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EFFECTS FOR PARALLEIL RECTANGULAR

PROXIMITY
CONDUCTORS IN NON-TRANSMISSION-LINE MODE

By

»,

Robert W. Burton*

Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts

ABSTRACT

In applications of elactrically short antennas such as multiturn loops,
variation in ohmic losses due to proximity effects can significantly affect
uncorrected estimates of efficiency. This paper investigates experiment-
ally the proximity effects on the current distributions and associated
ohmic losses for two identical parallel rectangular cross-section conductors
as a function of separation distance and cross-section. The system is
operated in a non-transmission-line mods.

In the light of experimental results a first-order theory is developed
and verified for analyzing relative proximity effects at the extremes of

conductor separation distances.

*The author is with the Department of Electrical Engineering, U. S. Air
Force Academy, Colorado.
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I. Introduction E
A strong interest exists in determining the radiation efficiency of 4
electrically small or minute antennas. In such cases the ratio of radiated ‘
power to ohmic losses is a significant parameter affecting calculations of ,
efficiency. The efficiency of power transfer is given by :
- _ 1 R
M. = TP (1) ;
0 r
where
L0 = system ohmic losses

(1}

r radiated power

In general ohmic losses are a function of the operating frequency,

the macroscopic properties and geometry of the conducting material,

LT T

and proximity effects due to the piresence of other current-carrying

L3

elements, For a given system, ohmic losses are typically calcu’ated by

TR

integrating the square of the current distribution of an isolated conductor

and multiplying it by an appropriate equivalent resistance. More often

TREF

s . o dit el o
AL R e D 2N alelB £k b AL, BN Sty oL 1 1wl 0R abetl

than not a uniformly distributed current is assumed, or better a

1 E
3 theoretically calculated or experimentaliy measured current distribution ;
4
ﬁ for an isolated conductor is employed. i
3 In electrically small multiturn loop antennas, however, proximity

ki

effects may dramatically alter the transverse current distribution of the 3

R

isolated conductors. Recently Smith(l) showed theoretically that the

ALl ol

errors in calculating the total power radiated by an electrically small

two-turn loop made from a circular cross-section conducter can be as

L faon o ke gt Sl

lar~e as 30% if proximity effects are neglected.
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For rectangular conductors (Fig. 1) the determination of proximity

:
|

effects is far from straightforward. However, some insight into the .
problem is given by Cockcroft(z). In this paper Cockcroft reviews the
approach as suggested by Strutt(a) that the rectangular conductor be ;
approximated by an ellipse of large eccentricity wherein at high frequencies
as pointed out by Kelvin(4) the problem of the distribution of the fields
becomes analogous to the electrostatic problem. Cockcroft applies this
anaiogy directly to the rectangular conductor usinz the Schwartz-
Christoffel transformation. Briefly stated, Cockcroft showed that the

a.c. resistance per unit length, R, in ohms per meter of an isolated

3%

rectangular conductor is given by

R = 2{(B/A) WRP (2)
T 87AB

where p ir the resistivity in ohm-meters, w the angular frequency;

B R the absolute permeability with Bo * 47 x 10"'7 henry/m; A and B

the dimensions of the conductor; and f(B/A), a shape factor involving

(5)

elliptical integrals. More recently King' ™' examined the current
distribution and impedance per unit length of a very thin isolated strip.
The case for analyzing proximity effects between two parallel conductors,
however, involves intractable integrals and an exact analytical solution

cannot be -found although numerical evaluation might be considered a

useful substitute.

*Cockcroft's formula hae been converted to MKS units.
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In this paper a series cf experimental measuremecnts of surface

current distributions are taken over two identical parallel rectangular

s TR L Tt CIT Ly P TN T 2 DS TRY s 3 T LI VT3 SN IR Lo 2 ¢

conductors carrying equal currents, as a function of separation distance

and cross section. Relative ohmic losses due to proximity effects over

hset 2 oa>lm 5

the range of measuremer.s are calculated and generalized to a significant

Ak

oy

set of cross-section geometries and sejaration distances. From these

Sl

observa‘ ons a first-order theory, which extends the experimental data

to inc'ude very small separation distances, is formulated and compared

e at Nes

with the analytical solution developed by Cockcroft,

it

II. E;cperimental Apparatus and Error Analysis

rad At

The basic experimental apparatus (Fig. 2) employs a 100 KHz CW
oscillator with an external shielded loop probing system. The rectangular
conductors are of sufficient length to be considered infinitely long in the

sense that field contributions from current-carrying feed cables were

o+ AL XSS T TR YA AR ol e Dt

kept less than 5% of the average probe reading from opposite sides.

