable assistance in
numerical analysis. To Mrs. Lila Lowell for typing endless equations and to Mrs.
Pat Shand for major production assistance, I also extend my deepest gratitude.

Dr. Jonathan Wachtel, currently at Yeshiva University, New York, N.Y.,
acted as the original contract monitor and his active interest provided much sup-
port. I express my appreciation to Lt. Col. Robert Sullivan and Major Benjamin
Pellegrini of DNA for their support as well as patience with respect to many
delays.

Physics International Company made possible completion of some of the
material with company support and the Theoretical Group of the Lawrence
Berkeley Laboratory provided use of computer facilities and hospitality for the
author as a participating guest member.

vi



I
I

CONTENTS

SECTION 1 INTRODUCTION 1-1

1.1 Basic Concepts of Beam-Plasma
Interactions--Historical Survey 1-4

1.2 Discussion of Report 1-14

REFERENCES 1-25

SECTION 2 GENERAL BEAM PLASMA INTERACTION
PHENOMENOLOGY 2-1

2.1 Diode Physics 2-1
2.2 Electromagnetic Fields in Finite Cavities 2-16
2.3 Exact EM Solutions for Beam Penetrating an

Endplate in a Finite Radius Chamber
(fe = 0) 2-26

2.4 Charge Production in Neutral Gases 2-34
2.5 Plasma Conductivity 2-49
2.6 Current Neutralization 2-55
2.7 Some Beam Dynamics 2-64
2.8 Some Topics in Beam Stability 2-86
2.9 Plasma Channeling 2-103
2.10 Summary of Beam Transport Phenomenology 2-105
2.11 Plasma Heating 2-161

REFERENCE3 2-177

SECTION 3 ELECTRODYNAMIC CALCULATIONS 3-1

3.1 Basic Equations 3-1
3.2 Exact EM fields for a Beam in a Long

Pipe Filled with Constant Conductivity
Plasma--The Current Neutralization
Problem 3-10

vii
I



CONTENTS (cont.)

Pae

3.3 The Closed Cavity Problem 3-48
3.4 Single Endplate, Zero Conductivity

Problem--The Injection Problem 3-77
3.5 Beam in a Long Pipe with Plasma

Conductivit,, Varying with Distance
Behind Bean. Front 3-104

REFERENCES 3-111

SECTION 4 COLLECTIVE ION ACCELERATION BY INTENSE
ELECTRON BEAMS IN LINEAR GEOMETRY 4-1

4.1 Experimental Results 4-4
4.2 Some Suggested Acceleration Models 4-9
4.3 The Localized Pinch Model 4-22

REFERENCES 4-51

SECTION 5 SUMMARY 5-1

viii



I

I

ILLUSTRATIONS

Figure Pay.e

1.1 Electron beam-gas interaction as a function

of pressure 1-5

2.1 The critical current geometry 2-4

2.2 Impedance collapse phenomenology 2-8

2.3 Parapotential flow model 2-11

2.4 Comparison of theoretical (Equation (2.12)] and
experimental results for impedance of diode pin-
ched flow. For this comparison, experimental
data were restricted tr, dI/dt = 0. Experimental
points correspond to various rc/d ani V0 values. 2-13

2.5 Beam chamber geometry 2-17

2.6 Fields for a uniform electron beam in a
closed cavity 2-19

2.7 Sketches of Ez fields with and without ions 2-24

2.8 Open ended pipe geometry 2-27

2.9 The longitudinal electric field (Ez) on axis for a
beam penetrating an end plate in a finite radius
cavity 2-29

2.10 The longitudinal electric field (Ez) on axis for a
beam penetrating an end plate in a finite radius
cavity (t = 2 nsec) 2-30

2.11 The longitudinal electric field (Ez) on axis for a
beam penetrating an end plate in a finite radius
cavity (t = 5 nsec) 2-31

ix



Illustrations (continued)

Figure Page

2.12 The geometry of electrostatic field calculation
for a beam emerging from an infinite conducting
plane 2-33

2.13 Plot of E/p versus P ti for air 2-43

2.14 Plot of E/p versus P ti for helium 2-44

2.15 Mean ionization time versus pressure for air 2-45

2.16 Phenomenology of charge production in neutral gas 2-46

2.17 A. V. Phelps electron drift velocity data for
dry air 2-56

2.18 Conductivity versus time after beam injection
sketch for two representative pressures 2-59

2.19 Comparison of measured and calculated net currents
(Reference 2.23) 2-60

2.20 Beam envelope motion 2-66

2.21 Electron beam-gas interaction as a function
of pressure 2-68

2.22 Minimum constant radius versus c for 4-MeV, 6x10
4

A electrons (beam in pinch mode). 2-71

2.23 A sketch of beam-plasma system longitudinal

velocity distributions 2-87

2.24 Experimental test setup 2-95

2.25 "Frozen hose" instability of a pinched beam 2-96

2.26 (a) Instability wavelength as a function of
(v /y)- 1/2, d<< D: (b) Instability wavelength
in guide tube 2-98

x



1
I

Illustrations (Continued)

Figure Page

2.27 Transverse instability of a highly pinched beam
where tB - tp >> tr. 2-99

2.28 Transverse instability of high pressure pinched

beam 2-100

2.29 Fluting instability of a hollow beam 2-102

2.30 The experimental geometry for injection into a
plasma channel 2-104

2.31 Electrostatic potential in drift chamber
(t < TN). 2-109

2.32 Experimental configuration of Z-pinch apparatus
and beam-generating diode 2-116

2.33 Magnetic field profiles at times of beam injection.
Rc is beam cathode radius, arrows indicate damage
radii of transported beams 2-118

2.34 The beam return current in a pinch where td>>tp 2-120

2.35 Sketch of beam propagation in collapsing pinch 2-121

2.36 Pinched phase beam injection 2-123

2.37 The expanding pinch model 2-126

2.38 Two dimensional penetration of pinch field
by beam 2-129

2.39 A magnetic field profile for transport of a
1 MeV, 2 megampere beam at 105 A/cm 2  2-132

2.40 Perpendicular velocity components in combined
B and Bz magnetic fields 2-136

2.41 Beam penetrating a neutral gas with Bz  2-141

Xi



Illustrations (Continued)

Figure Page
2.42 Cross section of beam chamber showing secondary

electron orbits when rt I R 2-145

2.43 Cross section of beam chamber showing secondary
electron orbits when a < rt < R 2-148

2.44 Secondary electron return currents at various
stages of electrical neutralization with B fields 2-151z

2.45 Charge transport efficiency at 1/2 meter for three
current densities 2-160

3.1 The radial and longitudinal profiles for Jbz 3-11

3.2 Cavity geometry 3-52

3.3 The u dependence for jbz  3-54

3.4 Open-ended pipe geometry 3-78

3.5 E versus t at various distdnces from the end- 3-83
pfate (a through k) thru

3-94

3.6 E versus t at z = 50 cm 3-95

3.7 (a) The longitudinal electric field (Ez) on axis for
a beam penetrating an end plate in a finite radius
cavity (t = 1 nsec) 3-97

(b) The longitudinal electric field (Ez) on axis
for a beam penetrating an end plate in a finite radius
cavity (t = 2 nsec) 3-98

(c) The longitudinal electric field (E on axis
for a beam penetrating an end plate in a finite radius
cavity (t = 5 nsec) 3-99

3.8 The conductivity function 3-104

xii



I
I
j Illustrations (Continued)

J Figure Page

4.1 Schematic of linear beam experiment 4-5

1 4.2 Proton pulse separation versus pressure 4-8

4.3 The beam profile at the start of ion accelerationJ in the UMG model 4-21

4.4 The localized pinch acceleration model 4-23

4.5 Sketch of the beam envelope in region 1 4-30

4.6 Longitudinal electric fields of the synchronous
ion density enhancement 4-36

4.7 Bunching in a slowly moving cjen-ended potential
well 4-39

4.8 Bunching near the anode with a partially closed
well 4-41

4.9 Beam-front velocity as a function of distance
from the anode for a beam penetrating a neutral
gas 4-44

~Xii

.4



I
I

SECTION I

INTRODUCTION

The electron accelerator technology necessary to generate

the electron beams to which the research of this report is

directed is relatively new--five or six years old. The beam

currents of interest are in the tens of kiloamperes to megampere

range, with kinetic energies from a few hundred kilovolts to

about 15 MeV. The beam pulse widths vary from 20 nsec to ap-

proximately 200 nsec. We are thus dealing with intense, rela-
tivistic or near-relativistic, pulsed electron beams with total
energies ranging from kilojoules to megajoules and power levels

up to 1013 , 1014 watts.

Much of the initial (and continuing) development of thE

pulsed power technology for intense electron beam accelerators

was by J. C. Martin and his co-workers at the Atomic Weapons

Research Establishment, Aldermaston, England. Table 1.1 lists

beam parameters of some accelerators designed at Physics Inter-

national Company (PI) which more or less cover the range of

available machines. Other organizations in the United States

besides PI with high current electron beam accelerators and

active research efforts in the intense beam field are the Naval

Research Laboratory, Ion Physics Corporation, Sandia Laboratories,

Cornell University, and Maxwell Laboratories. Several accelera-

tors have also been constructed or are currently under develop-

ment in the Soviet Union,, notably at the Institute of Nuclear

Physics, Novosibirsk, the Joint Institute of Nuclear Research,

Dubna, and at the Lebedev Physics Institute.

1-]



TABLE 1. 1
ELECTRON BEAM ACCELERATORS BY PHYSICS INTERNATIONAL

Electron Current Pulse Width
Machine Energy-(MeV) (kiloamperes) FWHM (nsec)
312 2 25 20

738 0.2 to 1.5 110 to 250 40 to 50

1140 4 to 6 50 to 85 70

1590 6 to 10 300 65

B3  0.4 to 8 200 to 400 65

DML 0.1 to 0.15 100 to 300 40

PIML 0.15 to 0.3 200 to 300 50

Mini-Marx 0.6 103  25

Snark 1 103 70

Aurora 15 to 20 1.6 x 103  120

1-2
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j As one might expect, the beams and their self-generated

plasmas are a new regime in physics. The beam-plasma investiga-

tions of the past have bten concerned with the physics of plasmas

perturbed by beams of milliampere currents, whereas accelerator

physics has been a study of beams of even smaller currents

slightly perturbed by plasma or collective many particle effects.

In our case the beam and plasma are strongly coupled and most

problems are inescapably transient. Many intense beam problems

are really problems of partially (space-charge) compensated

plasmas, a fascinating field of physics rapidly emerging in

collective ion acceleration studies, ion source development, and

in some new plasma containment system proposals.

Most of the accelerator development and beam research in the

past has been directed toward intense X-ray source applications

and studies of material response from rapid energy deposition.

The emphasis in these areas has been on efficient beam transport

and control of beam energy density. Recently considerable

interest has arisen regarding use of intense beams in several

new areas: controlled thermonuclear reactor (CTR) applications,

high power microwave generation, collective ion acceleration,

and highly stripped ion production, to mention a few.

Intense beams offer many possibilities as a direct or

supplemental CTR plasma heating energy source and recent experi-

mental evidence of Altyntsev, et al. (Reference 1.1) suggests

regimes of strong beam-plasma energy coupling at interesting CTR

plasma densities (up to 1014/cm3). Turbulent beam-plasma heating

is currently an active research area (Reference 1.2). Fleisch-

man, et al. (Reference 1.3) at Cornell have demonstrated beam

induced field reversal in an Astron configuration using a pulsed

intense beam and preliminary work on toroidal injection has also

1-3



been reported (Reference 1.4). A fruitful merging of intense

beam and CTR research can be anticipated in the future as these

and other techniques are developed.

Linear beam collective ion acceleration methods show promise

of being able to generate high fluxes of accelerated heavy ions.

Many such schemes have been proposed during the last decade,

notably by the Soviets (see, e.g., Rabinovich, Reference 1.5),

but their exploitation has awaited development of the electron

accelerator technology. The Graybill-Uglum discovery (Reference

1.6) of beam-generated and accelerated ions with energies up to

eight times the beam kinetic energy has renewed interest in these

approaches and has already demonstrated the potential for the

process as a highly stripped ion source. Higher charge state

ions are preferentially bunched and accelerated. Moreover,

several kilojoules of ion pulse energy can be extrapolated from

the data using higher energy electron accelerators currently

within the state of the art.

1.1 BASIC CONCEPTS OF BEAM-PLASMA INTERACTIONS--HISTORICAL SURVEY

The first quantitative work demonstrating the dominant

inf.uence of the beam-generated plasma on overall beam properties

in the drift chamber was performed by Graybill and Nablo of the

Ion Physics Corporation (IPC) (Reference 1.7). They reported a

strong dependence of beam current density and propagation ef-

ficiency on background gas pressure. Their results, plus the

open shutter photography of beam-plasma channels, performed by

Link (Reference 1.8) showed pressure regimes where, with

increasing pressure from about 10-3 torr in air, the beam blew up

radially, pinched, drifted in nearly straight lines, and re-

pindhed again in the 100 torr range. (See Figure 1.1). The open

shlitter photography also indicated gross stability features of

beam propagation.

1-4
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.002 Torr 4716 B 0.1 Torr 5595 B

BEAM DIRECTION

ITorr 4730 B 76OTorr 4734B

Figure 1.1 Electron beam-gas interaction as a function
of pressure
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A partial interpretation of the beam behavior was made by

Graybill and Nablo using the Lawson uniform beam model (Refer-

ence 1.9). Assuming paraxial beam trajectories, the radial

equation of motion for a beam electron, including effects of the

radial electric space charge and self-magnetic fields, is

d2r
dr - 2 (V/y) (f - I / Y2 ) r / a 2 (1.1)

N rI (anperes)
17,000 (amperes) 8 L

N = number of beam electrons/length

I = beam current

aLc C average longitudinal (z) velocity of
electrons - 8c in Lawson model

y = relativistic factor

r = classical electron radius = e2/m c 2

a = beam radius

fe -Pion/Pe = fractional elctrical neutralization

Pion - background ion charge density

Pe= electron charge density

2
The equation indicates f > 1/y is required to avoid beame
space charge blowup, and, if the background pressure were

sufficiently low so that collisional ionization could not

achieve f e 1/y2 over a substantial portion of the beam pulse,

the beam would not propagate. The radial blowup and beam pinch-

ing were interpreted in terms of space charge neutralization

using the Lawson model.

1-6
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The model was unable to explain the drifting beam mode at

0.5 to 1 torr pressure, however. The nearly straight line

motion of filamentary beams in this pressure range, as evidenced

by the beam self photos, was suggestive of conplete force

neutralization, and Dr. David Sloan of PI first suggested the

concept of current neutralization. The rising beam current
generates a dBe/dt, or inductive, longitudinal electric field

which drives plasma electrons in a direction to neutralize '-e

beam current. Link made an ad hoc modification of the radial

equation of motion in the Lawson model to account for current

neutralization:

d 2r 2v i1 f 2 f)

dz 2  2 8a 2 e

fm = fractional magnetic neutralization I p/Ib
I = plasma return current enclosed at the beam edgep

If f 2 f m 1, the electrons drift in a force-free environment.e m

In order that fm f 1, one immediately realizes that the

beam-generated plasma must be a good conductor; i.e., the gas

must breakdown. Gaseous discharge theory and experiment suggest,

however, that a 0.1 torr pressure gas probably has a higher

breakdown conductivity than at 1 torr. The question then arose

as to why the 0.1 torr range showed pinched beams with maximum

magnetic field or minimum current neutralization. Creedon

(Reference 1.10) used the breakdown data of Felsenthal and Proud

(Reference 1.11) to estimate breakdown times due to avalanching

caused by the inductive electric field. He suggested that the

time of breakdown with respect to the beam current rise was the

important parameter, as long as the conductivity in the pressure

1-7



regime remained high enough to give magnetic diffusion times

exceeding the beam pulse width. In other words, when the gas

breaks down, the magnetic field level frozen in the plasma is

that due to the beam current at the time of breakdown. Breakdown

at nearly peak beam currents will result in f 0 and breakdown

very early in the pulse gives fm 1. At high pressures (> few

torr) the plasma conductivity drops and, even though breakdown

occurred early in the pulse, the beam current is not substan-

tially neutralized. These ideas essentially completed the basic

interpretation of the Graybill-Nablo and Link data.

Yonas and Spence (Reference 1.12) subsequently performed

careful measurements of gas breakdown times as a function of

pressure and developed a semi-empirical magnetic diffusion model

t, relate the net current to the beam current profile. Their

model directly utilized breakdown time measurements of Felsenthal

and Proud, (F-P) but their beam parameters required extrapolation

of the F-P data beyond its range of validity at low press' -es.

Moreover, the charge production calculations of Creedon gav

much too high plasma densities at the measured lower pressure

breakdown times of Yonas and Spence. A charge production model

was proposed by the author (Reference 1.13 and 1.14)) to explain

these discrepancies and to give a physical basis for the good

empirical agreement with F-P data in the 1 torr range. The model

basically suggests that electron avalanching is unimportant until

f = 1. The space charge fields are too high (10 5 to 10 6 V/cm)

for avalanching, i.e., the secundary electrons generated by

collision-I ionization become relativistic and, moreover, their

rotion is primarily radial out of the beam channel. This simple

modification allowed consistent estimates of breakdown times in

agreement with the Yonas-Spence data.
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jAs higher current electron accelerators were developed, the

Alfven-Lawson current limit (Reference 1.15) for existence of a

uniform beam with a given kinetic energy was approached. This

limit is v/y - 1 for a space charge neutralized beam, independent-

ly of the beam radius. There are several physical interpreta-

tions of this limit:

2

2) a

rr

E3) v/Y e.m.Ekin

where

82> 2

> c = average transverse electron velocity squared

82> 2
> c = average longitudinal electron velocity squared

rL = Larmor radius of gyration of beam electrons in
the beam self-magnetic field at the beam edge

E - electromagnetic field energy/beam particle
or pex unit length

Ekin = kinetic energy/beam particle or per unit length

Most researchers emphasized interpretation (2) which states that

when v/y 1 1, electrons will turn around over the radius of the

beam; i.e., not propagate. Graybill, Uglum, and Nablo (Refer-

ence 1.16) performed experiments which showed such beams would

not propagate, and for a time, the beam physics community was

1
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astir with questions about the feasibility of propagating beams

with currents higher than the Alfven limit. The author suggested

(Reference 1.17) that current neutralization would allow propaga-

tion of v/y > 1 beams as long as v net/y < 1, where vnet includes

the beam current and the backstreaming plasma current. Moreover,

Hammer and Rostoker (Reference 1.18) derived a hollow beam

equilibrium model (no current neutralization) which removed the

v/y - 1 limitation of an orbital interpretation. Production and

propagation of v/y > 1 beams was first reported by Yonas and

Spence (Reference 1.12) and later by Andrews et al. at Cornell

(Reference 1.19).

We also have suggested that the third interpretation of v/y

is the dominant limitation on efficient beam propagation (Refer-

ence 1.13). When vnet/y > 1. the electromagnetic self energy

dominates the beam kinetic energy, independently of the details

or orbit dynamics. Beams then strongly interact with cavities,

degrading their kinetic energy at the beam front over distances

comparable to the beam radius either by the space charge field,

or, in the case of electrical neutrality and partial current

neutralization, by the inductive field.

The average transverse beam particle energy is comparable

to the longitudinal or streaming energy when v/y - 1 and roughly

so when v nt/y - 1 (interpretation 1). J. C. Martin and D.

Forster of his group were protably the first to emphasize the

importance of beam transverse energy (Reference 1.20) and Yonas

et al. subsequently performed careful measurements of the

average beam transverse energy (Reference 1.12). They also

ascribed the relatively poor beam transport efficiency (30 to

40 percent over meter distances) of v/y > 1 beams (even with

vnet/y < 1) in neutral gases to loss of higher transverse energy

beam components. The rapid gas breakdown requirement for good
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Tcurrent neutralization is in conflict with the requirement for a
high net magnetic field to contain beam transverse energy. A

"cold" beam (<at 2>/<OL 2> - 1) with vnet/Y ' 1 is thus required

a - for efficient transport in neutral gases or pre-ionized plasmas.

To illustrate the implications of the statement further, we
me

can assume injection into a preionized plasma of high conductiv-
* ity, thereby assuring that vnet/Y 4 1. The cold beam requirement

means that the injected beam electrons must be nearly paraxial.

We are then led to the concept of the critical diode current,

I Ic, first introduced by Friedlander, et al. (Reference 1.21):

I Ic  8500 sy (rc/d),

with rc the cathode radius and d the anode-cathode gap spacing.

Physically this current is the value at which an electron emitted

at the cathode edge would strike the anode tangentially under the

influence of the self-magnetic field, and with neglect of the

radial electric field. If I '4 1c in the diode, the beam is cool,

and the onset of pinching occurs around I - Ic. The diode peak

voltage places a minimum value upon d to avoid impedance collapse

over the beam pulse width. This restriction in turn places a

minimum value upon rc for a cold beam. In other words, efficient

transport in neutral gases or pre-ionized plasmas places an

upper limit on beam current density. Benford and Ecker (Refer-

ence 1.22) have demonstrated major beam ene.:gy loss upon in-

jection of high current density (- 105 A/cm 2 ) beams into a pre-

ionized plasma. The loss occurred within a few centimeters of

the anode. The need to transport high v/y, high current density

beams thus led to investigation of external field propagation

techniques.
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Roberts and Bennett (Reference 1.23) first transported a

relativistic beam (v/y - 0.2) in a linear pinch plasma. They

observed nearly complete current neutralization and reported

efficient transport. Their work was extended by Benford and

Ecker (Reference 1.24), who transported hot beams (v/y Z 7,

105 A/cm 2 ) with efficiencies > 90 percent. They also proposed

a single particle orbit theory model to explain the details of

beam propagation. This model states that beam propagation is a

superposition of injected electron orbits in the undistorted

magnetic field of the pinch at injection. Generally speaking,

we expect that efficient propagation will occur when charge and

current neutralization shuri out beam self fields, and that any

distortion of the external field-plasma system will result in beam

energy loss. Single particle orbit model conditions therefore

prevail with efficient transport. The single particle orbit

model is extended in this report to allow for field-plasma

distortion.

Beam propagati6n in external solenoidal fields was first

studied by Andrews, et al. (Reference 1.25) at Cornell using a

v/y - 2 beam. At present solenoidal transport work is underway

at PI, Naval Research Laboratory, Cornell Un:versity, Sandia

Laboratories, and Maxwell Laboratories (Reference 1.26). An

interesting result reported by Stallings (Reference 1.27) is a

reduction in transport efficiency as the external field is in-

creased beyond about 9 kilogauss. Lee and Sudan (Reference 1.28)

have predicted a drop in current neutralization at high Bz fields

dup to incomplete space charge neutralization, and a more restric-

tive limitation on the solenoidal field is argued in this report.
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Several experiments on beam combination and focusing have

been reported within the last year. Benford and Ecker have

combined two high v/y beams in a linear pinch plasma (Refer-
ence 1.29), and magnetic mirror compression experiments by

- Davitian, et al., (Reference 1.30), have shown beam area compres-

sion of a factor of 3 with v/y - 2.5 beams. Cold beam geometrical

focusing experiments in a neutral gas transport system have been

reported by Kelley at Sandia (Reference 1.31), Martin (Refer-

ence 1.32), and Bradley (Reference 1.33).

We have surveyed the experimental and conceptual development

of intense beam plasma physics up to this point from the histori-

cal perspective of beam transport and energy density control.

As we have already mentioned, intense beams are currently being

studied for CTR applications and collective ion acceleration.

The discovery of collectively accelerated ions by Graybill and

Uglum (Reference 1.6) at IPC renewed interest in linear beam

collective field acceleration possibilities. Rander, et al.

(Reference 1.34) continued the IPC work with the use of nuclear

emulsion and magnetic spectroscopic diagnostic techniques and

Rander (Reference 1.35) correlated the beam front velocity with

the first ion pulse. Several models have been advanced to

explain the ion acceleration (Reference 1.36) and a detailed

presentation of one of them, the localized pinch model, (Refer-

ences 1.37 and 1.38) is given in this report.

Altyntsev, et al. (Reference 1.1) have reported strong

beam plasma energy coupling using a v/y - 0.1 beam injected

into low density-preionized plasmas (10 1 - 10 1 4 /cm 3 ). This

experiment has generated interest in beam-plasma turbulent

heating, and Lovelace and Sudan (Reference 1.2) and Guillory

and Benford (Reference 1.39) have recently proposed return
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current anomalous plasma heating via ion acoustic modes. The

experiment of Andrews bt al. (Reference 1.3) on beam injection

into an Astron geometry is an important preliminary investigation

of beam confinement, as we have previously mentioned.

1.2 DISCUSSION OF REPORT

The material of this report is organized into three sections.

Section 2 is intended as a comprehensive, essentially self-

contained, survey and development of the entire intense beam

field. The viewpoint is mainly phenomenological, with an

emphasis on defining efficient transport systems. Section 3 is

a formulation of the quadrature of the electromagnetic (EM)

fields in systems without solenoidal fields. The objective of

this work was to explore the role of finite boundaries, finite

beam risetime, and transient effects. These effects have not

been treated in other theoretical work on current neutralization

(Reference 1.40). Section 4 is entirely devoted to an analysis

of ion acceleration models and a presentation of the locaiized

pinch model, in particular. The material of this section is a
"zero-order" coupled analysis of radial and longitudinal ion-

electron electrodynamics.

The physics of intense beams can be broken up into several

sub- areas which, of course, must be ultimately coupled in a

seif-consistent fazion:

1. EM field determination; i.e., given the beam current
profile, what are the EM fields with appropriate boundary
conditions?

2. Characterization of the background gas plasma - charge
density and conductivity as a function of time and space.
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3. Beam dynamics - formulation of realistic, but tractable
equations of motion of beam particles and/or the beam en-
velope.

0*

4. Beam stability - definition of stable propagation modes
o (longi tdalelectrostatic and transverse modes) and in-

stability growth rates in unstable regimes.

The first part of Section 2 essentially follows the above

outline. We start, after a brief review of diode physics, by

developing a simple ad-hoc model of beam-generated EM fields in

finite cavities, complementary to the exact formulations in

Section 3. The model includes EM fields due to variations in

beam radius with distance and time, endplates, changes in current

with time, and charge neutralization. In particular, we discuss

the effects of endplates and variations in charge neutralization

upon the longitudinal electric field. Aside from the implicit

inductive longitudinal electric field of current neutralization

calculations (Reference 1.40), the inductive field estimates

used in electron avalanching calculations in neutral gases (Ref-

erences 1.10 and 1.12) and the space charge field estimates in

the Rostoker and Graybill and Uglum ion acceleration models

(Reference 1.36), the literature of intense beam physics does

not consider E fields. (Most calculations pertain to steady

state equilibrium configurations.) The model thus gives a more

complete characterization of the transient longitudinal elec-

tric field in the finite cavities of practical beam problems.

We apply the cavity model in developing a procedure for

calculating gas breakdown times in neutral gases. The model of

Creedon (Reference 1.10) predicts background plasma charge

densities that are too high, according to experimental data, and
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Yonas and Spence used the empirical data of Felsenthal and

Proud (F-P) (Reference 1.11) in their work on gas breakdown. Our

model justifies the data correspondence with F-P on physical

grounds with certain E/P (E/P is the electric field pressure

ratio) regimes and gives good agreement with experimental break-

down measurements at low E/P regimes where F-P does not. The

model recognizes that the high E/P values that exist before

space charge neutralization do not lead to significant electron

avalanching-secondary electrons become relativistic over dis-

tances of the beam radius or less and, moreover, the electric

field is primarily radial, driving secondary electrons out of

the beam channel. We propose a charge production estimate using

collisional ionization only until fe 1, then using the induc-

tive field for avalanche calculations. The model has one unde-

termined parameter, the ratio of the background plasma secondary

electron density to beam electron density at breakdown. Empiri-

cal determination of this parameter from one data point gave

agreement with Yonas and Spence data at other pressures. Once gas

breakdown times are calculated, the conductivity after breakdown

and the fractional magnetic neutralization can be estimated. The

charge production model also predicts that beam transverse tempera-

ture should affect current neutralization and preliminary data

tends to support this result.*

Section 2.7 considers beam envelope motion in some detail

using the analytically tractable Kapchinskij-Vladimirskij envel-

ope equation for beams with finite emittance. Limits on beam

focussing imposed by finite emittance are discussed. A review

Private communication, J. C. Martin, January 1971.
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of high v/y beam equilibrium models is also included.

The physical implications of the dimensionless ratio v/y
used to characterize beams are outlined and it is argued that

T current neutralization accounts for experimental results showing

propagation of v/y > 1 beams. This interpretation was first

- suggested during the program (Reference 1.17) and is now commonly

accepted in the beam physics community. We have further proposed

that the dominant restriction on high v/y beam propagation is

electromagnetic; i.e., even with current neutralization, vnet/y<l

in order that the beam not seriously degrade its kinetic energy

to magnetic field energy. This restriction is dominant in the

sense that it obtains nearly independently of the beam current

density distribution in radius. The original propagation limit

on uniform beams, v/y - 1, or the Alfven criterion, is essentially

an orbital limitation for forward drift of the electrons. Hammer

and Rostoker (Reference 1.40) removed this orbital limitation in

principle by deriving self-consistent "hollowed-out" current

distributions.

The longitudinal ES instability work of several authors is

summarized in Section 2.8, and we conclude that instability

heating of plasmas has not been important in most beam transport

experiments. Transverse instability modes of low pressure (0.1

torr) beams are then discussed and a phenomenological model is

argued which allows predictions of the instability wavelengths

in good agreement with the data. This model is the "frozen-hose"

model, first proposed by the author (Reference 1.41). The model

stems from a recognition of the need to utilize two characteristic

times in instability growth of beams in neutral gases. Early

times are defined as times before breakdown where the plasma is
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nonconducting and post breakdown times are usually resistive

with characteristically longer growth times. This model led to

the concept of plasma channeling (Reference 1.13) and a necessary

criterion for beam combination in neutral gas systems.

The role of beam transverse energy is emphasized in the

summary of neutral gas transport phenomenology of Section 2.10.1.

A criterion is derived giving upper limits on beam electron trans-

verse energy at injection, and it is shown that this criterion

amounts to a restriction on current density. The transverse energy

containment criterion can also be expressed in terms of a dimen-

sionless parameter, 8 , analogous to the plasma 8:

8 beam and plasma transverse energy/volume/(Bnet) 2/81

Inasmuch as B net the net magnetic field including current neu-
0'

tralization, is not a beam parameter, current density is perhaps

a more convenient parameter for beam characterization, in addi-

tion to the v/y ratio (which is independent of beam radius).

Transport phenomenology in linear pinch (B ) fields is cover-

ed in Section 2.10.2 and conditions are outlined for validity of

single particle orbit transport. In the single particle model

the beam propagation is a superposition of injected beam electron

orbits in the undistorted magnetic field of the pinch plasma at

injection. We consider pinch field-plasma distortion induced by

transverse pressure imbalance due to the beam. An "inverse snow-

plow" model is developed which allows estimation of the distor-

tion time scale for given beam and pinch parameters. This work

is the first modeling of distortion of intense beam plasmas and

fields within the diffusion approximation. Plasma and field
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lines expand while maintaining nearly constant enclosed magnetic

flux. The criteria for single particle orbit theory are compar-
ed with the experimental data of Benford and Ecker (Reference
1.24) and it is shown that their use of such a model is consis-

tent with experimental conditions.

The discussion of transport phenomenology concludes with a

preliminary outline of solenoidal field transport. A simple

uniform beam model explicitly considers paramagnetic and diamag-

- netic beam and plasma effects due both to gyrorotation and rota-

tion about the system axis induced by space charge and B0 fields.

A diode flow model appropriate to large aspect ratio diodes where

the radial electric field effects are negligible shows that

v/y > 1 beams are net paramagnetic and also gives the maximum

ratio of B0 to Bz for uniform current density flow. Diamagnetism

and paramagnetism in the transport system are related to fe and

fm, and are shown to be additional beam energy loss mechanisms.

Also proposed is a new model giving upper limits on the applied
Bz field for efficient transport. The model carries over ideas

of current neutralization in the z direction to theta currents.

The perpendicular conductivity at breakdown has to be large

enough to allow theta plasma currents to neutralize the beam

theta currents. This condition in general gives a lower Bz
field level for efficient transport than the criterion of Lee

and Sudan (Reference 1.28) regarding destruction of z current

neutralization by high Bz fields.

Section 2 concludes with a sunmmary of turbulent plasma heat-

ing and a proposal for an intense neutron and X-ray source using

collectively accelerated deuterium ions. The turbulent heating

discussion outlines conditions necessary for consistent estimates

of anomalous plasma heating. Simple formulas for maximum plasma

electron temperature estimates are derived.
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The determination of the EM fields generated by general

beam current distributions (accelerated and non-accelerated) in

finite cavities is discussed in Section 3. We consider in de-

tail the EM fields of constant velocity beams with finite rise-

times, pulse width and decay time in circular conducting pipes

with and without endplates. The EM quadrature is in a convenient

form for looking at endplate effects, and can easily be reduced

to the cases with one or no endplate. Numerical evaluations are

given for two interesting beam problems--the current neutraliza-

tion problem (Section 3.2) and the beam injection into a cavity

problem (Section 3.4).

The current neutralization problems considered by other

authors pertain to semi-infinite beams in infinite homogeneous

plasmas (Reference 1.40). The beam has a zero riselength and is

suddenly "switched on" at t=O. Our work is the first exploration

of the effects of finite boundaries and finite beam risetimes, and

we explicitly determine the fields near the beam head. The blunt

beam and highly conducting plasma limits, which are the cases

treated by other authors, are quantitatively defined in terms of

beam, plasma, and chamber parameters.

A current neutralization problem is evaluated for a beam in

a finite radius drift tube which gives closed form expressions

for the EM fields and contains the dominant terms of more general

radial current density distribution profiles. The fields are

plotted as a function of distance behind the beam head in the

beam front region and show the essential rule of the conducting

boundary in determining the electric field attenuation behind

the beam front in weakly conducting plasmas (plasmas where the

plasma skin depth is of the order of the chamber radius).
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The E field is plotted in Section 3.4 for a beam injected

into a neutral-gas-filled cavity (zero conductivity) and the

effects of the endplate and finite drift tube radius are exhibi-

ted. We derive criteria for negligible endplate influence on

beam fields. It turns out that endplates have two effects on

the E field; the sign and magnitude may be substantially alter-

ed (this effect is primarily electrostatic), and the accelerated

surface charges of the conducting boundaries give rise to pre-

cursor radiation. If the beam is highly relativistic (travelling

" -at nearly c) the precursor radiation induces field oscillation in

the beam front region. The conditions for neglect of endplate

effects are that the precursor radiation front be far in front

of the beam head, and secondly, that the beam front and region of

interest be far beyond the Ez field-reversal point near the cham-

ber endplate. An approximate expression is given for the point

behind the beam heat where the E field reverses direction. The

formula involves both the chamber radius and the relativistic y

factor of the beam.

The collective ion acceleration discussion of Section 4 con-

siders in detail some implications of experimental data with re-

spect to models of Rostoker, Graybill and Uglum, and Wachtel and

Eastlund (Reference 1.36). The Rostoker model attributes ion

acceleration to space charge fields near the front of a beam pene-

trating a neutral gas. Acceleration of the space charge well is

due to a decreasing charge neutralization time caused by precursor

radiation and electrons, and Rostoker argues a particular time

history of well acceleration which gives ion energies independent

of mass, in accordance with the data. Acceleration terminates

when the well has accelerated to a value where the space charge

field is no longer adequate to trap ions.
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Graybill and Uglum also suggest a one-dimensional accelera-

ting space well model. Ion acceleration in their model does not

occur at the beam front, but begins near the anode window ofi2
the drift chamber after fe exceeds /y. In our opinion they do

not argue an accelerated well, however, but only a constant

velocity well moving at a rate determined by the gas breakdown L

time.

Wachtel and Eastlund have proposed thL, Veksler "inverse Ceren-

kov" acceleration process as an explanation of observed ion accel-

eration. The Veksler theory assumes existence of an ion bunch

whose dimnx.sions are small compared to the resonant plasma wave

length, X 27r Vb/Wp; vb is the beam electron velocity and wp is

the beam plasma frequency. In order to extend the Veksler theory

to a non-bunched ion distribution (the background ion charge dis-

tribution) they somewhat arbitrarily define an ion bunch as ions

within the Debye sphere. The problem of the longitudinal phase

stability of the accelerating bunch is not considered; i.e., the

ion bunch is assumed to be rigid. We estimate limits upon ion

energies due to excitation of longitudinal electrostatic stream-

ing instabilities and conclude that the maximum ion kinetic ener-

gy is too small to explain the data. This approach obviates the

necessity of arguing initial formation of an ion bunch in order

to apply the Veksler theory.

A new model of ion acceleration, the localized pinch model

(LPM), is discussed, and it is argued that the model gives the

most comprehensive agreement with presently established features

of the data. In particular, the model can explain multiple ion

pulses; i.e., acceleration can occur either near the beam front

or behind it. The model proposes a two-dimensional electromag-

netic acceleration mechanism, in contrast to the one-dimensional
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electrostatic models of Rostoker and Graybill and Uglum. More-

over, LPM includes a self-synchronizing mechanism to keep the

ions in phase with the accelerating fields. The one-dimensional

models do not have this feature; the potential well, in a sense,

happens to accelerate properly to give partial trapping. The

synchronization is achieved in the LPM by the electric field

associated with a non-adiabatic pinching of the beam envelope.

The presence of the ion bunch locally shorts out the radial elec-

tric space charge field and the magnetic field then causes the
beam to contract. A longitudinal electric field in the direction

of electron flow results from the higher electron charge density

in the constricted region. With typical parameters of ion accel-

eration experiments the pinching field is large enough to degrade

the electron kinetic energy over distances of a few beam radii,

giving rise to additional electron bunching. This latter bunch-

ing provides longitudinal phase stability.

The rise length of the ion charge density enhancement of

the bunch must be of the order of the beam radius to allow rapid

(non-adiabatic) contraction of the beam envelope, and thereby

generate high enough fields to degrade the electron kinetic energy.

It is shown that the space charge well near the anode window can

form sharply defined bunches and a criterion for bunching is
derived which translates to an upper limit on gas pressure for

ion acceleration.

Various possible acceleration cutoff mechanisms are con-

sidered in the context of experimental data and it is suggested

that ion depletion is a likely explanation. The background ion

currents generated by the accelerating fields around the ion

bunch deplete the ion supply behind the bunch and an electrosta-

tic well is then re-established near the anode window, terminating
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further acceleration. As collisional ionization continues the
process repeats. Experiments are proposed to identify the
nature of the acceleration cutoff mechanism.
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SECTION 2

GENERAL BEAM PLASMA INTERACTION PHENOMENOLOGY

U.

- - In this section we discuss a wide range of topics in

* .. intense beam-plasma physics from a point of view which hope-

fully will be practically useful, i.e., we emphasize basic

physics and show how relatively simple models can describe

most of the gross features of beam-plasma interactions. We

begin the discussion with a summary of the present status of

high current diode physics.

2.1 DIODE PHYSICS

2.1.1 Space-Charge Limited Flow. All of the pulsed

relativistic beam diodes for currents higher than a few

thousand amperes have field emission-initiated electron flow.

