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ABSTRACT

We consider quadrature formulae (q. f.) for the numerical evalua-

tion of the Fourier, cosine, sine, and Laplace transformations. Let

Sn denote the class of spline functions of degree n-l defined on

the real line and having simple knots at the poins * v + for all

integers v. This means that S(x) c Sn provided that S(x)E C n 2

and that the restriction of S(x) to any interval between consecutive

knots is a polynomial of degree not exceeding n - 1.

In Part I, we consider, for n a positive Integer, a q. f. of the

form

"0 Ixt 0 n
f f(x) d Z ) f() + Rf

--"O 
V -00

wherq for fixed t, the coefficients H n ) are bounded. We show that
v t

among all such q. f., there is a unique formula with the property of

being exact, i.e. the remainder Rf = 0, whenever f(x) f Sn LI (R).

We exhibit the explicit formula for arbitrary step length h and give a

useful bound on the remainder Rf when n is even.

In Part II, we discuss th, cosine and sine transforms, using deriva-

tive data at the origin. For the cosine case, we consider q. f. of the

form



* I
f f(x)oosxt dx= Hj H f(V) + B f() +
0 V=O ~ 11 ~()R

where, foe fixed t, again the coefficients H( ) are bounded, or the
vt

similar case when fP) (0) 0 = 0 1,..., i['= 1) Is known. We find

that among all such q. f. there is a unique one that is exact when

f(x) i S A L (R+). We exhibit the explicit q. f. for arbitrary n, but

have a proof only for specific n.

In Part III, the Laplace transform case, we use the weight func-

tion e x P instead of cos xt or sin xt as in Part II, but otherwise

proceed in much the same spirit as Part II. Part IV contains expressions

for the remainder or error for the q. f. in the first three parts and explicit

error bounds for the approximations of the first two parts. Two compu-

tational examples are also included.

We actually use three different approaches to construct our q. f.:

we either integrate an appropriate spline interpolant to f(x), require

our q. f. to be exact for a particular sequence of so-called B- splines,

or utilize a particular monospline. In any case, the generality and

utility we achieve is due to the form of the splines we use, in particu-

lar to the components of these splines, the so-called B-splines.

*11
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INTRODUCTION

In [10] I. 1. Schoenberg generalized the construction of best quad-

rature formulae in two ways. He discusses integrals with an arbitrary

pre-assigned weight function opening up the possibility of constructing

quadrature formula (q. f.) for the numerical evaluation of Laplace trans-

forms, Fourier integrals, and other special integral transforms. We

pursue this possibility here; in particular we wish to discuss approxi-

mations to the integrals

00 00
(1) f f(x)eXtdx, (2) f f(x)os xt dx,

-00 0

(3) f f(x)sin xt dx, (4) f f(x)e'XPdx

0 0

which are the Fourier, cosine, sine, and Laplace transformations,

respectively.

In 1949, A. Sard generalized the Newton-Cotes q. f. as follows: let

1 9mln+l and let
n n (m

(5) f f(x)dx = Z H m) f(v) + Rf
0 V=O ,,n

be the formula exact, i.e., Rf = 0, if f(x)cT the class of

polynomials of degree not exceeding m - 1, and such that the func-

tional Rf when written in Peano-fashion as an integral of the form

f nk(x)f(m)(x)dx has the kernel k(x) with least L2 -norm. It was
0

Sponsored by the United States Army under Contract No.: DA-31-124-
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of The University of Wisconsin-Madison.



shown by Schoenberg [8] that we can say the following: Bard's

q. f. (5) Is uniquely characterized by the requirement of being moct,

hence Rf = 0, for the elements of the class 82m (0, 1... P a) of

natural splines of degree 2m - 1 having the knots 0, 1,... 1 n.

The term "natural" indicates that the degree of the polynomial oom-

ponents of the spline function should drop from 2m - 1 to m - 1

in each of the two intervals (-w, 0) and In, 00).

In [10] Schoenberg discusses q. f. of the form

n n m--I m- In 0n f  ul B 'm f(a(0 + -m) f'|)(n) '

(6) f w(x)f(x)dx H (V + J, n j, n + R
0 - al

where w(x) is an arbitrary preassigned weight function and such

that the q.f. (6) is exact for H1m_ 1 and has the property that the as-

sociated kernel k(x) of the functional Rf has least L2 -norm. This

q. f. he shows is uniquely characterized by requiring Rf = 0 Iff f is

a spline function (not natural) of degree 2m - 1 having the knots

,..., n-1.

In the paper [12], Schoenberg discusses infinite analogues of

Sard's q. f. (5) for the real line R and the half-line R+ or (0, 00).

We first consider the entire line, the so-called cardinal case when

all integers v are nodes of the formula. Let n be a natural number

and-let Sn denote the class of spline functions of degree n - 1, or

order n, defined on the real line and having simple knots at the

lutegers Y if n is even, or at the halfway points ' +1 if n is
-
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odd. This uaans that S(x) a Sn provided that S(,x) E c n 2 (for

a = 1 this condition is vacuous), and thai the restriction of O(x)' to

any interval between consecutive knots is identical with 'a polynomial

of degree not exceedkng n - I., Such functions aie called icardinal

spline functions.

Lemma I below (1)shows that
00

(7) 8(x) E Sn n L(R) implies that " m I(v)<. 0o.

Let n be even, say n = 2m, and consider a q. f. of the form

go 00 (m
(8 f f(x)dx = H f(v) + Rf

V-ao -00

where the numerical coefficients H( m l satisfy the conldition that
V

(9) IH(2m) I <K for all v and some appropriate K.
V

The implication (7) shows that the functional Rf is well-.defined by

(8) if fix) S2 m n L1(R). One of the results of [12] Is as follows,

Among all quadrature formulae (8). (9) the q. f.

00%1

(10) f f(x)dx = )! f(v) + Rf
-00 -00

Js characterized by the reauirement that Rf = 0 iL f S A2M LI (IR).

Observe that (10) is none other than the Euler-Maclaurin q. f,

00 00 1m 0
oo oo o_ -(n)xd

f f(x)dx = E f(V) m B (x)f xdx,
-O0 -00 -00 ,

thwhere, if B (x) denotes the m B ernoulli polynQmial, we have de-m

fined B In(x) to Le its periodic extension of period 1 from the interval

(O, I].

#1183 -3-



Ct

In Part I, we consider the analog of q. f. (6) for the entire line

and we take w(x) = e X that is, we discuss approximations to the

general Fourier transform (1). Let n be any positive integer and

consider a q.f. of the foim

(11f f f(x)eixtdx = H  f(v) + Rf
-® -0 t

where the coefficients H (n) satisfy the condition thatvt

(12) IH'n)I < K for fixed t, for all v and some K.
V1 t

Note that the coefficients H(n) are now functions of t. Again, the
v, t

result (7) shows that the functional Rf, now given by (11), Is well-

defined if f(x) Sn fn LI(]R); We have the following

Theorem I Among all quadrature formulae of the form (I), 1(12), 

there is a unique formula with the property of being exact, i. e., Rf 0,
L1(i)

whenever f(x) e Sn n

This q. f. (11) could also be obtained by using Newton's funda-

mental idea: assuming the function f(x) to be given numerically at

equidistant points of Step 1, Including the origin 0, we interpolate f(x)

by a function S(x) at these points, and then construct the Fourier

transform of S(x). This idea has been used before, and often, for the j
integrals (1) - (4) [5].

In fact, for n = Z, the case of linear spline Interpolation, theII
q.f. (I) can be found in [5, pp. 22, 231. But for n > 2, similar

-4- #1183



q. f. (11), (12) have not previously been developed. The generality

and utility we achieve is due to the form of the interpolatin- ',nc-

tions we use, I. e., the splines, and, in particular, to the compo-

nents of these splines, the so-called B-splines.

In the paper (1 ], Schoenberg also considers the analog of Sard' s

q. f. (5) for the half-line R+. Let S+ denote the class of functions
2m

S(x) satisfying the following four conditions.

V S(x) GC Zm'Z(R)

2* S(x) i II 2m in each interval (v, v+ 1) for v =0, 1,...

3° S(x) c II in the Interval (-oo, 0)
mn-i

4'S(x) c LIl(R%)

We now consider a q.f. of the form

00 00 (m
(13) f f(x)dx = Z H(2 m) f(v) + Rf

0 V=O

whose coefficients satisfy the condition that

(14) IH(Zm)I <K for v >0 and some K.

ByLemma5of(121, S(x) cS implies that I <(v)< co so that
V=0

the q. f. (13) is applicable whenever f(x) c S +

In [12], Schoenberg proved the following

(15) Among all g, f. of the form (13), (14), there is a unique

formula with the property of being exact, ie. , Rf = 0,

#1;83 -5-



F

whenever f(x) f

In Part 11, we consider the analog of q. f. (6) for the half-line

and we take

(16) w(x) = cos xt or w(x) = sin xz.

We want a q. f. of the form

(17) f w(x)f(x)dx = Z H(2P) f(v) + BJB(2m) f(0(o) + Rf
0 ,=0 j ,

(2m)where w(x) is given by (16) and the coefficients H satisfy theVP t

condition that

(18) IH(2m) < K for fixed t, for all integers v=0 and some.K.V,t

Note that for m fixed, H(Zm) is a function of t. Lemma 1 below
vt

(1 ) shows that

(19) S(x) IE m L ) implies that IS(V)l < 002 M0 I =

so that the functional Rf is well-defined if f(x)c S 2  n LI(R+).

Similar to (15), then, for our endpoint derivative case, where w(x)

Is given by (16), we have

Theorem 2 Amona all quadrature formulae of the form (17), (18),

there is a unique formula with the property of being exact, I. eo,

Rf =. 0, whenever f(x) c S 2ml L1 (R+).

We also consider q. f. of the form

-6- #1183



F ~~ - ~ - - -

(20) f f(x)cos xt dx =O H (n)f() + Z (n) f(J l)(0) + R

vJ~t

*0 V=0 vP = tttf

n- I

B~~~~n ) ~n 2f (2)ad(1 spriual pe hn) th(2 rrspndn

*(21) f f(x) sin xt dx H Y HVIVO) + z B ()~ + Rf
0V=0 J=l -

where the coefficients H ()again satisfy the condition (18). LemmaVft

1 will again assure us that the functional Rf given by (20) or (21)

Is well-defined if f(x) c sn r) L (R + ). The form of the H (n) and the

B n)o, of (20) and (21) is particularly simpler than the corresponding

form of the coefficients for the q, f. (17) and for this reason we shall

consider the q. f. (20) and (21) first. Our approach is the following:

once the existence and unicity of the q. f. have been established, we

shall exhibit the q. f. (20) and (21) that satisfy the requirement (18)

and show that they are exact whenever f(x) c Sn fn L1 (k+)

We could also obtain the q. f. (20) and (21) by constructing the

cosine or sine transform of the appropriate spline Interpolant. Closest

to this point of view is the paper [1 in which Einarsson approximates

integrals of the form

b b
(22) f f(x) cos wx dx, f f(x) sin wx dx

a a
as follows: f(x) is interpolated by a cubic spline with equidistant1knots, the interpolation being at the knot s, while the values f'(a)

i ani1 P(b) are matched by the cub!.- spline. Then he takes the trans-

#1183 -7-



form of the spline. We could adopt this method also, and through the

use of B-splines, achieve greater generality than Einarsson. However,

we do not follow this approach because, in the general case, this

method does not lead to the coefficients H (n) B(n) of (20) andV, t ' tof(0an

(21) in a very simple form.

In Part III, we consider the Laplace transform (4) and establish

the following

Theorem 3. Among all q. f. of the form

00 0 m-I-
(23) f f(x)e'xpdx = H(m ) f(v) + F B f(J)( 0 ) + Rf

0 v=0 V1 p J=l P

whose coe:ffcients satisfy the condition

(24) IH(m) < KL- Y for p fixed, for all v - 0, and some
vP

K, some L > 1,

there is a unique formula with the property of being exact whenever

f(x) is a cardinal spline function of degree 2m - 1 such that

f(x) =O(x s ) as x--oo for some sO.

We do this in the same way we prove Theorem 2, by using a

generating function approach similar to that used in [13].

Part IV contains expressions for the error for the approximations

we make in the first three parts and estimates of error bounds for the

first two parts. We acquire these expressions by showing that we

-8- #1183



could have constructed our q. f. in still a third way. This third ap-

proach utilizes a particular monospline, related to the so-called

Rodrigues function of [10].

o

#1183 -9-



I. THE FOURIER TRANSFORM

1. Preliminaries. We first recall some known definitions and
!I

results [7]. Let n be a natural number and

(1.1) M(x) M(X) 1 6 n n-
n (n-i1)!1 X

where

x if X'a

x+ 0 if x <0
n th

and where 6n stands for the usual symbol of the n order central dif-

ference of step equal to 1. Mn(X) is a spline function of degree n - I

having as knots "ae points v (v integer), or v + I, depending on

whether n - 1 is odd or even. Mn(x) is positive in the interval

n I
(- jn, In) and vanishes elsewhere, and evidently it (X) S. It

has the following Fourier transform:

00 Ixt
(1.2) f Mnxle dx = in(t)

-00 nn

where 2 sin )

2 sn-
(1.3) *n(t) = ( t

M n(x) is called a central B-sl1ne or basis spline because of the fol-

lowing property: If -E.(x) £ S then S(x) admits a unique representa-

tion of the form

(1.4) S(x) = CMn(x- v)

-10- #1183



and conversely, any such series with arbitrarily prescribed (C }

converges and defines a cardinal spline function of degree n - I.

We also define a forward B-spline by

nn in n-i(1.5)Q MnX = Mn(X- - =II)!ZO(-'1)iH)x - i) +'

Qn(X) has integer knots, is positive in (0, n) and zero elsewhere.

With 4n (t) defined by (1.3) we define
CO

(1.6) +n(t) = J F n(t+2'J).

n+l
+n(t) is a positive cosine polynomial of period 2r and order -

that can be explicitly computed from the expression

(.)W)eivt M eivt
(1.7) Cn(t) 7 Z- Mn(v)e = M(v)e

By Lemma 6 of [9, p. 180], we have

(1.8) max +n(t) =n(O) = 1, min +n(t) :n(= ) > .
t t

By (1. 7), we find

* 2 (t) =

+ Mt 3 + cos t
3 4

2 + cos t+4(t) - 3

M 115 + 76 cos t + cos 2t
5(  192

(t) =33 + 26 cos t + cos 2t
6 t  60

#1183 -1l-



We shall also define *olt) 1 to make the notation In what follows

more convenient.

In the Introduction, we referred to the following

Lemma 1 If

(1.9) S(x) Sn n LI(R)

then
(1.1) S(V) I < 00

-00

if

(1. 11) s(x) a s n n LI (R)

then
go

(.E IZ Js(V) I < Co.

0

Proof. Let n = Zm. We reproduce the following remark of

Louboutin [6, p. 1]. If Rk(x) E 11k' then by Markov' s inequal #,

(1.3) max IR'k(x)I - 2k2 max IRk(x) 1

[0,1] [0, 1

Let now P(x) f 1Im- 1 and let

x
R2m(x) = f P(t)dt0

Applying (1. 13) to this polynomial of degree 2m we find that

x 1
max JP(x)I -5 2(2m) 2 max If P(t)dtf -< 8m2 f IP(x)Idx.

