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ABSTRACT

This report contains a discussion of a formulation of Galerkin's
vector in isotropic linear elasticity and an employment of this vector
in describing concentrated loads and moments. Various forms of these
concentrated phenomena are developed by the familiar process of super-
position and then by a limit solution technique.

The report is primarily based on work contained in the author's
doctoral dissertation written at the University of Illinois at Champaign-
Urbana. In addition, methods and results obtained from several unpub-
lished papers by Professor Marvin Stippes of the University of Illinois
are incorporated.
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SYMBOLS

C k(D) Cauchy's operator

D Differential operator (4)

D D.D. or V2
13.

E Strain dyadic

F. Body force field

gi Galerkin's vector

I Idemfactor

L Concentrated load

S State of stress

S Stress dyadic

T. Surface tractions1

ui Displacement fie.d

V Region of elastic space

)V Surface of V

Convention del operator (•.; i)

4\(D) Determinant of Cik(D)

i. Kroenecker delta

Giji Permutation symbol

.kLamets constants

Poisson's ratio

Mass density
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1. Introduction

The equations of equilibrium of an isotropic linear elastic
body V are called Cauchy's equations and may be written as

Cik(D) Uk + pF. = 0 (1.1)

where Cik(D) is called Cauchy's operator and is defined below

C.i(D) D 2 F. + (% + 11) DiD (1.2)
3-k =jD ik + (\+ k

The Cauchy equations are formulated with the assumption that V is a con-
tinuous medium. This ultimately leads to the restriction that ui is at

least piecewise continuous of class C2 throughout V. A solution to
Eq. (1.1) which satisfies this restriction is called a regular solution*.
The form of a regular solution to Eq. (1.1) depends upon the shape of the
body and the type of loading imposed.

Singular solutions exist, however, which fail to exhibit this con-
tinuity at a point, along an arc or over a surface of V. The purpose of
this report is to discuss solutions which are singular in some deleted
neighborhood of one or more points in V. Such a solution has one or
"more isolated singularities and is called an isolated singular solution.

As an isolated (nonremovable) singular point x in V is approached,
the limits of u. and their derivatives do not exist. In fact, the dis-

1

placements and stresses at x are unbounded. The isolated singularity
may be considered as the manifestation of some type of load or moment.
In this report the physical significance which may be attached to various
forms of isolated singularities will be discussed.

It will be readily seen that at least three useful functions are
served by furthering one's understanding of isolated singularities, of
Eq. (1.1). There are numerous cases in which loading is closely approxi-
mated by a concentrated force internal to a body. Also, sini.ular solu-
tions may be used as influence functions to obtain regular solutions.
This is done, for example, in Betti's [11 adaption of the method of
singularities to isotropic elasticity. Finally, the investigation of
point defects in metallurgy involves these solutions (e.g., see Simmons
et al [21).

"*Additionally, if V is unbounded it is required that the u1 = 0(1/r)

and Uki =0(1/r) uniformly in the spherical coordinates , as r

approaches infinity.
1



First, a solution of Eq. (1.1) must be obtained. Because the

Cauchy equations are elliptic (assuming that C ik(D) is positive definite),

techniques analogous to those found in potential theory may be used [31.

In Paragraph 2, Cauchy's equations ai-, written in biharmonic form. This

is possible through the employment of the Galerkin vector which is

developed in Paragraph 2.

2. Galerkin Vector

A very concise derivation of the Galerkin vector was presented

by Somiglkana [41. Choosing a transformation K ij(D) so that

u. = Kik(D) v1  , (2.1)

the Cauchy equations may be written as

Cik(D) Kkm(D) vm + -F. = 0 (2.2)

Now it is specified that %m is the matrix of cofactors of Cauchy's
vector; that is

12 2-
K. 2! ijk pmn Cjm k= ,[(. + 20,)D2ip (+ )DiDp

(2.3)

By definition

Cik(D) Kln(D) = (D) (2.4)

where (D) represents the determinant of Cik(D)

96

(D) = (. + 21ý) D 6 (2.5)

Thus, Cauchy's equations may be written in terms of the variabl \'v,

which will be called an au%:illary vector function

2(. + 2.,) 1)6 v. + :F. = 0 . (2.6)2. I
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Finally, a new auxilliary vector function is defined as

gi =7 •2 v. (2.7)

so that

ui = I,(% + 2,1,) D'23 - (% + u0 ) Dmigm (2.8)

