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ABSTRACT

The classic single echelon inventory model is restruc-

tured as a two echelon problem in which demand and resupply

are deterministic. Using cost minimization as the objective,

three-models are developed which address the problems of

(1) no stockouts allowed IEOQ), (2) backorders allowed, and

(3) finite production with no stockouts alloied. General

solutions for the optimal policy are obtained in the EOQ and

finite production models. In the backorder model, the ana-

lytical argument is limited to the case in which only time

dependent backorder costs occur. Algorithms are developed

for solving problems for all three models, and selected para-

meter values are used to test the behavior of the models.

2-f

m2



TABLE OF CONTENTS

I. INTRODUCTION- ----------------------------------- 6

II. THE TWO ECHELON MODEL WITH NO STOCKOUTS--------- 9

A. MODEL FORMULATION- -------------------------- 9

B. OPTIMAL POLICY ------------------------------ 14

C. NUMERICAL EXAMPLE -------------------------- 17

D. PARAMETER ANALYSIS ------------------------- 18

III. FINITE PRODUCTION AT THE SECOND ECHELON --------- 20

A. MODEL FORMULATION -------------------------- 20

B. OPTIMAL POLICY ----------------------------- 25

C. SPECIAL CASES OF J ------------------------- 28

D. NUMERICAL EXAMPLE -------------------------- 29

E. PARAMETER ANALYSIS ------------------------- 30

IV. THE TWO ECHELON MODEL WITH BACKORDERS PERMITTED - 31

A. MODEL FORMULATION -------------------------- 31

B. OPTIMAL POLICY ----------------------------- 33

C. NUMERICAL EXAMPLE -------------------------- 39

D. PARAMETER ANALYSIS ------------------------- 40

V. RECOMMENDATIONS FOR FURTHER STUDY --------------- 43

VI. SUMMARY ---------------------------------------- 46

LIST OF REFERENCES ----------------------------------- 62

INITIAL DISTRIBUTION LIST ---------------------------- 63

FORM DD 1473 ----------------------------------------- 64

- . - . -"--



LIST OF FIGURES

Figure Page

1. Typical Multiechelon Inventory System ------------ 7

2. Two-Echelon EOQ Model --------------------------- 11

3. Two-Echelon Finite Production Model -------------- 21

4. Finite Production Model. Area Under the
Inventory Curve at Echelon Two ------------------- 23

5. Finite Production Model. Area Under i + 1 st
Saw Tooth--------------------------------------- 24

6. Two-Echelon Backorders Allowed Model ------------ 32

7. Optimal n : A1 . EOQ Model ---------------------- 48

8. Optimal n : A,. EOQ Model ---------------------- 49

9. Optimal n : 1. EOQ Model --------------------- 50

10. Optimal n : 12 . EOQ Model ---------------------- 51

11. Optimal n : Production Rate. Finite Production
Model -------------------------------------------- 52

12. Optimal n : Production Rate. Finite Production
Model -------------------------------------------- 53

13. Optimal n : 12 with Low Backorder Cost.

Backorders Allowed Model ------------------------- 54

14. Optimal n : 12 with High Backorder Cost.
22

Backorders Allowed Model ------------------------ 55

15. Optimal n : A2 with Low Backorder Cost. Backoeders

Allowed Model ----------------------------------- 56

16. Optimal n : A2 with High Backorder Cost.
BackordersAllowed Model ------------------------- 57

17. Q* , Q* and s* ; A2 Backorder Model with Low
Backorder Costs ---------------------------------- 58

4'



Figure Page

18. Q* , Q• and s* : A2 Backorder Model with High

Backorder Costs -------------------------------- 59

i9. Q_ , Q_ and s* : 12 Backorder Model with Low
Backorder Costs ------------------------ 60

20. Q* , Q• and s* : 12 Backorder Model with High

.ackorder Costs -------------------------------- 61

51

I
-J



I. INTRODUCTION

Traditional inventory analysis addresses the single

echelon inventory problem. In this problem, customer demands

are received and issues are made from a single outlet. The

outlet in turn is replenished from a single source.

Unfortunately, most real world inventory systems are not

this simple. A major manufacturer, for example, usually has

a production and distribution system that includes (1) fac-

tories, (2) factory warehouses, (3) regional warehouses,

(4) local warehouses, and (5) retail outlets (Hadley and

Whitin]. Such a system is an example of a multiechelon inven-

tory system. Each level of the system is a separate, distinct

echelon. Figure 1 depicts graphically this organization. The

United States Navy with its organization of inventory control

points, supply centers, supply depots, shop stores, tenders and

underway replenishment ships provides an example of a large

multiechelon inventory system.

In defending their single echelon models Hadley and Whitin

argue that, even though most real world systems are multi-

echelon, it is often true that the system need not be treated

as multiechelon. They contend that a different organization

frequently operates each level (echelon) of the system. In

the example of Figure 1, a factory and its associated ware-

houses might be operated by an equipment manufacturer whereas

the regional warehouses might be separate privately owned

6
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Figure 1. Typical Multiechelon Inventory System V
distributorships not under the administrative control of the

manufacturer. In like manner, the local outlets might be

individually owned retail stores. Thus we would have a sys-

tem comprised of several single echelons which are linked by

a physical dependence but separated by administrative

controls.