[0, 1] [0,] 0 0

For a spline function S(x) of degree 2m - 1 with integer knots, we

-12- #1183



therefore have
v+!1

max IS(x)J€ 8m 2 f jI S(x) Jdx.
IV, v+l I v

Assuming (1. 9), we have

MIs() I Z max s(x)l 1 8m211s(x)IIL <"0 - IV [vv+1I (R)

while (. 11) implies

Z s() 9 Z max IS(x)I < 8m2ls(I),. (]R) < 0.

0 0 [vv+l] I

We have carried through the proof for n = 2m however, we ob-

tain the same result for n = 2m - 1 if we replace (1. 13) by

max 1R'(x)I : 2k2  max (x)
S[-./A, 1/2] max/z I zx]

and for P(x) E 112 . define

x
R2 ml(x) - f P(t)dt.

-1/2
This completes a proof of Lemma 1.

We also! need to know just when a cardinal spline function of

degree n- 1 is in LI(R) or in LI(R+). The answers are given by

Lemma 2 Suppose S(x) c S and (1. 4) holdsThen

(1.14) S(x) t LI ( R)

if and only if

#1183 -13-



(1. 15) IO ,<oo.

The inclusion

(1. 16) 8(x) L (R)

holds if and only if

v=O

Proof. That (1. 14) is equivalent to (1. 15) is a special case of

Theorem 12 of [9, p. 199] and is hereby established. (1. 16) follows

from (1. 17) in precisely the same manner as (1. 14) follows from (1. 15)

in the proof of Theorem 12 of [9, p. 199]. We now start with the as-

sumption (1. 16) and wish to show that (1. 17) holds. This is derived

from the prevIous case that has Just been settled.Assuming (1.4), we

consider the spline function,

(1.18) (x) = C M(xV) .n+1 x - n
n +

Evidently
{8(x) if x0

(1. 19) b(x) = - I0 if x= -n + .2

From (1. 16) we conclude that S(x) * LI(R) and the first part of

Lemma 2 shows that (1. 17) holds.

2. Proof of Theorem 1 of the Introduction, We adapt our proof

from the proofs of Theorem 2 of [9] and Theorem 1 of [13]. For sim-

j -14- #1183



S- - iL,_ _ _ __r__(n-

plicity we write M(x) = Mn(x) and HV  HPn)  We require the q. f.

(11) to be exact for f(x) = M(x - J) for all integers J. This stipula-

tion gives the following relations:

Go •lit Go
(2. 1) f M(x-J)e dx = 1n(t)e Z HM(v-J) for all j

-0 V -00

or., since M(v-J) = M(j-v) as can be seen from (1. 1), we have

(2. 2) Z M(J-v)H, = 4n(t)eijt  for all j.
V -0

To Invert this convolution transformation, we consider the positive

cosine polynomial n(t) as given by (1. 6) and the expansion of its

reciprocal in a Fourier series:

I k n) Ikt(2.3) +n~t ) =---- e

k-co

Lemma 11 of [9, p. 187], for p = w, Imp1.es that

(2.4) HJ Zw (n) ivt
(2.4 H jw_v q n(t) e

is a bounded linear transformation of 1.0 into itself, whose inverse

is given by (2. 2). Since the sequence 4 n(t) e it } is in 10 P we

conclude that the sequence (Hi ) defined by (2. 4) also belongs to

I . Since (n) = W(n) [9, p. 182], we know from (2. 4) that
00 wj-V v-J

(2.5) Hi = z w (n) 4t e ivt =(t)eiit Z w(n) ei(v-j)t
v-J

V =-00 
V=-00

so that by (2.3) we get

#1183 -15-



*n(t) eiJt

(2.6) Hj = +n(t)  .

The sequence ( Hj in aIo is uniquely defined, by (2.4).

A proof will be complete as soon as we show that the functional

(2.7) Mi = f(x)e'xtdx- E H f(v)
-"0 ---O0

with the coefficients H given by (2.6) has the property that

(2.8) Rf=0 if f Sn fl LI (R).

Suppose f(x) is such a function and let

00

(2.9) f(x) - CM(x-V)
-00

be its expansion in terms of the central B-splines of degree n - 1.

By Lemma 2, we know that f(x) E L1 (R) implies that

00

(2.10) E IcyI <0.
-0

The partial sums

r
(2.f) (x) CM(x-) r =0,,,...)

v =-r

have the additional property that

(2.12) f(x) = 0 if Ix- + r.
r 2

Since f(x) a Sn fn L1 (R) and (2.12) holds, we conclude that

fr(X) 4 Sn LI(R). Using properties of the functional (2. 7), we obtain
n" I

go ix 0

(2.13) f fr xxe dx H f f(V) .
-0 V#-1

-16 - #1183



Observing that each fr(x) is dominated by the function
C II

which is summable on R by Lemma 2 and (2. 10), we see that on let-

ting r - oo, the relation (2. 13) becomes the desired relation

f f(x)etdx Z H f(V)
V--0 V---O

This completes a proof of Theorem 1.

Substituting the coefficients R1 as given'by (2. 6) gives us the,

unique q. f. of Theorem 1 in the following form:

fxeIxt 4n 0 Ivt
(2.14) ffxedx f(v)e + Rf.

n(t) V -0

Suppose now that f(x) is a spline function of degree n - 1 with

knots at (V + )h,' for all integers v, that is also $n LI(R). But

then '

Sx) f(xh)

is a cardinal sgine function of degree n - 1 for the step 1. From

Theorem 1 and (2. 14) we have

00 tn(t) 0Co

f(xh)e dx Y i4 f(vh)e l
.

t

-00 n V=-C0

If we replace in the integral the variable x by x/h and then replace

in the identity t by th, we obtain

00 Ix n(th) 00 vt

(. 15) -jf(x)eiXt (th) h f(vheivth•
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If f(x) is an arbitrary function, then this is no longer an identity. I

However, we can obtain information on the error made in using the

approximation (2. 15) if we consider n even, say n = 2m. In fact,

in §14 below we! shall prove the following

2m 2W
Theorem 4. Suppose f(x) i C LI(IR) n L An

is a natural number. Then we can bound I Rf I.as ilven in the q. f.
"o 402ml(th) 00it

(2.16) f f(x)eidx - h flvhle + Rf
-0 +2 m(th) v--o

(2 ¢z.17) I 1 4 (A OfmLp) for all rational t 0 0

An Zr P2Zr
17) I~f ~ (h2m fzmIA1

In te theorem, L m(R) denotes a particular choice of n and

p for the set

L (R) = (F(x): F absolutely continuous, F (n) p(R)

pn
wbere n isanatiral number and 1 -< p5 - oo. The set Ln(R+) is

p
defined similarly.
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IL THE COSINE AND SINE TRANSFORMS

For concreteness, we now take w(x) = cos xt and consider q. f. of

the form (20). We sLtll also take n = 2m, and later will indicate the

modifications necessary for different derivative data, for even degree

splines (n = 2m - 1), and for the weight function sin xt.

3. A recurrence relation. For simplicity, we. write H = H(Pm)t Bj=

B(2m)
BJ t We want to construct a q. f. of the form

00 Go Mn- ( -1
(3.1) f f(x)cos xt dx H f(v) + B f(2 i-l) (0) + Rf

• 0 v=0 J= -

such that

(3.2) IHi I<K for all integers v -0 and some K'V

and with the property that

(3.3) Rf= 0 if ff S2m n L1 ( 1 +).

We do this by enforcing the requirement (3. 3) for an appropriate se-

quence of elements of S2m n LI (R+). The sequence we require is

the sequence of forward B-splines of degree 2m - 1

(3.4) {Q(x- r)) (r =-2m+l, -2m+2, ... )

where, by substituting n = 2m in (1. 5) we have

1 2m I2m 2m-lZm RM1) (_1) ( I) (x- )(3.5s) Q(x) = Qzm(X) -(zm-1)! i -) 1)xo )

n=0
Since Q(x) has support in (0, 2m),
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(3. 6) Q(x - r) = 0 outside the interval (r. r + 2m),

(r=-2m+ 1, -2m+2, ... )

Q(x) c 12m I on any interval between consecutive knots so that

Q(X)S 2 mn LI(+), and evidently we also have

(3.7) Q(x - r) E Sm n L (JR+) (r = -2m+lt -zm+2...).

Substituting f(x) = Q(x - r) in (3. 1) and recalling (3. 3) and

(3. 6). we have the sequence of relations

r+2m
(3. 8) f Q(x-r)cosxtdx = H0Q(-r)+H1Q(I-r)+... +H r+2 m I Q(Z m+ I )

0

M- I
S- B2 _IQ(2J- 1 )(r), (r=-2m+l,-2m+2,...,-2,-I)
J =1

and

r+2m
(3.9) f Q(x-r)cosxtdx = Hr+IQ(l) Hr+2 Q(Z)+... +Hr+2 mIQ( 2 m-I)

0

(r = O, 1, 2,. . .

4. The summation of certain series. We shall need the following

lemma which deals with well-known power series.

Lama3, 1% The power series

S4+ I)k+l v
(4.1) of x (k = ,1,2P...)

V =0

has the sum
Pk(X)

(4.2) k(x) k+2
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where Pk(x) is a monic polynomial of degree k, with intecer coeffi-

cients, that may be derived from the recurrence relation

(4.3) Pk(x) = (l+kx)Pk 1 (x) + x(l-x)P'k-l(x), with P0 (x) I

2 .. The power series

(4.4) k (2v,+1) k

V=O

has the sum

(4. 5) k(X) = Tk+
(lx)k+1

where Tk(x) is a monic Dolynomial of degree k, with integer coeffi-

cients, that may be derived from the recurrence relation

(4.6) Tk(x) = [1 - (2k-lI)x]Tk l(x) + 2x(1-x)Tk (x) with To(x) = 1.

The polyriomials Pk(x) are called Euler-Frobenius polynomials of de-

gree k, while the Tk(x) are called midpoii. Euler-Frobenius poly-

nomials of degree k. We omit the easy proof by induction which also

furnishes the relations (4. 3) and (4. 6). We find readily that

PI(X) I + x

2
P,(x) I + 4x+x

(4.7) 2 3
P3 (x) = + llx+ llx 2 + x

4

kj P4 (x) = I+ 26x+ 66x2 +26x 3 +x

and
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T (X) = 1+x

T2 (x) 1 + 6x+x 2

(4. 8)Z 3T3 (x) =1 +23x+23x 2 +x 3

T4 (x) = l+76x+230x
2 +76x 3 +x 4

and so on.

The form of the relations (3.8) and (3.9) suggest the use of gen-

erating functions for the determination of the H and the B . The
V

righthand side of (3. 8) and (3. 9) is equal to the coefficient of

r+2m- I
x i

0o 2m-2 2 2 1B2 Ql '(2m-l)( )x_
(4. 9) ( E H x1) ( E Q (2m -v. 2 2m )Z'

V=O V =O V=O J=l

In order to simplify the two polynomia.ls in (4. 9), we note that

(4. 10) Q(k)(x) = (-1)kQ(k)(2m-x) (k = 0) 1,..., 2m-2)

as can be verified from (3. 5). With this substitution and the inter-

change of the order of summation in the second polynomial, (4.9) be-

comes

(411 2m a- 2 M-i 2m-2 V
(4.11) H x Q(v+)x )- 5 B j_ .( Q(Zi-)( +)x).

v=O v=O J=l v=O

We need the following result that is perhaps of independent

interest:

Theorem 5. The following identities hold:

-2Z - #1183



(4.2 1)1, QJ(v+1)x% 2 n-2-1 0=01,is.pZr-2;

V.=0 (2in-1-J)I
M=11 2, 0 a.

M- I22-1 m- 1
(4. 13) 2'. E Q(Zl (V+1-0)xv (1-X) (inm 12..

V =0

(4. 14) r.2wn- 2 MO =VIMX 1 2m-2-j (1-x)i T2 m- 2 - (x)
V =0

(j=0, 1,..., 2i-3;m1,2.)

2 in- 2 (2m )v2m-2
40. Z M 2'M'-2 (vlmino)xV = (1-x) (m=1, 2,...)0

We note that because of (1. 5) we could also write (4. 12) in the form

2m-2 M (1-x)) Z2m-2 J(x)
(4. 15) E m(+-~x 2-IJ

0j=0,140.91,2M-2; M=1, 2,O..

Proof, First wshw(4. 12). Let

2m2m-2

V =0

From (4. 1) and (4. 2), for k =2m - 2 -J,we find that

(1-x) p 2 r2 1 (x) = (lX) Z (k+l1) 2 n x
k=0

2 2m i 2m 1rn Z-i-i k

1=0 k=-oo +

so that
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2m(-l~i )(kl) m -2 )v-i l(4. 17) A = I '(i 2m 2m- = I m Zm-1-
V i+k=v + i=O +

On the other hand, by differentiating (3. 5) J times, we obtain

4m() I 2m I 2m m-1-J

1=0

and then

(4. 19) (2m-l-j)l Q (J)v+l) = 2m -li{2i )(v-i+1)2 m ' l - j

1=0

which is identical to (4. 17) so that (4. 12) follows.

To prove (4. 13), we substitute j = 2m - 1 in (4. 18) and get

2 m- 1 m2m(4.20) Q(Mx) = E (-)i(2 )(x- i)

1=0

S(2m-1)(x) is a step function so that upon substitution of x = (v+l-0)

for v = O 1,.. P Zm-It (4.20) becomes

(4. 21) Q (2 m-- ) (V+1-O) = 2f(II(2m )(+--0 = ' (-12m)

I= 1=0

(v = O ,t..., 2m- 1)

But an easy induction shows

V 2m v r'T-l1
(4.22) E (-1)( I) = (-1) ( ) (v= Ofl... 2m-1)

1=0

so that by (4. 21) and (4. 22). we have

2 rni- 1 (2m-1)2m-I 2M-1 2 InIZ, Q Q (2 lv+I-O)xV= E {-1(V{ )X (l-x)2 ' -

v=O v=O

The even degree spline case 3° , 4 is proved in the same manner

as (4. 12), (4. 13) so we can omit this proof and the theorem follows.
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With the substitution of (4.12), (4. 11) becomes

(4.23) HxV) P2 2 2(x) r-1 B (x- 1)z -Pzm-zjl(x)

4.= x  (2m-) + iz -1 (Zm-2j),

We now turn our attention to the left side of relations (3. 8) and

(3.9) and define

r+2m
Fr+2m = f Q(x-r)cos xt dx (r-2m+l,-2m+2,.P-4 0)

0

(4. 24)
r+2m

F r+2- f Q(x-r)cos xt dx (r=l, 2,...)
r

If we integrate the righthand side of (4. 24) for (r = -2m+11... ,-l, 0)

by parts 2m-1 times, we obtain

(4.25) F+ -1  ltQ(x-r)sin xt +_ Q, (x-r)cos xt - 1Q"(x-r)sin xt
r(- m- 1 t t 3

- 1-Q'(x-r)cos xt + ... + Q ( 2t (x-r)sin xtjr+

t 0
_ r(n-I r+2mn

t~m' fo Q(ZmI(-)s 1 xt dx.

