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A GENERALIZATION OF THE LR A..ORIm

TO SOLVE AX = x BX

BY

Linda Kaufman

Abstract

In this paper, we will present and analyze an algorithm for

finding x and X such that

Ax = XBx (1)

where A and B are n x n matrices. The algorithm does not require

matrix inversion, and may be used when either or both matrices are

singular. Our method is a generalization of Rutishauser's LR method [17]

for the standard eigenvalue problem Ax = Xx and closely resembles the

QZ algorithm given by Moler and Stewart [10] for the generalized problem

given above. Unlike the QZ algorithm, which uses orthogonal transfor-

mations, our method, the LZ algorithm, uses elemenary transformations.

When either A or B is complex, our method should be more efficient.

This research was supported in part by the National Science Foundation
under grant number GJ 299U8X and the Office of Naval Research under
contract number N00014-67-A-0112-00029 NR o44-211. Reproduction in whole
or in part is permitted for any purpose of the United States Government.
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The LZ algorithm is based on three observations:

1) If L and M are nonsingular matrices, the eigenvalue nroblems

LAMY XLBY and Ax = XBx have the same eigenvalues and their eigen-

vectors are related by x My.

2) If A is a triangular matrix with diagonal elements a'4,

and B is a triangular matrix with diagonal elements 01, then for each

.,i=1,2---',n, cti/oi is an eigenvalue of the generalized problem if p1?0.

If for some i, Oi is zero, then the polynomial, determinant (A-XB) 

is of degree less than n. If oi is not zero and the corresponding

is zero, we say that infinity is an eigenvalue. If for -. Me i,

both ci and Oi are zerop, then det(A-)B) vanishes for all values

of X, and every scalar is an eigenvalue of Ax = X B•

3) There exist matrices 1, and M such that LAM and LR4 are

upper triangular and L and M are the products of lower triangular and

permutation matrices.

The first two observations should be obvious; the third requires

explanation. In [18] ')tewart shows that there exist two unitary matrices

U and V -;u' h that

A' UHAV and B' =UHBV

are upper triangular. The symbol r indicates the conjugate transpose

of the matrix U. We can certainly write

U as RL and V as MS

vhere S and R are both upper triangular matrices and L and M are

products of lower triangular and permutation matrices. The matrices

R-A'S "  LAM and R B'S -  = LBM o-re both upper triangular and hence

verify our observation.
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The LZ algorithm has three parts. In the first part, the matrix

A is reduced to upper Hessenberg form, i.e. a j = 0 for i > j+_,

and B is simultaneously reduced to triangular form. The first stage

of' the LZ algorithm is very similar to the first stage of the Moler-

Stewart algorithm, and they may be freely substituted for each other.

The advantage of using our method is that it is about 5/2 faster; the

advantage of theirs is numerical stability. The second stage of the LZ algorithm

is a generalization of the LR algorithm and iteratively reduces A to

triangular form while preserving the triangularity of B. The last part

• of LZ obtains the eigenvectors of the triangular matrices and transforms

them back into the original coordinate system. Throughout the algorithm

stabilized elementary transformations (see Wilkinson [191, p. 164) are

used to insure numerical stability. These transformations are the

products of lower triangular matrices and permutation matrices, and

are easy to compute and easy to use. The permutation matrices are

* designed to help minimize the loss of accuracy in numerical operations.

A fui'ther explanation of' the stabilized elementary transformations used

in the heart of the LZ algorithm is contained in the notation section

* at the end of this introduction.

I. BACKGROUND

As Lancaster [ 8) and Gantmacher [6 ] point out, the generalized

eigenvalue problem often occurs in the physical sciences. Many mechan-

ical and electrical systems are governed by a differential ecuation of

the form

d + Di + Ex = 0



where C, D, and E are n x n matrices and the solution is expected to

hav, the form x(t) = eXtx(O). Solving the ordinary differential equatiop

ents'Is finding the eigensystem of

(X2C + .XD + E)x = 0

If no e.ampirg occurs and the D term is missing, the problem is like

the one given in (1) in X. If the system is damped and the D term

is present, the problem can be reconstructed to have the form of (1)

where now A is the matrix

D I

and B is the matrix

-E 0

In many problems, especially those which describe physical systems,
A and B have sonie special structure and most of the algorithms in the

literature are designed for matrices having specific properties. In [ 9'

Martin and Wilkinson have given a method for AB symmetric and B positive

definite. Crawford [ ] hp!: presented a modification of that algorithm

when B is a band matrix. In [7 ], Golub, Underwood and Wilkinson describe

a version of the Lanczos algorithm for A,B Syimmetric and B positive definite.

Fix and Heiberger [5] have a method designed for illconditioned B which

rcquires the determination of the rank of certain submatrices in A and B.

If symmetry and positive definiteness are not present and B is well con-

-1
ditioned, the eigensystem of Ax = XBx can be found by forming B A and

determining the eigensystem of B -lx = Xx, for wnich there exist

several good methods. For a nearly singula B, Peters and Wilkinson [15]
• 14
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describe an algorithm which approximates the null space of B. This

approach involves determining the rank of submatrices which is often difficult

to do exactly on a finite precision computer.

Recently Moler and Stewart [10] have presented an algorithm for

solving the generalized eigenvalue problem which may be used regardless

of the cornition and structure of the two matrices. Our algorithm

resembles the QZ algorithm in that we generalize Rutishauser's LR

• algorithm [](] in the same way that Moler and Stewart generalize Francis's

QR methrod [5 ] for the standard eigenvalue problem Cx = Xx. Before

we describe our algoritbm in detail and discuss its relationship to the

* QZ method perhaps it is best to revieu the QR and the LR methods. In

practice, the LR method for the problem Cx = Xx is essentially:

1) Reduce C to upper Hessenberg form using similarity

* transformations.

2) Determine a shift X.

5) Find L, a product of stabilized elementary transfor-

* mations, and R, an upper triangular matrix, so that

L(C - XI) = R.

4) sqet C to LCL -I . The matrix C will oe upper Hessenberg.

*• 5) If the subdiagonal elements of C are rot negligible,

return to 2.

6) The eigenvalues of the original matrix are the diagonal

* elements of C.

t hIS used to Speed up the aCri , " h i & ..C.es

according to the ratios of the shifted eigenvalues. In practice, the shift i

* usually an eigenvalue of the lowest 2 x 2 subblock on tne diagonal of

C which has not been triangularized. This policy often g;ives a good

5 Il



approximation to an eigen-,alue of the whole matrix.

The basic QR method is approximately the same as the LR method

with an or~hogonal matrix Q replacing the matrix L in steps 3 and 4.

In practice a double shift implicit version of the QR method is used in

which steps 5 and 4 read

) Find Q, an orthogonal matrix, and R, an upper triangular

matrix, such that

R = QT Q(C - XI) (C -3I) %here X and -

are complex conjugate shifts or a pair of real shifts.H T4) Set C to QCQ

Only the first column of T is ever explicitly formed.

The main advantage of the double shift algorithm is the preser-

vation of real arithmetic for real matrices. The QZ algorithLm also has

this property. With the double step QF and QZ methods the final matrix

is not necessarily triangular, but may have 2 x 2 submatrices on the

diagonal whi,-h must be resolved. The LR and the LZ .-gorithms do not

limit them-:elves to real arithmetic but avoid tie 2 x 2 problem. Double

shift LR and LU methods are not found in practice because of the lack of

a theoretical basis. Francis [5 ] has proved that one iteration of the

implicit double shift qR method is equivalent to two iterations of the

basic QR method. His theorem is based on the uniqueness of orthogonal

transformations which reduce a given matrix to triangular forrm with

positive diagonal elements. This unique.-iss property is missing for

stabilized elementary transformations.

6



II. The LZ Algorithm as a Generalization of the LR Algorithm

The fZ algorithm is motivated by the LR method described above where

the matrix C is AB- . However, we do not assume that B exists.

Briefly, our algorithm is:

1 1) Reduce A to upper Hessenberg form and B to triangular

form.

2) Find a shift X.

3) Find matrices L and *M, stabilized elementary trans-

formations, such that L(A - XB) is upper triangular and

LB4 is upper triangular.

4) Set A to LAM and B to LBM. The new A will be upper

Hessenberg.

5) If the subdiagonal elements of A are not negligible, return to 2.
.th

6) Thj. I eigenvalue is ai./b.. if bii is nonzero.

Again the shift is used to hasten che convergence of the algo-

rithm. In practice it is usually a solution of the lowest 2 x 2 sub-

problem on the diagonal of A - XB which has not been triangiilarized.

If the matrix C in the LR method is AB" , then the matrix L

in the third step of the LR method is precisely the matrix L in the

third step of the LZ method if both algorithms employ the same pivoting

strategy. This fact is verified by denoting the left hand transformation

in the third step of the LZ algorithm by L and noticing that

T(c -XI) = (AB 1 -

= !(A - XB)B - 1
a ui

an upper triangular matrix. Thus L is al.so a transformation which

\7
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triargulari es C - XI; andif the pivoting, stratelyY Is the same,

is the transformation L in step 3 of the method LR.

Moreover, it can be shown that che two algorithms produce

corresponding iterates. If C' denotes the, next iterate in the LR

algorithm and A' and B' are the iterates in the LZ algorithm,

then in the LR 'algorithm LB

C' = L-

and in the LZ algorithm

A'B1- I = LAMM-IB-IL - I -

= IaAB'lL 1

= LCL
1

In Chapter One we will present wu algorithms. The first is a

straight generalization of the LR method. The second is an implicit

scheme in which only the first column of A - XB is actually formed.

The second scheme requires fewer operations and is more stable.

III. NOTATION

To simplify the explanation in the remainder of this paper, we

introduce the following symbols:

For a complex scalar a', IIaIl will denote 1im(')l + IRe(a)l.

IIcvI corresponds to the 1 norm of a, if a is considered as a vector

in the complex plane.

th
In general, the (i,j) element of the matrix A will be denoted

by aij. If a matrix A is the kth element in a sequence of matrices,

it will be designated by A and its (i,j) element will be designated
k

1 ,1
by a2k)

ij



.3.

I£ will denote the subset of the set of stabilized elementary

matrices described in WiLkinson [19] having the form
S th

I row-- 1

where 1 1, or the form

.t column

3.h row 0.. 1

where.n,11 < 1. Blank spaces indicate zeroes.

When a matrix is multiplied on the left by a matrix of £1 of the first form

only its i+. s t row is changed, but when a matrix is multiplied on the

th st
left by a matrix of £ of the second form, its ith and i+l rows are first

th

interchanged and then a multip.e of the new 1 row is added to the

sti+l s t row.

We will often use a member of £I to annihilate an element in

the i+ls t row of a matrix. For example, we may want to zero ai+l. .