While it is clear that there are many examples of multi-

echelon systems that can be treated as a series of independent

single echelon problems, it should be equally clear that there

is a large class of sy-tems which must be treated as strongly

dependent multiechelon.

It is the objective of this thesis to develop and investi-

gate the behavior of multiechelon models constructed from the

classic single echelon inventory models. Specifically, the

following deterministic single-echelon models of Hadley and

Jitin will be restructured as two-echelon models:

1.1 7H
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a. No stockouts allowed (Economic Order Quantity),

b. Backorders allowed,

"* c. Finite production with no stockouts allowed.

Like their single echelon counterparts, these two-echelon

models will be single item, single source models.

8
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II. THE TWO ECHELON MODEL WITH NO STOCKOUTS

H In any study of inventory theory, one of the first models

investigated is the deterministic demand model with no stock-

outs allowed; often referred to as the Economic Order Quantity

(EOQ) model. While it is true that complete deterministic

demand is almost never known, it is felt that the mathematics

of this model provide a good starting point for any inventory

analysis. Further, it is felt that the deterministic model

will provide an insight into the operation of a stochastic

demand model. It is considered appropriate, therefore, to

begin this multiechelon analysis by considering a two echelon

extension of the classic EOQ model.

A. MODEL FORMULATION

The two echelon model is based on the following

assumptions:

1. The upper echelon always replenishes its supply from

the same outside source. The lower echelon always replenishes

its supply from the upper echelon.

2. The upper echelon is always able to meet the demand

of the lower echelon.

3. External customer demand always occurs at the lower

echelon.

4. The external demand rate is deterministic, continuous,

and constant with a value of X units per year.

9



5. Neither backorders nor lost sales are allowed.

6. Procurement lead time (PLT) is negligible.

7. The order quantity at the upper echelon, Q2, is an

integer multiple of the lower echelon order quantity, Ql.

Let n = Q2/Q1 ; then this assumption requires n > 1 and

integer.

The optimal policy throughout this thesis will be that

which minimizes average annual variable system cost, subject

to the constraint(s) of the model. The form of the average

annual variable system cost will be developed by first deter-

mining the system cost per cycle, and then dividing this cost

by the cycle length. The total system variable cost per cycle

is the sum of the individual echelon variable cycle costs,

Kl(c) and K2 (c). The cycle length is defined as the time be-

tween receipt of two successive orders at the upper echelon

(echelon two).

The cost per cycle at echelon two is comprised of an

ordering cost, an inventory holding cost (IHC) and a purchase

cost. The ordering cost is assumed to be a constant cost per

order which includes the administrative costs associated with

inventory review and order (contract) preparation. This cost

is independent of the quantity on hand or on order. The IHC

includes a warehousing cost, an obsolescence cost and a fore-

gone opportunity cost. It is assumed to be a function of the

inventory on hand and to be expressable by

IHC = I 2 C 2 (t)dt,

10
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Figure 2. Two-Echelon EOQ Model.

where 12 is the average cost per dollar invested in inventory

per unit tiae, C is the item unit cost, T is the cycle length,

and J2(t) is the on hand inventory at echelon two at time t.

The purchase cost is assumed to be independent of the quantity

produced, and can be expressed as Q2 C where Q2 is the quantity

procured.

The variable cost per cycle at echelon two can now be

expresstd as

N11 NI
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K2 (c) =A2 + CQ2 + I 2 C f 2(t)dt (2-1)

The height of the on-hand inventory at echelon two is

2- Qn-] Q1

at the beginning of the cycle since Q2 is ordered, arrives

immediately, and is partially used to meet an immediate demand

of Q units. The next demand at echelon two is for an amount

1Q which occurs QI/X time units later. Similarly, another

demand of Q1 occurs after QI/X additional time 'units have

passed. The on-hand level at echelon two continues to de-

crease in steps of Q1 until it reaches zero. It remains at

zero for the last QI/x time units of T. The area under the

on-hand inventory curve for one cycle of echelon two is

therefore

t Q n-l
02(t)dt = X--mimQl = 2nlQ1 22 2JOfn2 m=l

From (2-1), the total variable cost per cycle at echelon

two is
r 2

(+ IC2C n[n-1] Q1I K(2 (c) = A 2  2X (2-2)

From the assumption that Q2 = nQl , where n is integer,

it follows that the cycle length at echelon two is equal to n

reorders. at echelon one. Therefore, from Figure 2,

02 nQ1
T = - -x-- (2-3)

The average annual cost at echelon two is obtained by

dividing (2-2) by (2-3) which yields

12



A2X I 2 C[n-l] Q2
K2 = 2- + CX + - (2 22

or, as a function of Q, and n,

A2X I 2 CQ1 [n-l]
K nQ1 + CX + 2(2-4)

Development of the cost per cycle at echelon one follows

an argument that is analogous to the echelon two development,

except that there is no purchase cost incurred at echelon one.

Also, from the assumption that Q2 is an integer multiple of

Q, I it follows that in each cycle there are n reorders at

echelon one, i.e., K (c) is linear in n. Thus the cost per

cycle can be written as

2nI CQ2
K1 (c) = nA1 + 2 (2-5)

When (2-5) is divided by (2-3) the average annual variable

cost is

AlX 11 CQ1
K - Q + (2-6)

The total average annual cost of the system, K, is the sum

of (2-4) and (2-6).

