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ABSTRACT

In this paper the theory of minimax problems is developed further

via the cual approach, that is, by means of the conjugacy correspondence
among saddle functions. The saddle functions considered are extended -
real-valued, concave in one argument and convex in the other argument.
The results obtained extend to minimax problems many of the results
already known for convex optimization problems. The proofs, however,
are not routine extensions of the ones in the convex case. This is because
each minimax problem corresponds in a natural way to a whole equivalence
class of saddle functions, and consequently one must always deal with
these equivalence classes rather than just with individual functions. In
the first half of the paper various operations are described for forming

new equivalence classes from given ones. It is shown that these opera-
tions fall into dual pairs with respect to the conjugacy correspondence.
Included are the important operations of addition and its dual, minimax
convolution. Formulas are given describing the éffects of the operations
on the subdifferential mappings of the equivalence classes. In the

second half of the paper, generalized saddle programs are defined and

the earlier results are used to develop a perturbational duality theory for
such programs. Several characterizations are given for stable optimal
solutions and Kuhn-Tucker vectors, including a Lagrangian saddle point
characterization. Two special types of programs are then considered. The

results for the first type show, somewhat surprisingly, that in general
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there does not exist a good Lagrange multiplier principle for minimax
problems subject to convex inequality constraints. The results for programs
of the second type constitute a minimax version of Fenchel's Duality
Theorem. The appendix discusses polyhedral refinements, which are

possible for nearly all of the results.
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Introduction

In recent years much work has been done on convex optimization
problems, and especially on convex programming problems. The dual
approach to these problems, which involves applying the theory of con-
jugate convex functions, has been very successful. It has led to defini-
tive results for convex optimization problems.

In passing to the theory of minimax problems, one encounters a
formidable technical difficulty not found in purely convex problems. It
is that each minimax prdblem corresponds not just to a single saddle
function but rather to a whole equivalence class of saddle functions. How-
ever, a conjugacy correspondence among such equivalence classes has been
developed. By means of it the basic questions concerning the existence
and nature of saddle points have been fairly well answered, and in the

past several years a number of methods have beecn presented for actually

locating saddle points.

The present paper aims to develop further the theory of minimax
problems along the lines of the recent results for convex problems. It is
hoped that this will serve to complement current efforts toward methods of
finding saddle points and to give further impetus to these efforts. Also,

this paper is presented in support of the thesis that nearly everything that

can be proved for convex optimization problems via the dual approach can

similarly be established for minimax problems.

Sponsored by the United States Army under Contract No.: DA-31-124-ARO-
D-462 and the United States Air Force under Contract No. AF-AFOSR-71-
1994.

— P i ; B L T L VN vy M

SESTY T A VO T T S DU



Prow i Maa it s e L

Our plan in this inti oduction is first to review some of the literature

pertaining to minimax problems, next to sketch the results for convex

optimization problems which this paper extends, then to review very briefly

a few basic notions concerning saddle functions, and finally to outline

the results obtained.

Minimax theory originated in 1928 with von Neuniann's minimax theorem

for matrix games [38). Various proofs and generalizations of this theorem

have been given by many authors, including Ville [62], Xakutani [29],

Wald [63], Shiffman [53], Fan [20, 21], Kneser [30], Glicksberg [26],

Nikaid3[39], Berge [4], Ston [54], Ghouila-Houri [25], Moreau [37], and

Rockafellar [43,44]. Much of the early work in minimax theory was done

in connection with game theory. However in about 1950 two equivalences
were established which made i apparent that minimax theory was intimately
related to mathematical programming. One of these two equivalences was
that between matrix games and dual pairs of linear programs (see Dantzig
[13], Gale-Kuhn-Tucker [24], and Charnes [8]). The other equivalence was
that between convex programs and Lagrangian saddle point problems (see
Kuhn-Tucker [32], Slater [55), and extensions given by Hurwicz-Uzawa in
[2]). Various authors, including Stoer [56,57 ], Mangasarian-Ponstein [35],
and Dantzig-Eisenberg-Cottle [14], later derived duality results for con-
strained maximization and minimization problems by means of minimax
theorems.

In 1964 Rockafellar [43 ] defined a conjugacy correspondence among

saddle functions parallel to that of Fenchel [22] for convex functions. This
-2- #1190
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correspondence was used in [47] to represent (in finitely many differant
ways) a certain dual pair of convex programs as a dual pair of minimax
problems. At a later date Tynjanskii [60] independently defined the con-
jugacy correspondence for a more restrictive class of saddle functions.
He used it to associate with a given concave-convex game another game of
the same type, and showed how solving such a pair of "dual games" is
equivalent to solving a related pair of convex programs. Also, papers of
Moreau [37] and loffe-Tikhomirov [28 ] contain implicit results concerning
E the conjugacy correspondence among saddle functions.

The relevance of minimax theory to mathematical economics has long
been recognized, dating back to the beginnings of game theory. More

recently, minimax theory has been useful in the calculus of variations and

3
-

E optimal control theory (e.g. Rockafellar [50,51]). It also plays a role in

differential games (e.g. [31]).
Related to minimax problems are max-min problems, i.e. two-stage
& problems of the form m;x(min f(x,y)) . These have been studied by
1 Pshenichnyi §0], Danskin [l)l' ), and Bram [5]. Such problems correspond
to "half* a saddle point problem and arise from such practical considera-
tions as two-stage resource allocation.
The preceding references deal primarily with theory. However the
task of actually finding saddle points has also been studied. Work in the

early 1950's was done by Brown-von Neumann [6], Robinson [41], and

Danskin [10]. Charnes [8] showed that a minimax problem corresponding

i #1190 -3-
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to a constrained matrix game {s equivalent to a dual pair of linear programs,

