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: ABSTRACT

§ This report contains a discussion of a formulation of Galerkin's

vector in isotropic linear elasticity and an employment of this vector
5 in describing concentrated loads and moments. Various forms of these

concentrated phenomena are developed by the familiar process of super-
position and then by a limit solution technique.

The report is primarily based on work contained in the author's
doctoral dissertation written at the University of Illinois at Champaign-
Urbana, 1In addition, methods and results obtained from several unpub-

lished papers by Professor Marvin Stippes of the University of Illinois
¥ are incorporated.
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SYMBOLS

Cik(D) Cauchy's operator
Di Ditferential operator <§§;>
p? D.D, or V2
- i’i
? E Strain dyadic
E Fi Body force field
: 8; Galerkin's vector
g 1 Idemfactor
é L Concentrated load
? S State of stress
? S Stress dyadic
é Ti Surface tractions
; u, Displacement field
? v Region of elastic space
: OV Surface of V
{ w7 Convention del operator <§§E'ii>
{ A(D) Determinant of Cik(D)
% gij Kroenecker delta
eijl Permutation symbol
s N Lam€'s constants
v Poisson's ratio
Py Mass density
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1. Intrcduction

The equations of equilibrium of an isotropic linear elastic
body V are called Cauchy's equations and may be written as

C.p (D) Uy + oF, = 0 (1.1)
where C‘P(D) is called Cauchy's operator and is defined below

2
Cik(D) =uD S t N+ ) DiD (1.2)

k )

The Cauchy equations are formulated with the assumption that V is a con-
tinuous medium. This ultimately leads to the restriction that u, is at

least piecewise continuous of class 02 throughout V. A solution to

Eq. (L.1) which satisfies this restriction is called a regular solution*,
The form of a regular solution to Eq. (1.1) depends upon the shape of the
body and the type of loading imposed.

Singular solutions exist, however, which fail to exhibit this con-
tinuity at a point, along an arc or over a surface of V. The purpose of
this report is to discuss solutions which are singular in some deleted
neighborhood of one or more points in V. Such a solution has one or
more isolated singularities and is called an isolated singular solution.

As an isolated (nonremovable) singular point x in V is approached,
the limits of u, and their derivatives do not exist. In fact, the dis~

placements and stresses at X are unbounded. The isolated singularity

may be considered as the manifestation of some type of load or moment.

In this report the physical significance which may be attached to various
forms of isolated singularities will be discussed.,

It will be readily seen that at least three useful functions are
served by furthering one's understanding of isolated singularities of
Eq. (L.1). There are numerous cases in which loading is clesely approxi-
mcted by a concentrated force internal to a body. Also, sinjular soiu-
tions may be used as influence functions to obtain regular solutions,
This is done, for example, in Betti's (1] adaption of the method of
singularities to isotropic elasticity. Finally, the investigation of
point defects in metallurgy involves these solutions (e.g., see Simmons
et al [2]).

“Additionally, if V is unbounded it is required that the v = 0(1/v)
‘7 N
and Uy j==0(1/r") uniformly in the spherical coordinates :, @ as r

M

approaches infirity.




Pk Aok =4 U It

£ D 9 R i D S AL A

TEE

"

LT Tt A

a2\ e

E',
}

First, a solution of Eq. (1.1) must be obtained. Because the
Cauchy equations are elliptic (assuming that Cik(D) is positive definite),

techniques analogous to those found in potential theory may be used [3).
In Paragraph 2, Cauchy's equations a:o written in biharmonic form. This

is possible through the employment of the Galerkin vector which is
developed in Paragraph 2.

2. Galerkin Vector

A very concise derivation of the Galerkin vector was presented
by Somigliana [4]). Choosing a transformation Kij(D) so that

= 2
Uy =K@ vy (2.1)
the Cauchy equations may be written as
Cik(D) Kkm(D) Vi + aFi =0 . (2.2)

Now it is specified that Kkm is the matrix of cofactors of Cauchy's
vector; that is

4 —_Ln . _‘2\‘ ~ 2—; - ("
Ko ® =37 "4 i omn Cjm Gk = 4P [(. F DT - n)DiDp] .