A particular solution to Eq. (2.6) may be found by using the concept
of influence functions which are analogous to Green's functions in poten-
tial theory. An insight into this approach can be gained from the one
dimensional string problem. Consider a string L units in length which is
fixed at both ends and which lies along the x]. axis. If the string,

under a tension t, is subjected to a transverse unit force applied at
X= s, the equation of equilibrium is

tx9  s 0 (2.9)

S(x1 - s) is the Dirac delta function defined by Chen [5]

- ).0, for s

, for x1  s

I F)X,, ,) dx 1-

A solution of Eq. (2.9) indicating the vertical displacement of tile
string is

::2 K(xl, s)

where K(xl, s) is called an influence coefficient. Importantly, Eq. (2.10)

can be used to solve nroblems conc"rning distributed transverse loadings
q(xI) because it can !x shown thoc the resulting equilibrium equation

has the solutior
L

:~,',,j7 R(Xl, s) q(s) c (2.1u-

3



A solution to Eq. (2.6) which corresponds to a body force pFi can

be determined in an identical manner. To avoid complications introduced
by finite regions, a body Ve of infinite proportions is chosen. Imagine
a body force pFi which is only nonzero over a finite region V. Then,
if S(x, 6) is the solution of

(D) S ) + Z5 -3 ) = 0 (2.12)

where o3 (x - _) is the volume Dirac delta function, then a solution to

Eq. (2.6) at a point x is

q = pfS(x, i) PFi() dD() (2.13)

Fritz John [6] presents the general form of S(x, 6). The particular
form of S (x., P) for Cauchy's equations was found Eo be (71

S(x, ý) =aR(x, 9) (2.14)

where

2pi) R(x, x. 2 2+ \2 -2

41' 2 (% + 20• 1- i (2-ý)+(3 ý

(2.15)

Thus, a particular solution to Eq. (2.6) is

q= ]' 0 Fi(-Q) R(x, _•) dD() (2.16)

In this form the Galerkin vector qi in Eq. (2.8) yields a solution u.

which represents cti displacement within an infinite linearly elastic
body V0 because of a body force field pFi acting only within a finite
region V.

4



3. Limit Solution

The purpose of this section is to employ the limit solution
technique of Sternberg and Eubanks [81 to develop and discuss various
types of isolated singularities in linear isotropic elasticity.

-Again, entire three dimensional space VP is considered. This time,

imagine a sequence of regions V(n) ) each containing the origin and a

corresponding sequence of body forces [pFi(n) such that (Fi(I) acts
(I) (2) (2) (n)

over region , pF over V etc. It is required that each pF be of
casc2. 1,(n) hsbe

class C in eP and be zero at any point outside of V . It has been
(n)shown that, under these circums:a'rnces, a particular solution u. (x)

(n) (1-exists for each V and corr doriding body force field pFi IIn

addition, as n approaches infinity the length of the longest chord

within V(n) must uniformly approach zero.

The transformation represented by Eq. (2.14) is now employed,
yielding

(n) (n)uk nW(x) = i gi (3.1)

Thus, if •. is a typical point within V(n) and x is any other point within
V -

gi.(n = O fR(x, .r-) -Fi n)) dV(n)(:) (3.2)

The limiting case of Eq. (3.2) is defined as

GiQ_) Lim (n) = Lim o ((x, P) ) 0) (nI)() (33

= 1 _x = _ m co F .i ( _) d V ( .

Richardson [71 showed that, in general,

() g(n)
G = Lim gi j0 (3.4)

5



Therefore, Uk computed from Ck represents the limiting solution, a dis-
placement field with an isolated singularity at the origin. The forms
which this solution assumes will be discussed in later sections.