so that such techniques as the simplex method could be applied. Con-
versely, in order to utilize the Kuhn-Tucker theorem [ 32] and its generaliza-
tions for solving concave programs, Arrow-Hurwicz [2, p. 118] developed
a "steepest descent* method for locating the saddle points of the Lagrangian.
Further generalizations of the method of " steepest descent" in connection
with saddie points are discussed in Rockafellar [52]. Methods have also
been given recently by Demyanov (15,17 , 18], Auslender [3], Danskin [12],
Cherruault-Loridan [ 9], Gratchev-Evtushenko [27], and Catkovskil [7].
See also Tremolieres' survey paper [59]. Methods dealing with max-min
problems have been given by Pshenichnyi [40], Demyanov [16], and Danskin
[12]. ,
The problem of minimizing a convex function subject to constraints
has been analyzed by various authors by means of the duality theory arising
from Fenchel's conjugacy correspondence. This dual approach, as ex-
pounded in [48], rests ultimately on the duality between two operations
which combine a convex function with a linear transformation. In this paper
we analyze constrained minimax problems in a similar fashion by means of
the duality theory arising from the conjugacy correspondence among saddle
functions. To accomplish this we develop for saddle functions analogues ’
of these fundamental operations on convex functions. But before actually

describing our results, we shall cketch the two operations and the appli-

cations of them which this paper extends.

#1190




One of the two operations is just to form the composition fA of a
convex function f with a linear transformation A. The other operation
may be called taking the image of f under A, and the resulting function
Af 1is defined by (Af)(x) = inf{f(y)|Ay = x} . The fundamental result con-
necting these operations is that, under certain mild hypotheses,

=t ()
where * of a linear transformation denotes the adjoint linear transforma-
tion and * of a ~onvex function denotes the conjugate convex function.

One of the main consequences of the duality formula (1) is the
duality between the operations of addition and infimal convolution for con-
vex functions. This can be obtained by taking f to be the separable
function

f(xl, ce 0y Xm) s fl(xl) + RO + fm(xm) ’

where each f‘ is convex on Rn, and defining A to be the linear trans-

formation which sends each element x of R" into the m-tuple (x, ..., Xx).

In thisevent fA is fl +... + fm and I\u‘f"l is the function

* . » . % ok %
X - mf{fl (%)) +... 4 fm(xm)lx =x

l+...+xm},

i{. e. the infimal convolution of f; NEEr s f; . Formula (1) then implies

that, under mild hypotheses, the conjugate of the sum is the infimal con-

volute of the conjugates. This gives a framework encompassing problems

of the form, "minimize h(x) subject to x e C,” where h and C are convex.

Simply take m = 2, let fl= h, and let fz(x) equal 0 when xe C and

+0o otherwise.

#1190 -5.
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The duality representnd by formula (1) is also fundamental in the per-
turbational duality theory developed by Rockafellar for generalized convex
programs {4¢8]. Among other things, this theory generalizes the ciassical
results about dual linear programs and generalizes Fenchei's Duality
Theorem [22, p. 108] (see also [¢5, 46] and Stoer-Witzgall [5g]). It
also sheds light on the Lagrange multiplier principle for convex program-
ming and thereby on the celebrated Dantzig-Wolfe decomposition principle
for linear and convex programs [48, pp. 285-290] (see also Falk [19] and
Lasdon [ 33)).

For convenient reference, in the next three varagraphs we review
some basic definitions and facts about saddle functions due to Rockafellar
[43].

There is an equivalence relation among saddle funciions which has
the property that equivalent saddle functions have the same (lower and
upper) saddle values and also the same saddle points. The relation is the
following: two concave-convex functions K and L are said to be equiva-
lent if and only if for cach x the closures of the convex functions K(x, -)
and L(x,.) coincide and for each y the closures of the concave functions

K(-,y) and L(*,y) coincide. The equivalence classes determined by this

equivalence relation are what we take to be the natural objects of study in
minimax theory.

Recall that in convex function theory, in order for the crucial duality

formula




to hold, one considers convex functions which are closed, i.e. lower semi-
continuous. This is a natural, constructive regularity assumption to make.
Similarly, in saddle function theory an anélogue of formula (2) holds for
"reqgularized" saddle functions. A saddle function K 1is defined to be closed

if and only if it is equivalent to both its convex closure and its concave

i closure, where by convex (resp. concave) closure we mean the saddle
% function obtained from K by closing it (in the sense of convex function J
P theory) in its convex (resp. concave) argument. Trivially, a saddle function
is closed if aﬁd only if every member of its equivalence class is closed.
Furthermore, the property of being closed is a constructive regularity con-

dition for saddle functions. Equivalent closed saddle functions must be

PR AT T S L A T U S

. very nearly equal in that they can differ essentially only at the "corner
points" of their "domain of finiteness." Moreover, each equivalence class
[K] of closed saddle functions is an interval in the sense that there exist
unique members K and K of [K] ‘such that [K] contains all, and only

those, saddle functions K satisfying K < X < K.

If K is a concave-convex function from R XR" to [0, +0], the
* =%
lower conjugate K and upper conjugate K of K are defined by

* % * % %
K (x,y)=supinf{<x,x > +<y,y > - K(x,v)}
y x

and

-k * ok * =
K (x,y)=Inf sup{<x,x >+<y,y > - K(x,¥)} .
X Y

: : ‘ * —2%
4 | These functions are concave-convex. When K is closed, K and K are

#1190 : -7-
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equivalent and closed and, moreover, they depend only on the equivalence
class [K] containing K. Thus, associated with each equivalence class (K]
of closed concave -convex functions is another well -defined equivalence
class [K‘] of closed concave -convex functions, namely the class containing .
5‘ and X° . The class [K‘] is said to be the conjugate of (K]} . This
conjugacy correspondence has the crucial property that the conjugate of | K‘]
is [K]), which is the analogue of formula (2) for saddle functions.