(2.3)
By definition
CUJD)KMJD)=uim‘(m (2.4)
where (D) represents the determinant of Cik(D)
o =2y 0 (2.5)

Thus, Cauchy's cquations may be written in terms of the variable Vi
which will be called an auszillary vesctor function

2 6 .
ST+ 20D v, b oF = 0 (2.6)

no

s



Finally, a new auxilliary vector function is defined as

8; = 7 A (2.7)

so that
. 2
u, = pC 4+ 20) D g; - O+ 1) D.D.8 . (2.8)

A particular solution to Eq. (2.6) may be found by using the concept
of influence functions which are analogous to Creen's functions in poten-
tial theory. An insight into this approach can be gained from the one
dimensional string problem. Consider a string L units in length which is
fized at both ends and which lies along the Ny axis. If the string,

under a tension t, is subjected to a kransverse unit force applied at
Xy = s, the equation of equilibrium is

4 t.\’z’ 11 . ”('\l - S) = 0 . (?0)

W

8(x1 - s) is the Dirac delta function defined by Chen [5]

] 0, for x, # s

«, for x, - s

A solution ef Eq. (2.9) indicating the vertical displacement of the
string is

( j"‘

ty  K(xq, ) 2.10)

# where K(xl, s) is called an influence coefficient. Importantly, Eq. (2.1
; 4 can be used to solve problems concarning distributed transverse loadings

4 y q(xl) because it can b shown thac the resulting equilibrium equation

b f 2 has the solutior
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A solution to Eq. (2.6) which corresponds to a body force pF. can

be determined in an 1dent1ca1 manner. To avoid complications introduced
by finite regions, a body V® of infinite proportions is chosen. Imagine
a body force pF1 which is only nonzero over a finite region V. Then,

if S{x, &) is the solution of

AD) Sz, £) + 85(x - &) =0 (2.12)
where 63(§ - ¢) is Ehe volume Dirac delta function, then a solution to

Eq. (2.8) at a point x is

g, (x) = /S(;s, &) pF (¢) dD(E) . (2.13)

Fritz John [6] presents tha general form of S(x, ¢). The paxticular
form of S (x, #) for Cauchy's equations was found to be [7]

S(x, £) =0R(, ) (2.14)

where

_—t . \2 2 )
Q= 41\:“2(}\ + 20 ,. R(x, §) = [‘Xl - gl) + (xz - 52} + (XS - §3) ] )

Thus, a particular solution to Eq. (2.6) is

6 = a pri@-i) Rz, £) (8 (2.16)

In this form the Galerkin vector 9 in Eq. (2.8) yields a solution u,

which Lepresents che displacement within an infinite linearly elastlc

body V" because of a body force field pF acting only within a finite
region V.
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3. Limit Solution

E‘/

;

.

;",«

: The purpose of this section is to employ the limit solution
i technique of Sternberg and Eubanks [8] to develop and discuss various
) types of isolated singularities in linecar isotropic elasticity.

“Again, entire three dimensional space V" is considered. This time,
\ , . n - .

‘ imagine a sequence of regions [V( )] each containing the origin and a
corresponding sequence of body forces {pF

2
over region V(l), pFi<2)over V( ), etc., It is required that each pFi(n) be of

in V* and be zero at any point outside of V(n).

i(n)] such that pFi(l) acts

class C2 It has been

. , , n
shown that, under these circums:unces, a particular solution u.( )(ﬁ)

i
exists for each V(n> and corr ' ponding body force field pFi(n). In

A A N F Tt

) addition, as n approaches infinity the length of the longest chord
within V(n) must uniformly approach zero.

o

The transformation represented by Eq.

(2.14) is now employed,
yietding

R e bk

3 “k(n)@ = Kt 8i(n)<§> : (3.1)

Tpus, if & is a typical point within V(n) and x is any other point within
v, B

CASstlie™ ¥ o AR

e

gi<")(5) =0 [R(;‘ﬁ: D) .cl’i(“)(i) d\’(n)(‘_) - 3

The limiting case of Eq. (3.2) is defined as

G, (x) = Lim gi<“)(§) = Lim q [R(;.;, £) QF]._(")Q) d\r(“)(i) . (3.3)

N «3 1N =3

Richardson [7] showed that, in general,

(x) , (n)
G, 4k = nL““ 8 sk (3.4)

