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ANNOTATION

Systemy Kvazilineynykh Uravneniy. I ikh Prilozheniya K Gazovoy lianmike
(Systems of Quasilinear Equations and Their Applications to Gas Dynamics),
Boris Lezonidovich Rozhdestvenskiy and Nikolay Nikolayevich Yanenko, 1968, Main
Editorial Department of Physics-Mathematics Literature of the Nauka Publishing
House.,

Mathematical methods of investigating one-dimensional problems in gas
dynarics are presented. Systems of quasilinear equations and principal prob-
lems for hyperbolic systems are studied in detail. Equations of gas dy-
namics are derived and investigated; analytic solutions of gas dynamics are
presented; discontinuous flows containing shock waves are studied.

The fundamentals of the theory of difference schemes are sei forth and
a variety of numerical solution methods for gas dynamics problems employed in
practical calculations are set forth.

A theory of the generalized solution is outlined for systems of quasi-
line:r equations of the hyperbolic type.

The monograph contains the resultis of recent work on these problem areas.
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INTRODUCTION

Theoretical physics employs a variety of models in describing the behav~
ior of a continuous medium (gas; liquid, or solid); in most cases the models
lead to nonlinesr differertial equations with partial derivatives. This is
not fortuitous. Actually, the interaction of two gas molecules depends on their
velocities. For this reason, the coefficients of differential equations of a
continuous medium describing the averaged pattern of molecular interaction de=
pend not on the time and point in space, wut solely on the state of the medium
at the given point, i.e., the equations are nonlinear.

The mechanics of a continuous medium is a principal, but not the only
field of practical use of systems of nonlinear aifferential equations in partial
derivatives. In describing most real physical processes, we arrive at nonlinear
equations, and only substantial additional assumptions on the smallness of the
amplitudes of the field waves or the amplitudes of fluctuations in the medium,
amplitudes of deviations from the equilibrium state, and so on lead to nonlinear
equations, which are studied more profoundly. Chapter Four of this book pre=
senis examples of problems in physics, chemistry, and mathematics that are asso-
ciated with nonlinear equations.

Study of general properties of nonlinear equations and wsthods of their
solution is a fast=growing field of mcdern mathematics.

Given the wealth of interesting facts and the diversity of original and
ingenious methods of investigation and solution of nonlinesr equations, this
field of mathematics has until now not had as solid theoretical foundation
as the theory of linear equations. This is because, first of all, the prin-
ciple of superpositioning of solutions is not applicable to nonlinear differ=-
ential equations, so that the set of solutions is not linear.

Among hyperbolic systems of nonlinear equations with partial derivatives,
the simplest are the systems of quasilinear equations, Systeme with two inde=-
pendent variables have been most thoroughly studied; these systems describe, in
particular, the nonsteady one-dimensional and supersonic two=dimensional steady
flows of compressive gases and liquids. But even for these systems, at present
time there is not a complete enough theory; there are nc genertl theorems of
the existence and uniqueness of solutions to problems with initial data (Cauchy's
problem).
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This situation is explained by the faot that”the solution to Cauchy's
problem 38 a whole for hyperbolic systems of nonlinear equations is associated
with the marked complexity both of the formulation of the problem as well as
methods ¢f solving it. And almost all the principal difficulties arising here
appear already for the situation of two independent variables, and we can expect
that solutions to multidimensional: equations in gas dynamics locally have
generally the same features as solutions to one=dimensional equations.

So the study of hyperbolic systems of nonlinear equations with two inde=
pendeni variables represents a wholly necessary and thus far still unsurmonnted
stage in the exploration of more general nonlinear equations.

From these considerations, the authors accided to limit themselves gen=-
erally to the theory of hyperbolic systems with two independent variables and
to study one—dimensional nonsteady flows of compressible liquids and gases.
Therefore, as a rule, we will consider one of the independent variables to be
time and denote it by the letter t.

Let us clarify at this point the present status of the problem of the
solvability of Cauchy's problem for hyperbolic systems of quasilinear equations
and the difficulties ariging in attempts to construct the solution to this problem
overall. The fundamental methcd in solving hyperbolio systems of quasilinear
equations is the method of characteristics, presented in detail in Chapter (ne.
It is used to prove the existence, uniqueness, and contimous dependence on
initial data of the classical solution to Cauchy's problem. These reaulte are
highly satisfactory in. the sense that the classical solution is constructed
throughout the domain of variables e and x, where they exist. We note that
the domain of existence of the classical solution, generally speaking, is
bourded,gince solutions to nonlinear equaticrna, in ccatrast to linear equations,
exhibit the property of unbourded increase in the value of the derivatives, which
is called the gradient catastrophe,

The significance of this property is that even at as smootn initial
values as desired, the first derivatives of the solution remain bounded, gen=
erally speaking, only within a finite time interval. A¢ s.me to > O, they
become unbounded,and when t > t, no classical solution to the formulated
Cuachy's problem exists any longer.