With this review of general facts in mind, we now describe the results
obtained in this paper. We bogin with the analogues of the two fundamental
operations described above. Suppose K is a closed concave-convex function
and that A is the linear transformation Al xkz obtained from two other linear
transformations Al and Az by Al xkz (x,y) = (Alx, Azy) . One of our op-
erations consists of forming an equivalence class [KA] containing all saddle
functions of the form

(x,y) = X Alx,y) = i(kl’t. sz)

for K any member of (K] . A mild hypothesis is given which ensures that in
fact such a single class exists and, moreover, that all its members are closed.
The other opeiation is to form a single equivalence class [AK] containing all

saddle functions both of the form

(u,v) = sup inf E(x, y)

{x|Ax=u}{ylA,y=v)

and of the form

inf sup i(x,v)
{ylA,y=vHx|Ax=u)

(u, v) -~

#1190
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for K any member of (K] . A mild hypothesis {s given which ensures that
indeed such a class exists and that a!l of its members are closed. What s
surprising is that this hypothesis is precisqely the same as is needed to en-
sure the existence of the class [K‘A‘] [ormed by the first operation from
[K‘] and A‘ . A; xA; . Furthermo:e, it {s shown that under this hypothesis
(AK] and [K.A‘] are actually conjugn'e classes. This is the analogue of
formula (1) for saddle functions.

The development of these operations and the proof of the duality be-
tween them form the heart of this paper. Two forms of this duality are given.
The form given in §l is the more widely and easily applicable. But the sharper
form in §2 gives especially strong conclusions concerning the nature of the
equivalence class [AK], Including information about the attainment of the
minimax extrema appearing in its definition.

In §3 the {irst application of this duality is made in defining addition
and minimax convolution for saddle functions and showing that these are

dual operations. The formula

BIK + K,)x, ¥) = 3K (x, ¥) + 0K, (x, ¥)

is obtained for the subdifferential of the sum of two saddle functions. This
parallels the result for convex functions obtained by Rockafellar (42), Moreau
(36], and others. The duality between addition and minimax convolution gives
a general framework within which to consider problems of the form, ~find the
saddle points of H with respect to C xD,” where H s a saddle function
and C and D are convex sets.

#1190
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Prom the results on addition and minimax convolution we obtain an

interesting byproduot. For 1sl, ..., p let K‘ be a closed concave -convex

function on l- xl“ which s not identically +® or .o and let ‘!" be the

arising from the subdif{ferential of K‘

(see [48,49]). 1f each m‘) is bounded, where R(-) denotes the range of

maximal monotone operstor on R'"

an operator, then T T‘ is maximal monotone and

Zcl l('rl) s ClR(X ‘l“) . (3)

It is known that this formula holds whenever the ‘r"l are subdifferentials of
closed proper convex functions and each a('r‘) is bounded. On the other
hand, formula (3) fails in general for maxiraal monotone operators. However
it is not known whether formula (3) holds for arbitrary maximal monotone op-
erators under the assumption that the sets n('r‘) are bounded. But the fact
that it holds for those maximal monotone operators arising from saddle func-
tions leads one to conjecture it holds in general. This is because such op-
erators, unlike the subdifferentials of convex functions, exhibit most of the
pathology of arbitrary maximal monotone operators. Indeed, this last fact is
one of the main motivations for studying saddle functions.

In §5 as a second principal application of our fundamental dual opera-
tions, we develop a perturbational duality theory for generalized saddle pro-
grams. We define a generalized saddle program to be an “objective” saddle

function Ko (thought of as some given minimax problem) together with a

particular class of perturbations. The entire program is given by another

#1190




saddle function K. To this generslised saddle program K we associate a
dual generalized saddle program L . Under mild hypotheses on the perturba-
tions In K, the dual program L has a unique (up to equivalence) “objective"
saddle function Lo . The minimax problem corresponding to Lo is a dual to
the original minimax problem. One of the main features of this theory is that
choosing different classes of perturbations of the original problem gives rise to
different dusl problems. Optimal solutions, stable optimal solutions and Kuhn-
Tucker vectors for these dual saddle programs are studied and various duality
theorems are proved. In §4, as a subsidiary application of the dual operations
of §1, a symmetric one-to-one "partial conjugacy* correspondence is defined
among equivalence classes of closed saddle functions. By means of this new

correspondence we are able to associate with a generalized saddle program

and its dual a well -defined Lagrangian saddle function. We then give a
characterization of the primal and dual stable optimal solutions and Kuhn-

Tucker vectors in terms of the saddle points of the Lagrangian.
In §6 this perturbational duality theory is used to study the problem of

finding a saddle point subject to convex and concave inequality constraints.
Ordinary saddle programs are defined as a framework to treat such problems.
A question of particular concern is whether or not a good Lagrange multiplier
principle holds for these saddle programs. The analogous question for ordin-
ary convex programs (i.¢. minimizing a convex function subject to convex
inequality constraints) has a very satisfying affirmative answer which leads
to the important decomposition principle for separable convex programs (see
(48, Theorem 28.] and pp. 285-290]). However we show that such a good

Lagrange multiplier principle does not hold in general for ordinary saddle

#1190 -1l.




programs. The reason for this is essentially that, unlike the convex program

case, the set of saddle points of the Lagrangian does not split up into the

product of the primal stable optimal snlutions and the primal Kuhn-Tucker '

vectors (Lagrange muitipliers). Put another way, the stable optimal '

solutions and Kuhn-Tucker vectors are shown to be in a certain sense de-

pondent on each other. We conclude the section with an explicit description

of the dual saeddle program.
Pinally, in §7 the perturbational duality theory s applied to snother

class of problems to yleld a minimax version of Penchel's Duality Theorem.

We deal with dual pairs of minimax problems of the following form (where

for simplicity now we suppress the issue of the domains of the variables);
(I) Pind the saddle points of K(x,y) - LA(x,y) ,

(I1) Pind the saddle points of L‘(z, w) - K.A‘(z, w) .

Here K is closed and concave-convex on RT X R", L is closed and con-
vex-concave on R’ x Rq, and A is a product linear transformation from
R™ xR" to RP xRY. The results obtained generalize certain results of
Rockafellar [47], Lebedev-Tynjanskii [34), and Tynjanskii (60, 61 ).