R(x, -) may be expanded in the Taylor's series for three variables
slhown belots

IR(x, ) = A(-I)i+ i j k irj k-" = E i!j!k! 1)D)D23 (r) 1 293 r -

i,j,k=O

Thus, Eq. (3.3) becomes

DG(x) D, (-ID+j+k i j k ( i 01
i!j!k! D 2 3ki k dV(n)(.)i~j~k=0n-, •~

(3.6)

Note that the sunmmation sign may be removed from under the integral sign
because Taylor's series is uniformly convergent. Defining the moment

integrals M.ijk which are of order i+j+k and operators ,ijk. by

M ijk Zý l' . . F(n)(.)_ . j k. k (IV0 (
1 _ dV '(1 ,3.7)

i j k k . - l ) iDI D .) ).8

i!j!k!

where i+j+k = p ,?hich is the order of the operator iallows one to
kJrite the Galorkin vector as

7 _. i ,r'% '••3. '

"," t 'Mer ,!t I , . Wdd it ,, !'. ' I ,,', ,
r~h eori. no *, ,, tho . ... i i- ' \'k"1' tor "' on, r j , -- "fIC

1o 'l:,; [:,~~e: ¢tM t li i a



It is of interest to investigate the nature of Mijk. Note that

if the sequence of regions V(n) and the corresponding body force fields

pFi are symmetric about all axes, then the integrals _M with an
odd i, j, or k are zero. The shape of the region V~n is arbitrary so

(n)

symmetry can be assumed; however, pF( are not generally symmetric.

Later in this report some manifestations of symmetry of pF (n)willwi l
be discussed.

In Paragraphs 4, 5, and 6 it will be shown that Eq. (3.9) may be
written in the form

G i o (r)m 1 + ,j"(r)m + ijk (r)mijk + (3.10)

4, Fundamental or First Order Singularity

The term in Eq. (3.10) corresponding to i=j-k.0 is

1 I or Lim f Fin)(1) dV (n)(4.1
-- n --4 co , ---

From Eq. (2.8) it is seen that the displacement vector is expressed in
terms of the second derivatives of gi' Therefore, if g, is of 0(r) as
r -) 0 then u. will be of 0(1/r) ao r -) 0. This case shall be called the

1

first order singularity. Superscripts on G. will indicate the order of
singularity. Defining

¢(r) =or, m. - ira fpFifn)(n) dV (n)() (4.2)

produces the first term of Eq. (3.10)

G(x)- (r)m ' (4.3)



It is readily noted that Eq. (4.2) may be interpreted as the Galerkin
vector leading to a solution which corresponds to a concentrated load
acting at r = 0 if it is specified that

Lim F _i(n)(P) dV (n)Q)_ = L (4.4)
n _)cof n

In the following, the fundamental displacements, displacement gradients,
strains, and rotations are given. Throughout the remainder of this
section, i/jjk and i, j, k will not be summed.

The strain-displacement relations are given by

I [4(1 - (3)2 2U.= 8• - 2 (3 - 4v) m.x.
- )r3 

4(

+ (3 - 4 v) i x2 + m.x.x3 +m•XiXk (4.5)

i'k j ~ t 1]'

The displacement gradients are

11 3 ) 3 3 2 2
U. _- (I 4 (v - 1m)xmi + m.x. 2m+ m13C- 2mJxx - xix

2 2 2 2

11(41- 1)m.x.x2 + (4 v - 1) m 2x x k 2ixi xt+ X ] (4.6)

However, for the off-diagonal terms,

I ! 3 3 2 2
U " &,(1 - I')r 5 L xi + (4 1, 3) m.x. 1 (4• , 6) m.x.x. j m.x.x.

+m x 2 L (4v 3)mxx 2 3mkxik.xx (4.7)
Smi t mi jxki ll

Next, the strains are found to be

1413 3 3o2

E1 1) M I) m.x 3 m.x- II I x 3 2m.x.x. 2
S 8 .'..)r 5 .j 2I 1tixIk

± (4' - 1 X mi ± ) m.xxK i (4.8)



For the off-diagonal terms,

1 3  3 2
E.. (2v - 1) m + (2v -1) mn x + (2v' 4) Inm.X.x

l v)r5 1 _ 1 j

+ (2v'- 4) m'x'x2 + (2v 1) mx x2 (2v-1) mix x2 - kXijXk E

(4.9)

Finally, the rotations are

0 = :_vI (I - v) m.x. + 4(v- 1) m.x. + 4(1 -) m.x.x.ij 8•1fl(1 - v)r 5L' 14 j i j

2 2 21(1
S4(1 - v) m.x.x. + 4(1 v) m 2x x + 4 - 2] mj~~ ~ z jik + (- i) mix k "ji

(4.10)

So, the displacements, displacement gradients, strains, and rota-
tions for a state of stress with a first order isolated singularity at
the origin have been defined in terms of mi, I, v, and the coordinates
of the point.