A variety of cathode surfaces have been used--needles, milled

metal with grooves, razor blades, roll pins, etc. As a general

rule, when the macroscopic electric field level at the cathode

surface reaches 2-3x105 V/cm, field emission occurs from micro-
scopic whiskers or roughened edges. The whiskers vaporize,

creating a "plasma cathode" that can essentially emit with a

zero work function up to the space charge limit. The emitted

current density is then limited to a value for which the

associated space-charge cloud in the anode-cathode gap reduces

the electric field to zero at the cathode. (The thermal energy

of the plasma electrons is negligible compared to the applied

voltage.)
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All analysis of diode flow has been confined to steady

state flow where dI/dt = 0, I is the diode current. In

practice, inductive effects decreases the electron kinetic

energy during current rise. The kinetic energy of electrons

entering the drift chamber is usually obtained as a function

of time by subtracting the inductive voltage drop L dl

from the measured diode voltage profile. The inductance, L,

may be determined experimentally using a load resistor of

approximately the same radius as the beam. A further inductive

correction resulting from beam pinching (I a) may be necessary

for rapidly contracting beam envelopes.

A diode should, of course, be matched to the generator

for maximum energy transfer. In steady state, this means

that the diode impedance should equal the generator internal

impedance. We must determine the type of electron flow to

achieve proper diode impedance. The two types of flow of

greatest practical relevance to high-current diodes without

external magnetic fields are planar space-charge limited, or

Langmuir-Childs flow (Reference 2.1), and parapotential flow

(Reference 2.2 through 2.4). A rough transition criterion is

whether or not the current is to exceed the so-called critical

current (References 2.3 and 2.4):

1 8500 yo2 _ 1 (r /d) (2.1)I c c

where Ic = critical current in amperes

Yo = electron total energy/m c
2

m = electron rest mass

r = cathode radiusc

d = anode-cathode gap spacing

L is the effective beam-diode chamber inductance.
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The critical current is the current level at which the self-

magnetic field of the beam becomes large enough to cause the

electrons at the beam edge to impinge tangentially on the

anode. The derivation of Equation (2.1) is quite simple--we

include it here to indicate the approximate nature of the

T criterion.
V.

We assume a cylindrically symmetric diode as indicated

in Figure 2.1, and neglect the radial electric field. This

neglect is probably not too serious for large aspect-ratio

S(rc /d) geometry. Moreover, we take B0 constant for the outer-

most electrons. Again, this approximation is not severe for

large aspect-ratio diodes. The radial equation of motion for

the outermost electrons is then

d (B- r = g_) _I (2.2)

with

B 210 crc

v r= radial velocity component

F Integrating, - r eB z(23
r 8r = -=7moC(2.3)

At the anode, grazing incidence means 8r =

i! 8 r  7o(2.4)

with y0 corresponding to the anode potential, Vo. Substituting

for B0 in Equations (2.3) and (2.4) gives Equation (2.1).
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B 6

Outermost beam
electron

EZ

d

Anode (V = V )

Cathode (V = 0)

E = lonqitudinal electric field
B = self-magnetic field of beam

V = potential

r c = cathode radius

Figure 2.1 The critical current geometry
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In spite of the approximations above, Ic is a useful

experimental guide for onset of beam pinching for intermediate
(r /d) values. Clark and Linke (Reference 2.5) have shown that

pinching starts at about 80 percent of I for diode impedances
C

in the 5 to 10 ohm range and (rc/d) > 6. However, experiments

by Ecker at Physics International (Reference 2.6) using

(rc/d) - 20 have shown that no appreciable pinching occurs at

Ic , which is perhaps not surprising in view of the derivation--
all the criterion merely states that the flow is no longer laminar

and that outer electron trajectories start to cross near the

anode. If (rc/d) - 1, one would not expect the derivation to

be meaningful.

Below I the diode flow will be essentially one-dimensional
c

and laminar. Then one uses the Langmuir-Child impedance:

ZL.C = 136 (d/r 2  (non-relativistic) (2.5)

0
2

= 960 (d/rc) (ultra-relativistic)

where Z is in ohms, V0 in megavolts, and the cathode is assumed

to be a uniformly emitting circular disk. If (r c/d) is deter-

mined from

Ic ZL.C. o 0 (2.6)

or 72 1

(rc/d) 1 1.16 3/ (non-relativistic) (2.7)
(V) (cold beam)

we theoretically have a minimum impedance, "cold beam" diode;

i.e., the transverse electron kinetic energy should be zero,

See Reference 2.3 for a discussion of relativistic planar space
charge flow.
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or at least very small. In practice, Equation (2.7) "works"

only if the current density is not too high--of the order of

a few kiloamperesicm2 or less. (The current density is

entirely determined by the diode voltage and gap spacing when

Equation (2.6) is satisfied.) If the current density exceeds

O 10 4 A/cm2 , the anode window vaporizes, forming a plasma

which can both supply an ion current andl also effectively close

the gap.

Let us first consider the case where the anode behaves as

a high-density plasma with a relatively sharp boundary, station-

ary over times of interest. The ions are accelerated back to the

cathode by the electric field, and we have the case of bipolar

space charge flow. As shown by Langmuir (Reference 2.7), the

constant in Equation (2.5) is now reduced. In the case of zero

work function for ion emission from the anode plasma, the elec-

tric field at the anode, as well as the cathode, is zero.

Defining

Jo = electron current density in absence of positive ions

je = electron current density with positive ions

and ji = positive ion current,

Langmuir shows (non-relativistically) that
1

w e1/2 (3) f dw (2.8)

where0 w+a/-r

1i (" / 2

ne (hi) = charge to mass ratio for electrons (ions).
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The completely space charge limited case is a = 1, and numerical

integration of the integral above then gives je = 1.86 "i o We

thus see that the maximum ion current in the space charge limit

is 1/2
.- (1.86)J (non-relativistically)

2- (2.9)

Z r (bipolar flow)I')

If one is interested in accelerating ions in the diode

(and recovering them through a hole in the cathode, for example),

the energy efficiency of the process in space charge flow, e,

would maximally be

E E V 0 ji dt/f Vo je dt

/2(2.10)

For deuterons, e 1.65 percent. Recently, Friedman, et al.,

have performed preliminary experiments on ion acceleration in

the diode, using a laser to form a high temperature anode plasma

(Reference 2.8). Ion acceleration in the diode may indeed be a

useful way to obtain high ion currents, providing impedance

collapse of the diode and contamination effects from ions other

than the desired specie are not serious problems.

In hgh-current diodes where the beam pinches (I > I c ),

not only does the beam form an anode ion source as discussed

above, but the anode plasma appears to explode and the high-

density plasma moves hydrodynamically toward the cathode (see

Figure 2.2). This effective gap closure gives an impedance that

drops with time. Loda and Spence (Reference 2.9) have obtained
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r
C

-. V

Anode plasma

Cathode plasma

d = actual geometrical gap spacing

deff (t) = effective anode-cathode gap

v = anode plasma velocity

Figure 2.2 Impedance collapse phenomenoloav
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- an empirical fit of diode impedance versus time by assuming a

c)nstant velocity anode plasma moving at typical material motion

velocities (a few cm/Msec) observed with framing cameras.

One can also expect cathode plasma motion to close the-gap,

but if the beam pinches appreciably, it is reasonable that anode

plasma motion dominates. These ideas of gap closure have led to

the use of hollow ring cathodes with pinched beams to extend the

time before impedance collapse. The anode plasma then takes

longer to short the gap, and diodes with an initial gap of a few

millimeters can be made to hold impedance for 100 to 150 nsec.

To summarize the above discussion, we expect for I Ic
that the diode impedance will initially follow Equation (2.5)

L.C. V ,d\

When the anode becomes a plasma, the impedance should drop to

Z ;zz 73 (d)2

N \7rcl

as bipolar space-charge limited flow is established. If the

anode plasma moves hydrodynamically, the impedance should

further decrease as

Z 0(d eff 2 (d - vt) 2

with v the velocity of the anode plasma. The time scales of the

above phenomena depend on the current density or electron energy

absorbed in the anode.
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2.1.2 Parapotential Flow (PPF). When diode current

exceeds the critical current, the self-magnetic field causes

the beam to pinch and planar space-charge flow is no longer

an adequate approximation. The suggestion of a parapotential

flow (along equipotentials) was first advanced by D. C. dePackh

(Reference 2.2). Friedlander, et al. (Reference 2.3), and

Creedon (Reference 2.4) have carried out similar calculations.

We follow Creedon's exposition here.

The basic assumption of the PPF model is that the impedance

of the gap is essentially determined by self-consistent flow

along equipotentials within a region extending from the cathode

shank to a region slightly in front of the anode. If the anode

is an equipotential (conductor), electrons must cross equi-

potentials in a small region near the anode. The model has an

undetermined parameter since it does not treat flow all the way

across the diode. Figure 2.3 shows a sketch of flow lines.

Creedon approximates flow lines by cones converging to a point

at the anode. By assuming azimuthal symmetry and force balance

along each equipotential,

E = xc

where is the electric field and v is the velocity associated

with the flow line, a solution of Poisson's equation gives an

expression for the diode steady-state current:

8 - ) (2.11)

£n (tan - -n (tan
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2-
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where ym is the relativistic factor for the outer flow line

along 0m , and the minimum angle flow line is e = 6. It turns

out that the solution requires a current flowing interior to

e = 6, which is termed the bias current, Ib* Specification of

any one of the parameters e m' or Ib determines the other two.

Creedon suggests

rc

tan 6 = cd

em = 7r/2

Ym = YO (corresponding to

anode voltage)

and, substituting in Equation (2.11)

I(PPF) 8500 (i-c) yo £n[ Yo+(yo 2 -1) , r-S) > 1 (2.12)

Equation (2.12) is also the solution which minimizes the bias

current. This solution would appear to require flow along the

cathode shank, since the inner flow line is taken as emanating

from the outside edge of the cathode. Recent experimental data

of Ecker (Reference 2.10)shows reasonably good agreement with

Equation (2.12) (Figure 2.4). His investigations of emission

from hollow ring cathodes confirmed another aspect of Creedon's

parameter choice; namely, that 6 is essentially determined by

the ratio of r /d. By removing inner emission surfaces of the

cathode, very little change in the steady.-state impedance was

observed.
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3. The current density is non-uniform and peaked in the

center when Bz C B0 , even when no appreciable beam pinching

occurs (Reference 2.10). A tentative explanation of this effect

is that the outer electrons have a lower longitudinal velocity.

Certainly this would be the case if the electrons roughly follow

field lines--the pitch angle of outer field lines is larger due

to the larger self field. When Bz _ B, the impedance is some-

what insensitive to cathode area whereas if B > B ,, the current

density again becomes nearly uniform as the field lines "straighten

out." The diode impedance then follows Langmuir-Childs.

*

2.2 ELECTROMAGNETIC FIELDS IN FINITE CAVITIES

An understanding of the nature of the electromagnetic (EM)

fields generated by intense beams in finite closed conducting

cavities is fundamental to a description of charge production in

neutral gases and beam transport phenomenology. For orientation,

we first discuss a simple quasistatic model to estimate EM fields

including the influence of cavity endplates, variations in beam

radius and charge/length, and density of the background charge.

Plasma effects are included here only in terms of electrical

(space charge) neutralization. We assume the beam energy and

current profiles are specified as a function of space and time,

and do not consider coupling to orbit or beam envelope equations.

The immediate utility of the equations below is that one can

estimate EM limits on beam-transport efficiency for desired beam

and chamber parameters, excluding current neutralization effects

(in this section). Exact solutions of Maxwell's equations for

beams penetrating finite cavities are given in Sections 3.3 and

3.4.

This section includes material reported in References 2.13 and
2.14.
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1. There is an applied magnetic field level above which no

appreciable beam pinching occurs. Hammer, et al. (Reference 2.11),

-have empirically found that if

B (
E Bz ( (2. 13)

pinching is inhibited. Bz is the applied longitudinal magnetic

field value and Be is the maximum azimuthal self-field of the

beam. dePackh (Reference 2.12) has numerically solved the elec-

tron orbit equations, neglecting diamagnetic effects and electric

fields, and obtains the criterion

B 1/2
Z > V7 (Y) (2.14)
B V

It should be noted that both of these equations involve the

parameter
I (amps)

17,000 
8L

and the longitudinal velocity, LC, has to be "guessed."

2. The beam rotates in the diode, indicating the existence

of a macroscopic theta motion. The azimuthal acceleration results

from forces

F e (v B-v B)F 0 c r z z r

and radial velocity, of course, may result from either pinching

due to the self-magnetic field, or from radial electric fields

near the cathode. The radial electron field gives rise to dia-

magnetic rotation whereas the B field generates paramagnetac

theta currents. We discuss these effects in more detail in

Section 2.10.3.
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I

I
I i The geometry is shown in Figure 2.5. Azimuthal symmetry is

assumed and the theta component of the beam current is taken zero.

Direct integration of the Maxwell equation:

VxE

gives
R aER

E r dr' - 1 e dr' (2.15)

r r

Anode Perfectly
window - conducting

walls

Figure 2.5 Beam chamber geometry.

where the boundary condition Ez = 0, r = R has been imposed. In

the quasistatic limit, the displacement current in the calcula-

tion of B0 is neglected and the radial electric field is assumed

to be obtainable from the electrostatic (ES) potential. It is

thus required that the time for light to travel twice the longest

chamber dimension be small compared to times of interest. The ES

potential can be determined exactly:
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R

f r' dr' f dz' G(r,r',z,z')p(r',z') (2.16)

with

G(rr',z,z') = 8 Jo Jo -

n=l Xn [Jl(ln)] 2 s (R)

sinh z sinh -- U(-z'), z < z'

[sinh (-z) sinh z', z > z

The charge density is p(esu/cm 3 ) and Xn are the roots of J (x).

An ad hoc approximation for Er is now made to avoid the complica-

tions of Equation 2.16. The spirit of the approximation is to

note from the exact expression the term dropping off most slowly

in z, and then to find an approximate normalization factor. The

chamber radius R is to be restricted to a range such that the

z dependence is reasonably accurate for small z. This implies

that 1 < R/a < 10, and 1 < R < 10 length units, which is hence-

forth considered the range for R. Assuming a uniform beam

current density and that the scale variation in z for beam

parameters is large compared to R/2.4 near the endplates or

compared to the beam radius "far away" from the beam endplates

(paraxial approximation), take

E = f(z) 2A r, r < ar 2a (2.18)

f(z) n, r > a
r
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with f(z) = 0, z = 0 ,k The beam charge/length (which may also

have a z dependence) is denoted by X. Equation (2.18) is exact

at - = Z/2 for X constant. Two cases of interest are
T
I ki £< R f ft 4z (9-z)

. 12

to (2) Z > R (2.19)

f(z) -e 2 4 z/R < 2(R/2.4)(l-e 2

1 , 2(R/2.4) < z 14 £-2R/2.4

le-2. 4 (k-z)/R-2 , £-2R/2.4 z 2 £

1-e

The Er profile for these two cases are sketched in Figure 2.6.

r

r _ _ It
Z (-Er ow i

r

(a) - z (b)

Radial field when Z < R - R

Figure 2.6 Fields for a uniform electron beam
in a closed cavity.
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Returning to Equation (2.15), and using

Be 21 rr 4 a
ca

21r a
Cr

an expression for E z(O,z,t) is obtained when k. < R:

(1) (2)

(O,z,t) =-2 4z2-z) +2A 3a 4z2-Z)
(Lz2n \a// , a 3z (±z92

2X + X~n 4I) (Z 2-2z) - ~ i(+ £n

If R «<k, a similar evaluation for Ezcan be made using

Equation (2.19).-

The terms of Equation (2.20) can be identified as follows:

(1) Electrost~itic due to a variation in beam charge

density/length modulated by end plate surface

charges

(2) Electrostatic due to a variation of beam radius with

z modulated by end plate surface charges
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(3) Electrostatic due to induced (positive) surface

charges at the end plates which terminate the

field lines of adjacent beam (negative) charges

(4) Changing magnetic flux due to current variation

(L dI/dt)

(5) Changing magnetic flux due to containment of

current within a time varying radius (I dL/dt)

It is interesting to note that without end plates, (set

z = k/2), Equation (2.20) reduces to

E (0,z,t) = 2 - (2.21)

(no end plates)

U = ct-z

= 1 2

8LC = average forward streaming velocity of beam electrons,

if not referring to the beam head or tail and if a constant beam

radius with varying charge/length is assumed. Equation (2.21)

can be rewritten for the case Ib = IP (1 - e-'u), IP = peak beam

current:

E (V/cm) =(-)4 1 P(amps) +ne (2.22)
Ez~ -- 2 tL tr (nSec) +2 nRae - u (.2

Z r=0 r
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We have defined (-i ) as a two e-folding current rise length:

S 0 Lctr = 2

For I P = 5x104 amps, tr=20 nsec, y = 3, R =6, a = , and

L 0.8, E - 4x103 e - a u V/cm.
L z

If we are within the current rise portion of a beam of

electrons (DX/au < 0) streaming in the positive z direction

Equation (2.21) shows that E is in the negative z direction;
z

i.e., in a direction to accelerate the front electrons,and is

opposite in sign to the E field behind the head when the beam

emerges from a conducting endplate. We remark that if one

transforms to the beam frame in the problem with no endplates,

uses Gauss's law for the now electrostatic problem, and then

transforms back to the lab frame, one also obtains Equation (2.21).

To include displacement-current effects, second and higher order

derivatives of X with z must be included in the electrostatic

problem in the beam frame. These examples point to a sufficient

condition for the validity of Lenz's law--changing magnetic flux

induces an electric field tending to drive current producing

fields to oppose the change in flux; i.e., E r/Dz be negligible

over the length of interest.

The effects of ions at rest can easily be included in the

above equations by replacing X by X(l-fe); fe - ionelectronI
is the fractional electrical neutralization.

If we take fe = fe (u), then Equation (2.20) gives for

constant beam radius:
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I
a

/ 1 \ a x/i I > e1-
E (O,u) = +2 + Xn Ri ia 1 -e (2.23)

z 2_ I_ e)

and E reverses sign when

•
X e a (2.24)a f (Y e) 7YL

If both X and fe increase linearly behind the beam front, Equa-

tion (2.24) is satisfied when f = 1/272. Figure 2.7 shows
e "2 L* Fgr2.shw

qualitatively the effects of ions upon E .

If f -5 constant or a function of t, and the ions are again

assumed to have no z directed velocity, we see that

E = 0 if f e 1 2 (2.25)

YL

This is also the condition for radial force neutralization of the

primary beam electrons. Thus, if Equation (2.25) is satisfied,

the primary beam electrons may drift in a force-free environment.
In other words, f = 1/y 2 is a condition for beam "transparency."

On first glance one might suspect that if the gas pressure
could be adjusted to maintain fe - I / Y2 during a substantial

portion of the beam risetime, very little energy loss would occur

in beam transport. However, as discussed in Section 4, f - l/y2
e L

is the condition for ion acceleration, or, in other words the

beam may be unstable. Physically, Equation (2.25) may be under-

stood by recalling that
aA

E = z c 1 tE Zz ~

2-23



S I i-li
S I Ei

r Bea

a motion

I I I 'i
II ii

Ez I L -t

II I I
Et

--A

I .I

Long conducting pipe, no ions, f = 0
e

e

e 2y

Figure 2.7 Sketches of E zfields with and without ions.
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a
T

where is the scalar potential and A is the z component of the
cis vector potential. In a rising current region of the beam profile

a-/3z and aAz/3t are oppositely directed. The presence of ions

such that fe - 1 / y2 is the condition that a/az is shorted out

enough to exactly balance the inductive aA/at term.

Equations (2.21) through (2.25) have been derived assuming a

constant beam radius with z and t. Let us return to Equation

(2.20) and look at terms 2 and 5, again neglecting endplate ef-

fects or restricting z to values about £/2. Denote these terms

by Ez .

-- 2[ a Lc  a]

E z  (0,z,t) = at (l-fe) * - -- - _ (2.26)za L e 3z 2 t
c

If a = a(u), u > 0,

S(Ozt)=2 a - 1 + 2]
Ez ( , t) = a- -u e

2X a(f (2.27)

When fe = 1/yL' Ez = 0, and we conclude that changes in radius
with u, or the distance behind the beam head, also lead to

E = 0 if the positive ion charge density follows the beam radius
I z

changes. If they do, the ion envelope velocity is, of course,

equal to the propagating velocity of the electron beam envelope.

To summarize the above field discussion, we remark that the

fields have been determined in a quasi-static approximation wnich

requi-res that the time scale of interest be long compared to time

for light signals to travel twice the longest system dimension.
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We have made an ad hoc approximation for Er to include endplate

effects that places a lower limit on the scale of z variation of

beam parameters. Our Ez expressions have been obtained for

r = 0; if we assume that Ez does not vary over the beam radius,

our error at the beam edge, r = a, is using

+ n ) fr instead of (n (R2 a (a))or
(E)Loformr=a form

for terms I, 3, and 4 of Equation (2.20). If R k a, this error
is not serious; in any case, we are overestimating Ez and any

zzbeam distortion due to Ezwould be less than our results. When

f e 1 everywhere, the electrostatic contributions of the EM

fields vanish, leaving only the inductive components [terms 4

and 5 of Equation (2.20)]. The endplates can now be ignored.

2.3 EXACT EM SOLUTIONS FOR BEAM PENETRATING AN ENDPLATE IN A
FINITE RADIUS CNAMBER (f = 0)- A SUMMARY OF RESULTSe

The discuosion above assumes that the beam has already

traversed the drift chamber. Now to be considered are exact

solutions of Maxwell's equations for a beam penetrating a chamber

endplate; sufficient conditions will be presented to justify

neglect of endplate effects. The material discussed is of

interest for low-pressure beam transport in ion acceleration

modes when electrostatic fields dominate, and it shows the im-

portance of finite chamber boundaries. The details of the

calculations are given in Section 3.4.
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j An end plate has two effects on the EM fields. One,

primarily electrostatic, is to reverse the direction of Ez near

the end plate and short out the radial electric field. The other

is to generate a radiated field component as surface charges are

accelerated by the beam. This field gives rise to precursor
fields traveling at the velocity of light and, under certain
conditions, to oscillatory fields near the beam front. The

geometry for the calculations is shown in i'igure 2.8.

0I
Electron R I

beam V

Beam front U - Precursor front

2 A X = ct

LOS L

Other
cavityend plate

Figure 7.8 Open ended pipe geometry.

A sufficient criterion for neglect of field oscillation is

that

(ct)zf 2 >> R/2.4, 1 < R 10 length units (2.28)

where zf is the beam front position. Another way of stating

Equation (2.28) is that the light signal must have traveled "far

beyond" the beam front. One would therefore not expect this

2-27



effect to be important for low-energy beams. A typical oscilla-

tion amplitude, for example, would be -103 V/cm with 5x10 4 A

1-MeV beam, 20-nsec risetime, and 1-cm radius in a 6-cm-radius

pipe.

The reversal of the sign of Ez, as compared to the case

without end plates, is perhaps the most important influence of

the end plate, since this effect can seriously degrade the beam

energy and reduce the front velocity. The beam "blows up" radially,

resulting in large energy losses. Figures 2.9, 2.10 and 2.11 show

the Ez field on axis for a beam with current in the positive z
direction penetrating an end plate. In order to illustrate the

details of the ES field near the end plate, an undistorted "slow"
*

beam was chosen. The parameters are

OL = 1/30

tR = risetime g 0.1 nsec

R = 6 cm

a 1 cm (Gaussian radial current variation)

IP = peak current = 1.77x10 3 amperes. (The ES field
scales linearly with peak charge/length.)

The reversal of the sign of Ez occurs at the crossover distance,

zc, and can be estimated from

zc ; [(R/2.4) £n 2y + yzf]/(Y + 1), (2.29)

In order that the field calculations be self-consistent with
beam motion, v/y-I << 1. Section 2.10.1 discusses beam front
motion when this condition is violated. Scaling of field values
for other beam parameters is discussed in Section 3.4.1.
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Figure 2.9 The longitudinal electric field (Ez) on axis for abeam penetrating an endl plate in a' finite radiuscavity (t = 1 nsec).
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Figure 2.10 The longitudinal electric field (E ) on axis for
a beam penetrating an and Plate in a finite radius
cavity (t = 2 nsec).
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Figure 2.11 The longitudinal electric field Ez on axis for a
beam nenetrating an end plate in a finite radius
cavity (t = 5 nsec).
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where zf is the beam front position ( time in nanoseconds in the

above example). Equation (2.29) is valid for a "blunt" beam when

zc < 2R/2.4. In order to neglect the electrostatic endplate

effect on the beam fields, it is therefore required that

ct/y , zf, z * R/2.4 (2.30)

When R , one can also derive a manageable expression for

the E field. A straightforward electrostatic image method

calculation (Figure 2.12) gives for the potential, 0, on axis

(r = 0)

Ii -
O(z,L) -- . [(L4 z) - (L-z)2 - 2z2] L-z

L~-z
- L+Z d w a22 + 2

z

X z(ILz) + (L-z) (L-z) 2 _ (L+z)

- ~, z2-) +(Lz) 2 2 V+ +

+ 2za 2 + z2+ a2 [.n (L-z + vi/)2)

+ Cn ( z + V +v Tz)- n ( v+rz ) ( . 1

-£n + z + "a2 + (L+z) 2)(
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Figure 2.12 Geometry of electrostatic field calculation for a
.4. beam emerging from an infinite conducting plane.

where X is the charge/length and is assumed constant from z = 0 to

z = L. The charge density has also been taken uniform in radius

out to r = a. The expression for Ez follows directly from Equation

(2.31);

z= - z

21 2 (L-z) + 2 J +Z' % 7r2 ( -

(2.32)

We see that Ez reverses sign and the potential well depth is

maximum for z = zc given by

(L-z )+ a2+ z 2 *1 V +(L-z 2 + /al + (L+z)2
C c T I Cc

2-33 
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2.4 CHARGE PRODUCTION IN NEUTRAL GASES

For the purposes of a discussion of charge production

processes, one needs to realize that typical intense beams in

neutral gas-filled drift chambers have electrostatic (ES) space

charge fields in the 105 to 106 V/cm range before electrical

neutralization and inductive fields of the order of a few keV/cm

after fe b 1. As shown previously, the ES fields are primarily

longitudinal near the anode window and the downstream chamber

endplate, and primarily radial within a region of length f 2

(R/2.4) away from and interior to both the endplates. Depending .

on beam energy and current risetimes, the ES field near the anode

window, which is always in a direction to degrade the beam

kinetic energy,may slow beam electrons down, sharpening the

front, causing the beam to "blow up" radially, and effectively

decreasing the current risetime. We then have a situation where

a relatively sharp beam front precedes an io charge neutraliza-

tion front. This process effectively moves the anode down tue

chamber, maintaining a primarily longitudinal space charge field

behind the beam front until, e.g., fe 1/2 y in the case
discussed in Equation (2.24), and then primarily radial until

f e 1. Both the value of the ES field and its direction depend

on the "sharpness" of the beam and ion fronts, and may be inferred

from Sections 2.2 and 2.3, using a superposition of fields from

an electron and equivalent ion beam. As the beam collisionally

ionizes the gas, the secondary electrons move out of the beam

channel, leaving positive ions to neutralize the beam space charge

over a time scale TN" When the ES fields are primarily longi-

tudinal, the vzB0 force accelerates them out of the channel, or

when primarily radial, the electric field does.

These remarks are amplified in Section 2.10.1.
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During TN < t < t ,' tr the current risetime,a the electric

field is inductive dominated, longitudinal, and drops to values
of the order of a few keV/cm. We argue below in a charge produc-

tion model that it is this inductive electric field which has a
major effect upon charge production through electron avalanching.

The exponentiation of secondary electron density during avalanch-

ing causes the gas to break down, giving rise to the phenomenon

of current neutralization.
'U

The plasma charge density may also be enhanced by the in-

fluence of ES instability-generated electric fields if the beam

parameters (temperature or velocity spread) and plasma density

are such as to allow rapid growth of instability oscillations.
We defer a discussion of instability heating to Section 2.8.1.

2. 2.4.1 Direct Collisional Ionization. Good working values

for the impact ionization cross section (aion) for beams with

energy in the MeV range are given in Table 2.1 (Reference 2.15).

TABLE 2.1

IONIZATION CROSS SECTIONS

Gas aion (CM 2)

MH2  2 x 10- 19

He 2 x 10- 19

Ne 4 x 10- 19

A 9 x 101 9

N2  2.6 x 1018

Air 2.6 x 10

Using the cross sections above, the time for attainment of

electrical neutrality, T N' can be estimated. If we assume
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singly charged stationary ions and that the secondary electrons

escape "instantaneously" from the beam channel, the ion charge
density, pi is given by

dpi 1016

- x ion P

3 16 Ib  (2.34)

3.53 x -- T (c/10) aion P
7ra

with

b = beam current density (assumed uniform) (statamps/cm
2)

Ib  = beam current in amperes

a = beam radius (cm)

P = gas pressure in Torr

p pIntegrating Equation (2.34) using Ib = g (t) I , I = peak current

in amperes,

P i(t) = ( 0 1 ) ( 0I ot
16 (c/l0) ion P p dt' (t') (2.35)7Tion f a 2  (t')

0

The electron beam charge density, pe, is

- I P g(t)
e - (10) ra2 OL

so
f M Pion

e(t) - Pe

2 t
= 3.53 x 101 6 a cP a g(t') dt (2.36)

io g(t) a2  t')

The time TN to attain fe = 1 can easily be obtained from

Equation (2.36) for the linear current rise case (g(t) = t/t)

when no appreciable change in beam radius occurs over TN:
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0.7a. (air)
(sc P(tort) ion(gas) (2.37)

Let us now briefly examine the assumption that secondary elec-

trons instantaneously escape from the beam channel. The secondary
electron orbit equations are

S(YVr) = - _ (Er )
(2.38)

d + eI vrBS
~(yv ) = m0 (E+c/

o .. z
where vr (v ) = radial (longitudinal) velocity component of

r z
secondary electrons. The energy equation is

dy e - e vz) (239)- - 2 (Er vr + z (
m c

These equations can be solved analytically with specified fields

only in a few cases.

First, we note from Inspection of Equation (2.38) that the

radial acceleration will always be outward (positive) until

vZ
z = (Er/Be) (2.40)

If the beam charge density is uniform in radius,

E 1-f
r e

L

Thus, since O < 1, the secondary electrons will escape toz
"infinity" unless

f > 1 - (2.41)e 23
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If E z Ps 0 (fe ft L 2 ) and E r , B are cnly functions of r,
Equations (2.38) and (2.39) can be solved analytically for the

turning radius, rt, at which the secondary electron reverses

radial velocity. Denoting quantities referring to the initial

coordinates and velocities of secondary electrons with the

subscript "1,"
r r'

(yv) =(yv) 2 _ 2e dr' e E(r dr"] Er
r 1  momoc j r

+ -e 2f [B(r') B (r")dr" dr'
moc 2  L B

r 1  B

- f (yVZ) B- (r') drJ (2.42)

ri

and r

y(r) = e--7 f Er(r')dr'

0c r1  r (2.43)

YVz h (YVZ)l mc e B(r'rdr'

Let us evaluate Equations (2.42) and (2.43) for y= i in theuniform beam case, assuming r t > a, the beam radius. We obtain

Yvz %nmo

2

L(r) = C
0
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These two equations can be solved for r ft
1 12

r = a exp ::- 1 + (r1l/a) 2 (2.44)

with f

O. L

If we take a 1 MeV electron beam, v 3, fe 1/y 2, and
r = a/2,Equation (2.44) gives rt f 12a. In other words, when

chamber radius R is < 12a, the secondary electrons would hit

the wall (at relativistic velocities). If we blandly ignore

the effects of E when f > 1/y2 , a criterion for secondaryZ e
electrons to be lost to the chamber wall is

2 ( 1-f e )  r1 2
2 Jn R/a < - 2 a 1 (2.45)

Numerical orbit calculations are required to more carefully

justify the assumption that secondary electrons escape from

the beam channel over times short compared to -N when fe < 1.

Experimental observations of beam envelope profiles using TN

from Equation (2.37) show that the assumption at least gives a

good working estimate of space charge neutralization times.

2.4.2 Electron Avalanching and Gas Breakdown. Relativistic

electrons create secondaries with energies in the few electron

volt range. The ionization cross-section for further ionization

by these secondaries is in the 10- 16 cm2 range and, if the beam

induced electric field is large enough to accelerate the second-

aries to ionization energies for the background gas atoms in a

distance of the order of a mean free path, these secondaries

create more electron-ion pairs--the condition for gas breakdown.
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In order tVat avalanching influence plasma generation in the

beam channel, the radial electric (space charge) field of the

beam cannot be too large, or in other words, the radial electric

field must be low enough to keep the transit time over a distance

of the beam radius not significantly smaller than the mean
ionization time for secondary avalanching.

If fe f lthis condition is fulfilled. Moreover, when

f > l/YL2 the beam is in a pinching condition, so the space
charge blowup is terminated and the beam radius can be assumed

roughly constant in avalanche calculations. The charge production

equation for secondary electrons can be written from the Townsend

discharge theory as

dn1(t) ndt = M + n - V (2.46)dt2
rai

collisional avalanche transport
ionization term term

where np is the secondary electron density/cm
3

I(t) = the beam current in amperes
a = the beam radius in cm.

t. mean ionization time

(<vion> - <a>) - I

V ion ionization frequency
1 a electron oxygen attachment frequency in air

<> denotes a value averaged over the secondary

electron velocity distribution and the back-

ground gas velocity distribution

r the particle transport current out of the

volume element due to the electric fieid

(mobility current) and diffusion
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a = 5.8 X 1017 P (Tort) air (N2 ) # nubr of ion pairs/

-8.8 x 10 P (Torr) He cm /sec/amp/cM

and: - is obtained using the ionization cross sections in Table 2.1. The

, an ionization time is a function of the E/P (electric field/pressure)

ratio, and since E varies with t, t. = t. (t) We can integrated~~h. -itranste tr'

EqUation (2. 46) assuming a = constant, and neglecting the transport term,

oti ti i  o t,
--(t1 -- e I (t') dt' + n-(t 0 )e (2.47)

to0

-n is the secondary electron density at t = to. If we break up

t9e time intervals into segments with approximately constant

44ectric fields, ti = constant, and if I = IP t/tr, a linear
vurrent rise to a peak current I

P

n. (t) 58 x i017 P (Torr) IP (amps) (ti)2 et/t.i)

n- t/t i c) ( /

+ n (t )e t/ti (air) (2.48)
p 0

with all times in seconds.

ti (only collisional ionization),

1 Pt) 2.9 x 1017 P tr (air) (2.49)
ira r

2 2.46 neglects recombination effects. These are not
! 41rortant at pressures corresponding to high conduc-

2-4d1wn.
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The meAnionization-times have- been plotted as a function E/P

fkromthe dataof Felsenthal and Proud' (Reference 2.16) by J.

Creedon (Reference 2.1J). Figures 2.13 and 2.14 compare air and

helium, and Figure 2.15 shows the mean ionization time in air

plotted as a function Of pressure for two typical electric field
values.

A model of charge production is now argued to estimate

breakdown times. Secondary electron orbit sketches and typical

field magnitudes are summarized in Figure 2.16 for a beam in a

drift cham!ber. The figure indicates that beam-driven electric

fields vary several orders of magnitude from the time of front

arrival to gas breakdown time, tB, and that the highest fields

exist for t < TN. In fact, these fields are usually sufficiently

high at pressures of interest for efficient beam propagation

(0.1 to 1 torr) that the secondary electrons become relativistic

over distances of the order of the beam radius and the ionization

cross section drops to values around 10"1 cm2 . This can be

compared to typical Townsend discharge theory whece cross sec-

tions are used for electrons with energies up to the kilovolt

range (- l0- 16 cm2 cross section). Moreover, until fe a 1 is

achieved, the secondary electron motion is primarily radial and

the flow is out of the beam channel. Thus, it seems reasonable

to neglect avalanching in the beam channel untii fe " 1. When
t > TN, JEJ 2 Ez l 103 V/cm, (typically), we consider avalanche

effects to be important and the electric field is inductive.

With these arguments in mind, an ad hoc charge production calcu-

lation procedure for high current electron beams is outlined:

The reader is cautioned about extrapolation of their data to
off-the-curve points, particularly toward the high E/P values.
These authors carefully delineate the validity of their
measurements.
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Figure 2.13 Plot of E/p versus P t.i for air.
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Figure 2.15 Mean ionization time versus pressure for air.
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a. TN, the time for fe 1, is calculated from-collisional
ionization (TN (nsec) -0.7/LP (torr) for air).IN

b. From the time the beam front arrives at the point of

interest up to t = TN' secondary electrons escape
instantaneously out of the beam channel; no significant

felectron avalanching occurs within the beam channel.
c. From t = TN to t = tB' the breakdown time,

E (V/cm) 21P (amps) (1/2+ CnR/a),
z tr (nsec)

assuming a linear current rise,

R = chamber radius

a = beam radius
t = beam risetimer

Using Ez above and the pressure of interest, ti, the

mean ionization time (Townsend discharge theory), can

Vbe determined from Figure 2.13.

d. Neglecting the transport term and assuming E constant,

in Equation (2.48) gives

P1
n t T ~ UI~ I e t + T (t + NT

e NeS (t - TN )  ---
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Is
e. Breakdown is defined as neS (tE) 6nib (t B ) V

Empirically determined 6 % 226 ii
f. tf* is obtained from the transcendental equation:

StBP(or8 -- 1 for air (2.50)

tB, P i t i8 E1L (t N)

(All times are in nanoseconds.)

Breakdown time calculations from the above are compared

with Yonas and Spence data in Table 2.2 (Reference 2.18). The

beam parameter range over which the above model is relevant

is not clear, inasmuch as detailed breakdown data exists only

from the Yonas and Spence work. It is quite likely that widely
i different beam parameters would require adjustment of the chargeI~

multiplication factor, 6.

TABLE 2.2

BREAKDOWN TIME CALCULATIONS

T t. t tB
P N t (ns~c) (nsec)

(torr) (nsec) (nsec) Calculated Measured

0.1 13.0 1.0 20.7 20
0.3 4.3 0.47 7.8 10
0.5 2.6 0.34 5.1 5

Agreement is within
experimental error

Parameters

I = 4 x 104 amperes a = 2.5 cm2

tr = 20 nsec 6L = 0.54

E = 2 x 103 volts/cm y = 1.5

R = a
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I
After gas breakdown the plasma becomes a good conductor and

the electric field typically drops to the fevi hundred V/cm range
or less. An estimate of further ionization can then be made from

-- ,t > tB (2.51)
dt AWion

where a is the plasma conductivity after breakdown and AWion is

- the energy required to create an electron-ion pair = 33 ev/ion

pair - 5.3 x 10- I1 erg/ion pair. Equation (2.51) would, of course,

- apply until the gas is fully ionized or the driving field becomes

negligible. in Section 2.6 we estimate the Ez of Equation (2.51).

2.5 PLASMA CONDUCTIVITY

In order to use the concept of conductivity in a meaningful

sense and thereby simplify the plasma dynamics enormously, we

have to carefully characterize the plasma parameters and the

electric fields; an intense beam, self-generated plasma system

typically has, electric fields varying several orders of magnitude

over the beam pulse width and, of course, the gas changes from an

unionized state to perhaps a fully-ionized, heated plasma, We

are most interested in the necessary conditions to use a scalar,

dc conductivity--the simplest case.

Before the gas is fully ionized, the conductivity contains

contributions both from electron-neutral and electron-ion

collisions. An often-used rule to calculate the effective con-

ductivity is

- = (2.52)
a o a
T e,n e,i
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-b

with
aT = total conductivity ii
dei= electron-iOn conductivityeIII
Gen = electron-neutral conductivity

The scalar conductivity components are defined as
2. 2

1, _. _ (2.53)
i0 1 i,j  i,j

2.53 x 108 V P (sec *i,j !

where n = plasma electron density (cm
-3)

= electron plasma frequency

Si,j = momentum transfer collision frequency (sec)
for (i,j) 90 degree scattering to direction of
electric field.