It 1s known that many result. in the theory of convex functions allow
refinements when polyhedrainess 1s present. For closed saddle functions
there is a property of polyhedralness which is preserved under conjugacy !
and also the operations we develop in §§1, 3 and 4. Nearly all the results
in the paper admit refinements when such polyhedralness is present. This

is discussed in the Appendix. :

-12- #1190
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This paper is the outgrowth of an investigation of a problem posed
by Professor R. Tyrrell Rockafellar. The problem was to see if one could
develop well-defined ways of forming new equivalence classes of saddle

functions from given ones. The author wishes to express his deep

gratitude to Professor Rockafellar for posing this problem and for his many

helpful comments.
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A Note to the Reader

In general, we use numbers enclosed {n square brackets to indicate
bibliographical references. However a special abbreviation is employed
in citing results from Rockafellar (¢8), due to the frequency with which
these are used. Namely, we omit entirely the reference to (48] and merely
give in parentheses the humber of the result being cited. Por example,

Theorem 23. 8 of (48] is cited simply as (23. 8), Corollary 6. 3.1 as (6. 3.1),

and so forth.
Throughout the paper expressions sometimes appear which involve {

taking the supremum or infimum of an empty set of numbers. Whenever
these occur they are to be interpreted using the conventions sup P= -

wm’o'w . ¢




§0. Preliminaries

The definitions and notations used in this paper are mainly those
set forth in Rockafellar [48). In this section we review for convenience some
of these and also introduce some of our own. In addition, we present a few
background results which will be of use later on.

The topology taken on R" 1s the usual one, and the interior and glosure
of a subset 8 of R" are denoted by iInt 8 and cl 8§, respectively. A set is
called pffine if and only if it iseitherthe empty set, denoted by @, or a translate
of a linear subspace. The affine hull of a subset is the smallest affine set containing
it. If C is a convex subset of R", its relative interior, written ri C, is the
interior of C taken with respect to its affine hull equipped with the relative
topology.

If A is a linear transformation from RP to Rm, then A‘ denotes the
adjoint linear transformation mapping R™ to RP.

The effective domain of a convex function { on R" 1s the set
dom f = {x | f(x) < +®) ,
and the conjugate of { is the convex function ¢ on R" given by

(‘(x‘) = sup (<x, x> - f(x))
x

(where <., -> denotes the ordinary inner product). Similarly, the effective
domain of a concave function ¢ on R? is the set

#1190 -18.
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dom g = {x|g(x) > -@ )} ,

and the oonjugate of ¢ is the concave function q‘ on l" given by

0‘(::‘) = {nf {<x, x> . gi{x)) .
x

Our muitiple use of the supersoript ¢ should cause no difficulty, since it is
always clear from the context what operation is intended.

Por any subset C of R" the function &(* |C) on R", called the
indicator fumotion of C, is defined by setting 6(x/C) equalto 0 if x ¢ C
and 4o otherwise. Clearly C is convex if and oaly if &(- |C) is convex, and

in this case the conjugate of &(° IC) {s denoted by 6'(- IC) and {s given by
s x"IC)e sup{<x, x'>lxeC) .

This function is called the support function of C .

A concave -convex function on K™ XR" is a function K from R™ xR"
to [-w, +») such that K(x,y) is a concave function of x e R™ for each fixed
ye Rn and a convex function of ycln for each fixed x ¢ l' . Aconvex-
concave function is defined the same except for interchanging =concave" with

“convex.” A saddle function is either a concave -convex or 8 convex-concave

function.
Por the remainder of §0 let K denote a concave-convex function

on Rm X Rn. For convex-ooncave functions we make the obvious changes {n the

definitions which follow.
We say that K has a saddle value, or that the saddle value exists,

if and only if the two quantities

#1190




sup Inf K(x, y)
x Yy

inf sup Kix, y)
Yy x

are equal, in which case this common value is the ggddle valye of K. A pair

, ¥) ¢ R" xR" 1s a gaddle point of K if and only 1f

K(x, y) <Ki(x, y) <K(x, y)

for each (x, y) eR"™ xR". 1

Detine subsots domK of R® and dom K of R® by

domK = (x |Kix, *) is never -w),

dom K = (y | K(+, y) is never +w®) ,

. s il

The product set

i A i

domix X domzx = dom K

is the effective domain of K. We say that K is proper if and only if its effective domain

is nonempty. The kernel of K is the restriction of K to the relative interior

of its effective domain, We say that K is gimple if and only if dom Ki(x,*)

i i

Cc cl(domzK) for every x ¢ rl(dole) and dom K(:,y) C cl(domlx) for
every ye ﬂ(domzn . The function cllx obtained by closing K(x,y) as a con-
cave function of x for each fixed y is called the conc zve closure of K .

Similarly, the function clzx obtained by closing K(x,y) as a convex function of

#1190 -17-
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y for each fixed x is called the convex closure of K. [f L is also a concave-

convex function on ™ x ln, we soy that K and L are equivalent and write

K=~ L if and only i cllK . cllL and clzK s clzl. . The collectioi: of all concave -
convex functions on Rm x R" which are equivalent to K is called the equivalence
class containing K and is denoted by (K] . We say that K is closed if and only
i ci,kK~ K and K~ olzK 5

It is an easy exercise to show that X~ L implies both that dom Ks dom L
and that K is closed if and only {f L is closed. Thus, an equivalence class is
called closed (resp. proper) if and only {f any of its members is closed (resp.
proper).

The function { on R xR" given by f(x, y.) s sup {<y, y.> - Kix,y)) is
convex in (x, y‘) jointly, since it {s a pointwise lum:\um of convex functions.
Similarly, the function ¢ on R™ xR" given by q(x‘, y) = inf{<x, x*> . K(x,y))}
is concave in (x‘, y) Jointly. We call { (resp. g) the m::ﬁ (resp. concave)
parent of K . Notice that this usage of the term “parent” differs by some minus
signs from the original usege 1n Rockafellar [¢7]. With these definitions, (34.2)
implies the following.