If either the current ai+l,j or a ij is nonzero, then there exists

a unique member of £i which will annihilate ai~ * . Specifically,

if ! ai+lJI is less than or equal to [] aij ], we use a matrix of the irst

form whereJi is -ai+],j/ai ; otherwise, we use a matrix of the

second form with Ti given by -a, ./a. .. If both the current ai+1- j

and a are zero, then any membex of C will leave a zero in ai'.
ij



will denote the subset of stabilized matrices having the

form th

i col.th1

1 rov

11 I
.here < 1, or the form

When a matrix is multiplied on the right by a matrix of the first

form, only its i column is changed, but when a matrix is multiplied

on the right by a matrix of the second form, its ith and i+lst

v.olumns are interchanged and a multiple of the now i+1 column is

:tddi to th j ,o1 umI .

iThf :;,'t, T will denote Lite :;et of matrices in upper triangular

form. if' A is in T , then a. . = 0 for i > j. The set kV Uill

denote the set of matrices in upper Hessenberg for- If A is in ,

then a.. = 0 for i > j+l.
'I ii

Each iteration of the LZ algorithm invi-ves multiplying matrices -'

.. Product of transformations. in our discussion of the LZ algorithm

the symbol A' will usually denote the matrix A after all the trans-

formations for one iteration have been applied to it. The symbol A*

will represent the matrix A after some but not all of the transfor-

mations for one iteration have been applied to it.

10
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CHAPTER ONE

In this chapter we shall describe the LZ algorithm in detail.

S As mentioned in the introduction, the algorithm has 3 sections:

1) Reducing B to triangular form and transforming A to upper

Hessenberg form.

*2) Iteratively reducing A to triangular form while preserving

the triangularity of B.

3) Finding the eigenvectors of the triangular system and

S transforming them into the eigenvectors of the original

system.

To obtain the eigenvectors of the original system all the right

* hand transformations must be accumulated, for if L and M are nonsingular

matrices and

LAM.X = XLB4y
- @then

Ax = XBx

where x = My. Thus, if y is an eigenvector of the triangular system,

* My is an eigenvector of the original system.

In the second section of this chapter, where we present the

iterative section of the algorithm, we will describe two algorithms.

• The first method is an explicit scheme which, if B-1 existed, would be

auite like the LR algorithm for AB- 1. The second algorithm is a more

stable implicit scheme. In the third section we prove that the two

algorithms generate and use the same transformations,

11l
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I. INITIAL REDUCTION TO HESSENBERG-TRIANGULAR FORM

In this section an algorithm will be described that reduces a

matrix A to upper Hessenberg form and reduces a matrix B to trian-

gular form by applying the same elementary transformations to both

matrices.

The first step is the standard Gaussian elimination process with

partial pivoting as described in Forsythe and Mole'-.f 4]. We find a

matrix L, the product of elementary and permutetion matrices such that

LB is upper triangular, and then replace A and B by LA and LB, respec-

tive ly.

In the next stage we reduce A to an element of V( while main-

taining the triangularity of B. We begin by choosing an element Ln_1

from £n-l so that replacing A by Ln-IA puts a zero in the (n,l)

position of A. Multiplying B on the left by L n_ introduces a new

nonzero element in the (n,n-l) josition of B. If pivoting had been

necessary, B would still have the same form. Thus A and B now look

like

A B

X XX XX XX XX X

XXXXX OXXXX

XXXXA OCXXX

XXXx O00XX

OXXXX O00XX

We now focus on B, and choose a matrix M frn. n- t

n-I n-1 so that

setting B to BMn_ and A to AMn_ returns B to triangular form and mainti.na

the zero we introduccd into A. Thus we have

12



A B

xxxx x xxxx

x xx x 0 xO*x x x.

xxxxx OXXX
XXXXX OOOXXX
X X X XX 0 0 0 xXX

Oxxxx O000OX

The process is continued until A is in W. As each element in

A is zeroed using a row transformation, a nonzero element is iitrcduced

on the subdiagonal of B whi ch must be immediately annihilated using a

column transformation. Elements are eliniiated from A in the order given below:

x x x x x

X3 . X x x x

X X5 X XX ! 46x x x ,

- Note that pivoting maintains stability but dos not affect the

zero structure of the two matrices any more than a nonpivoting algorithm

would.

- There are other ways to annihilate elements of A and B which

m-ight be more efficient or more stable for any given problem. One such

method involves reducing ;o B to an element of 7 and then using column

transformations to reduce A to an element of W(. The nonzero elements,

which are introduced on the subdiagonal of B by the column transfor

mations, arc eliminated using rcw transformations. Elements of A would

be zerued in the order given below:

! • ;
15



X X X X X
xxxxx i

x x

This algorithm would certainly be more efficient than the first

method described if B were the identity matrix and if A were the

matrix

11 1 1 0 0

1 1.0 0 0

i 1 000

Both algorithms just. described require about 13n 5 /6 multipli- j
cations and 5n/6 additions. In terms of the first method the opera-

tion count can be broken down in the following 'wa:

Additions + Multiplications

1) Redu'ing B to triangular .form

Transformations on A n5 2

Tran'sformations on B n/

2) Reducing A to an element of J( and pre-

serving the triangularity of B

a) Tci eliminate elements in the t

column of A j

Transformations on A (2n-j) (n-i-j)

Transformtions on B (n+2) (n-l-j)

X X X X



b) Total 2nd step

Transformations on A 5n3/6

Transforma' ions on B r5 /2

If the eigenvectors are requested, then, as we explained at the begin-

ning of this chapter, the product of the M's must be accumulated. This

requires n3/2 additions and n3/2 multiplications.

In compariso)n, the first part of the QZ algorithm requires

17n 5/ multiplications, 17n5/ additions, a n square roots. if

eirnvectors are also desired , the QZ algorithm expends an additional

5n3/2 multiplications and 5n3/2 additions.

It is interesting to compare the above figures with the number

-1of operations needed to form AB and reduce this matrix to Hessenberg

form. If iterative refinement is not done, the basic process requires

about 130/6 multiplications and 130/6 additions or the same munber

required for the first section of LZ. If eigenvectors are desired,

n3/2 extra multiplications and n3/2 additions are needed. The figures

in this paragraph assume nonunitary transformations are being used.

The following table summarizes the cost of using the initial

part of the three algorithms.

Ssumary or Uperation Counts

Without Eigenvectors With Eigenvectors

+ X square + X square

roots roots

LZ l3n5/6 lin/6 0 16n /6 16n3/6 0

QZ 54n3/6 54n5/6 n2  3n5 /6 J43n3/6 n2

AB-  13n3/6 ln 5/6 0 1603/6 16n/6 0

15



II. FINDING THE EIGENVALUES

In this section we give an algorithm for determining the eigen-

values of the problem Ax = XBx where A is upper Hessenberg and B is

upper triangular. As in Moler's and Stewart's QZ algorithm, the method

entails iteratively reducing A to upper triangular form while preserving

the triangularity of B.

Each iteration of the iterative procedure is essentially:

I) Find a shift X which could be an/b or an eigen-

value of the lowest 2 by 2 subproblem of A - XB

2) Find a matrix L such that L(A - )B) is upper triangular.

5) Find a matrix M such that LBM is upper triangular.

4) Set A' to LAM and B' to LB. A' will be in IC.

Most of this sectici discusses the construction of L and M and

their application to our matrices to satisfy the requirements given above.

If the matrix T denotes A - XB, then it is obvious that LAM = LTM + XLBM

and that LAM is in V if and only if LTM is in W.

Each iteration begins vith an A which has r.o zero subdiagonal

elements. If after the iteration A' has a zero on its subdiagonal: we can

deflate the problem anJ woik on a lower dimensional subproblem. Hence

the purpose of each iteration is to drive the elements on the subdiagonal

A' closer to zero. In Chapter 2 we will specify conditions under which

the processue are about to describeaccomplishes this goal.

16
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In the 'explicit' version of the algorithm, we start an iteration

by forming T A - XB. Since A is upper Hessenberg and B is apper

triangulea, our matrices look like
$

T B

XX X XX XX XX X

XXXXX OXXXX

OX XX X 0OOXX X

0O0X XX 00 0 XX

00 0 XX 00 00 X

We now select an element L from I so that replacing T by L zeroes the

element in the (2,1) position of T. Then replacing B by L B introduces a

nonzero element in the (2,1) position of B. T and B now have the form

T B

XXXXX XXXXX

OX XXX XYX XX X

OX XX X 0O0XX X

00X X X 00 0X X

O000 XX 00 00 X

Our attention is now turned to B, and M 1 is chosen from 74, so

that replacing B by BMi yields a triangular matriA. The application of

Mto T is delayed. We nou return to T and annihilate 132 by an

element L2 in C 2 Applying the same transfc-rmation to B produces

T B

X XX XX XX XX X

X XX X OX XX X

oxxxx oxxxx

ooxxx oooxx

0 O00XXX0XX X O00 X

0
0ox 0oooo0 00x

ckr ttntonisno trndtoBan i cosn ro17s



The matrix M is now applied to T and 4 is chosen from

so that E is in T. The matrices T and B now look like

T 2

XXXXX XXXXX

X XX XX OX XX X

0O0X XX 00X X X

0\ O X XX 00 0X X

00 0 XX 00 00 X

It is important to notice that the element t is zero.

Future transformations will not touch this element, and hence it will

remain zero throughout the iteration. lurthermore, the situation had

not been influenced by the form of Ml, i.e. whether pivoting had been

necessary to stably zero b21

In general, row transformations are applied to T and B simul-

taneously but columii transformations are applied first to B. If we

write M as MM2 . . M nl, then as we apply M i to B we apply 
M il to

T. Each row transformation will zero an element of T and introduce a

nonzero on the subdiagonal of B. Similarly, each column transformation

returns B to triangular form while introducing a new nonzero element on

the subdjagcnal of T. Delaying the application of the right transfor-

mations to I ensures us that the new nonzero element produced will nct

affect fvture row transformations on T, i.e., T will remain in W. According

In summa-y, the explicit algorithm for each main iteration step is given by:

Set T to A - )B for i l,2, ... , n-l.

1) Fini L. to stably zoro t and set T to LiT and B to L.B.

18



2) If i > l, set T to -1 "

3) Find M. to stably zero bi+l and set B to H4..

Set T to TM .

Set A to T + k..

As in the LR algorithm, the subdiagonal elements of A should

become small and approach zero at a rate determined by the ratio of the

eigenvalues. By using a shift X , we hope to hasten the process.

There is only one major drawback to the algorithm just described:

it is potentially unstable. If the shift X is large relative to the

size of the elements of A, information needed to find future smazll

eigenvalues can be lost when T is explicitly formed. This .ilJ oc(.ur

when the shift is computed from the lower 2 x 2 submatriy ofT AB- z.nd

much smaller elements appear in the bottom of B t:- ni LhVi ol t',! 2-

The following example indicates the deter.Lor'iCor. char ear

occur with the explicit algorithm. The relativs residual is the quantity

P

th
where 0, is the i diagonal element of the fi-al trianguar at. ix

LBM and ai is the ith  diagonal element of the final niia.T-lar sitix

IAM. The significance of this quantity is that we have really: solved
.th

the problem O(A+E)x = a(B-F)x . The i eigenvalue is given by a.10

This problem was done on an IBM 360 machine in double precision.