Since Q (x) is a step function, we break up the interval of inte-

gration and writ- the integral in (4. 25) as

r+Zm 2 1) r+,-r (t d)

(4.26) f Q( mI(x-r)sin xt dx = Q (x-r)sln xt dx
0 1=0 1

r+2m- ( 1+1
Z Q( m)(1+1-r-O)f sin xt dx.
1=0 1

After we integrate and collect terms, we obtain (4. 26) in the form
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r+2m-1 ....
(4.27) - E Qm"n1 +l-r-O)[os(i+1)t- co t

1=O

r+2m- 1
=- - l--.O) + , [tl2m-1)l1- r-0)- Qlm1)l/+-r-O)]

- t 1= 1

cos It + Q(2ml- 1 )(2m-O)cos(r+2m)t ).

By (4. 21) we find

(2m-1) (2m-1) I-r2m
(4.28) W ( -r-0) - Q(1+1-r-0) = -(-l)

and
(( 9m 1)( 0 2M1 1 21

(4.29) Q (2m -0 ) = E (- 1 ) ( ) - 1
1=0

so that upon substitution in (4. 27), we have

r+2m
(4.30) f Q( 2 '- 1 )(x-r)sin xt dx

0

r+2mI ,(m- 1)1 1 -r 2mS  (1-r-0) + -- r)Cos It .
t 11 I=r

If we let i = 2m + r - I in the sum in (4. 30) and substitute the result

in (4. 25), (4. 25) becomes

[i In- 2
1)m- - 2m-3(4.31) F Q Q'(-r, "'(-r,+.. + -2

I 1 3) r+zm-l Q 2 t 2 m

in m r+2m- I
~ Q(2m1T) (- 1)im+ Q (1-r-0) +-Im +Z (-I) )cos(r+2m-i)t

t t =O

(r = -Zm+l,...,-1, 0).
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Let J = r+2m-1 and multiply each side of (4. 31) by (-1) t to get

(4.32) (-1)mt2mFj = -[(-)mt2-Q,(2ml_j).(_l)mt2m-4Q"(2m-l-j)+

e.+ t2 Q(2m- 3 )(2m-l-j)] + Q(2m-1)(2 m- 0 )

+ L-1) (2 )cos (i+1-i)t t m0,-1).

i=O

In view of the relations (4. 10), we may write

(4. 33) (-1)m t 2F = ( ( 2m )Oos(J+i-i)t -
i=O

- Q (m-l)(j+l- 0)+t2Q (Zm- 3) (j+1)-... +(- 1 t 2m-4Q"'(J+l)

+ (-1)mt2m-2Q'(J+1) (j Of 1..., 2m-1).

If we consider (4.24) for r = 1, 2,... and again integrate by parts

2m- 1 times, we obtain (4. 25) with the lower limit of integration r

instead of 0. Upon evaluation, the square bracket in (4. 25) is 0 and

we would get, by using (4. 25), (4. 26) and (4. 27) that

(434 F-1) I E Qt -m-l) (J+1-r.O)[cos(1+l)t-coslt
(4 4 r+2m- 1 -t2 m -I t" =

(r = I, 2,... ).

Following the same steps we did before, and noting by (4. 21) that

Q (2m- 1){l-0) =1

allows us to use (4. 30) to write
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r+2m 1-r 2m(4.35) Fr 2m.. 1 I t2M  E_ -) 1-CsI

t I=r

Letting I=2m+r-I in the sum in (4. 35) and then j =r+Zm- 1,

we obtain upon multiplication by (- 1)mtn

(4.36) 2lm Zm m 2m(4.36) (-1)tmF j = E (-1) (2 )cos(j+l-i)t (J=Zm, 2m+l,.°.).

Let us sum the series

(4. 37) (-,m~ F Fxi

J=O J

'From (4. 33) and (4. 36) we find that

(4. 38) (- 2mt2 m E Fix j  1- )Oos(j+l-i)tJx j

J=o J J=o i=o I

* 2m 2m-l)

+ E I=0 (-1) ( )cos(J+lil)t I - E Q( J+l-OlxJ
J=2m i=O J=O

+ 2m-2 ( m-3 lm 2m2 Z-2+ t Z Q ( J+')lllxi-...+(-I) tm' E Q'(J+I)x .

J=O J=O

To simplify the term in curly brackets on the right side of (4. 38), we

define
(4. 39) -r(x) E [cos(v+l)t]xo

V=O

and note that
2m2m (_~(m 0(4.40) (1-x)2mT W) E i (-)(tx. - [cos(v+l)tjx v

i=0 V=O

o 2m

J=O i+v:J
i=O v ->0
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2m-IJ €o 2m

Zm-~ (_1)1 (2 n)cos(J+ _I-)tjxj + I ~~ )IZM)~4 5 J+-~~

J=O 1=0 J=2m 1=0

Using (4.40) and (4. 12) and (4.13) of Theorem 5, we may therefore

write (4. 38) as

(4.41) (-1)mt2m Z F x J = (1-x)Zm (x)- [(l-x)Zm - I

J=O

it 2-m - 3 4  Z- -5
1 P1 (x)(1-x) +rj p 3 ()lx

2 i- 2

(zm-2)l P2m-3 (x) ( I- x ) "

Equating the relation (4. 23) and F as determined from (4. 41),

J=O

we see that we require

- t2(4.42) '- - {(x-l)Zm'rx)+(x-1)2- --- PI (x)(x-1)m- +

m- 1 t2 m-2
+ (-(1) m)! W: (x)(x- 1)

P2 2 (x) m-i 1 .)-I(x

( , Hv") (2m-1)! + F 2j- 1z zj))!
V=O J=l

___ __ ___ __ __ ___ __ ___ __ _ (2m) (2m)

5. Determination of the coefficients HV = H(2 m )  Bj =B(m

Solving (4.42) for Z H xv gives the final relation
V=O V

V (2m- 1)1f( 2 I+
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Im2J1 2j 1I (x-1)~ P 2m-21-l(X)I
+ (-I) - P (x)(;l) l (Z -2j) - .

Our derivation of (5.1) establishes the following

Proposition 1. The coefficients H V H(m) B Bzm)= v,t ' B2J-1 = 2j-l,t

of the most general functional

(5. 2) Rf= f f(x)cos xtcx- ZH f(v) - B f(i()
V _ 2j_ - ( 1 1 (0)

0 v=O J=l

vanishing for the functions

(5.3) Q2 m(X- r) (r = -zm+l, -2m+2, ... )

Are the expansion coefficients of the rational function (5. 1) where the

B (j = l,..., m-l) are chosen arbitrarily.

We want to investigate the functionals (5.2) further, and, in par-

ticular, determine the unique functional having bounded coefficients.

Let R2 m(X) denote the right side of (5. 1), where the B2 _ (j=l,..., m-i)

are as yet undetermined. To use R2M (x) effectively, we need informa-

tion on its poles. To this end, in view of (4. 12) of Theorem 5 for j = 0,

we may write Pm_2 (x) in terms of the central B-spline (1. 5) as

2m-2

(5.4) P2m.2 () = (2m-l)! E M2 m(V-m+l)x v .
V0=0

By Lemma 8 of [9, p. 182] we know that this reciprocal polynomial has

only simple and negative zeros so that we may label them to satisfy

the conditions

-30- #1183



1j

(5,5)< k ... , < m <-<m.!<,. < X! < 0

and

(5.6) = = )m "

1 2-2 2n-3 ff m-1lm

From the form of T(x) as given by (4. 39), we note that T(X

converges for lxI < 1. Observing that for R2 m(X) the poles

l' m-i are Inside the unit circle while Xki,..., Xm_ 2 are out-

side, in view of (5. 5), we shall have the coefficients H bounded,
V

If and only if the coefficients B 2j_ 1 = 1,..., m-1) can be chosen

so that the m-1 poles x MIn of R2m (x) have vanishing resi-

dues. By (5. 1) this will occur if and only if the B satisfy the

equations

(5.7) E B2j_ 1 v 2m-21 V

(=m )(. mJ-ijJ )

j~ ~ ~ ~)2-Im- tvl2 m Z '  (=l,.,m1

In the system (5. 7), we have m-I equations in the m-I unknowns

B21-I (j=1, ... , m-1). To show that the system is nonsingular, it is

sufficient to show that the determinant

(5.8) IA 1 -- V J'1P 2m-2J- I(' o(2m-2J)!

(v 102,..., m-1; J=l, .. .m-).
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In order to accomplish this, we shall consider a related problem,

a special case of which will solve our problem. Let

0'(5. 9) S = {S(x) : S(x) E S2m' S(v) = 0 for all integerb v)

In [9, p. 1941 Schoenberg shows that every element of S0  admits aZm

unique represeitation
2m-2

(5.10) S(x) = a kSk(x)
k=l

for appropriate 'values of the coefficients ak, where the S (x) are
kf k

the so-:called eigensplines of the class S and are defined in terms
2m

of the zeros (5. 5) by

(5.11) Sk(x) =Sm(X; = JMm(x-J) (k=l, 2,...,2m-2).

In [9, §9] Schoenberg proved a Theorem 11, a special case of which

asserts the following:

(5.12) S(X)4 Som fl L1 (R) for some s=0,1,...,2m-1

implies that

(5. 13) S(x) = 0 for all x.

The first half of the proof actually establishes the following:

2m 1

be uniquely represented in the form

I m-1

(5. 14), S,(X) a S (x)
k=1

for appropriate values of the coefficients ak
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In particular, the Sk(x) for k 1,2, .. ,m-1 are linearly inde-

pendent.

We determine the setWese

(5. 15) Ic {l,, .,m-1}

the null set also being allowed, its complement

Ic = {l,Z,...,m-i}- I

and in terms of Ic the set

(5. 16) I' = {cm-2-i: iE I c}.

Notice that while I is a subset of (1, 2,..., in- . , the new set I'

is a subset of {m, m+l, ... , 2m+2 } so that the intersection I n P is

empty. The particular set we will be concerned with in connection

with the system (5.7) Is IU I'= 1,3,5,..., 2m-3}.

Suppose that S(x) is of the form

m-i

(5. 17) S(x) = Z akSk(x).
k=l

We want to be able to choose the ak in such a way that

(5. 18) s(i)(o) = y i) 1( IU 11

where the righthand side has arbitrarily prescribed values. In other

words, we want the a to satisfy

(5.19) M- k (0) = y i ic IU I'.

k= I

This then is the related problem, a solution to which will enable us to

show (5. 8).
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In order to show the existence and uniqueness of the ak, we con-

sider the corresponding homogeneous system and prove the following

Lemma4, f S(x)c S ml L (R+ ) for some s=0,1,...,Zm-1
2M 1

and

(5. 20) S()(o) =0 If I* I U I'

then

(5.21) S(x) =0 for all x.

Remark. This is a special case of a result of Schoenberg [10,

Lemma 2] concerning a finite interval that we have extended to the

infinite interval (0, oo). We follow his proof which was in turn Dased

originally on a proof of Greville [4, p. 4].

Proof of Lemma 4. Suppose (5. 14) is the canonical representa-

0
tionof S(x) c 2M L (R+ ) for some s = 0, l,. m-l. Note that,

since

_(s) Ll+(5.22) Sk e for (s = 01 ,...,2m-1) and k = 1,2,..., m-I

by the nature of the representation (5. 14), we also have

(5.23) Ss)(x) c LI(R+) for s = 0, 1, ... , Zm- 1.

We let
CO b

(5.24) f [S(m)(x)I2dx = lim f [s(m)(x)]2dx

0 b-oo 0

and wish to show that

(5.25) f -0.
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We write f = f S(m)S(m)dx and integrate by parts successively to

obtain
b b

(5.26) U = lr f S(m)dS(m- 1) = - rf S (m+l)dS(m- Z) = .
0 0

b

= ±lim f S( )dS(a)
0

where the integers a and P satisfy the conditions

(5o27 0=: = m- I, m = 15P -52m-, I +[= 2 m- I

Notice that we have written (5. 26) as If all the "finite parts" drop out

at each end of the interval of integration and at each step of the suc-

cessive integrations. That this is indeed the case follows thus: for

each pair of numbers (a, p) satisfying (5. 27) we have

(5.28) (O)0 (0) = 0

because either a E I or p c I' so that (5. 20) implies that (5. 28)

holds. For each (a, p) we also have

im S(a)(b) S(P)(b) = 0
b- oo

in view of (5. 23).

The integrations can be continued all the way down until we

reach b []XV+l(21

(5.29) 12 = lim f S(2m'l)dS = lim _+ f s(2m x)S'(x)dx
0 b-" co v=0 x

V

where we have written x = v for v =0,l,...,[b] and x[b]+1 =b.

Since S(2m-1)(x) is a step function, the integrals in the sum (5. 29)

vanish if 0 -v < [b], since S(x) f S0  . There remains to show that also
2m
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(3.30) lir f S(Zm-l)(x)S(x)dx = 0.
b-'oo [b]

If b is an integer, (5. 30) is true. If b is not an integer, since

(2m-l) (x) is a step function,
b (P b

(5. 31) f ](2 m-'1)(x)S'(x)dx = S (2m-)(b) f S'(x)dx
[b] [b]

= s(2m-l)(b)(L(b)- S([b])].

(x) SO  implies S([b]) = 0 and, upon letting b- oo on the right

side of (5. 31), we obtain (5. 30) by virtue of (5. 23).

We have Just established (5. 25), and therefore that

(5. 32) S(x) C n 1 I *

But 3(x) C S0  Implies that S(x) E 0. This completes a proof of2m

Lemma 4.

In view of Lemma 4, S(x) as given by (5. 17) for the homogeneous

system
m- 1

(5. 33)- Z akS(') (0) = 0
k=lkk

must vanish for all x. Then, since the Sk (x) for k = 1,..., m-1 are

linearly independent, we must have ak = 0, k =1,..., m-l . This

shows the existence and uniqueness of the ak for the system (5.19),

so that we must have that the determinant

(5.34) 1 = Is( 1~)i (1*0 IUI', k =t2,... n-l).
ik k

We claim that
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(5. 35) S k (0) (m-1-i)1 k-I

(1=0,I..., 2m-; k=l1 ... ,;m-l).

Indeed, if we differentiate (5. 11) 1 times and substitute x = 0, we

obtain

(5. 36) (1) (o0)= C x M (-I) HGo

M2 m(X) has support in (-m, m) and

(.3 )(1) i_ (1)
(5.37) M 2M(-X) = 1) Mfm(X)

as can be seen from (4. 10), so that we can write (5. 36) in the form

(5. 38) S (0) = (0) ) x1 Mm(j))
J- -(m- 1)

Ifwe let v =j + m - i in the cum in (5.38), we obtain

k-I 2m-
(1) (IIi2 -2 V ()(5. 39) S k(0) mIE xk "Mz (i.+1-m)

ki v=O

Then (4. 15) of Theorem 5 establishes our claim (5. 35).

If we multiply the kth column of the determinant in (5. 34) by X -I

k = 1,.. .,m-i and take the transpose of this resulting determinant,

we have by (5. 34) that the determinant

(5.40) (kk-l)i2m2-i(kk) '(k, i) /0 (k=l, 2,..., m-l; ic IU P).

If we consider the special case I U 1' = (1, 3, 5, ... 2m-3}, then the

determinant
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(5.4) -l)P2 2 1 () /0(RM-ll)! (k, 1) 0

(k=l, 2,...,rm-l; 1=1, 3, 5,...Z2m-3).