Y
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. Therefore, Uk computed from Gk represents the limiting solution, a dis-
- 3 placement fiecld with an isolated singularity at the origin. The forms
v 3 which this solution assumes will be discussed in later sections.
j R(x, 7) may be expanded in the Taylor's series for three variables
{ shown below
b . 4 - itk ..
8 (-1) i ik i j.k -
3 D (r - — — Fld - = .
{ { R(x, _) = E T137k1 DlD D3 (r) 1973 X r(x) . (3.3)
- i,j,k=0
- Thus, Eq. (3.3) becones
i
B : i+j+k
;9 (-1)*Hd i j ok , (n) ik ()
4 G(x) =~ — o DID.D, (r) Lim *, dv ) .
: &(x) Z TR S (1) 577575 V)
- E s '—0 n- -
% E 1,j,&= (3 6)
i g Note that the summatiou sign may be removed from under the integral sign
‘. because Taylor’s series is uniformly convergent. Defining the moment
¥ 3 ik . - ijk
3 integrals M 1) which ave of order i+j+k and operators ! % by
\ g
A
4 J: 3 . . »
- ijk , n i j.k n)
- MY = i OE( )(') ‘l:%‘? dv( () (3.7)
" n-» -
£ 3
§ 3 . kjk
E. A « L l' "1 3
5 kLoD D an)g , (3.8)
2 itjrk!
: - . . . ijk
o . vhere i+j+k = p vhich is the order of the opevatoer B atlows one to
L urite the Galerkin vector as
3
- - SO dik . ik ,
Gty = ; o I . 3.
;‘ ] X o \ )
j- e
-
+3 § rey ) . . . . . :
2 ie ds o cerie. chich cenresorgs e fale =i voctor cor iselocen caget-
o 3 Tar ties ot all spders. addittonallv, by oo et apnsonviate Jorme of
ke pRD ariea, me o orile the calessin veetor covr MoP P Yo ancgfrie
- oy o doolated sincularitica.
E N
!.."'
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It is of interest to investigate the nature of M d

.  Note that
if the sequence of regions V(n) and the corresponding body force fields
g (M)
Py

are symmetric about all axes, then the integrals ﬂljk with an
odd i, j, or k are zero. The shape of the region V(n)

is arbitrary so
symmetry can be assumed;

however, pFi(n) are not generally symmetric.

Later in this report some manifestations of symmetry of pFi(n) will
be discussed.

In Paragraphs 4, 5, and 6 it will be shown that Eq. (3.9) may be
written in the form

Gi(§) = @(r)mi + ¢j(r)mij + cjk(r)mijk ... . (3.10)

Fundamental or First Order Singularity

The term in Eq. (3.10) corresponding to i=j~k 0 is

G}L(i) ~ar Lim /pFi(“)(j_) dv(“)(_.r_-)

N

. 4.1)

From Eq. (2.8) it is seen that the displacement vector is expressed in
terms of the second derivatives of gi. Therefore, if gi is of 0(x) as

r - 0 then ug will be of 0(Ll/x) o ¥ -5 0.

This case shall be called the
first order singularity.

Superscripts on Gi will indicate the order of
singularity. Defining
¢(r) =or, m ~ Lin /pri(“)(_:) av My (4.2)
N x

produces the first term of Eq. (3.10)

G;(i) = c(r)mi 4.3)




It is readily noted that Eq. (4.2) may be interpreted as the Galerkin
vector leading to a solution which corresponds to a concentrated load
acting at r = 0 if it is specified that

LimulhpFi(n%ﬁ) ™y =1, . (4.4)

N —yc0

In the following, the fundamental displacements, displacement gradients,
strains, and rotations are given. Throughout the remainder of this
section, izjzk and i, j, k will not be summed.

The strain-displacement relations are given by

U} = —~————l;———7§ t4(1 - v) mixi + (3 - 4y) m.x%
8 (l = v)r t
+ (3 - by) mx> 4 MK, %.5)
ik iTi73 ik ) )
The displacement gradients are
1 1 [ 3 3 3 2 2
U, , = ———— 14(v - 1) m_,X, + m.x, + mx, - 2m,xX'X, - 2m X.X
i,1 g (1 —v)rs i3 i3 ™k A TN
+ (4v - 1) m,x xz + (4v - 1) m,x YZ + m X \ X \ ] (4.6)
4% S M N M : '
However, for the off-diagonal terms,
1
Ui - -————1—————3 [ﬁ X, + (4v - 3) m, \3 + (4v ~ 6) m.x?x. - 2m.x.x%
v 8ol - v)r i"j AN AR
+ mjxlx + (by - 3) m, R Y 3mk\1 J'k] 4.7)
Next, the strains are found to be
I)
Eii = *————l—-——g [4(\ - D m.xi “+ m.x? . mkxf - 2m,x%, - 2mkx?xk
8 u(l - )r 1 JJ K Ji] i.
+ (4 - dm (Y <2 + X vz) “ m X \ X \ ] 4.8




For the off-diagonal terms,

. ————L——g [(zv S 1) mae 4 (2v - 1) mae 4 (2v - 4) m o,
o8l - v 3t t 3

LSS eRan SR S Sk okt

. 2
+ (2v = 4) m.x.x7 4+ (2v - 1) m,x. >
(2v )_]Xl_] (2v )J1‘<

~ o

2 1
+2v-1) mixjxk - 3mkxixjxk] ==Eji .

