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ABSTRACT 

In this paper the theory of minimax problems Is developed further 

via the dual approach, that is, by means of the conjugacy correspondence 

among saddle functions.   The saddle functions considered are extended- 

real-valued, concave in one argument and convex in the other argument. 

The results obtained extend to minimax problems many of the results 

already known for convex optimization problems.   The proofs, however, 

are not routine extensions of the ones in the convex case.   This is because 

each minimax problem corresponds in a natural way to a whole equivalence 

class of saddle functions, and consequently one must always deal with 

these equivalence classes rather than just with individual functions.   In 

the first half of the paper various operations are described for forming 

new equivalence classes from given ones.    It is shown that these opera- 

tions fall into dual pairs with respect to the conjugacy correspondence. 

Included are the important operations of addition and its dual, minimax 

convolution.    Formulas are given describing the effects of the operations 

on the subdifferential mappings of the equivalence classes.   In the 

second half of the paper, generalized saddle programs are defined and 

the earlier results are used to develop a perturbational duality theory for 

such programs.   Several characterizations are given for stable optimal 

solutions and Kuhn-Tucker vectors, including a Lagrangian saddle point 

characterization.   Two special types of programs are then considered.   The 

results for the first type show, somewhat surprisingly, that in general 
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there doei not exist a good Lagrange multiplier principle for mlnlmax 

problem! subject to convex Inequality constraints.   The results for programs 

of the second type constitute a mlnlmax version of Fenchel11 Duality 

Theorem.   The appendix discusses polyhedral refinements, which are 

possible for nearly all of the results. 
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Introduction 

In recent years much work has been done on convex optimization 

problems, and especially on convex programming problems.   The dual 

approach to these problems, which involves applying the theory of con- 

jugate convex functions, has been very successful.   It has led to defini- 

tive results for convex optimization problems. 

In passing to the theory of minimax problems, one encounters a 

formidable technical difficulty not found in purely convex problems.   It 

is that each minimax problem corresponds not Just to a single saddle 

function but rather to a whole equivalence class of saddle functions.   How- 

ever, a conjugacy correspondence among such equivalence classes has been 

developed.   By means of it the basic questions concerning the existence 

and nature of saddle points have been fairly well answered, and in the 

past several years a number of methods have bern presented for actually 

locating saddle points. 

The present paper aims to develop further the theory of minimax 

problems along the lines of the recent results for convex problems.   It is 

hoped that this will serve to complement current efforts toward methods of 

finding saddle points and to give further impetus to those efforts.   Also, 

this paper is presented in support of the thesis that nearly everything that 

can be proved for convex optimization problems via the dual approach can 

similarly be established for minimax problems. 

Sponsored by the United States Army under Contract No.:  DA-31-124-ARO- 

D-462 and the United States Air Force under Contract No. AF-AFOSR-71- 

1994. 
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Our plan in this intioduction is first to review some of the literature 

pertaining to minimax problems, next to sketch the results for convex 

optimization problems which this paper extends, then to review very briefly 

a few basic notions concerning saddle functions, and finally to outline 

the results obtained. 

Minimax theory originated in 1928 with von Neumann's minimax theorem 

for matrix games [38].   Various proofs and generalizations of this theorem 

have been given by many authors, including Ville [62], Kakutanl [29], 

Wald [63], Shiffman [53],  Fan [20, 21], Kneser [30], Glicksberg [26], 

Nikaido[39], Berge [4], Sion[54], Ghouila-Houri [25],  Moreau [37], and 

Rockafellar [43,44].   Much of the early work in minimax theory was done 

in connection with game theory.   However in about 1950 two equivalences 

were established which made i*. apparent that minimax theory was intimately 

related to mathematical programming.   One of these two equivalences was 

that between matrix games and dual pairs of linear programs (see Dantzig 

[13], Gale-Kuhn-Tucker [24], and Chames [8]).   The other equivalence was 

that between convex programs and Lagrangian saddle point problems (see 

Kuhn-Tucker [32], Slater [5$], and extensions given by Hurwicz-Uzawa in 

[2]).   Various authors, including Stoer [56,57], Manqasarian-Ponstein [35], 

and Dantzig-Elsenberg-Cottle [14], later derived duality results for con- 

strained maximization and minimization problems by means of minimax 

theorems. 

In 1964 Rockafellar [43] defined a conjugacy correspondence among 

saddle functions parallel to that of Fenchel [22] for convex functions.   This 
-2- #1190 
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correspondence was used in [41] to represent (in finitely many different 

ways) a certain dual pair of convex programs as a dual pair of minimax 

problems.   At a later date Tynjanskii [60] independently defined the con- 

Jugacy correspondence for a more restrictive class of saddle functions. 

He used it to associate with a given concave-convex game another game of 

the same type, and showed how solving such a pair of "dual games" is 

equivalent to solving a related pair of convex programs.   Also, papers of 

Moreau [37] and loffe-Tikhomirov \ZB] contain implicit results concerning 

the conjugacy correspondence among saddle functions. 

The relevance of minimax theory to mathematical economics has long 

been recognized, dating back to the beginnings of game theory.   More 

recently, minimax theory has been useful in the calculus of variations and 

optimal control theory (e.g. Rockafellar [50, 51]).   It also plays a role in 

differential games (e.g. [si])* 

Related to minimax problems are max-min problems,  1. e.   two-stage 

problems of the form max(min f(x,y)) .   These have been studied by 
x     y 

Pshenichnyi ftO], Danskin [11 ], and Bram [5].    Such problems correspond 

to "half" a saddle point problem and arise from such practical considera- 

tions as two-stage resource allocation. 

The preceding references deal primarily with theory.   However the 

task of actually finding saddle points has also been studied.   Work in the 

early 1950*8 was done by Brown-von Neumann [6], Robinson [41], and 

Danskin [10].   Charnes [8] showed that a minimax problem corresponding 

#1190 
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to a constrained matrix game la equivalent to a dual pair of linear programs, 

so that such  techniques as the simplex method could be applied.   Con- 

versely, In order to utilize the Kuhn-Tucker theorem [ 32] and Its generaliza- 

tions for solving concave programs, Arrow-Hurwlcz [2, p. 118] developed 

a " steepest descent" method for locating the saddle points of the Lagrangian. 

Further generalizations of the method of "steepest descent" In connection 

with saddle points are discussed in Rockafellar [52].   Methods have also 

been given recently by Demyanov [15,17 , 18], Ausländer [3], Danskin [12], 

Cherruault-Loridan [ 9], Gratchev-Evtushenko [27], and Caikovskll [7]. 

See also Tremolieres* survey paper [59].   Methods dealing with max-min 

problems have been given by Pshenlchnyi [40], Demyanov [16], and Danskin 

[12]. 

The problem of minimizing a convex function subject to constraints 

has been analyzed by various authors by means of the duality theory arising 

from Penchel's conjugacy correspondence.   This dual approach, as ex- 

pounded in [48],  rests ultimately on the duality between two operations 

which combine a convex function with a linear transformation.   In this paper 

we analyze constrained minimax problems in a similar fashion by means of 

the duality theory arising from the conjugacy correspondence among saddle 

functions.   To accomplish this we develop for saddle functions analogues 

of these fundamental operations on convex functions.   But before actually 

describing our results, we shall sketch the two operations and the appli- 

cations of them which this paper extends. 

-4- 11190 
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One of the two operations is Juit to form the composition  fA of a 

convex function f with a linear transformation A .   The other operation 

may be called taking the Image of f under A,   and the resulting function 

Af  Is defined by (Af)(x) ■ lnf{f(y)|Ay * x} .   The fundamental result con- 

necting these operations Is that, under certain mild hypotheses, 

OA^-AV , (1) 

where  *  of a linear transformation denotes the adjoint linear transforma- 

tion and   * of a convex function denotes the conjugate convex function. 

One of the main consequences of the duality formula (1) Is the 

duality between the operations of addition and Inflmal convolution for con- 

vex functions.   This can be obtained by taking  f to be the separable 

function 

f(xi vw+--+yv • 
where each  f   Is convex on  R f   and defining  A to be the linear trans- 

formation which sends each element x  of R    Into the m-tuple   (x, ..., x) , 
♦ * 

In this evont fA Is  f, + ,., + f     and  A f    Is the function 
i m 

x   - InfU, (x, )■»-... + f  (x ) |x   = x, +... + x   ) , ii mm i m 

I.e. the Inflmal convolution of  f., ... y f Formula (1) then implies 

that, under mild hypotheses, the conjugate of the sum is the Inflmal con- 

volute of the conjugates.   This gives a framework encompassing problems 

of the form, N minimize h(x) subject to x e C," where  h  and  C  are convex. 

Simply take  m « 2,   let   f. « h,   and let  f (x) equal  0 when  x e C  and 

4«o   otherwise. 

#1190 -5- 
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The duality representod by formula (1) Is also fundamental in the per- 

turbatlonal duality theory developed by Rockafellar for generalized convex 

programs [48].   Among other things, this theory generalizes the classical 

results about dual linear programs and generalizes Fenchel1 s Duality 

Theorem [22,   P* 108] (see also [45, 46] and Stoer-Witzgall [ss])*   R 

also sheds light on the Lagrange multiplier principle for convex program- 

ming and thereby on the celebrated Dantzig-Wolfe decomposition principle 

for linear and convex programs [48, pp. 285-290] (see also Falk [19] and 

Lasdon [33]). 

For convenient reference, in the next three paragraphs we review 

some basic definitions and facts about saddle functions due to Rockafellar 

[43]. 

There is an equivalence relation among saddle funcvions which has 

the property that equivalent saddle functions have the same (lower and 

upper) saddle values and also the same saddle points.   The relation is the 

following;  two concave-convex functions   K and  L  are said to be equiva- 

lent if and only if for each x the closures of the convex functions  K(x, •) 

and   L(x, •)  coincide and for each  y the closures of the concave functions 

K(*,y)  and  L(*,y) coincide.   The equivalence classes determined by this 

equivalence relation are what we take to be the natural objects of study in 

minimax theory. 

Recall that in convex function theory, in order for the crucial duality 

formula 

(f )   = f (2) 

.6- #"90 
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to hold, one considers convex functions which are closed, i. e. lower semi- 

continuous.   This is a natural, constructive regularity assumption to make. 

Similarly, in saddle function theory an analogue of formula (2) holds for 

"regularized" saddle functions.   A saddle function  K is defined to be closed 

if and only if it is equivalent to both its convex closure and its concave 

closure, where by convex (resp. concave) closure we mean the saddle 

function obtained from  K by closing it (in the sense of convex function 

theory) in its convex (resp. concave) argument.   Trivially, a saddle function 

is closed if and only if every member of its equivalence class is closed. 

Furthermore, the property of being closed is a constructive regularity con- 

dition for saddle functions.   Equivalent closed saddle functions must be 

very nearly equal in that they can differ essentially only at the "corner 

points" of their "domain of finiteness. "   Moreover, each equivalence class 

[K] of closed saddle functions is an Interval in the sense that there exist 

unique members  K and   K of  [K]  such that [K]  contains all, and only 

those, saddle functions   K   satisfying   K < K < K  . 

If K  is a concave-convex function from  R    XR    to   [-<»,+<»],   the 

$ —# 
lower conjugate  K     and upper conjugate  K    of  K  are defined by 

K (x , y ) = sup inf{<x, x*> + <y, y*> - K(x, y)} 
y    x 

and 

K (x , y ) = inf sup{<x, x > + <y, y > - K(x, y)}   . 
x    y 

These functions are concave-convex.   When  K is closed,    K     and   K     are 

#1190 -7- 
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equivalent end closed end, moreover, they depend only on the equivalence 

clati  [K] containing  K .   Thus, •■•oclated with etch equivalence cleat (K) 

of cloted concave-convex ftincttont It another well «defined equivalence 

clatt  [K ] of doted concave-convex ftinctlom, nemely the cleat containing 
* -* • 

K     and  K     .The clatt (K ]  It tald to be the conjugate of (K) .   Thlt 

conjugacy corretpondence hat the crucial property that the conjuqete of [K ) 

la [K]t   which la the analogue of formula (2) for saddle functiont. 

With thlt review of general facts In mind, we now describe the results 

obtained In this paper.   We bogln with the analogues of the two fundamental 

operatlona deacrlbed above.   Suppose  K is a closed concave-convex function 

and that A la the linear transformation A. x /L  obtained from two other linear 

tranaformatlona A.  and A,  by A. x A, (x, y) ■ (Ax, A-y) .   One of our op- 

erations conalats of forming an equivalence class [KA] containing all saddle 

functions of the form 

(x,y)- ICA(x,y). KiAjX^y) 

for K   any member of [K] .   A mild hypothesis is given which ensures that In 

fact such a single class exists and, moreover, that all ita members are cloaed. 

The other opeiation la to form a single equivalence claaa  [AKJ containing all 

saddle functions both of tho form 

ma 

(u,v)"*        sup inf IC(x,y) 
(xlAjX-uHylA^-v) 

and of the form 

(u,v)-        inf aup       K(x,y) 
(yiA^y-vXxlAjX^u) 

-8- #1190 
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for  K   any m«mber of (Kj .   A mild hypotheili U given which «nfurci that 

lnd«*d tuoh a clan axliti and that all of its mamban ara cloaad.   What It 

•urprtflng If that thli hypothaals li praolioly tha lama as Is naadad to en- 

sure the existence of tha class  (K A ]  formed by the first operation from 

[K ] and  A   • A. xA,   .   rurthern. • "   it Is shown that under this hypothesis 

[AK] and  [K A )  are actually conjug- o classes.   This Is the analogue of 

formula (1) for saddle functions. 

The development of these operations and the proof of the duality be- 

tween them form the heart of this paper.   Two forms of this duality are given. 

The form given In |1 Is the more widely and easily applicable.   But the sharper 

form In f 2 gives especially strong conclusions concerning the nature of the 

equivalence class [AK],   Including Information about the attainment of the 

mlnlmax extreme appearing In Its definition. 

In 13 the first application of this duality Is made In defining addition 

and mlnlmax convolution for saddle functions and showing that these are 

dual operations.   The formula 

»<*, ♦ K^y) ■ SKjCx. y) ♦ eK^x.y) 

is obtained for the subdlfferentlal of the sum of two saddle functions.   This 

parallels the result for convex functions obtained by Rockafellar [42], Moreau 

(36), and others.   The duality between addition and mlnlmax convolution gives 

a general framework within which to consider problems of the form, " find the 

saddle points of  H with respect to  C x D," where  H  Is a saddle function 

and  C  and  D are convex sets. 

#1190 -^ 



Prom UM ratultt on addition and mlnlmax convolution *• obtain an 

Intaraftln« byproduot.   For  1 ■ 1 p  lot  K   ba • cloaad concavo-convax 

function on  A" xift  which It not Idantloally   ♦•  or   ■•   and lat  T   b« the 

n^n 
maximal monotona oparator on  R        arising from tha tubdlfforantlal of  K 

<Ma [48,49]).   Ifaach KT.)  It boundad, where «(•) denotet the range of 

an operator, than IT   It maximal monotone and 

Zcl«^) ■ elfter Tj)   . (3) 

It It known that thlt formula holdt whenever the  T "• are tubdlfferentlalt of 

cloted proper convex functiont and each  ft(T )  It bounded.   On the other 

hand, formula (3) fallt In general for maximal monotone operatort.   However 

It It not known whether formula (3) holdt for arbitrary maximal monotone op- 

eratort under the attumptlon that the tett ft(T )  are bounded.   But the fact 

that It holdt for thote maximal monotone operatort arising from taddle func- 

tlont leide one to conjecture It holdt In general.   Thlt It becauae tuch op- 

eratort, unlike the tubdlfferentlalt of convex functions, exhibit most of the 

pathology of arbitrary maximal monotone operatort.   Indeed, thlt latt fact it 

one of the main motlvatlont for ttudylng taddle ftinctlont. 

In fS^ at a second principal application of our fundamental dual opera- 

tlon%we develop a perturbatlonal duality theory for generalised taddle pro- 

grams.   We define a generalised saddle program to be an "objective" saddle 

function  IL   (thought of as some given mlnlmax problem) together with a 

particular class of perturbations.   The entire program It given by another 

-10- 11190 



■addl« function K .   To this 9«n«r«lli«d saddU program K w« aitocut« a 

dual «anoralltad aaddla program L .   Undtr mild hypothaaai on tha parturfoa- 

tlona In  K,   tha dual program L haa a uniqu« (up to aqulvalanca) "objaotlva" 

aaddla function  L. .   Tha mlnlmax problam oorraapondlng to  L    la a dual to 

tha original mlnlmax problam.   One of tha main features of thla theory la that 

ohooalng different olantea of perturbatlona of the original problem glvea rlae to 

different dual problems.   Optimal solutions, stable optimal solutions and Kuhn- 

Tucker vectors for these dual saddle programs are studied and various duality 

theorems are proved.   In 14, as a subsidiary application of the dual operations 

of {I, a symmetric one-to-one "partial oonjugacy" correspondence Is defined 

among equivalence classea of closed saddle functions.   By means of this new 

correspondence we are able to associate with a generalised saddle program 

and Ita dual a well-defined Lagranglan saddle function.   We then give a 

characterisation of the primal and dual stable optimal solutions and Kuhn- 

TUcker vectors In terms of the saddle points of the Lagranglan. 

In f6 this perturbetlonal duality theory Is used to study the problem of 

finding a aaddla point subject to convex and concave inequality constraints. 

Ordinary aaddla programs are defined as a framework to treat such problems. 

A question of particular concern la whether or not a good Lagrange multiplier 

principle holds for these saddle programs.   The analogous question for ordin- 

ary convex programs (1. a. minimising a convex function subject to convex 

Inequality constraints) haa a very satisfying affirmative answer which leads 

to the Important decomposition principle for separable convex programs (see 

(48, Theorem 28.1 and pp. 285-290)).   However we show that such a good 

Lagrange multiplier principle does not hold In general for ordinary saddle 

v 11190 11 



progrMM.   VM r»«ton for thli It ••••ntUUy that, unllk« ih« oonvwc program 

otM, UM Mt of Mddl« points of th« L*gr«ngUn dooi not split up Into the 

product of th« prtaal fUbl« optimal tolutlont and th« primal Kuhn-Tuckor 

vactort (Lagrano« multlpllari).   hit anothar way, tha ftabla optimal 

•olutlona and Ruhn-Tüokar vactort art shown to ba In a cartain sans« da- 

pendant on aach other.    Wa conclude tha section with an explicit description 

of tha dual saddle program. 

Finally, In f 7 tha parturbatlonal duality theory Is applied to another 

class of problems to yield s mlnlmax version of Fenchel's Duality Theorem. 

We deal with dual pairs of mlnlmax problems of the following form (where 

for simplicity now we suppress the Issue of the domains of the variables)! 

(I)  Find the saddle points of K(x, y) - LA(x. y) , 

(D)   Find the saddle points of L*(s, w) - K A*(s, w). 

Here  K Is closed and concave-convex on  R01 x R ,   L Is closed and con- 

p     g vex-concave on  R   xR t   and A Is a product linear transformation from 

Rm x Rn to  Rp x Rq .   The results obtained generalise certain results of 

Rockafellar (47], Ubedev-Tynjanskll (H), and TynJanskU (60,61 ]. 

It Is known that many result. In the theory of convex functions allow 

refinements when polyhedralness is present.   For closed saddle functions 

there Is a property of polyhedralness which Is preserved under conjugacy 

and also the operations we develop In fll, 3 and 4.   Nearly all the results 

in the paper admit refinements when such polyhedralness Is present.   This 

Is discussed in tha Appendix. 

•12- «1190 
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Thlt p«p«r li th« outgrowth of in investigation of • probUm potod 

by Profottor R. TyrrtU Rockatelltr    Th« problom wti to MO If ono could 

dovolop woll-doflnod ways of forming now oqulvolonoo clattoi of taddlo 

function! from glvon onoi.   Tho author wlthot to oxproos his daop 

gratltudo to Profoiaor RockafoUar for poilng thlt problom and for hit many 

helpful commonto. 
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A Not« to the Raader 

In gonorol, wo uto nunbon onolotod In tquor« brockott to Indicate 

blbUogropfcleol roferencof.   However • special abbreviation It employed 

In citing reaulta fron Rockafellar [«a), due to the frequency with which 

these are used.   Namely, we omit entirely the reference to [48] and merely 

give In parentheaea the number of the result being cited.   For example, 

Theorem IS. • of [41] la cited simply as (23.8), Corollary 6. S. 1 as (6. 3.1). 

and so forth. 

Throughout the paper expressions sometimes appear which Involve 

taking the supremum or Inflmum of en empty set of numbers.   Whenever 

these occur they are to be Interpreted using the conventions    sup 0» -«o 

and Inf 0« HO   . 

-14- #1190 
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|0.   Prtllmlntrtot 

Tht definition« and notation! uiad in thli papar ara mainly thota 

tat forth In Rookafallar [48] •   In thla sactlon w ravlaw for oonvanlanoa loma 

of thai« and also Introduoa tona of our own.   In addition, wa pratant a faw 

baokground raaulta which will ba of uta latar on. 

Tha topology takan on Rn It tha usual ona, and tha Intartor and cloaura 

of a lubaat 8 of Rn ara danotad by Int 8 and ol 8,  raspaotivaly.  A tat la 

oallad afflna If and only If It Is either the empty fat, denoted by 0,  or a translate 

of a linear subs pace. The affine hull of a subset is the smallest affine set containing 

It.   If C Is a convex subset of Rn,  its relative interior, written rl C,   is the 

interior of C taken with respect to its affine hull equipped with the relative 

topology. 

If A is a linear transformation from R    to Rn,   then A   denotes the 

adloint linear transformation mapping R    to R . 

The effective domain of a convex function  f on R    is the set 

dorn f * (x I f(x) < +•) , 

and the conluoete of f la the convex function f    on Rn  given by 

f (x ) ■ ■up{<x, x > - f(x») 
x 

(where < • f • > demotes the ordinary inner product).     Similarly, the effective 

domain of a concave (Unction g  on R11 it the set 
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dorn 9 ■ Oclfl(x) > •• ) , 

and th« oonjimat« of q If th« oonoav« (unction g    on R    giv«n by 

fl*(x*). lnf{<x,x*> -9(x)) . 
x 

Our miltlpto UM of th« •upmmoript • should oaut« no difficulty, tine« It Is 

always olaar torn th« ooalaxt what oparatlon Is Intandad. 

For any subsac C of Rn tha fuacüon b{- \C) on R0,   callad tha 

indicator ftwoMon of C»   is daflnad by sattln« 6<x|C) aqual to 0 If x c C 

and  4« othatwlsa.   Claarly C is ooovax if and only if 6<- lei is convax, and 

in this casa tha oonfugata of 6(* |C) Is danotad by 6 (• |C) and Is given by 

6 (x |C)«sup{<x,x >|xcC)  . 

This function is callad tha support function of C . 

A concave-convax function on R   XR    is a function K fron R   xR 

to (-«o, 4«] such that  K(x, y) is a concave function of x e R     for each fixed 

y e R    sad a convax function of y c R    for each fixed x e R    .A convex • 

concave function is defined the saaw except for interchanging "concave" with 

"convex."  A saddle function is either a concave-convex or a convex-concave 

function. 

For the remainder of fO let K denote a concave-convex function 

on R   X R .   For convex •concave functions we make tha obvious changes in the 

definitions which follow. 

We say that K has a saddle value, or that the saddle value exists. 

If and only if the two quantities 
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•up Inf r(x, y) 
x    y 

and 

Inf sup lC<x, y) 
y   x 

art «qual, In which oas« thla ooromon valua la tha laddla valua of K.  A pair 

(xf y) c Rn x Rn is a laddla point of K If and only If 

Mx, y) < K{x, y) < K(x, y) 

for aaoh  (x, y) cR   XR . 

Daflna subaota dom.K of Rm and dorn K of Rn  by 

dom.K ■ (x I K(x, •)  It  navar  -•), 

dom.K ■ (y I K(* ( y) la navar ♦«) . 

Tha product tat 

dom.K X dom.K ■ dorn K 

is tha affactiv domain of K . Wa say that K Is propar if and only If its sffactiva domain 

is nonampty.  Tha karnal of K la tha rastrtotlon of K to tha ralatlva intarlor 

of its affaotivt domain.   Wa say that K Is simola if and only if dorn K(x, •) 

C cKdom.K)  for «very x c ri(dom.K)  and dorn K(o ,y) C cl(dom.K)  for 

•vary y e ri(dom2K) .   Tha function cl.K obtainad by closing   K(x,y) as a con- 

cava function of x for each fixed  y is called tha cone sve closure of K . 

Similarly, the function cl K obtainad by closing  K{x, y)  as a convex function of 

«1190 17- 



y  for «ach Umd x It o«U«d th» convx oiotuf of K .   If  L Is alto a concave- 

convax function on R* x R ,   «if« say that  K and  L ara äquivalent and wrlta 

K * L  If and only If ol.K ■ cl.L and  ol.K ■ cl.L .   Tha collactloi of all concave- 

convax function« on R   X R    which ara equivalent to  K  li called the equivalence 

claii containing K and la denoted by (K).   We aay that  K la cloaed If and only 

If cijIC - K  and  K - cl2K . 

It la an eaay exerclae to ahow that  K * L Impllea both that dorn K ■ dorn L 

and that  K  la cloaed If and only If L la cloaed.   Thua, an equivalence claaa la 

called cloaed (reap, proper) If and only If any of Ita member« la cloaed (resp. 

proper). 

The function  f on  R    x R    given by f(x, y ) • aup {<y, y > - IC(x, y))  la 

convex In  (x, y )  jointly, aince It la a polntwlte aupremum of convex functions. 

Similarly, the function g  on  R    x R    given by g(x , y) ■ inf {<x, x > • K(x, y)) 

ia concave In  (x , y) Jointly.   We call  f (reap, g) the convex (reap, concave) 

parent of K .   Notice that thla uaage of the term "parent" dlifera by acme minus 

algna from the original uaage In Rockafellar [47).   With these definitions, (34.2) 

implies the following. 

THEOREM 0.1.   Let  f  (reap,   g)  be the convex (reap, concave) parent of, 

K.   Then  K if cloaed U and only If. f(x,y ) • -g (x, -y )  and g(x ,y) > -f (-x ,y) , 

In which caae (a) and (b) below hold. 

(a) The parenta of K depend only on [ K]; öiat la. for each 

K e l K] t   tjjf convex (reap, concave) parent of K   la. f (reap,   g).   Moreover. 

f «nd  g  are cloaed. and 
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If 

dom.K ■ (x | Uxt y ) < -fce for torn«  y ), 

dom.K ■ (y | g(x , y) > -« for lomo x ) . 

(b)  Thjj •QuivaUno« clan  [ K]   com lit« of all and only those concave- 

oonvex function! I? on R1" X Rn which latlafy K<K <K,   where 

£(x, y) « •up{<y , y> - f(x, y )) 
y* 

and 

K(x, y) - Inf {<x*, x> - g(x*, y)} . 
x 

Moreover,   cl Jf ■ K and cl.K = K Jor each iCe(K],   and 

K(x,y) s K(x, y) 

vrhenever xerMdom.K) or yeri(doni K). 

The lower conjugate of K,   denoted by K*, Is the function on R"1 X Rn 

defined by 

K*(x*, y*) = sup Inf {<x, x*>+ <y, y*> - K(x, y)} . 
y   x 

Similarly, the upper conjugate of K,   denoted by K , is the function on    Rm x Rn 

defined by 

K*(x*f y*) * inf sup {<x, x*> + <y, y  > - K(x, y))  . 
x    y 

From (37.1) we have the following result. 
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THEOREM 0.2.   Assume  K Is closed.   Then  K    and   K    are equivalent. 

closed concave-convex functions which depend only on [K] .   Moreover, if L 

Is any element of the equivalence class containing K    and  K ,   then 

cl2L=K*,   0^1, = K*  , 

L*=K,    i*«ir , 

and the convex (resp. concave) parent of L  is the negative of the concave 

(reap, convex) parent of K . 

When It exists, the equivalence class containing  K    and   K    is called 

the conjugate of [K]  and is denoted by  [K ] .   Each member of  [K ]  is 

called ja conjugate of every member of [K] .   It is immediate from Theorems 

0. 2 and 0.1(b)  that (at least when  K is closed)  K     and   K     are the least 

and greatest elements of [K ],   respectively.   The notation thus conforms to 

that introduced in Theorem 0.1(b), where a lower (resp. upper) bar indicates 

the least (resp. greatest) element of the equivalence class. 