AI_•X IICQ1  A2X 12C[n-l]Q1  (
K = 1 + - + CX + -" I . (2-7)

Q1 2 nQ 1  2

The model has assumed that -he unit price is independent

of the quantity ordered. Therefore the C term in (2-7) is a

constant, and can be dropped from (2-7) resulting in (2-8)

being the average annual variable cost.

13



AIX 11CQ1  A2 X 1 2C [n-l] Q1

1+ + +

B. OPTIMAL POLICY

Determining the optimal inventory policy involves finding

the values of Q1 and n (call them Q! and n*) which Minimize

(2-8) for a given set of model parameters. To find this

policy, rewrite (2-8) as

A2 ([Ii +.I 2 [n-l1]CQ1

1A n 2 . (2-9)

Then since K(QI,n) is convex in Q, for fixed n, Q*(n) must

satisfy the equation

•K A2 [Ii I2 [n-l]]C
DKI= [AI 2 X-'- + 1 2 =0

15 21 n-0,

or

F A2

Q1(n) = L[II + (2-10)
1 1 ' 2I-1R

After substituting (2-10) for Q in (2-9) and collecting

terms, (2-9) takes the following form:

A 1/2
K(Q*(n),n) = {2X[A + -HI1 + I2[n-l]]C}

1 1 n l1 2

or or2XA2IIC
F ~ AA2 I1K(Q*(n),n) 12XAAIIC +

,1/2
+ 2XA I C~n-1] + 2XA I C[.j . (2-11)

Note that the first term in (2-11) is equivalent to Kw2
w

(Eq. (2-11) [Hadley and Whitin]). In fact, it .is readily seen

that each term in (2-11) contains a form of this classic

formula. Let

K?2 = 2XAiIjC

14



Then (2-11) can be rewritten

2 21 2 2 n-i1/
K (n) K(Q n) { K + 2-i- + K12 [n-1] + K2  I

(2-12)

It is immediately seen that (2-12) is positive for all

feasible values of n (n 2_ 1). Further,

lim K(n) = K2 +2 1/2
n)l w

and for very large values of n,

1. K(n) K n 1 /2  > 0,12

2 K(n) 122. ÷ > 0 ,

2 2n
a2K (n) 1 K2

3. ' ÷< 0n2 43/2•

If the assumption that n is an integer is temporarily re-

laxed the slope of K(n) can be readily investigated by

considering

-K2  K2
21 +22 +2+ + KI12

aK = n - n K(2-13)
an 2K(n) 1 / 2

If (2-13) is positive when n = 1, then it follows that it

is positive over all n, and the optimal value of n is n* = 1.

If (2-13) is negative when n = 1, then there exist values of

n such that K(n) is less than K(l). However, since it has

been shown that (2-13) is positive for very large n, it follows

that n* is finite, and satisfies

15
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aK 0

or

S2 2- 1/2
n* -,K.2 J " (2-14)

R A further consideration of the case where (2-13) is nega-

tive at n = 1 reveals that

F •2K

> 0

over the range of n values from 1 to beyond n*. Let the value

of n where

o2 r

7 0 '

A

be denoted by n. Then in the range 1 < n <_ n the function

K(n) is convex. For values of n > n, (2-12) is not convex.

However, (2-13) will always be positive. Therefore n*, given

by (2-14), is the optimal non-integer value of n. The reader

will note that the above arguments indicate that (2-12) is

pseudo-convex.

Since K(n) is pseudo-convex over all n, it follows that

K(n) is also pseudo-convex on the integer values of n. If n* 4

is not an integer, then the optimal integer value of n will be

either 1 (the smallest value greater than n*) or n (the

largest value less than n*). The integer optimal will be the

value of n corresponding to K* = min [K(F) ,K(n)] .

In summary, the optimal inventory policy is found as

follows:

16
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2 2 22. T 22 > K K2 . If this inequality holds then
.TestK-2 1  2 2 -- 12

n optimal = 1. Go to step 8.

3. If 2 1 - K2 2 < K12  then compute n* using (2-14).

4. If .n* is an integer then n optimal = n*. Go to

step 8.

5. If n* is not an integer, compute W and n.

6. Compute K(F) and K(n) from (2-12).

7. K* = min {K(i, K(n)} and n optimal is the value of n

corresponding to K*.

8. Compute Q* from (2-10).

C. NUMERICAL EXAMPLE

As an illustration of the algorithm, consider the follow-

ing problem where

I = 0.75 A2 = $200.00

I = 0.50 X = 100 units/year
2

A1 = $25.00 C = $100/unit

Begin by computing K?. = 2XAiIjC

K2 = 3.0 x 106

K2 = 2.0 x 106

22

1(2 =2.5 x10 5

12-

Next compare K2l 2 -- 1.0 x 10 > -2 =2.5 x 10 5

17



so compute n* using (2-14). The value is 2.0 which is

integer. Therefore n optimal = 2. Using (2-10) the optimal

order quantities are

166.67 units

and

Q = 166.67 x 2 = 333.34 units.