This is precisely the relation (5.8), so that we have established the

first part of the following

Theorem 6. Vo. Among all functionals

(5.2) Rf= f f(x)oos xt dx - I H2m)f(v) -Z B(2 m ) f(2J- 1)(0)
0 V=0 ' J=l

vanishing for the sequence of spline functions

(5. 3) Q 2m(X - r) (r = -2m+l, -2m+2# ... )

there is a unciue one such that the sequence {HV ) is bounded.

2*. In fact, this unique functional Rf can be given explicitly by

0o q(t) 00

(5.42) Rf = f f(x)cosxtdx- f(O) + Y f(v)cos

0 2m(t)  v=l V

[I 2  m- f(2 l)( 0 )t2 j  2 m(t)

(where 4'n(t) and *n(t) are defined in (1. 3) and (1. 6), respectively)

for m 1 2, 3 4

-Proof of 2* of Theorem 6. We observe that the functional Rf of

(5. 42) is of the proper form (5. 2) where
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(5.43) H 42m(t) ,H cosvt Zm(t) (Y =l1, 0 2 +2 m(t) H +2mvt )

By (1.3) and (1.8),

(5.44) Hn I sin t/2 2m I
V t/2 I 2mw 2(7 < 0o

(v =0,1,2,...)

so the sequence (H } as given by (5.43) is bounded. Once we

show that Rf as given by (5.42) vanishes for the sequence of splines

(5. 3), the unicity established in part 1 0 will establish part 28 .

We accomplish this in two steps, one for (r = 0 1, 2,... ) and

the other for (r -2m+l, -2m+2, ... -1). We remark that we prove

the first case for general m but the latter only for the special cases

of m = 1, 2, 3, 4. So far, the latter general case still eludes us; it is

a matter of showing the validity of one necessary identity. This same

dilemma prevents us from claiming explicit versions of other q. f. to

follow as well as (5.42) for general m.

We first show that Rf = 0 for f(x) = Q 2 m(x-r) for r 0, I,2,...

Since (1. 2) holds, we get

f0 Mn(x-J)e Xtdx 4= (t)eilt

Taking real and imaginary parts, we find

00
(5. 45) f Mn(X-i)cos xt 4 n(t) cos Jt

-00
and
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(5. 461 J M n(x-i) sin it 4oqi(t) sin it .

By (1.5)and (5. 45) for n =2m and since M 2m(X) 0 iU lXI> m,

we obtain

(5. 47) fQ 2 m (xr)cos'xt dx =fM.x -~o td
00f (xnrcoxtd

-2 lJMct)os (m+r)t (r = 0,1,it2,..)

Since f (2 il (0) = 0 for f(x) Q Q2 (x-r) and r = 0, 1, 2,.. we need

only show that

r+2ni-l
(5.48) *2 (t)cos(m+r)t = - M 2m(v-m-r)cos vt

v =r+ 1

(r = 0, 1, 2,6...)

BY (1. 7) we have
n-i1

+2M(t) = , M Z(k)oos kt
k=-(m-1)

which upon multiplying by cos(rn+r)t arnd letting v =m+r+k becomes

r+2n- 1
(5. 49) +2 m(t)cos(m+r)t Z M2 m(v- m-r)cos(v-m-r)to cos(m+r)t.

v =r+ 1

By using the identity

a 005 at cos bt =cos(a+b)t + sin at sin bt

we get

(5. 50) cos(v-m--r)t cos(m+r)t = cos vt + sin(v-m-r)t sin(m+r)t.

But
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r+Zm-1
M (v-m-r)sin(v-m-r)t- sin(m+r)t =

v=r+l
m-I

= sin(m+r)t E M M(k)sin kt = 0
k (m-1) 2m

since M m(-k) = M 2m(k), so that upon substituting (5. 50) into (5. 49)

we obtain (5.48) as we wished.

What remains then is the case r = -2m+1, -2m+2,..., -I. By

(1. 5) we can write (5.3) as M 2m(x- m-r) and need to show that

Rf = 0 for

M2m (x-m-r) (r =-2m+l, -2m+2, ... , -1)

or for

(5.51) M m(X-j) (j =-+l, -m+2, ... , -).

By the symmetry of M2m(x) and (5.45) for n = 2m, we find

00 Go
(5. 52) f Mm(x-J)cos xt dx = ¢m(t) cos it- f M 2 mX+Jlcos xt dx

0 0

and
o

(5. 53) f M 2 (X) cos xt dx = 1
f m2 2m~t0

Since M( 2 k- -H) =M(2 k- I)J) and M(2k-)(o)= 0 for (k=l, 2,...,

m-1), and by the previous case for (r = 0) 12,...), we need only

showthat Rf 0 for (5.51) for (j =-m+l, -m+2,...-l) . For

m = I, 2, 3, 4 this is just a matter of computation. For instance, for

m = 2, the cubic case, we need show only that

0o 4(t) 1 . I  
_(0412(t)

(5.54) fM 4 (x+l)cosxtdx M 4 (t) { -M 2 M I(1)[
0 4 t 2  

4 (t)
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By integrations by parts, the left side becomes

1 t2
S[Cos t- I +J

and the right side, upon substituting M 4(1) = 1/6, M 4'(+1) = -1/2,

*2 (t) = 1 4 (t) =2 + cos t and using (1.3) and trigonometric

manipulations, agrees. This establishes Theorem 6.

We can now prove the following

Theorem 7. Among all q. f. of the form

f f(x)cos xt dx = V H(2m f(v) + ZB(2m) f(- 1)( 0 ) + Rf
0 v=O J -

where the H(2m) satisfy the condition
VP t

I H(2m ) < K for fixed t, for all integer v ? 0 and some K,

there is a unique q. f, with the Property of being exact, i, e., Rf = 0P

whenever f(x) 2m fn . This unique q, f. is given by (5. 42)

for m = 12, 3,4.

Proof, The proof is modeled after the proof of Theorem 1. We want

to show that the functional

Co 00 m -)
Rf= f f(x)cosxtdx- E Hf(v)- E B2  f( 2J-)(0)

0 v=O J=l

with the coefficients H = H(2 m) I B B(2m) as given in (5.42)v vPt zj-I 2J-1, t
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[or as given as the expansion coefficients of the rational function

(5, 1) where the B~_ are defined by (5. 7)) has the property

Rf =0 if fE S2mn LI (R+)

Suppose f c S fl L (R + and let

m 1

Go
f(x) - cQ2 (x-r)

r=-co

be the expansion in terms of the forward B- splines of degree 2m - 1.

By Lemma 2, we know that f(x) i LI(R ) implies that

00(5.55)E I ICr I < 00.

r-- 0

The partial sums
k

fk(x) Z crQ2 m(x-r) (k 0,, 2,...)

have the additional property that

(5.56) fk(x) = 0 if x=2m+k.

Moreover, fk(x) = f(x) if x 5 0 so that since f(x) c S2 M nL1( R
+ )

and (5. 56) holds, we conclude that f k(x) c S 2M LI (e+) for integer

k .Z0. Using the properties of the functional (5. 2) we obtain

00 c m-f
(5. 57) f fkx cos xt dx = Z Hfk(v) + Z B2j 1 f k (0).

0 v=O J=l

Observing that each fk(x) is dominated by the function

ScrI Q2 (x-r)
r#-oo
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which is summable on by Lemma 2 and (5. 55) we see that on

letting k -* o, the relation (5. 57) goes over into the desired relation

0 0o m-I

f f(x)cos xt dx H ~ f(v) + ZB.. f R2 -1 ) (0).
0 V=o J=l

This completes a proof of Theorem 7.

6. The sine transform (211 for n = 2m. In §3-5, we've considered

w(x) = cos xt and n = 2m. We now want to consider the weight function

w(x) = sin xt and indicate the modifications in these previous sections

that allow us to prove the following

Theorem 8. Among all q. f. of the form

O 0m in- I
(6.1) f f(x)sin xt dx = Z H( 2 1f(v) + E B(2mtf 2 j)(o) + Rf

0 v=O V=1

where the coefficients satisfy

IH(2m)I <K for fixed t for all v - 0 and some K,Vit

there is a unique q. f. with the property of being exact, Rf =0 whe

ever f(x) E S nl L (]R+). This unique q. f, is given by

4 2m(t) 00
(6. 2) f f(x)sin xt dx = Y f{ ,sin v

02 @2m t )  v=l

trn-2 j 1j(t) '2m-z2j- 1(t) cos -2 2J)
+ F, z 1 .I m(t) f( (0) + MY

J=O

for m= 1,2.
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For simplicity, we write H - H( 2 m) ,  2J= ) We againv v t BJ1'j

shall attempt to show that

(6.3) Rf=0 if fC S 2m n LI(R )

by enforcing this requirement for the sequence of forward B- splines

of degree 2m - 1 given by (3. 4). Upon substituting f(x) Q(x-r) 'in

(6. 1) we have the sequence of relations

r+2m
(6.4) f Q(x-r)sin xt dx = H Q(-r) + H Q(I-r) +...

0 in-i

Hr+2m - 1Q(Zm- 1) + E B Q2J)(0),
J=l

(r = -2m+l, -2m+2,,... -2-

and
r+2m

(6.5) f Q(x-r)sin xt dx H r+IQ(I) + Hr02Q(2) + ... + H r+2m-Q(2m-l)
r r

(r= 0, 1, 2,...)

which are the analogues of (3. 8) and (3.9), respectively. Again,

we use a generating function approach and observe that the righthand
I

side of (6.4) and (6. 5) is equal to the coefficient of xr+2m- 1 in

00 2m-2
(6.6) H xv)( E- Q(2- I-vx" 0 v =0

2m-2 m-i 1 2J)
+ E [ F B j) (2m- 1-v)x V.

V=0 J=1

Similar to our approach in §4 then, we use (4. 10) and (4. 12) of Theo-

rem 5 to obtain (6. 6) in the form
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'I

0 2m2 (x), rn-I (x-l)ZJP mz(x)

( v=O v m J=l

This is the analog of (4. 23).

We consider the left side of relations (6. 4) and (6. 5), and define

r+2m
F +Z m-.1 f Q(x-r)sin xt dx (r=-n2m+l, -2m+2,...,-, 0)

0
(6.8)

r+2m
Fr+zrn_- f Q(x-r)sln xt dx (i = 1, 2,... ).

If we integrate the right side of (6.8) for (r = -2m+1, ... -1, 0) by

parts 2m - 1 times and follow the same procedure we used in §4, we

get the following analog of (4. 31)

1t 1 (1 m Q2-)_)
(6. 9) Fr+2m- i =  -Q(-r) + Q"(-r) -.. +tm

(69 0r 2n, + t t3 Zm- I

m r+2m-l I
Z (-I)12 )sin(r+2m-i)t (r=-Zm+l,..., -1,0)

t 2m 1=0

or by letting j r + Zm - 1 and using (4. 10), we obtain

(6.10 m2m 2 m (2 m- 2)
i=0

1t 3 Qz (J+l) I)n t Zm- 3Q (- 1 )m ZMl+ t3l m4)l +! ... - (_llm) m-Q:,(j+l)+(.1)t m-Q(j+l)

(J = 0,1,.P.,2m-1).

If we consider (6. 8) for r = I, 2, ... and again integrate by parts

2m - I times, we get analogous to (4. 36) the relation
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2m
(6. 11) ()mZmf (i ()sn (J+l-)t

i=0 
i

(J= 2m, 2m+1,...).

From (6. 10) and (6. 11) we find that

(6.12) (-1 )m IntI 0 i j I 2m~snj,,tx
j=o =0

00 2m i~
+ ) [ ' (-1) (2)sin(J+1-i)t]xJ }

J=2m i=O

2m-2 2m-2+tm-2o(2 m-2) (J+l)x j - t3 F, Q(2 m-4)(J+l) Xi +..

j=O J=O

2m-2
- ) mt2m- Z Q(J+I)xJ"

J=0

We define

(6.13) T(X) = 7j [sin(v+l)t]xv
v=0

and note that (1-x)m(x) is precisely the term in curly brackets on

the right side of (6. 12), so that by using (4. 12) of Theorem 5, we can

write (6. 12) as

In2m j Ix?,7X + m-- M- 2 W
(6. 14) -(-1)mt , Fix = (1-x)2 (x) + t(1-xnP(X)

J=O0

j0
t 3  2rn-4 1)n t2 ml

- -1-x) P2 (x)+... -(-1 -(2~~P m (x)~

Equating (6. 7) and F xj as determined from f6. 14) we see that
J=O

we require
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1-~ 1)- MI M-2 t 3Zin-4
(6.15} ) m - {(x_1)zm7(x) + t(x]) --z P? ( )'x- 4 1)

t 2m "3- Z x l '  '

+ (11 m I t 2 m- 1
(2rm-1)1 Pz-(x) }

RM-MZrn-2

V P 2  (x) M-i (x-l)2JP 2 21 2 (x)

V=OV (Zm-1)! + )=BZj (2m-ZJ-l)I

00

Solving (6.15) for (7, H x) gives the final relation

v =0 V

00 
rn-I I -i m;(6. 16) =0 Hx z2m-)! t [(x-1 )

m- t2p P(jx)x t)2m2_2
V=O 2m-2~ 1  tTX

+ Y, (-1) (2j+l)! 2j
J=O

M-I fx-1) 2| P 2m_22(x)
B2J (2m-2j-1)! 

j=1

This is the analog of (5. 1). Our derivation of (6. 16) evidently estab-

lishes the following

Proposition 2. The coefficients H = H(2t) B = (2ml of the
v vt' 9 I Jt - f h

most general functional
00 00 Mn-

(6. 17) Rf = f f(x)sin xt dx- Z H f(v) - E B f(2j)(0)
'V 2j

0 V=0 J=l

vanishing for the function (5. 3) are the expansion coefficients of the

rational function (6. 16) where the B21 ( =,..., m-I) arc chosen

arbitrarily.
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We again wish to determine the unique functional (6. 17) having

bounded coefficients H . From the form of 7r(x) given by (6. 13),

we note that 7(x) ronverges for Ixi < 1. Then in a similar manner

to the discussion in §5 we observe that the coefficients H will be
V

bounded, if and only if the coefficients B 2 (j = 1,..., r-i) can

be chosen to satisfy the equations

m- 1 (X)7) - 2-- m -

(6. 18) Z B v mn-- [(X; J1-T-)) 2
=121 (2m-2j-1)! 2m

n- 1 (-1 ) t j

rn-i ~l~i~i~l2rn-2j-2
+ (2+I)! P2 (k)(X-I) -  ] (v 1 ,...I m-i)

where the X (v = 1,..., m-) are the zeros of P 2 2 (x) less than

one in absolute value. So we need only show that the determinant

(X -1) 2jP (X )
(6.19) JA I = I v 2m- v- 0"1 (2m-2j- I)!

(v=l,.., m-1; J = I,...,rm-l).

That this is the case is evident from the expression (5. 40) if we choose

the special case I U ' = {2, 4, 6,..., Zm-2 }. This establishes the

existence of a unique ft..ictional r- of the form (6. 17) of Proposition 2

such that the sequence {H } is bounded. The remainder of a proof
V

of the first part of Theorem 8 is essentially the same as the proof of

Theorem 7 so we may omit it.