THEOREM 0.1. Let f (resp, g) be the convex (resp, concave) parent of
K. Then K g glosed if and only if f(x,y’) = - (x,-y’) and gx",y) = -f (-x",y),
in which case (a) and (b) below hold.
(a) The parents of K depend only on (K]: that is, for each
Ke[K), the convex (resp, conceve) parent of K s f (resp, g). Moreover,
f and g are closed, and
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domK = (x | tix, y*) <+% for some y°),

dom K = (y | q(x‘, y) > -© for some x‘} .

Kix, y) = sup (<y", v> - f(x, y))
y*

E(x, y) = lnz {<x‘, x> - q(x‘, y)} .
x

Moreover, clzi =K and cllﬁ = K for each Ke[K], and

K(x,y) = K(x, y)

whenever x crl(domll() ory cri(domzl().
The lower conjugate of K, denoted by 5‘, is the function on R™ x R
defined by

LR * *
Kix,y)=supinf {<x,x >+<y,y >-K(x,y)}.
y x

-k
Similarly, the upper conjugate of K, denoted by K , is the functionon R™ xR"
defined by

* *
i‘(x‘,y‘)-lnf sup{<x,x > +<y,7 >-K(x,y)} .
X Yy

From (37.1) we have the following result.

#1190 -19-
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THEOREM 0.2. Assume K is closed. Then K and 5* are equivalent,

closed concave-convex functions which depend only on [K] . Moreover, if L

%
is any element of the equivalence class containing R and K, then

ol,L = k", arL=%",

1

-k, 1'-=%,

and the convex (resp. concave) parent of L is the negative of the concave

(resp. convex) parent of K .

When it exists, the equivalence class containing 5* and K* is called
the conjugate of [K] and is denoted by [K*] . Each member of [K*] is
called a conjugate of every member of [K]. It is immediate from Theorems
0.2 and 0. 1(b) that (at least when K is closed) 5* and 'l-('* are the least
and greatest elements of [K*], respectively. The notation thus conforms to
that introduced in Theorem 0. 1(b), where a lower (resp. upper) bar indicates
the least (resp. greatest) element of the equivalence class.

By (34. 2. 3) the only equivalence classes which are closed but not pro-
per are the one containing the constant function +« and the one containing
the constant function -o ., Since each of these two equivalence classes is
the conjugate of the cther, it follows that [K*] is closed and proper whenever
[K] is.

We define K to be polyhedral if and only if it is closed and either its
concave or its convex parent is polyhedral. If K is polyhedral and L is

equivalent to K, then Theorem 0.1 implies L is polyhedral. Thus, an
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equivalence class is called polyhedral if and only if any of its members is
polyhedral. From Theorem 0.2 follows the important fact that [K*] is poly-
hedral whenever [K] is polyhedral. It will be shown that polyhedralness is
preserved also by each of the operations developed in §§1, 3 and 4 .

The notions of "recession function" and "recession cone" for saddle
functions will be quite useful for formulating various growth conditions needed
later on. Recall that if f {s a proper convex function on Rn, the recession

function of f, written rec f, isthe function on R" defined by

(rec f)(y) = sup{f(x +y) - f(x)|x ¢ domf} ,

and the recession cone of f 1is the set

rec cone f = {yl(rec fj(y)< 0} .

The recession function and recession cone of a proper concave function are
defined similarly by replacing "sup" by "int" and "<" by ">" . This notation
for these objects differs from that in [48]. Now write C = domIK and

D= domZK . The convex recession function of K is the function reczl(

on Rrl defined by

(reczl()(w) = sup{(rec K(x, - ))(w)|x e ri C} .

The convex recession cone of K is the set

rec cone,K = {wl(reczK)(w) <o} .

Similarly, the concave recession function of K is the function recll( on R™

defined by

(rec,K)(z) = inf{(rec K(:, yz)lyeriD}

-21-




and the concave recession cons of K is the set

rec cone,K = {zl(mlx)(z) >0) .

ITETRTCTeRE——_—

———

Trivially,

rec cone K = M {rec cone K(x, - )Ix ¢ r1 C) .

and

rec coneK = N {rec cone K(-, y)ly ¢ r1 D} .

Sk ot bbbl e e S o e

The main importance of the recession functions of K rests on the following
‘ theorem, which is (37. 2) reformulated.

THEOREM 0.3. Assume K is closed and proper. Then

" » *
1 reczl =5 (* |dom2K )

and

E‘
: I'OCI

K= -6*(-- Idomll(*) .
This says that the recession functions of K are essentially just the
>support functions of dom K* . But K*, and hence dom K‘, depends only on

[K] . Thus, for K closed and proper, the recession functions and recession

cones of K depend only on [K] . i

Suppose now that K is closed and proper. We know by (37.1. 3) that
the saddle value of K exists if either Oe rl(domll(*) or
0e ri(domzx*), and (37.5. 3) tells us that a saddle point of K exists if
actually (0,0) ¢ ri(domK*) . In addition, it is not hard to show that the set

of saddle points of K is nonempty and bounded if and only {f (0,0) e mt(domK*).

The next three lemmas will help us to utilize these basic facts.

-22- #1190
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LEMMA 0.4. Ase K is closed, and let f (resp. ) be its convex

(resp. concave) parent. Then

mdomlt.) = U (ridom g(-, ynly ¢ r1 D)

and I

ritdom X') = U (ri(dom f(x, N lx eri C) ,

where C = domK and D= dom,K. These formulas also hold when “ri” is

deleted throughout.
PROOF. From Theorems 0.2 and 0. 1(a) it {ollows that

dole‘ s Adomg

and

domg = U{domg(-, y)x{y}lyeD) ,

where A is the projection (x‘, y)-~ x. . Hence (6.6) implies
ﬂ(domlx.) s A ri{domgq)

and (6.8) implies

ri(domg) = U {ri(domg(-, y) x {y)ly e vt D} .