By (34. 2. 3) the only equivalence classes which are closed but not pro- 

per are the one containing the constant function  +oo   and the one containing 

the constant function  -oo .   Since each of these two equivalence classes is 

the conjugate of the ether, it follows that  [K ]  is closed and proper whenever 

[K]   is. 

We define  K to be polyhedral if and only if it is closed and either its 

concave or its convex parent is polyhedral.   If K is polyhedral and  L is 

equivalent to  K,   then Theorem 0.1 implies  L is polyhedral.   Thus, an 
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equivalence class is called polyhedral if and only if any of its members is 

polyhedral.   From Theorem 0.2 follows the important fact that  [K ]  is poly- 

hedral whenever [K]  is polyhedral.   It will be shown that polyhedralness is 

preserved also by each of the operations developed in §§1, 3 and 4 . 

The notions of "recession function" and "recession cone" for saddle 

functions will be quite useful for formulating various growth conditions needed 

later on.   Recall that if f  is a proper convex function on  R ,   the recession 

function of f,   written rec f,   is the function on  R    defined by 

(rec f)(y) = sup{f(x + y) - f(x)|x e domf}  , 

and the recession cone of f is the set 

rec cone f = {y I (rec f) (y) < 0}   . 

The recession function and recession cone of a proper concave function are 

defined similarly by replacing "sup" by "int" and "<"   by  •,>,, .   This notation 

for these objects differs from that in [48].    Now write   C = don^K  and 

D B dom_K .   Ihe convex recession function of K  is the function  rec2K 

on  R    defined by 

(rec K)(w) = sup{(rec K(x, • ))(w)|x e ri C}  . 

I ■ 

The convex recession cone of  K is the set 

rec cone K = {wi (rec K)(w) < 0 }   . 

■ 

Similarly, the concave recession function of K is the function rec.K on  R 

defined by 

(reCjKHz) = inf{(rec K(', y))(z)|y e ri D}  , 

#1190 
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and UM SggSSgrtg ooa» of K !■ th« Mt 

roc 00M.K ■ (s I (reCjKXt) > 0)   . 

Trlviallir, 

and 

roc OOIM2K ■ n{roc cone K(x( • )|x c rl C) 

rec oona.K * n{rec cone K(', y)|y c rl D)  . 

The main importance of the recession functions of K rests on the following 

theorem, which is (37.2) reformulated. 

THEOREM 0. 3.  Assume  K is closed and proper.   Then 

*    i ♦ rec K = 6 (• | dorn K ) 

and 

reCjK = -6 (-• IdonijK )  . 

This says that the recession functions of K are essentially just the 

support functions of dom K   .   But  K ,   and hence  dorn K ,    depends only on 

(K] .   Thus, for K closed and proper, the recession functions and recession 

cones of  K depend only on  [K] . 

Suppose now that  K  Is closed and proper.   We know by (37.1. 3) that 

the saddle value of K exists if either        0 e rlCdom.K )      or 
* 

0 e ri(dom2K ),   and (37. 5. 3) tells us that a saddle point of  K  exists if 

actually  (0,0) e rl(domK ) .   In addition, it is not hard to show that the set 

of saddle points of K  is nonempty and bounded if and only if  (0,0) e int(domK ). 

The next three lemmas will help us to utilize these basic facts. 
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LEMMA0.4.   AMUIM  K U cloMd. «nd l«t  f (f ip. «)  b« tU convx 

(ftp, concavt) ptrtnt.   T»»n 

rKdooijK*) • U {rl(dom g(., y))|y c ri D) 

find 

rt(dom2IC*) ■ U (rKdom f{x,M)U e rt C)   , 

whf  C ■ dom.K and  D ■ dom.K .   Th«— fonauUi alto hold whan "rt'* _!• 

dalatad throughout. 

PROOP.   Prom Ihaorama 0.2 and 0.1(a)  It follows that 

dom.K   ■ A dorn g 

and 

dorn o -   U(domg(-t y)x(y)|y e D)  , 

whara  A !• the projection  (x ly)-»x   .   Hence (6.6) Implies 

rl(dom.K ) ■ Arl(doing) 

and   (6.8)   Implies 

rKdomg) ■   U{ii(domg(-, y)) x {y)|y e rt D)   . 

The formulae for dom.K    and its relative interior follow from these, and the 

other two formulas are proved similarly. 

LEMMA 0.5.   Assume  K Is closed and proper.   Let  J  equal  1  or 2  anrj 

put  8. « rec cone.K .   Then 

0 c rl(dom K*)   if and only if   8 C -8    , 

and 
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0 c imidomV)  U •nd only U   8  c (0)   . 

fROOP.    W« UM lh» following 8UBUMMA.   K w# c Rn  «nd  h  It • pofl- 

tlvoly hoMogonoout propor oonvo« function on  R ,   th«n the following two con- 

ditlons wo oqulvftlanti 

(a) Vw c Rn,   <w,w#> < h<w) with strict iMquallty for «och w  such 

thot   -h(-w)#h(w)  ; 

(b) ¥w t *n, h(w)<<w,w  > Impllos h(-w)<<.w, w   >  . 

PftOOP OP 8UB1XMMA.   Anum«  (a) and tuppotc h(w)<<wtw
#>  .   Than 

actually h(w) ■ <w,w >.   If wo had   •h(-w)#h(w)l  than (a) would imply 

<w,w > < h(w),   a oontradlotlon.   Thus   -h(-w) ■ h(w) • <w,w > and (b)   Is 

provod.   Convorsaly, assuma (b) and lot w  ba glvan.   If h(w) < <w,w  >   , 

than (4.7,2) and  (b) Imply   -h(w) < h(-w) < <-*»,%»*> and hanoa <w,w*><h(w) 

Suppoaa   -h(-w)# h(w) .   By (4.7.2) wo hava   -h(-w) < h(w) .   If h(w) < 

<w,w >,  this would imply   -M-w) < <w,w > whlla at tha sa»o Umo from   (b) 

wo would hava  <w,w > < -h(-w) .   Tharafora <w,w > < h(w)  whenever 

•h(-w)#h(w)t   and (a) Is provod. 

Now to prove the lemma wo define  h > 6 (• Idom.K ) .   By  (13.1)  and the 

Sublamma,   0 c rl(dom K )  if and only If for each w c R ,  h(w) < 0  implies 

h(-w) < 0 .   By (13.1) wa alao hava that 0 c Intfdom.K*)  If and only If for each 

w c R ,   h(w) < 0  implies w ■ 0 .   The assertions for ) ■ 2 follow from those 

equivalences and Theorem 0. 3.   The assertions for J ■ I  are proved similarly. 

Concerning the condition  8. c - 8^   In Lemma 0. S, recall from (132) 

that the support functions of nonempty convex sets are precisely those 
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functions «hot« tplorapht art oloMd oonvo» conti oontalnlng th« origin. 

Dili fact and Thoortn 0. S Imply that tha raoattlon oonai < f « olotad propar 

K ara thamaalvai olotad oonvax conaa oontalnlng tha origin.   Hanoa thay 

ara actually aubtpacai If and only If thay ara olotad undor scalar multipli- 

cation by   -I . 

Iha condition! glvan In th« noxt lomma may wall bo th« aatlatt to 

vorlfy In many casat. 

LEMMA 0.6.   Aituma  K la oloaod and propar.   Than (0,0) e lnt(domK ) 

whonovar domK It boundod.   In particular,   0 e InMdom.K )  whenever 

there exim an  x f dom.K  auch that th« level leti   (yllUx.y) < « ),   a r R , 

are all bounded, and 0 c Int(dom.K )  «whenever there exists aye dom.K 

such that tha level sets   (xlK(x, y) > «),   e c R,   are all bounded. 

PROOF.   By (M. 3), the first assertion Is a special case of the second. 

Now lot x c dom.K be such that all tha level sets of K(x, •)  are bounded 

Th«n by (7.6)t th« nonempty level seta of cl(IC(x,  )) are all bounded.   Also, 

oKKfx, •)) • cl2K<x, •) • Kpc, •) .   Hence (8.7) and (8.4) Imply that 

rec con« K(x, •) ■ (o),   which by (IS. 3.4c) Is equivalent to 0 c lnt(domK(x, •) ) 

But  K(x, •)   ■ f(x, •),   wh«r« f Is th« convex parent of K .   Since Lemma 0.4 

yields  lnt(domf(x,  )) C lnt(dom2K ),   It follows that  0 e lni(dom2K ) . 

Th« statement about 0 c Int (dorn. K )  la proved similarly. 

As explained above. Lemmas 0.4 through 0.6 furnish various criteria 

for the «xlstence of saddle values and saddle points. TO facilitate the use 

of these criteria, In ||! and 3 we derive formulas for the parents and 
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rwMnflen ftinotlont of lh« itddU functions which nmtU fro» various 

oporatlont.   Wf oowblnlng UIOM formulM with th« pr«o«dlng criteria, th« 

roodor can dorlvo oxlttanc« thocromi •• noodod.   ConMqutntly, through- 

out thl« papor txlttonc« rtiulu will not bo ■tr«tt«d. 

Wo oonoludo this toctlon with a Ummo which will be useful later on 

In dualltlng various conditions with respect to the oonjugacy correspondence. 

LEMMA 0.7. Assusw K Is cloaad and proper, and let ^ and L, be 

aubsp«oos of Rm and Rn . Than for ) ■ I and 2 the tellowlnq conditions 

aro aqulvalontt 

(a^  LjnrtKloBiJM#0 : 

(b )  L. O (roc cone K)  Is a aubapace ; 

(c J  LjO (roc oona.lQC .(roc cone.K)   . 

PROOF.   We prove only that  (a2)l (b2) and (c ) are equivalent, as the 

proof for J ■ 1  Is süaUar.   By the remark following Lemma 0. 5 and the fact 

that Lg  Is a subspaca,   (b2) Is equivalent to  (c2) .   Write  0* - dorn K*  and 

L ■ 1^   .   By (11.1),   (a2)  Calls If and only If there exists a hyperplane separating 

L and  D    properly.   By (11.1) this occurs If and only If there exists a  w e Rn 

such that 

lnf{<y lw>|y   e L) > sup(<y >w>|y   e D ) 

and 

•up{<y*,w>|y* e L) > lnf{<y*lw>|y* e D*)  . 
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But line« 

•nd 

•up(<y ,w>|y   c D  ) ■ (r«o2K)(w) 

0 fo  If w c L1 

lnl(<y ,w>|y   e L)-< , 

thlt BMani that  (•,)  teilt If «nd only If thmrm «xltu a w e L    fuch that 

(rac2K)(w)< o  and  (rao.lQi-w) > 0 .   Tharafora  (a.) holdi If and only If for 

•ach weLi   (rac2IC)(w)<0 Inpllaa   (rac2K)(-w) < 0  .   But thli laat condi- 

tion la tha aama at  (c J . 
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(1.   T*o Dual Operations 

In tlile Motion w davtlop two quit« o«noral w«yi of forming now 

•qulvaltnot oUftot of •oddl« funotlont from glvon onot.   Whtn vlowod •■ 

opwttlont on oqulvftlonoo claiitt, thoy or« toon to b« dual to «ach oihar 

with raipaot to lha basic conjugacy oorraspondonca. Varloui ratults are provad 

conoamlng lha aqulvalanoa olasiat rasultlng from thaaa oparatlont.   lha tac • 

tloo concludai with axamplai showing that tha conditions undar which tha 

oparatlons can ba parformad cannot 11 ganoral bo «vaakanad. 

lha first oparatlon wa davalop Is analogous to that of composing a convex 

function with a Unaar transformation.   Let   K be a cloaad proper concave »con- 

m      n vex function on  R    x R    and let A ■ A. x A,  ba a linear transformation from 

Rp x Rq  to Rm x Rn .   We seek a condition on   K and  A ensuring the exis- 

tence of an equivalence class of closed proper saddle functions which con- 

tains every function of the form KA for K c (K) .   Such a condition is given 

In Theorem 1.2.   When this equivalence class exists, It will usually be denoted 

by [KAl. 

LEMMA 1.1.   Let  K be a concave-convex function on   R   xR    and let 

A ■ Aj x A,  be a linear transformation from Rp x Rq  to Rm x Rn .   Than  KA 

P        Q -1 is a conoave-convex function on R   x R ,   and   A   (dorn K) c dorn KA .   The 

Inclusion can be strengthened to equality If K  Is closed and proper and 

range A O rl(dom Ky a 0 • 

PROOF.   Write dom K ■ C xD .   By (5.7),   KA Is concave-convex.   If 

u e A.' C,   then  K(A.u, •)  Is never  -»  and hence  KA(u, •) ■ K(A.u, • )A2   Is 
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n«v«r   •«> .   Thli thorn» A.' C c donLXA .   Similarly Al D C dorn KA .   Now 

•■•urn« K Is oloMd and propar and   rang« AO rl(doin K) « 0 .   If u / A' C , 

than (S4.S)  Impllat  I^A.u.OAj aqualt   -«  •vürywfrar« on ri D and hanca 

K(AjU,  )A2  aqualt   ■«  avarywhara on A'^Crl D) .   Sine« A'^rl D) # 0   by 

hypothatlt, thli shows dom.KA C A.'C  .   Similarly domKACA'D . 

THEOREM 1.2.   Lat  K ba s closad propar concava-convax function on 

Rm x R",   and let  A > A. xA    ba a Unaar transformation from Rp x Rq  to 

RmxRn  fuohthat    rang«  Anrl(domIC)#0 .   Than th« collection   (KAIKCIK)) 

of saddle functions Is contained In an equlvalance class   (H) of cloiad propar 

P       Q *1 concava-convax functions on   R   x R^ having domain   A  (dorn K) .   Moreover. 

H ■ ICA,      H ■ KA , 

rl(domH) ■ A^rKdomK)  , 

cl(domH) - A^cKdomK)   . 

PROOF.   Lemma 1.1 Implies  KA and   KA are proper concavo-convex 

functions on  RP x Vr  with domain A' (dom K) .   From Theorem 0.1(b)  It It 

clear that a closad propar saddle-function Is the least member of Its equivalence 

class If and only If It Is convex-closed.   Now It follows routinely, using (6.7), 

(34. 3) and (9. 5), that   KA satisfies the six conditions of (34. 3)  and more- 

over Is convex-closad.   Hence  KA Is closed and Is the least member of Its 

equlvalance class.   Similarly,   KA Is closed and Is the greatest member of Its 

equivalence class.   According to (34.4), two closed proper saddle-functions 

are equivalent If and only If they have the same kernel.   Suppose  (u, v) e 

rKA'^domK» .   By (6.7) this means A(u, v) e rl(domK) .   Since K and   K are 
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•qulvt<«nt oloMd piopsr,   KA(utv) ■ I/Mu,v) .   Thli shows £Am KA and 

h«no« [KA] • (KA) - (H) .   If K c [K],   th«n  l(<K<K   ImplUt KA<KA<iA 

•ndhtnot KA c (H) (Thtortm 0.1(b)) .   lh« formula• for rl(doMH) «nd 

cl(domH) art ImmMlUt« from (6.7). 

Th« n«xt r«fult concamt tht subdlfforantlal mapping of KA,  danotad by 

e(KA) .   Tha tubdlffaranttal mapping Is a ganarallsatlon of tha gradlant mapping 

to saddla functions which ara not nacassaiily dlffsrantlabla.   For background on 

tha subdlffarantlal of a saddla function, wa rafar tha raadar to (48) or (43) . 

THEOREM I. J.   Lat  K and A baas In Thaoram 1.2.  Than 

a(KA)(u,v)-A*8K(A<utv)) 

for aach (u, v) e Rp x Rq
t   and 

rl(A"l(dom K)) C dom»(ICA) C A'SdomK)   . 

PROOF.   Tha Inclusions ara Immadlata from (37.4) and Thaoram 1.2,   It 

follows that tha Idantlty holds trivially whan  (u, v) / A' (domK) .   Supposa 

(u, v) e A'Sdom K) .   By tha daflnltlons,   (u*, v*) e 8(KA)(u, v) If and only If 

u* c 8(K(-, ^AjMu)  and v* e acmAjU, • )A2)(v) .   Now by (34. J), AjU c domjK 

Impllas that K(A.ut •)  Is a propar convax function with rl(domK(A.ut •)) ■ 

rKdom.X)  .   Hanca ranga A, O rl(dom .K) a 0   and (23.9)  Imply that 

v* c 8(K(A1ut • )A2)(v)  If and only If v* e A^KfA^, • MAjV),   1. a.   If and only 

If v* e A^82K(A(uf v)) .   Similarly, u* c 8(K(-I A2v)A1)(u) If and only If 

u* c A*81K(A(u(v)) .   Tha Idantlty follows. 

THEOREM 1.4.   Lat  K and A ba as In Thaoram 1.2.    Lat  f (rasp, g) 

danota tha convax (rasp, concava) parant of K,   and lat h  (rasp, k) danota 
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th» cowvx (ftp, cotwv) pf nt of Kk .   Thtn 

h(u,v0). (A^fiAjU. • ))(v*) 

tnd 

Mu*,v). (A*«(f A^vmu*) . 

PROOF.   Suppot«  u ^ dom.KA .   Than h(u, •)   Is constantly  ♦»   . Alto, 

A.u/dom.K Impll«!   f(A.u, •)   It contUntly  ««B   and htnc« 

(AjKAjU.-mv*) ■ InfffCAjU.y*)!^* . v*) ■ ♦• 

for «vary v   .   Now tuppot«  u c dom.KA .   By (34. 3),   A.u c dom.K Implies 

lUA.u, •) It • proptr convex function with ii(doinlC<A.u, •)) ■ rl(dom.K) .   Thut 

from (16. 3), Thaoram 0.1(a)  and ranga A^O rl(dom K) a 0  It follows that 

h(u, v*) . («AjU. • )A2)*(v*) - (A^AjU, • )*)(v*) - (A^fiAjU, • ))(v*)  for avary v* . 

Thit provat the flrtt Identity.   Iha second It proved tlmllarly. 

COROLLARY 1.4.1.   Ut   K and A  be atU} Thaoraro 1.2.   If K it poly- 

hedral, than KA js polyhedral. 

PROOF.   Let I    and I    denote the Identity transformations on R    and 
P n 

R ,   respectively, and let  f and  h be as In Theorem 1.4.   Then 

h ■ (I   x A^MflAj xln)) .   Hence (19. 3.1) Implies that  h  It polyhedral If f It 

polyhedral.   Since  KA It cloted by Theorem 1.2, this concludes the proof. 

The next three ratultt concern dom(KA)   .   By the remark preceding 

Lemma 0.4» such Information It of interest since it pertains to the existence 

of a saddle value or taddle point of KA . 
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COII0LUIIY1.4.2.   Ut K Mid A b» aUn Hfow« 1.1,   Thjn 

doM(KA)*C A*d0BiK* . 

in pfticttitr. if f (ftp, q) d«nof ■ tht convx (wip. oonotvl pwtnt of K, 

th»w 

rKdoMjtKA)*) > A* U (rKdong(-,y))|y c rang« A2nrl(dom2IO) 

•nd 
•       • 

ri(do«2(KA) ) ■ A2 U (ii(domf(x, • ))|x c rang« AjO iKdom^)) 

tdiTt thaf tenmiUa alao hold %»han "rt"  ii dalatad throughom. 

PROOF.   By Umma 0.4. 

It would ba vary nloa for stating duality results if in addition to tha 

Inclusion of Corollary 1.4.2 wa also had tha incluslor. 

ri(A*doaK*) C dom(KA)*  . 

Howsvar, this Inclusion is not trus In ganaral.   Mora discussion of this point 

(phrasad In tarns of tha addition oparation rather than  KA ) follows Corollary 

S. 6. 3.    By using recession functions, though, we are able to charactorlze when 

tha above inclusion is valid.   This is done in the next lemma (cf. (6. 3.1)). 

LEMMAl.S.   Ut K and  A ba as in Theorem 1.2.   Than for J« 1 and 2 . 

cKdoaMKAn - cKJLdom.K*) 

if and only if 

rac.(KA) • (rec.K)A    . 

PROOF.   By Theorem 0. 3,   rec2(KA) - 6*(- |dom2(KA)*)  and  (re^K^ * 

6*(A2 • Idon^K ) .   Now apply (16. 3.1) and (13.1.1).   The assertion for j = 1  is 

proved similarly. 
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and 

LEMMA 1.6.   Ut K and A ba ai In Theorem 1.2.   Then 

(reCjKAHu) - lnf{(rac K(- ,y))(A1u)|y e range A2n rl(dom2K)) 

(reo2KA)(v) ■ tup^rec K(x, • ))(A2v)|x e range AjPl rKdomjK))  . 

PROOF.   By definition and Theorem 1.2, 

(reo2KA)(v) - sup{(rec(KA)(u, • ))(v)|u e AJ^rKdon^K)}   . 

■ supflrec K(x, • )A^){v) |x e range Aj D rl(dom.K)}  . 

If x e rlidomjK),   then (34. 3) and (9.5) imply  (rec K(x, • )A2)(v) = (recK(x, • ))(A2v) 

This proves one formula, and the other is proved similarly. 

Now we develop another operation promised, an operation which is 

analogous to that of taking the image  Af of a convex function  f under a linear 

transformation A.   Suppose   K is a concave-convex function on  R   XR    and 

A s A. X A.  is a linear transformation from Rm x R    to  Rp x R   .   We seek a 

condition on K and  A ensuring that all the functions on  R   x R    either of the 

form 

(u, v)-» sup inf      K(x, y) 
{xlAjXsuKylA^sv} 

or of the form 

(u,v)- inf sup    K(x,y)   , 
{y|A2ysv} {xUjXsu} 

for  K e [K],   belong to a single equivalence class of concave-convex functions 

P      Q on  R   XR   .   (By (5. 5) and (5. 7), these functions are indeed concave-covex.) 
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By analogy with the operation In the convex function case, this equivalence 

class (when It exists) will usually be denoted by [AK] .    Theorem 1. 8 gives 

a condition which guarantees that [AK] exists and, moreover, that all of Its 

members are closed and proper, and that its conjugate is  [K A ] . 

The proof of Theorem 1. 8 relies on the following technical result.   For 

simplicity we "dualize" the notation used up until this point In §1, 1. e., we 

write  K in place of K    and  A  In place of A   . 

LEMMA 1.7.   Let K be a closed proper concave-convex ftinction on 

R    XR ,   and let   A= A. XA,   be a linear transformation from  R   XR    to 
p      g * ^ * R   X R   .   Assume  range A fi rl(domK ) # 0 .   Then 

(KV)* (U, v) = sup{cl(A2K(x, • ))(v) IAjX = u}  , 

where the supremum can be taken over just those  x in dom.K  such that 

A.x - u,   and 

(K A   ) (u, v) = InffcKAjKl-, y))(u) IA2y = v} , 

where the Inflroum can be taken over Just those  y Jn dom.K  such that A_y = v . 

PROOF.   Only the first formula will be proved, as the second can be proved 
—♦  * 

similarly.   Let J denote the lower conjugate of K A   .   The definitions yield 

J(u,v) = sup{<v ,v>+lnf{<u ,u> - (K  (•, A,v )A. )(u )}}   . 
♦ * ä        1 

v ü 
—** Since  K     is concave-closed. It follows from (34. 3) and (6. 3.1) that 

^b 4t ^b ^k sic w% 

ri(dom K  (*,y ))  equals r^dom.K )  when y e dom.K    and equals  R     when 

y   ^ dom.K   .   Hence (16. 3) and the hypothesis  range A. Pi rl(dom,K )# 0 imply 
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*   ♦   * *    * 
(K (•, ^v )A1) (u) = (AjK  (•, A2v ) )(u) = 8up{k(x, P^v ylAjXs u}  for every 

v ,   where k denotes the concave parent of    K   .   Thus, 

J(u,v) = 8up{<v ,v>+   sup k(x,A v )} 

v xeA. u 

s   sup      sup{<v , v> - (-k)(x, A v )}  . 
-1       * ^ 

xeA. u v 

But Theorem 0.2 implies   -k  is the convex parent  f of K,   and hence (16. 3) 

implies   sup{<v*, v> - (-k)(x, A*v*)} * (f(x, • )A*)*(v) = cl(A2f(x, • )*)(v) = 

v 
cl(AJC(x, • ))(v) .   This establishes the asserted formula for  J .   Finally, for 

each x ft dom.K,   the fact that  K is convex-closed implies  K(x, •)   and hence 

cl(A2K(x, •)) is constantly   -00   . 

THEOREM 1. 8.   Let  K  and  A jae as^in Lemma 1.7 and assume 

range A nrl(domK )*0.    Define functions  J.   and  I,  on  RpXRq  by 

J (u,v) =        sup inf        K(x,y) 
{x|A1x = u}{y|A2y = v} 

and 

J (u, v) =       inf sup      K(x, y) . 
{y|A2y = v}{x|A1x = u} 

Then there exists an equivalence class  [AK] which contains every concave- 

convex function J on R   X R    satisfying J', < J < J,   •   Moreover.   [AK] _l8 
* * 

closed and proper and its conjugate is  [K A J .   If. [K]  is polyhedral, then 

[AK] _ls polyhedral. 
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PROOF.   Theorem 1.2 Impllei that K A   and  K A    belong to a closed 

* ♦ 
proper equivalence class [K A ] .   Let [AK] denote the conjugate equivalence 

class.   From Lemma 1.7 and the fact that cl f < f for any convex function f 

and  cl g > g  for any concave function g,   it follows that 
—* * ♦ ♦ ♦ ♦ 

(K A )  < Jj  and  J2 < (K A )     . 

P       Q Hence Theorem 0.1(b) implies that each concave-convex function J on R XR 

satisfying J* < J < J, belongs to [AK] . The polyhedral assertion follows from 

Corollary 1.4.1 and the fact that  K    is polyhedral whenever  K Is. 

Recall from (37. 5) that   8K    Is Just the inverse of  8K,   considered as a 

multivalued mapping.   By combining this fact with Theorem 1. 3 and the fact that 
* * 

[AK]  is the conjugate of [K A ]  (Theorem 1.8), we immediately have a charac- 

terization of the subdifferential  8(AK)  of AK . 

The basic hypothesis used throughout this section is dualized in the 

following lemma. 

LEMMA 1.9.   Let  K and  A be as in Lemma 1.7.   Then for J ■ 1  and 2 

the following conditions are equivalent; 

(a )  range A O ri(dom.K ) * 0 ; 

(b )  A." {o}n (rec cone.K)  is a subspace ; 

(c.)  A.' {0)0 (rec cone.K) c -(rec cone.K)   . 

PROOF.   Apply Lemma 0. 7 with L. ■ range A.   . 

We conclude this section with twg examples showing that Theorems 1.2 

and 1.8 can fail if their hypotheses are weakened.   These examples are pre- 

sented In tho notatlonal scheme of Theorem 1.2. 
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EXAMPLE 1.10.   Talc« n ■ n ■ p ■ q > lt   tnd l«t Aj  tnd  A^ ••oh b« 

th^ ••ro trMtforiMtlon on  R .   Lrt  K to • BMntor of tho •qulv«l«nc« cUit of 

olotod propor concav*.convex funotloni on  R XR having •• k«rn«l tht function 

(u,v)-uv, «|u,v)e(0,l)x<0.1)  . 

(This «qulvalonce clais If dlaoutsod In (48* P- 360).)  Ihm dorn K ■ (0,1] x 

[0,1], £(0,0) - 0, K(0,0) • 1,   «id  K(u,v) ■ uV - K(u,v)  wh«n«vw 

(utv) c dorn K\ ((0,0))  .   Mor*ov«r, for «ach   o c [0,1)  th« function  K    ba- 

longs to (K),   whara  K (0,0) ■ a  and  K (u,v) ■ K(ufv)  «vhanavor  (u,v)* (0,0) . 

Obtarva that, for ) ■ 1 and 2,   rang« A. O don.K # 0 whlla ranga A.O rl(dom.K) 

* 0 .   Alto, for any  K c [K],   tha function  KA Is comtantly aqual to  K(0,0) . 