We list several restrictions upon use of Equation (2.53) which

have to be considered in intense beam applications.

1. vij > u, m (dc approximation), wm = maximum angular

frequency of EM field components with "appreciable" amplitude.

Otherwise, electron inertial effects are important and

2, 2a (w) (2.54) 2

4= (V.) + w2 (*ij)2 2 (2.54)
i~j i,j

a(mho/cm)- 
1(sec

1012
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Tyialy <i08/sec.|
Typically, Am _ " <  /c. The beam pulse width is t-.'

p

2. vij W c (scalar approximation), wc cyclotron
frequency of secondary electrons in magnetic fields. Otherwise we

must use a tensor conductivity and, for a Lorentz gas,

HW
a1 o al ( z 2.55'1-)

l [ where a1 (a) is the conductivity perpendicular (parallel) to the
magnetic field lines. all is given by Equation (2.53). When no' ~external magnetic fields are applied, the "cyclotron" frequency
is the Larmor or betatron frequency of the net Be field (includ-
ing current neutralization). This field is zero on axis and a
maximum near the beam edge. When beam transport efficiency is

4 nethigh, the net current is typically such that B (r = a) < fewInet < 10kilogauss. If we take Be 2 kilogauss, wc < 3 x 10 /sec.

The collision frequency above has been tacitly assumed to be
strictly collisional, either electron neutral or electron-ion.

i When the beam-plasma system is unstable to longitudinal electro-

static oscillations, an effective collision frequency, veff, can
be used in weakly turbulent plasmas to give a so-called anomalous
conductivity. This collision frequency represents wave-particle

scattering and may be orders of magnitude higher than ven or
Ve,i . If tne instability wave energy is dissipated by collisions
rapidly enough so that non-linear regimes and particle trapping
do not occur, Veff is taken of order of the fastest linear
instability growth rate,Im(w). We therefore additionally require

for validity of Equation (2.53):
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'i

Ve i(sec-l) 6x10 np -3/2
p e -1 (2.61 ) -I

giving

-1 12 3/
e,i (sec-) d 4.2 x 10 Te3/2  (2.62)

The two conductivity components above are equal when

n
• _ 104 (T)2

NO e

assuming am> io-16 cm2 . Thus, from Equation (2.52),

cyo a if

( ) o 1 -4 (T) 2 (2.3)NO e

As an example of the application of the above remarks, let

us estimate the conductivity after gas breakdown for the Yonas

and Spence beamn parameters of Table 2.2. We obtain the electron

plasma density at breakdown from our charge production model

[n (t 200 nb (tB), nb = beam electron number density] and

assume a temperature of Te 10 volts. From Equation (2.63)

n I 102 is the equal aei and aen plasma electron to back-

ground gas density ratio. The calculations are given in Table 2.3.

TABLE 2.3

CONDUCTIVITY ESTIMATES AT GAS BREAKDOWN

P (tort) N (cm- 3 n (tt N t ) (sec -

0.1 3.5 x 1015 4 x 1014 10- 1  ei 1.3x10 1 4

1.0 3.5 x 1016 4 x 101 3  10 -2 aa f.2o /2e~i/ e,n/

6.5 x 1013

2-54



of a transverse magnetic field: ',.., presumably could be important
near the axis of a-.B field syst.,t ihere Be  0. If n > 3.5x101 5 /
cm p >0.1 torri fully ionized, T 10 volts, Z 1, (conditions[e
for rapid gas breakdown and good beam transport), Equation (2.57)
gives E_ 700 v/cm. Such a field would correspond to plasma

z
current densities, 2 of 7 x 10 amPs/cm2 , asslmi

and T 10 Volts. The highest beam current densities yet
attained in the drift chamber are - 105 amps/cm2 . Thus, theE z
field limitation for Equation (2.56) will usually allow use of a
scalar conductivity giving essentially complete current neutrali-

I zation of the highest current density beams.

4 Returning to Equation (2.38), we obtain expressions for
a and ae,i . The electron-neutral collision frequency is
defined as

v = N <mv> No <zm> vt'(v > v (2.58)e,n o0 t v vd)

where v is the electron velocity, N is the background gas neutral
density, <am> is the electron distribution-averaged momentum
transfer cross section. Equation (2.58) may be rewritten using
Equation (2.56) as

- 124v (sec ) 2.1 x 10 <a > VT (eV) P (torr)(2.59)

giving

-n
(sec-) 1.2 x 10 -1 6  

2m,n > P (torr) (2.60)

Typically <6m> - 1015 - 1016 cm2  and may be obtained for
various gases from electron mobility measurements (References
2.20 and 2.21). The electron-ion collision frequency for Z = 1
ions (Reference 2.22) is
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*ei~ecl) i0 -  np -3/2 (2.61)

) 6 x 10 -3/1

giving

aei(sec-) 4.2'x 1012 Te (26

The two conductivity components above are equal when

.2. 10-4 (Te) 2
NO  e

assuming -am> i11 6 cm2. Thus, from Equation (2.52), L
F k e,i if;

( )> 10- 4 (T)2 (2.43)
No

As an example of the application of the above remarks, let

us estimate the conductivity after gas breakdown for the Yonas

and Spence bemn parameters of Table 2.2. We obtain the electron

plasma density at breakdown from our charge production model

[np (t B 200 nb (t B ) , n = beam electron number density] and

assume a temperature of Te 10 volts. From Equation (2.63)

n/N 102 is the equal aei and aen plasma electron to back-

ground gas density ratio. The calculations are given in Table 2.3.

TABLE 2.3

CONDUCTIVITY ESTIMATES AT GAS BREAKDOWN

-3 -1P (torr) No (cm ) n (tB) n N 0 o(t tB) (sec

0.1 3.5 x 1015 4 x 1014  _ 10- 1  O G e,i -z 1.3x10 14

1.0 3.5 x 1016 4 x 1013  , i0-2 a = .ei/2 -o e,n/2

6.5 x 101
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These estimates, of course, suffer from the uncertainty in Te,
but the conclusion that the conductivity at 1 torE is lower than

at 0.1 torr is supported by experimental data on plasma current

decay rates (Reference 2.23);. The change in a after, breakdown
will depend on the value of a(t = tB)., or equivalently, the power

input to the plasma after breakdown.. At p = 1 torri welwould

expect the plasma ionization to continue and the conductivity to

increase somewhat. Detaiped measurements of plosma densitiesII and temperatures are needed to verify these remarks.

A plot of electron drift velocity in air as a .funclion of

E/P for an electron-neutral dominated collision frequency is

given in Figure 2.17, from which ae,n canbe inferred:vdn

0 n 1.4 x 10 - 7  (2.64),il e,n E. (V/cm)

2.6 CURRENT NEUTRALIZATION
£4

We have already discussed space'charge neutralization and
2 2its influence upon the electric fields. When f > l/y (or 1/2 y ,

e
depending oq the variation of fe with space and time behind the
beam front), the E field is in a direction to drive secondary

I electrons back to the anode, i.e., oppositely to the beam elec-

trons. The radial electric field component is stilllarge, how-

ever, and the secondary electrons are driven out of the beam

channel until fe - 1. After fe g 1, the field is Inductivd

(L dI/dt) and we argued in the charge 'production model the use of
the inductive field for electron avalanching 6alculations. The

Splasma electron "supply" is not large enough to provide a sub-

stantial secondary electron current until gas breakdown occurs,

If plasma parameters at breakdown are such that aen always
dominates, this conclusion is, of course,. also tru.
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after which time the net current in the chamber is held more or

less constant over the remainder of the beam pulse. In other

words, the beam current may be neutralized by the plasma return

current. We argue below a simple model to estimate the degree

of current neutralization for beams injected into a neutral gas.

If the gas is a good conductor after breakdown, as is

usually the case, the time scale for further charges in the
magnetic field, assuming a constant conductivity, is the magnetic

diffusion time, td:

td (sec) 45 aa2 )!. c

a-in (sec -). This is the time scale for changes in the magnetic

"U field to diffuse a distance of the order of the beam radius, a.

When the gas breaks down, the beam current has reached a certain

value depending on time of breakdown and has an associated Be
LI. value. The magnetic field after breakdown changes from this Be

value over a time scale of td* If aB 1013/sec, e.g., a a! 1 cm,
Equation (2.65) gives td , 130 nsec. Thus, if td  tp, the beam

pulse width, the magnetic field and net current remain approxi-

I mately constant and equal to values at breakdown. The magnetic

field is then "frozen" or clamped and the plasma return currents

adjust to the changing beam current to keep the net current

constant. Am estimate of Ez driving the plasma return current

for t > tB is
L Ib(t) - Ib(tB)

.b b B) (td 0 tp) (2.66)z d pa7aBa

where Ib = beam current.

I

2-57

CT



We define the fractional magnetic neutralization, fm

I (r = a) b (2

fm - Ib  1 -Ib ( (2.67)

Ip is the plasma return current over the beam cross section.

For strictly inductive electric fields, f < 1. An estimate of
mmf mcan be made from the charge production rules of Section 2.4,

which give an estimate of tB, and therefore Ib(tB).

In order to achieve high current neutralization, we need

to fulfill two conditions:

1. The conductivity at breakdown, aB, must be high

(td tp)

2. Breakdown must occur early in the pulse (tB . tr).

In the 0.1 to 1 torr pressure range, the second point is usually

dominant. At higher pressures current neutralization will drop

because aB decreases. These remarks are summarized in Figure 2.18,

where we see that fm f 0 at 0.1 torr, even though aB is higher

than aB at 1 torr (refer to Table 2.3).

Yonas et al. (Reference 2.23), have utilized the ideas

discussed above to approximately calculate the net current versus

time for a given beam-current profile. They break up the beam

profile into a current-rise region, a "flat top," and a decay,

and use the magnetic diffusion equation with this type of an

approximate source term (beam current) to calculate the net

current. Figure 2.19 shows an example of their calculated net

currents versus measured net current.
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Figure 2.19 Comparison of measured and calculated
net currents (Reference 2.23).
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a.

We now present a summary of an exact EM calculation showing
current neutralization. Several authors have discussed the

current neutralization problem under various assumptions (Refer-

ence 2.24). All calculations assume a constant conductivity

plasma (except, recently, Swain, Reference 2.25), an assumption

which therefore restricts them to injection into preionized

plasmas; i.e., they completely miss the point for neutral gas

current neutralization phenomena discussed above. The most

practically relevant calculations for preionized gas injection

are given in Section 3.3 where a finite risetime beam in a finite

radius chamber is considered. We summarize below the results

of these calculations.

2.6.1 Beam Injected Into a Preformed Plasma. We make the

[a' following assumptions in the calculations:

7 a. Azimuthal symmetry

b. Bz f 0, jb8 
= 0

v c. Undistorted beam moving at constant velocity, OLC - v.
d. Jbz = Jb = beam longitudinal current density

f(r) g(u), u =_ y(vt - z).
1 e. g(u)= (l-e-uU), ( - 1 ) is the e-folding current riselength.

Equation (3.64) of Section 3 gives us the vector potential

A = Az , from which we obtain B0 = - DA/Dr, and the net current

In(ru) = r Be (r,u) = 4wClr HnGn(u) (2.68)

Ii n=l [ [I(n)J

where J0 (J1) is the zero (first)order Bessel function, An are

the roots of J (x), R is chamber radius, and H is the radial
0 n

form factor:
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1 R e- ( n/2Rb) 2  C e-b2r2 (6Hn =. 2 An e for for) = Ce, (2.69)
~1 11

a - J( a) for f (r) - CH (a-r) (2.70)

H is the Heaviside function, and for u > 0,

=~ 1_(na t -au
G (u) - - 2 /g- - (2.71)

I2 + ()
k +

- L-

n2  + /[ k

Equation (2.71) assumes a # nI. We note from Equation (2.71)

that when u * 1/a, l/nl, or, in other words, when we are far

behind the beam front In + Ib , as it should. For orientation,

we mention a typical ordering of the basic system lengths for

injection of a 40 nsec risetime, 1 MeV beam into a highly

conducting plasma with a = 1014/sec. Then defining
aYLOL c tr =2 gives

a = 6 x 10 4 cm-

k = 6 x 104 cm- 1

i :% 8 x 10 - 5 Xn/R cm"1

n2 - 2k =1.2 x 105 cm- 1
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Rather than further discussing specific examples in detail here,

we simply remark that the beam-tube plasma has three ordering

lengths, a, Xnc/R, and k, whose relation to each other substan-

tially affects the form of Gn (u). (The value of xn /R at the

cutoff index in the summation is denoted by An C/R.) Some limits

L are:

1. low conductivity - k = 2woLyL/c C _- 2.4/R

The variations in u are now geometrically determined with scale

L length ( 1 /R)- . Plasma return currents substantially flow in

the chamber wall.L c

2. high conductivity k ) n
SR

Plasma return currents are now essentially contained within a-l
skin depth (k) around the beam channel.

sWithin these two cases are subcases depending on a. The "blunt"
,.beam case is a ;1 n2' and the "slow risetime" case is a -C nl.

The net current expression, Equation (2.68) above, gives

exact EM solutions for the constant conductivity case if the beam

is undistorted. These approximations are realistic only if the

aconductivity at injection is sufficiently high to keep the

electrical fields small enough to avoid beam distortion and

substantial plasma heating. If we are interested in transporting

the beam a distance L, we require

eE L - beam kinetic energy (K.E.)

z

I
1 2-6 3
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or

- ', p= plasma current density

or Le
* or be (2.72)

K.E.

The other more serious practical restriction for use of: the model

is that the beam must be "cold" at injection; i.e., the trans-

verse energy must be small enough to be contained by the low netI.,

magnetic fields in the plasma. We consider effects of beam

transverse temperature in Section 2.10.1.

The EM calculations on current neutralization outlined

above may be "fixed up" to cover the case of neutral gas injec-

tion with gas breakdown. The way to do this is relatively

simple. Take a = 0, t < tB, a 7 0B' t >1 t B, and use the

initial condition I

2Ib (r,u(tB))
B0 [r,u(tB) H

The solution consists of:the'sum of two parts, one the decay
of B0 (initial), which is a homogeneous solution of the vector

potential equation, and the other a solution of the vector

potential equation with 'the beam current after breakdown as a

source term. This latter term has a net current of the form

of Equation (2.68).

2.7 SOME BEAM DYNAMICS

So far we have considered the EM fields existing in a

beam-plasma system and charge production in neutral gases assuming

that the beam and gas parameters were specified. In reality, of
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course, the beam motion is coupled to the fields. Our viewpoint

has tacitly emphasized the longitudinal electric field and we

have given expressions to evaluate its magnitude and direction

with or without finite chamber boundaries. We are thus in a

position to outline conditions for validity of the equations of

motion for the beam envelopes and steady-state self-consistent

beam equilibria discussed below.

2.7.1 The Kapchinskij-Vladimirskij (K&V) Equation. The

K&V equation (Reference 2.26) is a self-consistent equation for

the beam envelope including the radial electric space-charge and

-: self-magnetic fields, and finite emittance or transverse beam
} S "temperature." The current density is taken uniform in radius,

(but varying in z), so the forces on the beam electrons are

linear in displacement from the beam axis and the flow is paraxial.

While these assumptions are restrictive and render the equation

irrelevant to many intense beam applications, the K&V equation

is analytically tractable.

The K&V equation for the beam envelope, modified to include

current neutralization, is2a

d a _ 2 - f -L (1 - f] 1+ C2 (2.73)
I dz LYe ae

where

a = beam envelope electron radiuse
ne = beam emittance or (r, dr/dz) phase space

area (cm-rad)

Our inclusion of fm is only valid if Ez is uniform in radius
which, in turn, implies that the plasma skin depth is large
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I
compared to the beam radius and that £n R/a > 1. We rewrite

Equation (2.73) as

d'ae = A + C (2.74

dz2  ae ae

where A 2v[ - e - 2 (1- f-)]
8L

A first integral of Equation (2.74) can be obtained by multi-

plying both sides by 2 da /dz, giving
e

da 2/ l
d A £n (ae - 1 1 + v (2.75)

a ° = beam envelope at plane z = zo

Figure 2.20 illustrates these terms. Envelope extrema are

obtained from Equation (2.75) by setting da e/dz = 0, and the

constant radius case is dae 2/dz2 = 0. Garren (Reference 2.27)

has numerically calculated beam envelopes using a dimensionless

version of the K&V equation.

% I L

dae

Figure 2.20 Beam envelope motion.
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[ Some of the gross features of beam behavior versus gas

pressure can now be qualitatively understood. Figure 2.21 shows

some typical beam features (I f 2.5 x 104 A, 3 MeV) at represen-

tative pressures. The beam propagation length in the photos is

50 centimeters. We'repeat here some of the arguments of Link

(Reference 2.28). Referring to Equation (2.74) we note that the
transverse energy term is always > 0, so unless A < 0 the beam

blows up radially. Maximum pinching occurs when fe i1 f I 0.
Using the charge production rules of Section 2.4, we obtain the
following ordering of fe' fm over a substantial portion of the

beam pulse (pulse width ~ 50 nsec, t 2! 15 nsec).

L P (torr) TN (nsec) fe tB (nsec) fm A
-32

10 700 0 0 1/7L
(space charge

blowup)

I0-I  7 ~8 (pinch)

1 1 0.7 1 3 1 0 (drift)

760 -0 1 0 2 pinch)

The beam blowup in Figure 2.21(d) after 25 centimeters is
probably due to an instability.

I
.. Let us now address the question of beam pinching and

equilibrium radii in more detail. We consider" two limits on

S the beam radius or energy density; the steady-state, nonuniform

beam envelope case and the steady-state uniform beam envelope

case.
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Some of the gross features of beam behavior versus gas

pressure can now be qualitatively understood. Figure 2.21 shows

some typical beam features (I f 2.5 x 104 A, 3 MeV) at represen-

pItative pressures. The beam propagation length in the photos is

50 centimeters. We repeat here some of the arguments of Link
(Reference 2.28). Referring to Equation (2.74) we note that the

transverse energy term is always > 0, so unless A < 0 the beam

blows up radially. Maximum pinching occurs when fe 1, f f 0.

Using the charge production rules of Section 2.4, we obtain the

following ordering of fa' fm over a substantial portion of the

i beam pulse (pulse width 50 nsec, tr -5 15 nsec).

(torr) t (nsec) f t (nsec) fm ABL /2v

i0 700 0 ~0 l/yL2

I. (space charge
blowup)

10 1 7 1 ~8 0 0 - L  (pinch)

1 0.7 1 3 1 - 0 (drift)

760 -.0 1 (pinch)1 70- ~0 8

The beam blowup in Figure 2.21(d) after ~ 25 centimeters is
. probably due to an instability.

Let us now address the question of beam pinching and

equilibrium radii in more detail. We conside : two limits on

1" the beam radius or energy density; the steady-state, nonuniform

beam envelope case and the steady-state uniform beam envelope

case.
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dae

Case 1: minimum possible beam radius, a = 0.
dz

Setting dae/dz = 0 in Equation (2.75), for the envelope extremo,,

and taking A < 0 for the pinching mqde,

2 /a2 2 Fao) 2 ivp +IAI n (aO  = Lr -' (2.76)0 0

am is the envelope extremum value.

Recalling that fe = 1, fm = 0 produces tight pinching, and,

that

ia2!L  am)

for the pinched beam, we write (2.76) as

2 2 2 21(a $E L  (ao2n a(a =(2.77)
am *2v a 2 a

1. where we have assumed v ; 0.

Equation (2.77) is a transcendental equation for the'

minimum beam radius, which gives the phyqically reasonable

(but not realizable) result that a high v/y beam witi low
emittance should be focusable into an extremely small spot.

" In other words, a high current beam produces a strong magnetic

field to drive the pinch, and the pinch continues to a very

small radius if the transverse pressure is small.

One of the difficulties in achieving tightly pinched high-

current beams arises from the fact that v/y and c are not

independently variable in real beams. Educted high v/y beams
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invariably have large emittances as a result of the interaction

between the'electrons and theself-magnetic field of the beoms

I in the diode region. Additional problems arise in the beam
Schamber.: If the beam pinches very rapidly, an axial'electric

field due to I dL/dt can be produced that is large enough to

stop the primary beam, in a distance on the order of the beam

radius. This effect is discussed in 'Section 4.

Case 2: constant radius

The beam envelope radius is determined in this case by

dae/dz =0. From Equation (2.74);, we bbtain with A < 0,

-- (2.78)

where e is the beam emittance in cm-radians.' Figure 2.22 shows

graph of Equation (2.78) for a 4 MeV 6 x 104 ampere beam with
,f e=l, 1=m0.

e m

Case 3: constant beam radius with finite ion emittance

In case 2 we tacitly assumed that the ions h~d no transvers

energy. -This case can be easily generalized to obtain beam

equilibria when ions have finite, emittance. We assume that the
t I .T eaverage longitudinal velocity of the ions aLic L C T1en

using an equation for ion envelope, Ai , similar to Equation (2.73)

and setting a a a gives
e 0

2 j , 1 (e2 L2 2 2 mi2Z)0 12v 1 (C e L 0 + Li B i
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100.0

10.0L

Ii1.0

0.1
10 - 2  10 1  1 10

10" r cm-rad

Figure 2.22 Minimum constant radius versus e for 4-MeV,
6 x 104 A electrons (beam in pinch mode).

where Ei  = the ion beam emittance

Z = the ion charge state

mi  = the ion mass

The steady-state equilibrium electrical neutralization, fe0 ' is

given by
- 2 2o 1 (1 lt e .....

fe 0 + - +2 (2.80)
e 7 YL ci 8Li mi/Z + Ee + L Ymo

If C. 0, we obtain f e= 1 as in case 2.
e
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We can compare Equation (2.80) with the Lawson constant

radius, uniform beam model (Reference 2.29) where the beam

electrons and ions have non-zero angular momenta. Then

f <ate 2> - (2.81)
1 2_ ___ __ _ __ _

2L )+

<8te 2> c2  = average electron transverse velocity squared

< .2c> c2 = average ion transverse velocity squared

We thus see a direct correspondence between the emittance and

transverse energy in the uniform beam case.

2.7.2 Beam Envelope Equation With Longitudinal Electric

Space Charge Field. The K&V equation has been generalized by

Walsh (Reference 2.30) to include Ez space charge fields due to

f3Er/az dr. The modified envelope equation is (fm % 0)

dia 2v 21 e dVda
2 e L2)-a 2 ' £

e d2V C2

+ e c 2 d2 a + - (2.82)
2 8 L ymo c dz a

V is the ES potential on axis (r = 0) and V has been taken as

V = V(z,0) + r2/2 (32V/3r 2) r=o in deriving Equation (2.82).

The author is indebted to J. D. Lawson for calling his attention
to Walsh's work (private communication, August 1971).

2
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a In uniform radius flow, Equation (2.82) gives an equation for

a=a :
e 2 2 2

2v = e 0  dzv-+ C (2.83)
- ~ e If- -1:7) - i + -

0
L Y ' L 2 8 L YmO c dz a0

If fe -  0, e - 0, y f 1 (non-relativistic), Equation (2.83)

becomes

d = 41 (2.84)

p dz 2La

Using 8L = 8 = - 2eV/mc 2  from energy conservation, Equation

f (2.84) gives the Langmuir-Childs space charge limited flow if

dV/dz = 0 at z = zo . More general beam envelope profiles or

v- cases have not been calculated using Equation (2.82) to the

author's knowledge.

In summary, we have looked at beam envelopes and equilibria

for paraxial flow using the K&V equation that ignores Ez and one

i special case of a more general, albeit more complicated, equation

which includes beam space charge Ez fields. This latter equation

* [Equation (2.82)] would not be valid in regions near a chamber
endplate. Thus, in both cases, we have to be away from the end-

plate and interior to a drift chamber unless fe ; 1. If f e 0,

the potential well in the chamber must be "shallow" enough to

allow propagation. Finally, variation in beam current must be

slow enough to ignore the inductive fields over distances of

interest.

2.7.3 v/y And Beam Propagation-High v/y Beam Equilibria.

The envelope equations and beam equilibria above are all relevant

to "low v/y" beams; i.e., v/y < 1. The flow was assumed paraxial,
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which implies that the beam radial velocity components were

small compared to longitudinal velocity components. In 1939
Alfven (Reference 2.31) calculated electron trajectories in L
space-charge-neutralized current flow with uniform current

density in radius, and showed that the largest current that

could be enclosed giving electron drift in the direction of L
electrons producing the magnetic field was I (amps) f 17,000 By
or v/y f 1. Lawson (Reference 2.29) generalized this result toL.

include space charge effects and obtained that uniform beam

propagation required L
2v f <-e+) 1 (2.85)

By Y

If fe s 1, v/y 1/2, which is equivalent to the condition

that the Larmor radius of gyration at the beam edge in the [
self field is equal to a/2. These propagation limits are

independent of the beam radius. j.
k#

If we are to propagate larger currents than IA = 17,000 By it

is clear that the current density cannot be uniform beyond a certain V

radius. Alfven also considered currents due to V9 drifts out-
side the uniform current beam and found that the total current

passable through a plane perpendicular to the z axis is

I(r) < IA (r/a), r > a (2.86)

Thus, the current density outside the direct beam must be

o 1/r.

Several authors have looked at self-consistent, beam

orbit-EM theory to discover steady state configurations allowing
I > Ic to flow within a fixed radius. Their approaches are
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essentially similar--an electron distribution function, fo, is

assumed having a specified functional dependence upon the

constants of motion. All quantities vary only with radius

(parapotential flow).

Bennett Pinch (Reference 2.32). Bennett derived a self-

consistent distribution for an electron beam moving through a

counterstreaming ion distribution. He assumed charge neutrali-
zation in the center of mass ( ion stream) system, and obtained

the relation

[I (stat amps)]2 = 2 Nk (Te + Ti) c2  (2.87)

where Te (Ti) are the transverse electron (ion) temperatures

(eV), N is the number of electrons/cm, and k is the Boltzmann

constant (ergs/eV). Although his model is collisionless, he

used the concept of transverse temperature. The particles drift

with constant z velocity and the density varies with radius as

: n
n(r) 0 22 (2.88)

(1 + n br2)

I no= density on axis
b = 're2 8L2

TeSb L
!2k (T e + T i )

It is interesting to note that Equation (2.87) is a condition

for equilibrium of beam electrons moving through a neutralizing

ion background having no z velocity in the Lawson uniform current

density model (Reference 2.29). As discussed previously,

Lawson's work is restricted to v/y 4 1/2, or equivalently,

I < t 2>
2

[ 2-75



The equivalence requires the correspondence

t2>c 2 +1 0 2> c2 -kT + kT~

One can also derive the Bennett distribution from MHD theory, L
as is done in many plasma physics books. Then OLc is the

(constant) fluid drift velocity and <82>/<0L2> ) 1, or /y .
t L

Hollow Beam Egulibria. Benford, Book, and Sudan (Refer-

ence 2.33) have expanded upon Bennett's work, and obtained

other solutions using essentially the same distribution function

that Bennett usc-!. They assume

f c exp H + a Pz)

H = c p2 + m2c2)h - e

P z - cz
= P

p = total particle momentum

= electrostatic potential
Az = z component of vector potential

a, = parameters (a < a)

Their form for n(r) is

n00c 1 r TI + -2 (2.89)

r i Lj

n is an arbitrary positive number and L is a scale length.
Bennett's solution corresponds to n = 1. The particle and

current densities diverge at r > 0 when n < 1, and n > 1

corresponds to hollowed-out density distributions. An inter-

esting feature of these equilibria is that the space charge
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I neutralized flow condition with n > 1 requires a line current
flowing on axis in the opposite direction to the beam current.

This backstreaming current is zero for the Bennett case (n = 1).

Li (cf., the bias current in the parapotential diode model of

Section 2.1.)

Another hollow beam equilibrium solution has been derived

L by Hammer and Rostoker (Reference 2.34). They assume

fo 6 (H - Se) 6(PZ - YmoVz)

with

Ee = v - e [ (r) - BzAz

8c = V = an average longitudinal electron velocity, and

obtain a solution with most of the current flowing in a thin

shell of thickness c/w , the electrical skin depth. The beam

plasma frequency is wp. If v/y > 1, I a /V 7o A " Yo is a

relativistic factor at r = 0. In the Lawson model the propaga-

tion limit was v/y - 1/2, which meant physically that the Larmor

radius at the beam edge was equal to one-half the beam radius.

. The HR model has currents confined mostly to a shell of thick-

ness c/w ( outer beam radius. One would therefore expect that

a much higher magnetic field could exist before electrons were

turned around with radius c/2wp

Yoshikawa Model. A beam model allowing arbitrarily high

current propagation for neutralized beams has recently been

proposed by Yoshikawa (Reference 2.35). The essential feature

of this model is that the beam has a macroscopic theta current

I generating a self-consistent z component of the magnetic field.

1.
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L
An interesting feature of the equilibrium is that electrons move

almost parallel to the field lines, so their motion is nearly

force-free. The change density is taken uniform in radius for

moderately relativistic beam energies. It is not apparent to L
this author how: one would prepare Yoshikawa's equilibrium.

Spontaneus evolution of a high v/y beam to a state with macro-

scopic theta currents seems highly'unlikely.

2.7.4 Steady State Flow with External Bz Fields. Steady

state, parapotential, flow in the presence of B fields has been
extensively studied by high power electron gun designers. Their

analysis usually proceeds from the assumptions of laminar flow,

radial force balance, energy conservation, and conservation of

canonical angular momentum in axisymmetric systems. (Also,

paraxial ray equation analysis has been used.,) Many flow modes

have been investigated, falling mainly into two classes, iso-

rotationa, or rigid rotor beams, and isovelocity or uniform

longitudinal velocity in radius beams. Reference 2.1, e.g.,

cohtains a detailed 'discussion of these analyses.

We consider here only a 'few special cases of B flow.

Assuming laminar flow, uniform current and charge densities,

and that 8t 4 aL, the radial- envelope equation of motion is

d 2a 2" - fe- 2 a I( 2t (2.90)77 _7 e L a C Ldz Laa L (ra B

where, wL Larmor frequency = 1/2 cyclotron frequency

eB

2yM c

(P 0 2 fB z W, z)r'dr'= B (zo) rr = flux

enclosed at "birthplace" of electron now at a,z.
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In deriving Equation (2.90) we have used Busch's theorem

and assumed Bz uniform in radius, i.e., negligible beam dia-
magnetism. In an azimuthally symmetric system, the canonical

angular momentum is constant:

ymr8-Er A. constant,
o c 0

(2.91)

A theta component of
A0  vector potential

. If 0 = = 0 where the electrons are born, and the electrons

rotate about the system axis,

= e y I (r) - (rO ] (2.92)
o Busch's theorem

If Bz is constant in radius, Equation (2.91) is
z2

w (r ) Z 1

2ym~cL."

. 1 0 (2.93)

The only case of Equation (2.90) we consider is that of solid
beam Brillouin flow, which requires (= 0, or that the diode
is magnetically shielded. Setting d a/dz = 0 and f = 0 givesi e

WL = 2 c (2.94)
y a0

and from Equation (2.92), the flow is isorotational. Using
radial force balance, and energy conservation, one can easily
demonstrate that the flow is also exactly isovelocity. The
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practical importance of this flow stems from the above remarks,

from the uniform charge density and from the relatively modestI

Bz fields required. The perveance

I (amperes)

V (volts) 3/2

V = potential at the beam edge, is relatively low from the point

of view of intense beam physics, however. Non-relativistically,

the maximum current flow condition is

I (amps) 25 x 10-6 V3/2  (2.95

Relativistic Brillouin flow has a lower perveance. Neugebauer

(Reference 2.36) discusses relativistic Brillouin flow in detail

and his calculations show, e.g., that a 720 kA beam with 1 cm

radius would only require a Bz field approximately 3 kilogauss
but the potential depression over the beam radius would be ~68 MeV!

If the cathode is immersed in the magnetic field, the flow

is no longer isorotational (see Equation (2.931]and we have the

case of hollow beam Brillouin flow; a lower perveance flow than

the solid beam case.

A finite beam emittance can be included in the envelope

equation following Garren's derivation of the K&V equation.

We treat the v0B z force term as a linear external focusing

force, thereby restricting ourselves to 00 = 0:

d 2 L ( -2e 2) 1 _ ( Lj) a + 2 (2.96)
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If a 0, we obtain for non laminar, but paraxial flow,

2 2
'WL 2 Y2 2I 1 fe OL +=(2.97)

2 0 C L2vao

I. The flow is no longer exactly isovelocity.

L The above equations all assumed electron rotation about the

system axis. If the electron motion is that of a guiding

{. center rotation about the axis, plus a fast cyclotron gyration

about the guiding center, it is most convenient to work in

rectangular coordinates. Andrews, et al., (Reference 2.37) have
considered a non-diamagnetic or paramagnetic uniform beam case
with << using the two-mass approximation (longitudinal

electron mass Oty3 i, transverse - y 0mo ). The equations of motion
are

S' = to +w 0

yf = - S12 y - x (2.98)

e dA~
. YL moc dt

whr 2 2v (2)2 2 + -where 2 = a ( L e

B
"= cyclotron frequency = e z

L 0

CLC = average longitudinal velocity
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The last equation in Equation (2.98) folloas from the assumption

that Ot/PL 4 1. A priori one expects I m 0 from the two

mass approximation when V/iL - 1. They show, moreover, an a

posteriori justification even when v/y 1 1 with sufficiently

high B s fields. By defining C - x + iy# Andrews# et al. combine

Equations (2.98) into

t ' " - c 91 ' + a2 - 0 (2.99)

which has a solution of the form

-A+ exp(i w t) + exp (i Wt)A++
(2.100)W€ 2 2 ;

Several flow properties follow from Equation (2.99).* If

2

the solutions are sinusoidal no matter what fe is. When

W+ W c

, 2  (2.101)C

and the solution consists of a fast gyration of frequency wc

about the guiding center that precesses with frequency -A2/c
The sign of 02 affects the direction of precession. Thus, the

particles move at approximately constant radius, r , varying
20only by the gyroradius ro (0/We . The flow is consistent with

their approximations if

The solid Brillouin beam case If a 0, 0 2 - 1 (or neglect of

Be)] corresponds to -/c W c 240 L
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. i 8

ef 3 2 11.4

-0 2

0 + fe 1 1 (2.102)
B !2 L

where B (a) is the beap self-field at the bbam edge. Thus, if

Bz * E (a), the flow is predoaihantly streaming (BLt/L . ')"no.
matter what the values of fe and v/y are.,*

Finally, we call attention to some recent work by'Toepfer
(Reference 2.38) who uses the relativistic fluid equations'for
electron beam motion. He considers examples of rigid rotor
steady state beam flow allowing diamagnetic effects and finite

temperature, and gives sever'al numerical plots of radial current

profiles.

2.7.5 High v/1 Propagation with Intense Pulied Boams. All

of the high v/y beam flow modes discussed' abovd were steady state
flow and did not consider E z Even if E5 effects are negligible,

it is most certainly likely that the relevance to experimental'

L beam propagation would strongly depend on the preparation of the
beam, i.e., the flow generated in the diode. Also., of course ,
one needs to consider the stability of the various models.

In practical beam transport problems with pulsed beams one
has to operate at neutral gas pressures g.viqg good current,

neutralization, or inject into a preformed plasma, in order to

L minimize energy loss from beam-generated EM fields. Thast
we are in a regime where the E driving curtent neutraiization

Iis essential and, in principle, the steady state flow patternswould not be relevant until the plasma return currents have died

I away. These times are in the microsecond regime--much longer
than the beam. pulse width. When substantial plasma return

' We also note thatthe model solutions correspond to force-free
electron motion (j x - 0).
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currents do, exist, the (r) distribution in that of a current
sheath around the edge, of the beam, a distrbution somewhat

similar, but not identical, t~o the hollow beam modes. So, no

matter how we prepare the beam in the diode, we would furtheF

have to consider evolutlon through a plasma return current stage

to determine' and justify a relevant steady state glow pattern for

pulsed beams.

We might guess that a beam with plasma return currenti will

have aB Cr) 'field s4milar to the hollow beam equilibria with

fr * 1 as we have just mentioned.. Then, one would not expect a
dynamical or'orbit limitation on the net v/y i.'e., V /y can
exceed unity. However, as mentioned in Section l: the gM limita-
tion on propigation would still "hurt." When Vnet/Y >' 1, thi EM

field epergy/particle exceeds the kinetic energy/particl , or
equivalently, beams can lose all heir ,nergy over distance of
the order of a few beam radii. A simple calculation illustrates

this point. I

* Let us consider a beam '.niected into a plasma tube with a

'conductivity low enough that the inductive field of the beam
drives a return current givingiVnet/y > 1, and take fe 1. In

brder to propagate efficiently, the poweT input to the beam-
chamber system expended by the beam in setting up the magnetic
field asiociatediwith, Vnet must be less than "A nertial" power

i flow of the beam. The power Input to the magnetic field: is
I 2

, 1nT  n (R/a) Oc

c

and we must have
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I (y -1) sac2 NOC n  tn (R/) Oe, a < R (2.103)

i where N - number of beam particles/length a v/ro
ro  classical electron radius

R - chamber radius

[in order to avoid substantial beam distortion. Rewriting

Equation (2.103) we obtain

(y - l) v not 2 2 £n (R/a)

or

(net 2 (2.1/4)

1 If Vnet/y > 1, v/y > 1, and with tn (R/a) 1 10 the EN criterion

is violated.

These considerations led the author to suggest that the
ji relevant restriction for practical high v/y beam transport with

pulsed intense beams is vnet/A 4 1 (Reference 2.13). The low
pressure beam propagation experiments of Graybill and Nablo

(Reference 2.39) have shown beam stopping when Vnot/Y 4 v/y - 1/2.
Current neutralization was negligible in these experiments.
Yonas and Spence (Reference 2.23) have propagated beams with
Vnet/Y 4 1/2, but with v/y 4 4-5 over meter distances.

28
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I
2.8 SONE TOPICS IN BEA STABILITY

Current interest in beam plasma stability (or instability)
focuses in two directions. Efficient beam transport clearly
requires a stable beam, whereas plasma heating is enhanced with
a weakly-turbulent beam plasma system. We discuss three types
of beam plasma instabilities: (1) longitudinal electrostatic,

(2) transverse (hose, kink), and (3) filamentation or fluting
modes. The transverse hose instability seem to be the most
serious for high current beam neutral gas propagation, and the

fluting modes for transport with Bz fields. When considering

neutral gas stability we have to recognize that the nature or

the beam-generated plasma may change markedly during the pulse,
evolving from an unionized gas to an ion-electron plasma (t < T N )

to a highly ionized few electron volt temperature plasma after

breakdown.

2.8.1 Longitudinal Electrostatic (ES) Instabilities. Our

discussion will consider the case of a pulsed beam plasma system
after gas breakdown, or injection into a preformed plasma. Only

~linearized theory will be covered, implying that plasma in-

~stability wave growth is sufficiently damped by collisions or

Landau damping to avoid non-linear regimes and strong particle-

wave trapping.

A typical ordering of beam plasma component longitudinal

velocity distributions (not to scale) is shown in Figure 2.23.
The system is a "hot beam, cold plasma" configuration with the
plasma return current flowing oppositely to the beam electrons.
The ion drift velocity and thermal speed are negligible compared

to the plasma electron quantities. ES instability theory con-

siders two types of instabilities, electron-ion (e-i) relevant
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I

plasma electrons

ions

II

v r lbeam electrons

"ti

Vd - drift velocity of plasma electrons

v d drift velocity of plasma ions

V 0 -average lontiduinal beam veloc4tv

Vb -rms longitudinal velocity spread of beam electrons

v thermal velocity of plasma electrons

v tnermal velocity of plasma ionst i

Figure 2.23 A sketch of beam-plasma system longitudinal
velocity disttibutions
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to interactions between the plasm return current electrons and
ions, and electron-electron (*-e) relevant to interactions be-
tween beam electrons and plasma electrons. Interactions between

beam electrons and plasma ions have a slower growth rate than

the e-e mode.