A B

1.0 2.0 4 .) .0 10.0 15.0
4.o 5.0 6.0 0.0 .10 1  1.*1 -5

. 7.0 8.o 1.o o1

19
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Eigenvalue Relative Residual

-.6999919999436534*1021 .7242069776452181*1017

-. 14287o2-04249628*106 .8643465693672128*0-2

0.0 .2666666666666667

According to these results, zero is an eigenvalue of the problem,

which contr-dicts the fact that A is nonsingular, and in two instances

the relative residual is so large that their corresponding eigenvalues

must s,.lre a problem which cannot be considered close to the original

problem.

The instability mentioned above can be avoided if T is never

formed. We will now describe an implicit algorithm which works with A

and B directly. When this new method was applied to the above example,

the following results were obtained:

Eigenvalue Relative Residual
_.699992000349999*1021 -17

-. 14 0001518315642*107 .605693070547478*10 - 17

.183675576484812 .14 97 153 91676453*10 - 16

The small relative residuals indicate that the eigenvalues solve

a problem which is close to the original eigenvalue problem.

We note that with the standard eigenvalue problem Ax = Xx,

Gershgorin's thcorem (19) assures us that computing the shift from the

eigenvalues of the lower 2 by 2 of A will not giv: us a shift larger

than thc norm of A.

20



In our description of the new implicit algorithm transformations

will be denoted by L. and M. but, as we shall prove, the implicit and

explicit algorithms are essentially equivalent. in the absence of roundoff

error, and except in one instance, the Li's of the implicit algorithm tare

*the L 's of the explicit algorithm. The same is true for the M. 's.
i-1

The implicit algorithm begins by fovming the same gI that was

formed in the explic41t algorithm from all, bll'21 and X.

The matrix L is appZ4ed to A and B and obviously the same nonzero

element is introduced in the (2,1) position of B as in the explicit

algorithm. M1 is again formed so that BM1 is in T , but

this time, M1 is also applied to A. At this point A and B look like

A B

X XX XX XX XX X

X X XXX OX X XX

X X XX XOO X X X

0O0X XX 00 0X X

00 0 XX 00 0 0 X

W,. no-, sv lec-|.L from J_ so Lhat !,, i: in V. When L2 is

applied to B, a new nonzero element is introduced in the (5,2) position

of B which is then annihilated by

In general, row transformations return A to upper Hessenberg

~form and intrcduce a nonzero element on the suadiagonal of B.

Column transformations return B to upper triangular form and

produce a nonzero element on the necond subdiagonal of A. In contra.

~to what occurs in the explicit Pigorit m, in the implicit Mlethd co-

transformations are applied sinultaneously to both matrices. T,, 7.o1"

detail each iteration of the implicit aigoritlkm is given by:

xxxxx xxxx



. . , . , , ..

1) Set Y t al -X:bl and 6 to a2 1

2) If 161 > JYJ, L is the element of Li using pivoting with

i =-Y/6; otherwise LI is the element of 11 withcut pivoting with

-6/Y. Set Ato LA and B to LIB. Set i to 1.

5) Find M,an element of 'i, to stably zero b and set A

to AM. and B to T-M. If i =n-l, stop.

4) Set i to !i+l. Find Li,ah element: of i , to stably

-zero a and set A to L.A h d B to L.B. Return

to 5.

For the implicit method, about 2n multiplications and 2n

additions are required per iteration. If eigenvectors are also requested,

2 2
n multiplications and n additions must Pe spent to accumulate

2 2
the M's. .In contrast, the Q7, algorithm requires 1,5n additions, 13n

2
multiplications and 5n squhre roots per iteration, and 8n additional

multiplications and additions if eigenvectors are requested. However,

it should be pointed out that to keep the arithmetic in ',,he real domain

for real matrices, each QZ iteratioA is a double step. Thus a fairer

comparison might be to compare one QZ iteration tq two LZ iterations and

to keep in mind that even for real matrices LZ uses complex arithmetic.

For complex matrices a single shift version of QZ is probably preferable

to a double shift version of QZ. A single shift QZ iteration would

require 6n2 multiplications and 6n2 additions and 2n square roots and an

extra 3n2 multiplications and 3n2 additions if eigenvectors are requested.

These statistics seem to indicate that the LZ method is the more efficient

than the Z method for complex matrices.

22



it is tilso inter'(2stij4 Lc) compare each iteration of the LZ

algorithm with each iteration of the standard LR algorithm as given in
22

[171. The standard LR requires n additions and ri multiplications

22
per iteration, and n more multiplications and n2 more additions if eigen-

vectors are requested. Thus the basic LZ algorithm does twice as much

work per iteration as the LR method, but only 3/2 times as much work

when the accumulation of matrices to obtain eigenvectors is considered.

The operation counts given above can be sutmarized as follows:

OPERATION COUNTS PER ITERATION

Without With
Ei envectors Ei envectors

Square Square
+ x roots + X roots

2 2 2*Z2n 2n X n5

2 2 2 2Doable QZ 13n- 15 n2n 21n3n

*Single QZ 6n on 2n 9n2  9n2  2n

*LR n2  n2  0 2n2  2n2  0

Always uses complex arithmetic.

The operation counts reported for the double QZ algorithm are

those given in (10]. If the left eigenvectors of the problem with

transposed A and B are compated, a. opposed to the right eigenvectors

of the original problem, then the left hand transformations must

be accumulated and only 18n2 additions and 18n2 multiplications are

required per iteration.

2
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III. PROOF OF THE EQUIVALENCE OF THE IMPLICIT AND EXPLICIT SCHEMES

In this section we will prove that the explicit and implicit

schemes,described in the previous section,generate and use the

same transformations.

Theorem. Let L. and M. represent the transformation in the implicit

method and L. and M. represent the transformations in the explicit
3 3

method. If the next iterate is A' and a' is nonzero for j < i,
then for j < i, L = L and M. =M..

Proof. The proof is by induction on j. By construction LI is equal
to L1 and M1 is equal to MI. We assume that- for

We asum tht_~adMk= Mkfo

k < j, and let

A*= L_ . LAMI . . .M
3-1 1 1 *j-1

B* = L .  .L . .M 
j- L1  V * * j-1

T* = L . .LITMI . . .Mj-1 11 j-2

XXXXX XXXXX XXXXX

xxxxx xxxxx Oxxxx

th
j row O X X X X0 0 XXX 0 0 X X X

X) X U O XX 0 0 0 0 X

S th *:olumn '

24
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* Because T = A- XB, we must have

A* = T*M4j- + XB*

which implies that

A+* = LjA* = L.JTVMj_ 1 + XL.B*.

We know that L T*M is in W. Since L B is also ingI , A
j j-J. j

must also be in 9. But in the implicit method L. is the transformation from £

which returns A* to upper Hessenberg form and if either a* j+l,j 1  or

is nonzero, there is only one element belonging to I. which
a jj- _3i

can accomplish this. Since transformations to A occuring after L do

not affect the j-1
s t column of A, the element a' is nonzero only

if a-j* is nonzero. Since a is zero only if both

and a* are zero, the hypothesis to our theorem
jj-i j+lj-1

assures us that there is only one transformation from . which could

return A* to an element of W1. Since both L. and L. belong to C.,

we know they must be identical. By construction M. and M. must also be

identical and therefore we have proved our theorem by induction.
1

If a' j..l is zero then we have no assurance that row and

column transformations subsequent to Mj 1 in the explicit and implicit

algorithms are identical, but this is of little consequence. In fact,

* the best policy in both algorithms is that as soon as a permanent zero

is detected on the subdiagonal of A', then the iteration should be

discontinued and work begun on a problem of lower dimension. 
If in

*both methods, this policy were adopted, then the algorithms would be

equivalent up to roundoff error.

25
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IV. FINDING THE EIGENVECTORS

After A and B have been reduced to triangular form, the eigen-

vectors can be easily determined. Let cv, and p.1  denote the diagonal

elements of the triangularized A and B and let yJ denote the corres-

ponding eigenvector, that is

(PjA - B)yj = 0

The components yij of y, can be obtained by solving this
-u

triangular system as follows:

Yi = 0 for i <J

yi3 l 1 for i =J

Yii = 1 7 (pak - Yj bk) ykj
o k--i+l

for i = J-l,J-2,...l.

The jth eigenvector of the original system can be found by

multiplying y by M.

If the denominator in the above formula is zero, then it is

replaced by macheps *(IIAII, + II BI.). The denominator is zero when the

ith  and jth eigenvalues are equal. If the numerator is also zero,

then linearly irdependent solutions will be produced. However, if the

numerator is not zero, then yj will have large components and

after normalization yi and YJ will be nearly linearly dependent.

This occurs when the eigenvalue does not have a full set of eigenvectors.

See Peters and Wilkinson[16] for further discussion.
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CHAPTEE TWO

CONVERGENCE RESULTS

In this chapter we will prove several convergence theoremg, each

of which restricts the problem in some way. A theorem might specify some

property of the eigenvalues themselves or characterize the matrices L and

M. Usually both types of restrictions are given.. Many of the theorems

refer to a nonshifting or constant shifting version of the IZ algorithm.

We have found that in most instances when a shift policy has not worked,

the method has been using the same shift for each iteration. ,The chapter ends

with a partial listing of' 5 x 5 eyamples for which the current algorithm,

hhich uses a solution of the lower 2 x 2 problem of Ax = XBx as a shift,

will not converge without the use of an appropriate ad-hoc shift.

We ,ill use Parlett's [11] teiminology and say that a matrix is

an Unreduced Hessenberg matrix (U1N) if it. is an upper Hessenberg matrix

and none of its subdiagonal elements is zerp. To simplify our proofs

ue will assume w,:- are working with the algorithm in its explicit form.

The matrices will be n x n, and unless stated otherwise, we wi-] assume

that A is a UHM ld B is triangular. For uniformity we will assume that

the kt h iteration in the algofithm is given by .

1) Find a shift k"

2) Form Tk = Ak - B.k,

5) Find " such that i'k is triangular.

4) Find Mk such that k B 1" is Apper triangular..

5Set B, L B M Ak =TMK + XL

27
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4 ' ; I- -_ __ _nmI
is a product of matrices Inl.... k, and is a

product of matrices M,l M, 2 . . . . . . .  ,n-i where gach k,, is an

elerment ofi £i, and each Mk,i -is in Ti as described in the notation sec-

tion of the introduction. In this chapter the multiplier in iwill

be denoted by qk,i and the multiplier in Mk, V ill be denoted by

In many of our theorems we will drop the iteration subscript and
designate the matrices Ak,B etc. by A, B, and the matrices A k+l, .l+l'

etc.; by A', B'. The matrices Lk,i and Mk, i will be denoted by Li and

Mi respectiveiy, and their corresponding multipliers by yi and

2.

.
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I. DEFINITION OF CONVERGENCE

In general the algorithm will be said to be "convergent" if, as k

approaches infinity, one of the elements on the subdiagonal of A

k
approaches zero or if for some finite k, one of the elements on the

subdiagonal of Ak is zero. Because of the interrelationships that exist

between AkTk,Lk, and Mk, we will also regard the algorithm as convergent

if -one of the following conditions is satisfied:

1) As k increases, one of the elements on the subdiagonal of

Tk appioaches z'.-ro; or for some finite k , one of the elements

on the subdiagonal of Tk equals 0

* 2) For a fixed i, as k increases, L approaches
k,i

the identity matrix.