SInca  0<K(0,0)<1,   this IroplUt that  KA  li cloiad and proper.   Howavar, 

It also Impllas that, for any two alamants  K.  and  K, of [K],   ILA It 

aqulvalant to  ILA If and only If IL(0,0) ■ IL(0,0) .   Thus, at   K   rangat ovar 

(K) tha functions KA datarmlna  2 " dlttlnct tqulvalanca clattat of clotad 

proper saddla-functions (cf. Thaoram 1.2).   Now lat  L   and  )    ba daflnad as 
t 

In Thaoram 1. 8 (axcapt for dualising tha notation).   Since  A    is tha saro trans- 

formation on  R, 

f sui 
R 

*   *      ) 

• • • 
sup Inf K     If u   ■ 0  and v   > 0 

R 

If u    «0 and v   # 0 

If u   #0 

and 
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Inl tup!    If u   » 0 «nd v   «0 

I,<« ,v )• \    -«• lfu*0 Mid  V   • 0 

II v9# 0  . 

But  tup Inl I* • -(iVtOit) ■ -1(0,0) • -I,   and ■loUlarly   li»f iup K* . 0  . 
R   « " R    R 

■•no« |.  and I,  «• eloMd Md propar but not «qulvnlonl (ol. ThooroM 1. i). 

EXAMPU I.U.   Ut  K and Aj  ho •• in bcoapto 1.10, but now lot A2 

bo tho kSonttty tronoforaotton on R .   Oboonro that rang« A2 O rl(don 2IC) # 0 

and rMigo Aindoa.K«0 but ranoo Ajf^ rKdoiBjICl > 0.   For «ach K c (K), 

'o If v c (0,1) 
EAiu.vi « KCO, v) . { 1(0,0)   If v • 0 

♦• If v ^ (0,1)  , 

«baro 0 < KfO, 0) < 1 .   Thli laipllat th«t  KA Is prop« with donain  R x(0,1) 

and that  KA U clooad II and only 11 1(0,0) ■ 0 .    It alto ImpUai th«i, for any 

two «toaMota K.  and K,  ol (K),   LA U oqulvalant to  I^A If and only If 

lUO, 0) ■ K.(0,0) .   RaoaUlng from Dcaaipl« 1.10 tht functions  K 9 for a c (0.1), 

w« conclud« that as K  rangas ov«r (K) tha functions  KA datanalna  2      dis- 

tinct aqulvalonco elassas of propor saddla functions, whara only tha class con- 

talnln«  KA la closad (ol. Ihaoron 1.2). 
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12.  Sharper totulti 

In this Motion UM ratulit of fl eono«mlno (AK) «• tharpoiMd.   In par- 

UouUr, conditlont art glvan und«r which (i) ih« •tttciiv domain of AK cannot 

"collapta- •l^nlftoantly horn A don K;   (U) tfia axtrana appaarln« in tha dafl- 

nltlonf of tha alanantt L  and  ).  of (AX) ara actually atuinad by taddla 

points; and  (HI) tha taddla funotlont ).  and  I    actually colnclda with tha laatt 

and «raatatt alamanti of (AK) .   Ihli la dona In lhaorama 2.4 and 2. S. Laouna 2.6 

atataa aoma alapla conditions aufflolant for tha nora ganaral hypothaaaa of 

lhaorama 2.4 and 2. 5 to hold. 

Ihroughout |2 wa adopt tha noutlonal salting of Ihaoram 1.8.   That la, 

K  la a oloaad propar concava -convax function onR    xR.A^A.xA^laa 

■      n D      Q llnaar tran a format ion from II    x R    to  R   x R ,   and  L   and  ),  ara functlona 

daflnad on  RP x R4  by 

Uu. v) •       aup Inf       #*, y) 
(xlAjK.u) (ylAjyv) 

and 

J2(ut v) ■       inf aup     K(xf y) 
(ylAjy-v)   (xlA^x-u) 

Ihaoram 2.4 ratit on Ihaoram 2.2, which In tum rallaa on tha following 

tachnlcal laru»a. 

LEMMA 2.1.   Ut  f ba a propar convax function on  R ,  jat  D  baa 

convax aat auch that D C dorn f c cl D.   and jat C ba a convax aat auch that 

E Hri D a 0.   Than 
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Ulf f • Ulf f   . 
CftD      C 

Moor.   •? (4. S. 1),   D C don f C ol D  iMpllM rl D • rMdom f) .   H«no« 

S • C O rl(doM f) C B O D C C iMpll«t uivUUy th«t 

Ulf f > Ulf f > Ulf f   . 
8     "COD   '   t 

Ul  y c C bt«lv«fi.   If y i dorn t,   ih«n  f(y) ■ ♦« > Uif f  .   Suppot«  ycdomf 
" 8 

81no«   EH rl D # 0,   w o*n pick wi  x c 8 ■    Ttion (6.1) ImplMt thtt 

yK • (1 • k)x ♦ Ky c 8 for ••oh 0 < k < 1 .   H«nce (7. 5) Impll«! th«(   f(y) >cl Uy) • 

lln f(y ) > lnf{f(y )|0 < k < 1) > Ulf f .   Thlt aliowt Ihat  f(y) > Ulf f  for »very 
kfl*' *' '8 '8 
y c C . Thui Ulf f > Ulf f,   «nd th« proof It compUt« 

E      "8 
THCORCM 2.2.   Ul  (u. v) c A rlldo« K)   •nd Htmu* gift 

A^ (0) HO (rocoono K^x,   )lx crUdom^, hf • u) 

•nd 

Aj'No) nn(raccoM K(-,y)ly e rt(dom2IO. A^y ■ v) 

•r» S^JMStt»   B8S ftg? SSi&S J SSSSMSf c*0—** ggggg product Mt X x y 

Ul do« dien A'   ((U,V|)  tuctiüi^t  (x. y) e X xY  If dud only If  (xty)  u* 

-I *■ 
••ddU point of    K with rgggct to A   ((u. v))  for ••ch  K c (K) .   l^th* two 

ggtg Ui ghg hypochotU •f •cni>Hy aiilltp^c^i. ghgg X XY u boundod. 

ftOOr.   D^CUM • conc«v«.conv«x (unction  L on  Rm xRn  by 

0    If A.x ■ u  «nd  A_y ■ v 

Mx, y). ^ ♦• If A.x ■ u  tnd  A y#v 

•• lf A.x # u  . 
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ClMrly,   L It cloi«d «id lit «fteotlv« doMln l§ k   ((u, v)) .   Slnct   (u, v) i 

A rt(do» K),   rl(dom IQn rl(dom L) # 0.   Th«r«fort ^•ortm S. 2 (which doun't 

dtp«nd on th« fuiit of \l) impllotlhatthooqulvtlonoocUtt (K)«(Lllid«fin«l 

•nd hat domain  8 XT,   whtr«  8 ■ A." (u)ndo«|K and  T • A' (v)ndom  K . 

Moroov*«», Ihooram S. 2 alto Inpllaa that for any  K c (K), (K) ♦ (L) contains tha 

oloaad propar aaddla function  M «Ivan by 

IC(x,y) If x c 8 and  y c T 

M(x, y\*{ *m        If K c 8 and  y ^ T 

•*        If x^8   . 

Suppoaa x c rl 8 • Aj^ulHrMdornjIC)  (uaa (6. 5».   Than (M. 5) inpllat 

K(xf •) ■ jC(x, •)  la a clotad propar oonvax function with affactlva domain dom.K 

Hanca (9. S) and tha daflnltlon of  M  Imply 

rac M{xt •) • rac K^x, •) ♦ rac «(• Uj^v))  • 

But  rac6(-IAJ'N)) • 6(-|A^(0)| .   Iharafora 

rac M(x, •) • A ' (0) H rac cone K(x, •)   . 

Slnca  M(x. •) ■ M (x, •)  whanavar x c rl 8   (Theorem 0. Mb)),   this Implies that 

rac cone M • Al (0) OH (rec cone Klx, • )lx c rl 8)   . 

By hypothesis this is a subspaca.   Similarly,   rac cone M  Is a subspace.   It 

follows from Lemma 0. 5 that  (0,0) t r1(dom M*),   and hanca (J7.». J) Implies 

that   014(0,0)   is a nonempty closed convex product set X x Y .   By (17. 5), 

•M (0,0)C dom »M .   But Theorem 3. 9 (which doesn't depend on tha results of 
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|2)lnpa«ttol torn *H • torn nn dorn tl,   «nd (17 4) laplUt dontLC do«iL 

Thtf«tef« X)CYCdo»»KnA'>((tt(v)) .   Now  (x(y)tXxY If and only 1( 

(«, y) It • Mddl« point of M,  which (by ()6. ))) ooourt If and only If (*, y) 

It t toddlo point of K  wtib rttpoot to 8 xT .   Uting  (x,y)i do« K togothor 

with (M. 1) tod UMM 2.1, It lollowt tbot thlt occurt If and only If (x.y)  It • 

Mddl« point of K  wltli rotpoet to A* ((u.v)) .   8lno« any moabor of (K) 

oould bo Ukon In th« dotlnlUon of  M,   (36.4) Impllot that (x( y) t X x Y If 

and only If (xvy)  It a taddia point of  K  «nth rotpoot to A* {(u.v))  for aach 

K c (K).   finally, tuppoto tha tatt In lha hypothatlt art actually nulltpacat. 

Than rac cooo M • (0) for 1 ■ 1 and 2t   to that Lemma 0. * loipllat 

(0,0) c lnt(doai M*) .   r»om thlt, (M. S) and (21.4) It foUowt that tha tats 

»MV , 0)(0) • X and   8M*(0, • )(0) > Y art bounded. 

lha oondltlont utod In IhaoratM 2.4 and 2. S ara «Ivan In tha naxt lamma. 

In contratt to tha "global" oondltlont utod in lhaoran 1. 8, thata ara polntwlaa 

In character. 

LEMMA 2. S.   for x c dorn.K tha foUowtng throe condlUont ara aqulva■ 

lent, and they imply  A.xadoai.l.t 

(a^    range AJ O rl(dom Klx, • )*) # 0 ; 

(a.)   A* (0)nroc cone Klx,  )  It a tubtpace; 

(a)   A'  (0)n roc cone ftlx,) C    rec cone K(x,   ) . 

Similarly, for y c dom.K die teUowlnq three oondltlont are equivalent and they 

liPty AjY t 4oa2)2 i 
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(b,)   rw^AjOrKdo««./) )#0i 

(b.)   A' (0)nr»c con» K('.y)  li • mbipac» ; 

(b )   A* (0)nr«c coo« K(',y) c   .r*c con« K('.y) . 

PROOF.   Only th« flrtt «■••rtlon !• provtd, •■ th« Mcond can b« prov«d 

similarly.   Sine«  rao con« IC(x, •)  !• a convax con«, claarly  (a.) holdt If and 

only If  (a J holdt.   By 1h«orem 0.1,   K(x, •)     It prop«r conv«x and Itt conju- 

«tt« It gm, •) •   H«nc« (16.2.1) implltt that  i^)  fallt If and only If {*y) 

fallt.   Unit, th« thr«« condltlont (a.) • (a.)  ar« «qulvalant.   Suppota now 

that x tatttftat  (a ) .   Sine« K(x, •)  It clotad prop«r conv«xf (9.2) lnpll«t 

that AJCfx, •)  It too.   Hanc« A^Wx, • I  It n«v«r -«.   But ^(x, •) < yAjX, •) 

Th«r«for« A.x c don.). . 

THEOREM 2.4.   At turn« that aach x e ii(dom.l0  (mp.   y e rl(dom K)) 

tatltftat on« of th« «qulvalant condltlont  (a)  (ratp. (b )) of Lemma 2. 3. 

Than th« cooclutloot of Th«or«m 1.8 hold, and 

ii(AdomK)C domAKC Adorn K  . 

rufth«fmor«( for «ach  (u, v) c rl(AdomK) th«r« «xlttt a nonampty clot«d con- 

vx product ft XXY In^ dorn dK H A'^K v))  tuch that 

(1) (x,y) c X xY if and only If (x, y)  U a taddla point of K   «nth 

r«tp«ct to A* ((u, v))  tor «ach  K c (K),   and 

(2) (x. y) e X x Y Impllat 1 (u. v) - Kfx, y)  for a vary 1 e (AK) and 

PROOF.    Iha hypothatlt lmpll«t that  A' (0) Orac oon« K It a tubtpaca 
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for ) ■ 1 and I .   Ifono« by l»mm. 1.9 th« oonoluüont of Thooron 1.1 hold, 

•nd In ptrtlouUr Jj ond l2 bolong to (AKl,   wh«r« ((AK)*] • (KV) .   Thut 

dorn AK ■ domJ. xdomj, .   Thorofort tht hypothtflt «id UMM 2. 3 Imply 

that rl(Adornt) c dorn AK .   On th« other hand, Ununn 1.9 tnd CoroUary 1.4.2 

Imply that don AK C A do« K .   Lot (u, v) c rl(Adon K) .   ty Ihoortn 2.2 thort 

•xUts • nonanpcy oloaod convax product Mt X x Y  In don MH A* {(u,v)) 

•uch that (1) holds.   Suppoaa u.y) e X x Y .   Slnca (1) tnpllat (xty) It a 

•addla point of K with rat pact to A  {(^v)),   certainly  I^u, v) • ftlx, y)  . 

Slnca rl(Adon K) ■ ii(don AK) by (6.}. 1), lhaoram 0.1(b) Inpllat that 

Ijlu.v) ■ 7(utv)  foraach  ) c (AK] .   Alto, (xty)edom8K and (37.4.1) imply 

that K(x,y) ■ KOc,y)  for aach K c [K] .   Ihla attabllahaa (2). 

THEOREM 2. 5.   AafUgg that aach x c don.K (ratp.   y c don^K)  tatlattaa 

ona of tha aqutvalant conditiona (a.) (rasp, (b )) of Lamma 2. 3.   Than dom AK 

actually aquala   Adorn K .   Iloraovar. writing cMAK) »2 and cUAK) «7, 

'l ml SSl '> '^ ~ ranga A . 

In particular.   I.(u, v) «^u, v) axcapt whan u c ranga AA A.dom.K and 

v / ranga A,,   and  I-(uf v) »Hu, v) axcapt aHhan   u / ranga A.  and 

v c ranga A, \ A, dom.K . 

PROOF.   By Lamma 2. 3,   A dom K C dom.). x dom,!, .   Prom thlt It followa 

aa In tha proof of Thaoram 2.4 that A dorn K ■ dom AK .   Wa only prova tha 

aaaartlon about  ] ,   aa tha othar la tlmllar.   Prom tha proof of Lamma 2. 3, 

A, K(x, •)  la cloaad for aach x c dom K .   Hanca Lamma 1.7 impllat 

iM, v) - aup {AjKfx, • )(v)|x c domjK, AjX . u)  . (1) 
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If xldoaX   th«n  IC(Kt •)  it oonttantly  .«,   to that 

AjK^K. • Hv) • 
f •»  If v t rang« A, 

^ ««•  if v ^ rang« A^   . 
(2) 

Sine« Uu,v) ■ tupfA^Kix, • )(v)|A.x • u)  by d«flnlUonf «quatlon (1) Impllai 

that J.(u,v) aquala 

:(X(u,v»,   •up{AlK(xt)(v)|Alx ■ u, x^doBijK))  , 

«vhlch by aquation (2) «quala liu, v) whanavar v c rang« A, ■   Hancaforth 

aaauoM v ^ ranga A. .   Suppoi«  u c A.dom.K .   Pick an  x e dom.K fuch that 

AjX ■ u .   Since  A^^v) . 0,   «• ■ A^KCx, • )(v)< JCu. v) < J^u, v) .   Hanca 

i(u( v) ■ Uu, v) ■ 4«o  whanavar  u e A.dom.K .   Obtarva alto that tha convention 

tup 0« •«  Inpllet J[(u, v)< J.(u, v) ■ -•  whenever  u ^ ranga A. .   In tha only 

remaining caaa, I.e. when  u c ranga A.\A.dom.K,   aquation (I) Impllat 

j[(u, v) ■ tup0- ••   while  J.(u, v) ■ tup{lnf 0|AJX ■ u) ■ 4«B . 

While the hypothetet of lhaoramt 2.4 and 2. 5 are general, they may ap- 

pear tomewhat cumbertom« to chock.   The next lemma glvat tlmpler, 'global* 

condltlont on K and  A which Imply tha hypothetet of both Iheoremt 2.4 and 

2. S.   Note that thete condltlont are met, for example, when domK It bounded. 

For a nonempty convex aat  C In R ,   define the r«c«ttlon oon« of C 

to be the tet 

0*C ■ (yIx ♦ xy e C, Vx c C ¥ X > 0)   . 

LEMMA 2.6.   The thr«« following condltlont are equivalent, and they 

Imply that condltlont  (a.) • (a.) of Lemma 2. 3 hold for each x c dom.K t 
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(Oj)   ^iO) n 0* oltdo^K) ■ {0) j 

(Cj)  A^l(v)ndo«2K ii bottndtd for tach v c R4 t 

(e J   Al (v)O rKdon.K) !• nontropty and boundtd 

for 00— v t R4 

SimtUrtY. th» thr— teUowrtng oondittona w oquivlonti fgd thoy Ireply 

ttiot condttlom (bj) - <b)) of LWMM 2^ hold for ••oh y t doftjK t 

(dj)   Aj'^OlOO* cMdomjK) . (o) : 

(d2)   A1'l(u)ndom1K U boundtd tor tach u c Rp s 

(dj   A' {u)nrl(dora.K) li notwroply and boundod 
p 

for «o—  u e R    . 

PROOF.   Only th« first astortlon li proved, tine« th« soeond It similar. 

Por «ach v c h^dou^K,   (8. 3. S) and (8.4) Imply that 

i^l{v)ncUdom2K)  la bound«!    4—^ A'l{o)n 0* cMdom2K) ■ (o) .     (1) 

It followt fro« this that  (cj  impllas (c2) .   By picking any v a A^Kdon^K) 

it follows that (c2)  implias (c)) .   Now assuma (cj .   Than (6. S.l) and 

(4.5.1) Imply that 

A2
l(v)nol|dom2K) • A^fvincKrKdom^) ■ cKA'^vlOrtfdom^)  . 

That this sat is boundad follows from the fact that A^MD rl (don^K) is 

bounded.   Hence (c.)  follows by the equivalence (1) above,   finally, let 

x c dom.K be given.   WHte f ■ l^x, •) and C ■ dorn f .   Then by (34. 3) and 

(6. 3.1),   f Is a proper convex function with clC ■ cl (dorn K) .   But by (8. 5) 
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and (8.1) It follows tasUy that dom(rao f) c 0f C c o+(cl C) .   Hence 

rec oone K(x, •) c 0 (oldoro.K),   and therefore  (c.) Implies that x satisfies 

(a,) of Lemma 3. 3. 

Finally, we remark that when conditions  (c.)  and (d.) of Lemma 2.6 are 

met, the sets X and Y given by Theorem 2.4 for each  (u, v) e A rl(dom K) are 

actually bounded and hence compact.   This Is because the two sets In the 

hypothesis of Theorem L. 2 are then nullspaces. 
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$3.   Addition and Minimax Convolution 

In this section the operation of addition for equivalence classes of saddle 

functions is developed, and along with it a new operation called minimax con- 

volution.   It is shown that these two operations are dual to each other with re- 

spect to the basic conjugacy correspondence.   The results obtained closely 

parallel known theorems about the dual operations of addition and inflmal 

convolution of convex functions. 

Both these operations and the duality relationship between them can be 

developed in a manner exactly parallel to §§1 and 2.   However, to avoid such 

essentially repetitive proofs we instead develop only the addition operation 

separately and then obtain the rest of the results as special cases of those of 

S §1 and 2 .   This entails defining separable saddle functions and proving some 

technical facts concerning them.   Finally, the section concludes with an ex- 

ample which leads to a conjecture about maximal monotone operators. 

There are two technical difficulties involved in defining the operation of 

addition.   The first stems from the fact that we are working with extended-real- 

valued functions; we must deal somehow with the expression  oo . oo .   The second 

and more fundamental difficulty is that, from the point of view of minimax theory, 

we want to define addition of whole equivalence classes and not Just Individual 

functions.   The following definition is designed to handle both these difficulties. 

For  1 s 1, ..., s  let   K.   be a concave-convex function on  Rm XRn with 

effective domain C  XD  .   We say tha.  [K.] + ... + [K ]  is defined if and only 

if the sets  C = Cin...nc     and  D=Dn...nD    are nonempty and 
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K^x, y) + ... + Kg(x, y) * K^x, y) + ... + K^x, y) 

whenever (x, y) c ri C X ri D and  K . e [K. ], ...,  K   c [K ] .   In this event 

[K.] + ... + [K ],   which will usually be written as  [K. + ... + K ],   is defined 

to be the unique equivalence class of closed proper concave-convex functions 

on  R    x R    having as kernel the function on  ri C X ri D  given by 

(x, y) - K^x, y) + ... +Ks(x,y)   . 

Such a unique equivalence class exists by (34. 5.1).   The operation which sends 

[Kj],  ..., [K ]  into  [K. + ... + K ]  is, quite naturally, called addition. 

LEMMA 3.1.   For i a 1, .... s  let K.  be a closed proper concave-convex 

function on R    X Rn  with effective domain  C   X D   .   Then [K. ] + ... + [K ] 

is defined if either C, Pi... O C* 0 and ri D, O ... Pi ri D   ^ 0 or — — 1 s    ^ ——        1 s     ^ — 

ri C. O ... Pi rl C   ^ 0 and   D, Pi ... H D   # 0 . 1 s     ^ ——    1 s    ^ 

PROOF.   This follows easily from (6. 5) and Theorem 0.1(b) . 

It is actually not hard to establish a weaker condition sufficient for 

[IC] + ... + [K ]  to be defined.   Loosely speaking, the condition is just that 

the  K.  be closed and that (possibly after renumbering the  K's) there exist an 

integer r, 0 < r < s,    such that 

ri c, n... n ri c n c; . n... n c ^0 1 r       r+1 s     r 

and 

D.D... OD HriD   .Pi... Plri D   ?t0. 
1 r r+i s     r 

(The conditions in Lemma 3.1 correspond to the values  r = 0  and  r = s) . 
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'"' ■  ■■      ■ -      .■■.-....-.-■.■      _■ 1.1 ■ ... 

Insttad of tppMllno to (6. i)t th« proof utei th« g«nor«llB«tlon of (6. S) 

given •■ Ummt A. 6 In th« Appendix. 

THEOREM 3.2.   Lot  K.« .... 1^ be cloied proper oonoeve-convex fane- 

ttone on RB x Rn  euch that rl(dora 1^)0 ... O rl(domK,) * 0 •   SStB 

[K.] ♦ ... ♦ [K J it defined, hei effactlvedomein dorn ILO ... OdonK ,   end 

conteini the oloied proper teddle function K given by 

Z K. (x, y) ^f x c C end y c D 

K(x, y)« ^ ♦« If, x c C end   y d D 

l^x^C  . 

PROOF.   Lemme 3.1 Implies (t) ♦ ... ♦ [K ] Is defined.   Hence It Is the 

unique equivalence class of closed proper concave-convex functions on R   XR 

having the same kernel es  K .   Therefore by (34.4) the proof will be complete 

once we show K Is closed.   This «re do by checking that  K satisfies the six 

conditions of (34. 3).   This follows routinely by applying (34. 3) to the K 'i 

with the aid of (6. 5). 

In order to apply the results of  $fl and 2 to an equivalence class 

[K. + ... + K ] and Its conjugate, we need to define and establish some pro- 

perties of "separable" saddle functions.   For 1 ■ 1 s  let  K.  be a proper 

concave-convex function on  R 1 XR 1 with effective domain C. xD .   Write 

m a Z m^ n ■ Z ni  and define a function  (K., ..., K )  on   Rm X Rn by 

'z K^Xj, yj If x e C  and  y e D 

(Kj, ..., Kg)(x, y) « ^ +« IfxeCandy^D 

-• If x^C 
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— —■ 

wh*r«  x ■ D. x ... x D  . («,,.••«,). y • (y|. • • •. yf>. c • Cj x... x c-, D • ^ _ i 

With ttt« «Id of (34.1» «id th« tollowtn« UMM S. J, It o«fi •••Uy b» vwl(i«d that 

th« function (K., ..., K )   It concavo «oonv«« with «ffoollvo doouiin  C x D . 

Such • Mddl« function It cnllod topfbit.   In Ihoortm S. 4 wo •ttotllth to»« 

usoful lochnlctl facet about toparablo aaddl« functions.   Tho proofs of thtt« 

factt raly on tha following tlmllar fact« about taparabl« convox function«. 

LEMMA S. 1.   For 1 • 1, . .., «  tot  f   b« t propof convex function on 

Rnl with affacUv dowaln  Cj .   Daftno   C • C. K ... x Cf  and  fcx]t ..., xj ■ 

f, (Xj) ♦ ... ♦ f |K ) .   Than th« tellowlnQ «tataawnt« Koldi 

(a) f It propar convox with affoctlv dotmln C; 

(b) (d Oix, xi) ■ |cl fjHXj) ♦ ... ♦ (cl fiKxg) ; 

(c) f It polyhodral If aach  ^ }• . 

-•   • •     -•   • -•   • 
(d) f (Xj, ..., xs) ■ fj (Xj M • • • ♦ filxi) ; 

(a)   »fCXj,   .., xi» • df ^Xj) x ... x •fi(xi) : 

(0   (rac f)(y,,   • •, yi) ■ (roc fjMy^ ♦ ... ♦ (roc fiMyg> . 

PROOF.   A«««rtlon« (a) and (d) aro trivial.   A«««rtlon (f) follow« louaadlatoly 

fron (a) and (1. S).   To «a« (b), lot  x ■ (x., ... t x ) c cl C • cl C. x ... x cl C 

0 0 
bo «Ivan and fix any x   • (x x ) e rl C ■ rl C. x ... x rl C   .   Dafln« 

x x ■ (Xj, ..., xi) by «x ■ (1 • ^>»0 ♦ Xä  tot 0 < k < 1 .   Than (a) and (7- *» 

Imply that 

(cl f)(x) m Um f(x.) - r 11m f.Cxj • £(cl f.Mx.)   . 
Xf 1      x kfl*   * *    * 

On tha othar hand, If x / cl C  than x  / cl C   for »cm«  1 < I < «  and h«nc« 

(a) and (7.4) Imply that  (cl Of») • ♦• • (cl iM*A < x (cl t^nj .   Ihl« prova» 
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fb).   lb tM (o), tf«llM hjCKj. • • • f ■a) • »,<»«,) for Meb I .   IM« 

•pi hj • ((Hj,   ... «t.H»l<«l. i»} • «Pi fj) 

•nd «pi f   polyMdral \mpkf ih«  »pi hj  it polytodr«! for ••ch 1 .   Hone« 

(19.41 lMpll«t that f • h. ♦... ♦ llt  It polylMdr%l.   nntily. w provt (•) 

SUPPOM futi thtt K • (x,, ..., x,) 4 C .   Ihtn ui tnd (I). 4) iMply ih«i 

•f(x) > 0 tod tlto   •((« ) • 0 lor MMM  1 < I < ■     llittt  #(,(«,) •... ♦ *f0Oi|M /■ 

Now tuppoM thtl » i C .   Utlmi «* 1) Md (?• 4). ooo oto ootlly vortfy thai. 

lor • oonvo« (Unotloo h o« Pn aod • tubtof C of Rn eonulfUnQ nidoah), 

x* c «Kx}  If tnd only If 

h(y) >hcx) ♦ <x#
ty • x>,   »y e C . 

Appllod to iho tltuttlon oi hond, ihit ispllot thtt x ■ (S| v ... f »s) i tf(x) 

If ood only If 

r yy,) > tffjCXji ♦ < x*. y1 . «j >» (it 

lor ovory  If„ .. •, y^ t C .   Ut   1  bo ony flxod Indox.   ty loftlnQ  y    vory 

ovor  C    «nd roqulrtn« »j • «,  ***  * * !•   l" «•pH«» 

SIACO oil tho mmbort  f (x )  oro flnlio, thf roducot to 

f,cyJ)>fJaiJM<«J
#. y,-»,*. 'y,cC, <l> 

Bui thlt It oqulvtlonl to x. t if (x ) . Tliui wo htvo shown (hot (1) lapllot 

x c tMx ) for I ■ 1, ..., t . Ibo convorto toilowt ottlly by tuoutlnQ (ht 

t  InoquollUot of iho foot (2) .   Iblt cooiplotti tho proof of (•) . 
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THBORSM 1.4.   £21 I • I* • • • t • if«  K   b; • elomd propt» coiwv- 

ogggg ftBSflg S K*1 X ,|Al 21* aflgSg 00—in C, Ä D,     fii! 