(4.9)
Finally, the rotations are
_ 2

Qij S — [4(1 - V) mjxi + 4(y - 1) mixg + 40 -~ 1) m,x.x,

. 1 1
: 8itu(l - v)r 1]

2 2 Rl |
+ 4(1 - v) mjhixj + 4(1 - v) mjxi.\k + 4(v - 1) mihjxk] = jS

(4.10)

fir Pt

f So, the displacements, displacement gradients, strains, and rota-
3 tions for a state of stress with a first order isolated singularity at

the origin have been defined in terms of M.y by ¥, and the coordinates
of the point,

It ¥ now possible to obta‘n higher order isolated singularitiecs by
a i°w ..ar superposition technique. Flexibility influence coefficients
A Aij\‘ i) can be used to describe the effects of a force Qj/q acting at

i a po. t # on the displacement uj at some other point x (Figure 1), 1In
3 -
§ fact, the displacement is simply

Lol ea oo 0y 9
Vi@ D g

»
4

. (4.11)

Under conditions shown in Figure 1, Eq. (4.11) will be identical to
Eq. (4.5). This represents the fundamental or first order singular
solution. Similarly, the displacement at x because of a concentrated
force - Qj/c acting at * + ¢ is

Q.
Ui(ﬁ) ==~ A X, fF+0) 7; . (4.12)
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Figure 1. Concentrated Load at #, First Order Singularity

Because the force-displacement relationship is considered linear, the
displacements created by Qj/c at ¢ and -Qi/c at ¢ 4+ ¢ are simply the

superposition of Eqs. (4.11) and (4.12) (Figure 2). Taking the limit
of the resulting expression yields a second order singular solution

[Ui (x)

Lim S— =Ll = =~ g,
r-»O ' J

(4.13)

2 , 1
U7(x) = Lim + UL (%)
it= -0 it=

- 3N s
e o

] A--(Es “) = A--(E, e g)

. , , , . . 1
which is rvecognized as the first derivative of Ui(ﬁ).

Specifically, in Figure 3, Q is parallel to the x, axis and : is

measured along the Xy axis. Therefore, let Ui(g)l and ﬁi(x)l be
. o

represented by Eq. (4.5) where only my is nonzero, For convenicnce, the

point © is designated at the origin. Because the influence coefficients
are dependent upon the veector Rex, °), the displacements at x caused by
the (orces shown are

10
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Lim l—-l-]i(g)
€ -0 L

]

Lim A1(%10 %0 X3) - Ay [(xl - €)s Xy x3]
e -0 € .

LI}

1
Q= Ui,1(>_<_) .
(4.14)

This is referred to as a force doublet.* If the forces are arranged as
shown in Figure 4 then the displacement field is given by

A. > ) - Av 3 -~ ~
v2(x) = Lim (%) ~ 40 % =)0 ) Q=U; ,&)  (4.15)
* €0 € ot

where ﬁi(ﬁ) is represented by Eq. (4.5) if only m, is nonzero and is

called a force couplet.

X3

Figure 4. Force Couplet

*Three force doublets of equal magnitude acting along the x
X. axes comprise a center of dilatation.

12
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The generalization of this process is intuitively simple. Doublets
and couplets of any magnitude may be generated in various directions or
may themselves be superposed to form third or higher order singularities.
This procedure is, however, artificial and tedious. 1In Paragraphs 5 and
6, the limit solution technique will be employed to form expressions
for all possible second and third order isolated singular solutions.

~

5.  Second Order Singularities
100 010 001 100
It is now observed that the terms ®(r), ®(r), ¢(r) and M"
MOlO, MOOI can be treated as components of first and second order

tensors. Making the following definitions

o (n) (n)
0 4(r) = - -—r-l- , m,, = Lim / oF; “('g;);j vty L (5.1)

1
J Ny ®©

The Galerkin vector corresponding to second order singularities may be
written as

6x) = 0 (r) my, (5.2)

which is identical to the second term of Eq. (3.10).

To examine the physical characteristics of various second order
singularities, one may first allow all m,, except m.., to be zecro.
. ij 11
In this case, Eq. (5.2) becomes

6% = [ my, 0. 0] (5.3)

One may say that the resulting displacement pertains to a force doublet
along the Xy axis.® Similarly if m,, Or Mgy are the only nonzero com-

ponents of mij’ then the doublets are along the X, or X, axis, respec-

tively. The significance of the off-diagonal terms is shown by setting
all mij equal to zero except Myq. Now the Galerkin vector is

*If only mll’ m29, m33 are nonzero and m11 - m29 - m33, a center of

dilatation is produced.