We observe that the functional Rf determined from (6. 2) is of the

p-oper form (6. 17) where
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t

(6.20) H0 2m t  2 2 t

By (1.3) and (1.8) we find

s 2 t/2 m

so, for fixed t, the sequence (HV) as given by (6. 20) is bounded.

Once we show that Rf as given by (6. 2) vanishes for the sequence

of splines (5. 3), the unicity established in the first part of the theorem

will complete the proof of Theorem 8. This latter task is accomplished

similar to the cos xt case of §5, showing that Rf = 0 for any

m = 1, 2,... for (r = 0, 1, 2,...) and looking at the particular cases

of m = 1,2 to showthat Rf =0 for (r=-2m+l, -2m+2, ... ,-1).

We omit the details.

7. The even degree splino case, n = 2i-1. In §3-5 and §6 we

considered w(x) = cos xt and w(x) = sin xt, respectively, for the

odd degree spline case, n = 2m. Here we shall consider the same

weight functiQns but take n = 2m- I and prove the following

Theorem 9. Let m 2 or 3. Among al! g. f. of the form
00 on - (m-l (j

(7. 1) f(x)cos xt dx H ( (m-1)f(V) + B2J-t 1 )(0) + Rf
0 o Vj-lPt

(7.2) f f(x)sin xt dx H( 2m- 'f(v) + Y B(Zml)f(2 0)(O) + Rf
0 v=O V t 2J t
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-where the coefficients satisfy

H t,(2m-l)I < K for fixed t, for all v -0 and some K

there is a unique q. f. with the property of being exact, Rf =, when-

ever f(x) c S ml 1 L I(eR). This unique q. f. is given by

00 4I'2 (t) CO
(7.3) f f(x)cos xt dx = 2M f(t) + co

0 12nlt f(0) + V cs

J=1 t 2 -(t)

(7.4) ff(x)sin xt dx -2m- (I (t iC
2 (t) Li t()si

,, ~ ~+ E- 2j+1 [1 -j 2 ( ) q2m2-t() cs2fl)(0) + Rf.

J=0 t 2m- I

We shall indicate the modifications in §3-5 necessary to prove

this theorem for the weight function cos xt. The case of sin xt then

follows as §6 did for the case n = 2m. For simplicity, we write

= (B (Zm- 1). We again attempt to show for

v v, t ' 2j- 1 2j- 1, t

(7. 1) that

(7.5) Rf = 0 if fC S fl LI(CR+ )

by enforcing this requirement for a sequence of B-splines. This time

we choose to use the sequence of central B-splines of degree 2m - 2
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(7. 6) fM 2 _ l(x-m-r)) = (M(x-m-r)) (r=-2m+I,-2m+2,...)

whose knots are at the points (v +1), v an integer. We write these

B-splines in the form (7. 6) to make the analogy with §3-5 clearer.

By (1. 5) we have the explicit expression

2m-1 2- ml12-

(7.7) Mm l(x) =- -1 m ( mlIz-
2 rr- I (2m-2)! =

Upon substituting f(x) = M(x-m-r) In (7. 1) and noting the requirement

(7. 5), we obtain the sequence of rolations

1
r+2m- -

(7.8) f 2 M(x- m-r)cos xt dx = H M(-rn-r)+ HIM(I-m-r) +
0

m-I
+ 2 m M( n- 1) + B M( 2j 1 ) (-lm-r)

J=l1

(r-=-Zm+1,... -)

and
r+ 2m-

(7.9) f 1 M(x-m-r)cos xt dx = Hr+iM(l-m)+Hr+ 2 M(2-m) +

2

+ Hr+2m- IM(m-1) (r = 0 i 2,...)

which are the analogs of (3. 8) and (3. 9), respectively. We again em-

ploy a generating function approach and note that the right side of

(7.8) and (7.9) is equal to the coefficient of x r+Zm in

o ZM-2 Zm-2 m-i
(7.10) ( H xV)( M(m-l-v)xV) + Z[ ZB jM(i(m- I-v)]V.

V0v=O v= J=0

In order to simplify the two polynomials in (7. 10) we note that
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I

an be) M(k)(x) (-)k M(k)(-x)

as can be verified from (7. 7). With this substitution and (4. 14) of

Theorem 5, we obtain (7. 10) in the form

00 V Iv) l )2-2 T Zm-2 (x) m 1  1 )2m-2J-l.

(7.12) ( x )z(-)) (BJ Z
(2=0) 1-1 2

Zm-2j - I(x)
(2m-zJ- 1)!

This is the analog of (4. 23).

We consider the left side of relations (7. 8) and (7. 9), and define

r+2 m---

Fr+2m- I f  2 M(x- m-r) cos xt dx

(7.13) 0 (r=- 2m+l, - 2 m+2,..., -2,- 1)

r+2m- 
2

F r+2m-1 1 M(x-m-r)cos xt dx (r 0, 1,2,...).
r+2

If we integrate the right side of (7. 13) for (r = -2m+l, -2m+2, ... , -1)

by parts Zm-2 times and follow the same procedure we used in §4, we

get the following analog of (4. 31)

(7.14) F -[% M'(-m-r) - M"(-m-r) +..
+2 t 2t4

+ m- (2m-3)

2m-2
t

* m-m2 r+2m-1 I 2rl
2m- 2 )sin(2m - +1-i)t

t .=O

(r =-2m+l,...,-1)
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or by letting j r + 2m - 1 and using (7. 11) we obtain

(7.15) (1)lm'1t m- I F 1)11 i 2- Iit- tM (2m-3)(J+I-m)
1=0

+ t3 M (2m-5)(j+-m) - ... + (- I" t 2 M' (J+l-m)

(J = 0, is..., 2m-2).

If we consider (7. 13) for (r =, 1, 2,...) and again integrate by

parts 2m-2 times, we get analogous to (4. 36) the relation

rni m1F = t-O 1 2m-1)1

(7.16) (-1) m - t F = (- 1) 1 )sin (j + -i)t
1=0

(0 2m- , 2m,...).

From(7. 15) and (7. 16), we find that

00

(7.17) (- 1) m- l t Z-1 Z Fjx  =
J=O

z I E 2m-- 1)sin(j +1- i)tlx

J=2m- 1 i=O 

2rn-2 (Z.n 3 )+ )xj + t3 )M(Zm-S)(i(m)xJ -
t 7,M (J+I- mY J i-

3 =0 3 =0

23 m-2

+ (- 1 )  t2 M'(J+I-m)x"
J=O

We define
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(7.18) U(x) Z [sin (v +)tx1Z
V=0 2

and note that (l-x) 2 m- 1U(x) is precisely thq term in curly brackets

on the right side of (7. 17), so that by using (4. 14) of Theorem 5, we

can write (7. 17) as

(7.]9 (l~'l 2 m- 1 00 x = 1x2m-ul) 12) ( l - x ) 2m - 3 T l lW

j=o 1!

2= 2n-1
3(I-x)2m -5 T3 (x)

+ (t ) - *.

I t )2m-3 (1-x)T2 m-3(x)
+ (-1 12 (2m-3)!

Equating (7. 10) and Z Fjx1 as determined from (7. 19) and then solv-
, "Co J=O

ing for E H x" gives the final relation
V=0

Go(Zm- 2 )! ~2  2m-1m-(7.20) L r1 Ux ()-2)

rn-ij- 2m- j
+ T W (x-l)(-l)i("L)2J-ll -l' Tj_(lx )2 - - ]

J=l 2 (21-1)! 2j-

m-1 1 2m-2j-l (x-1) T2 m-22 1 -(X)

1= j-1 2 (Zm-2j-l), .

This is the analog of (5. 1). Our derivation of (7. 20) evidently

establishes

Proposition 3. The coefficients H H( 2 m- 1) B B (2m- 1)
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of the most general functional

(7.,21) Rf f f(x)oos xt dx - Z Hf(v) - Z B f (0 )
0 V=0 J=1l

vanishing for the functions(7. 6)_are the expansion coefficients of the

rational function (7. 20) where the B2 J_1 (j m-1..., r-I) are chosen

arbitrarily.

We again wish to determine the unique functional (7. 21) having

bounded coefficients H . From the form of *U(x) given by (7. 18), we
V

see that U(x) converges for lxi < 1. So that Just as in §5 we note

that the coefficients H will be bounded if and only if the coefficients
'p

B2 _1 (j = 1,..., m-l) can be chosen to satisfy

M_ I (k 1)2j-I1m(-I ) I (-2i1 (x:l) T
(7.22) 2 j- 1 2 (2m-2j-1)1

J=l

=(lmI -I4 _!( )( -1 2 m - 2 j- I

t 2m- 1 - U()+ (- 2 (2j-l)t v j =1 (J

(v = 1,2,..., r-i)

where the . (v = 1,.. m-1) are the zeros of T2 m_2(x) less than

one in absolute value. Lemma 8 of [9, p. 182] had guaranteed that

T2 2 (x) was a reciprocal polynomial which had only simple and

negative zeros Xl, X2 ,..., 2m-2 that we may label to satisfy the

conditions (5. 5) and (5. 6). So we need only show that the deter-

minant
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zj- I
(7.23) IA I = (-)2 m - 2I 1)(2m-2j-l)I 0.

We haven't proved a lerama similar to Lemma 4 of §5, but note that

the determinant in (7. 23) for the cases m = 2 and m 3 takes

the forms

(7. 24)

and

(7.25) (X - IM 1)(k +l)(X +1)(X-X )(1-X

respectively, and so by (5. 5) the condition (7. 23) is satisfied.

This establishes the existence of a unique functional Rf of the form

(7. 21) of Proposition 3 such that the sequence {H } is bounded. The

remainder of the proof of the first part of Theorem 9 is essentially the

same as the proof of Theorem 7 and we omit it.

We observe that the functional Rf determined from (7. 3) is of the

appropriate form (7. 21) where

1 2m- 1 - (t )

(7.26) H H 2m(t) % H - V t(t) 2

and by (1. 3) and (1. 8) we again have this sequence (H } bounded.

It is a straightforward procedure to show for m = 2, m = 3 that Rf

as given by (7. 3) vanishes for the sequence of splines (7. 6), so that

the unicity established in the first part of Theorem 9 completes the

Sproof of the theorem.
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8. Explicit forms for the q. f. of Theorem 2. Theorem 2 is es-

tablished similar to the way the first parts of Theorem 7 and 8 were

proved. The only change needed is to take I U I = (1,2,..., -l}

instead of what we used before. For instance, for the cos xt

case, we use the same left sides of (3. 8) and (3. 9), but we have to

modify the right sides. Theorem 5 readily allows us to do this and we

get a .similar expression to (4. 42) but now in'the coefficients

BitB2)""BM-1 Lemma4 for the choice IU I' -- l2...,m-l I

enables us to establish Theorem 2 just as the first part of Theorem 7

was proved.

For the weight function cos xt, the q. f. (5. 42) gives explicit

expressions for our present cases m = 1 and m = 2. We want to get

a q. f. similar to (5.42) for m = 3. the quintic spline case, in a form

particularly amenable to computation. We shall find that the form we

do obtain is precisely (5.42) with the exception that f'(O) is re-

placed by S'(0), the third derivative of a particular interpolating

spline to f(x), evaluated at 0. The expression for 8"'(0) involves

the values f"(0), f'(O), f(O), f(l), ... , but not f'"(o).

For the sin xt case, the q. f. (6. 2) gives our desired q. f. when

m= 1. For m=2, the only change we make in (6. 2) is to replace

f"(0) by S"(0), the second derivative of a particular spline interpolant

to f(x) evaluated at 0. Here S"(O) is expressed in terms of the

values f'(O), f(O), f(), ... but not f"(0). There is a similar q. f.
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when m =3 that we get from (6.2) by replacing f(iv)( 0 ) by S(V) (0).

We summarize the foregoing in the following

Theorem 2,. Suppose f c L(R). Let S(x) c L (R+) be the

unique spline of degree 2m - I for x - 0 with knots at x = 1,2,3...

satisfying the conditions

(8. 1) S(v) = f(v) (v = ,1,2,...)

(8.2) s(J)( 0 ) = f(0)(o) (j 1,2,...,nm-i).

For m = 1, Z, 3, the unique q, f. of Theorem 2 are given explicitly by

(8. 3) 0 f(x)cos xt dx - 2( f(O) + E f(v)cos v
0 V ' " V = ti

+[m~ 4__ i[ 2  (t) f(zj- 1)(0 )
J=1 t +mt)

+~ Zm-2 - ]S (2j 1)~)ZmZl
+l - t) mS( ] )(0 ) + Rf

J=[m/2 ]+l t+2m

and

(8.4) f f(x)sin xt dx 00 f(v)sin v

1 (ZIt  - 2'Iy 1 2 t:2;) ()jM -1 Mz 41 -M co S
+ J~ z +1 [ ] +1 ZMMt S fl ()+ R

2-I- t
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II

We also state here for reference in § 10 the following

Corollary I- Let f(x) and S(x) be as given in Theorem 2'. Then" ihe CI f

f°f(x)e dx - {f(0) + E f

[ T 2 +j(t)qI 2m- 2it)f(2j- l)(0)
+ z J - 2 j [ I- m(t)

j=i t +2

m- MLJ - ) (t)+ ; (:j [i _ *zit)* m- 2i s(2j- 1)(0
j =[m/2]+l t 2 j  +2mlt} )0

j- .... M|t 2_j (t)co s t )

+ n - s(2j) 0

i-s the uniciue j. f. exact whenever f(x) g SZ fl LI(IR+).

We discuss in detail the cubic case, mn = 2, of the q. f. (8. 4),

that is,. the q. f.

,j~ M =I f4t
(8. 5 rfxsxt dx -1 /

+ , +(t ) cos t/M
E [1+- ]S"() ( Rf.

(8.) f~~s t dX 4-t ) Zfvsnv 0
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How to extend the method to m = 3, and in fact larger m, and (8.3) will

be clear. We observe that by the second part of Theorem 8, the exact-

of (8.4) for f(x)c S Sm N L (R+) is already established since

for such f we have S"(0) = f"(0). What remains to show is that

the coefficients H (2m) of the q. f. (17) of the Introduction are bounded.
vP t

An important point is that we do not want to use the "natural"

semi-cardinal cubic spline Interpolant. This is of course best in the

sense that it minimizes

fr'F"(x)2 dx
0

among all functions F(x) that interpolate f(x) at x = 0, 1 2, ... but

it is not a good approximation. Rather we use the "complete" semi-

cardinal spline approximation where also f'(0) is assumed known

and is matched by the cubic spline, that is, (8. 2) holds.

We note that Lemma 4 guarantees the unicity of the interpolating

spline. The interpolating spline S(x) is given by the spline interpo-

lation formula
00

(8.6) S(x) = Z f(v)L (x) + f' (0) A(x)
V=O

where the fundamental functions L (x) and A(x) satisfy

L (v) = 1
V

(8.7, L ( ) = 0 if v / (v =0, 1,2,..)

L'(0) : 0
V

and
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A(v) = 0
(8.8) (v = 0, , ,...)

A'(0) = 1
respectively. In order to construct L (x) and A(x) we shall use

V

two other important cubic splines.

One is the fundamental function L(x) of cardinal cubic spline

Interpolation, I. e., L(x) Is a cardinal cubic spline satisfying

(8.9) L(v) = {
0 if v 0O.