It 4 now possible to obta'.n higher order isolated singularities by
a f),r .. Ar superposition technique. Flexibility influence coefficients
Aijk.. ,) can be used to describe the effects of a force Qj/r acting at

a po. t P on the displacement u. at some other point x (Figure 1). In

fact, the displacement is simply

u' xiz Aij -. •)h (P) 4.1

C

Under conditions shown in Figure 1, Eq. (4.11) will be identical to
Eq. (4.5). This represents the fundamental or first order singular
solution. Similarly, the displacement at x because of a concentrated
force - Q /c acting at_• + c is

11 Q.
U.(x)I = - A..\x, P + C) h . (4.12)2.- U - - + ¢

9



x3

Q(

x2

Figure 1. Concentrated Load at P, First Order Singularity

Because the force-displacement relationship is considered linear, the
displacements created by Q./,: at z' and -Qi/c at_' + c are simply the

superposition of Eqs. (4.11.) and (4.12) (Figure 2). Taking the limit
of the resulting expression yields a second order singular solution

(:r) =1Lim A. (xA)
U 2(x) = Lim U (x) + Ui - ' Q

(4.13)

which i; recognized as the first derivative of U. (m).

Specifically, in Figure 3, Q is parallel to the x' axis and _ is

measured along the x% ixis. Therefore, let UW(x) I Ind (x be

represented by Eq. (4.5) wherc only mI is nonzero_ For convenience, the

point is designated at tie oririn. Because the influence coefficients
are dejpendent upon the v,,-Lor• Rix, '), the displacements at x caused by
the forces shown are

I0



3

x

+ C.

x
2

Figure 2. Second Order Singularity

x 3

C

x 2

xxzz

C

Figure 3. Force Doublet



U2 F-il Lim 1Ui(x) = Lm i0.-x i (x)

= Lim Ai(xl, x 2 ) x 3 ) - Ai[(xl " e)' x21 l(x)
r ->0Oi,-

(4.14)

This is referred to as a force doublet.* If the forces are arranged as
shown, in Figure 4 then the displacement field is given by

2 A.(x1 , x2, x3) - AK [(l, xc2 - 3 Q) ^I A
U (x) = Lim Q = U.,(x) (4.15)SC-40 C2

1^1
where Ui(x) is represented by Eq. (4.5) if only m1 is nonzero and is
called a force couplet.

x3

X3X

X x

X0

/ _7
/

/
/!x

×1

Figure 4. Force Couplet

"•Three force doublets of equal magnitude acting along the X1, x2, and
x. axes comprise a center of dilatation.

12



The generalization of this process is intuitively simple. Doublets
and couplets of any magnitude may be generated in various directions or
may themselves be superposed to form third or higher order singularities.
This procedure is, however, artificial and tedious. In Paragraphs 5 and
6, the limit solution technique will be employed to form expressions
for all possible second and third order isolated singular solutions.

5. Second Order Singularities 100 010 001i00 010100
It is now observed that the terms D(r), ,i(r), + (r) and 'M

010 001M0 M can be treated as components of first and second order
tensors. Making the following definitions

r im.. = Lim Fi (n) Q dV ( ) . (5.1)

The Galerkin vector corresponding to second order singularities may be
written as

G2(x) = .(r) min (5.2)

which is identical to the second term of Eq. (3.10).

To examine the physical characteristics of various second order
singularities, one may first allow all m ij except mll to be zero.
In this case, Eq. (5.2) becomes

2 m)[ ,(r)rin1 , 0, 0] . (5.3)

One may say that the resulting displacement pertains to a force doublet

along the xI axis.* Similarly if mi2 2 or ni3 3 are the only nonzero com-

ponents of mij, then the doublets are along the x 2 or x3 axis, respec-

tively. The significance of the off-diagonal terms is shown by setting
all m.ij equal to zero except m 2 3 . Now the Galerkin vector is

*If only mill, m2 2, m3 3 are nonzero and mi! m2 2 im3 3 , a center of

dilatation is produced.

13



G(x) = L0, d3 (r) mi2 3 , 0] (5.4)

This corresponds to a force couplet about the xI axis with the forces

in the x2 direction.