3) For a fixed i, as k increases, i approaches

• the identity matrix.

The reason for the first criterion is that in the explicit algo-

rithm the subdiagonal elements of Ak and Tk are identical. The reason

- for the second criterion is that if t~k )  is zero, thenk i will

b Lht-idnity matrix, and th: reason For the third condition is that

if , :: 1, then ai+l)i  will be zero.

* It should be emphasized that when we say IZ converges, we

mean that the problem can be divided into two subproblems of lower

dimension. We do not necessarily mean the algorithm can find all

* the eigenvalues.

29
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II. SINGULAR MATRICES

We begin by proving a theorem which substantiates our claim that

LZ works even when B is singular.

Theorem 1: If B is :'ingular, the LZ algorithm converges in at most

n iterations if exact arithmetic is used.

Proof: If B is singular, one of its diagonal elements must be

zero. If b is zero, then applying L1 to B will not change the 0

in the (2,1) position of B. Thus M1 will be the identity matrix I and

the LZ algorithm will converge immediately.

Now let us assume that b i = 0 and i > 1 and let us look

at the 2 by 2 matrix formed by the i- st and ith rows and columns of

B. It will look like (a )
( 0

If Li 1 involves pivoting this matrix will become0: 0
and, independent of the fort, Of Mi, the 0 will remain in the (i-l,i-1)

position. Future transformations of B during this iteration will not

affect this 0.

If L does not involve pivoting, then we get

i-l

S1il 0

- 30
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If a is zero, M i1is the identity matrix and b isO0

ICIf b is zero, then M. permutes the it an -St lms n

b is also 0 .If b is nonzero and a is nonzero, then

b is either a-(I,_a/(%_ j..b))b or b-(T1, 1b/TI 1 1 a))b . In
i-l'i-l

either case, it is zero if the arithmetic is exact. Again future trans-

formations on B during this iteration can not affect the ze,'o in the

(i-l,i-l) position.

V We see that with each iteration, a zero on the diagonal of' B
moves up one row. Within n-i iterations it must reach the (1,1)

position, at which point the algorithm must converge in one iteration.I

The following lemmas consider the case in which B is nearlyI singular. The quantity E is assumed to be a small number reintive to

the norm of B.

remma 1 I bi :L Ifor i > Iand L involves pivoting

Pr'oof: 1If B* rfopr-serts the matrix

be E or~,, .. ~, and sincell ;i_-I 1, 11 'p ilbe~J

Lemmia 2: If bi1  = -for i > 1 and L does not involve

pivoting, then I K J

31



Proof: If B*is the matrix

L1~ - .. LM 1 *i-2

then we may write

b=a b =b

b b*b

if does not involve pivoting, then

a 
b

i-1,iE E+I . 1b

- aE Ej 1
E +I _1b +1.

and hence

E
i-

Th' 'nevious two lemmas indicate that small elements on the

dihgonali of R creep upthe diarren:41 ^f B. The next IPM gives us an

idea of what occurs when the small element reaches the toD of B.

52
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• mm 3" " '(k)
Lemma If andbL)+i,1 and Mk+, 1 do not

involve pivoting for i < j, then there are constants c. and d. such that

b(k+j) =c.g r nd a(k+ dE1,1 2,1

for > 0.

i Proof: Our proof is by induction on j. For j = 1, the

hypothesis to our lemma implies that

SE
- E ik,1

Pk,1 (k - T - c E
b~k)  + b(k)

b 2,2 + k,l 1,2

* which means that

b(k+l) E (1 + cb(k) c
1,1 1,2 c1E

and if !'k, 2  does not involve pivoting

a (k+l) (t(k) + T t(k ) diE
2,1 2,2 k,1 1,2

and if Lk,2 does involve pivoting

* (k+l) = (k) -" dE.
2,1,,

11 we assume our lemma is true for j, then

q -d E3/ t(k+j)
k+j,l j 11

* which means that

d.c.Eilt(k+
j )

'Lk+j,l = i '

(k+j) + b(k+j)

• 2,2 k+j,i 1,2

5 J
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so that

b =E(c + eb ) _ Eii 1,2 "

If Lk+j,2 does not use pivoting

(k~j+l) = i ( t ( 1-+ j ) + ( k + j )I,1 c " t,,2 c+ 1+jltl,2

(~i~j+1)l

d

If Lk,2 uses pivoting

2,1 5,2

Our lemma did not state the size of the elements c. and d.

and there is no guarantee that they will be small.

Our next theorem is a, count'rpart if Theorem I. We note that B

might be singular.

.2: If T is singular, i.e. X is an eigenvalue of the

problem Ax = XBx then the 1Z al ,ori h, eonverges in one step in exact

arI l-hnet e c.

Pr,,,s ': Th,. l'i r.. i- I ', u ,I" T imnl. be liuar]y indcp.ndenl.

,,r ol;c ;.:omv ubdiagonal ,.lemen' ol' T would be zero thus implying T is

not a U11M. The algorithm constructs a nonsingular matrix L such that

U = R, an upper triangular matrix. Since the first n-i columns of T

are linearly independent, the first n-i columns of R must also be.

Similar]y, since T is singular, R must also be. This means that the

last column of R may be written as a linear combination of the first

n-i columns, and because the last component of each of thr. first n-i
th

columns of R is zero, the last component of its n column must also

be zero. Hence the last row of R is T , the null vector.
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Now in the next step of the algorithm we construct M so that

B' LBM is upper triangular and set A' T.' + kB' where T M.T ;h~ T

Since the last row of R is eT , the last row of T' must also be eT,

and hence a' must be zero. I I
n n-i

Our theorems and lemmas indicate that in the fuiture we can safely

igmorc problems where either A or B is singulr. However, we would

like to include singular cases in the next few theorems wherever

possible because many of these theorems not only guarantee convergence,

they also give some hints about rates of convergence.

S 5



l...GlOlI , CONVERlCGE"NCE,

In Lhis section, we phall provc several global convergence

theorems. Most of our results refer to a constant shifting algorithm, although

in practice our shifts are usually different for each iteration. How-

ever, we have often round .Lhat when'a shift policy has not worked, the

same shift is beipg used for each iteration. Thus, our theorems do

have practical significance although they do not refer "o any actual

implementation of IZ.

We begin by proving four similar theorems. They all consider

the sequences of matrices jAk}, {Bk , {I , { IT (Tk and lSk}

B-B

iSk=L Tk

aund - and - r nonsin ular for all' k and San k are upper

t.rianwue.ar Tor all s.

Th.' or. m ;: I I i i.= non.:in u.L:r,

_~~ =A-1 -

k- -k

an B

B

then m

VUK =(A -x1 )B- (A -XkB)B-  (A -k B )B-

kkkk

=I



Proof: Since

Tk Lk_i(AkI 'kBk-i)Mk_
1

and B k - 1  -

Bk k - "k -1

we have 1 A = (A kl k 'k~::il k-i
TBI -1

= VlI(I- XKBi) Bl k-"

which implies

Sk-ITkBk-l =(A -kB)B -iVk-l
k-Ik

Now VkUk Vk A  SkBklUk-l

=V TEUk-i k Tkk Uk-

= (A - KB )B- 1 VklUk_

k~~~ I -~k-

S:(A X kB x ( - 1 _ B~ . . (A X 2 B )B-1(A - iB ) - . i

Corollary 5.1. If the conditions of Theorem 5 are satisfied

o and X= p for all k, then Vk e I is in the direction of ((A - pB)B1 )kel.V

Proof. By Theorem 3. VkUk  ((A pB)B . Since U kis
(k)k

upper triangular, Ukel = i,i-.1 , and hence

5



V u(k) (( BB ~
Vk 1,1 '-1 ((A -B)B)e I

Theorem 4. If A - XiB is nonsingular for all i, then

Uk-1 Vk-  : B (A -1 )-l.

1 B)B(A BXB (A - .l .B(A (AB

The proof of the above theorem parallels that of the previous theorem.

Corollary 4.1. If the conditions of Tneorem 4 are satis-
-T

fied and X = p for all k, then Vk e is in the direction of
k k n

PBT) - l Tk
A- B )en -

Proo.*. By theorem 4

Uk-Vk [B(A - pB)-) k

which means that

VkTUkT ((AT -BT)-IBT)k

Since Uk  is the product of upper triangular matrices, the matrix Pk-U
T must be

(k)
lower triangular which implies that Pken kp e and hence

= Pnn

VkT pXk) en = ((AT- pBT)lBT)ke• I

If the matrices described above represented the matrices in a

version of the LZ algorithm, which did not allow row interchanges, then A

for all k, the matrix Vk would be unit lower triangular.
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Thcorem 5. If B is nonsingular,

Uk 'i& '........... B s 1

and

Wk MM 2 ........

then

WU =B(Aj -x(A
Wk k 1 X kBl)i 1  -klB,) . . . . Bil(Al - XB 1 ).

Proof. Since

Tk = -lA - k-Al)k

and

-1 k - B - ~ -

we have

l~lk= iMk1l (A k-l - Xk B kAc

is=Wk1 1B~ 1(A I- XkB~w

which implies

Wk-1BI k =T B 1 (A - X kB )Wkl

NowWU=W B7S
Wk k k-1KK Uk-l

-Wk-A~!' lkSk~kl

v Wk iBj T k-k

B71 (A -X kB )Wk~lUkl

-1(A - XkB ) U-1(A X XkB ). . . . ), .B
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Corollary 5. " 1 If the hypothesis of Teieorem 5 is satisfied and

k
for all k, then is in the direction of - - e

Proof. By Theorem 5

k
wk (B-1(A - pB))k k

Since Uk is a product of upper triangular matrices, u = (k) ek 1,1 i Ji

which means that

i e = (B - B )
Wk l,1,

Theorem 6. If A - kB is nonsingular for all i , then

Uk -w = (A - 1B)-l B(A - X2B) l B. . .(A - Xk B)B

The proof of this theorem parallels that of' the previous theorem. Note

- t



Corollary 6. 1. If' the hypothesis of Theorem 6 issatisfied

and A for all k then Wk Te is in the Tieto o '(T pT) -1 ke

Proof. By Thcorem 6

k k ((A-pB)_ B)k

which means that

k k ~T(BT (Ap BY)k

Since U kis a oroduct of upper triangu1ax matirices, QU is lower'
k(kk

triangular and equals q e . This in turn implies that
Qk 2n ni ~n

-T q e -B)(k) (BT(AT 1B)lk 1

If' ie again relate the above theorems to the LZ algorithm, then Wk

would be unit lower triangular if column interchanges were not kemttd

If D is a diagonal matrix with diagonal elements d1 ,Jd, ... d

then the Moore-Penrose pseudo inverse :of D), is the diagonal matrix,denoted by

D +, t..ith elements z ,z2 .  Zn where

Z, z d -if d. i i: nonzero' -

and Zj 0 if d i is zero.

+
,We wiii dr4,-note by va-projection matrix D D.

j o j and d. is nonzero.

(O elsewhere
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The next main theorem is a modification of one that appears in

Wilkinson [19] and Parlett [11] among other places. Our version of the

theorem extends their' results to cover singular matrices. If a matrix

X is said to have an LU decomposition, then there exists an upper

triangular matrix U hnd a lower triangular matrix L such that X = LU.