13
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6 ) = [0, e500) mys, 0] . (5.4)

This corresponds to a force couplet about the Xy axis with the forces

in the x2 direction,

1f pFi<n) are symmetric about all axes then all m.j are zero and,
hence, there are no second order singular terms. If pFi(“) are sym-
metric about one or two axes then certain components of the tensor m, .

will be zero. For example, if pFi(n> is symmetric about the plane per-

pendicular to the x, axis thenm,, =m

13 =m
Galerkin vector is

23 33 = 0 and the resulting

Qz(i) ={E91(r)m11 + ¢2(r)m12], Ebl(r)m21-9¢2(r)m22), Ebl(r)m31 +¢2(r)m3é” .

(5.5)

This indicates doublets on the Xy and x, axes as well as couplets about
the X1s Xgs and Xg

If oFi(n) are symmetric relative to planes along two axes (for
example, the X9 and Xq axes) then only the Migs Moys and myq components

are nonzero. Hence, the Galerkin vector becomes

g2(§) E§1(r)m11, él(r)mzl, ¢1(r)m31] (5.6)

which corresponds to a doublet on the X1 axis and couplets about the
X, and Xq axes.

Every sccond order tensor may be expressed as the sum of a symmetric
and antisymmetric tensor. Therefore, mij may be written as

S A
mij mij + mij (5.7)
where
S 1 S S
mij 2(mij + mji)’ mij mji (5.8)
A 1 A A
mij ZQ"ij - mji)’ mij - mji . (5.9)

14
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Now, the products of ¢j(r) and mij are given below:

25 S o S
G, (%) - ¢j(r) My T ijij . (5.10)
- A
Similarly, the products of ¢j(r) and mij are
25 A o A
Gi &) = ¢j(r) mij == 7 xjmij . (5.11)

The displacement fields corresponding to Eqs. (5.10) and (5.11) are

Uis = L 5 [%(v - 1) mgi + mg. + mik] xi - (4v - 2) m?.x%
16tu(l - v)r 1 I

s 3 s 2 s 2
+ (4v - 2) m X (v - 1) mijxixj +4(v - 1) m, X X

k
S S s 2 s .S s. .2
+ [(Av - 1) m. = ijj + mkk] Xixj + [}4v - 1) m., o mjj - 2mkk]hihk

. S 2. . s . .2 _ S .
+ (by - 2) mikxjhk + (4v - 2) mij’“j“‘k 6mjkxi:‘jxk}

--=nosum, i # j 7 k (5.12)
1 A3 A3 A2
Ué = 41 - ) m, . x, 440 -y ml xD 2 4(1 - ) om,.x0x
i 167 (1 - :)rS { i3] ik 1717
A2 I - -, R
+ 401 - 1) LRt 4(1 - ) mikhjxk v 4(1 ) mijkjhk
=~ no sum, 1 + j . k . (5.13)

It is easily shown from Eqs. (4.8) and (5.12) that if my is the only
nonzero component in Eq. (4.8) and if mil = m, and is the only nouzero

element in the mij tensor, then

9
u{s Eil . (5.14)
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This can, of cource, be generalized for the second and third components

of U™ as well. Thut, under these corditions U25 and,Eii ¢orrespond to
a force doublet in the Xs direction.

S S S
1242 : 3 - _ . l -
Additionally, if m;o=m, s Wy ;n Eq. (4.8) and My = My, My,
and are the only nonzero terms in mij’ then
25 2¢ 28 1 1 1
Ul + UZ + U3 - Ell + Ezz + E33 (5.15)

and represent a center of dilatation. Tarther, from Eqs. (5.10) and
(5.13) it can be shown that each component of the antisymmetric paxt of
the second order singularity is identical to the rotation vector about

its axis. That is (if the signs of m?j are dictated by the right hand
rule),

Ui =ij, izxjerk (5.16)
and corresponds to a force couplet about the X, axis,

6.  Third Order Singularities

The third term in Eq. (3.10) can also be expanded and special-
ized for particular cases. The expansion is shown as

(x) ”kj(”) L (6.1)

where

P O
e “'[—il : %l]’ Mygi 7 Lm f“"" )ty Mo 6.2
r

Ny ¢

Only one particular form of third order singularity will be presented;
however, it is obvious that one can easily express any specific type.
For example, the following Galerkin vector corresponds to a singularity
at the origin which can be called a double center of dilatation on the

¥, axis if
3
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& @ = [or5Imgy, ¢ (BImygy, 055(EImgyy] (6.3

where 2m131 = 2m232 = Myqq.