D. PARAMETER ANALYSIS

The primary objeýctive of this analysis was to observe the

effect of parameter variations on optimal n. The values of

four of the five parameters were fixed and the value of the

remaining parameter was allowed to vary. The process was then

repeated for each of the other parameters so that the effect

of each could be observed.

Representative graphs of optimal n versus a given para-

meter are illustrated in Figures 7 through 10. In Figure 7

it is seen that n optimal is inversely related to Al. How-

ever, as noted in Figure 8, there is a direct relationship

between n optimal and A2 . Further, a comparison of Figures

7 and 8 reveals that, for the parameters selected, n optimal

is much more sensitive to P2 than to A1 .

Figures 9 and 10 indicate the relationship of n optimal

to I and I2, respectively. The results indicate that n

optimal is directly related to I,, inversely related to 121

and that n optimal is more sensitive to a change in holding

cost at echelon two than at echelon one.

18
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An analysis of the effect of demand rate on n optimal

revealed that n optimal was completely insensitive to X over

the range 5 .X . 10,000.

19 i



II

III. FINITE PRODUCTION AT THE SECOND ECHELON

An additional two echelon variation to the deterministic

models treated (Hadley and Whitin] addresses the problem of

finite production. This model would have application in any

situation where the upper ec elon manufactures as well as

warehouses a given product.

A. MODEL FORMULATION

The model, shown graphically in Figure 3, assumes that

echelon two produces the needed material at a constant con-

tinuous rate of ý units per unit time (P Ž.X). The cost A2 is

now considered to be a set up cost which is incurred each time

a new production run is initiated. This set up cost is inde-

pendent of the quantity produced. The rest of the assumptions

are identical to those of the EOQ model.

The model will, as in Section II, seek optimal values of

1 and Q2 which minimize the average annual system cost. This

cost is the sum

K = K1 + K2 ,

where Ki is the a'exge Annaal cost at the ith echelon. In

Section II it yzs showp that.,

K + 211C

To develop K 2 it is necessary to define the cycle length

as

1 p d 
(3-1)

20
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where t1 is the time from the beginning of the cycle until the

start of production, T is the production length, and *rd is

the time required to deplete the inventory at echelon twi

after production stops (see Figure 3). Note that

= Q1  Qi

T 2

and

(2d- Q (Q2 - Q1)Td x • ' -• -

Define i as the number of times that the quantity Q1 is

V demanded at echelon two during the production period, Tp. It
4 p

can be seen that
I t'+T1-

ti = ](3-2)

where t

As in Section II, the variable cost per cycle at echelon

two, K2 (C), will have the form

+ T + T
p d

K2(C) = A + I2C t i(t) dt (3-3)
2 2 2 t

From Figure 4 it follows that

tI + T + T

1 p d
f 2 (t) dt f(i) + g(i + 1) + h(i + 2)

22



where f(i) is the area under the first i saw teeth, g(i + 1)

is the shaded area shown in Figure 4 and h(i + 2) is the area

remraining under the curve.

"•1
0

I -Q
F 4 P io ol ,AeUn hi

%l ' Q1 ' ' I' " "";" l .... Time; •

Figure 4. Finite Production Model, Area Under the Inventory

Curve at Echelon Two.

From Figure 4 it can be shown that

2 i 2 2
Q [i-1] [ + [Q-W](i-2] 1i-2]

f(i) 2 + + (3-4)A1 2X

and

h(i) = •(3-5)2X

23



From Figure 5 the area g(i + 1) is found to be

2 2 2 2

g9 1) = 1

2 2
-0Q1 +f 01{U.iQ [i-lI4 (3-6)+ • + X2

a --
T

slope d

b ýH

c

Q- 1

QI Q1
a - i [ _ [n-1]]

QI Q1
b [n-i] - -- [i-i]

c = 01 [i-][ [ -

d = b

Q Q[n-1] Q1 U[-l]

Figure 5. Finite Production Model. Area Under

i + ist Saw Tooth.

24



Substituting (3-4), (3-5) and (3-6) into (3-3) yields

2 2I 2 CQ2 I 2CQ25*[i-l]
K2(C) A 2 + 2A2

I 2 CQ2 [n-i] [n-i-i] I 2 CQ2 [n-i]
+ 2 1

2 2I CQj li-i] C [i [n-i]]
+

Sc[i1] ]

+ (3-7)

After dividing (3-7) by the total cycle length and collecting

terms K2 can be written

A2  I 2 CQ1 [n-l] I 2 CQ•X [n-2]
K2  nQ- + 2p (3-8)

The system average annual variable cost is found by sunmting

K1 and K2

A + ~I [n-1_n2 ]CQ1A2  [1i+I 2 [n-l] - I 2 [-(3-9)
K (Ql'n) = [A1+j-] + 2

B. OPTIMAL POLICY

The development of an algorithm for determining the optimal

inventory policy in the finite production model follows an

argument that is identical to the one discussed in Section II.

Since (3-9) is convex in Q for fixed n, Q*(n) must satisfy

aK(QIn)
= 0

25



Or
A2* 2[A •2] 1/2

(n) (3-10)
Ql(n) [C[Ii+i 2 [n-1] I 2 [n-2(

1 2 2-

When (3-10) is substituted for in (3-9) then

2
K(n) = K + K21 + K22 [[n-l]- A[n-2]]

K 22[[n-1] - _[n-2]
+ n (3-11)

where K2  = 2XAiIjC.