Electron-Ion nodes. The two e-i modes are the ion acoustic

(Reference 2.40) and the Buneman mode (Reference 2.41).

Ion-Acoustic (I-&). (vti < vd < vte)

Rew - .1MOk

1mW 0.1( MOw (2.105)

k S 2w/A ft -

w - electron plasma frequency - 4wre 2/Mo

nP - plasma electron density

m M ion mass

m°  - electron rest mass

Row a frequency of fastest growing mode

Imw - e-folding growth rate of fastest growing mode

k a wave number of fastest growing mode - 2w/A
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Dunema. (vt. vd )

1/3

- o., (,) to ,,,
IIlW 0.1(2.) 3 2.06

drifting electrons when v. exceeds the ion sound speed Vu vti)

considered by Guillory and Benford (Reference 2.42), assuming a

Lorentzian electron distribution. Their conclusion is that

collisions are unimportant when Vte/Vd 4 0.1.

Electron-Electron Modes. These modes were first studied by

L Bludman, Watson, and Rosenbluth (Reference 2.43), who considered

only the cold-beam case in the so-called weak-beam approximation

(nb/Ynp 4 1, nb is the beam particle density). Their theory

assumes a steady state uniform beam in mechanical equilibrium

L with the plasma. Ez is zero in zero order so no plasma currents

are assumed to be flowing. The plasma is further assumed to be

infinite in extent (as it is in the electron-ion mode theory).

This approximation is usually not bad since the instability wave-

lengths are small. A nice discussion of the physics of these

Lmodes is given by Lewis (Reference 2.44), and the influence of a

beam velocity spread (warm beam) on wave growth is considered in
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detail by Bohmr, Chang, and Rether (Reference 2.45), using a

Lorentzian beam distribution function.

Mi) Cold Beam. Quantitatively defining a cold beam requires {
a statement about collisional effects. Ascoli (Reference 2.46)

gives L

v 4 0.76 6(R (2.107) L
where a 1n  . The numericoal calculations of Singhaus(Reference 2.47) show that L

we a (0.7 a cluto (2.108)

We define the cold beam limit as the case when Equation (2.108)

is satisfied and additionally require that Vb/Vo 4 1/ 3.

There are several sub cases within this limit that we now

consider.

High-Frequency, Collisionless. (k Wp/V o , v 4 ImW)

Re w p

Imw (N/2) 1/3 p (2.109)

High-Frequency, Collisional. (k w/V o , v ImW) L

Rew w
p

Im (a/2v) W p 3/ 2  (2.110)
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Low-Frequency, Collisionless. (kVo  4 wp, 1 mw v) !

a /2'.;
IIo : =Imw(k) a kV 0

Low-Frequengy, Collisional. (kVo  4 top, v I Into)

=mw - Imw(k) - p (2112)

The high frequency modes have a reduced growth rate with arge

collision frequency whereas the low frequency growth rate is

enhanced by collisions.

(ii) warm Beam. Collisions never completely suppress the

instability in the cold beam case but in the warm beam case they

II may. The warm beam growth occurs within the Singhaus criterion,
and with (vb/Vo) > a1 / 3 . The instability growth is now dependent

[on beam momentum spread and is "kinetic," rather than "hydro-
dynamic" as in the cold beam case. The growth rate for fastest.

growth (Vok - wp) is

Imw 2 0.3 a V / p - Vc/2  (2.113)

[and Rew *

The modes are stable when the Singhaus criterion (Equation 2.108)
is violated:

(V) > [7 a (stable modes) (2 .114)

[
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The Singhaus criterion has' been experimentally choked by

~Bohier, Change and Raether 12efeoxence 2.45) using low currentbean 1T 400 ma) They f0d intability quenchi* as predicted

bythe Singhaus criterion., The criteriongif anything, is

conservative.

2.8.2 Beau Propagation and Longitudinal ES Instab lities.

The growth rates, oscillation irequ~ncieu, and wavelengths for
fastest growth of ES instabilities have been sumuarised for
varigus orderings of beam and plasma par..nters. We now deter-
mine conditions. for stable propagation of 'intense beams. To

attain stability of e-e modes, we desired to satisfy Equation
(2.114), the Singhaus !criterion. Stability! requires

0.7 a w p

V ' L

UJsing v V e i 6 x 10 " np [Te(eVl]" 2 from Equation (2.61)

(Zl), we can rewrite the above equations as
I / 3\ 2 L

with nb/YnP 411 (weak'beam reqlirement).
i

If we take v./V - 1. (hot beam), beam energy 1 MeV (y - 3)0 21 3
and current density - 104 A/cm2, nb g 2 x 10 electrons/cm
Equation (2.115)' says that stability requireb Te (volts)

< 10714 rp (cm3). Efficient besm propagation occurs in the
pi 3 <

0.1 to 1 torr range, so if we take np= 3.5 x 1015/cm3 , Te < 35

volts.
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Stability of e-i modes for the plasma return current is

equivalent to requiring

Vd < vte,(E < E - 2 x 10 12 Z - (2.116)
dc T e

iand, since vd may exceed vti, ion-acoustic modas must not
significantly affect the plasma conductivity. This requirement

translates into ve,i ) Im(W) for ion-acoustic modes, or from

Equation (2.105)

np ) 4 x 1010 Te (insignificant (2.117)I-A effects) (.17

Ii for a hydrogen plasma. If Te < 10 volts, np l 4 x 1013/cm3 , or

P Z 0.1 torr. Using these parameters in Equation (2.116),

the Ez field driving plasma return currents should be less than

700 V/cm.

2.8.3 Transverse Instabilities--The Frozen Hose

[ Instability. Several authors havo recognized that beam in-

stability against trarsverse bending (hose, kink) may be a

- serious threat to overall beam stability (Reference 2.48); experi-

U. mental experience tends to confirm their predictions. Important

transverse forces giving rise to instability development are:[ (a) the attractive electric polarization forces acting between

the ion and electron streams, (b) magnetic interstream forces,

I" (c) image focusing forces from the presence of conducting pipes,

and (d) a velocity dependent drag force arising from the resist-[ ance of the beam-generated plasma to motion of magnetic lines o.

This material contains the work reported in S. Putnam, Transverse
Instabilities of Intense, Relativistic Pinched Electron Beams,
PIIR-7-68, Physics International Company, San Leandro, Ca.,
March 1968.
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force as the beam undergoes displacement. When the angular j
frequency of the pertarbation is much less than the plasma

conductivity, a(sec - ), or when the skin depth, s, of the mag-

netic field penetration of the plasma is of the order of a few
beam radii or less, we adopt the conventional terminology and

refer to the instability as resistive. The increasing gas

conductivity induced by the rising beam current suggerts that

a non-resistive behavior may rapidly develop into a resistive

mode, particularly if the gas breaks down. Existing theory

considers only steady state beams with constant plasma conduc-

tivity and no net plasma return currents. More detailed inter- L
pretations of the experiments thus require further theoretical

work.

Figure 2.24 shows a schematic diagram of the experimental

setup to investigate transverse beam instabilities in the low

pressure pinched beam mode P(- 0.1 torr).** The drift chamber

was 50-cm long and 25 cm in radius. The electron stream was
injected through a 1 mil-aluminum anode window into the electron l

beam chamber, where the gas (air) pressure was held at 0.1 torr

for most runs. Aluminum screen tubes of various radii, R, were

also positioned within the large drift chamber in order to

observe the effects of conducting pipes on the pinched beam

oscillations. The electron beam was stopped in a graphite

calorimeter array placed at the end of the screen tube. The
calorimeter array consisted of 25 small blocks covering an area

one inch square. Two 90 degree stereo time-integrated photo-

graphs were taken of the light emitted from the beam path by the

Alternatively, the low frequency hose instability limit is
defined as s(w) > beam radius.

The experimental measurements described here were performed by
G. L. Hatch, W. T. Link, J. Murray, and H. F. Rugge.

2-94



F .I
LI

II
LU

km
0
.0
S
2
0

''U - 04

0~ 
.IJ0)

:1U
.3 "4w it

kmb. 4

g

[4

1.4

Ii: I'
1.I ii

km

F 0.
£5

Ii 2-95

1~



line and recombination radiation of the beam-generated plasma.

In all cases, the photographs and calorimeter data agreed

regarding beam position. The wavelength of the oscillation in

the pinched beam was measured from the stereo photographs and

the relativistic electron current in the pinch was determined

from the calorimetry data in the one inch graphite array.

A typical hose-like beam instability at 0.1 torr is shown

in Figure 2.25. A suggestive interpretation is that the in-

stability develops during the early portion of the risetime of

the beam current when 1 0 i0I0  1011/sec, s > b/2, and non-

resistive instability mechanisms predominate. When the con-

ductivity of the background gas rapidly increases at breakdown,

the plasma damps the motion or, in other words, lowers the

oscillation frequency and increases the growth time, so that

the hose appears "frozen" over the intense plasma radiation

times (~ a few beam pulse widths).

I>

0. 1 Torr 4718S

Figure 2.25 "Frozen hose" instability of a pinched beam.
0
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Rather idealized theorbticfl models (Reference 2.49), for

non-resistive growth predict the wavelength of the fastest

growing transverse oscillation modeal X

in Ast ..Ld, 4D

(2.118)

ii
jV D, d D

where d(D) is the beam (chamber) diameter. Figure 2.26 and 2.27

J show experimentally measured wavelengths, showing reasonable
agreement with Equation (2.118). After gas breakdown, resistive

L mode theory (Reference 2.50) suggests a growth rate A (td) '

where td is the magnetic diffusion time (Equation 2.65). For

o > l01 3/sec, td 1 100 nsec, and the beam path developed in the

non-resistive mode thus appears "frozen" over times of the order

of the beam pulse.
I

To summarize, a procedure is outlined to estimate instabil-I

ity wavelengths for the low pressure; case (tB <-, tp, the beam

pulse width):

• From the charge production rules given in Section 2.42
the gas breakdown tin e at the pressure of interest
can be calculated, and the beam current at breakdown
time determined. a

9 The instability wavelength may be estimated by using
the breakdown current value ,to determine v in Equation
(2.118).

*A qualitative estimate of the, "amplitude" of thein-I
stability growth can be made from the time of breakdown.
Earlier breakdown pnd lower net currents mean smaller
amplitudes. Figure 2.27 shows a pinched beaM case where
t > t

-B r
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The values of v/ are'approximateand are obtained from multiple
calqrimetry. The beam kinetic energy is approximately 3 eVe
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Figure 2.26a Instability wavelength as afunctuon of
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v/y is assumed to havii the approximately constant value 0.31.
The kinetic energy is approximately 3 MeV, the chamber pressure
i00 u

Figure 2.26b Instability wavelength in guide tube.
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Figure 2.27 Transverse instability of a highly pinched
beam where tB - tg ) tr. Beam parameters: pressure
0.01 torr: beam urrent 25 kA; average kinetic
energy - 3 MeV; current risetime - 10 nsec.

This low pressure behavior is to be contrasted with the

transversely unstable, high-pressure (P > - 100 torr) propagation
where the beam is also pinched, but appears to rapidly blow up

Linto a smeared, filamentary structure (Figure 2.28). Although

current neutralization is small for both pinched modes, the

plasma conductivity is high at low pressures (a > 1013 to 1014/

sec) and very low at high pressures because of the high electron

plasma collision frequency. The differences in the plasma con-

j ductivity suggest markedly different growth-time regimes for

transverse instabilities. Thus, as stated previously, before

II gas breakdown in the low pressure mode, the instability is non-

resistive, and, aftar breakdown, resistive. In the high pressure

case, a nonresistive mode would apply throughout the beam pulse.
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Figure 2.28 Transverse instability of high
pressure pinched beam
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2.8.4 Fluting and Filamentation Modes. Recent work with

beam propagation in B z fields has demonstrated existence of

fluting and filamentation instabilities (Hamer, Reference 2.51)

and Stallings, Reference 2.52). A typical witness plate damage

pattern for such a mode is shown in Figure 2.29. Hammer has

considered a picture similar to the picture of the frozen-hose

mode. He suggests growth of a classical flute instability

I(Longmire, Reference 2.53) due to inhomogeneities in the external
magnetic field until gas breakduwn with a growth time, T:

TLL

p = beam-plasma mass density

L - scale length of magnetic field inhomogeneities

N - azimuthal mode number

SP 1  - perpendicular particle pressure

Ii Until breakdown (p/P1) is dominated by beam parameters, and after

breakdown, the ion mass dominates p, giving a much slower growth

rate. The fluting modes have not been investigated sufficiently

at this time to confirm the model. Some theoretical beam-plasma

fluting and filamentation instability studies have recently been

.I reported by Striffler and Rammash, (Reference 2.54) and G. Ben-

ford, (Reference 2.55).

1i0
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2.9 PLASMA CHANNELING

Plasma channeling is the formation of a fairly well-defined

plasma region by beam electrons which has the ability to guide

subsequent beam electrons along its configuration. Any intense

beam will, of course, generate a plasma, but unless certain

conditions are fulfilled, the plasma will not act as an effective

guide for upstream beam electrons. We discuss these conditions

in a simple-minded fashion drawing upon previous discussions of

beam-induced plasma conductivity and transverse instabilities,
and give some practical imp.ications of plasma channeling.

In order for the plasma to be a plasma channel in our

context we require that:

1. The plasma region must have a frozen-in magnetic field

I level at least high enough to guide beam electrons around

the smallest radius of curvature of the channel configvra-

tion.

- 2. The channel must be stable or, from the previous dis-

cussion, on the frozen-hose instability, td ) beam puls i

width. These two criteria are usually achieved when the

. gas breakdown time, tB ^ beam pulse risetime, tr .

I The experiments of Yonas, et al. (Reference 2.23) where

beams were guided by copper pipes with a radius of the order of

* the beam radius are an example of channeling. The image forces

* guided the early portion of the beam around the circles when the

skin depth was larger than or equal to the pipe radius. Then,

when the skin depth was smaller than or equal to the pipe radius

after breakdown, the plasma frozen-in magnetic field "memory"

j. guided subsequent beam particles.
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Yonas and Spence also attempted unsuccessfully to inject a

beas head into a plasma channel, as indicated in Figure 2.30.

Bei
Conducting

Pipe

Figure 2.30 The experimental geometry for injection
into a plasma channel.

An explanation of the failure is that the transit time of the

beam front around the ring was too long, i.e., the gas had

broken down, when the beam head reached the cross-hatched region
and the highly conducting plasma reflected the beam head to the

pipe wall. With the experimental parameters of v/y - 1, current

risetime w 20 nsec, pressure 0.5 to 0.75 torr, the breakdown

time was approximately 5 nsec. With a longitudinal front veloci-

ty f 0.5 (250 keV electrons), the transit timj of the front

around the ring would be >- 7 nsec.

These relatively crude physical arguments would suggest

that merging of the beams should be best achieved when transit

time of one beam to a merger point, ttr, satisfies
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BN< ttc t8, (beam merger criterion)N tr

where rN and tB refer to the electrical neutralization time and
breakdown time of the second beam at the merger point.. Recall

fram Section 2. 2 that only fe > 1 - BL, is required for magnetic

interstream forces (attractive for currents flowing in the same
direction) to exceed the radial electric space charge repulsion.

Our merger criterion is thus conservative. Pressure in' the

10 torr range would satisfy the criterion, since then TN 0,

and the gas is not highly conducting (td < tr)*

2.10 SUMMARY OF BEAM TRANSPORT PHENOMENOLOGY

In this section, we shall try to "pull together" the

material of preceding sections and, in particular, look at

conditions for high beam transport efficiency in a qualitative,

i ibut coupled fashion. Generally speaking, efficient beam trans-

port requires:

1. The beam generated EM fieldp to be minimized (charge

and current neutralization),

2. The beam transverse momentum to be contained to prevent

[ particle loss to the walls (beam self magnetic fields or external

L fields) ,

I ~ 3. Stable modes (velocity spreads in beam and appropriate

plasma parameters.

i. The EM fields are minimized with neutral gas injection by break-

ing the gas down early in the beam pulse to obtain good current

neutralization. This process is lossy for v/y Z 1 beams because

a high degree of current neutralization implies a low net Be field,
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which is usually uriable to effic;iantli contain the transverse L
momentum of the peak beam current. Injectioh of a beam into a

preformed, highly conducting plasma is the obvious way to mini-

miie the EK fields, but requires an externalLy applied field to L

contain the transverse-momentum since the net current is now
hven lower. Benfogd, et al., (Reference 2.56) have' demonstrated L
that injection of a high v/y pinched beam into a pre-ionized
plasma results in very low transport effiqiency. Most of the L
bea* is lost to the walls near the anode window. A cold beam
<02>/<OL2> 4 1, should be able to propagate efficiently in a L
pre7ioniied mediA, however. Thus, if we use a diode geometry to

Jeep theOak curreni below the critical current (recall Ic ft

8500 7y4e- 1 r /d), propagation efficiency should be high in a

plasma or a neutraI gas at rapid breakdown'pressures. As dis-
cussed in Section 2.1, 4igh v/y, 'cold beams have low current K.
density ( < few kA/cm2 ), so if we want to attain current densities
of 101-105 A/ci2 at the downstream end of the transport system, [
the beam must be compressed. Beam compression is currently an
active field of research.; t

The most straightforward way to transport high current
density, high v/y, (hqt) beams, then, is to use external fields
in plasmap. Two such configurations have been extensively

studied over the past two years: ) Be, or linear pinch, transport,

and B systems. We discpus neutral gas transport both with and
without external fields in this section.,

2.10.1 Neutral Gas Transport Without External Fields.

Transport modes in neutral gas-filled drift chambers can be
conveniently classified in terms of the gas pressure, as indi-

cated in Table 2.4.
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TABLE 2.4

NEUTRAL GAS TRANSPORT MODES

IBeam, Gas
Parameters Characteristics of Transport

Low pressure TN > t ion acceleration (large beam
N penergy losses)

Intermediate TN < tB < tr pinched (frozen hose) and
pressure drifting beams with high

aB high current neutralization (maxi-
mum transport efficiency)

V net/Y 
< 1

High pressure TN 0 unstable, pinched beam
t- propagation• ' tB

a low

TN = electrical neutralization time

[ tB breakdown time

t r - beam current risetime

tp = pulse width

a B = conductivity at breakdown

Low Pressure Transport. When TN t P , space charge fields

dominate the beam behavior and finite geometry (endplates) effects

j are important. Perhaps the most interesting aspect of this pres-

sure regime is collective ion acceleration, which is discussed in

detail in Section 4. We discuss some general features of low

pressure transport at pressures outside of ion acceleration con-
ii ditions.
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The electrostatic potential well depth, *, is sketched in

Figure 2.31. We can estimate # from Equation 2.20 as:

0 ,(volts) s (1/2 + Xn R/a)(l - e 2 4 zc/L)

zc 0 2(R/2.4) (2.119)

1 < R 10 length units L

zc - crossover distance for Ez (Equation 2.29) L

If * (z ) 4 beam kinetic energy, the beam propagation will not
c .

be limited by tLe longitudinal electrical field, although space

charge effects on radial motion must still be considered. If,

however, * (z ) > beam kinetic energy, a length, z, is defined L,

by 0 (Zc) -kinetic energy and if the exponential factor in L
Equation (2.119) is approximated by a straight line,

Z (cm) I P  (amps) r v f(1 + 2VP )

(2.120)
R/2.4 - < 2 (R/2.4)

SR/2.4 (1/2 + Ln R/a) ' c

where V - peak electron kinetic energy in MeV, tr is the current

risetime, tv is the electron kinetic energy risetime, and I iz

the peak beam current. The voltage and current rise have been

taken as linear, and 0L 2! 8. If I P - 30 kA, tr/tv - 2,

VP  1 ieV, R 6 cm, and a - 1, then z c  1.2 cm. One can
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L-•-b a fron R, ~l-,a

I

electrostatic potential

I

iz -

z fL-beam front

! Zf - beam front

I" zc - position where Ez reverses direction

Propagation requires omax < beam kinetic energy

or v/y-l << (1 + 2 £n R/a)(1 - fe-

I.

Figure 2.31 Electrostatic potential in drift
chamber (t < TN).
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a frnt elocty fc ES

estimate a front velocity (0fC) by assuming that the front

travels a distance, -, over a time scale of T L- Nl
zE c- 2R

ES c F < 2. (2.121) Lj

This velocity is very slow even for low v/y beams and places a

severe constraint on high v/y beam propagation efficiency at low

pressures. If 7c from Equation (2.120) Z (2R/2.4) propagation Li
would occur at a velocity det- - ined by the "interior" beam

kinetic energy; i.e., the ki . - energy minus the potential

evaluated at z = 2R/2.4.

The discussion of the longitudinal ES field suggests a

qualitative picture of the beam-front velocity behavior at low

pressures above the ion acceleration cutoff. According to

Equation (2.121) the beam front moves slowly until the charge
neutralization front has passed z f 2(R/2.4). Then the end

plate effect and the front velocity should increase. The front

velocity, however, will still be less than $c and will now

depend on the "sharpness" of both the beam front and the space-

charge neutralization front. As the beam approaches the down-

stream end plate, an increase in front velocity is again to be

expected since the field will reverse direction as ES force lines

start to terminate on the surface charges of the end plate.

Intermediate Pressure Transport. As the pressure increases

and TN < tB < tr, beam transport efficiency goes up as current

neutralization occurs early in the pulse. We now estimate some

limits on transport efficiency in neutral gases. The two con-

ditions we need for efficient transport are

Vnet <
(1) - ~ 1 (EM requirement)
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(2) 41 kT> + <n kT>b  (transverse energy
( L) )L bcontainment)

where <n kT> is the transverse energy/volume of the beak-
p

generated plasma, and <n kT>b is the average transverse energy/!b
volume of the beam, here expressed in terms of an equivalent
temperature. The above conditions can be rewritten as

I (tB) > 17,000 8OLY, (2.122)

12 (t ) > i0 9 a2  T 2 x l'08 IP
2 10 a2  n a2 + h j (2.1 2 3 )

I(B) kT> La 2 b

where I (tB) is beam current (amperes) at gas breakdown, is
peak beam current (amperes), a is the beam radius,<nkT> is in
eV/cm , and kT units are electron volts. The transverse energy

of tho plasma cannot always be neglected. Equations (2.122) andfi (2.123) can be combined, yieldin4

S<kT> I i 4 4 x 109, a - 1.6 x10 -8 a2 O <nkT> (2.124)

b L p

where Ib(tB) = 17, 000 Ly6. The value of 6 has to be determined

from the length of the desired transport sysfem, subject to the
restriction of a maximum value unity. <kT> is the equivalent

b
peak average transverse beam tempbrature (eV) generated in the
diode and anode window.

We can follow the arguments of Section 2.7.4 to determine 6.

The magnetic field energy in the system should be less than the

total beam kinetic energy:

I Ib(tB) 2 (amps) LF
(y - 0 C N Lp 00 (2125)
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N - number of beam particles/length

L- beam pulse length defined such that the peak N
£P tizes L - total number of beam particles

Ip
L - length of transport system '
'F - dimensionless form factor of .order unity

ab b b +a2 _2 2 2 - 2 bn +£ ii
for a uniform current distribuidin of 'outer radids a, inner
radius b, the chamber radius is R. Rewriting Equatiop (2.125) L
we determine 6 for a 10 percent maximum energy loss:

6 3.2 x 10-2 1vbP ( 1 (2.126)L"2 2 F 216

rY
and' substituting in Equation (2.124), we finally obtain

P1 i< 4-82kT> b 1 2,6 x 0 (-1) - 1.5 x 10 a L <nkT>p

'(2.127)

If the plasma, transverse energy can be neglected, Equation (2.124)

gives a criterion independent of IPfI

b4 L F Y1
' ' ' 12.128)

<cT> < total electron energy ,b 1.

In reality, <kT> is coupled to 1P by diode dynamics. As an
b -

example of Equation (2.128.), we determine the maximum average
transverse beam temperature for efficient transport (> 90 percent)
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over a 1 meter distance with a 1 MeV beam, 40 nsec peak current-

weighted pulse width. With F - 1,

<cT>b -4 624 keV (2.129)

The diode configuration must be such that Equation (2.129) is

satisfied, and, since diode "temperature" depends on current

[density, efficient transport translates in the final analysis
to a current density criterion.

When hot beams which violate criterion (2.128) are injected

into neutral gas chambers, one might expect that the higher

transverse momentum electrons would be lost near the anode, and

that the now effectively lower temperature beam would transport

Sefficiently thereafter. This is indeed the case, as demonstrated

by the experiments of Yonas, et al. (Reference 2.23). Table 2.5

I. shows their reported energy losses of a 250 keV mean energy

electron beam, propagating in a 1-1/4-inch-diameter air-filled

j pipe. Injected beam energy was - 300 calories.

[l TABLE 2.5

RELATION BETWEEN NET CURRENT AND BEAM ENERGY LOSS

1. Pressure Beam energy (cal) Net current Beam energy

(torr) 10 cm downstream (kA) at 10 cm (cal) at 100 cm

0.3 282 43 66
0.5 249 32 106
0.75 143 13 103

i 1.0 196 15 108

jThe results show that the highest net current (P = 0.3 torr)

mode is the most inefficient, indicating that EM energy loss

* The transverse energy containment criterion may be expressedin terms of a dimensionless ratio: 0 E <n kT>b/ _net.)2/n <1

Inasmuch as Bnet is not a beam parameter, it is perhaps more

convenient to use the beam current density for beam characterization.

1 2-113



probably dominates at this pressure (vnet/y > 1.8). A note-

worthy characteristic of hot beam transport after initial energy
loss within a few centimeters of the anode is that transport

energy decays exponentially. The e-folding decay length varies

from 1 to 3 meters depending on the beam temperature and ratio
of pipe to beam radius. This phenomenon is not understood at

present, but probably represents particle loss--electric field

losses would most likely result in a linear decay.

At intermediate pressures, beam front velocity is dominated

by the inductive longitudinal field before breakdown, and we can

make an estimate of the front velocity in a fashion similar to
ESthat used for . We deziote the front velocity in this case by

Of c, and

I kinetic energy of beam electronsOf ___(ec) Ez (inductive) t B  (2.130)

or
I (Y-1) 1 (r)2f P BL(1/2' + Zn R/a) B

2v a L
p .

where v is v for the peak current and a linear current rise is

assumed. We require that zf > R/2.4, TN - tB , in order to
use Equation (2.130). The beam front velocity is the lesser of
Ic, afTc, where the transverse energy limitation on the stream-

ing velocity for a neutralized beam is 6fC:

< (aT) > 2 ( + \/Y) (2.131)

The Lawson model has been used to obtain Equation (2.131). A

1 MeV, 50 kA peak current beam with tr = 2 tB gives BfI a2/3

afT , 0.67, the front velocity should not be limited

by inductive fields in the example.
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1 2.10.2 Beam Transgort in External Field Plasmas.

B -Linear Pinch Trpnsport. The first experimental work
investigating beam transport in a preformed linear pinch plasma

was performed by Roberts and Bennett (Reference 2.57). They

transported relatively cold beams (v/y -4 0.2) efficiently, and
even transported the beam around a curved (- 90 degree total

bending) pinch system. Benford and Ecker (Reference 2.58) have

Linvestigated linear pinch transport in more detail, correlating
transport properties with measurements of the pinch B8 field as

[ a function of radius at time of beam injection. Most importantly,

they have demonstrated efficient transport (> 90 percent of hot

IL:beams (v/y n 7) over distances of two feet. This result is to
be compared with a maximum transport efficiency of 30 to 40 per-
cent over such distances with neutral gases and v/y - 4 to 5.

Figure 2.32 is a schematic of their apparatus.

The previous discussion of neutral gas transport covers much

of the phenomenology of transport with a linear pinch system.
The important distinction between neutral gas transport at rapid
breakdown pressures and linear pinch transport is that the radial

profile of the B9 field that the beam "sees" in the linear pinch

system is independently variable and depends on the pinch con-

figuration at the time of beam injection. Recall that the time

scale of pinch dynamics is in the microsecond range; i.e., very

long compared to the beam pulse width.

Linear pinches break the gas down at the chamber walls,

forming a current sheath, which "snowplows" the plasma inward

until the plasma has collapsed to the center, and the current is
"cored" with a radial profile similar to the Bennett distribution.

The pinch then bounces and may recollapse. [See, e.g., Glasstone
and Lovberg, (Reference 2.59)]. Some magnetic field profiles of a
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Figure 2.32 Experimental configuration of Z-pinch
apparatus and beam-generating diode.
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linear pinch system used by Benford and Ecker are shown in

Figure 2.33. Thus, depending upon injection time, the beam

enters a "hollow," sheathed current, B9 field or a pinched

profile. In the figure, times in the pinch history up to

3 Usec are sheathed.

Beam-Pinch Interaction Phenomenology. A single particle

orbit theory of beam transport has been proposed by Benford and

Ecker; the beam propagation is a superposition of single particle

orbits of beam electrons in the (undistorted) magnetic field

configuration of the pinch at injection time, with initial con-

ditions determined by diode flow.

We assert that three conditions must be satisfied to use

single particle orbit theory in the above context:

1. td 02 tp (beam current neutralization)

d C
c

i B 2 B2 np MiVr2

"~ ~ " ' 1) <nkT>p + <nkV> (transverse energy"2 p containment)

V r radial collapse velocity of pinch current sheathI.. r

n a pinch sheath plasma density~p

1 "3. Negligible longitudinal plasma penetration when single

,- particle orbit theory predicts longitudinal reflection of

A. beam particles (see Figure 2.38).

The last two conditions have not been experimentally confirmed.

21
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Figure 2.33 Magnetic field profiles at times of beam injection.
Rc is beam cathode radius, arrows indicate damage
radii of transported beams.

2-118



I
I
I The last two features essentially mean that the Be field frozen

in the plasma has to be sufficiently strong so that the beam
particle kinetic pressure, both transversely (2), and:longi-

tudinally when orbit theory predicts negative drift (3)., is

negligible compared to the existing plasma kinetic, pressure. In

other words, the beam cannot "pierce its way" through the plasma.

l The diffusion time, t in a linear pinch plasma would

typically be approximately a microsecond, assuming a few volt,
fully ionized plasma, so the first condition is usually fulfilled.

Figure 2.34 shows the beam return current, Ibr' at a radius ro
under this assumption of constant Be(r). The total plasma current

does not flow oppositely to the beam or "return" unless Ib(rot)

exceeds I p (r0 ti). We see from the diagram that the beam will

Sactually gain energy (albeit only a few keV) from the pinch until

Ibe(rt) exceeds Ip (r 0 ,ti). The departure of Ez frc.. values at

injection and its radial variation are maintained, of course, by

the very small changes in the net enclosed flux. The change in

current flowing in the external pinch circuitry is also very small.

Let us explore beam propagation for two representative cases.

1. Sheathed Pinch Current-Collapsing PhaseL.
We assume that the conductivity interior to the pinch sheath

I is high; there is always some current flowing in the interior of
the sheath, and the beam would rapidly break the gas down in this

[ region, in any case. Transverse beam energy containment (condi-

tion 2) is attained in this phase because the pinch is in a state

of pressure unbalance and accelerating inward (snowplowing) and

L. also, when Rs > a, (Figure 2.35) the beam effectively "cools."
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(The transverse energy/cm 3 a ao2/a 2 in the unifor current

density case, for example.) Beam cooling implies that pinch

currents much lower than the beam current can contain the beam

in the collapsing phase when Rs > ao . Benford and Ecker have

demonstrated c°ntrol of beam current density by varying Rs at ti. i

2. Partially Pinched Phase at Injection L
In this phase the single particle model of Benford and

Ecker would predict positive z drift (propagation) or negative z

drift (reflection) depending on the detailed shape of B (r,ti).

Figure 2.36 shows these regions for a nearly pinched plasma. The v
radius Rc is the radius within which one would expect the core

of the beam to propagate. If Be r, r < Rc (uniform current

density), we can determine Rc from the Alfven condition, IA =

17,000 8Ly amperes, or 5 Rc B = I A, Rc in centimeters, Bc in

gauss. IA refers to the pinch current and 0LY to the beam [
parameters. If the Larmor radius of the beam electrons is less

than Rc, we can use VB drift formulas for r > Rc.c

Conditions 2 and 3, which are really coupled, may not be

satisfied at pinched or near-pinched injection. If the pinch

were steady state, e.g., the pinch field pressure would exactly

balance the plasma transverse kinetic pressure, and the ad-

ditional beam transverse pressure would not be contained without

field distortion. We illustrate these remarks in more detail

through example.

Let us assume that a beam is injected into an approximately

uniform current density region of a nearly steady state pinch,

that the beam radius at injection is equal to the Alfven radius,
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Figure 2.36 Pinched phase beam injection
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RA, and the beam current equals IA. Moreover, we take the beam

to be zero temperature (cold) at injection. The beam moving in

the pinch field now becomes hots i.e., <$t2>/<6L 2> - 1. The

beam average transverse energy/volume is <nbkT>b - nb WT/2 ,

where WT is the total electron energy. If this transverse

kinetic beam "pressure" is negligible compared to the plasma pres-

sure at plasma pressure balance (steady state injection), or, is

small compared to the (magnetic-kinetic) pressure imbalance of a Li
radially contracting plasma, we would expect single particle

orbit theory in undistorted fields to apply. In the steady

state plasma case we require

W 2 x 108 I 2 x 108 (IA) WT  (steady
nW T _2 b - <nkT> state
b 2 7TRA 2L 6 a 7(RA) 2 pinch)A LLL

or
RA2 > 5.4 x 1011 (2.132)A nkT> 212

p

with WT' PcT> in eV, n in cm , and RA in centimeters. If the

plasma density is 10 /cm , <kT> - 10 eV, WT = 1 MeV, Equa-p
tion (2.132) gives RA > 2.3 cm.

Let us continue and suppose that condition (2.132) is

violated at injection. If RA - 1 cm, = pinch radius, e.g.,

nbW/ 2 -1018 eV/cm , compared with the plasma energy density of

10 eV/cm3. We expect, according to our model, that the pinch

field will now be distorted, and that this distortion will

proceed by motion of the plasma particles with field lines "tied"

to plasma motion. Recall that in MHD theory with space charge

neutralization

These restrictions are for analytical convenience.
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V± ( x V) (2.133)

where wte have used the expression; at'i + x V /cx for the

p!

plasma current density. The conductivity has been shown to be
high enough that the change in B due to' the last term in
Equation (2.133) is negligible. The time scale of the'radially

outward plasma fluid motion will critically depend on how many
1~ ~ ions have to be "dragged along" w~.th the'plasmi elec~tronu; i~e.,

to what 3xtent the fluid is an electron or an electron-ion fluid.

1..b Snowplow pinch collapse theory assumes that al r ions are pulled

along (by an electrostatic charge separation field). The ion

L pickup in our case will depend n the plasma dens.ty outside the

main discharge.

Vm

We develop a model for the expansion velocity assuming 'the

expansion proceeds in a way to maintain electrical neutrality
awith uniform charge densi ty in radius. Ions moye to maintain

neutrality as the pinch discharge region is "pushed" outward by

the transverse kinetic pressure of the beam. Let 'dR/dt be the

velocity of the outer radius, R, of t he pinch discharge (and

qubeam). (See Figure 2.37.g The velocity of'the expansion is, con-

trolled by ion motion. We estimate dR/dt in sort of a "reverse

snowp low" fashion:

0 o.2 2
27TR0 n b 2 2 _/dR)2 0( (Ro)

2ta-p p 87r

along(b a electosatc -hrg 2earin k ie(2.Th 13i )

dt [mii (R)_ dr', 27rr' v W, R)] (.i4

ii,.
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where B0 - magnetic field at injectibn (r - R "

nb - initial beam number density

0i

ni - initial plasma ion number density,

mi - ion mass

nr - initial plasma numberdensity

T 1 plasma temperature
p

<t 2>C2  - average transverse beam velocity squared

vi(r,R) - ion radial expansion velocity at radius r for
discharge radius R.

The electron plasma mass has been neglected on the RHS of
Equation:(2.134). With uniform density expansion,

~r dR
v (r,R) - R

p1 he ,

. .t, Lh tt V
o reee latt eto

bea o rlect tra.eltor n

vl lo ba e r aili at Ileoti ties

Figure 2.37 The expanding pinch model.
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and, if we neglect the last two terms on the LHS of Equation

- (2.134) [they balance at injection in steady state], we obtain

Lafter integration

kav Y i nl0
(2.135)

L8.2 x 10- (a) no B2c 2 £n (kR)
iin

with mr = proton mass. If we let R - Ro + A, Equation (2.135) can
9pSbe integrated for A/RO < 1:

A m 3.3 x 0 3  22 2 b 1 (2.136). 100 i /cmtib ( o1R0

In our example, y - 3, ni 0 1016/cm3 , nb 0 3 x 1012!cm3

R 1 cm, and with a beam pulse width of 80 nsec, Equation

(2.136) gives A f 20 (m /mi) cm ever the duration of the beam. -i1
Vpulse, corresponding to an average velocity of f 2.5 x 10

(mp/mi) cm/nsec. We emphasize that this velocity estimate is

a lower limit because of our assumption that the Jon velocity
controls the expansion.

The external circuitry of the pinch system will also affect
I.

the beam penetration rate. Our model basically assumed that the
discharge chamber was connected to the external (lumped) induct-

ance and capacitance via a resistive impedance transmission line
with electrical length long compared to the field distortion time.
The longitudinal electric field in the laboratory frame is

1 2- 1
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maximally ~ 2 x 103 V/cm in the example. As is well known from L

linear pinch theory, this field may produce a large voltage spike

across the pinch chamber if the external inductance is large L
compared to the chamber inductance, L. On the other hand, if the

inductance is small, the voltage across the pinch chamber L
will essentially remain constant, and the total discharge current

will change so that L dI/dt - IdL/dt. Experimental verifica-

tion of the model must therefore be performed with a carefully
defined system. Most importantly, the beam and pinch parameters

should be designed as in the model; motion of the plasma as a

whole is desirable, not merely an inner core where the effects of

its motion may be shielded from the outer pinch radius-chamber L
electrode flux region.

L.

The actual penetration process is undoubtedly much more com-

plicated than our simple model where plasma and beam currents

were assumed uniform and coextensive, and the pinch expanded out-

ward while maintaining a uniform density. More generally, one

might expect an (r,z) or two-dimensional, penetration process, and

certainly not necessarily one that maintains a uniform current

density. Figure 2.38 illustrates the two dimensional penetration

where beam current is also initially injected at radii outside

the critical radius. The longitudinal beam "pressure" is genera-

ted by reflection of beam electrons.