7.  Spherical Biharmonics

The series represented by Eq. (3.10) provides the foundation
for a development analogous to that of the class of Newtonian potentials
called spherical harmonics. It may be recalled that a Newtonian pr “en-
tial is a solution to Laplace's equation at points external to the body.
For a body of density a(ga) occupying the region V + W in space, the

Newtonian potential at x is

(£)
N(x) =/R("——— awe) . (7.1)

X, %)

By expanding 1/R(x, &) about x in a Taylor Series, N may be written as

Ny

1
N = Z B; 5k <?) L ik (7.2)

i)j)k'”o
where
i34k .
1\ _ (M k(l)
Bijk(r) Ty PiPals\E (7.3)
- s (r 'i"j:k r
Ii.jk —[’ (_) 1 273 dv(_) . (7°4)

It is easily scen that Bijk(l/r) is homegencous of degree - (i-+j+k+l).
Further, 1l/r is harmonic. Therefore, ecach Bijk(llr) must be harmonic
because"2 operates only on ;e Thus, by definition, Bijk(l/r) are

spherical harmonics of degree -(i+j+k+l).

17
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A comparison of Eqs. (7.2) and (3.9) enables one to make several
observations. First, Eq. (7.2) represents the potential function of an
attractive force on x by the mass occupying region V, while Eq. (3.9) is
a potential function of the displacement at a point x resulting from a
force or moment acting at the origin. It was shown that the coefficients
Bijk(l/r) are spherical harmonics and by similar reasoning it is noted

that ?..k(r) are biharmonic and homogeneous of degree (l-i-j-k), a

function which will be called a spherical biharmonic of degree (l-i-j-k).

Thus, with the analogy clearly established, an interesting point
may be investigated by first noting that the expansion of Eq. (7.1)

yields
L e ave) 4 2 :
N = rfadv()+-— ]ofldv(2)+r[5rzdv(1)

X
73 . -2) ,3)
+ - f<ve3 dv(;_) + 0(":’. + 0(-i

+ o(j) b (7.5)

All terms except the fundamental singularity may be eliminated by
prescribing that

j(- ‘1 9,~‘ av(s) = for 1v0,3 0, k,0 .  (7.6)

This step is sufficient to insure that N is the fundamental singularity,
but is it necessary? One suspects that it is not when considering the
following: A complete, homogenecous, polynomial of degrece n contains

(n + 1)(n + 2)/2 coefficients, only 2n + 1 of which are arbitrary [9)

2
(assuming that all coefficients are harmonic). For example, the 0(=E)
terms are
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2 2 2 2 2) 2 .
>/U§l dV(_i) + (-xl + 2x2 - X4 /GF,Z, dV(_)

2 2 2 2 X .
+ (—xl - %, + 233) foF3 dV(ﬁ) + 6x1.\2 /oz-lsz dV(i)

N
"

: £, AV(eN 2 ~t & 3
+ 6x1.\.3 [0‘1 3 c_\/(_ + 6x2x3 ‘/‘\«92‘3 dV(_)J . (7.7)

The second degree complete, homogencous, harmonic polynomial inside the
brackets has six terms.®* The fact that there are dependent coeffi-
cients in terms of order greater than 1 suggests that conditions other
than Eq. (7.6) will result in the elimination of higher order terms.
This lack of uniqueness can be illustrated by allowing

j(ﬂ% v(-) = fn% av() = f

In this case the first three terms in Eq. (7.5) are zero.

av(-) (7.3)

W o

in Bq. (7.7).

2 . ,
The 0(:)) terms may be written in powers of x,; that is
1 i ’

-

Lo o o0) 2w (5w o Yela (5 o5 ow o) 2
;—r-s- [(2111 - M2 - I‘l3> .‘:l + (-x‘ll + 2?\12 - M3) :-:2 + (-Ml - :\12 + _’MB) X3

+ >112}:1x: + MBxle 4 MZBK?.:{B] (7.9)

where

‘1_) f i \(_) i ] (7.100

“The bracketted expression may be discussed with generality because

o
. . . , 2n+l ;
if Bn is a spherical harmonic, frhen Bn’r is also a spherical

harmonic [9].
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and

= 2
Mi Efoﬁi_ dV(é) . (7.11)

Now the first three terms of Eq. (7.9) are zero if

M, 2 -1 -1
(MI[K] = ﬁz -1 1 -1{=0 . (7.12)
T 3 SRS 2]

Thus, a condition other than E

q. (7.6) exists which eliminates the
O(Fi) terms.

The O(fi) term has 10 coefficients. One can write

1 ( 3 ) z) 3 ( 3, ... . )
- ./; 262 - 38 60 -3¢ 7 dv(i)x14-~/; =387 412052 - 3e e 2 )av () x
+ fnc3f-3==2+12; :2)av(e) sl + (g -3e3  -3e, 0 )aven
_} 1hpt Pef iy VE Spfgt [ (FTg %071 79073

2
{. \3= 19-, -3=20§)dv(i)x%x2+./i(-B*g-3fl’9+1° : )dV(ﬂ)\ <

2'3

3’2

3o, L2 - . . oe . l
+ fyw(-3*3-3~3f1+12 3 z)d\"’)\2 Xq o+ fJO« 179 d\'( )\l 9? 3!