It is apparent that (3-11) is positive for all values of n.

Further,
2 2 K2 X 2 X

lim K(n) = K2 + K2 + 2 + K2
nl K21  K12 T 22 q

and for very large values of n,

1. K(n)-Kl 2 n1 / 2 > 0 ,

KBK K12
2. rn 12 > 0,

Bn 1/2~

a2 K -K12
3. 3/2 <0.

4n

If the assumption that n is an integer is temporarily

relaxed the slope of K(n) can be investigated using

2K K2  2XK 2K21  2 + X 22 22

2-+ K 1 2 [ K- 1 +
3K n n ý

T 2 K(n) 1/2  .(3-12)

26



If (3-12) is positive when n = 1, it is also positive over

all n and it follows that the optimal value of n is n* = 1.

If (3-12) is negative when n = 1, then there exist values of

n such that K(n) is less than K(l). However, since it has

been shown that (3-12) is positive for very large n, n* must

be finite and satisfy

or Fx 2 A2 -1/2
n*= 1 22  (3-13)

where

"-2 K K2 [kf2XLKK22  - 22

and

"^22K = K [ .
1212 i

A further consideration of the case where (3-12) is nega-

tive for n = 1 will show that

2K

Bn

over the range of n values from 1 to beyond n*. Let the value

of n where
%2K

0
3n

A A

be denoted by n, and it follows that in the range 1 < n <_ n

K(n) is convex. For values of n > n K(n) is not convex, but
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(3-12) is positive. Therefore n* is the optimal non integer

value of n and (3-11) is pseudo-convex.

Since (3-11) is pseudo-convex over all n, it follows that

it is also pseudo-convex on the integer values of n. So if

n* is not an integer, then the optimal value of n will cor-

respond to

K* = min[K(i), K(n)]

The optimal policy algorithm can now be written.

2 -2 "21. Compute K2l1, 221 and K12

2 "2 +"2

2.2, If K2

2. If K21 2 2 + K12 then n* = 1. Go to step 8.

2 A2 +2

3. If K2l K22 + K12 then :ompute n* using (3-13).

4. If n* is an integer then n optimal = n*. Go to step

8.

5. If n* is not an integer compute W and n.

6. Compute K(F) and K(n) from (3-11).

7. K* = min[K(F), K(n)] and n optimal is the value of n

corresponding to K*.

8. Compute Q* from (3-10).

C. SPECIAL CASES OF

When '=

An I 2CQI A2A I 2 CQK()= -_ +2_
1 2 nQ1

and
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A1X [1 1 +12 ]CQI (3-14)Jira K (n) =--- + •

Q1

Thus it is seen that if the production rate is equal to the

demand rate, the optimal policy is to start the production

line and never let it stop.

As one would expect, when 4 ÷ w

n K(n) A I X + 11CQ1 + A2X

Q,4 2

SI2 CQ 1 In-l]

and it is immediately seen that this model degenerates to

the EOQ model of Section II.

D, NUMERICAL EXAMPLE

Consider the problem where

1 0.50 C = $100/unit

12 = 0.20 A1 = $50/unit

= 25 units/year A2 = $200/unit

= 75 units/year

First compute K2j 2 and K

' 2  K12

K 5.0 x 105 2 = 1.25 x 105
K21  K11

=2.0 x 10 6.67 x 104
z22 22

2 ^2 4
K12  = 5.0 x 10 K12  3.33 x 10

I' 29



2 ^2 '2 K2  ~0i 5>i 2  ^i2  5j.Next compare K 2 1 with K2 2 + K1 2-- K .0 x 10 K + 2 1.0 x10,

so compute n* using (3-13). The value is 3.64 which is not an

integer. Therefore n = 4 and n 3.

From (3-11)

K(R) = $685.00,

K(n) = $694.00,

and n optimal is 4. Using (3-10)

SQ = 7.2 units

and

= 28.8 units

E. PARAMETER ANALYSIS

Figures 11 and 12 illustrate the effect of production rate

on optimal n. If the holding cost at echelon two is small

then optimal n was relatively insensitive to a change in

production rate (Figure 11). However, the results of Figure

12 show that this sensitivity increases as 2 increases.

The responses of this model to parameter variations were

identical to the responses observed in Section II.
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IV. THE TWO ECHELON MODEL WITH BACKORDERS PERMITTED

A. MODEL FORMULATION

The EOQ and finite production models were based on the

assupption that all demands would be immediately satisfied.

This assumption will now be relaxed in orde: to investigate

a system in which all demands are ultimately satisfied, but

where it is permissible to accumulate backorders at the lower

echelon. No backorders are allowed in echelon two.

In this model demands which occur when the lower echelon

is out of stock are backordered against future procurement.

When the procurement arrives these backordered demands are

met, and any excess.quantity is placed in stock. Fach back-

order at echelon one results in a cost of the form w + 7,
A

where i is a fixed charge and 7 is a time dependent cost.

As noted, if there were no costs associated with incurring

backorders (Hadley and Whitin], then it would be optimal to

never have any inventory on hand. Conversely, if the back-

orders are sufficiently expensive, then the optimal policy

would be to never incur any. However, for an intermediate

range of backorder costs, it will usually be optimal to incur

some backorders toward the end of the cycle.