If pF.(n) are symmetric about all axes then all m.. are zero and,

hence, there are no second order singular terms. If PFi(n) are sym-

metric about one or two axes then cer'tain components of the tensor m..
will be zero. For example, if pF is symmetric about the plane per-

i .

pendicular to the x3 axis then m 13 = m2 3 = m3 3 = 0 and the resulting
Galerkin vector is

G 2(x) ={[l(r)mll + 4 2 (r)m 1 2 ], [,,(r)m 2 1 +i.2(r)m22], [,l(r)m31 +2(r)m 3 2]}

(5.5)

This indicates doublets on the xI and x 2 axes as well as couplets about
the xI, x2 , and x3 .

If oFi(n) are symmetric relative to planes along two axes (for

example, the x9 and x3 axes) then only the o 1 1 , mi2 1 , and mi3 1 components

are nonzero. Hence, the Galerkin vector becomes

_ 2 (x 1 r I I I~ m ) ) ( I (21 ,]3 1 (5 .6 )

which corresponds to a doublet on the x ax:is and couplets about the
x) and x3 axes.

Every second order tensor may be expressed as the sum of a symmetric
and antisymmetric tensor. Therefore, mi.. may be written as

S A
m.. U.. m.] (5.7)m j m ij .mij(57

where

ull. nm.. ), m S. m.. (5.8)
14j -( .j ji) t3 a31

miij _ mj .. -m.. .(5.9)
• ij 2j i' j. 31

14



SNow, the products of 4j(r) and min are given below:

2S S __a SG (x) .m(r) m.. (5.10)G --. r ij = r 3 ij

ASimilarly, the products of (r) and min are

2A A _ x'mA
G2 (x) = .(r) Mi. r x... (5.11)

2. I r J 13

The displacement fields corresponding to Eqs. (5.10) and (5.11) are

U1 = [4 (V ) S S Si 3 (4+ 2) m.x.2 161tl(l - v)r 5  11 Lii kk "i 3-j j

4S S3 S S2 S 2I n*X2 ikXk + 42) 1) mix x. + 4(, 1) m xik k " ik i k

S S rI S 2 S1] 2+ 1 , S - 2mS + x.x. + (41- 1) m. . -+2MS(4,-I ii 'J k i 3 i.i 31 i'

+ (4v 2) mikS k + (41,- 2) mijxjx k 6m Skxixk

fx

no sum, i , j v k (5.12)

1 I 4 (1  A 3 A 3 A 2
2. 16ir(i- .)r 5  40- m i x 4j -( m ikxk 4(l - m ijxixj

A2 AA

+ 4(1 - m) mikX 2 4(1 - ,) m. • 44(1 - , inijxjxk

--- no sum, i j k (5.13)

It is easily shown from Eqs. (4.8) and (5.12) that if mI1 is the only

nonzero component in Eq. (4.8) and if m o 1 and is the only noilzero
S 1element in the mS.. tensor, then

2S I

1 E 1 (5.14)

15
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This can, of course, be generalized for the second and third components

of U as well. Thu,, under the-3e conditions U.2S and. E.. 1 rrespond to
a fCorce doublet in the x. direction. 1 ii

I
S S S

Additionally, if mI = M2  m3 in Eq. (4.8) and mi = i 22  nm3 3

1 2 3S -11 2 3
and are the only nonzero terms in mi.., then

2S 2S 2S I I I
UI + U2 + U3 : E11 + E22 + E33 (5.15)

and represent a center of dilatation. rirther, from Eqs. (5.10) and
(5.13) it can be shown that each component of the antisymmetric part of
the second order singularity is identical to the rotation vector about

A
its axis. That is (if the signs of mi.. are dictated by the right hand
rule),

2A 1
S= 0jk : i # j -. k (5.16)

and corresponds to a force couplet about the x. axis.

6. Third Order Singularities

The third term in Eq. (3.10) can also be expanded and special-
ized for particular cases. The expansion is shown as

G(x) = (r) mij (6.1)

where

(r -4. iniik Liin fpF(n) (t) dV (n)(r. (6.2)Sij rr O 3 ' ijk n1- J - j !, -'

Only one particular form of third order singularity will be presented;
however, it is obvious that one can easily express any specific type.
For example, the following Galerkin vector corresponds to a singularity
at the origin which can be called a double center of dilatation on the
x3 axis if

16



G3 (x) = [• 13 (r)m 13 1 , • 23 (r)m 23 2 , "3 3 (r)m 3 3 3] (6.3)

where 2m13 1 = 2m2 3 2 =m 33 3.