(7.13)

2 2 _a. . 3 .3 L2 a2
+ 16(2*3-3 3 1-3 3 2>d\7(i)h3+[o(-3~3+ 371 3» )d\’(f—)\ 5

20




g

tatin o AT A

v e S

It may be seen that the entire term vanishes if all integrals are zero,
or if

o .3 I T SN (U B L
f3 Py AvEE) = f":‘.’j () = _]”'i"k V() =ag, i#jrk

’[;1,’2;3 av(=) = 0 (7.14)

and so on for all ~rders.

To visualize the theoretical possibility of such an occurrence,
imagine a sphere of radius c centered at 0 and a spherical shell with
an outer radius a and an inner radius b also centered at 0. If b ¢
the sphere is encapsulated inside the shell. The potential of attraction
of the sphere relative to a point x lying outside the sphere is

4
r

(o}
Vo = gy | rentare) - g d (7.15)
0

134

Similarly, the potential of the shell relative to a point x lying inside
of the inner wall is

a

N, = b’ f () de(o) = 2et(a? - %) (7.16)
b

0f course, the petential of a point lying between the sphere and shell

:LSN=NO+NI.

If one prescribes

T (7.17)

then N is zero without requiring that all integrals vanish.




The preceding investigation was conducted with a harmonic function

: f. Its results, however, can be applied to a biharmonic function g

; by noting that an arbitrary harmonic function 3 can be defined so that

] 2

1 g =R . (7.18)

Thus, in the expansion of the biharmonic vector g there will be depend-

, - . , & .
encies among coefficients beginning with the O(ri) term, because this

TRV Lo PACN

corresponds to the O('i) term in the expansion of

8. Betti's Reciprocal Work Theorem

CALIS S

In Paragraph 2, Galerkin's vector g(xi) was used in discussing

4

general, these functions are analogous to potential functions and, as
stated previously, several techniques and theorems of potential theory
are applicable in the treatment of the equations of clasticity. A

lucid explanation of the application of potential theory to the solution
of elliptical equations is found in Courant and Hilbert [3]. One of

the most important aspects of potential theory is the theorem and iden-
tities of Green. Betti [1], in 1872, adapted Green's identities to
clasticity and thus formulated the reciprocal work theorm. 1In this
section the reciprocal work theorem and a particular application will
be discusgsed.

the development of a particular solution of the Cauchy's equations. In

Consider two stress states S(x) and S'(x) which are, for the moment,
assumed to be vegular throughout an elastic body V. 1f the unprimed

state has a zevo body force, the equations of equilibrium Ffor S(x) and
S'(x) are

hijkl uk,lj =0 8.1

I ‘l L = 9
Biigg Yoy P =00 (8.2)

Multiplying Eq. (8.1) by ui and Eq. (8.2) by u respectively, and sub-

tracting the rvesulting cxpression yields a relationship between the
primed and unprimed states. Integrating this relationship over V results
in the following:

-
| L. t LN ~F'n ! )
[”ijkl l_uk‘lj YT Mg "i] dv - f‘i“i w=0 . &3

o
1o
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Finally, employing Green's theorem and noting that

Pdwy = LI Y
fnijkl uk’1 nj ug d'\ [Tiui d v s (8.4)

one may write the veciprocal work theorem as

f[fl’.uf - Tfu.] dW + [:F'.u. dv = 0 . (8.5
i'i ii i'i

Tmagine now that lying within the region V is the sequence of

regions {V(n)? having the properties described in Paragraph 3. Suppose
further that the primed stress state corresponds to S(n)(_.g_), wherxe

pFi(n)(-_\:) is zero for x not in V(n). For the region V(n), Eq. (8.5)
becomes

. ¥ \
][T.u.(n) - T.(n)u.] av™ . f(\l’.(n'u.d\’(m =0 . (8.6)
11 1 L 1 1

Similarly, applying Eq. (8.5) over the rzgion V - \’(lﬂ yields

—f[’l‘.u.(n) - T.(mu.] d™V j[['l‘.u.(“) - T.(mu,] d \,(n)
11 1L 1 11 L 1
+ for, Maa (v . v(")) =0 (6.7
i i ’ )

. n) .

Note that the tractions over V( as well as VvV aust be considered.

: " (n . . .