With the exceptions noted in the preceding paragraphs, the

model is predicated on the same assumptions used in Section II.

Define s as the number of backorders at echelon one when

an order is received. Then from Figure 6 it follows that the
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on hand inventory at echelon one immediately after receipt of

an order is (Q1 - s) units. It is assumed that Q1 >. s. Then

the echelon one on hand inventory varies from (Q1 - s) to

zero.

Echelon II

0

0 __ _ _ _ _ _ _ _Time

s-nQ 1 -

I ~04
0

PS

>• Echelon I

•(Q1-s)

Time
0

Figure 6. Two-Echelon Bz.ckorders Allowed Model.

The optimal policy continues to be that which minimizes

average annual variable system cost subject to the model

constraints. Since the model does not permit backorders at

the second echelon, the average annual variable cost at

echelon two will be identical to equation (2-4), which for

convenience is restated here.
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Aý I 2 CQ 1 [n-i]
K2  nQ + 2 (4-1)

Development of the echelon one variable costs follow

identically the single echelon backorders permitted model of

Hadley and Whitin. In the interest of brevity, this develop-

ment will be omitted and the results (equation 2-17) [Hadley

and Whitin] merely stated.

2AlX IC[QI-s] 1 2 2

I2CQ1 1[n-l]
K+ + 1 Q9 l A 43

2

B. OPTIMAL POLICY

The optimal solution seeks the values of the decision

variables Q*, s*, and n* which minimize (4-3) subject to the
constraint that all demands are ultimately satisfied. To do

this, note that (4-3) can be rewritten as

A\ ICQ1  Xs2
K ~~ - - rXSX5

K~~ : •---ICS +ITs (4-4)
1 ~ 1 1

where

X IiC + w

A2

A = A1 +A ,1 n

and
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1

I = 1 +12 (n-i] .

Then from

0,

it follows thatfCQ1 - ,O AS = x (4-5)

orx

or 7A + Xs

Q1 . (4-6)

Next,

aK -2AA IC 27rXs Xs 2

1 2Q1  2C 2 1

results in
L 2]1/2

Q = AX + 2rrXs + Xs (4-7)

To solve for Q* and s* in terms of n and the system parameters,

substitute (4-7) into (4-5) and (4-6). After collecting terms,

the resulting equations are

Q*(n) = 2A X -_ 2 1/2 (4-8)

LC 1 41
and

AXX-1 2 X 21/21I1C AAX X 2_X2I/2 4rXs*(n) = 2 I J - -- (

The expressions (4-8) and (4-9) can now be back substituted

for Q1 and s in (4-4) to yield an expression for the average
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annual variable cost, K, as a function of n and the system

parameters. After regrouping the terms this expression can

be writLen

A 2•2 1/2 221/2
[IC[iIC+717_CI [2AX[IiC+ir]-r X2] IICArK(n) A .. +

[IIC + r]

(4-10)

Equations (4-8), (4-9), and (4-10) are valid only if

2AXIC - X2 2 > 0. Otherwise an analysis similar to that of

Hadley and Whitin is required for the case when v and iT are

positive. Such an analysis is beyond the scope of this thesis,

Because of the complex form of K(n) given by (4-10) as a

function of n no attempt was made to evaluate whether or not

K(n) was convex or pseudo-convex in n when n and n are both

positive. However, an example is presented later in which an

optimal value of n > 1 is obtained for i and wt positive.

If n = 0 (4-10) reduces to

ic1/2

K(n) = [2AXIC - 2AXIC -- ] (4-11)

To expand (4-11), let

2Ki= 2XA AIjC (4-12)

Then,
K21X

S1 12

K 2 X[n-1] K 21 1 C 1/2
+ n K K21 I1 C n
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and since x = IIC + i, K(n) reduces to

[K2  K 22K(n) 1 K7 1 2

I C+11 n[11C+71

K2 (n 31/2

K n-[1 I2[n

+ 22 - (4-13)

Following the analysis of Section II, it is immediately

seen that (4-13) is positive for all feasible values of n, and

that
K2  2A1
K21r + K 2r

urnK~n - 11 21lira K(n)=
n-l I IC + 7r

Also, as n gets very large

1. K(n)-K 1 2 n1 2 > 0,21_K 1 2
aK

2. axn-+ 1 > 0,

S 2 K(n) 1/ 2 0

2•

Assume, for the sake of argument, that n is continuous

for all n > 1. Then
2 K2

2 1  +K 2  22
2K [1iC+fn2 n

a K [1 (n n2(4-14)

and it is obvious that for n = 1 (4-14) is non negative if and

only if

36
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K2  2 2 1l3[ +(-5
21 K 12 + 22f1+(-5it

If (4-15) holds, then (4-14) is positive for all n. This

implies that over all n, the slope of K(n) is positive, and

n*

IF (4-14) is negative at n = 1, then there exist values

of n such that K(n) < K(1). However, it has been shown that

for very large n, (4-14) is positive, and it follows that n*

is finite and satisfies

=0,

or E 2A 2 A 1/2
n* = i- K2 2 [IIC + 7 2 3

= 2 (4-16)
1(12[110 + Tr]

To complete the argument, note that when (4-14) is

negative at n = ,

> 0n2

over the range of n values from 1 to beyond n*. Let the value

of n where

a2K J
=0

n2

be noted by n, and it follows that K(n) is convex over the

range 1 < n <ý n. For values of n > n, (4-13) is not convex,

but in this range (4-14) is always positive. Therefore n*

given by (4-16) is the optimal non integer value of n. The

37
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reader should again note that the above arguments indicate

that (4-13) is pseudo-convex.