K • (t|, .. •» Kg) «Jd wrtf C • Cj K...  K C^ D • Dj K ...  « Di, « • («j, ..., »i> 

lid y • (y., ..., y ) .   1b#n tfi» toUo»rtnQ tute—m» holdi 

(•)  K U otofd pippf ooiwv»cowv» with »Wtctlv do—In C xp . 

(b)  U   Kj c (Kj)  fa*  I • I, ..., •,   ton (K, K>) c (K) (Thai I«.  (K) 

d»ptwdt only on (Kj, • • •«(K || . 

|o) Tho !•••! tnd af#mi —btc• o< (K) an qivn by 

jCt». yj. /   ♦• l^xcC   «nd  y / cl 

D 

D 

If, K^C 

•nd 

I lA* , y I  l£  ä e cl C •nd y c D 

K(M. yi - (   ^» if   K^clCmdycD 

• If, y^D 

(d)   rw  | • 1  «nd  2  «nd   (x, y) c C x D , 

•JWK, y) • •,«,««,. y,) * •    x •jKB(K
i' y.1 

(•nd   »Ku. y) • 0 wbtngjgf  (x. y) / C x D) . 

(f)  (roCjC««) • Kre^MXj)  nnd  (r«c2IC)(y) • Krcc^My,) 

(9)  If. f  (ftp, f) dtnof t th» convx pf nt of  K  (ftp. K ),   ton 

f(x, y ) • Z f (x , y ) .   Similf ly for coiwv pf mt. 
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(h)  It—eh Kg U polylKdfi. Uli»  K !• poly»»dfl. 

moor   (•) It raffle«! to olMok UIM  K Milt(l«t ih» tm oondlttoot of 

(M. S).   Ui  A e C .   HMH »J e C|  ioo«ih*f with (M  D «ppliwl to  r   imply 

Ihti   K.CK.* ')   I« • propar OOQVM hincilon wiih «((ecilv« dom«in oonUtnlA«  D  . 

Sine«  KCK. y) • ZK^s^y ) ♦ «(ylD),   it followt fro« UMM I. K«) «nd (S. 2) 

tti«l   K|x, • )   li proper oonv«« with «ffoctlv« dum«in   D .    Now tuppoM  x c rl C . 

^•n  x  c rt C (   tottiM IM. M Uxpllot   1C<K . •)  It clotod «nd Ha •ffoctlvo 

doo^in «ciuAUy •qualt  D. .   Ihut   Ktx, y) • ZK (x . y ),   and Lawit I. |(b| 

impliaa  Rlx. •)  !• oloaad.   TKla «aubllahaa lha (Iral twocondlllonaof (M  M M 

K .   Of III« raaMlnlAQ (our oondltlona, two hav« parallal proofs and lha olh«r 

two «ra aaUaftad trivially. 

(bl   Lai   K   e (K |  (or  I ■ 1( ... t a  and wrlia  K • (K., .... K  ) .   Slnca 

by (M. 4) two cloaad proper aaddla (unction« ara aqulvalanl l( and only 1( thay 

hav« Hi« aaaM kamal,   KJx , y ) • K (x., y.)  wh«nevar (».. y.l e rt C   xrl D 

Hanc«   K   «ad   K agraa on rt C x rt D .   Slnca aqulvalanl aaddla (unctions 

bava lha aaaM •Keciive domain,   domK   • C   xD  .   This impliat  domK • 

C v D .   Thar«(bra  K   and  K bav« lha aaaM kamel. 

(c)  Slnca   K it clotad, Thaoraai 0.1(b)   Inpllat  K • cl.K  and   K«clK. 

K  y ^ D,   than  K( , y) aqualt MB   on  rl C  and hanca  K< , y) • cl{Ki , y») • ♦• 

Now auppoa«  y e D .   At in the proo( o( part (a).   IC(xty) •   SljUl^y ) • 6(x|C) 

la proper concava with a((acUva domain  C .   Slnca  g(x) > ZK (x , y )   la propar 

concava with  C C don g C cl C  by (M. S) and Umma I. S(a),   11 (ollowa (rom 

(6. J.l) and (7. 1.4) that  (cljKMx,y) . (cl «)(x) .   But  (cl«)(x)> Sfo^K^C« f y.) 
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by LMUM 1.1(b).   SIJIO« oljKj • I^   this ••i«bll^«t ih« fonMl« for E     !*• 

otti«f lonMiU it proved tlMllarly. 

(d)  ly part U) «nd ()7.4)t   doatKCCxD.   SuppoM  (xty)cC»D. 

ly(S7.4.1),   •KCx.y) • lit'.yHx) K»KCx,-)(y) .   kit froa pvi (c) «nd UmM 

5. !(•».   •«•, yM«) • iijt-, yjMXj» x... x •! ,(•, V.»««J ***• by (J7.4.1) ih» 

K    ctn b« r«pUc«d by  K .   ThU ••t«bllth*t the •••etiion (or   I • 1,   «nd th« 

C«M  J • 2   It «xtcUy th« ••m«. 

(•I  th« proof It by Induction,   flrti obttrv« ihtt ttptrtblt t«ddt« tune 

tlont enn bt «Ivtn tn tqulvtltnt, Inductlvo dtdnlilon.   Namely, (or   § • 2   Itl 

th« dtflnltlon by tt glvtn tbov«, tnd (or  t • 2  loi tht dtdnltlon bo at Qivon 

tbov«. ond for   t > 2  dt(lM (K. Ks) • ((K..    ... K   .1, Ka)  where t tpoc« 

o( tht font  (Rml K ...  x Rm» 1) x «"t   It Idtnllfltd with  Rml x .   . >c R*«   . For 

th« purpose of thlt proof we tdopt (hit inductive definition.   Suppose th« «tttr- 

tlon htt already been proved for th« case   t • 2,   and let   t > 2   b« fixed. 

Sine«  (t, .. ., K*) • UKj* K* j), ic|»  by d«flnltlon( the Inductive hypothttlt 

(1 K.^tfOC,.    ...K,.,»! 

together with parts (a) and (b) Imply that   (K.,   ... K )  Is equivalent to 

((KJI   --.K    .)*, K*l .   But by th« CAM   t«2  this Is contalnad In  (((K.,    ... 

K    iKK ) ).    which by definition is the same as  ((K.,   -..^1 ).    Thus,  part 

(«) wUl be proved one« th« cat«   t • 2   It «stablished.   So let   t • 2   and writ« 

doaK*«C*XO*.    By (16. l) and (16.1». 
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1 

|*CK#, /) • tup lAl <X < M,, «*> ♦ < vt, y*> ■ KAn, y I) 
ytOitC        '   ' '    '       '   '   ' 

<   tup   inf (^«j,«^ ♦ <fv/l
> • |J^<Vya, * S|#CV VJ 

yl,Dl "llcJ 
•   •    • •    • 

S&! (M,, yj I  II «I • C)   «nd  y) • do« |) Cx,,   I 

• If Kj • Cj   «id  yj I do«K| (»|, •) 

•    • 
Moreover, in th« »vvm ih«( n   c C.   «nd  y. cdoMK.t«,.   ) wo have 

s      •   •   • • 

• •  •     j ^   • 

II  Kj ^ c 

• • 
ond  y^ • do«K2(x2, •» 

•od  y^ # doaX2(»2, • I 

•   • 
Alto,   «, c Cj   inpllot   DjCdoMK (x , •)   by CM  1).   If C   • C.  xC    «nd 

•        •       • 
D   • D. » D ,   thon Iho «bovo toot« laply 

40*1** C C*. D* C doa2K*  , 

«nd 

•   •    • •   •    • 
K (x , y | < X JCj («j. yj > «Hionovor x   e C    or y   e D 

Nrftllol re«tonlng ttortlAQ fro»    I (x , y )   yields ih«t 

C* C dom.K*. dom.K* C D* , 

•nd 

— •    •    •       —•   •    • 
X K| (x1, y|) < K (x (y ) whonovor  x   c C    or y   c D 

—      . •       •       • 
Ihfton  6om K   ■ C   x D    «nd 
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•   •   • •   •    •     —•   •   • 

■M—flf  KtC    or  y   c 0   .   ty «pplyln« 1h*or«« 0.1(b) lo  K ,   II followt 

•    • 
thai  (K., IL) and  K    h«vt tti« M«t k«fiMl.   Sloe« tti«y «• both oloMd Mid 

propw, (M.4I l»pli«t iMy ar« •qulval^m. 

10  rvo« Hi« d«tiniiioA«. Tli«or«M 1.4(a), (M. )) and UMM I. Jif) II 

bllowttfMl 

(i«o2K)(y) • tupdvo K(«, • ))(y)U c rl C) 

• •vpdcrM^.my,)!«,« nCj,..., «itrtCi) 

• Z •upüf»cl||M|. •my|lU1 e rl Cj) 

Th« olh«r forauU It prowd tlalltrly. 

(g)  §y part «c»,   Klx, y) • ZJUx., y I «^«n^vw  x c C .   H«nc« T>i*of«a 

0. M«)  l«pli«s ih«t  KK, y*) • Mp(<y, y*> - Zj^in^ yj)) • I •ttp{<y|, y*> • 

K (x , y )) • Z( (x (y )  whtiwvar x c C .   On th« oCh«r hand, l( x ^ C  then 

7h«oc«« 0. !(•)  inpll«t that  ((x, -»  and   I (x . • >  (or •<>«•  1 < 1 < • ara con. 

•tanily  **> .   Sine« aach K.  Is propar, aach   t    la propar and banc« nav«r   -*> . 

Tharafora  (x,y ) - If (x ,y )  It oontuntly   ♦«•  whanavar x^C.   This 

atlabllabaa ih« lönmila. 

(b)  By pan (g) and Uaaa 1. 1(c) . 

For lha raa^lndar of tl lai caitaln noution rgaato ftxad ai teilowt.   for 

I • lf ... ( a  !•!   K   ba a clotad propar concava>convax function on lln x Rn 

«rllh affacUva domain  C  x D  .   Wlta  C • C. Pi.. . Pi C    andD« D.O... 

n D-,   and dattna  K • (1^, .... Ks) .   Ui  Aj   nap «ach K c R* Into lha stupla 
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(M, ..., s)(   IM Aj  MP Mob y • lA into th« ■•tupl« (y y), «* put 

A« A. xAj . 

In «fc« toUows w# »bftU frtquMtly UM ih» oondltlon 

r144o«K|)n...nrt(4cMBKt) *$ . ( •) 
UM «•«I IMMM duoIlM« It. 

UMMAS.S.   Pw ooadltloa rHdo^K^n ... O rl«do»|Ki)# 0 It •qulv- 

Unt to 

r«*.0  Md EtraOjK'xs*! >0 ^   t (r^Cj «*)(.«*)> 0  . 

gmiltrty. UM oondWon rKdo^Kj) n ... n rl(doa^Kal« 0 U •quivUnt to 

Iy* • 0   and r(f^2K*My*) < 0 —^   Kr^r^K^M-y*) < 0   . 

fROOP.   Apply UKOM 0 7 to th« ••ddl« (unction (K,. . • •. Kj  «nd th* 

«   • * i  * •* •ubtp*c«  ((K , .... x HX| • ■ •. • K  )  «nd tlmpllfy utlnQ DMoroa S.4.   Th« 

Moood ••Mrtton It proved tlmilmiy. 

Vf ntfft thooroa (to9*th«f with 1b«oroa 5.4) »nAbUt us to «pply th« 

raiult« of |fl and 2 to th« «qulv«l«nc« cUts Jt ♦ ... ♦ I ). 

THEOREM S.6.   Aatw« (•) .   Thjn [t ♦ ...  ♦ EJ  la dgftagd «nd «qu«|g 

m. 
PROOF.   HMOTOOI S. 2 lapll«! [E. ♦ ... ♦ It )  It d«Un«d «nd h«t «• Its 

k«m«l th« function   (M, y) •• tin. y) ♦ ... ♦ K (x, y)  on rl C xrl D  .   1h«oc«mt 

S.4(«) «nd 1.2 imply th«t (KA) «xJiti, «nd It It •••y to chock th«t lit k«m«l It 

ttM function Jutt gtvon.   Th« thvorta now followt fro« (M.4). 

COROLLARY S.6.1.   At tut (•) .   lf««ch  (Kj  U polyhtdrtl. th«n 

(I,*... ♦IJ  U polyh«dr«l. 
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moor   tytlMom }.4(li) and CoroUary 1.4.1. 

COHOLUmr 1.4.2.   *g»um» <•) .  Jl h (ftp, k) djiwu • jh« oonvj« 

(ftp, coftcav) Pffit of (Kj • ... ♦ KJ and   ^  (ftp. «^ dtnoft th» 

g2BSBI (SIE* 8BBSCD Mflffll Si (K|l*  fed 

h(my#) • l««(r ^(K.y*)!! y* • y#) 

•ad 

Mx ,y) • tuptog^x^yllEXj • x ) . 

PROOr.   By Di*or«nt 1.4 «id S. 4(«) . 

COROLURY S. 6. S.   Attw— (•) .   Th»n 

do«(IL • ... * K 1   C don K. ♦ ... * dorn K 

In pfilculf. |f  I    md 9    if §t In Corolitry 3.6.2, th»n 

rlldomjIICj»   .    ♦ Kgn • U (r rMdomg^ ,y))ly e rl D) 

•nd 

fi(do«2(IKl ♦ ... ♦ KJ*) • U {Z rKdonfjU. • »U e rt C) 

whf th»M ioraulai «Ito hold with •ri"  dgtofd Uwoughom. 

PROOP.   Apply Corollary 1.4.2, u«lng Thoocoa J.4(g) «nd UOUM 1. )(•) 

to «Inpllfy. 

Convex (unction theory h«i • f tult corf tponding to th« Inclusion In 

Corollary S. 6. S.   It it that 

do« (f, ♦ ... ♦ f J   ■ don f,  ♦ ... ♦ don ( I 1 1 • 

whantvar f. (    ara propar convax functions aatitfylng rKdonLO.   . 

n rl(don f ) * 0 (taa(16.4))-   Ona night hopa In th« taddle (unction caaa to 

hava at laatt tha Inclutlont 

11190 .59- 
Ml 



rKdoMRj* ♦ ... ♦ do«Ka) C doaf^ ♦ ... ♦ ICg)* C doancj ♦ ... ♦ d«iKt 

••tltllad «li«fwv«r K. R    tr« oloMd proper concav«-conv«« (unctions 

••titfylAQ rl(d«iK/n...nrMoMR^#0. HowwtrUiU c«n f«U drMUctlly, 

•• CM b« MM by Uklng  ••! Md putting ^(x,y)• <K,y> Md ^(».y)« 

•<xty> M R* KR* .   In dill CAM domd^ ♦ Kg)* • (o) x (o) wh«rMt 

do»IL • R* MR* • domic. .   LMUM 1 7 »t-4 Th«or«m 3.11 qlv oondlllont 

which 9u«f«ni«t that tueh "colUpilog'       a-n"!^ ♦ ,.. ♦ K^) 

csnnoi occur. 

UMMAl.7    tomtmm {•) .   Item tor  ) • 1  «rt  2, 

cUdo« (Kj ♦ ... ♦ Kt)*) ■ cUdom ICj* ♦ ... ♦ do« K*» 

If Md only If 

rvc (Kj ♦ ... ♦ R,» • roc X ♦ . . .  ♦ roc Ri   . 

PROOF.   By Thooroaf S. 6 ond Umma 1. ». 

LEMMA 1. 8    AiMQW (•) .   Thoo 

(roc^Kj ♦ ... ♦ K^HK) • InMlCrocK^ .yHWly c rtD) 

(roc2tlCl ♦ . . .  ♦ Ki)Myl • iuptecroc R^x, • ))(y)lx t rl C)   . 

PROOF.   By Th« >rom S.6 tho (ormilot In LMUOO 1.6 con bo oppllod.   Sim- 

plify using (S4. 5) ond Umao S 1(0 . 

Iho no« thoorom porollols tho rosuli obtolnod by Rockofollor (421, 

Moroou (s6|. ond othors for tho tubdlfforontlol of o sum of oonvox functions. 
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THEOREM 3.9.   ABmuM (*) •   Thtn 

8(1^ ♦ ... ♦ %t)(x, y) - dKjCx, y) + ... + d^ix, y) 

for «ach (x, y) e Rm x Rn . 

PROOF.   Sine«  domdC. ♦ ... ■♦' K ) s c X D » dorn K. O ... O dorn K    , 

(37.4) Impllti that  8(IL *...•¥ K )(xty)  and  8K (xty)  are empty (for some  J) 

whanaver (x, y) ^ C x D .   So auppoia that (xf y) e C x D .   Then Theorems 3.6 

and 1. 3 Imply that 

BdCj ♦ ... ♦ Ki)(x,y) o A*8K(A(x,y))   . 

The formula followi from this together with Theorem 3.4(d) and the definitions, 

after observing that A.   and A.   are lust the appropriate addition linear 

transformations. 

The next theorem Identifies certain members of the equivalence class 

conjugate to [K. + ... + K ] . 

THEOREM 3.10.   Assume (♦) .   Lst domK. » C. XD^   and define func- 

tions 4 and 4« on R    XR    by 

+(c,w) »    sup      inf    SK^XJ.WJ) 
Ls.»« Zw =w 

IN* z eC 11 

and 

i|»(£tw) «    inf        sup ZK^s^Wj) . 
Lw.nr Zs.ss 

wleDi 

m _^n Then {{K. ♦ ... ♦ K ) ) contains each concave-convex function J on R   X R 
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satisfying  * < I < 4* •   If each Kj jj polyhedral, then [(K. + ... + K )*] Js 

polyhedral. 

PROOF.   By Theorems 3. 6 and 1. 8,   [(K.+ ... + K ) ]  contains each 

saddle function lying between two certain functions  J.   and  J   ,   By parts  (e) 

and  (c)  of Theorem 3.4, one can easily show that J. = 4>  and  J, s v|i •   The 

polyhedral assertion Is Immediate from Corollary 3. 6.1 and the fact that [K ] 

Is polyhedral whenever [K]  Is. 

The fact that [(Kj +... + KJ ]  contains  «f and  4/  suggests writing 

[(Kj + ... + Ka)*] = [Kj*] Ü ... D[K*] 

and calling this class the mlnlmax convolution of [KT], . .., [K*] .   This Is 

the saddle function analogue of the operation of Inflmal convolution on convex 

functions.   The Identity above expresses the fact that the operations of 

addition and mlnlmax convolution of equivalence classes are dual with respect 

to conjugacy, or in other words, that the conjugate of the sum of equivalence 

classes is the minimax convolute of the conjugates. 

The next theorem gives information concerning attainment of the extrema 

appearing In the definitions of <j>  and  4^ . 

THEOREM3.il,   Let  $   and  41  be defined as in Theorem 3.10. and assume 

that whenever (z , w ) e ri(dom K )   for I = 1, ..., s _the following conditions 

are satisfied; 

(a) 2^=0  and Z(rec K*(zlt ■ »(w^ < 0 => SOrecKj^, • m-Wj) < 0 

(b) S^ = 0   and S(recK*(-, w^)^) > 0 =*> Z(recK*(-, w^H-Zj) > 0   . 

Then the conclusions of Theorem 3.10 hold and 

i 
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rKdomKj *+ ... + domK ) C domlK. + ... + K )   C domK. + ... + domK 

■ 

1 

■ 

Moreover, for each (z, w) e rl(doin K. + ... + dorn K )  there exist nonempty 

sm ~   sn closed convex sets  Z C R       and  WC R      such that for each 

(z., ..., z ) e Z and  (w., ..., w ) e W the following statements hold; 

(1) S(z jW.) = (ZjW)  and   (z.jW ) e dorn 9K.   for each  1 ; 

(11)  <t)(z,w) = ZK*(i,
1,wl)= iKz,w); 

(111) SK^z^w^SK^z^Wj) fSK^z^Wj)  whenever S(z1. w^ = (z.w) 

and   (z,w)edomK.   for each  1 . 

PROOF.   By parts (e) and (c) of Iheorem 3.4 together with Lemma 3. 3(f) , 

A    and  K   =(K.)...,K )   satisfy the hypotheses of Theorem 2.4.   The asser- 

tions are Immediate from this and Theorem 3.4(d) . 

If conditions (a) and (b) above are actually satisfied whenever 

(z , w ) e domK.   for  1 = 1, ..., s,   then Theorem 2. 5 Implies that 

* * * 
domfK. + ... + K )   = dom K. + ... + dom K    and moreover that  <j) and  \\i  are 

* 
respectively the least and greatest members of [(K. + ... + K ) ] . 

The following lemma may be useful In applying Theorem 3.11 and the above 

remark.   Notice, for example, that the conditions given are satisfied when 

each of the sets  dom K.    Is bounded. 

LEMMA 3.12.   The following condition Implies that condition (a) of 

Theorem 3.11 Is satisfied for each choice of z. e dom.K., ... t z   E dom.K   : 

(c)   Sw  = 0  and   w e 0    cl(dom K )   for each   1  Imply that 

w  = 0   for each  1 . 
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Similarly, the following condition Iwpllti that condition (b) of Thaof m S. II 

Is satisfied for each choice of Wj c dom.K. f ..., w   t 6om K  i 

(d)   2:8=0 and x eO   cl(doin.K ) for each  1  Imply that 

z * 0  for each  1   . 

PROOF.   Apply Lemma 2. 6 to  A    and  K   ■ (K., ..., K ) .   Condition (c) 

(resp. (d)) corresponds to condition (c.)  (resp. (d.))  of Lemma 2. 6, and con- 

dition (a)  (resp. (b)) of Theorem 3.11 corresponds to condition (a.)   (resp. 

(b ))  of Lemma 2. 3. 

Conditions (c) and (d) of Lemma 3.12 may be given alternate characteriza- 

tions with the aid of the next lemma. 

LEMMA 3.13.   Let  Pj, ..., P    be convex cones In lln  which contain the 

origin.   Then the following conditions are equivalent! 

(1)   Z p = 0  and  p e P   for each i Imply  p. « 0 Jor each  1 ; 

(11)  (-PJO (convUP.) = {0} for each j « 1. ..., s  . 
1 1#J 

PROOF.   First, observe that for each J,   (3. 3) Implies 

convU P. x:U{L ^Pilo< \   and LK. » 1}   . 
1#J   l 1#J  * l     ' 

From this It follows that convU  P = Z P. .   Thus, condition (11) fails If and 
l*i        1#J 

only If 

aj  and  Sp   e P.   such that 0 # -p. e £ P.   . 

This occurs If and only If 

ap. e P. ip   e P    and  a j such that 0 # -p  = L p   , 
ii s      s J   1#J 
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which occurt if «nd only If oondlllon (1) Ulli. 

We oonolud« ihlt Motion with «n «MBPI« conMrnln« —Kl—i monoton» 

opftof «rlilng fro« M*dl« fuociioni. Ihli will Miggul • con)«cUir« «bout 

arbitrary MXUMI monoion» operator i. 

By (17. S.2) (IM alto (491), aach cloiad propar ooncav« .convex (unction 

K on lln x Rn indue«! a waxlmal monoton« operator T (generally nulUvalued) 

from Rm x *n to  Rm x Rft by meane of the foraula 

T(x,y)- ((-x#,y*)|(x*,y*)e •Wx.yj)   . 

By (37.4.1),   T depends only on the equivalence clan containing  K .   If t(-) 

denotei the range of an operator and  B  la the linear tram formation which lendi 

(x ,y ) to  (V.y ),   then (37. 5) implies that 

ft(T) - BdomdK* 

whenever T arises from  K as above. 

EXAMPLE 3.14.   Assume that conditions (c) and (d) of Lemma 3.12 are 

satisfied.   Then the hypotheses of Theorem 3.11 are met, and these In turn Imply 

that condition (•) Is satisfied.   Let  B be the linear transformation defined 

above, let   T.  be the maximal monotone operator Induced by  K   as described 

above, and similarly (using Theorem 3. 6) let T be the maximal monotone op- 

erator induced by £ Kj .   By (37.4), (6. 3.1) and (9.1) It follows that  clR(T ) ■ 

B cl dom K.,   and similarly  cl R(T) »Be   dom(Z K )   .   Theorem 3.11 and (6. 3.1) 

Imply cl dom(Z K.)   ■ciZdomK. .   Combining these facts with (6. 6.2) yields 

£ clftdJC clR(T) .   Since Theorem 3.9 Implies  Z T = T,   this shows that £ T 

Is a maximal monotone operator satisfying 

Zclftd^C clRaij) . (I) 
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rurthOTm, it oftfi b« d«duc«d fro« (l)#   «£ T^ c r tlTjl and (t. 1) thai 

ro* oitiT^c o^citar^. 

II If •••y to show (h«t condition• (c| «nd (d) of UOUM S. U c«n b« r«formuU(«d 

£ i| * 0  «nd  i| c 0  cl «<T ) 

for ••ch   1  inpli«! s  • 0 for ««oh 1 
(ft) 

Now   'tt) and (91.1) imply r cl tdj)« cl E •(Tj),   «nd  tCZTJC St(T|) C 

£ cUdj)  holdi trlvuily.   Combining UIOM facti «nth (1) yleldt 

EclttT^-cUaTj) . (2) 

PVirthonnor«, fro« (2), (ft) and (9.1.1) It followt Imnedlataly that 

ZO^clftdj)- O^clftCZTj). 

It If known that £ T.   Is a maximal monotone operator tatiifylng (1) 

whenever each T.  if the fubdifferentlal of a closed proper convex function on 1 
.n R    and the condition 

ri ÄdpO ... n ri «(Tg) # 0 (f) 

If satisfied, where  A(T) =  {Z|T(Z) # 0)  .   Moreover, in this situation (2) 

actually holds if (ft) if satisfied. 

On the other hand, (1) falls In general for maximal monotone operators 

satisfying  (f) .   (For example, take   ss2  and consider the  T's  induced 

by the saddle functions  K.   and  K.  defined following Corollary 3.6. 3.)   It is 

not known, though, whether (2) holds for arbitrary maximal monotone operators 

satisfying  (ft) •   But the fact that this formula does hold for those operators 
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•rUlag fro« Mddl« ftinotlOM Un4* on« lo co«i)«etur« ih«i ll holdt In wwrtl. 

ThU It bocauM Mich opwatort, unllk« th» fubdlfltrtnllAlt of oonvo« ftmoUont, 

•»hlblt «ott of III« p«ihology of arbitrary «artaal aonocon« oparatora.   Indaad, 

thla laat fact la ona of tha main owcivauont for atudylng aaddla hinotlont. 
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|4.   Dl« NrllAl Con|u9*cy Oper«i ion 

In ihn thort Mellon ih» ratultt of  91  «r« ut«d to develop tnothcr 

op«f«lion on «quIvaUnc« oUtMt of closad propor ••ddl« functions.    By vlrtuo 

of 1U •inllarlty to tht b«ilc conjugacy operation, this Is csll«d th« partial 

conjugacy oparatlon.   It follows from lhaorans 4.1 and 4.2 that the partial 

conjugacy oparatlon Inducas another symmetric one-to-one correspondence 

among cloaad proper equivalence classes.   In  |9  this correspondence will be 

used to assign a well-defined Lagrang tan to each dusl pair of generalised 

saddle programs.   The symmetric one-to-one character of this assignment will 

be used In {6 to establish the negative result that there exists no good 

Lagrange roultloller principle for ordinary saddle programs In general. 

Throughout (4 let  K be a closed proper concave-convex function on 

(Rp X Rm) x (Rq x Rn),   and let  Wj  and   W2  be functions on   (Rp x Rn) x 

(Rq x Rm) defined by 

WAxx ,Y,V ,x) = sup Inf {<u ,u> + <v , v> - K(u,x,v,y)} 
v    u 

and 

W (u , y, v , x) s inf sup{<u , u> + <v , v> - K(u, x, v, y))   . 
u    v 

THEOREM 4.1.   The functions  W.   and  W,   belong to an equivalence class 

[W] of closed proper concave-convex functions.   Furthermore.   [W]  depends 

only on flfl.   and  [W]  is polyhedral if [K] is. 