We expect in this case that the pinch distortion time will be
somewhat increased if the signal double transit time in the
transmission line is short compared to the pinch expansion
time scale.
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LLongitudinal reflection

reio 1 dR/dt

N z Beam electrons

Injection
plane

'R = radius of core propagation RA
;. in uniform current density case

Scf = radius after plasma motion allowing
complete beam penetration

Figure 2.38 Two-dimensional penetration of
pinch field by beam
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We now compare our remarks with the experimental results and
discussions of Benford and Ecker. They report target damage

radii and enclosed pinch currents at various injection times using

a 160 kA, 500 keV beam. The transport efficiency was reported

high (~ 100 percent), so we assume that all the beam propagated

within the damage radii. Moreover, although the BG(r) variation
was not exactly linear within damage radii, we will assume it

linear. The Alfven current for their parameters is 34 OL A. L
caicTable 2.6 summarizes the data. Rd is obtained from an esti-

mate from experiment field profiles for the product of the

radius and magnetic field to give IA, and the beam transverse

pressure column corresponds -o the maximum pressure (peak current)

within the calculated Alfven radius. The last. column is an

estimate of the ion plasma inward-streaming energy density for an

argon plasma (nimivi2 /2) with initial pressure of 300 pm. (All

their data referred to the collapsing phase.) This is a rather

crude estimate inasmuch as accurate plasma density and collapse

velocity parameters are not given. Our calculation assumed

collapse velocity of 1.5 cm/psec, and a discharge current radius

of 3 cm. These parameters are probably low for the 2.9 psec,

injection time; the velocity rises sharply as the radius contracts

in snowplow theory, and the effective radius of the discharge is

probably < 3 centimeters.
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TABLE 2.6

BENFORD-ECKER DATA COMPARISON

npiVi 2

Re Rc alc 2(T~
dd db~cm)(Usec) (cm) (cm) (eV/cm') (eV/cml)

2.9 1.5 1.2 3 x 1O18  > 1018

2.4 2.0 1.8 1 x 10i8  101i8

1.7 2.8 2.8 5 x 1017 1018

L The conclusions indicated by Table 2.6 are that single

particle orbit theory is a good approximation since the sheath

j" momentum can contain the beam and that the current should essen-

tially flow within their damage radii. The discrepancies between

V° the calculated and experimental radii at later times are too

small to be significant in view of the inaccuracy in the damage

radii estimates, and also because of the calculational assumption

1. of a cold beam upon injection. An experimental test of the beam

penetration model is therefore not included in the Benford-Ecker

data.

As a final example of the model, we design a pinch injection

profile for transport of a 1 MeV, 2 MA beam at a current density

of 10b A/cm2. A magnetic field configuration should rise linearly

from the origin to about 3 kG at 2.52 cm. The maximum transverse

beam eaergy density is then - 2 x 1019 eV/cm 3 which implies an

argon plasma with nivr2 > 1030 eV/cm. A collapse velocity of

107 cm/sec and density greater than 1016!cm3 should be adequate

to contain the beam. If the plasma conductivity - 1014 sec -1

Recent data of beam compression in a tapered pinch suggests beam
penetration in violation of single particle orbit theory.
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(100 mhos/ca), the beam would lose about 100 keY energy/meter of U
transport. Figure 2.39 shows a sketch of this field profile.
This example illustrates a basic feature of hot beam transport in

linear pinches; namely the high transverse beam pressure can be 1'
advantageously contained by the collapsing pinch at much lower

pinch currents than the beam current. In a sense, we are utiliz- L
ing the kinetic streaming energy of the ions, gained over a much

longer time scale than the beam pulse width, to maintain a con-

fining field configuration.

We conclude the linear pinch phenomenology by mentioning two

recent experiments to investigate other applications of linear

pinch transport (Reference 2.59). In one experiment, two beams

from magnetically isolated cathodes were injected into a pinch to

look at beam mixing (Reference 2.59). As expected, when injec- L
tion was interior to the pinch current sheath the beams did mix.

Beam compression has also been investigated in a tapered pinch

configuration and preliminary experiments have not indicated any

current density enhancement. Moreover, the beam appeared to
penetrate the more highly pinched downstream field region in

violation of single particle orbit theory (Reference 2.60).

v r  10 7 r/e . .

Nt

3* ,

I -

Figure 2.39 A magnetic field profile for transport of a 1 MeV,
2 megampere beam at 105 A/cm2.
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I I 2.10.3 Solenoidal Field Transport. Beam transport in

solenoidal, or Bz , external fields has been exparimentally I

istudied over the past two years. The first work was performed

at Cornell University using v/y - 2 to 3 beams at current, densities

of a few kA/cm2 (Reference 2.37). A beam transport efficiency of,

24 percent at 15 om pressure was reported using a 10 kG field,

compared to a 6 percent efficiency without the field. At 435 mLpressure the 10 kG field gave the same transport efficiency as no,
field; the field apparently prevented space charge beam blowup at

the low pressure. This early work has been extended at Cornell

and NRL and efficiencies of 85 percent have been attained over 2

meters using similar beams (Reference 2.61). Hammer and Levine

have reported high transport effiuiency with higher v/y beams

(- 10) (Reference 2.62). More recently, Stallings at PI (Refer-

;'; ence 2.52) has looked at Bz transport efficiencies with a v/y

> 10 beam over a wide range of magnetic field values (up to

30 kG) and has discovered a substantial dropoff in transport

efficiency above about 9 kG.
I"

The requirements for efficient transport in Bz systems are,

as might be expected from our previous discussions, that the EM

fields of the beam be rapidly shorted out by charge and current

neutralization (preionization or rapid gas breakdown), and that

transverse beam momentum be contained by the field. We have

already discussed charge neutralization and the role of current

neutralization in the z direction to keep Bnet low. So, as1.8
without Bz fields, we want v net/y 1 strictly from EM limita-

" tions. The B systems have another dimension to consider, how-
z

ever. Effects of theta currents and diamagnetism or paramagnetism

have to be evaluated. The remainder of this section is largely

devoted to an exploration of theta currents.
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'Diode Flow. As already mentioned (Section 2.1), no self-. L
consistent theory for diode flow with longitudinal electric fields

exists, so we are uncertain about he theta motion in the diode,

and consequently also about the beam injection conditions into the

transport system. We first briefly discuss electron motion in

the diode qualitatively. When electrons are emitted from the
cathode in the presence of the field (which must' fringe into the

diode to avpid mirroring of high transverse momentum electrons),

the guiding center Qf the electron orbit is accelerated azimuthal-
ly about the system axis by forces due to the 'presence of a

radial electric field and the Be self field,. This guiding center
motion gives risr to a macroscopic volume theta current that

appears as a rotation of the cathode emission pattern at the

anode window. The radial electric field contribution is dia-
magnetic, whereas the rotation due to the self field giving rise
to twisted magnetic field lines is paramagnetic. Experimental

evidence shows that the paramagnetic volume theta current domi-

nates with present high-current diode configurations. If one

believes that the guiding center motion in the diode approximately

follows field lines and, recalling that the pitch angle will in-

crease with radius and with current density due to the self field

(Bs), we expect rotation to increase with radius and current

density. Hammer has measured the twist of a strip cathode

pattern and found an approximately linear dependence of the angle
(up to r 50 degrees) upon I/y B . At a few hundred kiloampere

beam currents, current densities 10 to 30 kA/cm2 , andB in the
z

few kilogauss range, v8 and vz of beam electrons appear to be

comparable.

The radial electric field is shorted out by the electrodes in
high current, larger aspect ratio (rc/d) diodes.
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The general trajectory of an electron in the diode is a

superposition of motion of a guiding center rotation about the

Isystem axis and a gyrofrequency rotation about the guiding
center. The gyro-rotation gives rise to a magnetization or

surface current, type of diamagnetic theta current, and is ex-

perimentally manifested by a "smearing" of the projected cathode
emission surfaces over cyclotron radii. Stallings has shown that

the cyclotron radii may be of the order of those expected

for electrons with nearly total energy transverse to Bz.1.
We can quantitatively estimate the relative importance of

Lthe theta current contributions of rotation about the axis and
gyro-rotation with a simple model. The model is given to allow

a practical working description of diode flow and transport

phenomenologyr and we proceed recognizing the perils of crude

estimates. Let us assume that the radial electric field con-

tribution to rotation about the axis is negligible compared to
B self-field effect (large aspect ratio diodes), that the

I . current density is uniform in radius, and that the guiding

centers approximately follow field lines. This latter assumption

is equivalent to restricting the model to cases where the curva-

ture drift velocity is small compared to rotational velocity
i- about the axis. Referring to Figure 2.40, we obtain

vic = v sin a (r)

Vir = v tan a (r)

tanct (r) = (2.138)~Bz
with z

vI c = perpendicular cyclotron or gyro velocity

"'ir = perpendicular rotational velocity about system axis

These measurements were made a few centimeters beyond the inodeI window.

2-135



Vir
B0  L

Vic

0- L%..

Figure 2.40 Perpendicular velocity components
in combined Be and B z magnetic fields.

The longitudinal electron velocity as a function of radius, 8Lco

is given by

(r) 8 (2.139)
+ sin2 x + tan~cx

where 8 refers to the tota electron velocity. The average

longitudinal 8, <BL>, for uniform charge density is then

a

<L> 2 j r' 2 dr' 2 (2.140)L (1 + sin (r') + tan (r' 1/

We can define a condition for validity of the assumption of

uniform current density from Equation (2.139). Let us require

that - L(a)
8 < 1/2

i.e., current density uniform within 50 percent. This condition

translates from Equation (2.139) into requiring a(a) < 1.
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Equation (2.140) becomes

L aC aiJ (2.141)

C 1 [(1

where

1 5a2Bz

a in centimeters, B in gauss. When C a 1, Equation (2.141)z1
says that <OL> -0.78, and if Cla > 1, a condition C1  < 1

defines an approximately uniform density core of radius a.

[Recall the data of Stallings (Section 2.1.3) regarding experi-

mental observations of a peaked current density along the axis.]

Assuming that C1a < 1, we proceed with the uniform beam

model. The rotational angular velocity about the axis, w, is

from Reference 2.37, e.g.,

< L  cB CE

WrBr (2.142)

II (amps)l f

5a2Bz < FL> e 7 L

and with fe it CIa < 1, w is approximately constant:

W . I (amps) I c (2.143)5a2 B < L
z
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The paramagnetic change of Bz along the axis, ABzP, due to LI

rotation about the system axis, can now be estimated with a

rigid rotor model, assuming aB r/9z negligible compared to

4wr/c Jbe'

ABzP 47- nbewa2/2j

z c nbw /2

Tr2 a 2  b 2 
(2.144)

25 Bf; i
with Jb the beam z-current in A/cm2. Similarly, we estimate the

diamagnetic gyrorotation contribution to B at r = a, AB zd:

ABd (2Bzi ABzd) 8 nbW (a) (2.145)1

z z WI

where Bz  is the applied field, nb is the beam particle density,

and WI is the perpendicular gyrorotational energy at the beam

edge. Combining Equations (2.138), (2.144), and (2.145), wed
obtain an equation of comparison, evaluating ABd at r = a and

AB p at r =0:
2Bz

ABd AB z 2\z -- I Cos ax (a) (2.146)

and since the maximum, AB occurs when B d AB ,

z z z

- .-. cosa(a) (2.147)
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Thus, if v/y > 1, and rotational effectq due to the radial

electric field are negligible, the model predicts a net para-

magnetic beam. Although we have restricted the model to

Be (a)

Ca -- < 1

the geometry of Figure 2.40 suggests that the conclusion of

Equation (2.147) is probably valid for Cla - 1.

Transport System Phenomenology. The first question whichl

arises in discussing transport phenomenology is the influence

rof the anode foil upon injected beam orbits. If the foil

essentially remains intact at solid densities during the beam

pulse and (wc/v) 4 1, the beam-electrons enter the transport

region with a multiple scattering velocity distribution about

their incident velocity vector at the anode. If 6 is the angle

the velocity vector makes with the vector after scattering,

similar considerations as in Figure 2.40 give

Vic - v sin 6

Vir vcos 6 sin a (2.148)

V v Cos 6 Cosa

and tan a = IB~etI/B z to allow for current. neutralization.

Another important question regarding the transition region

from the diode to the transport system is whether the particle

motion is adiabatic as B0 is reduced by current neutralization.

A non-adiabatic transition will partially convert diode

* . rotational transverse energy to transport system gyrorotation,

as can be seen from Equations (2.148), e.g., with 6 replaced by
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the diode a valde. If the transition is adiabatic, Equation L
Li,22.138) inoicates that the transvers6 energy in the transport

system will decrease, since a is 'diminished from the diode

value. Finaily, it is necessary to determine whether B field

lines are,"tied" at the anode wihdowi or,:in other words,
whether the field diffusion time in the anode over distances L
of the order of the beam radius is large compared to the beam
pulse w~idt4.

, A sketch of a beam penetrating a neutral gas is shown in

Figure 2.41 for the case of a net diamagnetic beam channel, and

with field lines assumed tied at the anode wihdow. The field

line intersecting the outer cathode emitter is indicated., The

configuration is an asymmetric double mirror geometry with the

downstream end moving at velocity f c, which we anticipate to
p Igenerally be - Oc of beam electrons. Aside from the theta

electric field, the electric fields in the penetration front

region are as previously discussed without an external Bz field.

in the region z Z '2 z3 the electrostatic field is primarily

radial, from z , z - ;2' Ez L dI/dt, and for z < zl,

Ez 2 _ I(t) - I(tB) ]/ aBa 2 , where I(tB) is the z-directed

current at the breakdown time tB, and OB is the conductivity

at breakdown along field lines. The E fielId is, of course,

in a direction to drive plasma currents to counteract beam

theta currents.

In neutral gas propagation without Bz fields the beam

electrons in the penetration front are lost radially to the
2

chamber walls when fe < 1/y . If B i is sufficiently large,

however, the longitudinal space charge field can prevent beam

electron escape to the wall. In other words, beam electron mo-

tion is primarily azimuthal and longitudinal for large enough B
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EB Bz Bz"Bz fz ~i i
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a[0

"" Cathode
f fe s f ' I e  -"0

z=O ZI penetration front

2 region• 1 Zl 2 3

- z

z = distance where gas breakdown occurs

.2 = distance at which electrical neutralization is
achieved

" 3 = furthest penetration length of beam into neutral
gas

Figure 2.41 Beam penetrating a neutral qas with Bz .
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The space charge limitation on propagation in the z direction [
is, from Section 2.10.1,

v/(y < (1 + 2 £n R/a) 1-f e )  (2.149)

On the other hand, sinusoidal or radially contained beam

particle motion in the uniform beam approximation requires

for f e- 0

v/y < 4 x 10-  Bz a (2.150)

with Bz in gauss and a in centimeters. With no space charge

neutralization, a 10 kilogauss field, e.g., could contain a

500 keV beam of radius 2.5 cm with currents up to about 300 kilo-

amperes (v/y - 10). The electrostatic field at the penetration

front can therefore cause substantial reflection of beam
electrons back to the diode.

We can express the criterion for particle reflection

generally using Hamiltonian formalism and conservation of

canonical angular momentum for axially symmetric systems. Non-

relativistically, reflection will at least occur for all

particles satisfying

e A > 2mO (EO -AE - e IV(r,zjl) > 0,+ c
(2.151)

z > Z1

with Pe0  = m0r0 2 60 - (e/c)roAo = electron canonical angular
momentum at z = 0

r °  = radius of electron at z = zo

A8  = theta component of vector potential

E° 0= electron kinetic energy at z = z0
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I AE is the energy loss in transport up to z = z. and V(r,z) is

the electrostatic potential for z > z2. Let us rewritei
Equation (2.151) for a simple case where B z(r,z) = Bz (r)f(z).

Moreover, if we assume no collisions in the anode window, P0

can be related back to emission at the cathode. We obtain

0 --- e 2 B
e- r B (< 0)

where rc = emission radius at cathode, and 0 is taken zero at

the cathode. Such a P0 corresponds to electrons which do not

encircle the system axis (Reference 2.63). Equation (2.151)IT becomes
7[fz r 2 2

f(z)r - > 2mO (Eo -A E - eV).. eB z/

-. [ (E - AE - eV)(eV)(
[Bz i (gauss)]2

This equation is, of course, valid both for adiabatic and non-

adiabatic motion.

If electrons enter the penetration front into the region

where fe < 1/yL 2the rotational volume beam theta currents shift

from paramagnetic to diamagnetic rotation [see Equation (2.142)1

and electrons are displaced radially outward as they reflect.

Upon returning to the diode, the rotation due to B0 (z < z2 ) is

now diamagnetic. If electrons are also electrostatically

plugged at the diode, -article loss occurs when diode voltage

begins to drop. Even if the beam front has reached the end of

the transport system and V 0 throughout the channel, the

mirror geometry resulting from tied field lines at the end of

the transport system with a net diamagnetic channel will reflect

21
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electrons because of energy loss AE. (An energy loss of
1 100 keV/m would occur with a 105 A/cm2 beam with a a 100 mhos/

cm, corresponding to a fully ionized plasma of a few volts

temperature.) When a substantial fraction of beam electrons are

reflected near the penetration front, the front velocity B~c, is

more appropriately calculated by a pressure balance argument

similar to the linear pinch penetration process:

(ABZ)2  ne  / r p )>]2
zw< m - - (2.153)

where ne is the average reflected electron density and $Lc is

the average incident electron velocity. T

Plasma Theta Currents. Beam-induced plasma theta currents

will be diamagnetic with the exceptions of (1) those induced by

Ee when the beam is diamagnetic and (2), under appropriate

conditions, those due to axial rotation of electrons reflected

from the diode by electrostatic plugging. We neglect the latter

plasma theta currents in our discussion; they would only be

important in low density plasmas or with very high Bz fields.

The characterization of the volume plasma theta current before

electrical neutralization for neutral gas injection may be

quite different than without Bz fields. Our previous assumption

(Section 2.4) that secondary electrons escape "instantaneously"

from the beam channel to the chamber wall until fe = 1 is not a

gcod approximation with high B fields. We use a simple model

to determine limits on BZ for escape of secondaries to the

chamber wall at radius R. The turning radius, rt, must be

larger than the chamber radius, R. Referring to Figure 2.42,

and assuming negligible diamagnetism, Busch's theorem (Equa-

tion 2.92) states
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f e < 1 secondary
electron orbit

r= radius at which secondary is created by
collisional ionization

a = beam radius

- Figure 2.42 Cross section of beam chamber showing
secondary electron orbits when rt  R
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WLLoF.[
-o w(r) = L -((2.154)

eB L.WL 2mc K.
when = Vr = z  0 at r = 1 (electron birth). If we further

assume that the space charge field is primarily radial and due

to a beam of uniform charge density,

2_rl2
[a ri .y(r) =1 + 2vb (l-fe + en ra r > a (2.155)

Vb = primary beam v

Combining Equations (2.154) and (2.155), and taking 8 at
r = rt, I

W2 (-t ort )] 2_1 '
L [ ( l-c G(rlIrt. (2.156)

G rt 2 [1 - (r)2 1 2

We use r 1 0 in Equation (2.156) for a representative secondary

electron orbit; we could insure that all secondary electrons

escape, e.g., by evaluating G at rI = 0 and y at r1 = a. Equa-

tion (2.156) gives

L < + 2vb(1-f e )  + £n r/a 2 _1 (2.157)
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Bz (gauss) 51 + 2V b(1-f)( Cn R/a

rt Z R

This equation can be expressed in a form more appropriate for

neutral gas penetration, where fe is increasing behind the front.

La Electrical neutralization will occur via secondary electron

escape to the wall untili's b (l fe) , 1 -WL 2 R2 + ) I1

b ( ( + 2 Xn R/a)[(- + -

IL rt R 2.158)

j 1.If the beam current in the penetration front is space charge
limited (Equation 2.149),

or (2.159)

Bz (gauss) 17,000 (amps)

*~i When Bz exceeds the limit of Equations (2.157) or (2.159), or

if b (1-f e) satisfies (2.158), secondary electrons will no

longer escape to the wall. In a similar fashion we can then

determine upper Bz or lower vb (1-fe) limits such that

a 4 rt < R, as depicted in Figure 2.43:

17,000 (amps) 2

B (gauss) 10 a [M'( 1 + Vb (1-f)] 2
z 5e

m a < r t  < R (2.160)

I
2-14 7



II
4L-

B 
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L

a secondary electron

orbits emanating,f'rom r=r I

a2

- secondary return
current annulus

al= inner radius of secondary electron beam > a

a = outer radius of secondary electron beam R a

a = beam radius

Figure 2.43 Cross section of beam chamber showinq secondary
electron orbits when a < rt < R.
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or in other words, an annular secondary electron "beam" with

inner radius > a is formed until

Vb <1f)  c 2 + -

Vb e

h5aB 2

liL [ o,00 + li-1 (2.161)

As an example of the above equations, let us take B = 3 kG,z
a = 2.5 cm, and R = 10 cm. Equations (2.158) and (2.161)

give
i"

rt > Vb (-f e)- 2.6

a r t < R, 2.4 < vb (1-f e ) e 2.6

When an annular return current "beam" is formed, the

secondaries in turn ionize the backgrcund gas, creating addi-

tional secondaries which are then expelled outward to the wall

unless B exceeds a value of the order 17,000/5 (R-a2 ), where

a2 is the outer radius of the annular return current beam. The

neutralization process for this range of vb (-f e ) and lower

values is thus of a cascade type. At still higher B levels,

or as fe continues to increase, not all secondaries will leave

the bean channel, and we expect the radial electric field to

increase again if the beam current is still increasing. There-

fore, at lower gas pressures where breakdown does not occur early

in the pulse, or, if the perpendicular conductivity after break-

down is low and the beam current continues to rise substantially

Even if fe f 1, at some point during the beam current rise, a
space charge field may still be genterated until the current
reaches its peak value.
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after breakdown, the net z current may exhibit oscillation due

to the re-establishment and neutralization of space charge fields. Li
(Recall that the E space charge field opposes the inductive

field during the beam current rise.) A summary sketch of the u
radial motion of secondary electron currents generated by space

charge fields is shown in Figure 2.44.

Finally, we come to the case when Bz is sufficiently large U
that rt < skin depth -: c/w I U the plasma frequency. We see
from Equation 2.156 that (w /W) terms of order unity to

entirely prevent space charge neutralization. Lee and Sudan

(Reference 2.64) have considered the current neutralization
problem for an undistorted, non-rotating beam penetrating an L
infinite plasma with a frozen-in B field. Their criterion forz2 2destruction of current neutralization is wL2/Wp2 > 1; the Li
physical basis of this criterion is apparent from our model.

Whether in fact current neutralization may be completely

eliminated in a finite system is not clear. The EM cavity model

(Section 2.2) showed that in a long tube away from the endplate,

E is indeed in a direction to accelerate beam electrons when
f 1/2 y In a finite system, however, the chamber endplatee

would cause generation of a large E field to drive a return
current even when f P 0. So it appears that substantial

e
current neutralization might occur in .a finite system without j
charge neutralization if Bz is large enough. In fact, one ex-

pects that the space charge limit of P q. (2-149), with v replaced L
by vnet' would given an upper bound on the net current.

We can now estimate the plasma volume theta currents, L
induced by space charge fields. To do tnis we need the secondary

electron charge density, pp, as a functioi! of radius and ctdr):

JP =pp (r) rw(r). The charge density -an be evaluated explicit-
ly from radiar force balance and Poisson's equation. The first
case we consider is a .< rt S R for all secondary electrons.
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H Rewriting the above equation, we obtain

AB (V r 2
Bz 2 e -- [ 2 a £n a2/aB. z  e - a12

ia < al, a2 < R (2.162)

The upper limit on fe in Equation (2.162) is given by Equation

(2.161), and a2 is determined by (2.156). The equation is

strictly valid only if AB /B 0.1, since we have assumed a

constant Bz field in its derivation. The space charge limit on

V Vb in Equation (2.162) is

Vb

Y-1 < [F (feIfer, a,a2, R)] (2.163)

where

F (1-f e ) (1 + 2 Xn R/a) + 2f e (1-fa £n R/a2

f = fractional electrical neutralization of
the return current channel.

When fe exceeds the limit of Equation (2.161) and rt - a

for most secondary electrons, plasma theta currents can be

estimated by assuming that the plasma return current channel is

* v nearly coextensive with the beam channel, but displaced by a

skin depth, c/w p. In this case, secondaries created by further

ionizing collisions essentially form a hollow Brillouin-type

annular beam with the beam edge as a cathode and with radial

thickness inversely proportional to B2 and (y - 1/2) h. Classical

I
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L
space charge flow theory for hollow Brillouin beams shows that

their diamagnetism is at most a few percent (Reference 2.1).

We have argued above that the radial electric field of

partially compensated beams can generate substantial diamagnetic

plasma currents and that return current electrons in general may L
have energies comparable to the primary beam. The space

charge diamagnetism may greatly exceed classical space charge

flow diamagnetism because of partial charge compensation

behind the penetration front. In order to achieve efficient

beam transport, the space charge fields must, of course, be

rapidly shorted out (TN  t r , the beam risetime). At pressures

such that TN < 27/wc, the plasma electrons non-adiabatically

pass through the space charge front and it seems reasonable to

assume that their diamagnetic volume theta currents are essen- L
tially determined by Bnet. If TN > 27r/wc the transition will be

adiabatic and the volume theta currents will also be determined L
bynet beyond fe 1

The diode flow model which we have previously given,

together with similar arguments for plasma currents, allow

us to determine the net Bz , ABzT , of the beam channel for

T < t tB  The only paramagnetic contribution to AB inB I/7L2
general is the volume beam theta current after f e
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We obtain

AB To (r B z(r) -BliB
27nb2 2 2_ 2

-7 e (-_ ew (a-r)I, eb a2r)-c p

L + (Bz')' - 8, jnbWlcb(r) + npW±c p (r) - Bz' (2.164)

f where the b(p) subscripts refer to beam (plasma) quantities and

Wlc is the perpendicular gyrotational energy. We rewrite

Equation (2.164):

2 j (() 2 2

AT r)2 2 2 Bi) [y3r
A i ABz T (r )  2 5 Bz (1-fr2 (a2-r2 +  (B 1 0 3 <aLJ [b(r)

I + (p f sin 2 r)] - Bi

1. TN  < < tB (2.165)

with
wi fm = fractional magnetic neutralization

f <SLC> = average longitudinal beam velocity

g tan 2  6 for a non-adiabatic anode transition1. cos2or

tan a(r) for an adiabatic transition

<6> is the average scattering angle with respect to Bne

I Bnet

tan ct(r) = B (r)! BI. z
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The beam current density j b is in A/cm, Bz in gauss. A "strong" L
sensitivity to the current density and degree of magnetic

neutralization is exhibited by Equation (2.165). As an example

of the equation, let us take fm 0.1, B 5 kilogauss,

b = 5 x 103 A/cm2 and g = 0.25. Then Equation (2.165) gives

AB (r = 0) = 1.6 kilogauss and the beam channel is net para-z

magnetic. On the other hand, if we inject the same beam into a

preionized highly conducting plasma so that fm i, Equation

(2.165) states that the channel will be diamagnetic with

ABz (r - a) (-) 200 gauss. Our estimates have, of course,

neglected space charge induced diamagnetism under the assumption

that TN 27r/wc" Finally, we note that when fm + 1, the anode

window transition may be important in determining the nature of

the channel AB. L

A rough criterion to ensure a net diamagnetic channel may be

obtained following arguments used in the derivation of Equation

(2.146). A more general version of this equation appropriate

for a non-adiabatic transition at the anode window is

ABzd (2Bzi - ABzd) (V)c(
(Bz) 2  Z tan26(A zp) 11 Vf ) ina(2.166)

Thus, a sufficient criterion for dominant channel diamagnetism

under the assumption that guiding centers follow field lines is
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tan 6 sine (a) (2.167)

The remaining task for completion of our discussion of B
transport phenomenology is to couple AB to beam energy loss.

The method is analogous to the Be discussion with z-currents,

only now we additionally include E and dB /dt. We explicitly6 z
consider only one case; namely, when ABT - B is diamagnetic and
dominated by the surface currents associated with gyrorotation.
The theta electric field is then:

• ' ,, rAB ZEe (V/cm) - (2.168
E At (nsec)(2.168)

A rough criterion for the validity of previous calculations of

ABz where E, was neglected is

E0 (27ra) < N-l) (106) (2.169)

or

AB (gauss) 4 10 (y-l) At (nsec)
z 2

a

and T At < tB, the breakdown time, for diamagnetism near the

beam penetration front. After breakdown the plasma currents are

collisionally dominated and in a direction to oppose further

i changes in Bz . Then E, may be estimated from

~b (t - ~b(tB

Theet -ib (t > t) (2.170)

The radial drift velocity of the beam-plasma system across

Bz lines for the case of a highly ionized plasma after breakdown

is approximately:

2-15
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E8 (V/cm)
vr (cm/nsec) (c(2.171)

r0 B (gauss)

-~z

Conditions for Efficient Transport with Bz Fields. Our L
discussion has related beam and plasma induced changes in Bz to

space charge fields (fe) and the self-magnetic fields (fm), and

indicated the coupling between these parameters and energy loss L
due to ABz . The models showed that when fe < I/yL 2 the beam

channel will be net diamagnetic (low pressure propagation) and L
when fe - 1, the channel will be paramagnetic unless fm - 1.

The complications of the general transport problem with Bz can be

largely circumvented in outlining conditions for efficient trans-

port in neutral gases. The arguments are very like those r garding

current neutralization without Bz, except that we additionally

require the transverse conductivity after breakdown to be high.

Then ABz is small and losses due to E are minimized, and space

charge relaxation of the beam may proceed after breakdown with

increasing beam current. The model essentially defines condi-

tions for validity of single particle beam orbit theory.

Recall from Section 2.5 that the perpendicular conduc-

tivity for a Lorentz plasma (electron/neutral collisions or

negligible ion motion) is

II [1+ 2] (2.1.72)

where a is the parallel conductivity, v is the effective

collision frequency, and 7c is the cyclotron frequency associ-

ated with the B field at breakdown. To minimize net thetaz
currents, we desire 0I large (a ai) in the sense that

2

td a t (2.173)
c P
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i where t is the beam pulse width. This condition translates to:
p!

1. a1 large at breakdown (or injection with preformedT plasmas)

2. w~ i/v < 1
C

If we assume the plasma nearly fully ionized (v =1v ,i) the

lr requirements UC/v < 1 is

fZ < 3'x 10-1 (2.174)
z T3/

e

where B5 is the B field value at breakdown. This, if we assume
z 2 -a fully ionized plasma at 1 torr, T, - 5 volts, B -< 9 kG, a

e

value close to the level above which Stallings observes a,
- decrease in transport efficiency (Figure 2.45). Whether or not

this criterion is in fact relevant to his data depends, of

1. course, on the plasma parameters. Our guess above-'appears

reasonable in view of the minimum 'equirements on a for the

high transport efficiency at the optimum transport field.

Equation (2.174) is in general a more severe constraint on the
J2

maximum B field th ' the Lee and Sudan result, (w c/ )2 < 1z c p
Also, the condition is independent of whether the channel is

net diamagnetic or paramagnetic.

2I5

'11

2-159



owl 8 L

W

L

60 r

! Li

" U
II

-- 4

L0M 00 c 80k

T. - - -,- .
, -v--'

0 -- U
4 .!

SMachine Cathiode area Peak" curren t !

, 4 PIML 60cm2  180 kA L

o o Snark 60 cm2  540 kA
20 o Snark 20cm2  400 kA

Ep = 1000 millitorr
distance was 50 cm' I , I I I I I

2 4 6 8 10 12 14 16

B , kg

Figure 2.45 Charge transport efficiency at 1/2 meter for three
current densities.

.- 160



2.111 PLASMA HEATING

Plasma heating and/or confinement using intense relativistic
electron beams and their associated electric and magnetic fields
is a relatively new interest of the plasma physics community and

both the experimental and theoretical work to date in this area

is rather preliminary. The major direction of intense beam

Ltechnology in the past has been in the areas of efficient trans-
port of beams of controlled energy density; beams have merelyrprovided an energy source for X-ray production or material
response studies with rapid energy deposition. Substantial

plasma heating would correspond to poor beam transport and has

therefore not been of interest.

I I.Electron beam accelerator technology has advanced to the
point where beams exist or are within the state of the art with

I.total energies from kilojoules to several megajoules and with
electron energies from tens of kilovolts to 20 MeV. Thus beams

represent an interesting energy source for direct or supplemental

heating of plasmas. Also, these beams may be used to collective-

ly accelerate ions (deuterons) giving several kilojoules of ionI. energy plasma heating. Another application has recently been

suggested by Yoshikawa (Reference 2.35). He proposes using a

force-free beam equilibrium distribution to generate strong

magnetic fields for plasma confinement--analogously to use of

superconducting rings.

There are, of course, several aspects of potential plasma

heating schemes which affect the nature of the optimum beam and

the problem areas with respect to present day technology. For

0example, if we desire to heat a confined plasma for controlled

thermonuclear reactor (CTR) application, the question arises
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whether the beam is to be internally or externally generated.

An externally generated beam immediately confronts us with an

injection problem, whereas an internally generated beam is

probably more severely energy limited than an external beam,

assuming inductive acceleration. (Use of electrodes in a low

density CTR confinement system would present plasma contamination

problems.) The injection pzrbblem appears difficult but feasible.

The Astron field confimzration, e.g., is designed to accept and

trap a relativistic beam of relatively low current (kiloampere)

from our point of vi, w. An intense, pulsed beam must necessarily

extract an equal plasma return current from the confinement

system to avoid buildup of large space charge fields, and al-

though the net current may be very small, injection could result
in a serious distortion of the magnetic field configuration

simply to allow the return current to flow out the beam channel.

The problem areas are quite different for heating high 8,

high density plasmas with limited or no confinement. Such

plasmas would be of more interest as intense radiation and L
neutron sources than for power production. [Recent calculations

by Eden and Saunders (Reference 2..65) have estimated - 109 joules

trigger energy to give useful energy return.] Since plasmas with

densities in the 1019 to 1020/cm3 range and temperatures of 1 to

10 key require (pulsed) megagauss fields for even partial t
containment, and therefore are limited to times at most of the

order of 100 nsec, beam energy deposition rate is a dominant

consideration. The dense plasma focus (DPF), e.g., is a plasma

with limited confinement (50 to 100 nsec) and Mather and Rostoker

(Reference 2.66) and Friewald, et al. (Reference 2.67) have

recently performed initial studies on electron beam enhancement

of DPF plasma heating. Beam injection into the large magnetic

fields of the DPF is also a major problem here. D-T pellet
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ignition with electron beam triggering and with no external

confinement fields has been proposed by Winterberg (Reference
2.68) and further studied recently by Babykin, et al. (Refer-

ence 2.69). The major beam problem is achieving the required
power densities; current densities of 108 to 109 A/cm

appear to be necessary. The present state of the art for

relativistic beams is - 105 _ 106 A/cm 2.IL
A beam plasma heating technique currently under study is

j turbulent heating of low density (- 1014/cm2) plasmas. Altyntsev,

et al. (Reference 2.70) have injected a 4 MeV, 15 kA, 50 nsec

beam into a plasma with a solenoidal field and report electron

temperatures from 10 to 100 keY at densities from 10
11 to 1014,

3cm3. We consider turbulent heating in detail in the next section.

2.11.1 Turbulent Plasma Heating. A considerable effort

has been devoted to the study of turbulent heating and anomalous

resistance effects in discharge plasmas (Reference 2.71).

Recently several investigators have looked at turbulent heating

using relativistic electron beams (Reference 2.72). Basically,

all these efforts are directed toward enhancing the energy
1. deposition rate over the Coulomb collisional transfer rate. The

importance of doing so can be seen by looking at the single

electron stopping power, dE/dx, in a plasma. For electrons (test

particles) moving at velocities in excess of tue plasma electron

thermal velocity,
Z2 p2 e 2

dE/dx = 2e2  L (2.175)
' . 272 c

where w is the plasma frequency, ac is the incident electron

velocity, L is the Coulomb logarithm (Reference 2.73), and

Z is the charge state of the plasma ions.
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L

Prentice (Reference 2.74) has evaluated L numerically for L
relativistic electrons (and relativistic plasmas) including

effects due to excitation of longitudinal and transverse plasma

waves. Taking Z - 1, Te a 5 keV, np - 1019 cm , he obtains

dE/dx - 15 eV/cm for a 1 MeV electron. At n - 01 5 /cm3 , (CTR

plasma density), dE/dx a 1.5 x 10 " eV/cm so the 1 MeV electron
9*

range would be - 10 cm. If we consider many electrons or a

beam, this range is reduced many orders of magnitude by collective L
effects. The longitudinal electric field driving the plasma

return current after gas breakdown is in the 100 V/cm range, L
depending on the plasma conductivity and current density, and

1 MeV electrons are now stopped over 104 cm with a Coulomb

conductivity (v = ve,i). If one injects into appropriate plasma L
densities, we may reduce this collective range orders of magni-

tude further by inducing longitudinal electrostatic instabilities.

The plasma conductivity is now lowered by an effectively higher

collision frequency due to instability wave-particle scattering. L

As discussed in Section 2.8.1, the beam may generate

electron-ion modes (plasma return currents) or electron-electron

modes (beam and plasma electrons); i.e., plasma electrons may
scatter off plasma electron-plasma ion waves or plasma electron-

beam electron waves, or both. Let us consider a possible heating

sequence in a beam-plasma system with return current equal to the

beam current.

For simplicity assume a hydrogen plasma, fully ionized at

injection, with an electron temperature Te 29 1 volt. The heating

process will start with the Buneman mode if vd > vte. (We use

the same notation as in Section 2.8.1). This requirement is

satisfied if

Te < 1022 (j p/np) 2 (Buneman mode) (2.176)

*ThiTe-classical electron range amounts to energy transfer to
plasmas well within the Lawson fusion feasibility criterion:
npT > 1014 cm- - sec.
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with j= plasma return current density (A/cm2 ),n plasma

density (cm- ), and T in eV. The .heating rate/volume,(j la)
may be determined from ,

d 2movd2+ np23kT e •2. (2.77
dt 2 p = "ef f(217

where aeff is the anomaldus conductivity equaling wp1 /47 I/,eff
[ (sec' ), and Veff is th 90 degree scattering, time for electrons

off ES instability wdves. Equation' (2.177) assumes that the
plasma electrons are thermalized "instantaneously." The: Buneman

mode corresponds to vd Vte so we assume that the streaming and
thermal energies are approxiimately equal, giving

1 2ii d__dt Te(eV) 7.4 x 1021 (JP)p Bf(Buneman) (2.176)

where p = plasma currenttdensity (A/cm 2)

np = plasmadensity (cm- 3

iB

Veff = Buneman mode collision frequency

7r m

For a hydrogen plasma, VB 500 /p. Substituting in Equation
(2.178), we obtain f

e pt

t

3.7 x 10 24 O .2
1 n 3/2 p W) dt' (2.179)

P ft

Recall that the electron-electron collision frequency is
1836 v
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until Te  .jo 2np

The heating rateiwill slow down when Equation (2.176) is

no longer satisfied as the ion-acoustic transition occurs when
ds <vd <Vte. The ion sound speed is denoted by C % AkT-i .

In a hydrogen plasma, we now require Te (43) 1022 (j/np). L
We neglect thd drifting energy to obtain a heating rate for the
ion-acoustic mode: L

dT e (eV) i 2 2 (jp/nW (218), ft 1.5 x i022e A,dt . eff ' (2.180)

The uni1ts are 'the ,same as for Equation (2.159) and v is the. " eff
effective collision frequency for ion-acoustic wave scattering. L

The form o eff suggested by Sagdeev is (Reference 2.75)

IA l2Te T' .

VIA 10- 2 T Vd -' w T T. (2.181),eff 'T7i v p e 1

v d  < V te

Other authors propose different forms and some xperimental data

appear to agree with all of these various forms (Reference 2.76).