Since K(n) is pseudo-convex over all n, it is also pseudo-

convex on the integer values of n. Therefore, if (4-16) does

not yield an integer value then the optimal value of n can be

found by evaluating K(F) and K(n) as in Section II.

An algorithm for finding the optimal policy (in the case

where n = 0) can now be stated.

1. Compute K2 1 , K 2 , and K12

I C
2. Test K 2 [K 2 + K 21 I1 + 1--- • If the inequality

'IT

holds then n optimal is 1. Go to step 8.

3 If 2  >2 2 1 1C
3. 21 i [K 2 + K2 2 ] [I + -.- ] then compute n* using

(4-16).

4. If n* is an integer then n optimal = n*. Go to step 8.

5. If n* is not an integer compute 5 and n.

6. Compute K(F) and K(n) from (4-13).

7. K* = min[K(F) and Kkn)] and n optimal is the value of"

n corresponding to K*.

8. Compute Q* from

A2
2X [A1 + -21/

Q•.tn) ^ ^
[ IiI 2 C[n-l] + Ii7 + I A [n-

+ I2 2'r~-]

and s* from

s*(n) = !
C +

38
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C. NUMERICAL EXAMPLE.

Consider the problem where

1 = 0.75 7r = $5.00
A|

12 = 0.25 i = $100.00/year

A1 = $25.00 X = 100 units/year
1I

A2 = $100.00 C = $100/unit

Begin by computing K2 = 2XAiI C.

K 2 = 1.5 x 106
25

K22  = 5.0 x 105

K2 =1.25 x 10 5
K12

Next compare K 21 <[K 12 + K 22] (1 l - The inequality does
iT

not hold so compute n* using (4-17). The value is 1.69 which

is not an Integer. From (4-13)

K(•) = $735.00

and

,4 K(n) = $620.00

Therefore optimal n = 1. The values of Q* , Q• ,and s*

are now found to be

12.9 units

12.9 units

s*= 8.16 units.
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D. PARAMETER ANALYSIS

As noted previously, computational difficulties preclude

an analytical treatment of the general form of the backorder

model. However, the response of the model to parameter

variations can be approximated. This can be accomplished by

considering separately the two functions (3-1) and (3-2) and

ignoring, for now, the integer restriction on n.

Equation (4-1) can be rewritten

A2X I 2 C[Q, - Q1 ]
2 = - 2Q2 2 '

and since the second term is never negative, it is obvious

that K2 is convex in . Using the Hessian it can be shown

that (4-2) is convex in Q1 and s if and only if

A 2
2AIX [IIC + T] Ž [7r]2 . (4-18)

Then

A•X IC[QI - s2 2
K + 2I + [(rs+

A2X X 2C[Q2 Q1 ]
+2 (4-19)Q2 2

is convex if and only if (4-18) holds.

It can be shown that when (4-19) is not convex the optimal

inventory policy will be realized when backorders are not

allowed (s* = 0). Thus if (4-18) does not hold, the problem

can be solved by setting s* = 0 and using the algorithm

de,..ribed in Section II to get Q* and n*.
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For the case where (4-19) is convex, optimal QI' Q2 and

s can be found from

M = 0. (4-20)

Equation (4-20) will be satisfied when

F2X [nA1 + A2 ] [IIC+Tr] - n•r2 k2  1/2Ln i ^ II2C2. .. .^ , (4-21)
1 n[I C + + +n-l] + 1I 2C[n-lIj

IICQ (n) -iX

s*(n) = (4-22)
IlC + 7

and

Q*(n) = nQ*(n) , (4-23)

and the optimal policy can be found from the following

algorithm.

1. Set n =1.

2. Compute Q*(n) 1, s*(n), Q*(n) and K(n) using equations

(4-21) through (X-23) and (4-19).

3. Set n = 2 and repeat step 2.

4. If K(l) < K(2), stop; n* = 1 and the optimal policy

is known.

5. If K(2) < K(l), set n = 3 and repeat step 2.

6. Continue solving K(n) by increasing n in steps of 1

until K(n+l) Z K(n). Stop as soon as K(n) < K(n+l); n* =

current valie of n and the optimal solution has been found.
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The algorithm described in the preceding paragraph was

uLed to observe the effect of parameter variations on optimal

n. In general, the results were similar to those observed in

the EOQ model. For example, n optimal varied inversely with

A1 and 12, but directly with A2 and I,.

The sensitivity of n to the various parameters was highly

dependent on the selected values of the backorder costs. For

example, Figure 13 illustrates the relationship between optimal

n and 12 in a situation where the backorder cost is small.

Figure 14 illustrates this same example with a high time de-

pendent backorder cost. The difference in the sensitivity is

obvious.