The particular geometry of a rectangular conductor does not lend

2u A Ieaty .2

itself to the conventional approach of field probing using internally
mounted probes with the consequence that an externally mounted shielded
loop probe system (Fig. 3) was designed and raked across each conducting
face. The probe is constructed of 0. 021 inch O. D. coaxial cable formed
into a 1/16 inch by 1-1/2 inch rectangle. A uniform probe separation j
was accomplished using a 1/32 inch radius teflon bearing. The measure

of isolation between the conductors and the probe system was derived by

Ak P A e he e an S

raking the probe first in one direction 2 ad then the other (Fig. 4j.

Excellent agreement exists except where the probé penetrates the high
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field at the edges of the conductor. In this area contributions from the
current on the adjacent conductor face asymmetrically distort the probe
readings. The overall error from this distcrtion generates an error of
less than 3% in the calculations,

In practice a rectangular loop probe senses fieid contributions
derived from currents (Is) sampled over an area larger than that directly
below the probe. The area of sampled current as a function of probe

height, geometry and distance from probe centerline is given by

h2 X
I(x, h, - h) = Ay ax gy (3)
8 2 1 1r(y2+x2)
0

1

with vy, hl’ hZ’ x defined as in Figure 5.

Assuming I(x) varies at most linearly uver the sampled range, fifty
percent of the probe (Fig. 3) readings are derived from currents up to
1/16 inch away from the probe centerline; and 85% from currents within
1/4 inch of the centerline ®).

The results of this integration effect in the measurement of surface
currents is most tignificant as the probe approaches the edge. If there
were no contribution from he adjoining side, the actual current at the edge
would simply be twice the measured value. In such a case with a uniform
circumferential curreat distribution, the correction factor by which the
measuread values must be multiplied to give the actual surface current

would be

Correction Factor = 2 -%tan'l(s/h) (4)
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as derived from (3) for an infinitely small probe at height, h, and
located at a distance s from the edge.

A more accurate representation ot the current distribution near
the cdges would be a rising exponential, the maximum value of which
would again be twice the measured value if there were no contribution
from the adjoining side and of the same form as the correction factor (4)
but weighted by the exponential. Numerical integration of the weighted
correction factor shows that the probe reading at the edge is essentially
derived (90%) from currents present up to a distance 3h from the edge.

At the edge, however, the probe does in fact measure currents

from the adjoining vertical side according to
h2 -y

’ 1
Isw’ h2 - hl) E:T(%xz—L})- dy dy (5)

4

where I(y) is the current distribution on the adjoining side (the lower
half of the y-z planes) and (-y) is the distance measured down from the
edge as shown in Fig. 5.

The sum total of the contributions to the measured readings there-
fore is one half of the sampled current given by (3) plus the sampled
current on the adjacent side as given by (5). The cumulative effect of
these contributions i such that the measured currents at the edge are
not less than 85% of the actual value. This error translates into an error

of less than 3% in computing relative ohmic losses as described by (6).
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IiI. Experimental Results

Surface currents were measured for three conductor cross sections
(1-1/2 in. by 3in., 3/4in, by 3in., and 1-1/2in. by 1-1/Z in,), two
conductor orientations, and a range of conductor separations f:rom 1/2

inch to infinity. The results are presented in Figs. 6-19 The

YRl i Sy SVIEL ST el o - F?
AL oD it tL Pl i s Do B e in 2t N e o 25 AT

experimental data for the surface current are normalized to the total

current flowing in a single conductor such that the integral of the surface
current over the four sides A, B, C and D is unity for each of the five
cases investigated. No phase shifts in the current distribution were
noted. Because there exists a small contribution from the horizontal
current-carrying feed wires, the relative position of the oscillator is
noted. It is ¢:sy to observe that this contribution adds to the probe

reading on the near side and subtracts on the far side. Typically this ;.

X
o

asymmetry results in a current on side A with an amplitude approximately

10% higher than on side C.