Guillory and Benford (Reference 2.42) have looked at the transi-
tion region between Buneman and ion-acouitic modes using a
Lorentzian plasma electron veloqity distribution and use an

"optimistic" value forlhydrogen:

V (0.055) (2.182)eff 1 5.91V te/Vd p

T1ey obtain Eqqation (2.182),by assuming veff " mximum in-

stability 4rowth rate.
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A lower limit on the plasma density for return current

anomalous heating follows from our assumption that j -

which requires the magnetic diffusion time# tfo be long compared
to the beam pulse width, t . If we take td ? 2tp,

0ec1 4.5 x 10 11 tp

-l 4.5 oll2 t (2.183)

ita

with t in nsec and the beam radius, a, in centimeters. Equa-
p

tions (2.178) and (2.181) indicate that Veff ' 'pf so

a /n-. The Buneman mode, for example, requires
p

> 12
n. 1.75 x 10 (a (2.184)

A final constraint on return current heating is that the driving

electron field be low enough to allow the beam to traverse the

1. system length, L:

eEzL M L < beam electron kinetic energy (2.185)

We illustrate the above discussion with an example. Let
f f j_ P t/tr where JP is the peak beam current density,

! 104 A/cm , and assume a linear current rise with tr = 50 nsec.
2rj Take a cross-sectional area of 10 cm for the beam-plasma channel

and a hydrogen plasma with density of 1014/cm3, fully ionized

' Lwith an initial temperature of one volt. From Equation (2.176)

we see that if Jp = IjPj, the Buneman mode would cut off at

T = 100 volts, and we see from Equation (2.179) that we are. e
essentially in the ion-acoustic mode throughout the beam pulse.

Equation (2.180) has an I-A mode cutoff temperature of 4.3 keV.. TA

In view of the uncertainties in Veff we shall estimate the

I2
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heating rate conservatively, i.e., use the smallest collision

frequency in Equation (2.182), obtained by taking (Vte/Vd) at

the IA cutoff (- 43). Equation (2.183) gives the lower bound on

a:a Z 2.2 x 10 12/sec for t f tr - 50 nsec. Substituting for

VeffA in a gives 2.4 x 10 1 4 /sec, so we are well above the lower

bound. From Equation (2.180)

Ter 1.6 x 10 (-- 7 ) J t 3 /3 dt s 27 volts
Te 0

This temperature is, of course, not interesting for CTR applica-

tions. If we use an optimistic collision frequency, (vte/vd ~ 1

[Equation (2.182)1), a f 5.6 x 1012/sec, and we only marginally

satisfy the lower a bound criterion. In this case, Te (tr) 1.1

keY. The sensitivity of the temperature estimate to the ef-

fective collision frequency is apparent. For a given vell, the

temperature is optimized by decreasing the plasma density to the

lower bound.

The remarks up to this point have been directed toward

return current heating. Simultaneous e-e mode heating may

occur, or even dominate the heating process, provided the beam

velocity spread is not too large (Reference 2.77). The S'inghaus

criterion (Section 2.8.1) requires for e-e instability growth

Vb) << 0.7 (2.186)

where

nb  = beam number density

vb = rms beam longitudinal velocity spread

v 0= average longitudinal beam velocity
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Equation (2.186) further indicates that the e-e mode may be

initiated by return current heating if not originally present.
Both and vIA are decreased by increasing temperature.

Vei eff
Assuming (Vb/VO) - 1, Equation (2.186) gives

v < 4 x b/v 1) (2.187)

p
with the densities in cm3. Taking nb - 2 x 1012 cm3 from the

9 bIAexample above and y f 2, v < 4 x 10 /sec. If we determine Veff
from Equation (2.182) with vt /vd 1, Equation (2.187) is

satisfied for both ve,i and Veff* The heating rate is

dTe(eV)  1.5 1022 (Jp 2 e-e (2.188)
d np 'Jeff

where n V 2e-e -
Vef f  0.3 Y bW)b V * v/2

ef n VQb/ p
p b

a maximum value. The parameters of the example give

V 1.7 x10 /sec -v/2• Uef f

and, taking the minimum value of vfIA ee 1.7 x 109/sec.

The additional e-e heating then gives T(ee = 4.2 keV and thee
e-e mode is dominant over the I-A heating in this example.

If we consider a confined system where plasma return cur-

rents have decayed, estimation of the e-e mode heating requires

We are assuming a linear superposition of e-e and e-i modes.
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a knowledge of the level of turbulence; i.e., the amplitude of I)

the ES waves. Lewis (Reference 2.44) discusses the heating in

the linear limit. i

2.11.2 A Plasma Heating Technique Using Collectively

Accelerated Ions.* Recent generator and diode development work
has shown the feasibility of constructing electron beam ac-

celerators with several hundred kilojoules of beam energy

(Reference 2.78). One such design would employ a large annular

cathode, a design particularly convenient for collective ac-

celerations of ions. We describe a technique for plasma heating

using collectively accelerated deuterium ions. An important

aspect of the scheme is that it utilizes only reported experi-

mental results both for ion production efficiency and plasma

parameters. Any optimization of ion fluxes generated by theL

electron beams would, of course, increase the efficiency of the

system. In view of the small effort in this area to date, it is

reasonable to assume that further experimental investigations

directed toward understanding the collective ion acceleration

process will lead to higher efficiencies. This plasma heating
technique must ultimately be compared, for practical purposes,

with efficiencies of plasma heating using high power CO2 lasers I
or the electrons themselves.

A 300 kJ electron beam accelerator, for example, can be
used in a low pressure neutral gas mode to accelerate deuterons

to energies of 2 MeV. With many small copper pipes emanating

from magnetically isolated cathodes, evenly spaced around an
annular ring, we can assume generation of 1014 deuterons/76 kA

with 500 key electrons or 1014 deuterons/100 kA for 1 MeV elec-

trons. These numbers are obtained from published data for ion

This material has been reported in S. Putnam, An Intense Pulsed
Neutron and Kilovolt X-ray Source, PIIR-33-71, Physics Inter-
national Company, San Leandro, Ca., July 1971.
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production using v/y & 2 as the criterion for reproducible

deuteron energy from each pipe accelerating channel (Reference
2.79). Thus, a 1 MeV machine could be expected to produce

1.92 kJ of deuteron energy and a 500 keV machine could produce

5.06 kJ.

I
I '
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We can argue the above experimentally reported deuteron jj
numbers from simple physics, somewhat independently of the
acceleration mechanism (see Section 4). The number of accelera- fl
tion ions, Ni, can be estimated from

Ni - 2 (2.189)

where
nb = electron beam density

T - fractional electrical neutralization of
e the ion bunch L

a M average beam radius

L - bunch length at the start of acceleration

For 2 Me deuterons, SonL the maximum ion velocity/c is

4.6 x 10"2. During acceleration (in the case where the beam
front and ion bunch are coincident), Oe < o where L refers

L ft'L L
to the electron streaming velocity. From Equation (2.189),

Nion > 4.5 x 109 1e L Ib (A) (2.190)

where
Ib  = beam current

If 1b 7.8 x 10 4 N > 3.5 x 1014 I L. We know that Ib 2 ' ion 2 ee

exceeds 1/72, let us tak e 2/ y Then for 500 keY electrons,

N 1.8 x 1014 L (2.191)2ion 17
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The bunch length, L, should be of the order' of the beam radius
1 1 cm). The ion number could be doubled if the, beam pulse

were long enough to accelerate two ion bunches. These,simple

IIarguments imply the perhaps obvious conclusion that higher, ion
numbers are obtainable from higher-current, lower-energy electron

beams. Also, the estimate suggests thAt if desired ion energies'
are not too high, we can use higher currenits per accelerating

pipe (and therefore fewer pipes) without degrading the number of

accelerated ions. The current value per pipe ibove was chosen
to stay within experimentally verified parameters.

The individual pipes are, to b6 geometrically focused toward

the heated plasma region with or without an intermediate trans-
port system such as a linear pinch. The ion bunches and electron

beamlets would be transported at first within the pipes until the
pipes converged to contact ana then would be transported simply

in a large tapered drift chamber. A tapered linear pinch could

L" be used for additional focusing as a final stage before plasma.

injection.

As an example of an application for this intense ion 'source

to plasma heating and neutron production, we considei a readily
obtainable plasma which possesses many desirable features; for ion

{injection--the dense plasma focus (DPF). The magnetic field con-;
figuration of the DFP increases the ion apertpre up to severai

centimeters, and contains a 10 to 100/cm density plasma at a
few kiloelectron volts over containment times from 50 to 100 nsec.

Some experiments are already underway using electrons to heat the

focus plasma, (Reference 2.66),but there are two serious problems
in using electrons rather than ions. Perhaps the main difficulty

with electrons is injection. The 2 MG or so magnetic fiel!d
containing the plasma reflects all but a small fraction of the
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electrons along thb axis if the electrons are directed toward
the anode fr6m the exterior. If the electrons are injected
through a hole in the anode, the field defocuses the electrons.

Secondly, the electron energy deposition range at 1 MeV is
10 meters, and collective enhancement of energy deposition L

does not appear to Pe significant with these plasma parameters

unless the beam has a very small velocity spread. The velocity

spread criterion f9r electron-electron instability modes (the

Singhaus criterion) would refer to transported electrons enter-

ipg the plasma focus at any one time. In view of the defocusing

effect of the DPF magnetic field for anode interior injection,

it appears difficult to argue a small velocity spread in the

plasma, even 'if a sufficiently cold beam were injected (Refer-

ence 2.67).

In contrast to electrons, the 2 MeV deuterons have a range
20/3of 4cm in a 1 to 10 keV plasma, and can be focused

by the 2 MG magnetic field if injected through a hole in the

anode. (The Larmor radius, - 1.4 mm, is the approximate radius

of focal plasma.) Thus:eight to nine radial oscillations of the

deuterons 'in the '(typical) - 1.5 cm length of the focal cylinder

will deposit all their energy. Both the ion energy and specie

can be altered, using this scheme, to achieve complete energy

deposition within the plasma region for varying plasma parameters;
I

in fact,i the ions themselves can be used as a diagnostic tool to

characterize the focal plasma and "tune" the system.

Approximately one-tenth of the injected ion energy, or

190 to 500. joules, will be directly transferred to the plasma

Collective enhancement of electron energy deposition is suggested
as a plausible explanation for observed neutron enhancement with
electron beam injection inside the anode.
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SECTION 3

ELECTRODYNAMI C CALCULATIONS

3.1 BASIC EQUATIONS

The purpose of this section is to formulate the quadrature

L-of the EM field equations; i.e., to express the fields in terms

of integrals over beam-current-source functions. We do not

explicitly include external fields, although the external field

of a linear-pinch transport system may easily be superimposed

-- upon self fields for analysis of the current-neutralization

1.. problem. Several investigators have considered EM fields genera-v. ted by an undistorted beam pulse passing through an infinite

* . plasma. Chandrasekhar (Reference 3.1) and Yadavilli (Refer-

ence 3.2) have evaluated field expressions in the wake of the

I beam pulse and Zwick (Reference 3.3) has investigated the region

behind the space-charge neutralization front. The general formalism

used by these authors can be used, of course, to determine

fields over all space. Somewhat different techniques have been

" sed more recently by Hammer and Rostoker (Reference 3.4) and

1- Cox and Bennett (Reference 3.5) to look at the same problem.

Our work is directed toward geometries more relevant to experi-

ments of beams and drift chambers; in particular, we investigate
the effects of finite boundaries and finite beam risetime. The

field expressions are derived for the following boundary condi-

tions:
1. Long pipe with no endplates

2. Long pipe with a single endplate

3. Closed cylindrical cavity
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In these three cases the plasma conductivity is taken to be

constant. We also formally evaluate EM fields for the case

of a conductivity varying with distance behind the beam front. L
CALCOMP plots are included for EN fields of a finite risetime

beam in a long pipe filled with constant conductivity plasma

(the current neutralization problem) and for a beam entering a

long pipe through a conducting plate (anode window), i.e., the

beam-injection problem. A summary of the results of these

calculations has been given in Section 2.6. U
We begin by formulating a qauge useful for problems with

azimuthal symmetry and unpolarized beams (no theta component

of the current density). The Maxwell's equations are

V x = + + ) -9 (3.1)

4  (Pb + Pp) (3.2) L
Vx X ~ (3.3)

and V (3.4)

The "b" subscript refers to beam quantities and "p" refers 
to the

plasma counterparts. If we assume a scalar conductivity, a, and

take

- - a, a = a(rzt)

the equations defining 
- and are

+1 a2 +41ta 4 x + + VaXI (3.5)

T 2 =T tc c

1 a + 41r a 3- (3.6)
C at C c C
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We immediately see that B a e' Er ar + Ez az, and that if

Va - 0, the equations decouple. However, even if Va 0, it is

not convenient to solve these equations directly since the Er and

Ez equations do not decouple in cylindrical coordinates.

LPerhaps the most convenient approach is to use the vector and
r scalar potentials, A and *, with

:[i C at

We obtain

V 4yra a' 1t + 2Vx/+--+ --

c c at

41r 47c + a (3.8):c a

The radial component of Equation (3.8) is

1 2 2 /
a _ Ar + Az +(L + 1 - A
z2 azar c tcat r

CT. . 4c7 .(L- (3.9)
c-br 7 c c t

and the z component,
L _ raAr 1 (raA \ 4) 1 t t

r r a r /+  c cat/cat

41 a 4bz a 4-2- -+ (3.10)
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We now choose a gauge: Ar - 0. Then Equations (3.9) and

(3.10) yield

2- A +r  + '(3.11)
r

r + + 1z - (3.12)

Tr r (r "t- c

a (h-l+12-~ -r'0 (3.13)

If a a(t),

+ i-- ±!L -dr +f zt)

where f(z,t) is an arbitrary function. Substituting Equation

(3.13) into Equation (3.12) gives

a A 1  raA-+ 4wa a - 1 2 4

_ 4b at zb(3.14) [

= - r r dr' - f(zt)

Equations (3-13) and (3-14) are our basic equations; we need V
only solve for Az = A, inasmuch as * is 'etermined from

c e-f4 1rdt dt' e 47rfodt"[ aA + + H(rz)j (3.15)

where H is an arbitrary function. Equation (3.7) now gives
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I e = I _ .

IB 3A0 Or

Er 3r- (3.16),

E 1
z  5z

3.1.1 Green's Functions. Equation (3-14) can be splved

[. using Green's function techniques for severhl interesting beam

problems. If the beam travels at constant velocity v in. the

positive z direction we can rewrite Equation (3.14) in terms of

the variable u = y(vt - z), where u is the (positive) distance,

[behind the beam front:
- + 2k Au,r)= S(u,r) (3.17)E2 a

k -- a constant.lii c

I" Let A ;W ekU then

2 + a2 k2) W -- S e- ku  S'(r,u) (3.18)

K The Green's function for Equation (3.18) satisfies12
'"(v2+L 2 \ 2 6 (r-r') u-)2 + a 2 k 2 G - r 6(u _-u')

Du 71 /
and 40c

W = rdr' du' G(r r',u,ul S ,(r,u')

0I 0

1. The evaluation of G for a beam in infinite space, G', is

simple using standard techniques:

Z 3-5
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I i

' ky0 lu-u' I
H G = e e (r) J (Ar') dX (3.19)

:.. ; 0 0
2

where J is the zero ordqr Bessel function. Another useful case
01

which can be obtained simply is the Green's function for a beam
in a long conducting pipe of radius R, filled with plasma of

constant conductivity:

p nx r] ( (3.20)

X is defined by Jol = 0, n - 1, 2, .... The boundary

6ondition E z = 0 at r = R is satisfied by the vector potential
defined by Equation (3.20).

The two Green's functions above solve the inhomogeneous

vector potential equation [ (Eqpation (3.14) when the source
function, S = S(r,vt - z)]. If the beam charges are accelerated,

the problem is more difficult and we use a slightly different

technique toisolve Equation (3.14) for S m S(r,z,t). Again we
assume a constant conductivity plasma and take the case of a

long conducting pipe. Expand A and S in radial modes:

S (r,z,t) - £ Sn (z,t) J0 (X-)

n l (3.21)

A (r,z,t) = A (z,t) o r)

n=l
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where J - O, 0 - 1, 2, . n I or Jo dr' are

not zero for r - R, we define f(z,t) - f(R,z,t) so that S(R,z,t) -0.

Equation (3.14) gives

[32 + a2 + 4(1)aJa + Sn(z$gt) (3.22)

Taking the Laplace transform with respect to z - s and t +p,

Fwe obtain

An (p,s) _ - S (P's) 2

s2 [..(p+27ra2)+(i)
L (3.23)

+ (homogeneous terms involving initial

- conditions and boundary conditions at z = 0),

2 n c2 _(2wa )24.1 22

We take the homogeneous terms to be zero, since the method pre-

sented in the closed pipe problem below (Section 3.3) allows
Il superposition of the proper homogeneous solutions to satisfy the

boundary conditions at the cavity end plates and the i.nitial*

conditions. The inverse transform with respect to z gives

z .12
S (p,u)sinh iE(p+2 ) 2+wn (z-u)

A (p,z) - (-c) f)du n

0. o)(p + 2rc) + Wn

.j :In other words, by using Equation (3.24) for the solution of the

inhomogeneous vector potential equation which is the complete
solution for a pipe without endplates, we can obtain the solution
for an arbitrary current distribution in a closed cavity by
adding homogeneous solutions using the method of Section 3.3.

3-7
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Finally, taking the inverse transform in t,

z t

A (t)z) du(f dfaS (u, s) e2W~5

n Ltz

0 0f: - - - c [

where H is the Heaviside function;

H (x) 1 1, x > 0 L
-Or x 0

If W < 0, Equation (3.24) is changed by replacing J by 10, the

modified Bessel function. 01

We complete this discussion of EM quadrature formulations by

including for reference the well-known Green's function for a
static charge distribution in a closed cylindrical cavity. This

static potential is useful for determining the EM fields in a .
cavity when ions are present before the gas breaks down and current

neutralization effects are important. In other words, before break-
down the EM fields can be approximated by a superposition of the

beam fields (obtained with a = 0) and the electrostatic fields of
the ion charge distribution. We desire a solution of

V = - 41rp,
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1 with B.C.
wit (+R,z) = 0 

(3.25)z

Ii r(r,0) = (r,L) = 0,
dr 3r

L is the length of the cavity. The Green's function satisfies
4 2V G = -4[ (r-r')/r]6(z-z') and

R L
r' dr' fdz'G(rr'ziz') p(r',z).

0 0

Using the representation of 6(r-r')r'

6(r = [J (r) J

n=l1 r

we find

nnG (r,r', z,z') =R R- (3.26)
n=l x 1i(An)2 sinh (--

{ nh ( z sinh - (L- z'), z < z'

.n A-- (L - z) sinh n--z', z > z'
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3.2 EXACT EM FIELDS FOR A BEAM IN A LONG PIPE FILLED WITH

CONSTANT CONDUCTIVITY PLASMA--THE CURRENT NEUTRALIZATION
PROBLEM"

We discuss the exact EM fields generated by an undistorted

beam passing through a long straight conducting pipe of radius R,

filled with a gas of conductivity a, and present CALCOMP field C,

plots. These fields are of interest in low temperature beam

transport problems with a pre-ionized gas or in multiple-pulse

experiments where previous pulses have ionized the gas. We allow

a pulse with finite risetime and explicitly evaluate fields for the

case of an exponential current rise. The current density profile in

radius is taken of the form

Jo 
(R)

a function which gives closed expressions for the fields.

3.2.1 Assumptions

a. The gas pressure or plasma density is high anough to

justify using the concept of conductivity (p Z 0.5 to 10 Torr).

b. jbe = jbr = 0; i.e., the radial and theta beam current

density components are negligible.

c. Azimuthal symmetry.

The material of this section was reported in S. Putnam,
Theoretical Electron Beam Studies, PIQR-105-3, Feb. 1969,
Physics International Company (submitted to DNA).
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d. Jb - CIJ r g (u);

- g (u) = (1 - e ) , 0

(3:27)
<= to u <0

where u is the distance behind beam fronts (positive)=y(vt-z)', C1
- is the current normalization constant,. A1 is the first ,zero of J

the zero order Bessel function' 2.14. Figure 3.1 shows the radial

and u-dependence of 'b " I

o R
R

--C1 g -) u-)

-j (r)
z r U 0

u=0

Figure 3.1 The radial and longitudinal profiles for Jbz"

The radial form dependence of b is chosen for mathematical

simplicity, and because it has the appealing properties of a

maximum current density at r = 0 and zero at the pipe radius.

Also, this zero order mode will usually dominate .the EM field

expressions with more general radial profiles.
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a ~I

a 4T A 43

I

2 nc + T at c (3.28)

I" I a

are A

cat) az

a E

-+ a 71 A (3.30)
I * j

e ar

where, A is t-he z-cornponent of the vector potenti al

Pis the'sca'lar botenti'al

a'. is the conductivity (a constant).

Rewriting Equations (3.28), (3.29), and (3.30) in terms of the

variable u 5ives

2L
(.(r L 2 ' k A (3.31)

k 2rryv
2 2
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- uegs 3A ds E - 2kj- ee--ds e2 (3.32)

E 2 ~ 2 [
E. r--O = - (3.33)

We now take A = J ( r)A(u)

x- (3.34)

Jo ( r) 0(u)

Land Equation (3.31) reduces to

2 + 2k + A(u) =( ) Clg(u) S(u) (3.35)

The solution of Equation (3.35) is

A(u) 1 (vku e (r -k) s Ssds

-e + k)uf e S(s)ds (3.36)

* . with = k2  + X(

* Substituting in Equation (3.35) for S(u) and referring to

Equations (3.30) and (3.34) gives
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B " Cl Jl r 1) R e 2 u < 0B- _T =' r) 2 T2 (t'2+ )

2vT 2 /
4 ---C J ( R (3.37)

T11 a 2-aw- , U>0 0i

where nI  = - k , (>0)

n2 = +k L

Similarly, using Equations (3.30), (3.32), and (3.33),

Su 2u
E = - ) C l J l r ) e -I + a )
Er 2)2/ (e+n 2 ) ( J

_LTC lrT(l o e-Eu (-1) (e - u
= - 1J -r) [ .. + ._ _ -e

28/[ (T'2+a) 1E£+n21 T l e ) Sn

(1)

+ (nl+n 2) (e-aueu) 1 ,u>0

(2) (3.38)
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and finally,

E (X1 r) 41T C 1 (- eT2 u) 1  D2

E = -uJ

(R) c2/ 1  [Ti C1 - 1 (n2 +a C

FV
14 (1) (3.39)

-- (-1) (nl+n2 ) 1 (e-au- ee-CuL~ ~ ~~ 1 -i,)T (2 +a) -- £)
(2) nlU

e ~ + a.e~] u > 0

(3)

At this point, we remark about several properties of the

above field exprssions. As expected, Er vanishes at r = 0, Ez

is a maximum at r = 0 and vanishes at the pipe radius, and
T-B = 0 for r = 0 and increases out to r = R. The electric fields8*

decay exponentially to zero behind the beam front, whereas Be

approaches the value from the beam current only. The fields

extend in front of the actual beam head, and are attenuated in

front of the beam. The e-.folding length in front is L = 1/y

(2+ (X/R)2 + kV1 , indicating the effects of both the plasma

relaxation length (1/k) and the geometrical factor, R/1. If

o = k - 0 in the medium, as would be the case near the head of a

beam propagating in a neutral gas, L = 1/y R/X .

When o= k 0, Er does not vanish far behind the beam front.
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L
L

The field configuration moves with velocity v, the beam velocity, L
and the penetration ahead of the beam is compressed or expanded

about the beam front depending on y. As y increases, the fields L
compress about the head, and in the limit y c, the leading edge

is "blunt."
L.

The field expressions for u > 0 change form when the beam

drives the tube plasma at resonances; i.e., when any of the

denominators in the equations vanish. For example, if ,= a,

Equation (3.37) for Be with u > 0 becomes L

B(-c4) (2)J(llr) 1 L 1( 1 (1-ec CI = l R l

-au- ueI~ -I~

u2+au, u > 0. (3.40)

The resonant forms for Er u > 0 are given in Table 3.1. t.

Refer to the numbered terms in Equation (3.38).

All expressions in Equations (3.37), (3.38), and (3.39), are
finite as given. We merely rewrite the equations in a more
convenient form at resonant conditions for use in computer
evaluation of the field expressions. The term resonance is
used because the beam current drives the plasma tube system
at eigenmodes of the homogeneous vector potential equation.
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TABLE 3.1

E RESONANT TERM REPLACEMENTS

Resonance Replace By

+ 2 e-I +e-

a e~-au - su

1u

-- + a

Ai af 1 1 -~
E a--l

11

1n. = a (2) (11 (n2+ e ue
(n__-a)_0_ -au

L

Finally, we look at the resonant forms for Ez with u > 0,

... Equation (3.39). Again referring to the numbered terms and

using Table 3.2, the Ez equation changes may be obtained for the

various resonances.
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(I L
TABLE 3.2 L

E RESONANT TERM REPLACEMENTS
z

Resonance Replace With
l= L

r~l+a
(1) + (2) ae -i)e a Ln + a

(3) eau (u-8)

(1) e u-l)

a

(3) e __ _ ( _u--)

TI  a -T)lu
(i)1) e (n lU-l)

(2) -. (nl )(2+) e (au-i)
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The above equations have been programmed to obtain CALCOMP

plots of Bel Er , and Ez for a given set of a, k, 8,
r z

parameters, including all resonant conditions., Several plots are'

- given below. To obtain field values usei.I

!. B0  = (-) B THETA (4,)C 1 (R)JI (- r)(gauss)

Er = (-)ER -4 C1 (11) Jl (R- r) x 300 V/cm (3j4l)

E = -) EZ- J (-r) x 300 V/cm

where B THETA, etc., are the ordinates of the plots, and

IbPeak (amps) Xlc\ 1 ,

20 (b lc (3.42)1

and - 0.923 1 b R in cm.

i I peak  5 x 104 amps, 41rC 1/c 4.6 x 10 4/R , and, e.g.,

E 4= l x10 7  Jo(R r) EZ V/cm.

We also plot a function that indicates whether the assumed

. beam profile function is constrictive or divergent; i.e., whether

the radial force on the beam electrons is inward or outward.
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I* i L
The radial force on a beam e~ectron for constant z directed beam

velocity, Fr, isKL
Fr -e [E - 8 Be] (3.43)

Thus, if E - > 0 the beam electrons experience a pinching force.

rWe have

Constriction.: E - aB0 > 0 or (ER - OB THETA) < 0

Divergence: Er - 8B0 < 0 or (ER - $B THETA) > 0

A plot of (ER- aB THETA) E ERBT accompanies the field plots for

each case below. Table 3.3 gives the parameters Lor the graphs.

TABLE 3.3

Case a k IR

1 102 0.7 6 1

2 10 - 2 0.7 0 1
-2

3 10 0.7 49.995 1

4 10 0.99498 49.995 1

5 10-2 0.7 6x10 4  1

The a value 102 corresponds approximately to a current two

e-folding time of 7 nsec. We have taken two a values correspond-

ing to - 200 keV and 5 MeV electrons. The three k values correspond

to conductivities of

3-20



k a

0 0 (vacuum)
106 3x10 /sec (weakly ionized gas)

i- 50 2.4xi01 I  (intermediate conductivity)

6x10 4  1014 = 100 mhos/cm (fully ionized plasma
of - few eV temperature)

The graphs exhibit many interesting features with physical

application. First of all we note that E is small and negative

for u < 0, and reverses sign when a 0 0 just behind the beam

front. Recalling from Equation (3,41) that the graph EZ values

scale directly with Ez at the center of the pipe (r = 0) where

J = 1, the field peak for case 4 (5 MeV electrons) with Ipeak =

5 x 104 amps, e.g., is - 9x104 V/cm. Such an Ez field would, of
course, bunch electrons near the center of the beam, with the

maximum bunching determined by the electron kinetic energy. Near

the pipe wall where E is zero, the electrons would precede the

center electrons, suggesting the formation of a current sheath- *

near the pipe wall in front of the beam core. Beam electrons

would be bunched near the center until E rises to overcome the~r
V x N force (ERBT > 0), when electrons would be lost to the pipe.

In other words, we see the crude outline of the beam penetration

process and a possible ion acceleration mechanism near the beam

front. The actual ion energies attainable may be considerably

higher than the primary electron kinetic energy, depending on the

duration of the fields or the trapping time. The duration

depends on the effective penetration velocity in the medium and,

for the cases where the beam ionizes the gas, the breakdown

distance. We consider these questions in more detail in Section 4.

This variation in Ez with radius points out an essential dis-
tinction between beams in large cavities and in pipes with radius
nearly equal to the beam radius. The current sheath effect in
pipes has many interesting implications for stability and beam
bending.

AW
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The Be plots indicate the time or distance behind the beam

front over which partial current neutralization decays and thus U

where the B8 values approach those of the beam only. As B THETA

approaches , plasma currents become negligible.

A finite beam length as well as multiple pulse fields, or L
any other desired superposition of currents may easily be

calculated for the assumed radial current function of the model.

The results given by the model may be experimentally verified by

low pre-ionization of the gas. We zan ensure that electron

avalanching will not occur, and therefore that the conductivity L
remains roughly constant, by keeping the E-fields below deter-

mined levels for a given gas pressure. Equations (3.37), (3.38), K
and (3.39) then directly give the required conductivity to

achieve this criterion. The wall currents, plasma neutralization, U
etc., are given by this theory.

32
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" Case 1. Weakly Conducting Gas

tie Parameters:

311 0  -2
a - 3 x lo/sec 3x 10 mhos/cm

'a

E = electron energy = 200 keY

-- R = 2.4 cm

t 7 nsecr

P =5 x 10 4 ampsb

3Be(r,u) = - 8 x 10 Jl(r) B THETA (gauss)

Er (r,u) = - 2.4 x 106 J1 (r) ER (V/cm)
vM

Ez(r,u) = - 2.4 x 106 J (r) EZ (V/cm)
0

32
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L

Case 2. Vacuum Propagation L

Parameters: L

E 200 keV

R = 2.4 L
t = 7 nsec

P 4
I = 5 x 10 amperes

B (ru) = - 8 x 10 Jl(r) BTHETA (gauss)

E r (r,u) = - 2.4 x 10 6 Jl(r) ER (V/cm)

Ez(r,u) = - 2.4 x 106 Jo (r) EZ (V/cm)
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Note that E is in direction to accelerate beam electrons.
Space charge field dominates inductive component.

I.OOE-0 .

9.OOE-03 L

3.OOE-03

4.OOE-03
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.OOE-03
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.4 .4 Ci 0 iV .4 C4 M
I

U-Axis (cml

Case 2. EZ
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3.OOE-O0 _________________________________ _______
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Case 3. Intermediate Conductivity, Low Energy Electrons

L Parame ters:•

- = 2.4 x 10 /sec 0.24 mhos/cm
.o

E = 200 keY

-. R = 2.4 cm

t = 7 nsec

SP 5 x 104 amps

Ib

B0 (r,u) = -8 x 10 J1 (r) B THETA (gauss)

Er (r,u) = -2.4 x 106 J1 (r) ER (V/cm)

Ez(r,u) = -2.4 x 106 Jo (r) EZ (V/cm)
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Case 4. Intermediate Conductivity, High Energy Electrons U

Parameters:

a - 2.4 x 1011/sec 0.24 inorn/cmL

E - 5MVL

R - 2.4 cm

tr - nsecL

bP 5 x 10amperes

B e(r,u) - -8 x 10~ 3 1 ()B THETA (gauss)

Er(r,u) = -2.4 x 10 6 J (r ER (V/cm)

E z(riu) = -2.4 x 10 1 J0(r) EZ (V/cm)
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case 5. High Conductivity

Parameters:

a=1014/sec 100 mhos/cm

E = 200 key

R = 2.4 cm

tr = 7 nsec

p 4
5 5x10 amps

b

Be (r,u) = - 8 x 10o3 J (r) B THETA (gauss)

E r (~u) =- 2.4x 106 1(rERV/)

Erz (r,u) = - 2.4 x 10 6 10(r) ER (V/cm)
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3.3 THE CLOSED CAVITY P OM

3.3.1 Introduction. The solution of the exact electro-

magntic (EM) equations for a 3 parameter beam (finite rise time, U
pulse width, and decay time) crossing a drift chamber of finite

radius and length is resented. The chamber is filled with a

plasma of constant conductivity and the walls are assumed perfect-

ly conducting. Two beam curr~nt density radial profiles are
cseI
considered: a uniform current density out to the beam radius,

and a Gaussian profile typical of pinched beams. The problem is L
set up to handle any ordering of beam and chamber lengths.

The solution is obtained in terms of a single infinite sum

.of radial modes; each mode contains a translationally invariant

part which gives the fields for a long tube without endplates, L
and a finite integral which derives from the radiative fields of

the surface charges accelerated by the beam fields as the beam

passes through the cavity.

The endplates considerably complicate the mathematics but,

of course, must be included in any theory which attempts to
compare with experimental geometries. The endplates have a major

effect on the electric fields when the fractional electrical

neutralization, fe < 1; the perfectly conducting endplates "short

out" the radial electric field near the plates, and the magnitude

and, indeed, the direction, of the longitudinal electric field
are changed by the existence of endplates.

This material has been reported in S. Putnam, Theoretical
Electron Beam Studies, PIQR-105-4, Aug. 1969, Physics Inter-
national Company, (submitted to DNA).
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3. 3.3.2 Mathematical Development. The basic EM field

equations for azimuthal symwaetry that we need are

- --- 28 a S (3.44)
Ea cr ar-3-t Y 2 ut,

S = soure function = - ib - (3.45)
F. z

r

fib J- b dr' - f(z,t) (3.46)
r

0

4 c + t = - -+ (3.47)

E-

E I 3A (3.48)

DA- B e = - -

where A is the z-conponent of the vector potential

* is the scalar potential

a is the conductivity (a constant).

f(z,t) is an arbitrary function which is useful for specifying
boundary conditions at r = R. This function derives from the choice

of gauge and will be taken zero below.
.-
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L

We transform variables above for mathematical convenience. I
Let u - y(vt-z) - distance in the beam frame, which we assume

moves with constant velocity v. Let

u 0  = yvt =U+U =UO + ul
0 1

U12 -- yZ

In these variables the equations above become

F 1 ( ~ 22 2 r
(rr+ 2 + 2k~ A a (3.49)

r 3r' DrzY--7+2 " b0

a + 1A (3.50)
3uO 8 3 ui

k = !2.~ay C 2k (3.51)
c 8Y

Er r

BZ = (3.52)

B _3A

We have taken Jb =0, or Q = 0, in these equations for mathematical
r

simplicity. The radial beam current component can easily be

handled in the methods developed below, but since the main point

here is an exposition of boundary effects, we take jb = 0 in our

beam model.
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The boundary effects (surface currents and charges) give

homogeneous contributions to A; i.e., Equation (3.441 with S 0,

[" and since they are not translationally invariant,we must keep

u and u1 as independent variables. However, the particular, or

inhomogeneous part of the vector potential, Ap , deriving from

the beam currentis translationally symmetric under the assumption

of constant beam velocity, and we write Equation (3.49) as

L_1 - "I)-, a2 +2k ...JA
Sr (r , . A2= - (ru) (3.53)

The vector potential, A, 0, and S are now expanded in radial

modes:

A= AJ0(Anr
i"A An Jo(-4r)

n 9

S = Sn Jo ( r) (3.54)

n=l

a n ,n o -r)
i n=l

where X are the zeros of Jo, the zero order Bessel function. The

Equations (3.53) are appropriate for a conducting wall or Ez = 0

at r = R. Substituting Equation (3.54j into Equations (3.49),

(3.50), and (3.53),

[ + +2kn() ] A P Sn (3.55a)

lI
I 2  +Y22 + 2k + A 0 (3.55b)

a2~ .uA au 0

353.56)
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L

where
An = AnP + A nh

An n

AnP = AnP (u) , the particular Modal component

Anh = Anh (u, u1) , the homogeneous modal component L

If we consider a finite perfectly conducting cylindrical cavity

(see Figure 3.2) the boundary conditions are

Er 0 lu1=0 , - yL (3.57)

or, if AnP = AnP (u) = f1 (U0) f2 (u1 ), the factorability implies
that Equation (3.57) may be satisfied by taking

Ann 0 lu (3.58)
1 1=U01  - yL

This is obvious if we integrate Equation (3.56):

- u0  j 0 e=  e 9An ds (3.59)

tV t

__ Perfectly
Beam current conducting
profile u 1 0 U1 = -yL walls

2 0 z =L

Figure 3.2 Cavity geometry.
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The initial values of Er , Ez and B must also be specified,

for all 0 9 z 9 L at t -u o - 0 to define theproblem. If we

assume the beam front to be at z -,0 for t * O, An and aAn/OUo
must equal zero at t =, 0 for all u1 irside the cavity if the end

plates are perfectly conducting, as we assilme.,

We now proceed to determine AnP for a beam with finite rise

and decay times. We assume a beam profile

Sf (r) g (u)
z

with

f(r) CH(a-r) C# 0 9 r a

S0, r > a

and

g(u) f0, U 0 (3.60)

i~i.. = (ie'11u) ' °sust
1 e-QlU 0 U (9 - )

!. 1 -a ( - p ) I - ;. ( A-
e. p

= 0, ua A
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1

Figure 3.3 shows the function g u). Note that the square wave I
pulse l4mit is obtained from Equation (3.60)'by letting al 4 of
(2 I ' A * 0, with a2 (A-T) re6aining constant as the limit

is taken. 

Li

! 'I

a2"

i A i
CHba()L

STp U 0

Figure 3.3 The u dependence for jb, z

We obtain the source function for the nth radial mode, Sn ,

from

Sn 4 g. .4 ) 1 r(r') J (n dr'' C Jbzn =' g(u) FR PI1 (x) 0 ("J - jr

Fn gFu)

and Equation (3.55) becomes
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2 22

au + 2k 3- +(f) n Fn (u) (3.62)

The quadrature for Equation (3.62) is

L
An -- , n u  u T

A ne g (s) do

I.

2  - " +

Although each of the constants defined in Equation (3.63) is n

dependent, we will not explicitly denote them as such. Using
g(u) from Equation (3.60) in Equation (3.63) we obtain after

straightforward integration:

" n2u

rle ,ur0

F_. 2 +e r3 e + r4 e ,ousrTp
A P nJ 1 2p2, ."l u  n2u  01-2u

e r5 + r6 + e r7 r8 e T gUA

-Tu
19 e ,u (3.64)
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IL
The constants defining the longitudinal beam profile areL

(1 - +e (3.65)

+ G l-e 1n e

1 e 2 p

r3= + 1

F2

8 e a2A+ ( f+a2)T p e fl TP
5  n , o + ',2  n ,1 P

_(e (n l-aI)T - i)+ (ellp - i

ni l n] h .

r. Q .1_ + n2
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A A1

[2

A 21 1 1 -1

A ~el lTp -e2 A
r Q e

8(e(1+2) A - e+ n

V The above equations for AnP satisfy continuity of the functions

i and their derivatives with respect to u at u = 0, 'ri, and ,., as

required by EM field continuity.

'" We digress briefly to remark that we have now obtained the
! vector potential for the case o1 a finite pulse with current profile

given by Equation (3.60) traveling through a long conducting pipe of

radius R, filled with a medium of conductivity a

1 2

(ogA(r,u) = Z AnP(u) Jo(Xn--)

e (long pipe) n=0

with A o(u) given by Equations (3.64) and (3.65). This result is

a generalization of the problem discused in Section 3.2, where a
semi-infinite beam filling the pipe iradial current variation
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-Jo(,r/R)] was considered. We have directly obtained the wake

fields in the pipe from Equations (3.64) and (3.65) (uA), and could

easily continue the calculation for a second pulse in this wake. L

We return to the finite length cavity problem and determine

the homogeneous vector potential terms to be added to Equation(3.64)

in order that the boundary conditions, Equation (3.57), be satisfied.