Figures 15 and 16 illustrate the relationship of optimal n

to a change in A2 . In Figure 15 the backorder costs were low,

and optimal n was insensitive to a change in A2 . In this

example optimal n remained at two, and s* increased as A2

increased. When the time dependent backorder cos:; was high

optimal n varied directly with A2 (Figure 16). However, the

change in optimal n was not nearly as large as in the EOQ model.

Figures 17 through 20 illustrate the relative magnitude of

' Q, 'and s* as A2 and 12 are allowed to vary. The breaks

in these curves occur at points where optimal n changes.
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V. RECOMMENDATIONS FOR FU1' IER STUDY

The analysis of the backorders permitted model should be

completed for all values of the backorder costs ff and r in-

cluding the case where n > 0 and n = 0. Hadley and Whitin

discuss this case in their single echelon development and

conclude that if iT = 0 then s* is either 0 or infinite.

Initial investigations indicated that in the two echelon model

there could exist a finite value of s* > 0 when f = 0. How-

ever, this investigation was not completed and no conclusions

were reached.

It is felt that the analytical argument used throughout

the paper could be applied to the general backorder case where

1T and ^ are 3oth greater than zero. However, the complexity of

the equations would greatly complicate this development.

The models discussed in this thesis should be extended to

more than one activity at each echelon. If it can be assumed

:1 that all activities within a given echelon order at the same

time, then it is particularly easy to include multiple activ-

ities within an echelon. For example, assume that there are

K activities in echelon one. Then in the EOQ model K1 would

take the form

K1 k= l[ Xi + IICQi

If the values of the parameters Ai, Xi• Ili' and C are constant

for all i, i = l,...,k, then the expression for K1 reduces to
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the trivial case of
A

K' k Ki,

where Ki is found in Section II. The expression for K2

remains unchanged.

The problem of multiple activities at the top echelon is

usually not a very interesting one, since each top echelon

activity is usually responsible for supplying specified activ-

ities at the next lower echelon. Therefore, unless the model

provides for lateral resupply actions, the problem of multiple

activities at the top echelon can be reduced to the sum of a

series of independent problems, each containing one top

echelon activity.

A related problem which should be investigated is the ex-

tension of the models to more than 2 echelons. In the case

where each echelon is limited to one activity, this extension

would not be difficult. Indeed, given the assumption that there

is an integer ratio between the quantity ordered by successive.

echelons, the model would probably take the form

m
K= •Kj ,

j=l

where the relationship between the Q.'s is
n2 =1

Q3 n n2 °2 n n2 °nl • Q1

j-1
Q = nj-1 Qj-I nliQl

i=l

and nK is an integcr for all k, k l,...,j-l. Because of the
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integer property of the nk's, the solution technique outlined

in Chapter II could be used to solve recursively for K.

If the m-echelon problem allows ki activities at the ith

echelon, i = l,...,m, then for large values of ki and m, the

sheer magnitude of the problem would make its solution ex-

tremely difficult. In fact, it is doubtful that the proce-

dures suggested in this paper could be utilized for a problem

of this type. However, if the model is small enough, one

could at least get a "feel" of the model's behavior.
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VI. SUMMARY

Three of the deterministic models of Hadley and Whitin

have been restructured as two echelon models. Equations for

the average annual variable cost are derived, and standard

mathematical programming techniques are utilized to find the

optimal inventory policy. The optimal policy is defined as

that which minimizes average annual variable cost subject to

the constraints of the model.

General solutions are obtained for the EOQ and finite

production models. Because of the complexity of the cost equa-

tion the analytical solution of the backorders permitted model

is limited to the case where w = 0. However, a technique is

developed which can be used to find the optimal policy in the

general case.

A parametric analysis is conducted for each model in order

to study the behavior of the models under parameter variations.,

The behavior of the curves of n optimal for the EOQ and finite

production models aere identical except that the finite produc-

tion model enjoyed a significant cost advantage. The behavior

of the backorder model was very dependent on the magnitude of
the backorder cost. For example, if the model had a low time

dependent backorder cost then parameter variations had little

effect on the optimal behavior of the model. However, if the

backorder cost was set sufficiently high then the model's 9

behavior was similar to that of the EOQ model. Figures 7

5' 46 H



through 20 illustrate the behavior of the three models under

varying parameter values.
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02 Parameter Values

11 = 0.75

C = $100/unit

70
A1 = $25

A2  $200

S= 5.0

A = i00 units/yr.

50 --.

40 ,

S*

4I230 •

20-

10

' .-I I I "
•0.1 0.2 0.3 0.4 0.5 12--

Figure 17. Q, Q* and s* - A2 Backorder Model

with Low Backorder Costs.
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Parameter Values

S1 =o0.75

70 C = $100/unit

A A = $25

A2 = $200

'IT = 5

S• = 100

X•= I 100 units/yr

50

30

10

S*

0.1 0.2 0.3 0.4 0.5 12

Fi4ure 18. Q*, Q* and s* : A2 Backorder Model with

High Backorder Costs.
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Parameter Values

1 0.75

1 2 =0.5

70. c = $100/unit

A1 = $25/unit

nt = 100 units/yr.

'T= $5.00

60 nt = $15.00

50.

40-2

.30-

20t

S*)

10

* I I40
200 400 600 800 A 2

Figure 19. Q* , Q* and s* I 1 Backorder Model with Low

Backorder Costs.
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