The formulas for domlk‘ and its relative interior follow from these, and the

other two formulas are proved similarly.

LEMMA 0.5. Assume K is closed and proper. let § equal | or 2 and

put 8’ = rec cone]K . Then

") ifandonly tf 8 C-§ ,

0 ¢ ri(dom y j

)

and
#1190 -23-
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0 ¢ IntidomK') 1f and only i 8, C (0) .

J
PROOP. We use the following SUBLEMMA. If w' ¢ R” and h is & posi- :

tively homogeneous proper convex function on R", then the following two con- .

ditions are equivalent;

(a) Ywe R", <w, w.> < h{w) with strict inequality for each w such

thet -h(-w) ¢ hiw) ;

(b) Ywe ln, h(w) < <w, w.> implies h(-w) < <.-w, w. > .

PROOF OF SUBLEMMA. Assume (a) and suppose h(w)< <w,w' > . Then

actually hiw) = <w,w >. If we had -h(-w)e hiw), then (a) would imply

<w,w.> < hiw), a ocontradiction., Thus -h(-w) = h(w) s <w,w.> and (b) is

proved. Conveisely, assume (b) and let w be given. If h(w) < <\v,w. >,

then (4.7.2) and (b) Lmply -h(w) < h(-w) < <-w,w > and hence <w,w > <h(w), .

Suppose -h(-w)v h(w) . By (4.7.2) we have -h(-w) <h(w)., If h(w) <

<w,w’ >, this would imply -h(-w) < <w,w > while at the same time from (b)
we would have <w,w‘> € -h(-w) . Therefore <w, w > < h(w) whenever ;
‘h(-w)¢ hiw), and (a) is proved. ﬁ

Now to prove the lemma we define h = 6.(° Idomzx.) . By (13.1) and the {

Sublemma, 0 ¢ rl(domzl‘) if and only if for each w ¢ Rn, h(w) < 0 implies “
h-w)<0. By (l3.]1) we also have that 0 ¢ u\t(domzx.) if and only {f for each |
we R", hiw) <0 implies w =0 . The assertions for | s 2 follow from these
equivalences and Theorem 0. 3. The assertions for j = | are proved similarly.
Concemning the condition 8’ C - 8’ in Lemma 0. 5, recall from (13. 2)

that the support functions of nonempty convex sets are precisely those
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functions whose epigraphs are closed convex cones containing the origin.
This fact and Theorem 0. 3 imply that the recession cones ¢ { A closed proper
K are themselves closed convex cones containing the origin. Hence they
sre actually subspaces (if and only {f they are closed under scalar multipll-
cation by -1.

The conditions given in the next lemma may well be the easiest to
verify in many cases.

LEMMA 0. 6. Assume K gcloud and proper. Then (0,0) ¢ lm(domx.)

whenever domK {s bounded. Emlculu, Oc lm(domzx‘) whenever

there exists an xe donll such that the level sets (le(x, y)< a ), aeR,

are all bounded, and 0 ¢ lnt(domll.) whenever there exists 8 y ¢ domzK

such that the level sets {xIK(x,y) > @), a e R, are all bounded.

PROOFP. By (M.3), the first assertion is a special case of the second.

Now let x ¢ dom,K be such that all the level sets of K(x, ) are bounded.

|
Then by (7. 6), the nonempty level sets of cl(K(x, -)) are all bounded. Also,
cl(K(x,-)) = clzK(x, ‘)= K(x,-). Hence (8.7) and (8.4) imply that
rec cone K(x, -) = {0}, which by (13. 3. 4c) s equivalent to 0 e int(domK(x, - )‘) .
But K(x, - )‘ = {(x,:-), where { is the convex parent of K. Since Lemma 0.4
yields tnt(dom f(x, ) C tnt(dom,K'), 1t follows that 0 ¢ intidom,K ) .
The statement about 0 ¢ lnt(domnx‘) is proved similarly.

As explained above, Lemmas 0.4 through 0. 6 furnish various criteria
for the existence of saddle values and saddle points. To facilitate the use

of these criteria, In §§. and 3 we derive formulas for the parents and
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recession functions of the saddle functions which result from various

operations. By combining those formulas with the preceding criteria, the
reader can derive existence theorems as needed. Consequently, through- .
out this paper existence results will not be stressed. ,

We conclude this section with a lemma which will be useful later on

] in dualizing various conditions with respect to the conjugacy correspondence.

LEMMA 0.7. Assume K is closed and proper, and let L, and L, be
gubspaces of " and R, Then for j= 1 and 2 the following conditions

are equivalent,

(a) L nmdo-’f)oo :

4
(b’) l.’ M (rec com’n is & subspace ;
(c,) L"'ﬂ(ncoomnc -(rec cone K) .

;' J J

PROOP. We prove only that (nz), (bz’ and (cz) are equivalent, as the

proof for § = ]| is similar. By the remark following Lemma 0. 3 and the fact

that l.z is a subspace, (bz) is equivalent to (cz) . Write D‘ = domzx' and )
Le Lz . By (11.3), (nz) fatls 1f and only if there exists a hyperplane separating
L and D properly. By (11.1) this occurs {f and only if there exists a w ¢ R"

such that

int{<y’, w>ly’ ¢ L) > sup{<y’,w>ly’ ¢ D°)

and

®
wp(<v'.w>|v' e L) > int{<y .W>|v. eD’) .




But since
[ ] ® ®
sup{<y ,w>ly ¢ D) = (rec,Kw)
and
y 0t wett
inf(<y ,w>ly elL)= N
oifwdl,
this means that (oz) fails if and only {f there exists 8 w ¢ I.‘L such that
(nczn(w)f_ v and (mzl)(-w) >0. Therefore uz) holds if and only {f for

each we LL, (nczl)(w) <0 implies (nczn(-w) <0 . But this last condi-

tion is the same as (¢

2




§l. Two Dual Operations

In this section we develop two quite general ways of forming new
equivalence classes of saddle functions from given ones. When viewed as
operations on equivalence classes, they are seen to be dual to each other
with respect to the basic conjugacy correspondence. Various results are proved
concemning the equivalence classes resulting from these operations. The sec-
tion concludes with examples showing that the conditions under which the
operations can be performed cannot {1 general be weakened.