The equation for A his :

ni

2• 2

[ 2 a 2 2 2 aU ())2 L=2 n2 A n (3.55b)

h

with DA DA~ DAn

a n Du n + D 0 1 = 1  (0, - yL (3.66)

Let us define a function W n(u0 F u1

hh

Wn  A n A__-_n._ 0)(367

which satisfies

[l a2 12 Q
2 u-2 +u 2 ]
W1  (°,ul) - Ah (,u) (3.8)

aAh k h
0~ (u 0 ,u)
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2 2 h(k/O yu 3A
au Nou 1 1 ) e 0au

11

1 (n) ()2

It is convenient to take the beam head (u =0) at u1 -0 when

. uO =0. The initial conditions are then that all fields in the
cavity be zero before the beam enters the cavity, or An , 1A /au = 0n 0
for u0 = 0. We can easily make AnP and 9A-Oat u =0 by
subtracting AnP for u z 0 from AnP of Equation (3.64). Define a new
A nP for the cavity problem, A :

. 0, uS 0

L -alU n2u
_+ + r2 e r e + (r 4-rl)enI  n2  -- 3

p

Fn -nlU r + flaU uAnP-~ ~ = -2 Fe + r 6 + (r7-r) e  r8 e ;

X 2/C 5 6 ( 7- 1 e - 8 e

Tl Z
P

lur I e 2, u t A
9

(3.69)

3-59



For the moment let us not worry about the form of K P when u A;
the homogeneous function will remove the divergent • term.

The initial conditions for Ware now
Wn

W(U u) (Oul) =0 L
au 1

L

In order to solve Equations (3.68) we use the Laplace

transform technique and transform with respect to U.: L

a2- + 02(p 2+0)  npUl = 2[WC'l (,lrau 1 2 an 1 a
I 'u12,u) i

=0 (3.70)

f!
The boundary conditions therefore enter only in the homogeneous (
solutions of Equation (3.70) which we write in the form

cosh 0/'+Q (u1+yL) f 2 (p) cosh 0! u
Wn (pu1  f1(p) + (3.71)

n ) p 4 0 sinh O/p +yL O/p sinh $v2+Q yL

where f1 and f2 are functions of p chosen to satisfy
D .n p  -k/Fy 2 uO 0 wn _
uI + e 0 uI  0 , u I  0 , -yL (3.72)

Du 1  aul3-
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We obtain Ifrom Eqition (3.69):

- -a 1u n
+clr2 r3 e; + n2 ( 4-Qe

1'!i

1 ,

i-nlr 2 e +1 (Zr3 +nrr,-) e ;~

T s u A

-n i u ; :
r - lr 9  e - n2r I  e u k"  A .

(3.73)

When u= 0,

-(Uo,O) -r 2 e + 3  + n2 (r 4-r 1 ) e2 u°

S (u) H (T u

0 p 0

i[-nlU o  n2u o  a2Uo

+ n r e 0 + n (r -rl)e - a2r8  20] H(Uo-Tp) * H(A-u0)
1 5fl~ 2 e 1 (u 8

ulr9 e n2r I e 0  H (Uo-A) (3.74)

H is the Heaviside function.
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~L

IL
Similarly, when u1  L

An_! (un0, e 1iU0 rlLeQU0 a~y L
(uo , - YL) 1 2  e + a1 r3 e e

+1 r e H [ -yL] H [yL+T -u

+ _IlrU e 0  e nlYL + 2 r n2uo  -n2yL

7, 1au Uo u -L- H0

a ~ 1 e 0 e 0 2 y+-

+ nlr 9 e -  eu°  - n2r1 e e H (uo-YL-A)J (3.75)

We are now in a position to determine the fl(p) and f2 (p) of

Equation (3.71). Inspection of Equations (3.74) and (3.75)

reveals that we need the Laplace transform (L) of the function
- u

e: 0 H(u 0-6) H(t1 -u ). Elementary integration gives

L e o0H(u -6) H(-u o) = l -(V+P) e -(V+ (3.76)

Equations (3.71), (3.72), (3.74), and (3.76) give:
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fiaw (PO) = -f.,(p) -Fn - 1r 2 (ie pf~/ 2 2P)

u [ E3uI p + (n, -k/B Y ) I

~ ti 3 1eP(ai1k/02Y2+P) +iTi (rn21 (1 0 P( k/ 2 Y2)

2 22 2 2

p + (a 1 k/ Y) p - (T) + k/ Y)

~r5 (T p (nlk/82y2+P) -A(nl-k/O Y +P))

p + (T k0Y)

71+ -e

P(i +JV8 2Y2 (

- ~2 r

a 72 1 (e aI2-k/$y) -A (p-a -k/O Y2 )
e 2 (P e 2(3.77)

n r 9  -A(ri1-k/8 By2+p)n2r1 -pn2k/

e 212e2 e

Similarly, using Equation (3.75),
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IX
IIJLi

- Pe -y L) / f (P) are(f
20T p+ k/ i 1-k \

-e (yLT p)(n-k/ 2 2 P)- e (YL+Tp (k/,02y2.p))

ny ,(y~r4 2+ (YL+T) (a -kO +
11 . e Y 1p)

+ r'2 (r 4-r)e - 2 yL -YLPn-/r 2y2 -Y+ )(P-n 2 -k/02 e /
p-(nl+k/o y)y

-c 2yL 
2Y2( 

. 8

+ 2 (r7e / ,- ()'L+Tp)(P- 2 -k8Y)pn-ko~2

1yy -e

- nyr n nYy
- +n-/ (yL+A) (n k/O y h+P) n r e2 -(YL+A) (p-n 2 -k/8 2 y2
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We have now completely defined Wn(PoU1 ) . The terms of f1 and f2

are of the same form and we heed to invert to'(uoU1) 9pace functions!

of the form

C 0 cosh (u1+b 1 -b3p

'dL Is2  
(3.79)

0 / + sinh 8Vp'+Q yL PS

[ where C, b1 , b2 , and b are constants. Denoting the inversetransform by L we have,

trnfr uby L 1ehae

L- ((36)] - ds h 1(u)h 2(u0-4) (3.8 0)

with h (u) - ~L cosh 0/2+o(u+b ]0 0k , v , , ,,, -+ Q ri h / p + Q y,,.,,

h2 (uo) L- 1e-b 3p - e2(u03) H(uo-b 3  .

We can write h 1 (u o) as

I.h(u) a , Q( J (u Q~ 0
2 v) )f (V)dv

1. (3.81)
r cosh Bp(u+b}1 )

with (u0  - W - 7 j "
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in 2odrt vlae f3 w rIiL

cos OpI +b 1- *,py~u

and odrtoai alat

S ~ c~h(u 1+ 3  - 1(u-U1-i-u - 0yLmb)

8 6(u 0 -0(YL+%;1 +bl) -2oyL'u)]

whr2 is an intelgei and 6 is the delta function. !Returning to El

Equaion(3.81) , we have

J~1u0  OOI 0/eL JQ[u 2 ((Y- 1-i +2yLmj2]Lh

2U 0 H u (yL-u _b1  + 2Bym

2:mc 2/y6m)

+ J4Q 0u 2_1(yL+u1+Ib1 ) +.2ym 2

H[u 0;-O(YL+ul+bl) -20yLimj (3.83)
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a.We are now in a position to explicitly write out A. n A +n I

for notational convenience let us define a function G:

Ij~G7 2~,,CY
2 2

-VUo (v-k/O Y v
G (h,v,K,T) B -u- f do e H(u -s-K)

HEv-(u-sU J (!ii 2yla) 2)

Ozi s/2 8YL l

H[ s+Ou1-20YLm] + J0 (k2 (L+ui+2YLa) 21

1. 0

-v(u - YL) u 2 2
0 0 (v-k/ Y )a

G kPI o doa H~u -s-Oc+YL))

1 *- H(V+YL -(u 0-$)J Q~ 2 0(Lu+2yLm)2)

H[-0YLU 20~m +10 02 Q (YL+u Y)

~ [- HCs-B(YL+u)- 20YLm)J (3.85)
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L

We obtain for the complete vector potential of the nth radial mode:

An M- L i+ -u)H(u)+r 2 1 +NH(T u) H (u) +nlG(k, jiuO0Tp)] L

a U In U
310 pp, ]  [a p- L

n G(k,-n 2I2 O, ] + r[ - lU H(U,-P)(A-u) L

+ nl1G(kl,#p Ia)] + r6 H(U-T p) H(A-u) L

+ r-r[.o 2 Hl!~ (-) l ~uri 1 ~A][

- re H(u-Tp) H(A-u) - a2 G(k,-% vTpp)] V

Li
+ . H16 u ,- ) + l G (k ,nl 8,,1 , )] L

u H(u-A) - n 2 G(k,-n 2 ,,n)] (. 3.86)

In order to verify that An satisfies the boundary and initial

conditions we note some properties of the G functions:
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3 G 
I 

-V l HI ( U 0 HE 

Io 
l 0

I
I

- .H(Uo-.c) H(Y-uo  , u -O0

3 (3.87)

- 0,u 1  - yL

I 1G2  1

-v (U -YL) (3.88)[e 0 H[Uo-(K+YL)I HE[V+YL-u o  , u1 -- yL

[ GI(O,u1) " G2 (O,u1) - 0

(3.89)
G1  G2

Equations (3.87), (3.88), and (3.89) show that An of Equation

[(3.86) does indeed satisfy the necessary conditions for fields
in a closed cavity.

Let us consider the properties of the solution to Equation

(3.86) when YL-. Referring to Equations (3.84) and (3.85) we see

that m - 0 and uo>0-v o (v'k/By2)s
lim G 1 -* J °  ds e H(uo-s-K) HE4-(uo-s)]

yL+m 0 0

and ( 0 02u,2)) H(s+Su) (3.90)

~lim G2  + 0.

-yL w

3-69
:r



Equation (3.86) should reduce to Equation (3.64) when yL4.ol

Uo*m i.e., An-An p , the translationally invariant form for no

end plates. To recover this form we require that

G(k,_1 2 ,A,o) 1 i_ 2

lim
yL-* G(k ,Tn2  ,t) + 0 (3.91)

G(h,-r 2 , 0, Tp) 4 0

and all other G functions to approach 0. Equation (3.90) gives

ur 1 k-r 2 Aa) n2.2 J u -e- (2+k/e2y2) s ~ (Qlira G1(kH2T 'V )1" • J -  
1  do

or, letting

lim G (k,-n2 ,c,) - L f w Jo(a'"w) o e1
YL+3 -o
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I'

Then 2
I~ (Vk/ y)k~2'" / T wU

urn G (k,~i 1 ~s WO Jo (Mv) dw

11

- e 12u°  1l(3.92)E n2

where we have used the known integral

f-a/XY7y a +
ae Jo(bx)xdx - •

withy > 0.

Now let us look at the case of a semi-infinite beam (A,Tp*w)
p[in the limit as yLem. We address ourselves to the question of

whether An of Equation (3.86) reduces to the form for a semi-

infinite beam in a long pipe with no end plates as u0 =. We want

Limn Fn ref2uu

lim An  " - , u & 0

n 2V3
y L -* _ -
Uo 0+ L+ r2 a'l '3 a  u  a u 0

with
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I I

1' n lia rla

-2  lim r2  - nll ,, r2  (3.93)

P3  " liar3  - n~2=r
(nral) (n2+agl) 3 L

L
(r4 + 0 as T A .. ) L

In terms of Equation (3.86) for An we require

G(k, nI1 , 0, -m) * 0 LI
lim 

k#neO0

YLur G(k, a1, 0, m) 0 (3.94)Uo U
U 0 UPC

G (k , -n 2 ,' 0 , 
) - 12

Tn2

In a similar fashion as above we can verify that

Equations (3.94) are indeed satisfied. We sumarize the L
above discussion:

3
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U) If uo .< O , he an plt .tu tca engetd

I !

( I

II

(i) If uo < ByL, then end plate at u 1 - - yL can be neglected

{(ii) If Ci) i. satisfied and•
Us

(uo  A) 2 -P 2 U12 >> 0 (finite beam of length A/yv)

Uo2 - 2  I2 >> 0 (semi-infinite beam)

then the end plate at u1 - 0 can be neglected. These colment!, of
course, are relevant to the vector potential 4 and are correct for

Be. The electric field components involve a time integral of A

through *. They do not reduce to the no-endplate case when a - 0

unless -OuI + .

We complete this discussion with an observation about the

effects of a finite conductivity (k 0). We have tacitly assumed

I that

-T 1 *

(n ()

If k - a - 0, or, if for a given k the mode number is large enough

this is always so. When

k2

and the above formalism carries through with the replacement of

J0 by Io in Equations (3.83), (3.84), and (3.85). If 0 - 01, the

G functions then become simple exponentials. We can draw an

analogy with respect to the nature of the various Q orderings

above by relating the cavity eigenmodes to a harmonic oscillator

1. with viscous damping: I
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I I

I

Q >' 0 underdamped [
! I

Q =-0 * critically damped

Q <' 0 *overdamped

3.3. 3 Discussion. The mathematical presentation above is

complicated by the rather general form of the assumed beam pro-

file And the allowed arbitrary ordering of beam and chamber

lengths. It is a simple matter to reduce the formalism for any

of several interesting beam transport problems. The reduction L

of the G functions for a single endplate has already been dis-

Lcussed and is explicitly considered in Section 3.4 . Such a

case would be relevant to beam injection into a very long pipe L
for times before the beam nears the end of the tube. The pre-

cursor signal which travels ahead of the beam at velocity c and

which could cause precursor ionization effects, can then be

easily obtained. We also point out that a less general beam

profile (we have a 3 parameter profile) substantially reduces

the number of terms in each radial mode.

The number of importahit radial modes depends on the beam radial

profile. We have derived the formulas for the Heaviside radial

funct.on which would be applicable, for example, to problems where
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I.

I
the beam uniformly fills the conducting pipe. Another case of

iinterest is a Gaussian radial profile, corresponding to experi-
mental profiles for pinched beams where R is much greater than

Ithe effective beam radius. Then we have

SJb f f ( r ) g (U)

eb2 r 2  (R 1with f(r) C e r  (R >> (3.95)

Uand 5n -c Jb~ c - Fn ~~~)(~ br' 2 er'Sb z  " -gu j(An)] 2  f0o- -d

S- n g(u) ,

R 06

or, if we approximate fdr ( ) f dr (

4irC e - Xn 12b (3.96)n c R 26b2 J(n) 2 (.6

The formulation follows through by replacing Fn from Equation (3.61)

by Equation (3.96). The radial mode convergence is now very rapid.

FFor example, if Rb - 10, corresponding to approximately a ten to one

ratio of chamber radius to beam radius, a few terms of the infinite

I. radial sum, up to about Xn 20, are adequate.

37
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If one is interested in times before gas breakdown when a is I
small and current neutralization is negligible, an approximation

for the EN fields may be obtained by taking a such that the charge I
relaxation time, T # calculated for a conducting medium is equale!

to the electrical neutralization time calculated from secondary

ion-electron production due to collisional ionization by the beam

electrons:

10 9  0.7
TN (nsec) = 1O9  BP(Torr) ' (3.97)

where a is in gaussian units (sec-1 and the air collision cross

section has been used [Equation (2.37)]. This procedure gives

the same time scale for the decay of the radial electric field in

the two cases. The algebra of the formalism is simplified if L
a - k - 0, corresponding to vacuum or very low pressure beam

injection. The large electric fields generated by typical high
intensity beams when a = 0 (- 10 V/cm) would restrict the

validity of the calculation to low v/y beams where beam distor-

tion would not be severe.

The actual evaluation of the EM fields from the above

formulas is best accomplished numerically. The fields can be

plotted for given beam and geometry parameters at specified r and

z as a function of time over a specified time interval. Although

the expression for An are tedious in the general case, they

37
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rinvolve only two types of functions. The particular component AnP
. contains only algebraic sums of exponentials, and the homogeneous

component Anh has only sums of terms of the form

-a u b 2 a1!e 0 ds e 2 J 0  ((s2-a 2)
b1

" Standard computer packages exist for the J and J1 functions and

for the roots of these functions. In many cases of practical

interest an asymptotic evaluation of the above integral will be
entirely adequate, and this can be done analytically.

3.4 SINGLE ENDPLATE, ZERO CONDUCTIVITY PROBLEM--
THE INJECTION PROBLEM

We now reduce the formalism of the closed cavity problem

explicitly for the case of a beam entering a long conducting pipe

through a single endplate. We shall take the plasma conductivity

to be zero, which implies that the EM fields are relevant to the

initial penetration of the beam into the drift chamber before the

gas is appreciably ionized. The radiative fields of the ac-

celerated surface charges are included in the formulation; i.e.,

the precursor fields which travel ahead of the beam front at
velocity c. The problem therefore complements the cavi.ty model

EM fields of Section 2.2 where we estimated the fields in the quasi-

static case with the beam across the entire chamber length. By

superposition of the fields calculated here with the approximately

static fields due to ions, very good estimates of the EM fields

can be obtained for times before gas breakdown or for t 2(L-z)/c

(see Figure 3.4).
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0U

I

L J_ I
-

Urn Precursor front

Othercavity .endplate

Figure 3.4 Open-ended pipe geometry.

We assume

i m f(r)g(u) , u = y(vt - z)
z

(ii) ' - ' 0 L
r 2 2

(iii) f(r) C er , (R >> ) (gaussian radial profile)

(iv) g(u) = (l-e~U ,u >

finite risetimeL
0 0, u < 0J

From Equation (3.96),
2

F4jiC e _ )1Fn c Re 1 2

2/5 '
2/ 1P (3.98)
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I

where I is the peak current in amperes. We define ER, EZ, and

B THETA: 2
fil P  e n '

ER (-E) -r gRl n1(R

IiI
n• Ij (Xn)

EZ E - :e -2 (J 1n (3.99)

z 5 R i zn R

7 E a ( ) ( 90 ) , an ) g w i

n 2
1 In - nx+ Rn)

THET H(-u) 2 1 Rr

Equations (3.86)p (3.90), and (393) give with a0

A

n u n

A R n___I; + n i : j1 U-- ~ 2R 3 - Q--s 2,221 d 11

& r e H(-u ) + + e r 3 e H(u)

,, , (3 .10 0 )

- J0  F- so 2Q 2ui2j s 1 H 0+u

0 0
x Fn fUo+OUl - X-- s

"+ W e R o (oS) 2 2 u2 ds (3.10 1)

3-as -( ds ul o~gU
-f e Jo 0u0_s 2 2u12 Hu SU1

I 3-79



I I
I.I

and2

I OR

I,.IL

r n'
, n l n  + 7R

2
r (3.102) i2 A)'n( - ER)u

1n n

r h (2A n 1 , 2

31 (A'n OiR) (An +  R) -

Similarly,

1p

-n h E Ezn _znp+ E1 '-P 1 u and

hO Anh ( fl s)
-~~ ~ ~~ f ,=1"'n °ds- ( ').

, zn 7 1,

I 0

Substituting from Equations (3.57) and (3.58),

'n u'Px r 1 n eK- u  r2 n --
EI n 1 R-- le~U (-u) + __a rn u

+ Qr 3 n e-c Hi u) (3.103)
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eand

o" o>-Ou I 1

!_8UlU o ,uo<-0u1

r 0 11 2 au Jo I - Q[(ui2 ) 2l2 J Jdo

+ 0 3 . I( u0 s 2 ul 2J ds

Hu +

2 ()R) L 0 j ( Q(s 2 - 2u2))dsj H~ +U) (3.104)

We verify the convergence of the last term of Equation (3.104) as

u 0  . Let w 2 82 1
2 ,2, then we can rewrite the term as

wlim Yu ,, 2 - ,0u1

it. Uo4 O + 82u.2

See, for example, Lebedev, S 1ecial Functions and Their Applications,
(Prentice-Hall, 1965), p. 133.

3-81



Finally, we write out the expression for n of ER:

- h

fn I  n- /O (3.105)

ho 12 1znh [

- u f 0  n

[i r e  / -n/R~s MJO sQ202Ul2)
+ H (u° + OUl -11 e- (A ds

0 f -0

-u0

(A)ul + OU r e n 0i (A/ Jo Qsi 2

+rr e n 0 d s e n0

1 

L.U1 r 2 eu 0 as asaiJ2 Q
r oe + J ds Du

- - (3.106) ,
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I

U 3.4.1 Numerical Evaluation of EN Fields for Iniection
Problem. The equations above have been prograamd to calculate

othe EM fields and draw CALCOMP plots at specified r and z as a
function of time, or at specified r and t as a function of z.

To avoid convergence problems in the numerical integrations

Uinvolving the zero-order Bessel function, the integrals have
been taken from root to root of J (x) - 0. The radial sum of

the Gaussian profile has been cut off when the term falls below

1/150 of the first term. The parameters for Figures 3.5a through

3.5k, which show Ez versus t at various distances from the end-

plate, are

I I 5 x 104 A

Y = 3 (1 MeV electrons)

r 0

R 6 cm

tr risetime - 20 nsec

b 1 (cm) "  (beam radius)-

2
yO ct r

z in centimeters is indicated on the curves.

Ez is plotted for a positive currentl therefore, for an electron

beam, Ez is the negative of EZ in volts/centimeter. All times

11 are in nanoseconds.

" FFigure 3.6 is calculated at z - 50 cm for the same parameters{ as Figures 3.5a through 3.5k, exceot that y - 1.2 and r - 1.
fFigure 3.6 is presented to show by comparison with Figure 3.5k

1. the effect of a different y upon the influence of the endplate.
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z 0.010 cm

Sign of field reversed

I

-1.0

-2.0
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Figure 3.5a
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-1.0 -Sign of field reversed
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t (nsec)

[ Figure 3.5b
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Figure 3.5c
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Sign of field reversed
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Figure 3.5e
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y= 3U0.0 z =4cm

Sign of field reversed

IxnI' ~ -.0-
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Figure 3.5g

3-90



V Sign of field reversed
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Figure 3.5h
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Figure 3.5i
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1 0.0
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Figure 3.5j
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, No sign of field reyersal
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Bean, front arrival at 50 cm'
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Figure 3.5k
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Endplate effect is
negligible
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0.0

Beam front arrival at z = 50 cm
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Figure 3.6
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In Figures 3.7a through 3.7c, we look at the-Ez field on axis

as a function of z for varicus times after injection. The param-
eters for these figures are:

Ip  = 1.77 x 103 A (Corresponds to same beam
charge/length at this lower $ as for peak
current in cases of Figures 3.5a through k.)

y = 1.0005 (0 f 1

R =6
tr = 0.1 nsec

These parameters have been chosen to illustrate the modification

of the electrostatic contribution to E as a result of termina- 1

tion of the negative beam charges by positive surface charges at

the endplate for small z. The 8 value for Figures 3.7 is such
that the time in nanoseconds is numerically equal to the z for
the beam front. We have taken a blunt or fast risetime beam to

approximate the case where the beam risetime has been shortened
by the large Ez fields near z = 0 in the low-pressure injection
problem. j

The fields scale linearly with peak current, so the fields

have been calculated for all peak currents. Different risetime
effects can be approximated from the curves by correcting for

different "L i.e., calculate the inductance/length, L, in

henries/centimeter at the radius of interest, then for tr = tr2,

-ct2 t

EZ~tr2  EZ (graph) + LIP (ae-at - 2 e ) i

The time t is to be calculated as the time after the beam front C
arrival at the z value of interest, and a is the graph value L i
corresponding to t = 20 nsec.
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Figure 3.7a The longitudinal electric field jE ) on axis for abeam penetrating an end plate in aZ finite radius
cavity (t = 1 nsec).
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Figure 3.7b The longitudinal electric field (Ez) on axis for
a beam penetrating an end plate in a finite radius
cavity (t = 2 nsec).
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Figure 3.7c The longitudinal electric field Ez on axis for aI beam penetrating an end plate in a finite radius
- cavity (t 5 nsec).

3-99i-
IT

a.



3.4.2 Discussion of Calculations. We now discuss some of

the physics exhibited by the graphs. The effect of the endplate LI
is primarily electrostatic, leading to a reversal of the direction

of Ez from the case of a beam in a long pipe without endplatesi
and to an increase i. Ez and a drop in Er near z = 0. By examin-

ing the magnitude of Ez near z = 0 and its dropoff with increasing

z, many of the low pressure beam propagation characteristics may

be understood.

First of all, we note from Figures 3.5a and 3.5b that 1-MeV

electrons at the peak current level would be stopped within 5 mm

in the absence of ions. Alternatively, one can deduce that at

about a 3000-A current level, the beam would shut off" because I
the E field would be large enough to degrade the electron kinetic
energy.

Another important point that the graphs illustrate is the Y

dependence of the endplate effect. We note that in Figure 3.6 at

50 cm, the E field has the shape as would be expected without an

endplate, i.e., the field is reversed in sign and decays with L
distance behind the beam front as e -t/tr. The y = 3 plot at the I
same distance downstream (Figure 3.5k), shows that the field has

reversed from the z = 0 direction, but that the curve shows an

oscillatory behavior near the beam head. These oscillations are

even more pronounced at z = 25 cm (Figure 3.5j).

To understand these differences, we return to Equation (3.103) L

and (3.104) We rewrite Ezn in terms of t and z variables, for

the simpler case of tr + 0.

The fields are not accurately represented in the oscillatory
regions since the graphs are plotted by linear interpolation
between specified time points.
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-nY(ctz 1 k y(Oct-z)
Ln 1 ReH (z O ct) +e H (ctO-z)

(tr*O)()

-f[/2rZ)r R w J ()dw

Ii~~ 0,0
(2)

'(Ct) 2 -Z 2  n Xn

I 2+() ~2

(3)

R w2(A J Mw d(A
-y Jo0 (3. 10 !a)

* 4 (4)
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The (1) terms give the field without an endplate, the remaining

terms are the endplate contributions. When V(ct)'-z' > R/An
'teims' (2) and (3), approach zero and

2Y~ j0 M o du - --

2y 0A/R Jwdu2ye R

-We can now obtain criteria regarding absence of endplate effects

by noting that the fundameAtal mode (n, = 1) drops off most slowly
with increasing z. Negligible endplate contributions to the Ez

field Fequire for a zero-risetime beam,

(a)' 2zct) zf

i 24 (no field "oscillation") (3.107)

where zf is the beam front position at time of interest, and
I-2. 2.- (zf-z)(b e R >> Ry z

(b) e > 2ye R (no field sign reversal)

If tr 0, the crossover point, zC , for the Ez field is

4Y (zfzc) 2 4 zi 'e R f= 2 e R zc

or z R- n 2y + yZf)/(Y + 1), ZfZc <  (3.108)
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I
fThe criterion for absence of field oscillation simply states

that the light signal from the anode at z - 0 has traveled

far beyond the bcam front. We note that the Ez sign reversal

point in Figures 3.7 is predicted very accurately by the above

criterion and we also see that

Figure 3.5k /(Ct)2 - ct R 17 - R (predicts- 3f -- f oscillation)

Figur ,.6A 2 17R
Figure 3.6 - -- (no oscillation)

These remarks have been noted on the graphs.

II
1 1

.
0

I.

i .
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U

3.5 BEAM IN A LONG PIPE WITH PLASMA CONDUCTIVITY VARYING WITH
DISTANCE BEHIND BEAM FRONT U '
As a beam penetrates a nonionized gas at pressures sufficiently

high so that the collision frequency is large compared to the in-

verse beam risetime, and so that the avalanche charge production is

negligible, the gas may be characterized by a conductivity which

varies with distance behind the beam front. In particular; if the
beam fills the pipe radially, a good approximation is

a -C (1 e u) + 2 ,u > 0
(3.109)

S-- C2 , u ' 0

with u = y(vt - z)(see Figure 3.8). C2  0 corresponds to a pre-

ionized conductivity level.
-/ /'/-/1 /-i I / -'i / / 1 / // 10i

-jb (u)
zR

u oil

V

C1 + C2

a- (u)

U 2

Figure 3.8 The conductivity function.
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Recall from part A of this section, Equations (3.11) and (3.12),

that if a has spatial variation, the equations for A and 0 do not
decouple. If we expand A, 0 and jbz in radial modes as in previous
sections, the basic Equations (3.11) and (3.12) give for the nth

L mode coefficients:

a 7av aI(n) 2a (3.10
u = Sn-+ c n (3.110

i.l

-47 + v n  = n +  (3.111)
c c au n

Here we define S such thatn

b4w (r,u) = S(u) Jo (n r)

n-1

and henceforth drop the "n" subscript. Substituting from

Equation (3.109) in Equations (3.110) and (3.111), and defining
S3 = 1 + C2,

"f- -- a 4 v -Qu a n)

[ u2  c c

(3.112)

S + 4ry Cl e-aU
ci

and
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(! ie xu+i4..) -Yau (3.113) [

If we let w Q u and take the Laplace transformo qain(3.112) and (3.113) with reapect to u, we obtainU

- t!2A(p) -PAMO A(O)] + iT 3  a J PA(P) -A(0)J L
(3.114)

Y X C a A 0) (P ~ ) A(p ~(l ) A (p) S S (p) + C a o P l

and

4nC 3  4wC 1- p - 0 (PVl + L
c~'~~ + 1p ct~(p) - o1)

(3.115)

yz [PAWP - A(OM + Q(p)

Rewriting Equations (3.114) and (3.115), we have

XA(p+AA pl1 A)+A 2  §~+) (P) + A 3 (p+]l) (3.116)

A4 *()+ A5  (p+l) =A 6 A(p) + U(p) (3.117)
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47Y
I 2iP s - CLp (p+l)

2 a2 A( )

c

A 4 c + " a

4W v 2 4 vC

4  S (c) + 9 (

I.

- o lP) = O(P) - A v (0)(318

A "

6 +yap a

5 c

I Equations (3.116) and (3.117) are two coupled equations with four

"unknown" quantities, A (p), A (p+l), * (p), * (p+l). In general,
7" they cannot be decoupled. We proceed by first expressing * (p) and

*(p+l) in terms of A (p), A (p+l), S(p) and U(p). Frbm Equations
r (3.116) and (3.117),

I
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*(p+1) - Alp) + A(p+i) -(3.119)
13 3 13

A_ A 1_. A2 A 5  Al+5, 1p

- (AA A()) A 3F (p+i) +(p)

- L (3.120)
4LI

Now replace p+l in Euation (3119) by p and denote this

transiation in the A's by the subscript (p-i). Then iq

p-l) ,

Equ(ting (3.120) and (3.121)gives an equation for A alone: Jj

Ci A(P) + £2 A(p+1) + e3 A(p-I) -

(3.122)

£4 9(p) + 5 "(p-'l) + £6 ,(p)
45 6,

with
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15 51

li - 3 1)

5
3 3

S- -(3.123)
6 14

V
The s's are all rational functions of p and , Q are source

functions involving A(O),BA(O)/3u, *(O), and 30(0)/au, the

boundary conditions at w = 0, Equation (3.122) can now be inverted

back to w space giving an integral equation for A(w). Let us

denote the inverse transform of ei by f. (w). Then

/Z [A(u) f (w-u) + eu A(u) f (w-u) + eu A(u) f(W-u1 (3.124)

L= du ISlu f4 (w-u) + e
w 9(u) f5(w-u) + U(u) f 6 w-u)J
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U

or w
f du A(u) [f (w -u ) + e-W f 2 (w-u) + eW f 3 (w'u)]

(3.125)
w

du (u) 4 (v-u + o+ w f 5(u jJ + U(u) f 6 (w-u)(

L
The actual inversion of the f.i's is straightforward, but tedious,

and we shall not include the algebra here. It turns out that L

Equation (3.125) is a Volterra integral equation and its solution

can be obtained by well-known techniques. L

3i

I.
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SECTION 4

COLLECTIVE ION ACCELERATION
BY INTENSE ELECTRON BEAMS IN LINEAR GEOMETRY

Collective acceleration of ions has attracted a significant

amount of interest throughout the world in recent years. The

goal of this work has been to find an alternative to present day

accelerators in order to achieve ultrahigh energy protons, more

than GeV, or GeV heavy ions. The possibilities of collective field

Iacceleration of ions were first outlined by Veksler in 1956
(Reference 4.3). A group or collection of charges (electrons)

[1 create accelerating fields, and the magnitude of these fields is

proportional to the number of charges. These "second generation"

accelerators would be capable of generating accelerating fields

in the range of 105 to 107 V/cm, or several orders of magnitude

higher than fields in conventional accelerators. Moreover, large

ton fluxes (1013 to 10 ions/bunch) of different ion species can

be expected from a collective accelerator. The collective field

I. concept currently receiving much attention in several laboratories

is the electron ring accelerator (ERA) (Reference 4.4). The

I Dubna Laboratory has reported acceleration of nitrogen ions to

about 60 MeV by controlled expansion of a compressed and ion-

I loaded ring.

A relatively small effort has been directed toward studying

collective acceleration of ions by intense relativistic electron

beams in linear geometry. This simple technique involves inject-

I" ing a beam into a drift chamber filled with a neutral gas at low

Much of the material of this section has been reported in
References 4.1 and 4.2.
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pressures; the electron beam ionizes the gas and bunches and

accelerates the ions. The process was discovered by Graybill and U
Uglum at Ion Physics Corporation (Reference 4.5) and verified and

further studied at Physics International Company by Rander, et al. L
(References 4.6 and 4.7). To date, ions with an energy up to

8 MeV/Z, Z being the charge state of the ions, have been reported |

for several ion species. (A +14 is the highest charge state

observed--(Reference 4.8).) Minimum average accelerating fields

of 105 V/cm have been experimentally demonstrated. Although

several models have been advanced to explain these results (Ref-
erences 4.1, 4.9, 4.10 and 4.11) the acceleration process is at

present essentially unconfirmed. The process is therefore prob-

ably not optimized from the viewpoints of either efficiency or V
ion energy. Even so, the experimental data have already estab-

lished the utility of this T "as.i. . a highly-stripped ion source
and as an ion soujftVior plasma heating. If the acceleration

cutoff pr9qAf6$can be ideaitified and the acceleration length

e,5ed, the technique can be used to directly accelerate heavy

•.* ions to GeV energies.

An important use of the acceleration process would perhaps

be in the area of plasma heating where more than adequate deuteron

energies (2 to 5 MeV) have been attained. The emphasis of further

research here should be directed to increasing the ion number/beam
pulse, or the efficiency. Reported (energy) efficiencies range

from 0.25 to a few percent and, if one extrapolates present data

to larger current (5 to 10 MA) electron beam machines presently

under development, several kilojoules of deuteron energy/beam

pulse can be anticipated. Such a deuteron pulse could be injected t
into a dense plasma focus, for example, where a 1019 to 10 20/cm 3

density plasma passes through the focus field for 50 to 100 nsec.*

Without appealing to anomalous range shortening effects, 2-MeV

See Section 2.11.
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deuterons would deposit all of their energy in the small focal
plasma volume (- 10- 2 cm3), effecting perhaps an order of magni-
tude increase in ion temperature and a concomitant 103 increase[ in thermonuclear D-T burn rate. In short, the narrow ion pulse
width (- 10 to 20 nsec) and the large ion flux make the ions an
interesting energy source for heating high-density, high 0 plasmas.
These plasmas would at least provide an intense 14-MeV neutron
and kilovolt X-ray source. The deuterons could also be focussed
geometrically on a thick tritiated target to directly produce a
14 MeV neutron source (- 1012 to 1014 neutrons).

The use of heavy ions (nitrogen, neon, argon) of several
hundred MeV/nucleon for medical applications (cancer thrp)is
currently of great interest in the bio-medical community. One

[i such proposal, the BEVALAC, which is now under study at the

Lawrence Berkeley Laboratory in Berkeley, California, would use

the Bevatron to accelerate heavy ions (Reference 4.12). Here,

as in all heavy ion accelerators, the ion source is perhaps the
limiting factor on beam intensity. A linear electron-beam ion

1. source, using demonstrated experimental data, could provide
1013 stripped nitrogen ions/electron pulse with - 2 MeV/nucleon
for injection into a linear accelerator stage. An impgrtant

aspect of the experimental charge-state distribution for both

V" nitrogen and argon is that the charge state peaks toward more
highly stripped states, in contrast to conventional ion sources.

The potential of the acceleration technique for higher

energy heavy ions (or protons) is not as clear at this point.
Although the energies achieved for N+6 (- 30 MeV) and Ar (mean

energy - 25 MeV) are within a factor of two or less of ERA

results, the extension of heavy ion acceleration to higher
energies rests upon obtaining an understanding of the acceleration

cutoff mechanism. Several possible cutoff mechanisms have been

suggested (Reference 4.2) and present data are encouraging. We

II 4-3
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can also cite two features of the accelerating process which are

encouraging independently of the details of the accelerating [
mechanism: (1) the data indicate that the full beam pulse width is

not used for ion acceleration--ions are accelerated and the
process cuts off rather abruptly--and (2) the electron-beam
streaming velocity limit on ion velocity should allow GeV or

higher heavy ion energies.

Other techniques for collective ion accelr :ation have been
suggested by various authors, such as ion drag acceleration

using high-density electron bunches, impact acceleration of

plasmoids, and ion trapping in traveling magnetic mirrors. The

reader is referred to the review articles of Sessler (Refer-j
ence 4.13) and Rabinovich (Reference 4.14) for a discussion of

these proposals.

We discuss the experimental results for low-pressure neutral- Li
gas ion acceleration, some proposed acceleration models, and

suggest a model which agrees with presently established -features

of experimental data. Ii

4.1 EXPERIMENTAL RESULTS

An electron beam is injected through a thin metallic anode
window into a right-conducting cylindrical cavity with a small

hole in the center at the downstream end (see Figure 4.1). The,,

beam and ions pass through the hole into a magnetic field where
the beam and ions are separated; the ions are then diagnosed with

time-of-flight, magnetic-spectroscopy, and nuclear-emulsion L.

techniques. Various neutral gases at controlled pressures (10 to
200 microns) are ionized by the beam.
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For reference, a summary of the experimental data from the

experimental groups of Graybill and Uglum at Ion Physics Corpora-

tion (IP) (Reference 4.5) and Rander at Physics International

Company (PI) (References 4.6 and 4.7) is given below. We assume

that the data refer to the same accelerating process although

there are differences in the nature of the beam front propagation: L

1. The peak ion energies are proportional to Z, the ion

charge numDer, as would be the case if ions were accelerated U

by a stationary electrostatic field. The particle energy

per unit charge is proportional to 12, where I is the beam L
current. The experimental uncertainties allow a current

dependence from I to I5/2.

2. The ion energy is nearly independent of filling gas

pressure over a range of a factor of 6 in pressure. The

proton pressure range for IP is from about 50 to 200 pm.

Graybill has recently reported a pressure dependence for

hydrogen and deuterium (Reference 4.15).

3. The ion pulses are formed and accelerated after the
fractional electrical neutralization.

f ion charge density
e electron charge density

2 2
becomes greater than 1/y = 1 - 8 , where y is the electron

2 e
energy, E/m C . The condition for radial force neutraliza-

tion and the onset of beam pinching is fe .1/ 2

4. The proton energy spread (full width at half-maximum)

is < 20 percent, the limit of the spectrometer resolution.

This energy spread for PI covers two proton pulses.
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5. The total number of accelerated ions per ion pulse is

in the range of 1012 to 1015 particles. The ion pulse

widths range from 3 nsec for protons and 5 nsec for deu-

terons, to about 10 nsec for helium and nitrogen.

6. Multiple ion pulses (two) have been reported by Rander

et al. This feature can be accounted for by approximately

twice as long beam pulse width for the PI beam as compared

to the IP beam. The pulse separation is inversely propor-

tional to the filling gas pressure for H2 . The pressure

dependence of the pulse separation is shown in Figure 4.2

f (Reference 4.16).

7. The first ion pulse may be moving with the beam front

(Reference 4.15) or behind the beam front (Reference 4.13).

The different behavior of the beam front propagation with

respect to the first ion pulse is most likely due to the
higher v/y of the PI beam. The IP beams were typically
v/y -0.8, whereas PI beams were v/y -2.

The data summary above pertains to ions accelerated by

intense relativistic electron beams in neutral-gas-filled drift

chambers. Sessler (Reference 4.13) has pointed out the data

similarity to the ion acceleration results of Plyutto, et al.