PROOF.   Define a linear transformation A = A- X A_  and a function  H  by 

AJCVJU ,y) = (u ,y), 

P^iu.v ,x) =(v ,x) , 
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•nd 
• • • • 

H(v, u , y, u, v , x) ■ <u( u > ♦ KV, v > . Klu, x( v, y) 

Cl««rly  H   It clot«d proper cone«vo-coovoj» on  (Rq X RP x Rn) X (Rp xRq xR*) . 

1( (v.y) e rMdoo^K),   (S4. S) ImplUs that th« funcilon 

(u.v.x) - .iqu,x,v,y) 

It cloMd proper convex, and by (8. S) IU rccestlon function can b« shown to 

b« 

(u, v*, x) - .{nc IC(', •. v, yn(u, x) . 

Alto, the function 

(U, V  , X) -• <Ut U   > ♦ ^ V   > 

Is closed proper convex and coincides with Its recession function.   Hence (9. 3) 

Implies that 

(recH(v,u ,y,-, •,   »(u.v ,x) » <u,u > ♦ <v,v >-(rec i«-,  ,v,y))(u,x) 

whenever  (vf y) c rl(dom K) .   Therefore  Al {0)0 (rec cone2H)  equals 

{(ufO,0)|<u,u*> - (recK(-,- fvty))(u,0)< 0, Vu* e RP, ¥(vty) e rl(doin2K))  . 

Now by (34. 3) and (8. 5),   (v, y) e rl(dom2K)   Implies that  rec K(., • , v, y)   Is 

never ■*» .   it follows that fC {0)0 (rec cone H)  Is the nullspace of 

Rp X Rq x Rm .   Similarly,   AJ" {0)0 (rec conejH)  Is the nullspace of Rq XRPXRn . 

Therefore by Lemma 1.9,   range A O ri(dom H ) # 0.   The first two assertions 

of the theorem now follow from Theorem 1.8  and the fact that  K < K < K when- 

ever  K e [K] .   If  K is polyhedral, then Corollary 3.6.1 implies  H  is poly- 

hedral and hence Theorem 1.8 Implies  [AH] = [W] is polyhedral. 
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Hl« «quIwlMO« OUM |W| conuining   W|   «nd   W    lt c«U«d UM PtftUI 

oonJtfQf ol (K]   in  u  «od  v, «nd ih« op«f«llon which Mndt  (K)  fo  (WJ  It 

o«U«d partl»! conitwcy.   Ihn (•rmlnoloey lt »uog«tl«d by ih« tot (hat tormtng 

(WJ lfivolv«t only parts of th« arguMtnit of K,   whoroai forwlng ih« (ordinary) 

conjugata (K )  Involvaa all of tha arguownls of  K . 

THCORCM 4.2.   Jhm partUI conjuqata of  [W]  In  /  and  v*  l>  (K) . 

PROOF,   iy Ihaoraa 4.1,   (WJ oonialna tha function W ,   whara 

W(u , y, v , x) > Inf tup (<u, u > ♦ <v, v > ■ IC(u, x, v, y)) .   Hanca tha partial 

conjugata of (WJ  In u    and v    com aim tha function  M glvan by 

M(u, x, v, y) ■ sup Inf (<u, u > ♦ KV, v > - W (u , y, v , x)) 
v    u* 

■ sup Inf sup Inf {<u , u - ü> ♦ <v , v . v> ♦ K (ü, xf v, y))   . 
v*  u*    ü    « 

By tha same technique usad In tha proof cf Theorem 4.1 It can be verified that 

range B   O rMdom J ) * ß  where  B > B. x B,   and  J  are given by 

B^v tufu,x) » (u,x) , 
* . 

B2{u , v, v, y) = (v, y)  , 

i 

and 

*. * . *. * . .. 
J(v , u, u, x, u , v, v, y) = <u , u - u > + <v , v - v > ♦ l^u, x, vf y)   . 

Therefore Theorem 1.8 implies that  [BJ]  is well-defined.   Now by (36.1) and 

Theorem 0.1(b)  it follows easily that  M  and   N belong to [BJ],   where   N  is 

given by 

N(u, x, v, y) e sup inf sup inf {<u , u - ü > + <v , v - v > + K(ü, x, v, y)} . 
ü    v   v    u 
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Ihut, to coapl*«« ih« proof II tutttoot lo »how liioi   N c (K) . 

Ut  u, A, v, y  b» mblUMV but (iMd.    tot —ch  u d«OiM 

p<ü) • Inf •up Inf (<u , u • ü > ♦ <v (v • v > ♦ IClü, M, v, yl)  . 

Obierv« Ih«! 

N(u,K,v,y) • iupdHÜjlü c U)   , (1) 

wh«r«    U • (ül(ü,x) c dom.K) .   Indttd, l(  (u.x) / dom.K th«n IC(ü(x. •, ■ )• -« 

•o that   p<u) • -•   .   Ihm, 

N(u, x, v, y) ■ ^o . K<ut xt v, y) (2) 

wh«n«v«r U • 0.    Now assuoM  U#0.   For «ach   u e U,   IC(ü(x, • t •) If novor 

-«  and hancA 

P(u) ■ _ ln(_  tup Inf (<u , u - u> ♦ <v f v - v > ♦ IC(ü, x, v, y))  , 
vcV(u) v     u* 

where  V(ü) > {v|lC(üf x, vt y) < 4« ) .   IhU Implies   p(ü) ■ 4«  whenever  V(u)-0. 

Hence (1) Implies   N(u, x, v, y) « 4«  if there exists a u e U  such that V(u) > 0. 

But for such a  ü,   IC(üf x, v, y) s +« .   Therefore 

N(u, x, v, y) « 4« e K(u, x, v, y) (3) 

whenever there exists a u e U  such that V(ü) = 0.   Finally, assume U # 0 

and  V(u) # 0 for every ü e U .   Then for each u e U, 

p(ü) ■   Inf   {K(ü,x,vfy) + sup{<v*,v - v> + Inf {<u*,u - ü>)))  . 
veV(ü) v* u* 

Hence  p(ü) « -«  whenever u # ü e U,   v^ille for  u ■ u e U we have that 

p(u) «    Inf   {K(u,x,v,y) + 8up{<v , v - v>)) 
veVCu)" ♦ 
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• Ulf (Klu.H, vty)|v c V(u), v • v) 

Cm lf v/V(u) 

\5(tt.M,v.y)  lf vc V(u)  . 

Htrc« (1) laplUs thai In thlt O«M 

Niu.x.v.y) • tupffXullü t U, ü ■ u) 

• lf WU 

• IC u e ü   «nd v / V(u) 

K(uf x, v, y)  lf  u c U   «nd v c V(u) 

■   fiu, x, v, y) . 

Combining this with (2) and (3) yUldt  K < N < K «vtrywhtr«.   H«nc« Th«or«n 

0.1(b) lmpll«t  N c [K] . 

W« conclude this tactlon by characterizing th« fubdlffarantlal of the 

partial conjugate. 

THEOREM 4. 3.   The followlng condition! are equlvalenti 
•   e   e   e 

(a) (u , x , v , y ) e »Wu, x, v, y) 
* * *       * 

(b) (u, -y , v, -x ) e dW(u , y, v , x) 

PROOF.   By (37. 5) ccndltlon (b) If equivalent to 

(u ,y,v ,x) e ew (u,-y ,vt.x ) . 

But from the proof of Theorem 4.1 we know that [W ] ■ [H A ] and 

range A O ii(dom H ) * 0.   Hence by Theorem 1. 3, 

8W*(u, -y*f v, -x*) « A0H*(A*(u, -y*, v, -x*)) . 

It follows that condition (b) Is equivalent to the existence of points u0  and 

v    such that 
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0    • 0    • • ♦ * 
«v^u .y.u ,v .Dc »H (0,u. -y ,0,v, .« ) . 

0     •        0     • 
But by (97. S) «öd (S7.4) Hilt oonUUuMnt occur« If «nd only iMv , u .y.u . y .u) 

If • Mddl« point of 

H - < , (0,tt..y*)> • <-,(0,v, ./)> 

•no  H(v , u*, y, u , v*, x) c R .   Thorvfor« by ihm doflnltlon of H,   condlUon 

0 0 (b) Is «qulvftlont to th« «xltunc« of polnti u    and v    such that 

k(u0,x,v0
fy)c R and 

Hü, x, v0, y) - <ü - u, u*> - <v0 - v, v*> - <x - x, x   > 

0        0 0 * 0 * < K<u , x, v , y) - <u   - u, u  > - <v    - v, v  > 

< iC(u0
tx, vf y) - <u0 - u,G*> - <v - v, v* > - <y - y,y  > 

for «11 (v,u',y)  and  (G,v'»x).   Now pick any  (V, y) c don^K .   Choosing 

v ■ V  and y ■ y'   In the above condition implies 

0 0        -• -• 
K(u jX.v'.y') > o + <u   >ufu   >  forall  u    , 

where  a   Is a certain real constant.   Thus If u    were different from u,   we 
0 

would have  K(i' »XjV.y')« +«,   contradicting   (V, y*) c dom.K .   Hence 

0 0 
In the above condition we must have u   * u,   and similarly v  « v .   There- 

for condition (b) Is equivalent to  {K(u,x,v, y) e R and) 
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KK«.«(y) •<•-•,•>•<■■«,« > < Htt.«,v.y|, V|Mtib 

llu.x.v.yt < l|u,«,«.yl • «» . v,v#> . <y.y,if*>. »(v,y) 

•ui lh«M oowltriont ar» clMrly •qulvalvnl to  (•} 
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15.   0«n«raltt«d Saddle Prograrot 

In thli Mellon w» apply tha raiulu of 1)1, 2 and 4 to the study of 

ganaral concave-convex mlnlmax problems.    First we define the notions of 

a "ganaralltad saddle program" and Us "dual," and then we develop a whole 

perturfoatlonal duality theory for such programs.   It may happen that the saddle 

functions defining these saddle programs are degenerate In the sense of 

being essentially purely convex or purely concave functions.   In this event 

It can be shown (Example S. I) that the present theory reduces essentially to 

Rockefeller'! perturbatlonal duality theory for generalized convex programs 

[48|.   Recall, however, the general approach we are taking to mlnlmax 

problems, namely that of dealing always «nth the whole equivalence class 

of saddle functions which give rise to a given mlnlmax problem.   Because of 

this, the proper definitions concerning generalized saddle programs involve 

many subtleties absent In the convex case, and the proofs In the accompany- 

ing perturbatlonal duality theory are necessarily somewhat different and more 

complicated. 

Ignoring technical details, we can outline the general approach as 

follows.   Suppose we are given a mlnlmax problem In the form of an equivalence 

class [Kj of saddle functions on   Rm x Rn .   This mlnlmax problem is first 

extended to a saddle program in the form of another equivalence class  [K] of 

saddle functions on  (Rp x Rm) X (Rq x Rn),   where the additional variables rang- 

ing over RP and   Rq  correspond to "perturbations" of the original problem. 

The extension is such that [KJ  is suitably "embedded" in [K],   i.e., the 
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sadule functions  (x,y)- K(0,x, o,y)  for K c [K]  are all recniired to belong to 

[Kn] .   By a modification of the conjugacy correspondence, an equivalence class 

[L]  of saddle functions on (Rm X RP) X(RnXRq)   is then obtained from  [K] .   The 

saddle program given by  [L]  is called the dual of the program given by [K] . 

Under a mild hypothesis on  [K],   the saddle functions   (z, w)-* L(0, z, 0,w)   for 

L e [L]  all belong to a single equivalence class  [L ] .    In this event the mini- 

max problem given by [L_]   is the dual of the minimax problem given by  [K ]   . 

In this sense  [K ]  may have many such duals, since  [L]  and hence  [L ] de- 

pends not only on  [K.]  but also on the particular "perturbations" of [Kn]  in- 

troduced via [K] .   This fact is one of the main features of the theory, since it 

allows one the flexibility of choosing perturbations which are appropriate for 

the purpose at hand (e. g. those for which the dual problem is manageable). 

We proceed now with the formal development. A generalized saddle pro- 

gram S(K) on Rm X Rn with perturbations in RP x Rq is an equivalence class 

[K]  of closed proper saddle functions on  (Rp X Rm) X (Rq X Rn) .   Each saddle 

"• m      n '*' 
function  K(0, •,(),•)   on   R    XR,   for  K   in  [K],   is called an objective 

function of S(<) .   The particular functions  K(0, •, 0, •) and   K(0, •, 0, •)  are 

called the lower and upper objective functions, respectively.   (Here, as usual, 

K and   K denote the least and greatest elements of [K],   respectively.)  A pair 

(x, y) is a feasible solution of S(K) if and only if it is in the effective domain of 

every objective function of  S(K) .   It is not hard to show that this is equivalent 

to the condition that  (0, x, 0, y) e dom K .   The optimal value in S(K)  exists 
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(and equals  a)  If and only if the saddle values of all the objective functions of 

S(K)  exist finitely and are equal  (to o) .   A pair  (x, y)   is an optimal solution 

of S(K)  if and only if  (x, y)   is a saddle point of every objective function of 

S(K)  and  K(0, x, 0, y) a K(0, x, 0, y) e R .   It is not hard to show that if (x, y)   is 

an optimal solution, then it is a feasible solution and the optimal value exists 

and equals  K(0, x, 0,y)   for any  K   in [K] . 

The program  S(K)   is consistent (respectively strongly consistent) if and 

only if there exist points  x and  y suchthat  (0, x,0, y) e dorn K (respectively 

(0, x, 0, y) e ri(dom K)) .   Thus,   S(K)  is consistent if and only if It has a feasible 

solution.   Also,   S(K)   is consistent whenever the optimal value in  S(K)   exists. 

We say that  S(K)  has a well-defined primal problem if and only if all the 

objective functions belong to the same equivalence class, which we denote by 

[K0] .   In this event the primal proplem of S(K)   is the minimax problem given by 

[K ] and hence the definitions of feasible solution, optimal value and optimal 

solution of S(K)  can be simplified, since equivalent saddle functions have the 

same effective domain,  saddle value and saddle points.   By Theorem 5. 2 below, 

if  S(K)  is strongly consistent then it has a well-defined primal problem which 

is in fact given by a closed proper equivalence class.    More generally, for 

any (u, v) we say that _the perturbation  (u, v)  in  S(K)   is well-defined if 

<•» m      n ~ 
and only if the saddle functions  K(u,-,v, ■)   on   R    XR ,   for K    in  [K] , 

all belong to a single equivalence class, which we denote by [K     ] .   Thus, u, v 

S(K) has a well-defined primal problem if and only if the perturbation  (0,0) 

in  S(K)  is well-defined (in which case  [KQ 0]   is denoted simply by   [KQ]) . 
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Suppose S(K) Is a generalized saddle program on R XR with perturba- 

tions In Rp XRq, and let [L] be the equivalence class of closed proper saddle 

functions obtained from [K]  via the relation 

L(8, 2, t, w) = -K (-Z, s,-w, t)    . 

pa m      n 

The generalized saddle program  S(L) on  R   X R    with perturbations in  R    X R 

(strictly speaking, tbe equivalence class  [L])   is the dual of  S(K) .   It is easy 

to show that the ^»1 r{ S(L)  is   S(K) .   The program  S(K) has a well-defined 

dual problem if and only If the dual program  S(L)  has a well-defined primal 

problem [L ],   and in this event the dual problem of S(K)   is the primal problem 

of  S(L),   i.e. the minimax problem given by [L ] .    Example 5. 3 shows that a 

generalized saddle program can even be strongly consistent without having a 

well-defined dual problem.    However, Lemma 5.4 furnishes conditions on  S(K) 

which ensure that the dual problem is well-defined. 

For the remainder of §5 let   S(K)   and  S(L)  be a dual pair of generalized 

saddle programs, and for definiteness assume that   K  is concave-convex on 

(RP X R1") X (Rq X Rn) .   Thus,   L   is convex-concave on   {Rm X Rp) X (Rn X Rq) . 

P       Q Also, let concave-convex functions  P.   and   P    be defined on   R   XR    by 

P^u, v) = sup inf K(u, x, v, y) 
x    y 

and 

P2(u,v) = inf sup K(u,x,v,y)   , 
y    x 

and let convex-concave functions  Q.   and  Q    be defined on   R    X R    by 

Q (15, t) = sup inf L(s, z, t, w) 
w    z 
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and 

H 

Q2(8,t) = inf 8upL(8,z,t,w) 
z   w 

D      m       D a       n       0 Finally, let linear transformations Aj:  RHXR   -* RF,   ^r RM xR   - R , 

Bj: Rm X RP - Rm  and  B2: Rn X Rq -* Rn be defined by 

Ajiu, x) = u,   B^s, z) = s , 

A2(v,y) = v,   B2(t,w) = t  , 

#       ♦       ♦ * 
and put A = A. X A^  and   B = B, X B   .   Observe that  A   = A. X A^   and  B   = 

*       * 
Bj XB,,   where 

A1*(2) = (2,0),   ejW (x,0) 

4(w) = (w, 0),   B*(y)= (y,0)   . 

The saddle functions  P,   and   P    are called the lower and upper perturba- 

tion functions of S(K),   respectively.   A pair  (z, w)  is a Kuhn-Tucker vector 

for S(K)  If and only if 

P^OiO) = P2(0>0) =  a   e R 

and 

<u, 2> + P2(u,0) < a< PjfO, v) + <v,w> 

for each  (u, v) .   Observe that  P.COjO) = P2{0,0) = ae R if and only if the op- 

timal value in  S(K)   exists and equals a  .   It is not hard to show using (37.4.1) 

that if  P,   and  P    belong to a proper equivalence class  [P],   then  (z, w)  is 

a Kuhn-Tucker vector for  S(K)   if and only if  -(2, w)e 9P(0,0).   Kuhn-Tucker 

vectors for S(L)  are defined similarly by using the lower and upper perturbation 

functions of S(L),   i.e.,   Q,   and  Q   .   These Kuhn-Tucker vectors can be in- 

terpreted as generalized "equilibrium price vectors" for a certain type of two- 

stage, two-person zero-sum game in much the same way as in [48,  pp. 295-296]. 
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The following example shows that the foregoing framework of dual pairs of 

generalized saddle programs Includes as a special case Rockafellar's dual pairs 

of generalized convex programs. 

q       n 
EXAMPLE 5.1.   Let   Ft R   -♦ R    be a closed proper convex bifunctlon, and 

♦ 
let   (P)   and  (P ) denote the generalized convex program and its dual which 

correspond to  F  and its adjoint bifunctlon  F : R   -► R   .   Define   K(u, x, v, y) = 

(Fv)(y)   for every  (u,x) e R   XR     and  (v, y) e Rq X Rn  (here  p  and  m can be 

any positive integers).   Then  K is a closed proper conceive-convex function. 

It can be verified as an Instructive exercise that the concepts defined above for 

the program S(K)  and its dual   S(L)   exactly "mirror" the like-named concepts 

from Rockafellar [43] for   (P)   and   (P ) .   For example,   S(K)   (resp.   S(L))  is 

consistent or strongly consistent according as   (P)  (resp.    (P ))   is consistent 

or strongly consistent; and so on.   Furthermore, it can be seen that the Lagranglan 

associated vith  S(K)  and   S(L),   which will be introduced following Theorem 5.6, 

exactly mirrors the Lagranglan associated with   (P)  and   (P ) .   The fact that 

all the various concepts associated with  (P)  and   (P )  are reflected in this 

program  S(K)  and its dual furnishes a general means of converting examples 

from convex programming into examples in saddle programming which exhibit 

the corresponding pathological behavior. 

The following theorem gives a simple condition under which the perturba- 

tion (u,v) in S(K) is well-defined, and Corollary 5.2.1 is the main existence 

result concerning optimal solutions of S(K) . 
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THEOREM 5.2.   Assume there exist points x and y  such that (u.x. v. y) 

erl(domK) .   Then the perturbation  (u,v)  \n S(K)  Is well-defined.   In fact. 

the equivalence class  [K     ]  Is closed and proper with least and greatest 

members K(u,' , v, •)  and  K(u, •, v, •) respectively, and 

ri(dom K     ) = {(x, y) | (u, x, v, y) e rl(dom K)} u,v' 

where  "rl"   can be deleted or replaced by "cl"   throughout the Identity. 

PROOF.   Define linear transformations T.: Rm -•• RP X Rm  and   T : R  -•> 

RqxRn   by T1(x) = (0,x)  and   T2(y)=(0,y),   and put  TsTjX^.   Define a 

function  H by 

Hiu^x'fV.r) = K{u' +u,x,,v, + v^')   . 

Clearly,   H  is closed proper concave-convex and dorn H = domK - {(u,0, v,0)} 

Thus the hypothesis on  (u, v)  is equivalent to range T Pi ri(domH) # 0,   and 

hence Theorem 1.2 implies various facts about the equivalence class  [HT] . 

Since  HT = K(u, •, v, •),  these facts convert easily into the assertions about 

[K      ].   The formulas for ri(domK      )   and  cl(domK     )   follow by (6.7). u.v ■ u, v u, v 

COROLLARY 5.2.1.   Assume   S(K)   Is strongly consistent.   Then any of 

the following three conditions implies that the set of optimal solutions of 

S(K) _is a product of nonempty closed convex sets; 

(a) rec cone   K   is a subspace for  J = l  and   2; 

(b) domK0  is bounded; 

(c) There is a pair  (x,y) e domK     such that for each   a e R  the level 

sets    {XIKJX,y) > a}   and   {y|K0(x, y) < «}  are bounded. 
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PROOF.   By Theorem 5.2,   S(K)  has a well-defined primal problem and 

[Kj  is closed and proper.   By Lemmas 0. 5 and 0.6,   (0,0) e rl(dom(K ) ) 

whenever   (a), (b) or (c) holds.   The conclusion now follows from (37. 5. 3). 

Before proceeding any further, it might be well to illustrate some of the 

pathology which is possible in a dual pair of generalized saddle programs.   The 

next example exhibits a program  S(K)  having the following properties: 

(i) every perturbation in  S(K)   is well-defined (so a fortiori   S(K)  has a well- 

defined primal problem);   (ii)  the lower and upper perturbation functions of 

S(K)   fail to be equivalent;   (iii) the dual program is consistent; and   (iv)   S(K) 

fails to have a well-defined dual problem. 

EXAMPLE 5. 3.   Suppose   J  is a closed proper concave-convex function on 

R    X R   .    Put  p = m  and  q = n  and define  K(u, x, v, y) = J(x - u, y - v) .   Let 

T.   and   T,   be linear transformations given by T^u, x) = x - u   and  T2(v, y) = 

y - v,   and put T= T, XT   .   Since  range Tnrl(domJ) ^ 0 trivially, Theorem 

1.2 implies that  K = JT  is closed and proper with rl(domK) = T- ri(domj) .   By 

P       Q Hieorem 5. 2 it follows that for each   (u, v) e R   X R    the perturbation   (u, v)  in 

the program  S(K)  is well-defined.   It is easy to compute that  P.fu, v) = 

supinf_J= -T (0,0)  and   P2(u. v) = inf sup J = -J  (0,0).   Hence P ~ P    if 

and only if J_ (0,0) = J  (0,0) .    Now suppose J is such that domj    is bounded. 
sjc $   $ & 3k 3k 

Then Lemma 2.6 and Theorem 2. 5 imply that [K ] = [T J ],   dom K   = T domj   , 

and (since   T. (s) = (-s, s),   T2(t) = (-t, t))  the least and greatest members of 

[K*]  are 

•    .1 

K (z, s, w, t) -       sup inf     _J (s, t) 
{s|-s=z} {t|-t=w} 
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and 

K*(z, 8,w,t) =      inf sup  T (s,t)   . 
{t|-t=w} {s|.s=z} 

—* — * 
Since L(s, z, t, w) = -K (-z, s,-w,t)  and  L(s, z,t,w) = -K  (-z, s,-w, t)  , 

this implies that 

/* —* 
-J   (s, t)   if s = z  and t = w 

L(s, z, t,w)=: / +00 

.00 

if   s # z  and t = w 

if t + Vf 

and 

-2 (s, t)   if s = z  and  t = w 

L(s,z,t,w)= ( -oo 

+00 
v. 

if s = z  and t # w 

if s # z  . 

From these formulas it follows that, for each   (s, t) e domj ,   the perturbation 

(s, t)  in   S(L)   is well-defined if and only if 2 {s,t) =T*(s,t) .   In view of 

all these facts, in order to obtain properties (i) through (iv) we need only 

specify a   J such that domj    Is bounded,   (0,0) e domj ,   and _J (0, 0) ^ J  (o, o). 

But for this It sufficies to take [J] to be the conjugate of the equivalence class 

used in Examples 1.10 and 1.11. 

By Theorem 5.2,   S(K)  has a well-defined dual problem   [L.]  whenever 

S{L)   is strongly consistent.   The next lemma dualizes this useful condition . 

LEMMA 5.4.   The program   S(L)   is strongly consistent if and only if 

(rec.KXO, x) > 0   implies   (rec K)(0, -x) > 0 

and 

#1190 -83- 

■..„.:.^^.,.,^.,..;.,^^,„...,.-,..,.....■,.;.... M ,...-. H ,^.„„ |,.|    tim   .   ,   -~—-mmmmmmmmmm 



.I" ' ''    ' ■""'"■' • ~~—     ~~  '■■"  '  '    " '^ 

(rec2K)(0,y) < 0  Implies (rec2K)(0, -y) < 0  . 

PROOF.   Observe that 1(0,2,0^) = -!? k{-zt-vt).   Hence  S(L)  Is 
* * 

strongly consistent If and only if range A O ri(domK ) ^ 0 .   Now apply the 

equivalence between (a) and (c) of Lemma 1.9' 

The following theorem and its corollaries show that, when the dual pro- 

gram to strongly consistent, much information about the dual program may be 

converted Into Information about the primal program. 

THEOREM 5.5.   Assume  S(L)   is strongly consistent.   Then   P    and  P^ 

* belong to the closed proper equivalence class  [P] = [-(L.) ]   and  dorn PC Adorn K 

PROOF.   By Theorem 5. 2,   L(0,',0,-)  is the least member of [L ],   which 

is closed and proper.   Hence   -L(0, -z,0, -w) = -LQ(-Z, -W) = (-(LJ ) (z,w) . 

But as noted in the proof of Lemma 5.4,    S(L)   is strongly consistent if and only 
9(C Sit —♦     * 

if range A nri(domK )*$   and   K A (z, w) = -L(0,-z,0,-w) .   Hence 

Theorem 1. 8   implies that the equivalence class  [AK]  is well-defined and equals 

[-(L0) ],    and  dorn AKC Adorn K.    Now observe that 

PJu, v)=     sup      inf   K, P (u, v)=      inf       sup     K    . 

Aj-^u} ^{v} ^MAj-^u} 

Thus   P.   and  P    belong to  [AK] .    Taking  [P] = [AK],   the theorem follows. 

COROLLARY 5.5.1.   Assume   S(L)   Is strongly consistent, and let  [P]  be 

the equivalence class containing  P    and   P   .    Then the following conditions on 

P        Q (z,w) e R   XRn  are equivalent; 

(i)   (z,w)   Is an optimal solution of  S(L) ; 

(ii)   (z, w)   is a Kuhn-Tucker vector for S(K) ; 
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(111)   .(2,w) e 8P(0,0); 

(Iv)  (-z,0, -w,0) e 8K(0,x,0,y)  for some (x,y) e Rm XRn . 

PROOF.   By (37. 5) and Theorem 5. 5, (1) Is equivalent to  (z, w) e 8(-P)(0, 0) , 

which is equivalent to (ill) .   Since   P.   and   P    belong to [P], (37.4.1) Implies 

that   8P(0, 0) = 8^2(0,0) X 82?^, 0)   and   P^OjO) = P2(0, 0)« a .   Also,  (37.4) 

implies dom 8P C dom P,   so that a  is finite.    From these facts it follows that 

(ill) is equivalent to (11).   Finally, observe that (37. 5) implies (ill) is equivalent 

to  (0, 0) e 8P (-z, -w) .   Since  [P ] = [K A ]   by the proof of Theorem 5. 5, 

Theorem 1. 3 implies that   8P (-z, -w) s A8K (A (-z, -w)) .   Hence   (0,0) e 

9P (-z, -w)   is equivalent to the existence of  (u, x, v,y) e 8K (-z,0, -w,0)   such 

that A.(u, x) = 0   and   A^(v,y) = 0 .   By the definitions of A.   and  A    and (37. 5), 

this last condition is equivalent to (Iv) . 