This decomposition is unique.

Torem .If F is a matrix with eigenvalues of distinct ,

modulus satisfying

dl I> Id21 > . . .. > Id n1> 0,

and if F can be written as XDY where Y X -l is the diagonal

matrix of eigenvalues and Y has an LU decomposition and X has an

Li. decomposition LxU , then the lower triangular factor of the LU

decomposition of Fk goes to L@ as k -*.

To facilitate the proof of Theorem 7, we first present a

few lemmas.

Lemma 4. If L is a lower triangular matrix and D is a diagonal

matrix whose elements satisfy

'ldl > Id I> . . . > IdmJ> Id I = d " " I I

42
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Proof'. 11S=DL, then =0 for i>ior i> m

and S io dt . elsewhere.

Now the last n-rn columns of S are zero because for j> m,

s. =0 for i> m
2-A

ana

s 0 for i < j, i.e. for i < m.

Multiplying S by D D zeroes the last n-rn columns of S and leaves the

first m columns untouched. Since the last n-rn columns of S are

already zero we have S = SD D or

DL = DLD +D.I

Lemma 5. Let L be a unit lower triangular matrix, and let

D bv the matrix ol Lemma 4i, and K +1C

then 0 - I + K R where E k~ -C) as k -)'Yx.

kk

8!k)- 0'Ofor i < J or > m

L~ ~ ~(d./dY elsewhere
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The Fact ULat Idi/djI < 1. for i > j and j < m

a:id d./uI - L for" i < in, togl,h.r with the fact that L is unit lower

riangular implies that g Ij - 1 for j < m and

(k)
ij ->0 for j < i and j < m as k approaches infinity. Thus

Gk = 0 + Ek where Ek -+0 as k approaches infinity.

Lemma 6. If U is an upper triangular matrix and D is

the diagonal matrix of Lemma 4. then
UD = IUD

Proof: If G=T, then

g.- = 0 for j > m or i>j

and i = elsewhere.

if H =GD, then

hi = 0 for j > m ori >
1,3

and hi.j = ui d. elsewhere.

The formulae just given for hi1 j are exactly those which

would be given for e where E = UD. Thus H = E. Moreover, the last

n-m rows of E are zero so that §E = E. Thus

§E = H or §TD = W D.

Wz can now give the proof of theorem 7.

Proof of theorem 7: Assume the eigenvalues of the matrix

F are of distinct moduli and assume F can be written as F = XDX
-

where D is the diagonal matrix of eigenvalues and both X and X

have UJ decompositions. Let L U be the LU decomposition of
x x

X and let L U be the LU decomposition of X
- . It can be easily shown

yy
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that I)= X

= XIt b .U
X , D by Lemma 4.

O =- XDLyD DUy

y y

If Gk DLyD ,then by Lemma 5 G = + Ek  where Ek goes to 0 as

k goes to infinity. K

Thus, F x(O + F)Dy iI
k

L Ux(4 + E )D kJy

L(4 + U xE; X)UAy by Lemma 6.

1
Since UxEkU I goes to 0 as k goes to infinity, f + UxEkU I goes

to f as k -*co. Becaue fU Dk is upper triangular, the lower
x y

triangular factor of Y .pproaches Lx I as k becomes large.-

Theorem 8 If

(1) B is nonsingular

= • (2) LZ is used with a constant shift p. A

(3) The quantities ki-p for i =l,2,...n have distinct moduli

(4) Either no row pivoting is required and there exists a matrix

11

) X such that (A - o B)B-I  XDX - %here D is diagonal and, '

both X and X I have LU decompositions or no column

pivoting is required and there exists a matrix X such that

B(A - pB) = XDX " where D is diagonal and both X and -1

have LU decompositions,

then LZ converges.
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Proof: We let F =(A pB)B and apply Theorem 7 and find that

as k increases, the lower triangular factor of the LU decomposition

of approaches L I. By Theorem 3 this lower triangular factor is

x
given by Vk . If V ' Lx andVk+ - Lf andVk+I = Vk I , thenl7

k l

must be approaching the identity matrix which means that LZ is convergent.

If F = B-(A - P B) then by invoking Theorem 7 and Theorem 5

we see that Mk must be approaching the identity matrix as k -+ which

means that LZ is convergent. U

The condition that both X and X have LIU decompositions

is partially satisfied since both (A - pB)B"  and B- (A - p B) are

unreduced Hessenberg matrices. Parlett [14] has proved that if F is a UHM,

then there exists a matrix X such that XJX is the Jordan canonical

form of F and X has an LU decomposition.

The condition on the distinctness of the moduli of

the eigenvalues can be relaxed somewhat. Wilkinson's [ 19] treatment

of multiple eigenvalues for the LR algorithm can be applied directly

to the LZ algorithm.
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IV. ITERATION AND LZ.

Theorem 8 indicates that with a constant shift

the LZ algorithm converges for problems with shifted eigenvalues of distinct

moduli if row pivoting is not required or if column pivoting is not

required. Some of these rest.-ictions can be weakened by investigating the

relationships between LZ and various iterative procedures. This approach

has been taken by Poole [13], Parlatt and Kahan [12], and Buurema [ 1i

in studying the 0j algorithm.

Let us consider the LZ algorithm with constant shift p for

the problem having eigenvalues X. and let us denote X,- p by d.

and assume that the fX.'s are ordered so that

Idj d,> Id _. . _In>~I >~n

Theorem 9. If any of the following 4 conditions is satisfied

then the algorithm converges.

1) Idl$ 2  1 , is not orthogonal to the right eigen-

vector of (A - pB)B-  associated with d and row pivoting is

never done to zero t 1  for all k.

2) Idi / Idn', e is not orthogonal to the left ei,,.n-
n-n1

vector of B(A - pB)- , associated with 1/d and row pivot'ng
n

is never done to zero t(k) for all k.n,n-i

3)1 dl1 i(#21, e1 is not orthogonal to the right eigen-

vector of - _A - AZ B)assAoiated with d -nd column nivoting

is never done in zeroing b~k  for all k. m

* h4) I dnl $I dn.4, en  is not orthogonal to the left eifeen-

vector of (A - pB)-I B associated with 1/d n and column

pivoting is never aone to zero b(k) for all k.
n,n-i

47



Proof. The proof of (1) entails looking at the power method

for solving (A - PB)x =d Bx given by

1) Set x0  to e and k to O.

2) Find y such that By=x k . I
5) Set z to (A - p )y

4) Set xk+l z/11_ Z 11
If i, -x kl=/ is small then stop. t

otherwise, set k to k+1 and return to 2.

If I dl>I d2 and e I is not orthogonal to the left eigenvector of

(A - pB)B-1 corresponding to dl, then the power *vthod converges and

xk will be that eigenvector. We note that x. is in the direction

of ((A - pB)B-l)kel, which, according to Corollary 5.1, is also the

direction of Vkel. Thus if the power method converges, it should be

clear that

~~V +el c V e +f-l
Vk+l-l ckkl +-k (2-1

where ck is some scalar and fk e as k co .1k
Since Vk+I 

=

and k = l,1 ,..........-l where Li is in ikI
which means that Lk either has the form

0
x

0

0

48



or the form

* ~ ~ ~ -k,l *****

o x

5 0

0 i

then either *

Vk+l e Vkl - ek,lVk2 (2 -2)

or V e =V - 1 Ve
k+L~l k ,l k_ 1

If pivoting is never done to zero t(k )  then equation
2,1

(2-2) holds for all k and Vk 1  is linearly independent of the other

columns of Vk, and if equation (2-1) is also satisfied, kl st

be approaching 0 and Lk, I must be approaching the identity matrix,

i.e. the LZ algorithmn must be converging. If equation (2-1) holds but

the first column of V is approaching a multiple of the second column

of Vk' then we cannot assert that LZ will converge. It is possible-

for equation(2-l) to hold without ',l converging to the identity matrix.

The proof of (2) entails looking at an inverse iteration scheme

for finding x such that (AT - pE)x d 'x . The iteration scheme can

be summerized as follows:

1) Set x to en, K to O.

2) Find z such that (A - pBT)z BTxk

3) If z is large, stop.

4) Set x to z/jjzl , k to k+l, go to 2.

491i



-- 1

I

If Idnl < I d 1 and e is not orthogonal to the left eigenvector of

B(.A - pB)-I corresponding to 1/d , then the inverse iteration scheme

will converge and z will be that eigenvector. The vector x is always

T T -1Tin the direction (A - pB ) B e which, abcording to Corollary 4.1,

is also the direction of ve. Hence if the inverse iteration scheme

Vk -nconverges, then for large k we may write

-T e cVk -Tn + (2

k+ln e k-n -k

where k is some scalar and fk approaches e as k approaches infinity.

-Tn-Since VkVl V k

.T T T

* eTe Lnn. 1 rwhere X ps a dense matrix

sen-

then either n e o

t-T e of VTe + IjncV (2-4)

*I

:, n-P
or Vk en c j "V e *  qn-~~-

J=l

wer ne c st are products of the multipliers involved in the iteration

st ep.
If pivoting is never done to zero t~ k  teeuain(-4)

holds for all k and the last column of Vkv must be linearly independent

oi the other colulmns of Vk . In this case if equation (2-3) is satisfied.,

then knImust be approaching zero and LZ must be converging. If



~ I

~ 5 -T
8 equation(2-3) is satisfied but the last column of V is approaching

a linear combination of the other columns of VkT as fast as it is converging

to an eigenvector then we cannot assert that LZ will converge.

The proofs of (3) and (4) closely resemble those of (1) and

(2). For (3) we consider the inverse iteration method for finding x

i such that Bx = d(A - pB)x and use corollary 5.1. For (4) we consider

the power method for determining x such that B..(AT - pB)-lx =d.X and

use corollary 6.1. I
S Theorem 9 requires more elaboration. It would seem that because

the matrices Vk and Wk have determinant 1 for all k, the linear depen-

dence of the columns of these matrices and their inverses should not be

* an issue. However, if we look at the singular values of these matrices

we can get a different picture of the situation. It is possible for these

matrices to become singular at the same rate as one of their columns is

,nnroaching, an eigenvector. If the last two columns of V T are approaching
k

the ::am,, v-Lor, then wc cannot assui ,: that pivoting will stop and the

a-4,oritlun will convcrg. Thin fact is brought out by the following

* 2 by 2 example.

Let B be the identity matrix and A the real matrix

aI

where 1bj > j al > 0. If LZ is applied to the above problem with
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aL 2/b as the -,hift poli(y, the shift is always 0, and A and B

are left unchanged by each iteration and the algorithm does not converge.F -TThe least singular value of Vk is given by the smallest eigenvalue

value of

(..*j
3. .-a/ b

a/b 1 + 2

which is t kwhere a
2 a 22 + a-g -I V2

2 b-2
t b=

Since 0 < la/bi < 1, Itl < 1, -which means that as k increases, Vk

approaches a singular matl;x and hence its columns become multiples of

each other.