(References 4.17 and 4.18), who observed ions of various species

in the few MeV range from a vacuum diode with a gap potential of

200 to 300 keV. The similar features of Plyutto's data are:
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1. Ions are accelerated in the direction of electron flow,

in opposition to the applied field

, 132. Multiple bursts or pulses of ions

3. Beam pinches when ions are accelerated

4. Same order of magnitude of current density 104 A/cm2

5. Approximately ti -ame ion energies and number of
• . ions/burst

.4.2 SOME SUGGESTED ACCELERATION MODELS

4.2.1 I eCerenkov Radiation. Wachtel and Eastlund

(Reference 4.11) have suggested that the "inverse Cerenkov

radiation" acceleration mechanism first proposed by Veksler

(Reference 4.3) may be responsible for the energetic ion produc-

tion. Veksler's formula for the average accelerating electric

field seen by a bunch of ions of charge number N in an elec-
tron beam plasma is

2
E = P-F Cn (4.11

vb

2
2 47 n be

where - b is the beam plasma frequency
o (non-relativistic)

vb = electron longitudinal velocity

nb = beam electron density

m = electron mass
0
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, - T ,

F = a form factor of order unity for bunch dimen-,
sions which are small compared to the resonant
plasma oscillation wavelength, 2wVb/wo

D = the Debye length of the electron beam plasma.'

The theory requires that the bunch dimensions be small compared
to 2 7rVb/p, and that the ion bunch perturbation of the beam be

small. Thus, for typical beam plasma frequencies of. 1011 to

1012/sec, the bunch dimensions must be .in the millimeter range, L.
and to obtain interesting accelerating fields we would want the
bunch number for protons, e.g., to be 1012 or more. These

requirements are formidable indeed, as was recognized by Veksler.

Equation (4.1) may be derived quite simply by transforming

to the beam frame and applying the usual "dE/dx" energy-loss

formula for a test particle (the ion bunch) in a plasma (Refei-

ence 4.19) for the case where the test particle velocity is much

greater than the thermal velocity of the plasma particles.

We present a somewhat different approach to the problem of

determining maximum energies attainable by ions in a beam plasma

resulting from the electric fields associated with the rpsonant

plasma waves. Though relatively crude, the-work does allow a
definition of the upper limit and avoids complications of extend-

ing a test particle calculation to the resultant ion beam, which

we have in the frame where the beam electrons are at rest.

The electrostatic instability calculations of Bludman,

Watson, and Rosenbluth (Reference 4.20) are applicable to the

situation of practical interest here; namely, to an electron

beam traveling through a plasma containing either secondary

4-10
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elettrons and ions or simply ions alone.' We obtain the high-

ifrequency instability growth rates and wavelengths from the

theory:

-It

"Im 0..69( wi: 2 1/3, (ion plasma)

1/3Im M .0.69 (w t2 6p ) (electron-ion plasma' in (4.2)

.oj.collisioniless limit)

j instability 0 (ion plasma):

(4.3)
i ----- (electron-ion plasma)

where Im (M) is the e-folding rate, and

S 4 2

P mo0

0,
2 4wnbe203 =

2 224Iwn. Z. e
! 0. ---S i mi

4-11
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L

nb = beam particle density

ni = ion particle density

npe = secondary electron density L
A = the wavelength of the fastest growing instability

oscillation [

m = electron rest mass
L

m. = ion rest mass1

y = the relativistic factor for beam electrons.

In the ion experiments where the beam ionizes the gas, the plasma is

first an ion plasma until f is approximately 1, and then the secon-e
dary electron density builds up and the plasma effectively becomes

an electron-ion plasma. Let us optimistically estimate the growth

time for an ion plasma.* With I = 50 kA, beam radius, a, = 1 cm,

Vb = 0.7c, fe = 1, and Zi = 1, we obtain

11

St =7.1 X 1010 rad/sec

1

Im(w) = 2.8 X 109/sec (ion plasma)

X 47 cm (approximately the experimental
chamber length)

*
We assume that Landau damping of the oscillations is negligible.
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If, on the other hand, we consider later times after gas breakdown,

and take npe 10 n

Wpe = 4 x 1011 rad/sec

I 1: Im(w) = 8.7 x 1010/sec,

* and X 1 0.3 cm

The equation of motion for an ion in the Ez field associated

with the charge density modulation of the instability oscillation

Is

d2z Ze= d2 i E  cos (kz -wt), (4.4)

V dt 3.

AE is the amplitude,l. z

and the kinetic energy (non-relativistically) is
1 2

K.E. = -m ()2) (4.5)

If we take z = z = 0 at t = 0, the solution of Equation (4.4)

for z gives

M. _ Zek 2AEzk
. K.E. = 2- + sin t) > 2Ze m k2k2 2in k

(4.6)

If 2 <2 ZeAE k the ion is trapped in the wave, andm.
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W mi

(kz - wt) < sin-i (4.7)

m.W2 m
and the maximum K.E. is outside the non-

2k
relativistic approximation. We now estimate an upper limit for

AE z . Assuming the electron beam kinetic energy to be 1 MeV

6bE 10 /(0/4)
z

4
8.5 X 10 V/cm for ion plasma

1.0 X 107 V/cm for electron-ion plasma L.
2ZeAEzk 1

Now mi (4.8) x 1019 for protons L

= 1 (1.7) x 1022

Thus, in neither case are the protons trapped, as, of course, one

would expect since the fields are not high enough to accelerate the

protons to 8 = 0.7 in a wavelength. Returning to Equation (4.6), we

can obtain the maximum kinetic energy of the ions

mx m. [ / 2 Zek A
K.E.max _ W _ z- - V - m

K.E. max -6 2
2 1.1 X 10 a

m.c
I

5x 10I07

For protons the maximum kinetic energy is about 500 V--very small

indeed.
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We therefore rule out the electrostatic instability fields

as the mechanism responsible for the observed 5-MeV proton

energies. In any case, an experimental check could be made by

injecting the electron beam into a pre-ionized plasma, a condi-

tion which \!ould not give rise to ion acceleration in the other

r-odels. Then the plasma would exist over the entire beam pulse.

Also, one would expect a relatively broad ion energy spectrum from

a drift chamber comparable in length to the beam pulse length.

4.2.2 Accelerated Space Charge Potential Well Models.

Rostoker (Reference 4.9) has proposed that ions are accelerated

by the moving space-charge potential well associated with the

beam front as it moves across the drift chamber, ionizing the

neutral gas behind it. Uglum, McNeil, and Graybill (Refer-

ence 4.10) have independently suggested essentially the same

mechanism with somewhat different assumptions about the beam

configuration at the start of the cceleration process and the

mechanism of well acceleration. Both theories consider only

longitudinal electric fields and one-dimensional beam motion.

In our discussion of low pressure beam propagation

(Section 2.10.1) we derived an approximate expression for the

distance from the anode, z which an unneutralized beam could

propagate:

Z cm -- lvpv (4.8)

S•R/2 .4 1 - i. 2 (R/2.4)
. " i/2 +In R/a 'Zc"

4.4
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where t = the current rise timer

t = he electron kinetic energy rise time
IP
I = the peak beam current

VP the peak electron kinetic energy in MeV

a = beam radius

R = chamber radius U

The voltage and current rises were assumed linear in deriving

Equation (4.8), and the electrostatic potential (retarding beam

electrons) at c is equal to the beam kinetic energy. If
P tc
I- 30 kA, t /t = 2, VP = 1 MeV, R = 6 cm, and a = 1 cm,

b r v
= 1.2 cm. Beam electrons are thus reflected back to the

anode by the virtual cathode at c and the beam envelope

"blows up" radially.

As the beam "hovers" near the conducting plate, the back-

ground gas is ionized by collisions and electron avalanche over

a time scale TN. The ions short out the electrostatic field and

the beam moves forward. if no ions are created in front of the

beam by electrons that have spilled out of the potential well

(typically a few kiloamperes) or by radiative ionizaion, the

velocity of the front, ES c E vp, is approximately c/ nd

would remain constant, barring substantial changes in the beam

energy. The kinetic energy of ions trapped in the advancing

front can be estimated from

- 2mi 2 mi Y49
K. E. --Vp t_ 49

2 p _(T)

and if Fc = 1 cm, TN ; 10 nsec, protons would achieve the rather

uninteresting energy of 50 keV. The maximum energy that protons

could attain by a sudden acceleration to a constant beam front

velocity would be 1 MeV, corresponding to iN - 2 nsec.
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We therefore realize that to attain ion energies in excess

of the beam energy, ions must be trapped in an accelerating

potential well, or, in other words, TN must decrease in time.

Moreover, to obtain ion energies which depend only on the Z of

the ions, the acceleration must be "just right." Let us inquire

how TN must change with time. If

VP Zc/T N(t) (4.10)

then
dv z dtC dTN(411)

dt P tp TN

. Ions will spill out of the well ifil Zero
Vp Vp - E(4.12)

p> Pc m.

where E is the electrostatic field at the ionization front
106 V/cm in our example, since the electric field will no longer

be strong enough to accelerate ions at the same rate as the beam

I. front. Substituting Equations (4.11) and (4.12) in Equation (4.9),

M. * 22max _ 1 (v )2 - 2 1
K.E. -T pcT (ci 1 d

1N NJ_
T dt

where tc is the time of spillout. Thus

K.E. max Z 21 2 e2  1 2 (4.13)7m 0 1 dT N
TN dt

t=t
c
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L
The bracketed term in Equation (4.13) must therefore be m/i72

to have energy dependence only on the Z of the ion. Another way L
of expressing this requirement is

Z 2
P C c(v) (4.14)PC .p

and a way of satisfying Equation (4.14) is to take VP Vp which

requires I
! Zc

5 -AtL

where A and B are constants. Then I

T c B -At (4.16)

a not unreasonable form, which is precisely the one proposed by

Rostoker. In fact he argues that

A =+ (4.17)nb

B = ne nb()

where nb* is the ion density ahead of the beam front

nb is the beam density

T eis the time required for the electrons to escape

from the pre-ionized (neutral) region as the beam

front advances, [this time is negligible compared to

T(I + nb*/nb HTI

and TI is TN at t = 0.
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III
Using Equation (4.17), Rostoker obtains,

(n

KE m ax  1%bbf
K.E - eY

b*
v nb (4.18)

and takes nb/nb* = 5 to obtain agreement with the observed

proton energies. However, the assumed ratio of nb/nb* gives

tc . 50 nsec, which is not in agreement with the data when one

-,. uses the acceleration length of 9 cm which follows from the

theory. If we assume a smaller ratio nb/nb* to be more in

. line with the timing, data, we, of course, lower the energy.

Estimatin4 nb/nb*, which is the only parameter entering into

. the kinetic energy formula, is very difficult a priori. To

illustrate the point, one could perhaps argue equally well that

nb/nb = 0, since radiative ionization is much too slow, even

with radiation intensities comparable to those generated when

the beam is stopped in the anode. Moreover, as electrons in the

region of the well are decelerated and the charge density in-

creases, the beam "blows up" radially over distances comparable

to the beam radius. This radial blowup would imply that the

front is very sharp and that a significant number of electrons do

not precede the front to pre-ionize and decrease TN.*

Ion acceleration in Rostoker's model cuts off because the

well acceleration reaches a value such that the electric field

is no longer high enough to trap the ions (Equation 4.12). We

thus would expect to see a continuously accelerated beam front

.. up to a velocity determined by the electron beam energy (and

lo transverse energy). Moreover, the ion bunch should be very

narrow (< 1 cm), although space-charge effects after ion separa-

tion from the electron beam could widen the ion bunch, as sug-
Oil gested by Rostoker.

i tSee References 4.5 and 4.10.
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L
2Uglum, McNeill and Graybill (UMG) also consider an

accelerated-charge potential well, but they assume that the

process starts when fe=1/y 2, the condition for radial force

neutralization, in accordance with the data, and calculate the L
electrostatic field for a uniform charge density beam in a right

cylindricil cavity. With R = 10 cm, I = 5 x 104 A, a = 1, they
obtain Ez  2.5 x 105 V/cm for 0 < z z 5 cm (see Figure ..

However, the potential well depth is then of the order of the

beam kinetic energy and the beam would be stopped and be blown .

up radially. Nevertheless, if the field is assumed to be approx-

imately the same as for z <zw, the well will move with increasing

background ionization,, as discussed in the Rostoker model. UMG

suggest well acceleration due to gas breakdown and obtain a V
breakdown time tB from extrapolation of the data of Felsenthal

and Proud (Reference 4.21). In the opinion of the author, how-

ever, they do not argue well acceleration, but a constant

velocity well moving with velocity -/tB . One could perhapsc B'
argue an acceleration by invoking preionization by the beam

ahead of the breakdown front to decrease the effective breakdown

time. Also, since the well shorts out over the electrical

neutralization time, it would seem that their well velocity is

too slow (T < tB).

In summary, the accelerated-electrostatic space-charge

potential-well models can account for the observed ion energies.

It is not clear at this time if a more careful and detailed

coupled longitudinal-field and beam-motion calculation in the

spirit of these models could explain such features of the data

such as the current dependence of the ion energy and multiple

pulses. We proceed to a different model that offers detailed

agreement with experimental data.

4-20
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Drift chamber

*1 [R

Elec.ijstatic
Beam z z I- potential

w z well form

L

L = chamber length

z = distance from endplate oier which the
w potential reaches its maximum value

a = beam radius

R = radius of outer conducting w, lls

Figure 4.3 The beam profile at the start of ion

acceleration in the UMG model.
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4.3 THE LOCALIZED PINCH MODEL L

Recently this author has proposed a different ion-accelera-

tion model, the localized pinch model (LPM) (References 4.1 and -.

4.2). This model features a self-synchronized mechanism to keep

the accelerating fields in place with the accelerated ions.

Moreover, it is not necessary to invoke pre-ionization in front

of the effective beam front, i.e., the acceleration can occur

behind or with the beam front, or more precisely, slightly behind

the beam front. The following aspects of the acceleration

process will be addressed in the LPM:

1. The accelerating mechanisia-generation of accelerating

fields, synchronization, and bunch stability

2. Ion bunch formation

3. Acceleration cutoff

4.3.1 The Acceleration Mechanism. We first consider an

idealized situation to illustrate the physics of the mechanism.

Consider Figure 4.4 where we have a beam traveling in a long

conducting tube (no endplate effects) with constant radius and

charge density. Within the beam envelope we postulate a uniform

background ion density such that fe = fe° < 1, except within

region 1 where we imagine that a slug of ions have been injected

at t = 0, giving a higher ion charge/length, X= ii +
io

4-22
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Figure 4.4 The localized pinch acceleration model.

a = longitudinal a of primary electrons
e upstream from the ion slug

= longitudinal 8 of ionsLi

A= length of moving ion slug

I = primary electron curren4-

a° = radius of beam entering the region (1)

ai = radius of ion slug

Bo  = theta component of magnetic field

E = radial electric fieldr

xio= background ion charge/length

AX. = increment in ion charge/length in region (1)
1
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Upstream from the ion "slug" in region 1, the electron beam

radius, ao, is determined by the electron and ion emittances. In

Section 2.7.1, Equation (2.79), we obtained expressions for ad
and fe° from the Kapchinskij-Vladimirskij (Reference 4.'22) equa-

tion:

ao 2 j (Ce Yo + C1 mi/Z)" (v/y <1)

(4.19)

1 +Ce Yin-e Cimz Ymo
e~ L YL 1 !

where
C = 2 a 2c02 ..

Ce e L

Ci £ 2  L 2c2

Z = ion charge state

m. = ion mass1

= the electron and ion emittancesJ

In region 1 where X . > the beam radius will not be

equal to the ion radius. Therefore, we really cannot apply the

K&V equation since the radial force for beam and/or ion particles

is no longer linear in displacement from the axis. Nevertheless

we shall use the K&V equations in order to obtain an estimate of

new equilibrium radii. Straightforward algebraic manipulation

of the K&V equations for electrons and ions gives
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.t2 ::o eXe 0 f O I ~~

0~ 2 a. +AX.e2

0 1 o  2 (7 2
:: "" ' L

+f e_ _ + f e

2(1 2) .

-X "4 l) 0\)a~ (1f e (4.20)(1 77 (f - 1) e .=

where ael is the electron beam equilibrium radius in region (1),

1. assuming A is large enough for achievement of equilibrium.

Similarly, the ion radius in region (1), ai 1 , is given by

(a.-2 = a2 2 ,Xi + AX )2

a 0 e 1laee (4.21)

Let us now assume Ce 0, then fe (1/y from Equation (4.19).

'Equations (4,20) and (4.21) give

a I
a (I Xi (4.22)

a. a

~~If X.o+ AX. = X, ae. (ao/YL) , or, in other words an increase in
10 1 e0.

the ion charge/length to give equal charges/length for' ions and

electrons in region (1) reduces the beam radius by a factor (1/yL

with the result that
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e' Iel 1 1)i

Let us now consider the beam envelope motion dynamically.
When the beam electrons stream into region (1), the higher ion
charge/length shorts out the radial electric field, causing the
beam radius to collapse. The radial motion generates an Ez
field, the magnitude of which we now estimate. We assume below that

e is constant, A i constant within region (1), ai = aO  constant,

and (a0Le/aZ) 0 in region (1). The Ez field along the axisE 1 L_.
generated by the beam radial collapse, EZ , is

2 e ae e 2 9e (4.23)Z c a- e - ae 9 (2

in the quasi-static, paraxial approximation.

Transforming Equation (4.23) to the ion rest frame gives (non-
relativistically),

8L 0L ae + 2Xe aa
E 1 e e e > 0z ae e Dui  ae . 1

with u z. - L ct. If 8Li or «Le 1,

2X aae
z ae aa ui  0 (4.24)

4e -
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We use the K&V equation (Equation 2.73) to estimate

aa e/au i in region (1), assuming that ai  ao,

2 2
a a ~a a~ C

e e 2v ( e
2 e i e L a e

a, a= .0 2e 2 3 (a
I L~e aYe L e ae

e e (.6

(4.25)
or

2a

a i a e 1 2  fae + ( nao +i aO

a = - O 2 e a 2 a 0 ~ jiA elc rf(L 2 ae eL a e2C2 a e3

2 e °
ra(f 1i c_ _a

e e (4.26)

A first integral of Equation (4.26) can be obtained analyticall1y:

'e22 22K 2  7e 3 (4.27)(U ) , [a a K -

2v +0 1
2 e

L e (fea
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K2 _. 2v L
YLe2 YL2

C
K e

3 2 2
OLe c

Equation (4.27) can be written in dimensionless form by defining

s = (ae/ao), x= u i
L.

-ds) - s2 + P .n -Q - ), (4.28) L
(dx) 12

1"
with P

2 0 + e
YL ie- )

(fe e-1

fe0

The dimensionless turning radius for the beam envelope, st, defined by

(ds) = 0, can be estimated from Equation (4.28):
S=St

St ft , / > > e- 3/ 2P , P < 1

(4.29)

fte-1/2P, << e-1/2P
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Let us now determine ae from Equation (4.29) with Q 0, 

S1 0
JAIe 2' e

*- which is a small radius indeed!

I. Equation (4.28) allows us to obtain an estimate of the turning

i length, xt, by taking aet- 0, p Q --0,

ete

1

A. dw

or

U. + ~~r2 X (4.30)
Alt * .Y8 e ( 'e/

A qualitative sketch of ae (u ) is shown in Figure 4 .5 .
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Figure 4.5 Sketch of the beam envelope in region 1.

Let us now examine the implications of the assumption in

Equation (4.26) that the ion radius ao = constant. Denoting

[(fe 1)1 Y

by.F, we see from Equation (4.25) that larger positive F values

correspond to larger inward radial acceleration of the beam envelope.

If

X + AX. Z ym /m
i0 1 1 + o ±

2x 1 (ZYmo/m i )
-el YL
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i the initial inward radial acceleration for the beam envelope will

be greater than that of the ion envelope, so we really need only

inquire about the effects of changing ion radius with ai > ae.
When

a a = const., F =+
1 0 ~e 2

YLae

a. a, F = + 2 L 0,
1 e (fe iXel L )

so we see that our calculation gives an estimate of the minimum
radial velocity and Ez field. The maximulm radial velocity occurs

for a. ae in which case the dimensionless radial velocity is
1

2 -p2. p2  Q'(p 2
dv =

a 0  u 1 C 2v 0 i
where P = e v = - 7 + I (4.31)

e. 0I~e
e eL

(fe+

The turning radius and length do not appreciably differ from the
e. case a. =a constant.

1 03
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The E field of Equation (4.24) may now be written as L

z e 1 s dx

or 7 Ai
1.4 x 106 /v3/2  0a IidEz (V/cm) = L a e /  e° el /e +d L

777 0' + fO i 1 ds
-1.4 x 106  a s (4.32)

a0 (f e

where we have used

Le +i V /Y

and

1 dss

An approximate average field, Ez can be obtained by taking

ids 11 1
sdx t I

giving

E 4*4 0 v a++ -- (V/cm)

for 0 u. u. (4.33)
1 1t

4-32



I!

Typical experimental parameters of I = 5 X 104 amperes, a° 1 cm,

i"
and I -

01

e 2L

gsivE 9 x 105 V/cm, in which case the electrons would essentially

lose all their kinetic energy over a distance equal to the beam
radius. Our approximation tl)at a /i = 0, 0 < ui < uit,

is, :of course, violated. This example leads us to the concept of

a strong inductance-dominated pinch collapse. Generally speaking

if v/y << 1, and the beam enters a region of higher charge neutral-

ization, the pinch rate is slow and u. >> a , whereas if v/y 1,
it 0

the pinch is strong-inductance-dominated, i.e., the magneticallyi ,

driven beam collapse is so fast that the "I dL/dt" Ez field

degrades the electron kinetic energy over distances of the order

of the beamiradius. The current drops, retarding further pinching.

This condition is a "saturation" condition in the sense that further

increase:s in the charge neutralization or the effective v/y do not

appreciably increase Ez Moreover, the strong-inductance dominated

pinch is the state where essentially all of the magnetic energy of
2a beam in a pipe (1/2 LI ) could be extracted by a localized charge

density inhomogeneity. The saturated Ez field value is

sat 60 I(amps) (V/cm) (4.34)
z a

obtained by taking ae /3t c. For I = 5 x 104 amperes,
sat 6

Es  3 x 10 V/cm.

L is the inductance/length. This analogy to linear pinch phenome-
nology is somewhat ambiguous. The Ez pinching field in the ion

frame is electrostatic, whereas to a stationary observer in the lab
frame, the field appears as an I dL/dt field when the ion bunch
passes the observer.
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A contribution to E from electron bunching ) L
therefore arises in the saturation case and this field is re-

quired for the mechanism to "work." Roughly speaking, the

pinching field gives synchronization and the concomitant electron

bunching contributes to longitudinal phase stability. In the

saturated case, of course, these components cannot be treated
2

independently. The electron bunching field, which we call E 2,

is of the same order of magnitude as Ez1, the pinching field.

In fact, in the saturation case where the electron streaming

velocity is significantly reduced, one might guess that Ez 2
1 arudu 0 ohE 1an 2

actually exceeds Ez around ui = 0. Both Ez and Ez have the

same limit, given by Equation (4.34), but the pinching limit is

actually necessarily lower inasmuch as a completely radial

velocity would cause B0 to vanish, and B0 , of course, "drives"2
the pinch. That Ez  is a maximum around ui  0 may be argued

by analogy with Langmuir-Childs diode theory (Section 2.1). The
position ui ;0 corresponds to the anode and uit to the cathode.

The pinching of the beam envelope is analogous to diodes where
*

the current exceeds the critical current. (The fact that ions

are accelerated in the same direction as the electron flow in

our model points to the essential distinction between inertially

driven and externally applied fields.)

A further contribution to E, Eion comes from the variationZ z
in ion charge/length in region 1. If k.i is the rise length of

the AX , and -AT is the peak value,

DX AX- 
and

aui Z

7I
in- 1 11

EiOn 21 + Xn R/az .1

The experimental observations on beam pinching in diodes with
gap spacings of the order of uit 1 cm gives us some confidence
in our approximate analysis.
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In order to use the beam envelope collapse analysis above, we

S!must have X i " ao' otherwise the envelope collapse is adiabatic.

To be more precise, the adiabatic limit pertains to envelope

changes over a length scale )>X, the betatron wavelength.

Equation (4.30) shows that the turning length is - A a when

v/y 1 and

f +

is of order unity, as it is with the experimental parameters.

Although the beam envelope equation we used above did not include

7- a variation in AXi with ui, the analysis should be quite good if

k.. a0 ; i.e., in the non-adiabatic limit.
1

The total E field about the ion bunch, ET, isz z

ET E1 +E2 +EionET  = Ez + Ez + E i

z Z Z Z

2X e ue 2 (1/2 + Xn R/ae) e(i + Ai (4.3 5 )
a e u . e a u. Z..)

T.
A sketch of the contributions to E is shown in Figure 4.6,

z 1 2 (1)
reflecting the remarks above regarding Ez  and Ez . Ez  rises
from zero at u. = 0 because of electron inertia and keeps the

electron bunching leading the tail end of the ion bunch (u. 0).1

E (2) prevents loss of ions around ui = 0. These two componentsEz1T

added together maintain a relatively uniform E T, the one peaking

where the other vanishes. This discussion requires further

quantitative support, of course, but hopefully at least makes the

synchronous mechanism plausible. Part of our motivation for

-- invoking a two-dimensional beam motion in the fiist place is now

perhaps apparent. A one-dimensional model such as Rostoker's
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* . Longitudinal electric fields of the synchronous
ion density enhancement.
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- which utilizes electron bunching near the beam front (an E 2

Z
field) has the desired longitudinal phase stability. However,

multiple pulse data, where the beam is definitely extended in

front of the second pulse, requires some other way to maintain

electron bunching. (It is also difficult to see how a one-

dimensional ES well can impart significant, net energy to ions

of a second pulse. The electrons would gain energy as they

approached the bunch and lose energy when they passed it.)

Radial stability of the pulse at least requires that the

outward v x B force on the ions not be greater than the inward

space charge electric field:

7) 7e7/AX. e (4.36)~l (1 o + 1 7v

L e
(4.36)

1. If v/Y' 1 e 1, ~ ~ 2 ~

L 7LI

we have radial stability for i< 1.
:i

More quantitive statements regarding the stability are

outside the analysis above. A linear stability investigation

currently underway should give more insight into the important

questions of pulse stability, growth times, and pulse lifetime.
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4.3.2 Ion Bunching. Let us now address the question of the L
initial formation of a non-adiabatic beam collapse condition. An

obvious way to do so would be', of course, to inject a pulse with

rise length of the order of the beam radius. We can argue bunch-

ing in the experimental situation in several ways. Basically we

require 4n electric field gradient or a localized electric field

large enough to accelerate ions out of a region faster than

collisional ionization can restore an approximately uniform ion

density. The electric fields can arise from electron space charge

bunching and/or beam pinching. We consider below space charge

field bunching and defer pinching effects to an instability analysis.

A bunching arises even in an open-ended potential well

(Ficure 4.7) simply because ions are formed at various distances

within the well by collisional ionization. To illustrate this

point, we estimate the ion charge density in an open-ended well

assuming uniform ion production over the well and well velocity

v i L where aLic is the velocity corresponding to an ion

accelerated over the full width of the well. Within a width

dz0 , z 1< z° 0 z2, the collisional ion density, APion' is

1 Ixe I dz0
ion a _

and the density of ions created within the well as a function

of z is

(zmi z 1 dz 1Pion V rZ a°  ZlT
7oTia TN f 'TV-Z) -V (z0

(4.37)

zI < z < Z2
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Figure 4.7 Bunching in a slowly moving open-ended
potential well
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If V(z) z (z-zI) , Ez assumed constant, we obtain

1 m i EzIxel 2 z z (.8ion(z) z 2  (4.38) 
rao

The total ion density within the well is obtained by adding the

contribution of the upstream ion flux incident upon the well,o _ )- o

P,. This contribution varies as (z1  by similar arguments.

In the actual experimental situation, this relatively weak bunch-

ing effect is augmented by the partially closed nature of the

well. Because of radial electron loss, the well near the beam

front is more like that shown in Figure 4.8. (Recall also from

Section 2.10.1 that even without beam loss, the E field reverses

direction behind the front in a finite cavity.) We derive a

simple criterion for bunching in this case, assuming AV/V I i.

If Jion is the z component of the ion current due to the

space charge field and aP ion/t is due to collisional ionization,

bunching will occur when

aiion ) ion (439)

Rewriting this inequality,

Xel e fe I l

z -ra 2 a ra TN

c NN
or

f 0
e L.c 1-.I >1 (4.40)
T c TN*I
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Figure 4.8 Bunching near the anode with a partially
closed well
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with $Lic, the velocity an ion obtains after acceleration over

the full width of the well. If we use the space-charge limited

value for Y f

(MeV) 3/21Zc (cm) 85 a I(amps)

and with

c (cm/sec) 1.4 x 109 [T i (MeV)]i
Li

Equation (4.40) becomes

TN (nsec) P- y 2 [~ ~)~ ](4.41)7
curn dest b isinkAc

The beam current density iin kA/cm 2 m is the proton mass,

and fe A 1/y was assumed.

Let us compare this formula with the Graybill-Uglum data on

the high pressure cutoff for proton acceleration. If we assume

that the experimental beam radius was approximately the cathode

radius, their maximum jb - 8 kA/cm2, Equation (4.41) gives

TN > 3.2 nsec. In order to obtain direct agreement with the

experimental data, the inequality has to be replaced by a factor

of - 10. In view of the approximations in our discussion, as

well as uncertainties in estimating TN' it is not worthwhile in

pursuing a data fit further.

This assumption is strictly valid only until I 8500 477-
(r /d), or until about 15 kA.
c
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We have given a physical argument showing that the longi-

tudinal space charge field is adequate to bunch ions, so when

the beam front passes the beginning of the "pinch-active" region,

z > R/2.4, the radial electric field is no longer shorted out by

the endplate and, if fe > 1/y2, the preformed bunch may begin

synchronous acceleration according to the LPM. Growth of the

bunch ion density will occur until vp > Lic, at which velocity

background ions can no longer be picked up by the coherently

accelerated bunch.

The LPM model is itself suggestive of an instability growth

of bunches; i.e., the beam appears unstable to ion density in-

homogeneities when 1/y2 < f< 1. The instability would be two-

7- dimensional EM in contrast to the well-known ES longitudinal

streaming instabilities. Moreover, such an instability would not

appear to be stabilized by longitudinal beam velocity spreads

since the pinching force is magnetically (or current) driven.

We defer a detailed treatment of instability bunch growth for

later publication.

4.3.3 Acceleration Cutoff Mechanisms. Experimental

evidence indicates that the acceleration process rather abruptly

terminates at a length Lacc (Figure 4.9). The PI data show

L -< 7 cm and the IP data suggest L acc 20 to 30 cm. We now

consider possible cutoff mechanisms and suggest some relatively

simple experiments to check these speculations.

4-43



I I' L
I{

I.4

R. °

ion

If

Ion-Acceleration
~-{ Region

zC_

T NI

I L

z R/ 2. 4 acc

Figure 4.9 Bean-front velocity as a function of distance
from the anode for a beam penetrating a neutral
gas.
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The ion velocity is certainly limited by the electron

streaming velocity, and within the context of the LPM, there

exists a more restrictive kinematical limitation for the ac-
map celeration mechanism since the electron envelope requires time

to contract. This limit would roughly correspond to ion
.. velocities of 0 e/. In view of the constancy of the observed

ion energy/charge state for protons as well as nitrogen and argon,

this acceleration limitation appears unlikely.

Perhaps the most obvious reason is that the accelerating

fields somehow lose synchronization with the ion bunch and
accelerate "fresh" background ions. (This would be the case if
the potential well reached an acceleration value such that field

becomes too low to trap the ions, a cutoff mechanism proposed by

N. Rostoker.) The process could terminate acceleration for the

IP beam where the beam front precedes the ion bunch, or for the

second ion pulse with PI data. In any case, the mechanism is not

relevant to the first PI proton bunch sizce the beam front stays

with the ions.

If a well does accelerate and leaves the coherently ac-

celerated bunch behind, one would expect to observe at appropri-

ate pressures a distribution of ions with energies in the tens

of keY range generated by the well as it proceeds to the end of

the drift chamber. The energy spectrum would, of course, depend

on the acceleration history of the well.
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Let us consider the IP proton data to illustrate this point.

The observed proton energy was 4.8 1 0.9 MeV, corresponding to an L
ion velocity f 0.1c; the drift chamber. length was 50 cm and

L was approximately equal to 25 cm. We need to know the kinetic
acc

energy given an untrapped ion created in a potential well of depth

V as the well moves by it. For simplicity, we consider a well

moving with constant velocity, Sc, and obtain from relativistic

kinematics an expression for the kinetic energy, K.E., imparted

to ions as the well moves by:

K.E. = a 1_0 l-y2 -a 1/ (4.42)

2
where M is the ion rest mass, y = a//T, a = ZeV/yMic , and

1 M
V is the well depth. If a 4 1, Equation (4.42) reduces to K.E.

[ 1Z2 (eV) 2/M c2 1 1/2B2. Thus, for protons, and 8 > 0.1,

eV 1 MeV, the background ion energy from the accelerating well

is 53 keV. The time for such an ion to travel the remainder

of the drift chamber (- 25 cm) would be 78 nsec, during which

time the beam would have certainly neutralized the potential

barrier at the downstream end of the chamber at the 300 Pm

pressure value. It would be important in any experiment to

rule out background ion acceleration from beam inductive fields

which might be important after space charge neutralization.
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IAnother possible acceleration cutoff would obtain if the
beam electr6ns precede the ion pulse by a sufficient distance

to give f 1 in front of the ion bunch. Secondary electrons
e

then "short out" or damp beam envelope oscillations. This possi-

bility is again relevant to the IP ion pulse and the second pulse

for PI. It seems unlikely that this mechanism is operative,

however, inasmuch as it would imply ion energies inversely

proportional to chamber pressure and would rule out multiple

pulses.

A cutoff process relevant to the first PI ion pulse, where
Sthe beam front and ions travel together, would occur if the ion

velocity eventually reaches values such that fe of the background

2
drops below 1/y2 . In other words, the collisional ionization

rate due to the beam electrons and accelerated ions is no longer

sufficient to maintain the f e 0 as the beam front penetrates

the neutral gas. One can easily show that for ion energies

greater than a few MeV, the accelerated ions themselves can

maintainf e 1/2 for typical experimental ion pulse lengths

of 10 cm and i 0.1. In any case, such a cutoff mechanism

would be pressure sensitive and would give a higher energy for

the second ion pulse than for the first. Moreover, this cutoff

could be overcome by a pressure gradient in the drift tube.
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Finally, we come to a mechanism which appears to be a

likely possibility in the present experimental configuration--

depletion of the ion supply behind the accelerating bunch. The

ion supply may be depleted upstream from the pulse sirce ac-

celerating fields moving in space generate a wake ion current

during pulse growth and acceleration. The electrostatic potential

well is reestablished near the anode as the ions are removed by

the wake ion current, and the electron kinetic energy is degraded

downstream, thereby terminating acceleration. Such a mechanism

would explain multiple pulse formation; the bunching and ac-

celerating process repeats as the ion charge density again grows

near the anode from collisional ionization. Also, this mechanism

would explain the inverse dependence of pulse separation upon

pressuze, since TN (pressure)-l"

We express these remarks in a slightly more quantitative way:
t c o Q o
f c ion dt I dt = K (4.43)

i 

0

where
I. = average wave current behind accelerating bunch
ion

dQ i

dt ion production rate within effective supply volume

K effective ion supply

t = time of start of acceleration
0

t = duration of acceleration
acc
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dQ
Let at C1/TN, and

Iion e I b  C C 2 TL. (Z/mi)

e

where T is the average background ion density during accelera-

tion and aL. c is the average wake ion velocity. Then Equation

(4.43) becoihes

- t A t 1 1 (4.44)
t"-t 2c L 1

. If collisional ion production is negligible compared to the I.on
term over At, Equation (4.44) says that At - (mi/Z) , which,

1
in turn, implies that the final ion energy is independent of the
ion mass, in accordance with the data.

An experimental check of the ion depletion hypothesis can

be made by measuring the electron kinetic energy as a function

of time. The number of beam electrons with energies of the

order of the injected energy should drop significantly when the

acceleration is terminated. It is important that these measure-

ments be performed in the chamber interior to the electron-

accelerating space charge fields near the downstream chamber end-

plate.

If the ion supply depletion hypothesis is experimentally

verifield, the obvious question remains as to how to extend

Lac; i.e., how can the ion supply be enhanced? A method of

The bear current cannot "shut off," however, because Ct

inductive effects.
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effectively doing this would be to inject an accelerated ion

bunch into a second accelerating stage. The wake ion current

is inversely proportional to the injected ion velocity, and the U
acceleration time in the second stage proportional tq the in-

jected velocity. In principle, the average wake current could!

be reduced until CL L,  Cl/TN in Equation (4.44), a condition

where acceleration would no longer be supply limited.

|L
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SECTION 5

SUMMARY

The theoretical beam research described in this report has

been undertaken in support of Defense Nuclear Agency-sponsored

experimental research at Physics International Company and has

been reported to the beam physics community and Defense Nuclear

Agency in a series of papers and reports, notably PIFR-105,

-L April 1970. We briefly summarize the contributions of the pro-

gram below.

1. Characterization of the Background Gas Plasma. A

procedure has been developed to predict gas breakdown
charge densities and conductivities and degree of current
neutralization as a function of gas pressure, constituency
and beam parameters. We can thus predict conditions required
for beam pinching or drifting.

2. Definition of High v/y Beam Propagation Limits. An
explanation of the propagation of v/y > 1 beams in terms of
current neutralization or vnet/Y, and the dominant
role of the electromagnetic interpretation of Vnet/Y were
first presented during the program.

3. Explanation of the General Features of Beam Instability.
The qualitative character of beam instabilities as a func-
tion of background gas pressure has been outlined. In
particular, the important "frozen hose" instability of
pinched beams at low pressure has been explained and in-
stability wavelengths may now be predicted.

4. Development of the Concept of Plasma Channeling. When
a beam breaks down the background gas, a highly conduct-
ing plasma channel is formed with a"frozen-in" magnetic
field, which serves to guide subsequent beam electrons.
Understanding the properties of the plasma channel has
important applications in beam bending and combining.
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5. Role of Current Densit Parameter. The importance of
the current density, in addition to the V/V ratio, has been
explicitly exhibited in neutral gas and external field
propagation.

6. Transport in Linear Pinch Plasmas. A complete phenomeno-logi~al exposition of beam transpo-rt in linear pinch plasmas '

has been presented and a model of beam penetration of pinch
plasmas in violation of single particle orbit theory has
been developed to estimate plasma expansion due to trans-
verse pressure imbalance. Criteria for efficient beam
propagation of high V/T, high current density beams have
been presented.

7. Solenoidal Field Transport. A model for determining
upper limits on Bz fields ?or efficient transport has been
proposed along with formulae to estimate beam channel dia-
magnetism or paramagnetism and its concomitant energy loss L
effects.

8. Calculations of the Electromagnetic Fields of Beams
with Various Boundary Conditions. Exact electromagnetic
field expressions for finite beams in drift chambers of
finite radius and length filled with a gas of constant
conductivity and in long conducting pipes with conductivity L
varying with distance behind the beam head have been
developed. Quasistatic electric field expressions have
been derived including variation of beam radius with dis-
tance and time, endplates and charge neutralization.

9. Development of Ion Acceleration Models and Analysis
of Low Pressure Beam Transport. Ion acceleration mechanisms
have been surveyed and a new accelerating process has been
proposed which gives detailed agreement with experimental
data--the electric fields associated with the non-adiabatic
pinch collapse of the beam synchronize the acceleration
process.
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