In terms of the cubic B- spline M(x) = M4 (x), we have explicitly

(8. 10) L(x) = z j X' M(x-J)

where

(8.11) - +42-. 68...

Is the root of least absolute value of

P2(k) = X2 +4X+ I = 0.

To prove (8. 10) we note that, for v => I

L(v) - 43 E M(v-J) = ( v + + 4XV+ v 1)
J=V- 1

4-3 1 - I.(X +4X + 1)
6

and

43
L(0) = 43.2 (X+4+%) =-3(2+X) = I

so that the unicity of a bounded L(x) satisfying ,8. 9) implies that

(8. 10) is correct.
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The other cubic spline we use is the decreasing cubic eigenspline

(8.1a) S (X) % M ).M(x-j)
J-O0

which, from §5, is a cardinal spline satisfying

(8. 13) s(x) = o(1'X;) as x-oo

and

(8. 14) S (V) = 0 for all v.

Now if we write

(8. 15) A(x) ( 1

and use (8. 14), we see that (8.8) is satisfied. From (8. 12),
(8. 16) Si'(0) E k- kM'I-H) I (x- " I x = 1)

1 2

, (0) = 0, 2 and M'(J) 0 for all
i~~i other J. From (8. 15) and (8. 12) o

(8. 17) A(x) x M(x-J) for x 0.

Writng00

(8. 18) A(x) = Z y 1M(X-J)
I =- I

we see that
(8. 19) j= j ( =-,101 lye...)*

We shall use the notation

00
(8.20) L (x) = E M(x-J) for x 0j v(8.Zl) Lo(X) J- 1~ )frx
We have

(8jjij1weLin0L())= = L (x) forx 0

since by (8.8) and L'(O) 0, (8. 7) is sati,?fied. Using (8. 10) and
~(8.1) we find

i #1183 -63 -



8 2 0 = 43x 0 - o,, ,...).(8.22) j, 0

It is easily verified that

(8.23s) L (x) -L(x-v) -L(!)S()(
-3VI ,(O) 1 lXI (vS 1 ',2 ,...)

satisfies the conditions (8. 7). From (8. 10) and (8. 16)

L'M F3(,v+L xv1 _- s'( ° ) - x-1 = 43 X (V= 1,2,...)

S11o

and therefore by (8. 23), (8. 10) and (8. 12)

L (x) = 43 X M(x-v-j) + 43 XJM(x-J)
V J

- lj-"'lM(x-J) + 43 , ) M(x-J) = * 1 ,M(x-J)J J J=- Ie

for x = 0

where

-I 1' J+V(8.24) C1 = 43(x +x ) (v >1 l, j =-1,0, 1,...).

We can now use the interpolating spline S(x) given in (8. 6) to

determine from the q. f. (8. 5) what the form of the coefficients

H (4) = H of q. f. (17) is. Differentiating each side of (8.6) twicevt v

and substituting 0 for x gives

00

(8. b5) s,,(o) Z f(v)L."(0) + f'(O)A"t (O)
v-0

so that
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+4 (t) t t V

From (8. 20) we have

0o

(8.27) L"(0) c M"(-J) = c - Zc + c
V v-v 0 v 1,v

since M"(-1) = M"(1) -+1 M"(0) -2 and M"(J) = 0 for all other

J. From (8.2Z4) and (8. 27), then, after simplification we get

S(8.28)1 L "(0) 12 X ]f .V (V = Is 2,..)

Therefore, for fixed t, by (6. 21), (8. 1l), (8. 26) and (8. 28) there

exists a constant K such that

IH I <K for all v =>0.V

By the unicity established in Theorem 2, Theorem 21 is established

for m- 2.

We also note that in terms of the functions L (x) and A(x)
V

just defined, we have the following

Corollary 2. The following identities hold

00 4i(t)
f L (x) cos xt dx - cos vt (v - 1,2,...)

~0 4(t

00 4(t)
f Lg,(x) sin xtdx =- -sinvt (v = ,,...)

0 M4 (t)

f A(x) cos xt dx - - (I - ]

0 t 4
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f AN)sin xt dx -31

0 t (t4 (t)

f L (xcos xt dx 4 ,f L xsnxt dx 413fi - 2~
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III. THE LAPLACE TRANSFORM

We follow the same kind of generating function approach we used

earlier, the only modifications coming from the enlarged class of func-

tions for which we can find transforms now that the weight function is

e- x , p > O.

9. Proof of Theorem 3 of the Introduction. We first define, for

each y 0, the class of functions

F = {F(x): F(x)c C(JR+)and F(x)--O(x Y) as x-*+oo}V

and the class of sequences

Y {y- {y"} 0 : y}= O(v') as v- }.
v=l V

We note that

(9.1) S(x)C S mn F for some ,0 implies {S(v)}e Y

so that by (24) the functional Rf given by (23) is well-defined if

f(x) E Szm n F . We also need to know just when a cardinal splineV

function of degree 2m - I is in F . The answer is given by

Lemnma 5 If S(x) c S and

(9. g) S(x) = c VM2 m(X-v)

then

(9.3) S(x) c F
V

if and only if

(9.4) {C 1E YV/ Y
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Proof. First, we assume (9. 4), so there exist constants A, N

such that

(9.5) c V <Avy  for v >N.

Let n>m+N. From

n+m
IS(x)l ic IM M(X-v) =< M 2i(0) Z Id c if n x- n+l

V v=n-rm

and (9.4), we find

n+m
(9.6) IS(x)2 Mmm(0)"A v¥ < [M2 m(0). A. (2m+)Klny < Klxl

v=n-m

if n ! x < n+ I

where K represents the quantity in square brackets in (9. 6) and does

not depend on n. So for any x > n > rn+N

IS(x)l' S Klxl"

and (9. 3) holds.

Now, we assume (9.3) and are to derive (9.4). We adapt the proof

of Theorem 4 of [ 11, p. 18- 19] to our particular situation. We observe

first that in Theorem 5 of [11, p. 7] Schoenberg explicitly expresses

the c of (9. 2) in the form

m-lI (m) S(2r)lv(9.7) cv = ( -1)r (Vr

r=0

where the (I) } is a sequence of rational numbers generated by the

expression
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00
S2m (m) Zr2[in u/2 = j Yzru

?=O

By (9. 7) then In order to prove (9. 4) it is sufficient to show that

(9.8) S(ZrV) )} C Y (r =0, l, nr- 1).

By (9.3) there exist constants C, D such that

(9.9) IS(x) - Cx Y  for x > D.

Let R(x) be a polynomial of degree k in the interval [0, 1]. By

Markov's theorem we obtain the string of inequalities

2max IR'I - Zk max IRI

max IR" - Z(k-1) max IRI

],max R~t I _ 2(k-t+l)2- maxIR~t ~ (t P. ,

and putting them together we obtain

tlt)
(9. 10) maxRLII -A(kt) max IRI (t : ...,k)

where A(k, t) = 2 t [k(k- 1) ... (k-t+l)]Z. Applying (9.9) with

k = 2m- 1, t = 2r, to each of the polynomial components of S(x) in

each of the successive intervals [v, '+l] for v >B+ 1, we con-

clude that

I s( 2'()l _ max IS (Zr)(x) I A(2m- 1, 2r) max I S(x) I
Iv- , V] [V-1,V]

:_5 A(2m- 1, Zr). C max xY  A(2m- 1, 2r)C. v
Iv- I? v]

so that (9. 8) and the lemma are proved.
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We now turn to the proof of Theorem 3 and again shall indicate

the modifications in a previous proof, this time Theorem 2, that leads

us to our desired conclusion. We again require exactness for the

B- splines (3. 4) and are led to the sequence of relations

r+2 m
(9. 11) f Q(x-r)e-"' dx =H Q(-r) + H Q(i-r)+.. . +H+ 2 Q (Zm- 1)

0 0 1 ~m-

+~ BQ (-r) (r=m+,22..,1

and

r+Zm
(9. 12) f Q(x-r)e-xpdx =H QMl + H Q(Z) +

0r+ I r+2

+ HrZm Q(2m- 1) (r =0,1,2..j

The righthand sides of (9. 11) and (9. 12) are the same as in the proof

of Theorem 2, but the left sides now have the weight function e- XP.

Following the same procedure as before, we arrive at the following

analog of (5. 1)

00 [(x_1) f Zm e-P 2m- 1(9. 13) Z H v (2 m(x Zm(l l- =

2m1- rnI (x- OP (x)
P (x) (X-1) 2MI- B1  (2m-l-!

Let Zm(x) denote the right side of (9. 13), where theB

01 1= 2, Y . m- rn1) are as yet undetermined. We recall that P 2 Z(x)

has the simple zeros XI, XZ' X~mZZ satisfying (5. 5) and (5. 6).
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Observing that for R2 m(X) the poles X min1 are inside the

unit circle while e p and X ,... t X2m 2 are outside, in view of

(5. 5) and (9. 13), we note that the coefficients H will satisfy the

condition (24) if and only if the coefficients B (J = 1, 2,..., m-1)

can be chosen so that the m-I poles Xl.. m i have vanishing

residues. By (9. 13) this will occur if and only if the B satisfy the

equations

M-I N 0)JP m2_(X 1 l2 e - p

(9.14) EB 1  (v Z MPm- -J i v -- 2m
J'-I ZM 1-) 1 M -e-PX

I J=O J1 PZJ- I (V ,,,.m-)

t
The determinant of the system (9. 14) though is not zero as is evident

from the expression (5. 40) if we choose the special case

I U it = {i, ,.. ., m- I). This establishes the existence of a unique

functional Rf defined by (23) whose coefficients satisfy (24) and

which vanishes for the functions (5. 3).

The remainder of a proof of Theorem 3 follows the same procedure
as the proof of Theorem 7, where now we use F and exp instead

Y
of L (]R+) and cos xt respectively, and so we omit it.

10. An explicit version of theg. f. of Tneorem 3. In terms of the

central B- spline Mn (x) of degree n-i, we define
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0

(10.1) f Mn(x)e x p dx n(P)
-00

which upon evaluation gives the relation

(10.2) () [2 nh p/Zn
n P

We also define
0O

(10.3) ;n(P) z Z Mn(v)e - p < Mn(v)e 'vp

and note that n (p) is positive. From (10. 3) we find

3 + cosh p
+3 4

4( 2 + cosh+4 (P) - 3

,- 115 + 76 cosh p+cosh 2p
192

33 + 26 cosh +.cosh 2p
+6(  60

and observe that n (p) has the form of * n(p) given by (1. 7) if we

replace the cosine function by the cosh function. Similarly, if we

replace the sine function in the expression of 'n (p) in (1. 3) by the

sinh function, we get precisely nn(p) as given by (10. 2).

Now we can state the following

Theorem 3'. Suppose f(x) E F for some , -0. Let S(x) E F
Y Y

be the unique sline of degree 2m-1 for x -0 with knots at
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x 1, 2, 3,... satisfying the conditions

(10.4) S(t,) = f(v) (v = , 1, ,...)

(10.5) S((o) = f()( 0 ) 0 = 1,2,..., m-I).

For m = 1p 2, 3 the unique ct. f. of Theorem 3 is given explicitly by

i ~0 o 2(P) I o

(10.6) f f(x)exdx f(O) + Yevp
0 10m(P) v=1

Lr [ fZ1 __ _ _ _ _ _ _

1 2j(P) Jz M- 2j (V) f(2 J-l), + x- ] )(o

j pj [I ; m(p) f (0

+ l 1-]fz)o
+j+

+ )+ [ 1 p i .j (P)f-PIsh

+ 21 Z 2(P) m(P)](J) + Rf

where we=ve written 40 (p) = 1 for notational convenience.

We first remark that as a result of Lemma 2 of [11, p. 121 we

have the following:

Every S(x) c S 0n F may be uniquely represented in the formEvey ~x) 2m y

rn-i
(10.7) S(x) ) akS -X a k Skx )

k=1
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for appropriate values of the coefficients ak.

Then, by (5. 22) each such S(x) also satisfies

S(x)C So n L(]R+) for some r= 0, ,..., 2m-I
and Lemma 4 applies. This guarantees the unicity of the interpolat-

Ing spline of Theorem 3'.

We could follow the same type of procedure we used for Theorems

8 and 10 to showthat (10. 6) actually is the unique q. f. of Theorem 3,

but we shall not. Instead, we note that (10. 6) follows formally from

Corollary I to Theorem S by the substitution of ip for t where

i = -1. In particular, since

cosh x =cos ix, sinh x =-i sin ix

we have

'n(ip) 4 n(p), n(ip) =;n(p)

formally. Precisely the same type of proofs used for the sin xt and

cos xt cases establishes the exactness of (10.6) for the functions

(5. 3), where here we need the sinh and cosh functions instead of

the sine and cosine functions, respectively. Where before (see (8. 26)

and (8. 28)) we had

H [ Is KI e ' t v + K21-V 'l > I, KI K2 constants

now we obtain

III 1 - K3 e- VP + K4 Il- VtI > I; K3 , K4 constants

so that (24) is satisfied.
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IV. EXPRESSIONS FOR THE ERROR

11. An explicit expression for the remainder Rf. In the intro-

duction we mentioned that there was still a third approach to our par-

ticular q. f. for the case of odd-degree splines. This way lay through

the use of the so-called Rodrigues function H(x) of the Peano kernel

of the q. f. [10). We consider an interval of integration [a, b] and

assume n interior nodes x such thatV

a <x 1 < ... <x <b.

Let w(x) c L(a, b) be a given weight function and let w(-2m)(x), m

a fixed integer ?: I, denote any 2 m-fold integral of w(x). Suppose

I U I' is defined, not as in (5. 15) and (5. 16), but as follows: Let

I bea subset of {0,1,...,m-1} .. rn-i{ I and

I' = {2m-l-iI I c }. Defire J U J' similarly. Schoenberg in [10,

§7] discusses so-called complete quadrature formulae of the form

b fn ()(

(I fwtx)fcx)dx -, C f(x ) + A f(a) + B i f (b)+Rf
a V=1 tV It I' jEJUJ'

where
b

(11.2) Rf f H(x)f( m)(x)dx.
a

Under suitable conditions on the sets I and J, q. f. of the form

(II. 1) and (11. 2) exist for any choice of weight function w(x). In

this event the H(x) of (11. 2) is a unique monospline of the form

75
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(11.3) 1l(x) = w(-Xm) - z nX)

where S2  n(x) is a spline function of degree Zm - I with the

simple knots x,,..., x, satisfying

H M)(a) 0 if if IU I'

(11.4) H(x) = 0 v = i2,... n

H(0)(b) = 0 if J, JC j.U

The coefficients C I A and B, are given byV ivi

C = (Z l)-. H(m +0) v =1, 2,..., n

(11.5) AI -(-1) H' - (a) if it I L I'

j (2m- I-J)B = (-iY H( m  - (b) if j j JU F".

We want a related expression for the interval [0, oo) and the fol-

lowing choices of weight functions w t(x) and set I U I'

(11.6) wt(x) = cosxt, IU I' = 0, 1, 3, 5,...2m-3}

t(11.7) wt(x) = sinxt, IU ' = {0,2,4,..., 2m-4, ?.m-2}.