The firet operation we develop is analogous to that of composing a convex
function with a linear transformation. Let K be a closed proper concave.con-
vex function on R™ XR" andlet As Al x Az be a linear transformation from
RP xlq to R™ xR" . We seek a condition on K and A ensuring the exis-
tence of an equivalence class of closed proper saddle functions which con-
tains every function of the form KA for K e [K] . 8uch a condition is given
in Theorem 1. 2. When this equivalence class exists, it will usually be denoted

by (KA].

LEMMAL.1l. Let K be a concave-convex function on ™ xR" and let

A-A‘XAZ be a linear transformation from Rpxllq to Rmxln. Then KA

is a concave -convex function on RP x Rq, and A'l(dom K) C dom KA . The

inclusion can be strengthened to equality if K is closed and proper and
range AMNri(dom K) ¢ O .

PROOP. Write dom K= C xD . By (5.7), KA is concave-convex. If

ue Al'lc, then K(Alu, *) is never - and hence KA(u,:)s K(Nu, . )Az is

-28. #1190
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never - . This shows ﬁ"cc dom XA . Similarly A;lnc dom,KA . Now
assume K is closed and proper and range ANridom K)¢ @ . If u¢ alc "
then (34.3) implies K(A‘u,~)kz equals -« everywhereon ri D and hence
KA, - )A, equals -» everywhere on A'zl(rl D). S8ince A'zlm D)e¢e@ by
hypothests, this shows dom KA C AI"C . Similarly dom,KAC A'le .

THEOREM 1.2. Let K be a closed proper concave -convex function on

R™ xR", and let A= A XA, be s linear transformation from R® xR to

R™ xR" such that range ANri(dom K) v @ . Then the collection (KAl e [X))

of saddle functions is contained in an equivalence class [H] of closed proper

concave -convex functions on R® x RY having domain A'l(dom K) . Moreover,

HeKA, H:=KA,
ri(dom H) = A"rudom K ,

cl{domH) » A'lcl(domK) .

PROOP. Lemma 1.1 implies KA and KA are proper COncaveo -convex
tunctions on R® xRY with domatn A'l(dom K) . From Theorem 0.l(b) it is
clear that a closed proper saddle -function is the least member of its equivalence
class if and only {f it is convex-closed. Now it follows routinely, using (6.7),
(34.3) and (9.5), that KA satisfies the six conditions of (34.3) and more-
over is convex-closed. Hence KA is closed and is the least member of its
equivalence class. Similarly, KA 1is closed and is the greatest member of its
equivalence class. According to (34.4), two closed proper saddle -functions
are equivalent if and only if they have the same kernel. Suppose (u,v) ¢

H(A'l(dom K)) . By (6.7) this means A(y,v) ¢ ri(domK) . Since K and K are

#1190 .29.
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equivalent olosed proper, KA(u,v) s KA(u,v) . This shows KA~ KA and
hence (KA)= [KA) = (H). If Ke (K], then K< K<K implies KA<KA<KA
and hence KA ¢ [H] (Theorem 0.1(b)) . The formulas for ri(domH) and
cl(domH) are immediate from (6.7).

The next result concerns the subdifferential mapping of KA, denoted by
8(KA) . The subdifferential mapping is a generalization of the gradient mapping
to saddle functions which are not necessarily differentiable. Por background on
the subdifferential of a saddle function, we refer the reader to [¢8]) or [43] .

THEOREM 1. 3. Let K and A be as in Theorem 1.2. Then

O(KA)(u,v) = A 8K(A(u, v))
for each (u,v) ¢ rP qu, and
n(A"(don K)) C dom 8(KA) C A"(domn :

PROOF. The inclusions are immediate from (37.4) and Theorem 1.2. It
follows that the identity holds trivially when (u,v) ¢ A'l (domK) . Suppose
(u,v) e A"V domK) . By the definitions, (u*,v") e 8(XA)u, v) 1f and only 1
u. e O(K(-, sz)kl)(u) and v. [ G(K(Alu, . )Az)(v) . Now by (34.)), Alu (3 dole
implies that K(Alu, *) 1is a proper convex function with ri(dom K(Alu, ‘) =
ri(dom zl() . Hence range Az N ri(dom zno @ and (23.9) imply that
v‘ e O(K(A'u, . )Az)(v) if and only if v. (] A;OK(Alu, . )(sz), i.e. {f and only
i v‘ ] L:lzl(h(u, v)) . Similarly, u. e 3(K(-, sz)Al)(u) if and only {f
u cA DlK(Mu, v)) . The identity follows.

THEOREM 1.4. let K and A be as in Theorem 1.2. Let { (resp. g)

denote the convex (resp. ve) parent of K, and let h (resp. k) denote
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the convex (resp. concave) parent of KA. Then

hiu, v} & (ASHA 0, - ev)

and
[ ] [ ] ®
k(u ,v) = (A, 91", AvINu ).
PROOP. Suppose u ldomlu . Then h(u,-) is constantly +e . Also,
Alu { dom l‘ implies l(Alu,-) {s constantly ¢ and hence

(1A, - v’y = 1nt (1A v, y')la;y' av’) e e

for every v‘ . Now suppose uc¢e domln . By (34.3), Alu e domll implies
K(Alu, +) is a proper convex function with ri(dom K(Alu, ‘)= rl(domzn . Thus
from (16. 3), Theorem 0.1(a) and range Azﬁ ﬂ(domzx) ¢ @ it follows that

hu, v*) = (KA U, WAL (v°) & (KA U, ) )" ) = (HA U, - (") for every v .