COROLLARY 5. 5.2.   Assume   S(L)   is strongly consistent, and let  [P]  be 

the equivalence class containing  P,   and   P   .   Then 

sup inf L0 = P(o, 0) < P(0, 0) = inf sup L0   . 

Furthermore, for any  P e [P] , 

sup inf L   = lim inf P (0, v) 
v-0 

except when the left hand side is   -00   and the right hand side is   +00.    and 

similarly 

Um sup P(u,0) = inf sup L 
u-0 

except .when the left hand side is   -00   and the right hand side is  -H« . 
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PROOF.   Clearly  suplnfL  = -(LA) (0,0),   which equals  P(0,O) by Q u - 

Theorem 5. 5.   Now let  P e [P] be given. By Theorem 0.1,   P(0, 0) « (cl2P)(o,0) , 

which by definition equals  (cl P(0, * ))(0) .   Observe that in general, for a con- 

vex function  f one has  (cl f)(x) «  Urn inf f(y)  except when the left hand side 
y-x 

is   -co  and the right hand side is  -H» .   Now apply this to the case at hand.   A 

concave analogue of this argument yields the other assertion. 

COROLLARY 5. 5. 3.   Assume  S(L)   is strongly consistent.   If the optimal 

value in S(L)  exists and equals   a,   then the optimal value In S(K)  exists and 

equals  or   . 

PROOF.    Since the saddle functions  L (0, •, 0, •) for L   in  [L]  are all 

equivalent to  L., sup inf L. = 0,(0,0)   and   Inf sup L   = 0,(0, 0) .   Also, the 

optimal value in  S(L)   exists and equals  a  if and only if Q (0,0) = Q (0,0) = 

a c R .   Since   P < P. < P, 1 P»   the assertion now follows from Corollary 5. 5.2. 

For stating duality results it would be very nice if the domain inclusion in 

Theorem 5. 5 could be strengthened to  Ari(domK) C dorn P C Adorn K .   However, 

Example 5.14 shows that this does not hold without some stronger hypothesis. 

The next corollary characterizes when the additional Inclusion holds. 

COROLLARY 5. 5.4.   Assume   S(L)   Is strongly consistent, and let   [P] 

be the equivalence class containing  P,   and   P   .   In order that 

A rl(dom K) C dorn P c Adorn K  , 

It Is necessary and sufficient that 

(rec1L)(0,z) = (rec^Hz), Vz e RF 

and 
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: 

f f 

(rec2L)(0,w) = (rec2L0)(w), Vw c Rq . 

PROOF.   As in the proof of Theorem 5. 5,   S(L)   strongly consistent Is 

equivalent to range A P) ri(domK )* (ft   and hence from Theorem 1. 8 we have 

[P] = [AK] .   By Lemma 1. 5 (with the help of (6. 3.1)) it follows that for  J = 1   and 

2,   ri(A dom K) c dorn P C A dom K if and only If rec.(K*A*) = (rec. K*)A*   . 

But the identities   -(rec.LHO,-z) = (rec. K HA. z)   and   -(rec.L )(-z) = 

(rec. K A )(z)  can be verified, along with similar identities for J = 2 .   The 

corollary then follows. 

The next theorem brings the results of §2 to bear on the perturbations in 

S(K) .   It gives conditions under which any "perturbed primal problem" 

(represented by  [K      ])  has a "solution, " provided only that the perturbation u, v 

(u,v)  lies in  Ari(domK) .   The boundedness assumption on domK.   can be 

relaxed; we have used this hypothesis for simplicity. 

THEOREM 5.6.   Assume  S(K)   is strongly consistent and  domK. _ls 

bounded.   Then   S(L) Js strongly consistent,    P.   and   P- _are respectively 

the least and greatest members of a closed proper equivalence class  [P] , 

and  domP= Adorn K .    Moreover, for each   (u, v) e Ari(domK)  ttie "perturbed 

objective function"   K        has a nonempty bounded set of saddle points, and 

each such saddle point   (x, y) yields attainment of the minimax extrema in 

?Au,v)   and   P2(u,v)   and satisfies   P(u,v) = K(u,x,v,y),   ¥P e [P],  VK e [K] . 

PROOF.   By strong consistency there exist  x  and  y  such that 

(0, x, 0, y) e ri(dom K) .   Observe that rec K0(x, • )(y) < (rec2 K0)(y) < (rec2 K)(0, y) 
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for any y .   Since domK (x, •) ■ dom.K.   is bounded by hypothesis, It 

follows that y = 0  is the only solution of  (rec, K)(0, y) < 0 .   Similarly, 

x = 0  is the only solution of (rec, K)(0,x) > 0 .   Therefore Lemma 5.4 implies 

S(L) is strongly consistent.   Now observe that our hypotheses allow us to 

refine the proof of Theorem 5. 5.   Specifically, Lemma 2.6 and Theorem 5.2 

can be used to verify that the hypotheses of Theorem 2. 5 (and hence 

Theorem 2.4) are satisfied.   The fact that A,   and  /L  are onto implies by 

Theorem 2. 5 that the least and greatest members of  [AK]  are actually  P. 

and  P, .   The second assertion follows from Theorem 2.4. 

Some duality theorems for the programs   S(K)   and  S(L)  can be deduced 

from the results already given.   However, much more can be derived by intro- 

ducing a " Lagrangian" saddle function and studying its relationships with 

S(K)  and  S(L) .   Consequently we shall now proceed with this. 

Define the function    M on  (Rm X Rq) x (Rn X Rp)  by 

M(x,w,y, z) = sup inf {<u, z> + <v,w> + K(u,x,v,y)}  . 
u    v 

Then  M{x, w,y, z) = -W(-z, y, -w,x),   where  W belongs to the partial conjugate 

nf TK]  in u  and  v .   Hence it follows from Theorem 4.1 that  M  is closed 

proper concave-convex and depends only on  [K],   and that   M  is polyhedral 

whenever K  is polyhedral.   The equivalence class containing  M  is called 

the Lagrangian of S(K) .   Similarly, the Lagrangian of S(L)   is the equivalence 

class containing the function   N on  (RP X Rn) X (Rq X Rm)   given by 

N(z, y, w, x) = sup inf {<s, x> + <t, y> + L(s, z, t, w)}  . 
t      s 
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Note that N(z,y,w, x) = -Q(-x,w,-y,z),   where Q belongs to the partial con- 

jugate of [L] in  s  and  t .   The following theorem reveals the connection 

between M  and  N  . 

THEOREMS. 7.   The saddle functions  (x, w, y, z)-► M(x, w, 7,3)   and 

(x, w, y, z) •* N(z, y, w, x)  are equivalent. 

PROOF.   Let   P(x, w, y, z) = N(z,y,w, x) .   We must show  P ~ M,   or what 

is the same thing,   [P] = [M] .   Since  [L] Is obtained from  [K ] via the relation 

L(s, z, t,w) = -K (-z, s, -w, t),   It follows by (36.1) and Theorem 0.1(b)  that [L] 

contains the function  L   given by 

L (s, z, t, w) = -sup inf inf sup {<u, -z> + <x, s> + <v, -w> + <y, t> -v', v } 
y    x    u    v 

= - sup Inf {<x, s> + <y, t> -M(x, w, y, z)}  . 
y   x 

Letting  [H] denote the partial conjugate of [M]  In  x  and  y,   this means 

[L] = [-H] .   Now by Theorem 4.1 the equivalence class  [N] dependr. only on 

[L] .   Hence [L] = [-H]   implies that [N] contains the function   N   given by 

N (z, y, w, x) = sup inf {<s, x> + <t, y> - H (s, z, t, w)} , 
t     s 

where  H   is any element of  [H] .   Therefore [P]  contains the function  P 

given by P (x, w, y, z) = N (z, y, w, x) .   But  P   belongs to the partial conjugate 

of [H] in   s  and  t,   which by Theorem 4.2 is the same as  [M] .   This shows 

that [P] = [M] . 

The content of this theorem is that the Lagrangian of S(L)  Is Just the 

Lagrangian of  S(K) with the variables reversed.   So henceforth we shall deal 
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only with  [M]  and refer to it as the Lagrangian of the dual pair or simply 

the Lagranqlan.   By the results of §4,   the partial conjugacy correspondence 

is one-to-one and symmetric among closed proper equivalence classes.   From 

this it follows that a dual pair of generalized saddle programs completely 

determines its Lagrangian and vice versa. 

THEOREM 5.8.    Let  [M] denote the Lagrangian.   Then  [-K]  is the 

partial conjugate of  [M]  tn w  and  z,   and  [-L]   Is the partial conjugate 

of [M] Jin x  and  y . 

PROOF.   The second assertion follows from the cact (indicated at the 

beginning of the proof of Theorem 5. 7) that  [L]   contains the function L 

given by 

L(s, z, t, w) = -sup inf {<x, s> + <y, t> - M(x, w, y, z)}  . 
y   x 

To see the first assertion, notice that  M(x, w, y, z) = -W(-z, y, -w, x)  to- 

gether with Theorem 4. 2 imply that [K]  contains the function  K   given by 

K (u, x, v, y) = sup inf {< z, u > + < w, v > - W(z, y, w, x)} 
w   z 

= -inf sup {< z, u > + < w, v > - M(x, w, y, z)}  . 
w    z 

This theorem yields representations of the primal and dual objective 

functions in terms of the Lagrangian.   Recall from Theorem 5. 2 that In the 

presence of strong consistency all the objective functions are closed, proper 

and equivalent. 

-90. #1190 

[jjj^mmi^iim^,—........|,[.,.; ..^.v^iL^.  .^^^ -....^.i!^.,^.,,,,-    „..., 



Www— 
mm*mmmBmmm IVIIH RUWIIIUI    1,1     II  .Jl«|l|l, l,_ I  . I   H^IIM   111-1.1.1,-11 ^|l^!npW.>JJI«lM-IMka^lJ|l.li.J ■iiPWW^piii ■■HIüUI ■.iiiKiWii 

COROLLARY 5. 8.1.    Let  M  be any member of the Lagranglan.   Then 

both of the functions 

(x, y) -♦ sup inf M (x, w, y, z)   and    (x, y) -* inf sup M(x, w, y, z) 
w     z z    w 

are objective functions of  S(K),   and both of the functions 

(z, w) -♦ sup inf M(x, w, y, z) and     (z, w) -♦ inf sup M(x, w, y, z) 
x     y y     x 

are objective functions of  S(L) . 

PROOF.   Since  [-Kl   is the partial conjugate of  [M]  in  w  and  z,   it 

follows that   [K]   contu   .i> 'lie functions  K.   and   K    given by 

K, (u, x, v, y) = -inf sup{< z, u > + < w, v > - M(x, w, y, z)}  , 
w    z 

K (u, x, v, y) = -sup inf{<z, u> + <w, v> - M(x, w, y, z)}   , 
z     w 

Fixing   (u, v) = (0, 0) in these functions yields the indicated objective func- 

tions of   S(K) .    The other assertion is proved similarly. 

The next theorem reveals more of the close relationship between  [K] , 

[L]  and   [M] . 

THEOREM 5. 9.   The equivalence class   [M ]  conjugate to_the 

Lagrangian coincides with both the partial conjugate of  [K]  in  x  and  y 

and also, except for reversing the orders of the variables, the partial con- 

jugate of  [L] _in   z   and   w . 

PROOF.   The partial conjugate of [K]   in   x   and   y  contains the function 

H  given by 
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H(s,v, t, u) = sup inf {<x, s> + <y, t > - K(u, x, v, y)}   . 
y    x 

Here  K   can be any member of [K] .   By choosing the particular  K   appear- 

ing in the proof of Theorem 5. 8 we obtain 

H(s, v, t, u) = sup inf inf sup {< x, s > + <y, t > + <z, u > + <w, v > - M(x, w, y, z)} . 
y     x   w     z 

But (by (36.1) and Theorem 0. l(b^ this function belongs to   [M ] .   On the 
j 

other hand, the partial conjugate of [L]   in  z   and   w  contains the function 

J  given by 

J(u, t, v, s) = sup inf {< z, u > + < w, v > -L (s, z, t, w)}  , 
z    w 

where we can take the   L   to be the one in the proof of Theorem 5. 8.   Thus 

J(u, t, v, s) = sup inf sup inf {<z, u > + <w, v > + <x, s > + <y, t > - M(x, w, y, z)} . 
z    w     y     x 

But this formula for  J   shows that the function   (s, v, t, u) — J(u, t, v, s) 

belongs to  [M ] . 

This theorem allows us to obtain information about the perturbation 

functions and optimal values by means of the conjugate of the Lagrangian. 

COROLLARY 5.9.1.     If there exist points   u   and   v _such that   (o, v, o, u) 

e ri(domM ),   then   -P.   and   -P    belong to a closed proper equivalence class ' 

which contains the upper and lower conjugate of every objective function of 

S(L) .   Similarly, if there exist points   s   and   t   such that   (s,0,t,0) e ri(domM ), ' 

then   -Q.   and   -Q     belong to a closed proper equivalence class which con- 

tains the upper and lower conjugate of every objective function of S(K) . 
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PROOF.   Assume   (0, v, 0, u) e rl(domM )   for some   u   and  v.   Then 

Theorem 5.2 implies that the functions   (v, u) — M (0,v, 0,u)   for  M    e [M ] 

all belong to a single closed proper equivalence class.    By Theorem 5. 9  this 

implies that the functions 

(v, u) - -P^u, v) = inf sup {<x,0 > + <y, 0> -K(u, x, v, y) }   , 
1 x    y 

(v, u) - -P2{u, v) = sup inf {<x, 0> + <y, 0> -K(u, x, v, y) }   , 
y     x 

(v, u) - (L (0, • , 0, • ))  (u, v) = inf sup {<z, u> + <w, v> -L (0, z,0 , w)}   , 
w   z 

(v, u) -* (L(0t- t0. • )) (u, v) = sup inf {<z, u> + <w, v> -L (0, z,0 , w)) 
z    w 

are equivalent, closed and proper.   The second assertion follows similarly. 

COROLLARY 5. 9. 2.     If the saddle value of the Lagrangian exists and 

equals a,   where   a e R,    then the optimal values in   S(K)   and   S(L)   exist and 

equal a   . 

PROOF.    The saddle value of M  exists and equals   a   if and only if 

* — * 
M (0,0, 0,0) = M (0,0,0,0)= -a  .   By Theorem 0.1(b) this is equivalent to 

M   (0, 0, 0, 0) = -a   for every   M    e [M ] .    For   i = 1 and Z,    -P (u,v) = H (0, v,0,u) 

for a certain member  Hi   of the partial conjugate of  [K]   in   x  and  y  (cf. 

proof of Corollary 5. 9.1),    and similarly   -Q^s, t) = J^O, t, 0, s)  for a certain 

member  J   of the partial conjugate of [L]   in  z   and   w .   Hence Theorem 5. 9 

implies that   -P^O, 0) = -0^0,0) = -a  for   i = 1, 2 . 

For most of our remaining results we shall need the notion of a " stable- 

optimal solution (cf. [46], [47]).   For each  x e Rm  define the function  fx  on 
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R     by  f (v) = infK{0, x, v, •),   and for each   y e R    define the function  g 
x '" y 

on   R    by  g (u) = supK(u, •, 0, y) .   It follows easily from (5. 7) that   f    is 
y * 

convex and  g     is concave.   An optimal solution   (x, y)   of  S(K)  is said to 

be stable if and only if the directional derivative function 

f (Xv) - f (0) 
v -* f (0;v) = lim 

\\0 X 

is never   -oo   and the directional derivative function 

g (\u)-g (0) 
u- g' (0;u) = lim  - ■■  

is never  +oo .   As noted below in Lemma 5.10,    (x, y)   is an optimal solution 

of  S(K)  if and only if  f (0) = g (0)e R .   Hence by (23.1) the directional 

derivatives mentioned in this definition exist   (+oo   and   -oo   being allowed as 

limits).   Stable optimal solutions of S(L)  are defined similarly, using the 

functions  h   (s) = inf L(s, •, 0, w)   and  k (t) = sup 1(0, z, t, • ) • w z 

LEMMA 5.10.   Let   (x, y) e R    XR   .   Then   (x, y)   is an optimal solu- 

tion of S(K)   If and only if  f (0) = g (0) e R,   and In this event  (x, y)   is_ 

stable if and only if  f     and   g     are subdifferentiable at the origin. 

PROOF.   The first equivalence follows from the definitions and the 

fact that  K < K < K   for each   K e [K] .   The second equivalence then follows 

by (23.2) and (23. 3). 

We refer to the six equivalent conditions in the next theorem as the 

extremality conditions associated with the dual pair of programs  S(K)   and 

S(L) . 
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THEOREM 5.11.   For   (x, y) e Rm X Rn  and   (z,w) e RP X Rq,   each of 

the following conditions are equivalent; 

(a) (-z, 0, -w, 0) e 3 K(0,x, 0,y) ; 

(b) (-x, 0, -y, 0) e 8L(0,z,0,w); 

(c) ( 0, 0,   0,   0) e 9M(x,w,y,z); 

(d) (x, w, y, z)   is a saddle point of the Lagrangian; 

(e) -(z,w) e agy(0) X ayo)   and  yo) = gy(0) e R ; 

(f) -(x, y) e ahJO) x 8kz{0)   and hJO) = k2(0) e R . 

PROOF.    Observe that   -M(x, -w, y, -z) = W(z, y, w, x),    where   W 

belongs to the partial conjugate of  [K]  in  u   and   v.   Also, Theorem 4, 3 

implies (a) is equivalent to   (0, 0, 0, 0) e aW(-z, y, -w, x) .    By (37.4) it 

follows that (a) is equivalent to (c) .   Trivally,  (c) is equivalent to (d) . 

Observe from (37. 5) that (a) is equivalent to   (0, x, 0, y) e 9K (-z, 0, -w, 0) . 

By (37.4) and the relation   L(s, z, t, w) = -K (-z, s, -w, t)   it follows that this 

last condition is equivalent to (b).   By (37.4) and (37.4.1),  (a) occurs if 

and only if  K(0, x, 0, y) = K (0, x, 0, y) = a e R  and 

<u, z> + K(u, x, 0, y) <   a < K(0,x, v, y) f <v, w>,  Vu Vx Vv Vy  . 

But this occurs if and only if  g (0) = f (0) = a e R   and 

<u, z> + g(u)<a<f(v)+<v, w>,   VuVv   . 

These last conditions are equivalent to (e).    Similarly,   (b) is equivalent to 

(f). 
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AT. especially sharp duality theorem now follows easily. 

THEOREM 5.12.    The program S(K)  has a stable optimal solution if 

and only if S(L)  does,  and in this case the two optimal values are equal. 

PROOF.   The equivalence follows from Lemma 5.10 and its dualized 

version, together with conditions (e) and (f) of Theorem 5.11.    The optimal 

values are equal by Corollary 5. 9. 2 and condition (d) of Theorem 5.11. 

From this theorem we can obtain a criterion for the nonexistence of 

stable optimal solutions. 

COROLLARY 5.12.1.   Assume that the optimal value in   S(K)   exists 

and equals  a .   If either  lim — (PJO, X.v) - <*} = -oo   for some  v  or 

lim    - {? (\u, 0) - or} = +00   for some   u,   then neither   S(K)   nor  S(L)  has 
\| 0 
a stable optimal solution. 

PROOF.   Suppose   (x, y)   is an optimal solution of  S(K) .    Then 

f JO) = g (0) e R .    Notice that x y 

fx  - S-P fx= Pl(0' " )   and   P2("' 0) = i-f gy - 9V   ' X " y        " " 

Hence the hypothesis implies either   f (0;v) = -co   for some   v  or  g1 (0;u) = +oo 

for some  u .   This means that   (x, y)   is not stable.   Thus   S(K)  has no 

stable optimal solution,  and by the theorem neither does   S(L) . 

The next theorem relates stable optimal solutions to the extremality 

conditions. 

THEOREM 5.13.   The pair  (x, y)  is a stable optimal solution of S(K) 

if and only if there exists a pair  (z, w)   such that   (x, y)   and   (z, w) 
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together satisfy the extremallty conditions.   Such a pair   (z, w) _is _a Kuhn- 

Tucker vector for  S(K) . 

PROOF. The equivalence is immediate from Lemma 5.10 and condition 

(e) of Theorem 5.11. From condition (a) of Theorem 5.11 it is not hard to show 

that   (z, w)   is a Kuhn-Tucker vector for   S(K) . 

By analogy with (36. 6) for convex programming, one might ask whether 

the last assertion of Theorem 5.13 can be strengthened as follows:   "For any 

given stable optimal solution   (x, y)   of  S(K),   the pairs   (z, w)   such that 

(x, y)   together with   (z, w)   satisfy the extremallty conditions are precisely 

the Kuhn-Tucker vectors for   S(K)."   Unfortunately this fails in general, as 

Example 5.14 will show.   There are conditions, however, under which this 

does hold.    One such condition will now be given. 

COROLLARY 5.13.1.    Assume   S(K)  has a unique stable optimal solu- 

tion    (x, y)   and that   S(L)   is strongly consistent.   Then the Kuhn-Tucker 

vectors for  S(K)  are precisely those pairs   (z, w)   such that   (x, y)   and 

(z, w)   together satisfy the extremallty conditions. 

PROOF. By the theorem, if (x, y) and (z,w) together satisfy the 

extremallty conditions then (z, w) is a Kuhn-Tucker vector for S(K) . Now 

suppose (z,w) is a Kuhn-Tucker vector for S(K) . Since S(L) is strongly 

consistent. Corollary 5. 5.1 implies that there exists some pair (x, y) such 

that (x, y) and (z, w) together satisfy the extremallty conditions. By 

Theorem 5.13 this pair (x, y) is a stable optimal solution of S(K) . Hence 

the uniqueness assumption implies   (x, y) = (x, y),    and the proof is complete. 

#1190 ■97- 

mmmmmm&mMtmämmmt aatiMMi' 7";i 7i-ii vi : .. WTI-   T M -~Z*U 



m^mm*m--i*      ...■■■ .    •**,•••     .I.I...|.... i..     i .   i.r L ■        UH.JI ■ ...     J. , .» ■ in I   L_ . «   I    I» U, u   Jim ■ u .< PJ^    1|J»'«»11WI f..J llll,l«IM.»,l»J| 

The reason that the strengthening of Theorem 5.13 proposed above 

fails to hold in general is that the set 8M (0, 0,0, 0) of saddle points of 

the Lagrangian is the product set 

8M*(-,-, 0, 0)(0, 0) X 8M*(0, 0, •,   )(0, 0)   , 

which involves in each "factor" both the pair  (x,y)   of "solution variables" 

and the pair   (z,w) of "Kuhn-Tucker variables,"   The following example 

Illustrates this 

EXAMPLE 5.14.    Take   p = n    and   q = m  and define   S(K)   by   K{u,x, v, y) = 

<u,y> + <x>v>   .   It is easily checked that  A' {0)0 (rec cone K) = {(0,0)}  for 

i = 1, 2 .   Hence Lemma 1. 9 implies that   range A O ri(dom K ) # 0 ,   or in other 

words   S(L)   is strongly consistent (see the proof of Lemma 5.4).    If  [P]  denotes 

the equivalence class containing   P.   end   P ,   then  [P] = [AK]   by Theorem 5. 5. 

Since 

r 

Pjiu.v)   { 

0     if u = 0   and   v = 0 

+ oo   if u = 0   and   v ^ 0 

^ -oo    if u ^ 0 , 

this implies that domAK = domP = {(0,0)},   whereas   Adom K = RP X Rq . Clearly 

m      n 

S(K)   is strongly consistent, the set of optimal solutions of  S(K)   is   R    XR    , 

and the set of Kuhn-Tucker voctors for  S(K)   is  R   XR   .   The Lagrangian of 

S(K)   contains the function 

M(x, w, y, z) = sup inf {<u, z> + <v, w> + K(u, x, v, y)} 
u    v 

0 if x + w = 0 and y + z = 0 

+oo if x + w = 0 and y + z ^t 0 

-oo   if x + w ^ 0   . 
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Hence the set of saddle points of the Lagrangian is just 
j 

dorn M = {(x, -.v) | x + w = 0 } X {(y, z) | y + z = 0 }   . 
1 . 

Thus,  if   (z, w)   is any given Kuhn-Tucker vector for  S(K),   the set 

{(x, y) I (x, w, y, z)   is a saddle point of the Lagrangian } 

j 
equals   {(-w, -z)}  and hence is far from being equal to the set of optimal 

solutions of  S(K) .   It is perhaps of interest to note that in this example the 

dual program   S(L)   is given by  L(s, z, t, w)= <s, w> + <z, t>   and hence is 

"identical" with   S(K) . 

The next theorem says that stability of optimal solutions can often 

be assumed, inasmuch as the saddle programs considered will often be 

strongly consistent. 

THEOREM 5.15.   _If  S(K)   is strongly consistent, then every optimal 
j 

solution of  S(K)   is stable. 

PROOF.   Suppose   S(K)   is strongly consistent, and let   (x, y)   be any 
■ 

optimal solution of S(K) .   By the dual version of Corollary 5. 5.1,  there 

exists a pair  (z,w)   suchthat   (-x, 0,-y, 0)e  8L(0, z, 0,w).    Hence 
I 

Theorem 5.11 and Lemma 5.10 imply that   (x, y)   is stable. 
j 
j 

This result can be combined with previous ones.   Observe,  for 

instance, that combining it with Theorem 5.13 yields an extension of the 

celebrated Kuhn-Tucker Theorem to generalized saddle programs (cf.  (36.6)). 

The following example shows that in the absence of strong consistency 

there may exist unstable optimal solutions. 

#1190 -99- 

^mMfe^.^..^^,it....,»fa^^^^.-.^.1„..„.„.J„...    ...,;, S; 



EXAMPLE 5.16.   In Example 5. 3 take  m = n = 1  and take  [J]   to be 

such that  [J j contains the closed proper concave-convex function 

-Jt     if  s e [0,1]  and  t e [0,1] 

(s,t)-< +«    if   se[0,l]  and  t^[0,l] 

^ -oo    if   s ^ [0,1]   . 

Clearly  domj* = [0,1] X[0,1], J_ (0,0) =T (0,0),   and   aj (0,0) = 0.    From 

the analysis in Example 5. 3 it follows that  S(L)  is consistent but fails to 

be strongly consistent,   S(L)   has a well-defined primal problem,  and   (0, 0) 

is the only optimal solution of  S(L) .   If  (0, 0)  were stable, then by 

Theorem 5.12 there would exist a stable optimal solution of  S(K) .    But the 

set of optimal solutions of S(K)   is easily seen to be   8J (0, 0),   which is 

empty.    Hence   (0, 0)  is an unstable optimal solution of S(L) . 
1 

This example also shows something else.   Notice that by Corollary 
i 

5. 5.1 and Theorem 5.11, if the dual program   S(L)  is strongly coasistent 

then each Kuhn-Tucker vector  (z, w)   for  S(K)   "corresponds" to a saddle 

point of the Lagrangian in the sense that   (0, 0, 0, 0) e 8M(x, w, y, z)   for 

some pair  (x, y) ,   Example 5.16 shows that this need not be true when 

S(L)   fails to be strongly consistent. 
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§6:   Ordinary Saddle Programs and Lagrange Multipliers 

In this section we shall turn our attention to minimax problems con- 

strained by finitely many concave and convex inequalities.   Such problems 

will be cast in the framework of generalized saddle programs.   By applying 

the general theory of §5, we shall obtain information regarding the Lagrange 

multiplier principle for such problems and also an explicit description of a 

dual minimax problem. 
m Suppose that  S  and  T  are nonempty closed convex subsets of  R 

and   R ,   respectively, and that  H  is a finite continuous concave-convex 

function on   S X T,   g.,..., g     are finite upper semi-continuous concave 

functions on   S,   and  f,,..., f    are finite lower semi-continuous convex ' r       ' q 

functions on   T .   The problem we consider here is that of finding the saddle 

points of  H  with respect to the pairs   (x, y)   in   SXT  satisying the con- 

straints 

g^x) > 0,  ..., g (x) > 0 

and 

f^y) < 0,  ...,  f (y) < 0 

Actually, though, by treating this problem wiüiin the framework of 

generalized saddle programs we are able to deal with the following more 

general situation.   Let H  be a closed proper concave-convex function on 

R    X R ,    let each  g , ,.., g    be a closed proper concave function on   R 

satisfying 

#1190 
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and let each   £,,...,£    be a closed proper convex function on   R     satis- 
1 Q 

fying 

domHCdoraf    and   ri(dom H) c rt(domf )   . 