It is ironic that we seem to require that e be nonorthogonal to

a right eigenvector of a UHM and that e be nonorthogonal to a left

eigenvector of a UHM. If the situation were reversed, there would be

no problem, for if e were perpendicular to a right eigenvector of a UHM-n

then the eigenvector must be 0.

The last interesting fact about Theorem 9 is that it suggests

pivoting schemes which should converge although perhaps very slowly.

If we find that pivoting is necessary to stably zero t or bIh
2,1 ~2.,

we could change the shift so that pivoting is no longer necessary. We

could then view the matrices as representing a new problem, and hope-

fully the two new largest eigenvalues do not have the same modulus.
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V. C 0biTEREXANPIES

This section contains a partial listing of 3 X 3 examples for

which the TZ algorithm will not converge when the shift is the eigen-

value of the lowest 2 x 2 subproblem of Ax = XBx closest to

a . The counterexamples share several characteristics:
n n

1) The subdiagonal elements of A and the matrix B repeat

themselves every thiL'd iteration.

2) Row and column pivoting are necessary at each stage of the

process.

3) The shift is the same for each iteration.

* The first property guarantees nonconvergence. The second

property is a necessary condition for the first property: if at some

stage pivoting is not. required to maintain nune rical stability, then

cycling will not continue as before. The third property indicates

that the constant shifting hypothesis of Theorem 8 is realistic in terms

of actual computation. In fact, a constant shift may be useful in

practice L:; a warning r' nQnconvergence. It is significant that no

condition is specified for the eigenvalues of a problem. There are

counterexamples in which all the eigenvalues are of distinct modulus.

SThe first class of examples is the basic one. In this case the

maitrices initially look like

A B

(a b c) 0 0

h 0 0s0O

0 f 0( 0 m
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where the following conditions hold:

lal < Ihl las/g < Ill iJ/gI < Ic1

las/hi < aig !"m/g1 < Ill Ia I < Ic.I
lbI < Ill Ibmh/(gf)! -- Il IbnVsl < Vle

Ibm/fl < lg! ibmh/(cf'l < lb I < Ic!.

If B is the identity matrix and A is the matrix

1 2 3

4 0 0

then the above conditions are satisfied.

For p'oblems in class 1 the shift is zero for each iteration.

After one iteration the matrices are

A B

f 0 0(a0 bhc (g 0) (0 : 9)
After two iterations the matrices look like

A B

am/Vg bhnl(cs) f) (m 0)

0 h 0) 0 s)•

After three iterations the matrices return their original forms.

The second class of examples consists of those problems whio,

fall into the first class after one iteration but initially look like

54
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' I
A B

S (2 (>
c d 0 0 g

0 h 0 0 "0

where

s Il < Icl .y di < h
xlp-2 g M Iq y d)slM < Iml.

The first shift is 0 and after ,one iteration the matrices of this

class have the form

A B

a g 0 J

S0 s 0

0 f 0 0 m

where a and b are complicated expressions.

The third class of coiinterexamples includes problems in which A

and B are initially given by

A B

(2 ( m f P.
The shift is d/m and after shifting, a22 and a are zero. If.

this new .problem is in class 2, then in one iteration before the shift

has been added back A and B would look like
x y h m 0

f 0 (

0 c 0 0 0
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where x and y are again nbnsimple expressions. Shifting back sets

and a to d. From here' it should be clear that the matrices

will repeat themselves everythird iteration if their elements satisfy

the appropriate magnitude relationships.

If in the previous example, a22' were initially zero, the

first shift would again be d/m . Performing one iteration and

shifting back set the element a2 to d and revert us to the previous

example.

These counterexamples indicate that assuming the algorithm

uses a constant shift is rpsonable and that aiven

this assumption, the structure of L and M is important. The above

examples were all constructed by assuming that pivoting was necessary

to maintain stability at every step of the algorithm. Indeed if

pivoting ceases at some stage, then "ccling". will not continue as

before. It is doubtful that without an analysis of a given shift

strategy we can weaken significantly the criteria given earlier for global

convergence. Moreover, it is extremely doubtful that such an analysis

could give us more than assymptotic convergence results.
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APPENDIX

1JMERICAL RESULTS AND FORTRAN PROGRAM

The algorithm described in Chapter 1 has been implemented

in a Fortran program. The program is designed to find the eigensystem for

complex matrices, and consists of two subroutines which must be called

separately. The first subroutine,GELHES, reduces A to upper Hessenberg

form and B to upper triangular form. If A and B are already in these

forms and no eigenvectors are required, then calling GELHES is unnecessary.

The seccnd subroutine GLR finds the eigenvalues and, if requested, the

eigenvectors of the system. The parameters involved in the subroutine

calls are described in the comments at the beginning of each subroutine.

Both subroutines use the subroutine RABS to compute the norm of a

complex number.

S It should be emphasized that the variable MACAEPS is machine

dependent. It is 1-t where the machine gives t digits in base p. It

is set for the IM 360 double precision mode.

S Our program has been finding eigenvalues which correspond to

problems close to the given problems: our relative residuals have always

t on clo:., to the precision of the machine.

SFor our test examples the total number of iterations has been

roughly 5 times the order of the matrices. In general, for a matrix

of order n, the time required on the IBM 360 model 67 in Fort: an H,opt=2,

has been about .75n3milliseconds if eigenvectors are computed ard .4n3

---------------------- --- -,-.. are -".4
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The example given below were generated using integer arithmeti2

by multiplying two bidiagonal matrices by random nonsingular transformations. The

problems were run on 6he IB! 560 Fortran G compiler. The relative

residual is the quantity

I Axi - i

oilI IiAII. + Jail I IBII.,

th
where ai and B. are the i diagonal elements of the triangularized

A and B and x. is the ith ei.envector.

In the first example A has rank 4 and B has rank 5 and their

null spaces intersect. Since the rank of B is less than the rank of A,

there is an eigenvalue which might be regarded as infinite because a

small perturbation in B would yield a large eigenvalue. Indeed an

16
eigenvalue of 10 was found. The problem is also "ill -disposed",

because for any vector x in the intersection of the null spaces,

any scalar X will satisfy Ax = XBx , and may be considert-d

an ei.,nvalue oa the problem. The example also has three

!nuin,/inite. (!ig:nvaluns whic'h the alj;orit, war able to find accurately

up to the precision of the machine despite the presence of the two

spurious eigenvalues.

In the second example there are two double roots. The first

corresponds to a quadratic elementary divisor and, as expected, is

accurate only up to the square root of the machine precision. The

second corresponds to two linear elementary divisors and is accurate

almost up to the machine precision.
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Example 1

TPE MATRIX A:

575.+ -116.1 20. -460.1 -30.+ 456.1 40.+ -352.1 -165.+ -332.1
')55.+ -356.1 30)5.+ -324.1 -67n. 184.1 780.+ -200.1 235.+ 100 .1
345.+ -10n.1 590.+ -44i0.1 -4011.+ 352.1 625.+ -412.1 -100.+ -16.1

210.+ -200.1 -215.+ 298o.1 190.+ -292.1 -115.+ 258.1 115.+ 24.1

-545.+ 156.1 -115.+ 282.1 -30. + -276.1 -40.+ 222.1 115.+ 2438.1

THE 1IATRIX B:L

69.+ -3n~7.1 38.4 504.1 -680.4 -F12.1 143.+ 567.1 36.+ 462.1
241.+ 9.1 4q.+ 103.1 28.+ 36.1 139.+ G3.1 -76.+ -468.

219.+ -333.1 70.+ 558.1 -8.+ -504.1 167.+ 5E7.1 -24.+ -72.1

&46.+ 414.1 96.+ -675.1 -56.4 630.1 130.+ -693.1 -52.+ 18.1

-91.+ 189.1 -112.+ -207.1 7G.4 306.1 -177.+ -252.1 -3.+ -37?.1

'3' TRUE EI(SEIVALUE
1 IIrFl?!ITE EIGEIALUE
2 0.5nlfl0nOO!00m)O0D TOq+ o.5goon00001000 00 1

3 -0.snnnononn0no0of)o0+ -0.SO0fl0000MO000D 00 1
4 0.16rG66flG6A7D 01+ -0.66F669666666671) 00 1
5 AN!Y SCALAR

I -0.832nL432370 03+ -n.206212EqA563S070D 03 1
'22 -0.139921151742R80 03+ -.1.1137853971'13304D 01 1

3 - "1.GI;237347G32f661vQD 03+ -0.371414242540361D 03 1
hi n.1hi300'nl000100 91 -0.791qnaQ1On00O0D 03 1
5 -0.1143622f1052Mn3f12+ 0.57161503285263D-lit I

1 -(P.575137q27367557D-17,+ -f.778^3600362525nn-14I
2 1.13P70,32977712r59) 93. n~i4hj~sqnn5l715531D 03 1
I A.1n13!897710%fiV?!D flF;+ -. 27!Y39?337PF25C9 013 1

.219j 00000 3+ r!. 7)3 n 0:). 0.)sofoOr) 03
I - r. 17 r 42 3 316 l12r)- 12 + - 22r'17471121f)91,P-13 I

* Cy~;:~r ' I~iA~~i 16+ 0.307242540"12r",0f I I

-99+ ~ T~0~0 0 0. 501flo in(IPOr .10 iP
3 1, -in nnn0 fl1 n ) o,)+ -0. 5nnl0000o!0r~nDf 00I

5 2 r.r.~CC667 n1 -40666 5666166ItD) q~ I

1 .9n42."791l0~ .4553436201lRIATIVE ERrOR RFLATIVE RESIDUAL rHO. OF ITERAT11-S i;
2 ~' 76 7CE7'7Th15 1.0617735",971364i5D-16 0
3 ~.71~!;1725fI5G2fli .112f;3P158'u55119D-15 1

I; .4t57'r9757?)!)-15 0. 107361IC263n'.'797D-15 7
-1 ?). '~0015 1016 4 t I 3'D- 16 0
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Example2

015F MATRIX A:

311.+ -339.1 397.. -903.1 >.-1032.1 -25n.+ 2410.1 -112.+ -F72.1
6 ~ 4.+ -272.1 -1053.+ 118.1 127.+ -694&.1 % ~8 .10 1F3.+ -30S.1

-2ti.+ -77.1 531. 1 315 7f.. 139 -n'.1 -37. 1.I -4.+ 141
-10. 19. ! . -531.+ 11.1 115.+ -17.1 -37.+ -541.1 -34.+ 11 1

-125.. -70q.1 -560.. 1057.1 153.+ 1641 455.+ 52.1 135.. 212.1

THE MATRIX 9:j

*180.+ 11. 1 360., 147. 1 7%.+ 1V It. 1 -180.+ 0.!1 -1144.+ 96
163.+ G.! -5!t13.. 69.! 210.+ 46.1 588.+ 241.1 -142.+ 9)6.1
90.+ -61.1 -415n.. -147.!1 13R~.+ -109.1 450.+ -11.!1 -6. + -1214.1
12.+ RO. 1 336.+ -SI.!I -21t. + 19.!1 -258.+ -56.!1 -60.+ It. 1