This proves the first identity. The second is proved similarly.

hedral, then KA is polyhedral.
PROOP. Let lp and ln denote the identity transformations on Rp and

R", respectively, and let { and h be as in Theorem 1.4. Then

hedl) xn;)mul X1)). Hence (19.3.1) tmplies that h s polyhedral if { s

polyhedral. Since KA 1is closed by Theorem 1. 2, this concludes the proof.
The next three results concemn dom(KA)‘ . By the remark preceding

Lemma 0.4, such information is of interest since it pertains to the existence

of a saddle value or saddle point of KA.




COROLLARY 1.4.3. Lot K and A be as in Theorem 1.2. Then
don(m‘c A'domk’ .

In perticulgs, 4t  (fesp. 9) denotes the convex (resp. concave) parent of K,
then ;

ritdom (KA*) « A ;" U (ridomg(-, y) |y ¢ range A, M ri(dom K1)
and

} tl(donz(m‘) . A‘z U (ri(dom(x, - ))|x ¢ range A\lf'\ rt(domlx)) ,

where these formulas also hold when “ri® is deleted throughout.

PROOP. By Lemma 0.4.

It would be very nice for stating duality results i{ \n addition to the

inclusion of Corollary 1. 4. 2 we also had the inclusior,

‘ ri(A domk’) C dom(kA)® .

However, this inclusion is not true in general. More discussion of this point

(phrased in terms of the addition operation rather than KA ) follows Corollary
3.6.3. By using recession functions, though, we are able to charactorize when
the above inclusion is valid. This is done in the next lemma (cf. (6. 3.1)).
LEMMAL S. Let K and A be as in Theorem 1.2. Then for j=1 and 2,
1(dom,(KA)*) = cl(A dom K"
c(om’( ) ) c(A’ om, )
1f and only if

PROOP. By Theorem 0.3, rec,(KA) = & (- Idomz(W‘) and (rec,KA, =

6‘(Az . Idomzx.) . Now apply (16.3.1) and (13.1.1). The assertion for j=1 {s

proved similarly.
-32.
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' LEMMAL. 6. Let K and A be as in Theorem l.2. Then

(rec, KA)(u) = inf{(rec K(-, YA u) ly e range A, N rl(domzl()}

(roczKA)(v) = sup{(rec K(x, ))(sz)lx ¢ range Alﬂ ri(domll()} .

PROOP. By definition and Theorem 1.2,
(rec, KA)(v) = sup{(rec(KA)(y, - )(v)|u e Al' lri(domll()} .
| = sup{(rec K(x, )A,)(v)|x ¢ range A Mri(domK)} .

If xe rl(domll(), then (34. 3) and (9.5) imply (rec K(x, - )Az)(v) = (rec K(x, * ))(sz) .
This proves one formula, and the other is proved similarly.
Now we develop another operation promised, an operation which is
analogous to that of taking the image Af of a convex function f under a linear
. transformation A. Suppose K is a concave-convex function on R" xR" and
A= Al XAz is a linear transformation from R™ XR" to RP X RY. We seek a
conditionon K and A ensuring that all the functions on Rp X Rq either of the

form

(u, v) - sup inf E(x, y)
{x|ax=u}{yla,y=v}

or of the form

(u, v) -~ inf sup E(X.Y) ’
{v|A2v=v} {x|A1x=u}

for K ¢ [K], belong to a single equivalence class of concave-convex functions

L on Rp qu . (By (5.5) and (5.7), these functions are indeed concave-covex.)
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By analogy with the operation in the convex function case, this equivalence
class (when it exists) will usually be denoted by [AK] . Theorem l. 8 gives
a condition which guarantees that [AK] exists and, moreover, that all of its

* %
members are closed and proper, and that its conjugate is [K A ].

The proof of Theorem 1. 8 relies on the following technical result. For
simplicity we "dualize" the notation used up until this point in §l, i.e., we
* *
write K in placeof K and A in place of A .

LEMMAL.7. Let K be a closed proper concave-convex function on

i R™ an, and let A=A, XA, be alinear transformation from R™ xR" to

* *
R® xrY. Assume range A MNri(domK )# @ . Then

& 2% (u,v) = sup{cl(A K(x, - )(v) A x = u}

where the supremum can be taken over just those x in dom

ll{ such that

A x=u, and

1

(Eml\“I )*(u, v) = lnf{cl(AlE(- , Y (u) |A2y = v},

where the infimum can be taken over just those y in domzl( such that Azy =V,

| PROOF. Only the first formula will be proved, as the second can be proved

- % :
similarly. Let ] denote the lower conjugate of K A . The definitions yield

ot ey

e

J(u, v) = sup {<v*,v> + inf {<u*,u> = (E*(' ) A:v*)A;‘)(u*)}} .
* *
v u ‘

12

Since E* is concave-closed, it follows from (34. 3) and (6. 3.1) that

= * * *
ri(dom K*(',y*)) equals ri(domll() when y e dom, K and equals Rm when

2
* *
y* £ domzl(* . Hence (16. 3) and the hypothesis range A, M ri(dom lK )# @ imply

L\ d
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®*, van W = @F* ¢, A3v") ) = suplkix, A,v") lAx = u} for every

* *
v , where k denotes the concave parent of K . Thus,

* * ok

J(u,v) = sup{<v ,v>+ sup k(x,A,v)}
* -

v xeAllu

sup sup {<v*, v> - (-k)(x,A;v*)} :

xeAl'lu o

But Theorem 0.2 implies -k is the convex parent f of K, and hence (l6. 3)

implies sup {<v*, v> - (-k)(x, A;v*)} = (f(x, )A:)*(v) = cl(AZf(x, . )*)(v) =
%

v
cl(Az_lg(x, *))(v) . This establishes the asgserted formula for J. Finally, for

each x ¢ dom 1I(, the fact that K is convex-closed implies K(x,°) and hence
cl(AZE(x, *)) is constantly -

THEOREM 1.8. Let K and A be asin Lemma 1.7 and assume
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