T

From the experimental data presented in Figs. 6-19, proximity
effects on ohmic losses may be determined by integrating the square

of the surface currents and comparing the results to the appropriate

isolated conductor. In so doing, a normalized relative ohmic loss, Ln’

may be defined for two identical parallel rectangular cross-section
conductors carrying equal currents in terms of a conductor geometry

(B/A), relative separation distance (d/C), and referred to the case of

electrically isolated conductors.

LO(B/A, d/C)

Lo (B/A, )

L (B/A,d/C)

Il

e e e e T
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where C, the circumference of one conductor, is held constant.

Sl L R

2l e

Composite results for Ln normalized for constarit circumference

conductors are presented in Fig. 20 where th~ dashed lines represent a .

first-order theory developed in the following section which extends the

T T

experimental results to very small separation distances, i.e.,

B T R T P T LT T

d/C < 0.05.

Lt AR

IV. First-Order Theory for Determining Relative Ohmic

B i kLt ot b S e

ks b

Losses at the Limits of Separation Distance

In analyzing proximity effects for conductors of rectangular cross-

section, experimental results show that as the separation distance de-
creases the currer;t on the inside face (side D) gradually decreases and
is distributed over the remaining sides. At d/C of 0. 05 (that is, for
example, a 1/2 inch separation of 1-1/2 in. by 3 in. conductors)
approximately 95% of the current on the inside face has been redistributed
to the other faces (see Figs. 9-11 or Figs. 14-16). Furthermore, for
decreasing separation distances the current distributions on sides A and
C tend towards the form of the current distribution on the left half of a
conductor of dimensions 2A by B (see Figs. 9 or 11, for example).
Although it is clear that such a redistribution' of current i3 accompanied
by changes in skin depth and varying influences of the corner, it is none-
theless useful to construct a simplified model of the process with an
assumption that for changes of B/A by a factor of two the relative
errors in determining proximity effects which arise from variations in

skin depth are minimal and may be neglected.
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In general when an imperfect conductor is excited by a unit

alternating current, it exhibits internal power losses commonly referred

to as ohmic losses. Ohmic losses generally are a function of the L

TR

ol 1

operating frequency, the geometry of the conductor, its macroscopic

T AT

3 properties (which also may be frequency-dependent) as well as proximity

effects. In the elementary case of an isolated conductor of unit length,

ke wu b b o i

area (A), and resistivity (p) carrying a unit direct current, the ohmic

RN T T TR S

loss (de) is given by

de = % (7

o2 L v s o bl arhon 4 P o 14

The AC case becomes somawhat more involved because the current

is no longer uniformly distributed throughout the conductor but decreases

LTSN O

from a maximum at the conductor surface to 1/e of that value at the depth
0, the so-called skin depth. For an isolated imperfect conductor with a
constant smooth cross-section (i.e., no corners or radii of curvature of
the same magnitude as the skin depth) and at least several 0 thick, the
ohmic loss (Lac) per unit length for a uniformly distributed current with

a unit alternating current drive is given approximately by

Le ~ & ®

where C is the conductor circumference.

Although clearly only an approximation to the actual case, it is
greatly simplifying and quite accurate to approximate Lac by (8) when
comparing the relative ohmic losses between rectangular conductors of

cross-section A by B and 2A by B. This situation is ¢cquivalent to a .

comparison of proximity effects between two rectangular conductors of
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dimensions A by B with zero scparation distance. In terms of (6) and

the above approximation, Ln may be compuied at the touching point for

two conductors as follows

LO(B/A, 0) - L,.(B /24A)

Ln(B/A, 0) = L, (B7A; <) ~ 'ZrLaclB/A) ®

" In terms of (8), Ln at the touching point may be rewritten as

L (B/A,0) ~-EZAYER (10)

2(A+B)

and reduéed to

~ 1+B/A
L (B/A,0) = 5rg7% (11)

s

For the values of B/A used, the dashed lines of Fig. 20 represent
a first-order theory extending the relative separation distance (d/C) to
the limit of 0. For B/A = «, itis assumed that B & C/2 and A = 2§,
similarly for B/A =0, A~ C/2 and B~ 20, Fig. 21 presents over
the range of interest a comparison of the first~order theory with the
Cockcroft theory in determining relative ohmic power loss per unit length

for parallel rectangular conductors of constant circumference at zero

separation distance.
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