7. Spherical Biharmonics

The series represented by Eq. (3.10) provides the foundation
for a development analogous to that of the class of Newtonian potentials
called spherical harmonics. It may be recalled that a Newtonian p, "en-
tial is a solution to Laplace's equation at points external to the body.
For a body of density i(• ) occupying the region V + 'W in space, the

Newtonian potential at x is

N(x) = R.+) dV(._) (7.1)

By expanding I/R(x, P) about x in a Taylor° Series, N may be written as

N E B ijk (r) 'ijl( (7.2)
i,j,k•-0

where

(I ) ,(li.*J'k D1DJnk(l)

Bijk (r) i!j!k! 1 2 3 (7.3)

lik ,,.) i j l 2"3 dV(.-_) (7.4)

It is easily seen that B ijk(1/r) is homogeneous of degree -(i+j+k+l).

Further, 1/r is harmonic. Therefore, each B ijk(/r) must be harmonic
because'- ••2operates only on xi. Thus, by definition, Bijk (I/0 are

spherical harmonics of degree -(i+j+k+l).
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A comparison of Eqs. (7.2) and (3.9) enables one to make several
observations. First, Eq. (7.2) represents the potential function of an
attractive force on x by the mass occupying region V, while Eq. (3.9) is
a potential function of the displacement at a point. x resulting from a
force or moment acting at the origin. It was shown that the coefficients
B- (1/r) are spherical harmonics and by similar reasoning i1 is noted
13k

that Dijk (r) are biharmonic and homogeneous of degree (I.i-j-k), a

function which will be called a spherical biharmonic of degree (1-i-j-k).

Thus, with the analogy clearly established, an interesting point
may be investigated by first noting that the expansion of Eq. (7.1)
yields

= dV-) + -1dV(Q) +d .1 dV()

+ ixf 3 dV(r) + 0(2) + 0(3)

r .
+ 0 +(7.5)

All terms except the fundamental singularity may be eliminated by
prescribing that

i k dV(.) = 0 for i -, 0, j 0, k / 0 (7.6)1 23 -/

This step is sufficient to insure that N is the fundamental singularity,
but is it necessary? One suspects that it is not when considering the
following: A complete, homogeneous, polynomial of degree n contains
(n + l)(n + 2)/2 coefficients, only 2n + 1 of which are arbitrary [91
(assuming that all coefficients are harmonic). For example, the 0(:[)
terms are
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[( 2 2 2 2 2V ; 2 2 )fI
___i 2x4 - x - x) f i + 2x - x) dV

2 r 5 -- 2 3

+ (_x- x2 + 2x3) JuP 2 dV(P) + 6x_ dV()

+6x 1 3 fcr1iý 3 2V@ + x3 f, P 2 3 dV(~) (7.7)

The second degree complete, homogeneous, harmonic polynomial inside the
brackets has six terms.* The fact that there are dependent coeffi-
cients in terms of order greater than I suggests that conditions other
than Eq. (7.6) will result in the elimination of higher order terms.
This lack of uniqueness can be illustrated by allowing

j 2 dV(-) 2 2 V( (IV) (17 .3)

in Eq. (7.7). In this case the first three terms in Eq. (7.5) are zero.

The O(!:.2) terms may be written in powers of x.; that is,
1 1

2rR 2 3 11, 3

+ 1 2*1,X + M13XI3 + 3 x 9 X 3] (7.9)

where

'j T" i j dV(_), i j (7.10)

"The bracketted expre,•sion may he diqcussed ,,,ith general ity because

"if B is a ,;pherical harmonic, then 1rn+ +1 is also a spherical

harmonic f9H.
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and

f. 2 dV(Q) (7.11)
i~J a

Now the first three terms of Eq. (7.9) are zero if

M? 1 2 -1 -1

Y,)[K - 2  - 1 1 -1 0 (7.12)

3 -1 - *2

Thus, a condition other than Eq. (7.6) exists which eliminates the

0%(2) terms.
1

3
The 0(ti) term has 10 coefficients. One can write

11 2 2 x d2+ 3+ -2

( •' -29 3i•2 t 3t, 9') 2V r 3 2ý -3" r2 )dV ( I)x3 2

-F °{' '2 1= ". 32 3 d r) xl2+_ -23 2, 1 2 23•

+ jj-3r- -3 +12P. l,)dV(A)x -3 -3(2. V -,)

1 a- +12K. 1 -3%K1v 3 2x2 2 3- 2

+*( 2 2) f_ 2 2

f 3 12- 3rd )x f-(3-+

+ f(-3~ -3'3e +12. 3 d()~+ %-, i 23 1e xi2 }

(7.13)
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It may be seen that the entire term vanishes if all integrals are zero,
or if

3 dV(ý)V() it2 dV(-) i jek23 i i ,'k-- --

dV(Q) = 0 (7.14)
J

and so on for all orders.