The problem now is to find the saddle points of   H  with respect to the pairs 

(x,y)   In   R    XR     satisfying the above Inequality constraints.   This situa- 

tion Is Indeed more general.   Just take   H   to be the lower simple extension 

to all of  R    X R    of the previous function on   S x T,    extend the   g   s   to be 

-oe   on   R   \S,    and extend the   f 's   tobe   ♦«   on   R   \T      Then  domHsSxT, 

and the effective domain Inclusions above are automatically satisfied. 

To obtain a generalized saddle program we define subsets   CC R   xR 

and   D c Rq x Rn  by 

C = {(u,x)| x e domjH,    g^x) > i^, . .., g (x) > u   ) 

and 

D = {(v,y)|y e dom2H, fjMl Vj,    ... ( (y) 1 vq )   . 

and let   K  be the function on   (RP x Rm) x (Rq x Rn)   defined by 

H(x, y)   If   (u, x)cC   and   (v, y) e D 

K(uy x, v, y) = /  ♦« if   (u, x)cC   and   (v, y) / D 

^-« if   (u,x) j C   . 

Our first theorem shows that this   K  does determine a generalized stddle 

program. 

THEOREM 6.1.    The function   K   is closed proper concave convex 

with effective domain   C x D .    Moreover 

rl C = {(u, x)|x c rKdom.K)   and   gjx) > u,, ..., «Jx) >u   ) 
l i i p p 

and 
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cl C = {(u, x)|x c cKdomjH)   and   g^x) > Uj, ..., g (x) > u   }, 

and similar formulas hold for   ri D   and   cl D . 

Dm on 
PROOF.    Define functions   Hft, . . . , H on   (RH X R   ) X (RM X R ) 

0'        '    p+q 

as follows: 

H0(u, x, v, y) = H(x, y) 

Hjlu.x, v, y) 

Hp>j(u.x.v,y) = 

0 if (x, Uj) e epl gi 

-« if (x, u, ^ epi g1 

0 if (y, v ) c epi f 

♦« If (y, v ; ^ epi f 

1 = I, .. ., p 

J = 1, .... q 

Clearly, 

dorn H    = (RP xdom H) x (Rq xdom H) 

dorn H    =  {(u, x)|(x, u ) c epi g  } X (Rq X Rn) 

dorn H     . -- (RP x Rm) x {(v, y) | (y, v ) e epi f. } 

I = 1, . .., p 

) = 1, . .., q 

and from (J4. 3) it follows thf. each   H,    is closed and proper.    Since 

rl(domH-)   O.   .OrildomH      )*0t 0 D+a      * ' p+q 

Theorem 3.2 implies that  (HJ + . . .  + [H      !   is well-defined,  has effective 
0 P+q 

domain 
C x D = dom H_ (^ . ..O dom H 

p+q 

and contains the function   K .    The formulas for   ri C   and   cl C   (resp. 

rl D   and   cl D)   follow from (6. 5),   (7. 3) and the fact that   epi g    (resp. 

epl f )   it  closed. 
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According to the theorem,   [K]  is a generalized saddle program  S(K) 

m      n p      Q on  R    X R    with perturbations in  R   X R   .   We call it the ordinary saddle 

program associated with H, g., ..., g , f., .. •, f    . 

It will be convenient to Introduce the following notation.   For any sub- 

set  S  of RP X Rm write  S   = {x I (u, x) e S}  for each u e RP .   Similarly, 

for any subset  T of Rq XRn write  T   = {y|(v, y) c T} for each  v e Rq   . 

Since the feasible solutions of any generalized saddle program are 

those pairs   (x, y)   suchthat   (0, x, 0, y) e dorn K,   the set of feasible solutions 

of the ordinary saddle program  S(K)  is Just  C   XD,   i.e. 

{(x, y) e domHlg^x) > 0, ..., gp(x) > 0   and   f^y) < 0, ..., fq(y) < 0 } . 

Recall from the general theory that  S(K)   is consistent if and only if S(K) 

has a feasible solution, i. e. if and only if C    X D    is nonempty. 

According to the following corollary,  strong consistency of  S(K)   is 

analogous to the Slater constraint qualification encountered in convex 

programming. 

COROLLARY 6.1.1.   The program  S(K)   is strongly consistent if and 

only if there exists a pair  (x, y)   in    dom H   such that g (x) > 0,  ...,  g (x) > 0 

and   f^y) < 0, ..., ^(y) < 0 . 

PROOF.    By the formulas for  ri C   and  rl D  given in Theorem 6.1,  the 

assertion of the corollary holds with dom H replaced by ri(dom H) . 

Now suppose   (x, y) c dom H is such that  g.fr) > 0, ..., g (x) > 0  and 

My) < 0, ..., f (y) < 0  .   Let   (x., y.)  be any element of ri(dom H) .   Then 

■104- #1190 

gaM>MIMMl^MM-——~-- ^ n.   . — t,—  . — 



iiiiyiimiiiiiiwwwwmmiiiiiiiniii i, i.nn i.|i.nimijwn ■fnV>!!mwmMv*mm*nhi'i''mn"mii. 11 IIHM'II"IIIJIHIIIW|||I.I. I in i  ■i»mniiiiiiiiiiiiiiiniiuii   u    ,  i      .n iin i» 

fW?B*?'Sf*»^A»'"W»».irM»,,v„,,,r..   . 
i ',**';3*r.tti*mf 

(6.1) and (7. 5) imply that, for sufficiently small positive  \,   the pair 

(xx, yx) = (1 - \)(x, y) + Mx^ y^ 

is in  ri(domH)   and satisfies   g,^) > 0, ..., g (x^) > 0   and   tAYyJ < 0, 

...,fq(yx)<o. 

If  S(K)   is strongly consistent, then all the objective functions of 

S{K)   are equivalent and hence the notions of optimal value and optimal 

solution can be expressed in terms of the single objective function 

H(x, y)   if x e C     and   y e D 

K(0,x, 0, y)=< +oo        if x e C0   and   y^D 

-oo if x ^ CA    . 

In this event,  the optimal value in   S(K)   exists and equals or  if and only 

if 

sup inf H = inf sup H = a e R  , 
coDo Doco 

and   (x, y)   is an optimal solution of  S(K)   if and only if (x, y)   is a saddle 

point of  H  with respect to  C   XD   .   Thus the ordinary saddle program 

S(K)   accurately reflects the original minimax problem we set out to study. 

Even when   S(K)   is not strongly consistent,  the relationship it bears to the 

original minimax problem is only slightly more complicated,  as explained 

in the next corollary . 
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COROLLARY 6.1. 2.   Write cl C = C and   cl D = D .   The optimal value 

In  S(K)  exists and equals  a If and only If 

sup Inf H = Inf sup H = a e R . 
coDo Doco 

A pair   (x.y)   Is an optimal solution of  S(K)   If and only If 

inf H(x, •) = supH(-,y) e R   . 
D C 

0 0 

A pair   (z, w)   is a Kuhn-Tucker vector for   S(K)   if and only If the optimal 

value in   S(K)   exists and equals    a  and 

<u, z> + inf sup H < a < sup inf H + <v,w>,    VuW   . 

0    u 0     v 

An optimal solution   (x, y)  of S(K)   is stable if and only if 

11m  i- {Inf   H(x, •) -infH(x, •)}> -00, Vv 
MO        D. D, \v 

and 

11m - {sup H(-,y) - supH{-,y)}< +«, Vu 
\\ 0 \u 

PROOF.    By Theorems 6.1   and   0.1,    the least member  K of  [K]  is 

the convex closure of  K .   Direct computation thus yields 
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K(u, x, v, y) = 

H(x, y)   If  (u, x) e C   and   (v, y) e D 

/ -H» if (u, x) e C  and   (v, y) ^ 5 

l^-oo if {u,x) /C 

and hence 

P.^v) = sup_inf H 
C    D u    v 

Analogous formulas hold for  K and   P       A pair   (z, w)   Is a Kuhn-Tucker 

vector for  S{K)   If and only If  PJO, 0) = P (0,0) = a   e R  and <u, z> + 

P2(u, 0) <« < PjiO.v) + <v,w>, VuVv.   Since   P.^O) = P (0,0) = ff e R 

occurs If and only if the optimal value in   S{K)   exists and equals   a,   the 

first two assertions of the corollary follow immediately from the formulas for 

P.   and   P   .   Now recall from  §5 the functions   f (v) = inf K(0, x, v, •)   and 

g (u) = sup K(u, •, 0, y) .   The formulas for  K  and   K  imply that 

fx(v) = lnfH(x, •) 
D v 

whenever  x e C     and 

g (u) = sup H(-, y) 
y C u 

whenever  y e D   .    Since a pair  (x, y)   is an optimal solution of  S(K)   if 

and only if  f (0) = g (0) e R   (and   (x, y) e C   X D ),   the third assertion 

follows Immediately.    The last assertion also follows immediately from the 

formulas for  f    and   g x y 
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All the general theory of  $5 can be applied to the ordinary saddle 

program S(K) .   Particularly strong results can be obtained under the 

hypothesis that  S(K)   is strongly consistent and  domK    is bounded   (i.e., 

that the set of feasible solutions is bounded and that some feasible solution 

satisfies the inequality constraints with strict inequality).   In what follows, 

though, we shall be concerned principally with the question of whether there 

exists a "good" Lagrange multiplier principle for ordinary saddle programs. 

Then at the end of the section we shall identify the dual of an ordinary 

saddle program and explicitly describe the dual minimax problem. 

The next result shows that the Lagrangian of  S(K),   which we obtain 

via the general theory of jjS, looks like what one would expect.   Also, the 

corollary which follows shows that the extremality conditions we obtain via 

§5 are direct analogues of the familiar Kuhn-Tucker conditions of corvex 

programming. 

THEOREM 6.2.    The Lagrangian of  S(K)   contains the function 

r 
H(x, y) + S z^x) + 2 w f (y) ^f  (x, w) e S    and   (y. z) e T 

(x,w,y,z)-W +oo ^f  (x,w)eS    and   (y, z) ^ T 

ü (x,w)^S   , 

where  S = dom.H X R**   and   T = donuH X RP   .   1 +    2 + 

PROOF.   By definition, the Lagrangian contains the function 
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M(x, w, y, z) = sup Inf {<u, z> + <v, w > + K(u, x, v, y)} 
u    v 

= sup inf {<u, z> + <v, w> + H(x, y)}  , 
C    D x    y 

where   C   = {u|(u,x) e C}   and   D   = {v|(v,y) e D}   .    Now  C    equals 

{uig.(x) > u., •.., g (x) > u  }  when  x e dom.H   and equals the empty set 

otherwise, and similarly  D     equals   {v|f (y)<v, ..., f (y)<v  } when 

y e dom H  and equals the empty set otherwise.   Therefore the conventions 

imply that   M(x, w, y, z) = -oo    when x ^ dom H   and   M(x, w, y, z) = +<» 

when  x e dom.H   and   y ^ dorn H ,    When   (x, y)edomH   , 

M{x, w, y, z) = H(x, y) + sup{<u, z> + inf {<v, w>}} 
D 

= ( 

-co 

+00 

if  w ff R^ 

if w e R?   and   z ^ R^ 

^H(x, y) + Sz^^x) + S w f (y)   if w e R^   and   z e R^ 

It is easy to show that   M = cl_M  is given by 

H(x, y) +Sz g (x)+Sw f (y)   if  (x, w) e S   and   (y, z)eclT 

M(x,w, y, z)=^  +00 if  (x,w)eS   and   (y, z)^clT 

if   (x, w) ^ S . -00 

Finally, observe that the function in the theorem Is bounded below by  M 

and above by  M . 

m       n D      Q 
COROLLARY 6. 2.1.   Two pairs   (x, y) e R    XR     and   (z,w)eRFXRM 

satisfy the extremality conditions associated with   S(K)   if and only if 
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(x, y) c C0 x D0,   (z, w) e R^ x RJ , 

ZjQ^x) = 0   for  i = 1, ..., p , 

w^y) = 0   for  J = 1, . .., q  , 

0 e BjH^y) +Z8(z1gi)(x)   , 

0 e 82H(x,y) + s8(wjfJ)(y)   . 

The term   r8(z g )(x)   can be replaced by Zz 8g (x)     If the summation Is 

taken only over those   1   such that   z  > 0 .   Similarly, the term 

S8(wf)(y)  can be replaced by Sw 8f (y)    If the summation Is taken 

only over those  J   such that  w  > 0 . 

PROOF.   By definition,    (x, y)   and   (z,w)   satisfy the extremality con- 

ditions if and only if  (x, w, y, z)   is a saddle point of the Lagrangian.   By 

the theorem and (36. 3), this occurs if and only if  (x, y) e dom H   and 

(z, w) e R^ X R^  , 

H(x', y) + Sz^x') + Zwjf^y) < H(x, y) + Sz^x) + Sw^y) (1) 

for all   (x'jW') e dom.H X R^,    and 

H(x, y) + Sz^x) + Zw f^y) < H(x, y') + Szjg^x) + Sw f (y') (2) 

for all   (y1, z') e dom.H XRP   .    Taking  z' = z   in (2) and using (23.8) 
2 + * 

Implies   0 e 82H(x, y) +E8(w f )(y) .   Taking  y' = y, z! = 1 + z    and 

z'  = z,    for  k ^ i,    (2) implies that   0 Ig.W .   This holds for each  1   . 

But taking  y'- y  and   z* = 0   in (2) implies Sz g (x) < 0 .   Hence 

z g (x) = 0  for each   i .   Similarly,  (1) Implies that   f (y) < 0   and w f (y) = 0 

for each  J   and  0 e S.Hfc, y) + S8{z g )(x) .   This establishes one implica- 

tion, and the converse is now clear.   Now observe that  w  > 0  trivially 
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implies   8{w.f.)(y) = w.8f (y) .   On the other hand, if w. = 0  then 

y e dorn H C domf    implies   8(w f )(y) = 8 6(y|domf.) C 86(y|dom_H) = 
^ J J J J 2 

0    82H(x,y)   and hence   82H(x,y) + 8(w f )(y) = 82H(x,y) .    Thus the term 

S8(w.f. )(y)  can be replaced as indicated.   The other assertion is proved 

similarly. 

Variables of the sort   z , .. ., z    and  w., . .., w     appearing in the 

Lagrangian of  S(K)   are known traditionally as Lagrange multipliers.   Some- 

times this term also denotes the particular values of these variables which 

satisfy certain "extremality conditions" relating to a "Lagrangian function." 

In this second sense, Lagrange multipliers   (z , . .., z , w., ..., w ) = (z, w) 

for an ordinary or generalized saddle program necessarily form a Kuhn-Tucker 

vector for the program (Theorem 5.13).   However, a Kuhn-Tucker vector need 

not satisfy the extremality conditions, 1. e. need not be a Lagrange multiplier. 

(This behavior can occur if the dual program falls to be strongly consistent. 

See the remarks following Example 5.16. )   In other words,  Kuhn-Tucker 

vectors are defined even when the extremality conditions ^re not satisfiable. 

Thus, Kuhn-Tucker vectors (rather than Lagrange multipliers) are the natural 

"equilibrium price vectors" for regularized saddle point problems. 

By the general theory of §5,   if(x, y)   and   (z,w)   satisfy the ex- 

tremality conditions then the optimal value in  S(K)   exists and equals 

H(x, y),  (x, y)   is a stable optimal solution of  S(K),   and   (z, w)   is a Kuhn- 

Tucker vector for  S(K) .    In fact,  such pairs   (x, y)   and   (z,w)   actually 

satisfy 
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<u,z> + ^x'jy) < H(x,y) ^Hl^y') + <v,w> 

for every   (u, x') e cl C   and every   (v, y') e cl D .    (cf. Corollary 6.1. 2). 

The following result can be viewed as the main existence theorem for 

"Lagrange multipliers."   Notice that the conditions it gives are satisfied, 

for example, whenever 

and 
0  dom.H Pi rec cone g Pi ... Pi rec cone g   = {0 } 

0  dorn HP rec cone f P ... P rec cone f   = {0 }   . 
£ 1 M 

THEOREM 6. 3.   If_ S(K)   is strongly consistent, then the extremality 

conditions can be satisfied whenever the sets 

and 

{x c P rec cone g1 \ inf {rec H(-, y)(x) I (0, y) e ri D } > 0 
1=1 i 

{y £ P rec cone f | sup {rec H(x, • )(y) | (0, x) e ri C } < 0 } 
j=l 

are closed under scalar multiplication by   -1 . 

PROOF.    By Theorem 5.15 and Theorem 5.13, if  S(K)   is strongly 

consistent and has an optimal solution then the extremality conditions can 

be satisfied.   The remainder of the proof consists of showing that Corollary 

5.2.1   applies to yield an optimal solution.   Suppose   S(K)   is strongly con- 

sistent.   By Theorem 5. 2,   S(K)   has a well-defined primal problem which is 

given by the closed proper equivalence class  [K ] .    Moreover,   dom K   = 

C    XD , ri(dom K ) =(rl C)   X(rlD)n,    and  [Kj  contains the function 
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H{x, y)   if x e C     and  Y e D 

K (x, y)=/  +00 if x e C.   and  y f( Dn 

-oo If x jC C 

Let  Y= {y|f,(y) < 0, ..., f (y) < 0} .    Then  D   =YndomH,    so that 
1      — q      — 0 2   ' 

K (x, •) = H(x, •) + 9{- IY)   whenever  x e ri(doin H) .   It follows from the 

definitions and (9. 3) that 

(rec2K0)(y) = sup {rec H(x, • )(y) + rec 6(- |Y)(y)|(0,x) e rl C }   . 

Now note that  rec 6(- |Y) = 6(- |o+Y)   by  (8. 5), and  0+Y =n rec cone f. 
J=l J 

by (8. 3. 3) and (8. 7) .   These facts together imply that   (rec K )(y) < 0  if 
q 0 

and only if y e O rec cone f.   and   sup {rec H(x, • )(y) | (0 x) e ri C } < 0   . 
J=l , p " 

A similar argument shows that   (rec.K )(x) > 0  if and only if  x ePl rec cone g 
10 1=1 1 

and   inf{rec H(-, y)(x) | (0, y) e ri D} > 0   .    These two equivalences show that 

the hypothesis is just what is needed to apply Corollary 5.2.1. 

For our results concerning the Lagrange multiplier principle we need 

certain functions  H and seta   S For each   (z, w) e RP X Rq 
z w z.w v >    / ^    +       + 

define a function  H z, w 
on   Rm X Rn  by 

H(x, y) + Sz g (x) + Sw.f (y)   if x e dom.H   and   y e dorn H 

H       (x, y)=/  +00 if x e dorn H   and   y ^ dorn H 

if x ^ dom.H   . 

z, w 

V. 
-00 

By Theorem 3. 2 it follows easily from the blanket regularity assumptions 

that   H is closed and proper and has the same effective domain as   H . 
z, w 
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Observe that If  M denotes the particular Lagranglan given In Theorem 6.2, 

H, ,Jx'y) = M(x,w,y, z) z, w 

.P v^nQ ,ni . „n for every   (z, w) e Rf X R^   and every   (x, y) e R1" X R" .   If   (z, w) ^ RP X Rq 

T T + + 

put   S        =0,   and If  (z.w) e RP X Rq  let  S denote the stit of pairs z,w     ir' ' +       + z,w 

(x, y)   which are saddle points of  H and which satisfy the conditions 

g (x)> 0   and   z g (x) = 0 for     1 = 1, . . ., p 

and 

f^y) < 0   and  w^y) = 0 for     J = 1, . .., q   . 

(These latter conditions together with the condition   (z,w) e RP X Rq   are 

traditionally called complementary slackness conditions.) 

For ordinary convex programs there exists a good Lagrange multiplier 

principle {Theorem 28.1 in [48]).    The analogous result for ordinary saddle 

programs would be the following:   "If  (z, w)   is any Kuhn-Tucker vector 

for  S{K),   then  S is precisely the set of optimal solutions of  S(K)." 

As we shall see in Theorem 6. 5, however, tne situation is in general more 

complicated than this.   To describe the situation fully, we need to know 

the connection between the sets   S and the extremality conditions. z, w 

LEMMA 6.4.   The pairs   (xf y) e Rm X Rn  and   iz. w) e RP X Rq 

together satisfy the extremality conditions if and only if  (x, y) e S 
z, w 

PROOF.   For any   (z, w) e R   X R_;,   a pair   (x, y)   is a saddle point 

of  H 
2, W 

if and only If  (x, y) e dom H , 

Hfx', y) + Sz^x') < H(x, y) + Sz g (x), Vx' e dorn H 
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and 

H{x,y) +Swjfj(y) <H(x,y') + Zw f (y'), Vy e don^H . 

Now it Is an easy exercise to show (using (7. 5) and (6.1)) that for any con- 

vex function   f  and any convex set   C   containing  ri(dom f),   x   e 9f(x) 

if and only if 

^x') > f(x) + <x , x' - x>,   Vx' e C . 

But   rl(dom(H{x, •) + Sw f )) = ri(dom H)   and   ri(doin(H(-, y) + Sz g )) = 

rl{dom.H) whenever {z,w) e R^ XR^   and   (x, y)edomH   .   Hence it follows 

P      Q from these facts and (23. 8) that for   (z, w) e R   x R_;,   (x, y)   is a saddle 

z, w point of  H^ tjr   if and only if  (x, y) c dorn H , 

0 c 81H(x,y) +2 8(z1gi)(x) 

and 

0 e 82H(x,y) +S8(wjfj)(y) . 

The lemma follows trivially from this by Corollary 6- 2.1 and the definition 

of  S z, w 

We can now present the theorem promised.   Notice that the first 

part of it constitutes an extension of the Kuhn-Tucker Theorem to ordinary 

saddle programs. 

*■ 
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THEOREM 6. 5.    The set of stable optimal solutions of   S(K)   is pre- 

cisely 

{S       l(z, w) c RP xRq)   , 
z, w 

and when   S(K)   is strongly consistent this set coincides with the set of all 

optimal solutions of   S(K) .    If_ S * 0,    then   (z, w) J^ a Kuhn-Tucker z, w 

vector for   S(K);   the converse holds when the program dual to   S(K)    is 

strongly consistent. 

PROOF.    In view of Lemma 6.4,   the first assertion is Immediate from 

Theorems 5.13 and 5.15,   and the second assertion Is immediate from 

Theorems 5.13 and 5.11 together with Corollarv 5. S 1 

Prom Theorem 6. 5 we can conclude that In general there does not 

exist a good Lagrange multiplier principle for ordinary saddle programs,   I. e. 

"good"  in the sense that a single Kuhn-Tucker vector   (r,w)   generates all 

the (stable) optimal solutions via   S But,  one could ask,   might It nov z, w 

be possible to obtain a good Lagrange multiplier principle by recasting the 

given constrained minlmax problem as another generalized saddle program 

involving a class of perturbations different from that which we actually 

used ?     Concerning this, observe that any " Lagrange multiplier principle" 

by its very nature would Involve a Lagranglan function of the sort given  In 

Theorem 6.2     And as pointed out in   S5,    such a Lagranglan uniquely de- 

termines the dual pair of generalized saddle programs and hence the 

particular classes of perturbations     This means that the perturbations 

introduced at the beginning of  \t are In fact the only ones relevant to the 

Issue of a Lagrange multiplier principle      Hence our conclusion on the 
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basis of Theorem 6. 5 that no good Lagrange multiplier principle exists in 

general for ordinary saddle programs. 

In certain circumstances, however,  there Is an analogue of (28. 1) for 

ordinary saddle programs. 

COROLLARY 6. S 1.    Assume that the program dual to   S(K)    Is strongly 

consistent.    If the pair   (z, w) js a unique Kuhn -Tucker vector for   S(K),    or 

»gulvalently if_ (z, w) _lj a unique optimal solution of the dual program,  then 

the set of stable optimal solutions of   S(K) Js nonempty and equals   S, 

PROOF.    Immediate from the theorem and Corollary S. 5.1. 

z, w 

Theorem 6. S and Corollary 6   S  1 are actually valid for any generalized 

P       Q saddle program,   provided that for each   (z,w) r R    xR     the set   S Is 
z, w 

redefined to be the set of pairs   (x, y) c  R     x R      such that   (x, y)   and    (z, w) 

together satisfy the extremallty condll'   as      The proofs go through exactly 

the  same except that this new definition o(   S plays the role of Lemma 6. 4. 
z, w 

We should emphasize that the intent of the discussion following Theorem 

fe. S was not to aay that the method of Lagrange multipliers cannot be used to 

advantage in ordinary saddle programming.    On the contrary,   the only point 

being made was that one cannot ir. general expect to obtain all of the (stable) 

optimal solutions of   S(K)   via a single    S 
z, w 

To implement the method of Lagrange multipliers,   according to 

Theorem 6   •> we need to find a pair   (z, w)   such that   S is nonempty. 
z, w 

Now Theorem 6. s together   «;»'(• Corollary s   *>. 1 show that,   in the presence 

of dual strong consistency,   the pairs    (z.w)    f-r which   S is nonempty 
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are precisely the optimal solutions of the dual program  S(L),    i.e., the 

saddle points of the dual minimax problem given by [L ] .   In view of this, 

we shall devote the rest of this section to a basic description of S(L)   and 

We begin by giving a (primal) characterization of dual strong con- 

sistency.    Notice that the conditions given are satisfied, for example, 

whenever 

0   dorn HO rec cone g. H ... Pi rec cone g   = {0 } 

and 

0 dom„Hn rec cone f, Pi •.. P rec cone f   = {0}   . 
2 1 q 

LEMMA 6. 6. The program dual to   S(K) ^s strongly consistent If and 

only if the two sets 

rec cone.HO rec cone g P .. . P rec cone g    , 

rec cone.HO rec cone f, P .. .  P rec cone f 
2 1 q 

are closed under scalar multiplication by   -1. 

PROOF.    By Lemma 5.4 it suffices to show that 

P 
(rec K)(o, x) > 0  if and only if x e rec cone H HP rec cone g 

1 1=1 

and 
q 

(rec K)(o, y) < 0  if and only if y e rec cone HP P rec cone f    . 
z ^       j=l J 

Let   HÄ. . . ., H be as in the proof of Theorem 6.1   and let  (u, x) e ri C 
0 P+q 

By (9. 3), 
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rec K{u, x, • , •) = S rec Hk(u, x, • , • ) 

Observe that trivially 

rec H0(u, x, • , • )(v, y) = rec H(x,- )(y) 

and 

rec H^u, x, • , • )(v, y) = 0   for   1 = 1, ..., p 

With the aid of (8. 5) and (9.1) it is easy to show that 

rec H     (u,x, • , • )(v,y) = 6((y, v )|epi(rec f^) 

for  j = 1, . . ., q .    These facts together imply that  (rec K)(v, y)   equals 

(rec H)(y)   when   (recf)(y)<v    for  j = 1, ..., q  and equals  -H»   other- 
c J "      J 

wise.    This establishes the second equivalence stated above.   The first 

can be proved similarly. 

The next result gives explicit representatives of the program   S(L) 

dual to the ordinary saddle program   S(K) . 

THEOREM 6. 7.   The function 

''sup     Inf  {<x,-s> + <y,-t> + H       (x,y)}if_ z e R^   and weR*? 

(s,z,t,w)-\ 

xeCH yeDH 

-00 

^ +C3 

if_ z e RP   and   w i R^ 

if_ ziRP 

where   C„ X D^. = dorn H,   belongs to  [L] .   The function obtained from this 

formula by interchanging    sup     with    inf    also belongs to   [L] . 
xeC 

H 
yeD 

H 
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PROOF.   Consider the function 

H 
z, w 

(x,w, y,z)-^ -oo 

+00 

(x,y)     if     we R^   and   z e R? 
T + 

if     w i Rq   and   z e RP 

V. if iRF 

It can be checked easily that this function is concave-convex and also 

(using the formula for   M given in the proof of Theorem 6.2, plus the parallel 

formula for   M) that it Is bounded below by   M and abovo by  M .    Hence 

this function is a member of the Lagrangian equivalence class  [M] .   It 

follows from Theorem 5. 8 and the definition of the partial conjugacy operation 

that  [L]  contains both the function 

''sup inf { <x, -s> + <y, -t> + H       (x, y)} if z e R^  and  w c R*? 
Z, W T T 

x     y 

(s,z, t, w) -  ( -oo 

^ 
+00 

if z e RP and  w i Rq 

if z i RP 

and the analogous function obtained by interchanging   sup with   inf .    Finally, 
x y 

2, W 
allows us to restrict the   x's   to  C     and the   y's 

H 

H 

the definition of   H. 

to  Dr 

Using the elements of [L]  just given, we can characterize  dem L . 