To obtain an approximation like (II. 3) for I(x), we first consider

spline interpolants to w t(x) on the whole line R. Because

sup I'A2 m- I wt(v) < 22 - I <00

Vt =

by Theorems 1 and 2 of [9., p. 169] we know that there exists a unique

cardinal spline function St(x) satisfying

(11.8) St(V) =wt(v) for all integers v
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and
c S2  L~m().

* (11.9) S (x) S 2mfl L2 M-

On the other hand, since the sequence {wt(v)} is bounded, by

Theorem I of [11] there also exists a unique cardinal spline function

S(Sx) satisfying

(11. 10) (V wt(v) for all v

and

(11.11) St(x) S2m n L0(R).

We want to show that S t(x) is the same as St(x). From the nature of

the data (11. 6), (11.7), we know that

ill. 12) St.(x) and At(x) are even or odd as the sequence {wt(v) } is

Let S(x) - St(x) - t(x), so that (11. 8) and (11. 1 C) imply that

(11. 13) S(") = 0 for all integers v.

Evidently (11.9) and (11. 11) require S(x) f S so that we also have

S(x) C S. We wish to show now that S(x) can grow by at most

some power of x, so by 111. 12) it is sufficient to consider S(x) for

x >0. In particulh ., we can write St(x) in the form

a 2m- 2m-I

(11.14) S(x) = + ax+ ... + x
t 0 1 mm--!

+ 1 FYC (x-V) 2m- I
(2m-1)! Cv x)V=1

where , coefiicients are to be determined. Taking 2m-1 derivatives

In (9. 14) gives the relations
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(x a 2 -1 + C C(X-V)+
V=1

or

a2m+1 + 1C If x is an integer(2 m -V -1 V

St  )I =[x

aml + .. Cv If not.

v=1

If the sequence {C} is not bounded, then St Zrnl)(x),L(R)

which contradicts (11.9). Hence we have the following necessary

condition

(11.15) St (2m1)(x) E L (R) implies {C } is bounded.

Suppose IC ! <K for v > 1; then by (11. 14) we have

Va

(11.16) Is(x)i <ja +ax+ ... + (2m-1X
t 0 1 (2m- 1)

+ (2-K ) E(-V
V=1

But the sum in (11. 16) is bounded by x so that we get

St(x) = O(x 2 m- ) as x- co.

This, with (11. 11), (I1. 12) and the ,efinition of S(x), implies that

(11.17) S(x) = O(1xIZm - l) as x - + oo.

A special case of Lemma 2 of Schoenberg's [1i, p. 12] states that if

S(x) CS and satisfies (11. 17), then S(x) Is identically zero. ThusZm

t(x) = St(xl and we have

t 1
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(11.18) St(x) m n Lo(R )

In terms of St(x), we define

(11. 19) Ht(x) (wt(x) - St(x))t2m w

From the form of wt(x) in (1. 6) and (11.7) and by (11.9) and (11. 18),

we obtain

2m-1(11.20) Ht(x) E L(]R) n L (IR).

We also seek the analog of (11. 4) for our half-line case. Indeed,

2m-2since St(x) C and (11. 1?) holds, we have

tt(11.21l) S i)(0) = 0 if iE IU I'

which implies, by (9. 19), that

(11.22) Hi)(0) = 0 if i ( I U 11.

Evidently, (11. 19) also enables us to write

(11,23) Ht(v) = 0 for all v

We can state the following

Theorem 10. Suppose H t(x) is given by (11. 19), and wt(x) and

IU 1' are as in (11.6) and (11.7). If

(11.24) f(x) ( C2m ( + ) ( L2m(i + ) n LI(R+

then

(11.25) f f(x)wt(x)dx 0 H ff(v) + B -I. Rf

0 v=O V it I U'

where

-79-#1183



(11.26) Rf f M f (x)dx

0

Proof, Since (11. 20) and (11.24) hold, we write, letting

H(x) = Ht(x),

(11.27) fHt(x)f(2ml(x)dx = lir b] Ht(x)fl 2 m(x)dx.
0 b-oo 0

By successive integrations by parts, we find

rb]
b )(2m) '2

(11.28) =H(X)f (x)dx [Hf Hf(m ) +...

0

n[b ]  2m- b] 1)
+ (-I m2H(2m-2'][ + (-1) 'H (x)f' (x)dx.

0 0

But H( 2 m 1 ) (x) is a step function, so we split up the interval of

integration, and find

(11.29) - (x)dx =[bl -H(Zml)(x)f(x)dx
0 v=0 v

[b1[H(2 m 1 )(x)f(x) v+-O v-l fxHm)(xdx.

v =0 Iv+0 v

We note from (11. 19) that we can substitute wt (x) for H(2 m)(x) in

(11. 29), so that after summing and rearranging, (11. 29) becomes

[bj; I[(m )v0 (m )v0 fv

(11.30) - {-H(2 m-l) (0+0)f(0) + [H(2ml)(v-0) -
V=1

+ H (Zm- 1 ([b}-O) f([b]) } + f x)w t(x)dx.
0

If we substitute (11.30) for (11. 29) in (11. 28) we find that (11. 28)
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upon evaluation of the term in brackets, becomes

(11. 31) 1 J() Z(x ()H~)[])(rn1v)(J

0 =

- '?(-l)vH(v)(O)f(2mnlv) (0)
V =0

+ (-1) {-H(Zm ) (0+0)f (0) + [H(2m- 1 (Y-0)-H (2 In- 1) (V+0)]f(v)
V =1

+ H (2-)([b]-O)f([b])) + f(x)w t(x)dx.
0

By (11. 31), then, (11. 20) and (11. 24) give us, on letting b - oo, that

(13)f H(x)f ()x)dx Z (-1I)vH )(O)f(Z-l( 0 )
0 v=0

+ H(Z. '(0+0)f (0) - [H (vm0-1 () I
V =1

+ f f(x)w t(x)dx.
0

If we use (11. 2 2) in (I i. 32) and solve for f f (x)w t(x)dx, we obtain

0 V J'IU I,

H H(Zm1) (0+0)f (0) + 00 [(fl (- (v- o)- H (2 M1) (V+0) If (V)
i'=1

+ f OH(x)f ( M) (x)dx.
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Upon interchanging the order of summation in the first sum on the right

of (11. 33), we get

(11.34) f f(x)wt(x)dx - H( 2m-1 )0+0)f(0) - Z (-l)iH(ml-)()f(i)(0)
0 if I U'

+ 0 m ( m -1) (o
+ Fm[H )(v-0)-H (v+0)]f(v) + f H(x)fl(')(x)dx.

v=1 0

If we define

i(2m) H(2m-1)
H H (0+0)of t

(11.35) H(Zm) H (Zm-1)(V- 0 ) - H(2m-1)(V+O) v = 1,2,...
'pt

BZ) -(-l) H(2-l (0) 1( 1 U P'
Bi, t

we obtain the desired form for our q. f. (11.25) and (11.26) and so

establish the theorem.

12. The remainder Rf for the cosine transform (5, 51). We

specialize to the case (11. 6) and now want to establish that the q. f.

in Theorem 10 is the same as the q. f. in Theot .17. We do this by

examining the form that the function H (x) as defined by (11. 19)
t

must take. Enforcing the requirements (11. 22) and (11. 23) will lead

us by a generating function approach to tne same coefficients

H ZP) is m of Theorem 7.

We attempt to find an expression for the cardinal spline function
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-¢J @ ''.*,o r . - . --- . .. . . .•.. .. . . -,

S t(x) satisfying (11.8) and (11.9). Since we need only consider the

half-line PR+V St(x) can be written in the form (11. 14) where the

coefficients a1 , C are to be determined. We want to express the

apC in terms of H-Hind=BH(and = B1 . From the definition

of Ht(x) (1. 19) or from

(12.1) (-) t 2mH(x) = cos xt- St(x)

we find by differentiating 2m-1 times and employing (11.29) that

2= (-mt2mH , = (-)mt'mH 0(12. 2) Cv = -) a2 m- I) t "

If we differentiate (12. 1) (2m-1-i) times and use (11.29), we get
2m-1-i; " ~m2ml 2 t2m- I-I

Umt B 1) = (-I) it IU I,
- a~Zm-I-

or solving for a2m - I that
2'm - - 2

(12.3) a2m 1 i (-I) t(-1) mt B i I U P.

Enforcing (11. 22) in (12. 1) gives us

(12.4) a, = 0 if iC IU 1'

so that by employing (12. 2), (12. 3) and (12.4) we may rewrite (11. 14)

as
2 i2m [4_ (_ n2mB

[-t -(-) t BZm-3] x2 + It -( t B 2 m-5](12.5) St(x) =1 I 4!+4
t 2! 41

+ [(-lI)1t ?m-2 1n 2m (2m-2
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[()m 2 mHI -1) mt2m  CO

+ (zm-1)t X + (zm),, H (x-v)
V=1

By virtue of (12. 2) and (11. 15) we have the following necessary condi-

tion:

(12.6) S(2m-1(x) c Lo(R) implies (H ) is bounded.

If we solve (12. 1) for cos xt and then require (11.23) for k a positive

integer., we obtain the sequence of relations

m-- 1 21 2k J

(12.7) cos kt =1 + 1)2m _ I
J=1

m2m 0 2

(2m-l) Z H (k-v) (k = 10.0)e
(2m-l1)! V +

V =0

The formof these relations suggests the use of generating func-

tions for the determination of the coefficients. The righthand side of

(12.7) in view of Lemma 3 is equal to the coefficient of xk in

3 23_ 2mM-1 [(-l) t J(-l) t Bz~ a, P 2j- 1(x)

(12.8) x + E (2j)21J =l (I-x)(2)

(2m-)! ( m-2
m 1 v=0 (l-x)2 m

k-I
The lefthand side of (12. 7) is the coefficient of x in what we called

T(x), defined in (4. 39). Equating T(X) and the expression in (12. 8)

and then solving for y, H xv gives
V
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II

CO (2m-l)1 [ m 2m-1
1 2. 9)pE i() = I-X) - (x)-(1-x)2m - 1

-= V P 2(xlrl 2 M tl-2m

_______ _ 2m-I j

J (2! P2J-I(j

-1 B2 m-1 -2j (x)(lx)2m-1-2

z (2j)! 2j- 1

A change in the order of summation in the last snm on the right side

of (12.9) leads to the final relation

00 V 12m- Dl (-11m  m)2m-I
(12.10) ) H { [(x-1) T (x) + (X- 1)

V=O 2m_( "

i t I 2m-I- 2 j

+ -) t2 (x)i(X~l - Uk 2'l P j-112l
J=1 (2)

m- I (x- 1)J 1 P2m- 1- 2j(x )  i

- B2j-1  (2m-2j)! }J-1

This is precisely the same relation as (5. 1)! The analysis In §5

led to a unique choice of the sequence (H I under the stipulation that
V

this sequence be bounded. By (12. 6) and the existence and unicity of

an St(x) satisfying (11. 8) and (11.9), we conclude that the H and
t V

B. as determined in §5 are the required coefficients for S t(x) as given

in (12. 5). So this approach through the use of the function H (x) leads
t

to precisely the same q. f. as that of Theorem 7, and in particular leads

to an expression for the remainder Rf in Theorem, We have thereby

established
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Theorem 11. The remainder Rf in the q. f. (5. 51) of Theorem 7

under the stipulation (5. 52) for

(12. 11) f(x) e C m(R) fl L m() n L (R+)

is given by

(12. 12) R = f Ht(x)f( 2 m)(x)dx =-I/ - f [cos xt - St(x)Jf( m)(x)dx

0 t 0

where St(x) is the unique, bounded (2m-1)st degree cardinal spline

interpolatlng cos xt at the integers.

13. A bound on the remainder Rf of (5, 51). We now examine the

problem of expressing the above cosine transform (5. 51) in steps of

length h. Let f(x) E S fn LI(R + ) so that by Theorem 7 and (5. 42)
2M I

we can write

00 42m (t) 00
(13. 1) f f(x)cos xt dx -*(t) f(O) + Z f(v)cos Vt

0 v=O0

+- 1  y zj t) 2 m-2 j(t) f(J-)
J=l t2j  m(t) (0).

Let now F(x) be a (Zm-1)st degree spline function in (0, co) having

its knotsin x=h, 2h, 3h,... where h>0. We want to express the

cosine transform in terms of the values

(13.2) F'(0), Fi'(0), . . . F(m 3) (0), F(0), F(h), F(2h), ...

If we let

(13. 3) f(x) = F(xh) (0 = x < l
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we see that f(x) is a semi-cardinal (2m- 1)st degree spline function

for which the data are

(13.) P(0) hF 0... f (Z m- 3)(0 ) = h Zm-3rlZm-3)(O,(13.4) f'(0) =hF'(0),..,( m )O

f(O) - F(O), f(1) = F(h), .

From (13. 1) we therefore obtain the relation

t (t) o(13.5) f F(xh)cos xt dx F (0) + F(vh)cos Vt
o €m(t)  jJ v= 1 'J

+ J ll 4 2 j(t) . 2 1(t) h 1 F (0)

J=l t j hzm M

Replacing in the integral x by x/A; and replacing afterwards in this

identity t by th, we

(13.6) 00 zm (th) 0 h
(13. 6)0f F(x)cos xt dx (th) h F(0) + Z F(vh)cosvt

m- I (_ *Zj (th) qi2m_2 (th)+ E1 2 - (th 7 (0).
J=l tz  

- 2 m(th)

Suppose

(13.7) F (x) E 2 n L12 (R+) n L (R+)

then (13. 6) is no longer an identity. However, the righthand side

will give us the desired approximation to the cosine transform of F(x)

for reasonably small h. We now want to see how good an approxima-

tion this is.
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(13. 5) is still valid if we use (12. 15) and (13. 3) and add the term i

(13.8) .2, hZmf [cos xt- St(X)]F()xh)dx
t 0

to the right side of (13. 5). If we denote (13.8) by R and again first

replace x by x/h and then t by th, we obtain the expression (13.6)

with the added term
M o (2m) i!

(13.9) R Co f xt - St(Xh)]F (x)dxt m0 1:

on the right side. Here S th(x/h) is the unique, bounded (Zm-l)stth!

degree spline interpolating cos xt at vh for all integers v. We

get a bound on R by bounding what we shall call

(13.10) M(t h) = max I [Cos xt -

Let z - so that Sth is the unique, bounded (2m-l)st
Fir ~~th( his heuiqe

h h
degree spline interpolating cos 2Tzt for z 0, + I - "

Wealsolet h be of the form

Tr
(13.11) h-- 2_ for n a natural numbern

so that the spline agrees with cos 2nzt for z = 0, ±l +- i.

If we consider t = I, 2,..., n-1, then cos 2i zt is periodic on the

interval [0, 1] and so is Sth(nz/'h), by Theorem 6 of [11]. We require

a special case of Lemma 6. 3 of Golomb's [3] which we state as
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Lemma 6 (Golomb). Let b PU) denote the unique bounded
ZiiS(Zm-l)st deqree spline that interpolates the function e at

k/n (k o, ,+, .. ). Then

(13.12) l - bs(u) 1 < 4" 22m s n2 m n 2 m s =0,.Ip.. ±(n-1).
In [ 3, p. 131 Golomb remarks that Re b(u) and Im bs (u) are the I
corresponding spline interpolants to oos 2-fsu and sin 1Tsu,

respectively, so that we also have

(13. 13) Icos 2rsu - Re bs(u) -< 4" 22ms2m n-2m s-0,l,...,±(n-1)

where Re bs (u) is the unique, bounded (2m-l)st degree spline that

interpolates cos 2su at the points k/n (k =0, , ±2 ...