The terms T, and T, involve an outer normal in Eq. (8.6) and an inner
Y s

normal in the second integcral of Eq. (8.7): theretore, the signs are
opposite.  T[he additien of these twe equations results in

n? .ot . Lo nl
j[T.ll. - 7. u.] J v o- [r.“ u.d‘.’( = O . (5.8
i : i i i
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Expanding u, about the origin in a Taylor's series and taking the limit
as n approaches infinity yields

0= Lim I[Tiui(n) - Ti(n)ui] ddv + u (0) Lim fppi(“) ay ™

n oo n -0

. (n) (n) . (n) (n)
+ ui,j(O) Lln!,l.DFi &jdv + ui,jk(o) Lim pFi I\

k
N - | o Y J

F o

(8.9)
or
0= }r{TiUi - Tiui] dov + ui(O)mi + ui,j(o)mij 4 ui,jk(o)mijk + ---

(8.10)
where
T, = Lim T. (n) .
i i
N ¢

And so, by choosing the appropriate order singularity (by cheosing values
of mi, mij’ etc.), the displacements or any order derivatives of the

displacement field of a regular stress state acting throughout can be
reproduced if the displacements and tractions are known on V. Note
that by choosing a particular isolated singular solution Ui’ one coclre-

spondingly chooses the form of m, mij’ mijk’ etc.

9, Discussion

As stated previously, the object of this report is to offer a
physical interpretation of various first and higher order isolated singu-
lar solutions of Cauchy's equations using Galerkin's vector. These singu-
larities are constructed by means of a limit solution proposed hy
Sternberg and Eubanks [8]. Some forms of first, second, and third order
isolated singularities are investigated andwill be followed by a discussionof
uniqueness and an application of Betti's reciprocal theorem. In the
following paragraphs, various salient points will be reviewed.
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In Paragraph 2 Cauchy's equations are rewritten in a form more
easily solved. This form is a nonhomogeneous biharmonic equation in
terms of an auxiliary vector called Galerkin's vector. The solution is

derived by. employing a technique analogous to one used in potential
theory.

Next, the limit solution is discussed and a series is developed
which contains all first order isolated singular solutions to Cauchy's
equations in the first set of terms, all second order singularities
in the second set of terms, etc. An investigatinn of the first order

singularity leads to its employment in a superposition method to construct
various second order singularities.

Paragraph 5 contains an examination of the second term of Eq. (4.10)
and hence, the development of the second order singularities,

It is shown in Paragraph 4 that tle first term of Eq. (4.10) may be
thought of as corresponding to a concentrated load at the origin. An
examination of the second term in Eq. (4.10) revealed the following facts:

a) Each of the diagonal components m,, (no sum) produces a force
doublet along axis Xy ii

b) Each of the off-diagonal components m. (143¢k) produces a force
couplet about the Xy axis

A . ,
¢) Symmetry of oFi(‘) about one or two axes insures that certain

components of mij vanish,

By dividing mlJ into jts symmetric and antisymmetric parts msj and
m,., it is found that the solution U 25 derived from m?. is identical to
1] 1 1
the strain E (no sum) corrcspondlng to :mne first order singularity
and 1eprescnts a force doublet in the X direction. Further, it is noted
2s 2§ 1 1 1
t}]at U ; a (2 i i < > N i (& L2 - .
U1 + + U3 rll + 122 + 133 and is a center of dilatation
Next, it is shown that the antisymmetrical part of the sccond order
. . A . P \ ,
singularity produces Ui wvhich is identical to the votation about the Xg
axis \jk corresponding te the fundamental singularity and represents a
force couplet about the X, axis. Tinally, the Galerkin vector producing
a third order singular solution is expressed as :k.(r)m..l and G?(i)
corresponding to a double center of dilatation is presented.

Next, an analogy is made between the series representing the
Galerkin vector pertaining to all isolated singularities and the spherical
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‘ harmonics series of potential theory. Tt is found that the Gi(§)
represented by zijk(r)ﬂijk can be defined as a spherical biharmonic.

‘ Further, it is demonstrated that, because there are dependencies among

; coefficients of Gi(i) beginning with the O('i) teim, there are an

infinite number of combinations which will yield any given singular

solution.

Finally, furthering the analogy with potential theory, Betti's
reciprocal theorem is presented.

L3 crives- s el SRy

Wy stress states are chosen, one
with a zevo body force field and one with an isolated singularvity at the

origin. Applying the reciprocal work theorem, an expression is presented
\ wvhich enables one to reproduce any order derivatives of the displacement

field of a regular stress state acting thrughout V if the displacements
and tractions are known on

V by simply choosing the appropriate isolated
singular solution.
A physical interpretation of the most important isolated singu-
larities (i.e., concentrated force, force doublet. force couplet.
3 center of dilatation, and double center of dilatation) has been given
1 for isotropy. The same approach could undoubtedly be used in the case
of anisotropy. As stated previously, proof that the derivatives of the
limit value of the auxiliary function must be identical to the limit of
the derivatives of the auxiliary function must be given.

2
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