This furnishes an alternate, direct way of checking for dual strong consistency 

(cf. the primal characterization given in Lemma 6.6). 

THEOREM 6. 8.   Let  s e R1",   t e Rn,    z e RP   and  w e Rq .   Then 

(s, z) e dom.L z e R    and  s e dom.H   + s z domg. 
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and 

(t, w) e dorn L 
a ♦ ♦ 

w e R    and  t e dorn H   + Z w domf 

E    ' 

I 

PROOF.    For any   L K [L],   (t, w) e dom2L   if and only if L(-, • ,t, w) 

Is never   -«   .   Taking for L   the function displayed in Theorem 6. 7 yields 

(t, w) e dom L  if and only if w e R^  and 

sup    inf   {<x,-s> + <y,-t> + H       (x,y)}>-oo,   VseRmVzeR^. 
xeCHyeDH 

Now for any fixed   w e R_l   this condition is easily seen to be equivalent to 

3x e C„   such that     inf {<y, -t> + H{x, y) + S w f (y)} > -«   , 
yeDH 

that is, 

t e    U   dom{H(x, •) +Sw f ) 
xeCH 

But for each   w e R4   and   x e C„,   (16.4) and (16.1) imply that 
+ H 

dom(H(x, •) + S w f r = dorn H(x, •)" + S w^ dom fj"  , 

and by Lemma 0.4 we have that 

dom H* =   U   domH(x, •) 
xeCH 

It follows that   (t, w) P. dom,L  is equivalent to 

w e Rq   and   t e   U   (dom H(x, •)   + Z w dom f )   , 
xeCH 
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which Is the same as 

w e R    and  t e dorn H   + j; w domf 
+ 2 J J 

The characterization of  dem L  is established similarly, using the other 

element of  [L]  described by Theorem 6.8. 

We can now describe the "dual objective functions" and the "dual 

feasible solutions" corresponding to the ordinary saddle program  S(K)   . 

THEOREM 6.9-    Assume that the program   S(L)  dual to  S(K)  is strongly 

consistent.   Then the dual problem of  S(K)   is well-defined and is given by 

an equivalence class   [L ]   of closed proper convex-concave functions 

(the "dual objective functions").   The class   [L ]   contains both the function 

sup       inf   {H(x, y)+Szig (x) + Sw f (y)}  if z e R J  and  w e R^ 
xeCHy£DH 

(z,w) -< -00 

+00 

if z e RP and  x i Rq 

if  ziR^ 

and the function obtained from this formula by interchanging    sup with 
xeCH 

in!    .   A pair   (z, w)   is a feasible solution of  S(L)   (is a "dual feasible 
yeDH 

solution") if and only Ji   (z, w) e R^ X R^   , 

0 e dom.H   +z:zdomg    and   0 e dem H    +z:wdomf    , 

and the set of such pairs   (z, w)  is exactly domL    . 

PROOF.   Immediate from Theorem 5.2 applied to  S(L),   together with 

Theorems 6. 7 and 6. 8.    Notice that the first characterization of the feasible 
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solutions of S(L) also follows directly from Theorem 6. 8 without the aid of 

dual strong consistency, once one observes that (z, w) is a feasible solu- 

tion of S(L)  if and only if  (0, z, 0, w) e dom L . 
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§7.   Saddle Programs of Fenchel Type 

In this final section we apply the general theory of §5 to another class 

of minimax problems.   Our results extend to minimax theory those 

obtained by Fenchel [23] and Rockafellar [45,46,48] for a certain class of 

convex optimization problems.   These problems enjoy a pleasing symmetry 

property (not shared by ordinary saddle programs); namely, the dual of such 

a problem is of the same form.   This class includes the minimax problems 

which Lebedev-Tynjanskil [ 34] and Tynjanskii [61 ] considered in an effort 

to define the dual of a game and also those studied by Rockafellar [47 ] in 

connection with double duality theory.   The results in [ 34], [61 ] and some of 

those in [ 60] are improved.    Taken together, Theorems 7. 3 through 7. 8 can 

be viewed as an extension of the Fenchel-Rockafellar Duality Theorem to 

saddle functions and minimax problems. 

Throughout this section let  K be a closed proper concave-convex 

function on  R    x R ,   La closed proper convex-concave function on 

RP X Rq,   A = A, X A^   a linear transformation from   R™ X Rn  to   RP X R*5,   and 

define 

X = {x e dom.Kl^x e dom.L} , 

Y = {y e dom KJA^yedom L} , 

Z = {z e dom L  I A. z e dom.K  }  , 

r * 1    * *, 
W= {w e dom L  |A w e dom K } 

Consider the following pair of minimax problems-. 
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(I)   Find the saddle points of  K - LA with respect to  X X Y ; 

(II)   Find the saddle points of L   - K A    with respect to  Z X W . 

The problems studied by Rockafellar [47 ] correspond to the choice  m = p , 

n = q, A the identity transformation, and L given by 

L(x,y) = 

0     if x e R    and  y e R 

. r       1 »in       , „n -H»   if x g R    and  y e R 

-00   if y ^R+  • 

To apply the results of §5 to these problems, define a function ft   on 

(RP X Rm) X {Rq X Rn)   by 

1 

K(x, y) - L(u + AjX, v + Kfl)   if  (u, x) e r   and   (v, y) e A 

* (u, x, v, y) = (  +00 if  (u, x) e r   and   (v, y) /^ A 

if  (u,x) i r   , -00 

where 

r = {(u, x)|x e dom.K, u + A^x e dom.L}   , 

A - {(v, y) |y e dom K, v + Aye dorn L}   . 

LEMMA 7.1.   The function  «   is closed proper concave-convex with 

domain     r X A,   and 

ri r = {(u,x)|x e r^dom.K),   u + Ax e ri(dom L)}   , 

rl A = {(v, y) |y e ri(dom K),   v + Ay F ri(dom L)} . 

PROOF.   Trivially,   r   is convex.   Define   r   = {u|(u, x)er}   for each 

x .    Then   r    is empty when  x ^ dom.K and equals  dom L - A.X  when 
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x e dom.K .   Hence (6. 8) implies that  (u, x) e ri r  If and only If xerl(dom.K) 

and  u e rlldom.L ~ A.X) .   This establishes the formula for rl r,   and the one 

for  ri A   is similar.   From these formulas and the fact that  K  and   L are 

closed and proper, it is not hard to verify (using (34. 3)) that   *   has the 

properties asserted. 

According to Lemma 7.1,   *   determines a generalized saddle program 

S(«)   on   R    XR    with perturbations in   R   XR   .   The formulas given for 

ri r   and   ri A  imply that  S(«)   is strongly consistent if and only if 

ri(dom L) Pi A ri(dom K) ^ 0 .    In this event Theorems 1.8,  3. 2 and 5. 2 imply 

that  [K - LA]  is well-defined and gives the primal problem of  S(4),   which 

by (36. 3) is the same as   (I) .   We say that a generalized saddle program 

having the form of  S(*)   is of Fenchel type . 

It can be computed as an exercise that the generalized saddle program 

SCJr)  dual to S(4)  may be given by 

L (z, w) - K (s + A. z, t + A^w)   if  (s, z) e IT   and   (t, w) e ß 

-co if  (s, z) i n   and   (t, w) en 

+ oo if (t,w) in  , 

where 

IT = {(s, z) |z e dom.L , s + A^ z e dom.K }  , 

J2 = {(t, w) |w e dom_ L , t + A^we dom_K } . 

Thus, the dual of a program of Fenchel type is another program of Fenchel 

type.   Hence we have immediately that   S(*)  is strongly consistent if and 
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only If ri(domK ) Pl A   ri(domL ) * 0,   and In this event  [L    - K A ]  is 

well-defined and gives the primal problem of S(1*)  (i.e. the dual problem 

of  S(*)) .   This problem is the same as   (11) . 

With these facts in mind, it is clear that all the results of §5 yield 

assertions about problems (I) and (II) .   In the remainder of this section we 

illustrate some of this. 

First we dualize the hypothesis  ri(domK )n A   ri(domL )#0.    Note 

that the necessary and sufficient conditions given below are satisfied, for 

example, when X XY is bounded. 

LEMMA7.2.   In order that   ri(domK  JHA   ri(domL)^0,   _itis_ 

necessary and sufficient that 

(rec K)(x) > (rec L)(A^x)   imply (rec K)(-x) > (rec1L)(-A^x) 

and 

(rec2K)(y)< (rec2L)(A2y) Imply (rec2K)(-y) < (rec^H-A^)   . 

PROOF.   The lemma will follow from Lemma 5.4, once it is verified that 

(rec1«)(0,x) > 0  if and only if  (reCjKHx) > (rec L)(Ax)   and   (rec $)(0,y)< 0 

if and only if  (rec2K)(y) < (rec L)(A^y) .   Only the second equivalence will be 

checked, as the first is analogous.   For each  (u, x) e ri r,   it follows from 

Lemma 7.1,  (9. 3) and (9. 5) that 

rec 4 (u, x, • , • )(v, y) = rec K(x, • )(y) - rec L(u + AjX, • )(v + P^y)   . 

Hence,    (rec «)(0, y) < 0   if and only if rec K(x, • )(y) < rec L(u + A.X, • )(A^y) 

holds for each   (u, x) e ri r .    But this latter condition occurs if and only if 
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rec K(x, > )(y) <  rec L(u, • UKy)  holds for each  x e rl(dom,K)  and 

u e ri(dom.L),   which occurs If and only If (rec K)(y) < (rec LXA^y) . 

The following result gives "boxing in" inequalities for the lower and 

upper saddle values pertaining to   (I)   and   (II) . 

THEOREM 7. 3.   If_ ri(domL)Pi A ri(domK) # 0,   then 

sup inf (K - LA) < sup inf (L   - K A ) < inf sup (L   - K A ) < inf sup(K - LA) . 
XY WZ ZW YX 

Dually,  if   ri(domK*)nA   ri(domL ) ^ 0,   then 

sup inf(L* - K*A*) < sup inf (K - LA) < inf sup(K - LA) < inf sup(L    - K A )   . 
WZ ~XY YX ZW 

PROOF.   By Corollary 5. 5, 2, with the aid of (36.4) and (36. 3). 

It can be shown that the least member of the Lagrangian of  S(*)   is 

the function 

K(x, y) + L (z, w) - <A1x, z > - <A y, w > if (x, w) e C and (y, z) e cl D 

(x, w, y, z)-*^ +oo if  (x,w) e C and (y, z)^clD 

-oo if  (x,w) ^ C 

* * 
where   C XD = (dom.K Xdom L ) X (dorn K Xdom.L )  is the effective domain 

of the Lagrangian.   From this it follows easily by (36. 3), (36.4) and (37.4) 

m      n P      Q that two pairs   (x, y)eR    XR    and   (z, w) e R   XR    satisfy the extremality 

conditions associated with  S(*)   and   SCär)   if and only if 

A(x, y) e 8L (z,w)   and   A (z,w) e 8K(x,y)   . (**) 

To state the remaining results we need the following definitions.   The 

optimal value of  (I)  is the saddle value of  K - LA with respect to  X XY 
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(when this saddle value exists).   An optimal solution of  (I)  is a saddle point 

of K - LA with respect to X X Y .   It is convenient to say that an optimal 

solution of  (I)   is stable if and only if it is a stable optimal solution of 

S(*) .    Similar definitions are used for   (II) . 

THEOREM 7.4.   A pair  (x, y)   is a stable optimal solution of  (I)   if_ 

and only if there e^ "fs a pair   (z,w)   such that (*♦) holds.    Dually,  a pair 

(z, w)   i£ a stable optimal solution of  (II) ^f and only _if there exists _a pair 

(x, y)   such that   (**) holds. 

PROOF.    By Theorem 5.13 . 

THEOREM 7. 5. Problem (I) has a stable optimal solution if and only 

if problem (II) does, in which case the optimal values in (I) and (II) are 

equal. 

PROOF.    By Theorem 5.12. 

THEOREM?.6.   If_ ri(domL) Pi A ri(dom K) ^ 0,   then every optimal solu- 

tiori (.f  (I)   is stable.   Dually, if  ri(domK  JOA   ri(dom L )* 0,   then every 

optimel solution of  (II)   is stable. 

PROOF.    By  Theorem 5.15. 

To go along with these results there is the following general existence 

theorem.    (We omit the dual version.) 

THEOREM?.7.   Assume that   ri(dom L) O A rl(domK) * 0 and that either 

X X Y  is bounded or (more generally) that the following two conditions are 

satisfied; 

(a)   If_  rec K(x, • )(y) < rec L(A^x, • )(A y)   for every x e ri X,    then 

rec K(x, • )(-y) < rec L(A x, • H-A-y)   for every  x e ri X . 
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(b)   Il_ rec K(-,y)(x) > rec L(-»A-yHA-x)   for every   y e ti Y.    then 

rec K(-,y)(-x) > rec L(-, ^yX-A-x)   for every   y c rl Y   . 

Then there exists an optimal solution of   (I). 

PROOF.    Since   [♦.] = [K - LA],    the theorem will tollow Immediately 

from   Corollary 5. 2.1 once It Is checked that   rec  (K - LA)(y) < 0   If and 

only If   rec K(x, • )(y) < rec L(A.x, • MA   y)   for every   x e rl X,    and that 

rec.iK - LA)(x) > 0   If and only If   rec K(  , y)(x) > rec L(  , A^y)(A x)   for every 

y c rl Y .    We show only the first equivalence,  as the second Is similar.    By 

Theorems 3.2 and 1.8,    (K - LA)   has effective domain   X xY   and contains 

the function   H   given by 

K(x, y) - LA(x, y)    if   x c X   and   y e Y 

H(x, y) =    (     ♦« if   x c X   and   y # Y 

-« if   x ^ X   . 

From this together with (9. 3) and (9. S),   It follows that 

rec H(x,   )(y) = rec K(x,    )(y)  ■ rec L AjX,   )(A   y) 

for every   x e rl X .    Since   rec  (K - LA)(y) =  sup(rec H(x,   )(y)|x c rl X)   , 

the equivalence follows. 

Thf preceding results can be collected together quite concisely in the 

presence of strong consistency and boundedness assumptions. 

THEOREM 7. 8.    Assume either that    MldomLk    A rl(dom K) * £ arrf   X x Y   [^ 

• • • 
bounded or dually that   rl(dom K )i    A   rMdom L ) # ^ «rx^ 2  x W   is 
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bounded.    Then both   (I)   and   (II)   have optimal solutions and the optimal 

values In   (I)   and   (II)   are equal.    Moreovei.  these optimal solutions are 

stable,  and they are precisely the pairs   (x, y)   and   (z,w)   for which (••) 

holds. 

! 
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Appendix:   Polyhedral Refinements 

Recall from §0 that a saddle function is polyhedral if and only if it is 

closed and either its concave or its convex parent is polyhedral.   It has been 

noted that each of the operations developed in the paper preserve this property 

of polyhedralness.    Much more can be said, however.   In fact, nearly all the 

results in the paper admit refinements when some or all of the saddle functions 

Involved are polyhedral.    These refinements are,  for the most part,  not hard 

to establish.   One simply needs to make slight,  systematic modifications 

of the existing proofs.   These revisions rest ultimately on Just a few 

additional results which will be presented below,  plus two basic "principles. " 

The first of these principles can be stated as follows.    If certain con- 

clusions can be deduced fron a condition of the form   (C X D) O ri(dom K) # 0 

when   K   is a closed proper saddle function and   C   and   D   are convex sets, 

then the same conclusions (at least) can be deduced from the weaker con- 

dition   (C XD)n dornK it 0 when   K  is actually polyhedral.    "Overlapping" 

conditions of this kind are generally to ensure that some operation involving 

[K]   can be performed to yield a well-defined new equivalence class.    The 

principle Just says that less overlapping is required for well-definedness 

when   [K]   is polyhedral.    The implementation of this principle rests essenti- 

ally on the theorem below, which is usually used in place of (34. 3) In proving 

the polyhedral refinements. 

THEOREM A. 1.   Let  K be a polyhedral proper concave-convex function 

on   R    XR   .   Then   (i)  the sets  dom.K  and  dom.K are polyhedral convex 
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proper convex (hence closed) with effective domain  dorn K,   and   (Iv)   for each 

y F. dorn K the function K(«, y)   is polyhedral proper concave (hence closed) with 

effective domain  dom.K  . 

PROOF.   Assertion (1) follows from the representations of dorn K given 

In Theorem 0.1(a) and the fact that linear transformations preserve polyhedral 

convex sets (19. 3).   Assertion (11) Is Just a restatement of (33.2.2).   Now 

suppose   x e dom.K  .    Then (34. 3) Implies   K(x, .)   Is proper convex with 

Its effective domain between  dorn K  and   cl(dom K) .   But since  dom K 

is polyhedral convex,  It is closed (19.1), and hence  domK(x, •) = dom K  . 

Also, from (li) and Theorem 0.1(b) it follows that   K(x, •) = K(x, •) = f(x,.)    . 

Hence (19. 3.1) and (19. 2) imply that   K(x, •)   is polyhedral.   This establishes 

(ill), and (iv) Is proved similarly. 

In order to discuss the second "principle" we need two more polyhedral 

results.    Recall that Lemma 0. 7 was the tool which enabled us to dualize 

various conditions throughout the paper (e. g. Lemmas 1.9, 3.5,  5.4, 6,6 

and 7.2).   This next lemma can be used similarly to dualize the polyhedral 

versions of the same conditions. 

LEMMA A 2,   Let   K be a polyhedral proper concave-convex function on 

R    XR   .   If_ L   is a subspace of  R  ,   then   LP) dom.K   * 0 if and only If 

(reCjKHx) < 0   for every  x e L     .   Similarly, if  L  is a subspace of  Rn,    then 

LPldom   K  # 0 if and only if   (rec_K)(y) > 0   for every y e L     . 
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(hence closed),    (11)  the elements of [K]  agree everywhere on   (R    xdom K) ,m 

U (domjK X R ),    (ill)  for each x e dom K Jhe function  K(xf •)   is polyhedral 
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PROOF.   We prove only the second equivalence, as the first is similar. 

Write  dorn K   =D   .    By (20.2),   LO D   = 0 if and only if there exist 
Cm 

y e R    and o e R   such that 

sup <• ,y> < a < inf<',y>  and   o<3up<',y>  . 

D* L L 

But the latter condition occurs if and only if there exists  y e R    such that 

sup <• ,y > < inf < • ,y>  and   sup< • ,y> < sup< •, y>,    i.e. if and only if there 

D* L D* L 

exits   yeL     suchthat   sup<',y><0   .    Since   sup< • ,y> = (rec K)(y)   by 
D* D* 2 

Theorem 0.3,   this finishts the proof. 

Also needed is the fact that the subdifferential mapping is better behaved 

when   K  is polyhedral, as explained below. 

THEOREM A. 3.    Let   K be a polyhedral proper concave-convex function 

on  R    X R   .    Then  dom aK = dom K,   and   öK(x, y) Jjs a product of polyhedral 

convex sets for each   (x, y)EdomK. 

PROOF.   Since   K  is closed and proper,  (37.4) implies that  domaKCdomK 

On the other hand,  let   (x, y) e domK .   Then Theorem A. 1 (ill) and (23.10) imply 

that   9K(x, • )(y)   is nonempty polyhedral convex,  and similarly Theorem A. l(iv) 

and (23.10) imply   9K(-,y)(x)   is nonempty.    But aK(x, y) = 8K(-,y)(x) X 

9K(x, -Hy) • 

We can now state the second general "principle" involved in the poly- 

hedral refinements.    It concerns results which essentially assert the existence 

of a saddle point for some   K .   Such results are generally based on the fact 

(cf.  (37, 5. 3)) that the condition   (0, 0) e ri(domK )   is sufficient for a closed 
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proper  K  to have a saddle point, and that (by Lemma 0. 5) this condition can 

be written dually as the pair of conditions 

(reCjKHx) > 0 =^ (rec^H-x) > 0   , 

(rec2K)(y> < 0 =5- (rec2K)(-y) < 0   . 

When  K  is actually polyhedral, Theorem A. 3 and (37. 5. 3) imply that the 

condition   (0, 0) e dom K    is both sufficient and necessary for  K to have a 

saddle point, and by Lemma A. 2 this condition can be written dually as the 

pair of conditions 

(rec K)(x) < 0,   Vx 

(rec2KXy) > 0,   Vy . 

The second principle, then,  says that when   K  is polyhedral and proper the 

former (sufficient) conditions on the recession functions of K can be relaxed 

to the latter (necessary and sufficient) conditions in results which assert the 

existence of a saddle point for  K  . 

Examples of results whose polyhedral refinements involve applying the 

first principle are Theorems 1. 2,  3.6,  5.2, 1.8,  3.10,  5.5, and 3.2.   Results 

whose refinements entail applying both principles include Theorems 2.4,  2. 5, 

, 3.11, and 5.6, Corollary 5.2.1, and Theorems 6. 3 and 7.7.   The refinements of 

\ Theorems 2.4 and 2. 5 are the most involved. 

[In some places it is helpful to have the flexibility furnished by the various 

representations of  rec K given in the next result. 

THEOREM A. 4.   Let  K be a closed proper concave-convex function on 

R    XR   .   If  C   is any set satisfying   r^dom.K) C C C dorn K,   then 
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(rec K)(y) = sup {recK(x, ■)&)}   . 
6 x e C 

Similarly, Jf D  Is any set satisfying  rl(dom K) c D c dorn K,   then 

(rec K)(x) = inf   {recK(-, y)(x)}   . 
yeD 

PROOF.   We prove only the first assertion,  as the second Is similar. 

Write dorn  K   = D   .    By "Iheorem 0.3 we know that   rec K =6 (• |D ) .    Now 

from the formulas given for  D     and   rlD     In the proof of (37.2), It Is clear 

that 

rl D   C    U   dorn f(x, .)<Z D*   , 
xeC 

where   f  is the convex parent of K .   Hence, much as In the proof of (37. 2), 

*    i   * ,    * 

we can write   5 (y ID ) = sup{<y , y > I y e dorn f(x, •), x e C } = 

sup {6 (y|domf(x, •))) = sup{recf(x, •) (y)}= sup{rec K(x, • )(y)},   as asserted. 
xeC xeC xeC 

In proving polyhedral refinements there are naturally placos where 

polyhedral refinements of various results from convex function theory are 

needed.   With few exceptions, these supplementary facts are mentioned 

explicitly in [48] (e.g.  (19.2)).   In particular, the important tool (16. 3) has 

a polyhedral refinement which is indicated In [48,  p.  144].   We include a 

proof for completeness. 

LEMMA A. 5.    Let   f  be a polyhedral convex function on   R,   and let 

A: R    -► R    be a   linear transformation.   Assume   range A Pi dorn 1*0,   or 

equivalently.  assume that   (rec f  )(x ) > 0  whenever  Ax   = 0 .   Then   A f 

is proper and   (fA)   =A f    .    Moreover, for each   y     the infimum in the defl- 

nition   (A f )(y ) = inf{f (x )|A x   = y }  either is attained or is   + oo 

vacuously. 
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PROOF,   The equivalence of the two conditions In the hypothesis can 

be deduced from the polyhedral refinement of (16.2), whose proof Is just 

like that of Lemma A. 2.    By (19. 3.1),   fA and   A f    are polyhedral convex; 

moreover, the inflmum in the definition of A f ,    if finite, is attained. 

Observe that a polyhedral proper convex function is necessarily closed 

(19.1.2) .   Then (16. 3) implies   (fA)   = cl(A f ) .    Since   range A Pi dorn f * 0 
« * * * 

implies   £A  is proper, we can conclude that cl(A  f ),    and hence  A f ,   is 

proper.   Finally, the above observation implies that A f    is closed.   This 

completes the proof. 

With the aid of the two "principles" and the additional results just given, 

one can systematically carry out polyhedral refinements for almost all of the 

results in the paper except for those in §4 and for the "mixed" cases of 

§§3, 6 and 7.   The results of §4 plainly do not admit polyhedral refinements. 

It appears that also the mixed case of §6 (i. e. when some of  H,g, , • • • >9   , 

f,    ... ,f      are polyhedral) does not admit polyhedral refinements.   The 
1 ' q 

troublesome spot is in proving a version of Theorem 5.15, i.e. the ex- 

istence of Lagrange multipliers.   However the "mixed" case of §7 follows 

from that of §3, which we now discuss. 

In the event that   K., . .., K    are all polyhedral and proper, the refine- 

ments for §3 can of course be derived directly from those of §§1 and 2.    But 

in the mixed case,  for example when only  K., . .., K    are polyhedral for 

some  1 < t < s,   a different line of argument is needed.    To begin with, one 

follows the first "principle" and proves a version of Theorem 3, 2 by replacing 

the hypothesis (*) with the hypothesis 
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dorn Kj Pi. .. n dorn Kt Pi rl(dom Kt+1) O ... Pi rl(dom ly ^ 0 . 

Then using this hypothesis one must essentially retrace the outline 

of §§1 and 2, appealing to (20.1) (resp. (23. 8)) everywhere the original 

proofs appeal to (16. 3) (resp.  (23. 9)).   In carrying out this program notice 

that the important tool (6. 5) no longer applies to allow full use of the re- 

laxed intersection hypothesis.    Fortunately, though, we have the following 

refinement of (6. 5), which when used in conjunction with (6. 5) makes a 

perfectly satisfactory substitute. 

LEMMA A. 6.   Let  C.   and   C    be convex sets In   R     satisfying 

C. Pi rl C, # 0 .   Then 

rKCjOCy C C^Hrl C2 

and 

CjPlcl c2 C clfCjOCy   . 

PROOF.   Suppose we know that rl C  Pi rl C   * (ft   where   C    Is the 

Intersection of C.   with the affine hull of C    .    Noting that  rl C     and 

cl C    have the same affine hull as   C     (6. 2),   we can apply (6. 5) to 

conclude that  rlfCj P C2) = rl(C0 P C2) = rl C0 P rl C2C C0 P rl C2 = 

C1PrlC2   and   CjP clC2 = C0P clC2 C cl C0P cl C2 =cl(C0P C2) = 

clfC.PC )   . Thus we are done once we show that  rl C     meets  rl C     . 

Assume to the contrary that   rlC.PrlC   =0.   Since   C     and   C     are 

nonempty by the hypothesis,  (11. 3) Implies that there exists a hyperplane 

H   separating   C     and   C     properly.   For deflnlteness let  C. C HUA 
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and  C   C HU B,   where  A and   B denote the two open half spaces de- 

termined by H   .   Again using the hypothesis, pick some point  zeC. PlriC- . 

Clearly z e H •   Suppose there existed some point  a e C  O A  .   Sine»? 

z e ri C?   and  a  belongs to the affine hull of C ,   there would exist   \ 

such that  0 < X. < 1   and   x = (1 - \)z + \a e C-   .   But (6.1) together with 

z e H   and   a e A would imply   x e A .   Since this would contradict 

C  O A = 0,   we conclude that   C    C H .   On the other hand,  suppose 

there existed some point  b e C  O B .   Since   z e ri C     and   b e C   ,   (6.4) 

would imply the existence of some   \i > 1   such that  y = (1 - |Ji)b + |xz e C    . 

But  z e H,   b c B  and   \x > I  would imply that  y e A .   Since this would 

contradict  C  O A = 0,   we conclude that  C   C H .    Therefore   C  U C   C H . 

But now this contradicts the properness of the separation.   Since we are led 

to a contradiction in any case, the original assumption   riC   PlriC   = 0 

must be rejected and the proof is complete. 

Finally, notice also for the mixed case of  §3 that alternative representa- 

tions of recJK. + ...  + K )   are helpful.   These are obtained from Lemma A. 6^ 

(6. 5) and Theorem A. 4 via the choices  C = C. Pi ... Pi C^O ri C   , P ... P ri C 
1 t t+1 s 

and   D = D, P .. . P D P ri D   , P ... P ri D ,   where   C, X D  = dorn K    . 1 t t+1 s' i        i i 
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