We can therefore employ (13.13) to get the bound

(13.14) max Icos 2tz - Sth(2 wz/h) 1 : 4 2
2 mt2m -2m

z ?0
t = l, 2P...n-1.

Combining (13.14) and (13. 11) with (13. 10) and the definition that

z = x/2rr, we obtain

(13.15) M(t, h) = max i- [cos 2rtz - S(2Tz/h)II -54
2MO thZ

z ?-0 t t 2

t -. 02,.. n-l.

We now consider t in the form

(13.16) t =p/q where p,qt Z and p- l2,...,n-l.

Now let w z/q and we get from the equality in (13.15) that

#1183 
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Ziq

(13.17) M(t h) mar [cos 27rpw- S(--w
w0; t Mw Sh h

where 2 Zqw.
where Sth w )-j interpolates os Zirpw for w = 0, ± h/2wq,

2h/2yrq,.. If we let h be of the form

(13.18) h = wq/h for n a natural number

and consider p = it ZY..., n-i, then Sth (Zhw) is periodic for

o 5 w : 1. By (13. 13) then we have

(13.19) max Icos 2rpw- th( w)I 4-2 2m 2m -m
w 0

(p = l .. n- l1).

Substituting (13.19) in (13.17) in view of (13.16) and (13. 18) we find
h2m 1 -

(13.20) M(t h) 5 4 ' (t =n=_ .
Zm q q q

Suppose now we fix h of the form

(13. Z) h =-- for N a natural number.
N

We let q be any positive integer and choose n such that

(13. 22) n N=
n N'

Then (13. 22), (13. 18) and (13. 20) enable us to show that

1h 1
(13,23) M(to h) !5 4(t

m q 2q

By (13. 19)) (13. 10), (13. 21) and (13. 23), then, we have the bound
(2m)h

2 m

(13. 24) R = M(t, h) F(2m)I(R+) 4 =m IF(2 m)L(+
1 2 w R)

(t 
#1183... ) -7
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and the following

Theorem 12, Suppose f C vR+ ) n LI(R+) n L2mR + 1 ) nd m

is a natural number. Then we can bound IRf I as given in the q. f.

(13. 25) f f(xcos xt dt = h f(O) + Z f(vh)cos
0 2m (th ) 

t2

1 + j 2 (th) i2m- 2 ,(th) (2J-l)(+R+ Z m1?t(0 + Rf

J=i t2j+m(h

by

(13. 26) ;94 I -n)Zm 1 f(Zm)I1 L,(P+1 for all rational t in (0,2).(13 L.OR))

14. Proof of Theorem 4 of .2. We also have an analogous theorem

to Theorem I for sin xt, which we shall only state as

Theorem 13. The remainder Rf in the Q. f.

(14. 1) f f(x)sin xt dx 2mt f(v)sinv

I 2 1 t) 2 2I2t) sin tjf(2i)( 0 ) +Rfz= t 2 j + l  +2m(t )  Rt

(2m)2m)
for fE c2m~i+) fl L1 (I j )fl LI(R+ } is given by

(14.2) Rf f [sin xt - S (xC)J]f( (x)dx
t 2m0 to s

where St, s(x) is the unique, bounded (m-li)st degree cardinal spline

Interpolating sin xt at the integers.
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Let St C(x) denote the spline St(x) of Theorem 11 interpolating cos xt.

Toward a proof of Theorem 4, let us assume that

(14.3) fe C 2m n L m(R) n L (R) .

Then we can write

0 0 0

(14.4) f f(x)eXtdx = f f(x)os xt dx+ i f f(x)sin xt dx
-00 -CI0 -00

o .0

f [f(x) + f(-x)lcos xt dx + I f [f(x) - f(-x)]sin xt dx.
-0o 0

Applying (13. 25) for h = 1 and (14. 1) to f(x) + f(-x) and f(x) - fl-x),

respectively, we find that (14.4) becomes

+2m(t) oo +2-(t) j2m-21lt )(14.5)~ ~ Y f(V)cos Vt]+ 2 1mt(45 Ym=-o J=1 (t j)

[f (2j- 1) (0+) . f (2j- 1)1(07)) + R f
C

+i { ?-(t) I (v)sin t+-- f(v)sin vt](t) 1 t)f

JO' tj +
1 [~1 - *2j(t)+2 m2 1-2 (t) sin t J[f(2j)lo5lf(l(o)J R

where
001m

(14.6) R f = [ C os xt c(x)If(Zm W + f(2m)(-x)ldx0 t toC

0 f Go [sin xt- Slxf(?m)lX) - fl(mll-x)]dx.
aRf t2 m  - a
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We've taken SO(t) 1 for convenience of notation. By (14. 3) the

derivative terms in (14. 5) are zero so that substituting (14.5) In (14.4)

gives

(14.7) f f(x)e d- f(v)e + R f+ iRf.

From (14. 6)

Rcf 2m [Cos xt - (xt c(x) m(x)dx
0 t~m

wherewe've [cos(-ty) - St y) ]f(2m)(y)(-dY)

where we've used y = -x to get the second integral. But

St c(-y) =St c(y) so that

(14.8) Rf f ( t Cos xt - St, (2m)

We can argue the same way, using the fact that St, sly) - St s(y)

and obtain

(14.9) R f ( - (sin xt - S (X)]ff(2m)(x)dx.(1.9 R f m -o 8

By (14. 7), (14. 8) and (14.9), the remainder Rf of Theorem 4 therefore

has the form

(14. 10) Rf = Rcf + IRs f f [eS t c +i (x))f2mx)dx.

We note that S (X) + iS (x) is the unique, bounded (Zm-1)st degreeStoc to s
ixt

cardinal spline that interpolates e at the in' gers. By precisely
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the same argument that led to the bound (13. 26) of Theorem 10 except

that now we use (13. 12) of Lemma 6 where before we used (13. 13),

we reach the desired bound (2. 17) of Theorem 4.

In the foregoing proof in (14. 10) we determined the explicit form

of Rf, a result we state as a

gorllary. For f x) [ C 2 m  L 2m(R) n L (R), the remainder in
.1

the a. f.

t2m
(t )

(14.11) f f(x)e dx = ( f(v)e + Rf
-00 +zm(t v--

In given by

(14.0 12 f=f Ixt (2m)
(14.m12) Rf 2 f [e t bt(x)] f (x)dx

t -00

where bt(x) is the unique, bounded cardinal spline interpolant of the
ixt

function e at the integers.

15. An explicit expression for the remainder Rf in Theorem 3, The

same type of approach we took in §1l, 12 will lead us to an explicit

form for the remainder Rf in Theorem 3. For our case of the weight

functicn e- x o and I U I = (0, 1,..., m- 1} we require the unique

semi-cardinal spline S (x) e S 2m L(R+) satisfyin; the conditions

(15. 1) 8 (v) = e - v P  (v = 1,2,...)

and

(15.2) S(J)( 0 ) ) (-p) j I U I,.
p
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Here (15.2) reflects the fact that the first we-I derivatives of e-x p

and S P(x) agree. In termu of S P(x) we can state the following

Theorem 14, Let f(x)E C and f E Fyj for some Yj

0, 1, ..., 2m- 1. Then the remainder Rf of Theorem 3 may be ex-

pressed as

(15. 3) Rf f H (x)f m)(x)dx

where

(15.4) H (x) -i- p - 8(x)W

In order to obtain the appropriate form (23) of Theorem 3 we want

an analog of Theorem 10 to hold. By (15. 1) and (15. 2), we find

(15.5) HO)(0) =0 if JE IU I'P

and

(HS 6) M -- 0 (V = 1, 2,...)

so that an appropriate analog can be proved in the same way that

Theorem 10 was proved if we can show

(15. 7) lim H(a)(b) f(P)(b) = 0 if a + p 2m-l.
b -- o P

By the assumptions of this theorem and (15. 4), this amounts to showing

(15.8) s(k)(x) for k=0, it 2m-I is of exponential decay
p

as X-*" coo

Just as in §8, we shall discuss only the cubic case m = 2; the

extension to higher m is very similar. By using (8. 6) we can write

83x) as
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(15.9) W(x) = L+ e-"" )- pA(x)
p ~V=O

where Lv(x) and A(x) are the fundamental functions discussed in J8.

By using (8. 15), (8.21) and (8. 23) In (15. 9), we obtain

(15.10) S(x) = (x) + Z e,L(x-v)+ e-",( ," ( k W, P

But for the special case m = 2 of Theorem 2 of[Ii, p. 5 1, we have

-y,,IxI
(15. 11) IL(x) I < Ce for all real x,

where C and y¥ are positive constants. This, in conjunction with

(8. 13), and the expression (15. 10) guarantees that S P(x) decays

exponentially as x - w.

Similarly, by differentiating each side of (8. 10) and (8. 12) three

times, we obtain

(15.12) L"(x) = -6%r"(X-])Xk if k<x<k+l, kk]

and

k(15. 13) S'(x) -6(X-I) k  if k <x<k+I

so that S"'(x) as determined from (15. 10) also decays exponentiallyP

as x -- oo. Therefore (15.8) holds and we obtain the desired analog

to Theorem 10.

Now we employ the same procedure used in S 12 to show that the

q. f. we've cbtained is indeed the same q. f. as given by Theorem 3.

The approach in §12 leads us to the relation (9. 13) so we can con-

tinue as in the analysis of §9 to finally obtain our desired q. f. and
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in this way a proof of Theorem 14. The actual procedure is too similar

to repeat.

16. Computational examples. In [2], Einarsson compares several

methods for computing cosine transforms for the special case of

f(x) = e~x. One method he uses and the reason for the paper is based

on the approximation of f(x) by its cubic spline approximation. This

q. f.e, precisely the same one as (13. 25) for m = 2, is

Go a4i 4(th) r
(16. 1) f f(x)cos xt dx - h f(O) + Z f(vh)cos vth

0 04 (th) 2 v=l

I [D - 4 2(th)t 2

where we've used ,2 (t) = . Einarsson's main conclusion is that this

spline q. f. is superior to Filon' s formula, a q. f. based on approxi-

mation of the function by a quadratic in each double interval and one

of the most used formulae for the calculation of Fourier integrals.

One of the other methods Einarsson uses for comparison is the so-

cal!ed Filon-Trapezoidal rule found in Tuck [14], which for the inter-

val (0, o0) is merely (13. 25) for m=1, that is, the linear spline case.

Einarsson's calculations indicate that for small values of t, the

q. f. (16. 1) gives a relative (:ror that is four times less than the

Filon formula. For large values of t, the relative error of the Filon

formula increases rapidly, while the spline method (16. 1, gives a
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surprisingly small error growth. This same phenomenon we found to

be the case for the following q. , obtained from (13. 25) end (8. 3)s

respectively, for m=3

(16.2) ff(x)osxtdx= 6(16.*(thh f(O) + =lf(Vh)o VI

0 Sh +6(h

- (O) 1 +4 (th) 4o2 (th)"+t D1 96 u' f'(O) + -[I-" I6th f 0(0) + Rf,

o 6 (th) 00
(163) f f(x)cos xt dx = -h 2 f(O) + 3T f(vh)cos v

0 6 th)

+4th 4,4th) +2 {th)

two q. f. corresponding to spline approximation, the first using

I U I' = {O, l,3 ) and the second using IUI' 1(, is).

We now consider the absolute error and concern ourselves with

the q. f. (16. 1), (16. 2) and (16.3) and the bounds we obtained for the

error in (16. 1) and (16.2) for two examples. We first remark that

as the step h gets small, it appears that S' (0) of (16. 3) approaches

f"'(0) of (16. 2) so that the difference in these approximations be-

comes very small. An instance of this we indicate below.

In Figures 1-6 the absolute values of the absolute error foe the

calculation of tb cosine transform with (16. 1) and one of (16. 2) or (16. 3)

is given as a function of t for the stepsize h at 80 different places
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from t .5 to t 50. The cubic curve is represented by x' s 4nd

the qu17 curve for (16. 2) or (16. 3)'is solid. the dips are at points

where th:;. absiolute error changes sign. We also point out thateach

axis 1,% scAed logarithmically and a lower bound for the error in each

graph is 2 x 10"9 . Along the vertical axis we indicate by a 3 or a 5

where the computed error bounds of (13. 26) fall.

In Figure 1, we consider

f e x cos xt dx =

0 1 +t2

and the stepsize h 2 i . 2. Here S"' (0) = -. 99994 versus

f'(0) z -1 and since the ccorresponding graphp arising from (16. 2)1

and (16. 3) were virtually indistinguishable we only need consider one,

(16. 2). We also compute by (13. 26) the bounds on IRf and find that

(16.4) jRfj3<6.1xlO-5 , IRf1 52.4x 10"  forall rational

t in (0, 32)

where the subscript Indicates the case (16. 11 or (16. 2), respectively.,

We note that the bound for I Rf is actually less than the computed

transform corresponding to the cubic case.

In Figures 2 and 3 we consider

(16. 5) 00 1 %A td e -t1csxtdx =2t

0 l+x

for h "6 w . 4 to examine the difference between the q. f. (16. 2) and

(16. 3). We've plotted the cubic case (16. 1) also to serve as a reference.
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ABSOLUTE VALUE OF ABSOLUTE ERROR

Figure 1. f(x)ex, h= .
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ABSOLUTE VALUE OF ABSOLUTE ERROR
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ABSOLUTE VALUE OF ABSOLUTE ERROR

Figure 3. f(x) -- 1 - h
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We see that for small values of t the q. f. (16. 3) (Figure 2)

gives a considerably worse approximation than (16. 2). Here

81'"(0) 40 -. 295 compared with fV"(0) = 0. From (13. 26) we find

(16.6) IRf= 1.Ox 10 - , IRfI5= 5.86 x 10- 3 for all rational t

in (0,16), h - 16-

In Figures 3, 4, and 5 we again consider (16.5), but now for

h = L-t rj and 24 respectively to consider the q. f. (16. 1) and16 "32 and

(16. 2) as h decreases. From (13. 26), we obtain

(16.7) IRfl 6 214 x 104  IflfI5s 9.16x1 5

for all rational t in (0, 32), h = 21
32

(16.8) IRfI 3 3. 884 x 10" , I5Rf 5 5 1. 43 x 106

for all rational t In (0, 64), h 2W
64"

The figures indicate that we do seem to have errors of order h4 for

(16. 1) and h6 for (16. 2).

If we consider Figures 5 and 6 where we calculate (16. 5) for

h 2r- from q. f. (16. 2) and (16. 3), respectively, we can see how64
much Qloler these quintic curves are than they were in Figures 2 and

3. From (16. 3) for h = we find that S"'(0) -. 00674 compared
64

Zo Vr"(O) 0 ar:d th,. S'(0) -. 295 we computed above.
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ABSOLUTE VALUE OF ABSOLUTE ERROR

Figure 4. f x) h 2.
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ABSOLUTE VALUE OF ABSOLUTE ERRORJ0.,
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ABSOLUTE VALUE OF ABSOLUTE ERROR

Figure 6. f(x) I h h
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