To visualize the theoretical possibility of such an occii-rence,
imagine a sphere of radius c centered at 0 and a spherical shell with
an outer radius a and an inner radius b also centered at 0. If b c
the spbere is encapsulated inside the shell. The potential of attraction
of the sphere relative to a point x lying outside the sphere is

C
cc

N [4" r(])) 2 4(¶ 3O r(x) f - 3rT) c(7.15)0

Similarly, the potential of the shell relative to a point x lying inside
of the inner wall is

a

N I = 4,,,' f r(r) dr(-) = 2,'1,'(a 2 - b2) (7.16)

b

Of course, the potential of a point lying between the sphere and she.ll
is N = N0 + NI.

If one prescribes

3
- " 2c (7.17)

-' b')

then N is zero without requiring that all integrals vanish.
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The preceding investigation was conducted with a harmonic function
V. Its results, however, can be applied to a biharmonic function g
by noting that an arbitrary harmonic function 11 can be defined so that

"•2g .(7.18)

Thus, in the expansion of the biharmonic vector f there will be depend-4)
encies among coefficients beginning with the 0(=.i term, because this

2
corresponds to the 0('i) term in the expansion of

8. Betti's Reciprocal Work Theorem

In Paragraph 2, Galerkin's vector a(xi) was used in discussing

the development of a particular solution of the Cauchy's equations. In
general, these functions are analogous to potential functions and, as
stated previously, several techniques and theorems of potential theory
are applicable in the treatment of the equations of elasticity. A
lucid explanation of the application of potential theory to the solution
of elliptical equations is found in Courant and Hilbert f[]. One of
the most important aspects of potential theory is the theorem and iden-
tities of Green. Betti [1], in 1872, adapted Green's identities to
elasticity and thus formulated the reciprocal work theorm. in this
section the reciprocal work theorem and a particular application will
be discussed.

Consider two stress states S(x) and S't(x) which are, for the moment,
assumed to be regular throughout an elastic body V. If the unprimed
state has a zero body force, the equations of equilibrium for S(x) and
S'(x) are

hijl k,lj = 0 (8.1)

ik.. k .' -i* + = 0 (8.2)

SMultiplying Eq. (8.1) by u! and Eq. (8.2) by u., respectively, and sub-

tracting the resulting expression yields a relationship between the
primed and unprimed states. Integrating this relationship over \V results
in the following:

. . F k~lju - III.ld, u dV, -- fF'uui dV = 0 (8.3)
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Finally, employing Green's theorem and noting that

Uk,V = fTn.: uu 1 ,A (8.4)
f iJk PJJ i. i-

one may write the reciprocal work theorem as

fFu! - T'-l d ,V +fFu d, U 0 (8.5)

Imagine now that lying within the region V is the sequence of

regions [fV ()1 having the properties described in Paragraph 3. Suppose

further that the primed stress state corresponds to S 0(x), whete
SF(n) (1) ()Tp (x) is zero for x not in V . For the region Vt Eq. (8.5)

becomes

.1)- T. (1) u (0~ Fe.@ uivn 0 . (8.6)

Similarly, applying Eq. (8.5) over the region V - V(nl) yields

PT .u. i(n) - T.(11) ui] cV + f'_rui() - T.0) ui] d

+ f.-Fi(n'u.,d -- V(n)) ) . (8.7)

Note that the tractions over V(n1 as well as v must be considered.