*12.+ 77.' -3514.+ -635.1 16..+ -28.1 312.. -52.1 30.+ -28.1

1P

TRUE EIGErNvALUE
*1 n.11r~f6SGG6G670 01+ -f.133333311333333D 01 I1~'
*2 0.1166HUGGG63CF667D 01+ -0.133333333333333D 01 1

3 -0.nnq00fl00000Ti9OD 013- 0.100009000000000rf) 01 1
It -9.9fl9009nfl9-0nn09AC! 01+ -0. 1nfl9Pl!)fl.9fl00O0D 01 1

A\LPHIA
1 -o).22l2252593P.r7241n 14+ 1.2531143717?9Ii74 014 1
2 -0.670083541237466P. 91+ .79141.C00D03 I
3 -0. 42?": f1 t111 5C611SP 03. A.IW83r0q169'233D 9 1;1I4
14 0. 11r)9f71441237S19r) 93.. f.5170 117663112187D n3 I
5 -().114G.^15335nl4n13fl 01+ 0. 7/15n31133)6120 02 I

1 n4+3362 9V~l01 0. 5?73r;3n3R922S33') 91 1
2 -P.5527,15'71l 153r?n f13+ -n. 1Irs'213in02 1

I '.6575715;7194251fl n2+ -n. 1'1751352120) 93 1
It -0.270321:13571n14P n2. -01. ");321)C1!3 14 .9

~ 113112' ' r023512r1 2f 00+ -0. 70591497511 ?13f' 01 I
Cn!:PIJTEP) E irEN~VALLJE

1 0* 1166e -FF--S'3722D 91. -0. 1331333351q%731'D 01 1
2 1.11rrr'CGG71Ollf11 -11+ -0.13,333331657911D 01 1

it -',.9fl!)nonw009000%-D 91' -n9 999q9999 f'7D 00 1
q f. 3 r Ifn0 V('00 1 q'"t D -1 + -0. 919919Tn99197SD 00 1

RELATIVE E2flOR RELATIVF RESIDUAL N;O. OF ITERATIC-'!S)
1 *'.7n-3)75f~j2r914t1D-01 9. 530711 nI;625)'3li3fl-1F 9
2 .. 71333S729I;7'W.971n-(fl" 0.. '&i19G6i& -l 1
:) r.2n121792321331Cr)-'L4 '.16Wt5715391171 4350-15 3
!I %.3921i59Ii723 i82D-15 %.127136297Sq;S55D-15 1
S 0.??0i ilI95f3f-I!, %'~11461227341460lD-16 1
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SUBROUTINE GELHES(NDNAB.WANTXXEPSAEPSBI

C FHIS SUBROUTINE REDUCES THE COMPLEX MATRIX A TO UPPER
L HESSEN8ERG FORH AND REDUCES THE COMPLEX M4ATRIX B TO
C TRIANGULAR FORM
C
C INPUT PAkAMETERSz
C

VC ND THE ROW UIMENSION OF THE MATRICES AtBX
c
C N THE ORDER OF THE PROBLEM

C
4,C B A COMPLEX MATRIX

C

C WANIX A LOGICAL VARIABLE WHICH IS SET TO *TRUE. IF
C THE EIGENVECTORS ARE WANTED* OTHERWISE IT SHOULD
C dE SET 10 .FALSE.
C
L UUTPUT PARAMETERS:

C A ON OUTPUT A IS AN UPPER HESSENBERG MATRIX, THE
C OR14INAL MATRIX HAS BEEN DESTROYED
C
c b AN UPPER TRIANt;UJLAR MATRIX* THE ORIGINAL MATRIX
C HAS BEEN UESIROtVED

C X CONTAINS THE TRANSFORMATIONS NEEDED TO COMPUTE
C 1HE EIGENVECTURS OF THE ORIGINAL SYSTEM
C
C EPSA THE NORM OF A*THE PRECISION OF THE MACHINE
C
L Ei'SB THE NORM UF B*IHE PRECISION OF THE MACHINE

C**** THE VALUE OF MACHEP IS MACHINE DEPENDENT*******
C*****IT IS SET FOR THlE IBM 360 MACHINE, DOUBLE PRECISION*****

C PROBLEMS bvITH TIS SUBROUTINE SHOULD BE DIRECTED TO:

C LINDA KAUFMAN
C SERRA HOUSE
C COMPUTER SCIENCE DEPARTMENT
L STANFORD UNIVERSITY

COMPLEX *16 Y9A(NON0JvB(NOvNO),X(NOND)
REAL'4i AN9 I'll %r,RA-%0-SDEPSA EPSMACHEPANO~,3NORM
LJGICAL WANTX
NMIN-i

C CUMPUTE EPSA#EPSb



NACHEPa2*22D-16
ANORM 0.O
BNORM -0.
DU 5 1-19N

AN! - O
IF II.NE.1) AN! = AOSMA(I-1)
BNI -0.
DO 3 Jm1,N

ANdI -ANI + RABSIA(IJ))

ONI -BNI + RASS((IJll
F3 CONTINUE

IF lANI.GT*ANORMJ ANORN aAN!
IF (8NIoGT*BNORMJ BNOR4 -SNI

5 CONTINUE
IF (ANDRM*EQ.O.) ANOR9M - NACHEP
IF £BNOIU4.EQ.0o) BNORM a I4ACHEP
EPSA = MALHEPc'ANORN
EPSB - ACHEP*BNORM

C

DO 30 l=19NMI

IPI=I+1
DO 10 KmIP1,N

C*KABS(SlK, I))
IF (C.LE-01 GU TO L0

U-C

10 CONTINUE
IF (D*iEQ.U*D0) GO TO 30
IF 'O.LE.RABS(B( I,!))) GO TO L5
00 k. J-1,N

.A(I J)A11J

00 12 JIs,N

yza(IIj)

L2 B(lIvJ)-y
L5 00 20 J*IP1,N

Y-B(IJ/S(!I)
IF (RASlY.EQ*0.D0J GO TO 20
DO 18 Kz1,N

18 A(JvK)-A(JK)-Y*AI K)
19 001L9 K1IP1,N
L9 B(J.K)4B(J#K)-Y*B(EK)

20 CONTINUE
30 CONTINUE
C
C INITIALIZE X

IF (*NOT*WANTX) GO TO 40
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00 38 1=19N

DO 37 J=1.Nis ~ ~~38 (,)'0D,.0

C REDUCE A TO UPPER HESSENB~kG FORK
C I
40 N142-N-2

IF (NM2.LT.11 GO TO 1001

JM2 NM1- J
JP1=Jti

IF (RAS(A(IJJ).LE.RABS(A(INLJ))) GO TO 5OA
DO) 45 KEJN

Y=A(IK)
AC I KJ=A(IItKJ *

45 ~ A(IM1.K)=Y4
DO 46 K=IM1#h

Y=8( ItK)

46 B(iMIKl=yII IF (RABS(At1,J)).EQo0.DDJ GO TO 58 :
52 A(IK)=A(I.K)-Y*A(I11K)

54 B(ItK)=8(!9K)-Y*B(LMlvKl

58 IF (RASBS(iiM1)).LE.RABS(BCII))) GO TO 70a DO 60 K=LtI
Yxfi(K#I)
B4K, 1I-=8-(KtIMI)

60 B(K#IMI)=Y
DO 64 K=1,N

Y=A(K, I)
g A(KtI)3A(KoIMI)

64 A(KIMIi=Y
[F (.NUT*WANTXI G0 TO 10
DO 68 K=I#N

Y=XCK, I)
X[K, I)=X(K, IM)

68 X(K#IMII)Y
70 IF (RA6S(B(IIMI)J.EQ.0.D0) GO TO 80

DO 7Z K=1.IMI
12 8(KtIML)=B(KvlNI)-Y*8lKtl)

8(11t ,I M) m-O.0of0.D00J
DO] 74 K=iN

74 A(K,1Mj)3-AIK#IMk)-Y*A(KtJ)
IF i.NOr.IdANTX) GO TO 80
00 76 K=IPN
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80 CONTINUE

9U CONTINUE
LOU RETURN

END

w5KUuiINE GLRINDtNNoAtbt*tX.ITER*EPSAPEPSB*WANTXEIGA*EIGB)

C
C THIS SUBROUTINE SOLVES THE (iENERALIZED EIGENVALUE PROBLEM
C A X. - LAMBDA B X
C WHERE A IS A.CUMPLEX UPPER HESSENBERG MATRIX OF ORDER NN AND B Is
C A COMPLEX UPPER TRIANGULAR .MATRIX OF ORDER NN
C
C

C INPUT PARAMETERS
C
C
C NU ROW DIMENSION OF THE MATKICES AtBtXtITERvEIGAtEIGB

C NN ORDER OF THE PROBLEM

C A AN NN X NN UPPER HESSENIBERG COMPLEX MATRIX

C B AN NN X NN UPPER TRIANGULAR COMPLEX MATRIX
C

C * 'ERROR RETURNP IF. AFTER 10 ITERATIONS, THE NORM OF THE
C SUBDIAGQNAL OF A HAS NOT SHOWN A SUFFICIENT DECREASE
C
C X CONTAINS TRANSFORMATIONS TO OBTAIN EIGENVECTORS OF
C ORIGINAL SYSTEM
C IF.CoELHES HAS NOT BEN USEU, X SHOULD BE THE IDENTITY MATRIX
C
C WANTX LOGICAL VARIABLE WHICH SHOULD BE SET TO .TRUE. IF EIGENVECTORS
C ARE WANTED. OTHERWISE IT SHOULD BE SET TO FALSE
C
C EPSA THE NORM OF A TIMES THE MACHINE PRECISION. NEED NOT BE
C SET IF GELHES HAS BEEN USED
C EPSB THE NORM OF B TIMES THE MACHINE PRECISION. NEED NOT
4; BE SET IF GELHES HAS BEEN USED
C
C
C OUTPUT PARAMETERS
C
C

C w THE ITH COLUMN CONTAINS'THE ITH EIGENVECTOR IF EIGjNVECTaRS ARE
C REQUESTED
C
C ITER AN INTEGER ARRAY OF LENGTH NN WHOSE ITH ENTRY CONTAINS THE NUMBER
C OF ITERATIONS NEEDED TO FIND THE ITH EIGENVALUE
C

C EIGA AN NN ARRAY CONTAINING THE DIAGONAL OF A
C

C EIGB AN NN ARRAY CONTAINING THE DIAGONAL OF B
C

C THE ITH EIGENVALUE CAN BE FOUND BY DIVIDING EIGAII) BY EIGB(I)
C WATCH OUT FOR EIGBIl) BEING ZERO
C
C******** THE QUANTITY MACHEP IS MACHINE DEPENDENT*********

* C*,******* IT IS SET FOk THE 4 BM 360, DOUBLE PRECISION********



q

C PROdLEMS WITH THIS SUBROUTINE SHOULD BE DIRECTED TO
C LINDA KAUFMAN

C SERkA HOUSE, COMPUTER SCIENCE DEPARTMENTJoC STANFORD UNIVERSITY

L.OMPLEX*16 A(ND,N0),8(NOtND),E1GA(ND),EIGB(ND)
CIJMPLEX*16 StT#W#iYZOCMPLXtCDSQRTtTS
INTEGER ITER(NU)
CUMPLEX*.6 ALFMBETMOSLDENANNANMIN.ANM1MI
REAL*8 EPSA#EPSbvSStRvOL~oNEW 1
COMPLEX*16 X(NDqNDJ
REAL*8 MACHEP/2,.UD-16/,DODID2,EO.EIRABSOABS
LOGICAL. WANITX
N=NN J