The terms T. (I1) and T. involve an outer normal in Eq. (8.6) and nn inner

normal in the second inte,,ral of Eq. 0S.71; theretore, the Clio n are
opposite. Phe addition ,,f these tw' cquations results in

-[T ,1 - P. . , = 0 (S. 8
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Expanding u. about the origin in a Taylor's series and taking the limit
1

as n approaches infinity yields

0 = Lim f[T.un) - T.(n)U.] dc)V + u.(0) Lim Fi) dV(n)

n -ýoo n -)o

+ u .j (0) Lim rFi(n) dV(n) + ui,jk0() Lim f i (n) • dV(n)
z, n f>o n -4c

+ -(8.9)

or

0 = f[T Ui T. 1u3. dd;V + u.(O)m + u .(0)m.,. +u u. (O)mijk +---

(8.10)

where

i.=Lim T.(n)

n -->c

And so, by choosing the appropriate order singularity (by choosing values
of min, mij, etc.), the displacements or any order derivatives of the

displacement field of a regular stress state acting throughout can be
reproduced if the displacements and tractions are known on 'V. Note
that by choosing a particular isolated singular solution Ui, one corre-
spondingly chooses the form of mi, miij, mijk, etc.

9. Discussion

As stated previously, the object of this report is to offer a
physical interpretation of various first and higher order isolated singu-
lar solutions of Cauchy's equations using Galerkin's vector. These singu-
larities are constructed by means of a limit solution proposed hy
Sternberg and Eubanks [8]. Some forms of first, second, and third order
isolated singularities are investigated and will be followed by a discussion of
uniqueness and an application of Betti's reciprocal theorem. In the
following paragraphs, various salient points will be reviewed.
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In Paragraph 2 Cauchy's equations are rewritten in a form more
easily solved. This form is a nonhomogeneous biharmonic equation in
terms of an auxiliary vector called Galerkin's vector. The solution is
derived by. employing a technique analogous to one used in potential
theory.

Next, the limit solution is discussed and a series is developed
which contains all first order isolated singular solutions to Cauchy's
equations in the first set of terms, all second order singularities
in the second set of terms, etc. An investigation of the first order
singularity leads to its employment in a superposition method to construct
various second order singularities.

Paragraph 5 contains an examination of the second term of Eq. (4.10)
and hence, the development of the second order singularities.

It is shown in Paragraph 4 that the first term of Eq. (4.10) may be
thought of as corresponding to a concentrated load at the origin. An
examination of the second term in Eq. (4.10) revealed the following facts:

a) Each of the diagonal components mi.. (no sum) produces a force
doublet along axis x

b) Each of the off-diagonal components m ij (i,'jrk) produces a force
couplet about the x1 axis

c) Symmetry of OF in about one or two axes insures that certain

components of m.. vanish.ii
S

By dividing m. . into its symmetric and antisymietric ;parts m.. and
A 2S S..
Sin., it is found that the solution U.S derived from m ij is identical to1mij,

the strain E1. (no sum) corresponding to znc first order singularity

and represents a force doublet in the x. direction. Further, it is noted
2S 2S 2S I 1 1 1

that U1I + U2 + U3  = Ell + E2 2 + 1,33 and is a center of dilatation.

Next, it is shown that the antisyimetrical part of the second order
Asingularity produces UA. which is identical to the rotation about the x

axisjk corresponding to the fundamental singularity and represents a

force couplet about the x. axis. Finally, the Galerkin vector producing

a third order singular solution is expressed as .4 (r)m and G.(x)
kj (r k -

corresponding to a double center of dilatation is presented.

Next, an analogy is made between the series representing the
Galerkin vector pertaining to all isolated singularities and the spherical
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harmonics series of potential theory. It is found that the G. (x)
represented by .ijk(r)Mi can be defined as a spherical biharmonic.

Further, it is demonstrated that, because there are dependencies among
4coefficients of G (x) beginning with the O( i) tetm, there are an

infinite number of combinations which will yield any given singular

solution.

Finally, furthering the analogy with potential theory, Betti's
reciprocal theorem is presented. Tw) stress states are chosen, one
with a zero body force field and one with an isolated singularity at the
origin. Applying the reciprocal work theorem, an expression is presented
which enables one to reproduce any order derivatives of tile displacement
field of a regular stress state acting thrughout V if the displacements
and tractions are known on V by simply choosing the appropriate isolated
singular solution.

A physical interpretation of the most important isolated singu-
larities (i.e., concentrated f,)rce, force doublet, force couplet,
center of dilatation, and double center of dilatation) has been given
for isotropy. The same approach could unldouhtedly be used in the case
ofanisotropy. As stated previously, proof that the derivatives of the
limit value of the auxiliary function must be identical to the limit of
the derivatives of the auxiliary function must be given.
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