IF (N*LE.1) GO TO 100
10 1 TS=o

NML-N-1
1L 00 12 LB-=29N

L-N42-LB
IF(RAaS(A(LL-1))oLE.MACHEP*(RAaS(A(L-1.L-11I

* *RABS(A(LLJ))) GO TO 13
12 CUNTINUL

L 1
13 IF(L.EW~.N) GO TO 100

IF (ItS.LT.301 GO TO 20
IF (ITS.GT.iO) GO TO 16

OLUi=O. DO
D0 15 1=19NM1

15 OLD=OLD*RABS(A(I*A.i)
GO TU 20

16 NEWO0.OO

19 NEW=NEW+RABS(A(1+19I))

JLNIF (NEw.GT.U.5*OLD) RETURN 1

C

C CHECK FUR 2 C0'4SECUTJVE SMALL SUBDIAGONAL ELEMENTSI

20 IF(N.EQ.L41) GU TO 25
D2=RABS(A(N-1,N-1)

E1=RABS(A(N#N-11)

01= RABS (A(NN;)I
DU 24* MB=1,NL

M=N-M3
E0=EI
EI=RABS(A(MM-11)
u001
01=02
02-RABS( A(M- 19M-1)
[F(EU*Ei.LE.MACHEP*O1*LDO+Di.02)) GO TO 26

24 CONTINUE
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I26 CONTINUE

C

COMPUTE SHIFT AS EIGENVALUE OF LOWER 2 BY 2I

ANMLMIzA(NMiNML)
S=ANN*B(NM1,NMI)-(AINNM1))*B(NMiNI
hz2A(NNML)*B (NN)*( ANMbN*U( NM~INMI)-
I B(NMIN)*ANMlMl)
Y=4 AtjMi9'I*BNtN)-S)/Z.
Z=CDSQkT( Y*Y*W)
IF (RA8S(ZJ.EQ.o.,DOJ GO TO 36
DOzY/i
IF(DO.LT.0.DO) Za-Z

36 DEN-(Y*Z)*B(NMI#NNI)*B(NtN)
WkA(iIM)*OEN%-8(MM)*( (Ye+)*S-WI)
LZA(144I*N)*DEN
GO TO 40

C
C AD-HOC SHZTF1
C
38 W-AIN,N-L)

WaA(MtM)-DCMPLX(RAS(WJRABS(Y))*BIMN1

40 CONTINUE
ITS= ITS*l

C
C FIND L AND M AND SET A=LAM AND B=LBM
C

NPL=N+1
LURI=L
NNORNz N
IF (*NOT*WANTXI GO TO 42

LOI&I=L
NNURN=NN

42 DO 9C I=M@NMI
JxI+j

C
C FIND ROW TRANSFORMATIONS TO RESTORE A TO
#; UPPER HESSENBERG FORM. APPLY TRANSFORMATIONS
C TO A AND B

IF t1.EfQ.M) GO TO 50

L=A(J. I-I)
50 If- (RABS(W).GE.RABS(Z)) GU TO 6G

C
C MUST PIVOT
C

Du 55 K-INNURN
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Y=A( I,9KI
A(I ,K)-A(J#Ki

Y8t I Kh-(J9

:8 (J,Kh=Y :

IF (1.GI.Ml A(I91-1)=A(Ji-i)
GO TO 62

DO 64 K=I#NNORN
AIJ@KP=A(J#K)-Y*A( IK)

64 B(JpK)=8(JpKJ-Y*d(ltK)
IF (I.GT.Ml A(J,1-lJz(O.0,o0 DO)

C,
C PERFORM TRANSFORMATIONS FROM4 RIGHT TO RESTORE 8 TO
C TRIANGLULAR FORM
C APPLY TRANSFORKAT IUNS TO A

65 IF (RA8S(B(JtI)J.EQ.O.DO) GO TO 11
IF lRABS(B(JJJJ.GE.RABS(B(JIJi) GO TO 80

C MUST PIVOT COLUMNSz

DO 70 K=LORivi
Y=A (KJ)
AtKtJ)=A(K, I)
A(KI)=Y
Y=B (KtJ J
B(K#J)Zf3(KI)

70 B(KtIhY
IF (I.EQ.NMI) GO TO 75

A(J4I,.Ji=A(J*II I)
A(J4-II)=Y

75 IF(.NUT.WANTX) GO TOJ 60
DO 78 K=I,NN

Y=X (K#Ji
X(KJ)=X(K, I)

78 X'&'Ij=Y
80 If- (RABS(b(JtLl.E(J.0.o)0 GO TO 90

DO 82 K=LUR19J
A(KI )=A(KI)-L*A(g(,J)

82 B(KtIJ=1(Kl)-L*B(KtJ)

IF (i.LT.NMI) A(L+2,I)=A(I.2,I)-Z*A(1&2tJ)
IF(.NOT.WANTX) GO TU 90
0O d5 KtNN

85 X(K,I)=X(KI)-L*X(KtJJ
90 LONTINUE

GU TU 11

100 CUNTINUE
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EIGA(N)=A(NtNl
El Gd(N) =BINNl
IF (t4.E(i.1) GO Ti) LIU
I TER(N)'ITS
N=NNI
IF (NoGToIJ GUi TO 10
ITER(1)=O
GO TO 100

C1 FNTWNXRTR

C FIND EIGENVECTORS USING B FOR INTERNkDIATE STORAGE

Li5 CONTINUE
AL i M- A(INMp M
BE("-B(NMPI)

IF (L.Ew.0) GO TO 1.40

120 CONTINUE
LI =L41

0O 130 JfrLLN
SL = SL + (BETN*A(L.J)-ALFM4*B(LJ))*BCJN)

130 CONTINUE
0 = 8ETM*A(LL)-ALFM*BlLtL)
IF (RAS(D).EQ.0.) D (EPSA4EPSB)/2o
B(L*Ml - -SLID
L = 1.-I

140 IF (LoGI.0) GO TO 120
N=N-1
IF (MoGT*0) GO TO 115

C.
*C TRANSFORM TO ORIGINAL COORDINATE SYSTEM

C
N = NN

200 CONTINUE
0O 220 I=1,NN

S =0U.
0O 210 .1=1gM

S = S +' X(I..J)*BtjtN)
210 CONTINUE

X(I.m) -S
220 CONTINUE

Ms -I
IF (N.GT.0) GO TO 200

C NORMAL IZE SO THAT LARGEST COMPONENT 1*

MNa NN
230 CONTINUE

SS=O0.
DO 215 11NN

R =RABSIXtIMJ)
IF [R.Lt.SS) GO TO 235
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235 CONTINUE
IF (SS.EQ.0.ajjo GO TO 245
DO 240 11.oNN*

XEi.MJ = X(1910/0
240 CONdTINUE
245 M= 1

IF (MoGT-o) GO TO 230
RETURN

S tND

* REAL FUNCTiON RAaS*s8t)
COMPLEX16 ZtZZ
REAL*8 T1.2i ,DABSI
EQUIVALENCE(ZitT1i)

RAtS-DA8S(T~ IJ+*OABS(Tl2))
RETURNI

69



Acknowledgements

I am deeply indebted to my advisor Professor Cleve Moler

for his guidance, encouragement, and enthusiasm. I thank him for

patiently explaining to me the intricasies of the QZ,QR, pnr. 2'

algorithms and for challenging me to find the LZ algorithm. I

am grateful to Professor George'Forsythe, Professor John Herriot,and

,Professor Gene Golub for reading the manuscript and to Professor

Michael Osborne for finding an error in one of the earlier versions

of one of the convergence proofs. I would also like to thank

3,Mary Bodley and Fran Brumbaugh for typing the manuscript.

70



nsa - - - -m -L, ,m M •

REFEREWES

1. H.J. Buurena, "A Geometric Proof of the Conver-.rice
of the QR Method",Report TW-6,, M . . ,
Instituut,Groningen,1orth East Netherlar2,1968.

2. C.R. Crawford,"The NumerIcal Solution of tlne
Generalized Eigenvalue Problem", University
of Michigan Ph.D. Thesis,1971.

3. G. Fix and R. lelberger,"An Algorithm for the
l1-conditioned Generalized Elgenvalue
Problem",to be puhlished in .Um. Math..

4. G.Forsythe and C. Holer.r Zolution o Linear
AI ebraIc Systems,PrentIce-Hall,inc.,Englewood Cliffs,
flew Jersey,1967.

5. J.G. Francis,"The QR Transformation-A Unitary
Analogue to the LR Transformation",
Computer Journal 4,,265-271,332-345,1961-1962.

S"l. F.R.Gantmacher,Aipplication f Ila Theory 2t Mar 0es

Intersciences PubIishersInc., flew York,.959.

7. G.H. Golub,R.Underwood,J.H. Wilkinson,"The Lanczos
Algorithm for the Symmetric Ax=XBx Problem",
Stanford Computer Science Report 270,March 1972.

8. P.LancasterLarbl,.a Matrices and VLbrgting S,
Pergamon Press,!iew York,1966.

9. R.S. ;4artin and J.. Wilkinson,"Reduction of the

Symmetric Eigenproblem Ax =A Bx and Related
Problems to Standard Form",Numet. Math. 11,

99-110, 19F8.

10. C.B.eHoler and G.W. Stewart,"An Algorithm for the
General ized ftatrix Eigenvalue Problem Ax-ABx"o
Stanford Computer Science Report 232,August 1971.

11. F3.144. Parlett,"Glohal Convergence of the Basic QR
Algorithm for Hessenberg, !4atrces",tL1h m 22,
803-817,1968.

12. ------- and '. Kahan,"On the Convegrence of the Practical
OR Algorithm",Proceedings of the I.EP Congress 1,.1 ,
A25-A30., Iq,8.

13. ------- and W.G.Poole,"A Geometric Theory for the QR,
LU, an( Poi'er Iterations",Berkeley Computer Science
Technical Report,1071.

71- - ~ -- _ _ _ 'i



J

14. B.N. Parlett,"Canonical Decomposition of Hessenberg
Sa t r ic es", at Cop.._ 21, 223-227, 1967.

15. G.Peters and J.H. Wllklnson,"Ax =M x and the Generalized
Elgenprohlem",Silam. J. of t-uner. Anal. 7,479-492,1970.

16. G. Peters and J.H. Wilkinson,"'Eirenvectors of real and
complex matrices by LR and 11R trlangularizatinns",
Iuer. Math, 16,191-204,1970.

17. H. Rutishauser, "Solution of the Eigenvalue Problem with
the LR Transformation", National Bureau of Standards

Applied Hath Series 49, January 1958.

18. G.W.Stewart,"On the Sens;tlvlty of the Elgenvalue Problem
Ax= )Bx", Center of Numerical Analysis, University of
Texas Report 13, March 1971.

19. J.H.WlilkinsonThe l.jehric IeA ue Problew Oxford
University Press,1965.

I

72