Prom the viewpoint of gas dynamics this corresponds to the formation of
a shock wave (a coupression jump) from a cowpression wave. Thus, if we wish to
define ths solution to Cauchy's problem for any t > 0, i.e., overall (and this
is precisely how the problem stands, for exauple, in gas dyndmics), then wve
wust first of all give a definition of the solution, since tne solution to a
system of equations in the usual sense == a classical solution, does not exist
wvhen t > t,, as we stated above.

In most physical problems and, in particulur, in gas dynamics the deter-
mination of the generalized solution is dictated by the way in which the problem
is formulated. Thus, for example, in gas dynamics the “:=ic physical laws froc
which we derive all consequences are the laws of conservation. of mass, momentuxn,
and energy. These laws of conservation are in the nature of :ntegral relations,
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and they are applicable not only to smooth (differentiabl:) flows. Kataer,
differential equations of gas dynamics are derived from these laws of conserva=
tion on the assumption of the amoothness of flow,

Thus, we define the generalized solution of gas dynamics equations as
a flow (possibly even with discontinuous parameters) satistying the main laws
of conservation: of mass, of momentum, and of energy. To this we add the
requirement of thermodynamics on the increase i. the entropy of each system
closed in the thermal sense. The view is widely held, thus far not refuted by
a single example, that a determinate solution exists, is unique, and satisfies
all rational requirements. '

Here a most essential requirement is that of thermodynamics dealing with
the rise in entropy, which shows the possible direction of the process of rapid
change in the gas state. This requirement does not figure in an examination of
classical solutions to equations in gas dynsmica for a gas deprived of viscosity
and thermal conductivity, since in smooth flows the entropy of the system is
retained by virtve of the same fundamental laws of conservation.

Another approach to generalized(discontinuous) flows of an ideal gas
deprived of viscosity and thermal conductivity is also well known in gas dynam=
ica. Since gas without dissipation is an idealization of gas subject to
dissipative processes, naturally we can consider its discontinuous flow as the
“limiting flow" of a viacous thermally conductive gas as the coefficients of
viscosity and thermal conductivity tend to zero. Here it is assumed that
viscous flows are always described by classical solutions of differentisl equa=
tions and that the limit as the dissipative coefficients approach zero does
exist and is unique in a rational sense. And actually, thus far this assumption
has not been overthrown by a single example, though exact proofs have been
obtained thus far only for the very particular case of a stationary shock vave.

Here we wust bear in mind that in many cases real gases exhkibit suffi-
ciently smail dissipation so that they can be "approximated" by nondissipative
gases. However, the occurrence of dissipative processes, even though limited
in extent, leads to an increment in the system's entropy. Thus, the require-
went of entropy increase in the discontinuous flow of an ideal gas is asscciated
with the representation of this flow as the "limiting" flow of a viacous
thermally conductive gas.

Let us note that from the mathematical point of view the requirement of
an entropy increase is a requirement insuring the uniqueness of the generalized
solution and its stability with respect to perturbations.

Though this formmlation of the problem of the flow of compressible gases
was known more than a century ago and even Riemann investigated the simplest
discontinuous flows, there has been relatively limited progress in investigating
general properties of generalized solutions of equations in gas dynamics. Thus,
and we have already mentioned this earlier, up till now there have been no
satisfactory existence and uniqueness theorems.
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On the other hand, the demands of practice stemming from the urgent
need for practical investigation of discontinuous flows, and also the new
computational nossibilities associated with the emergence of high speed comput=
ers has led to a situation in which, 1a spite of our inadequate information
about the general properties of discontinucus flows, different numerical algo=
rithms have been devised and employed for satisfuctory calculation of flows
containing shock waves. Il must be noted that most of the hypotheses, about
which we referred to earlier, in developing the numerical algorithms have been
regarded as reliable.

Since the direct and rigorouc sustantiation of various assumptions on
generalized solutions in gas dynamics is a difficult problem, the natural desire
arose to teat our views even though with model equations and systems of equa=
tions which to some extent simulate equations of gas dynamics.

A consequence of this desire was the emergence in recent decades of the
so=called theory of generalized soluticns of systems of quasilinear equations,
or, more concisely, the theory of systems of quasilinear equations (this is
usually what is referred to as systems of hyperboliu ‘ype). This theory setsout
to introduce on analogy with gas dynamics the concept of the generalized solu=
tion as an "arbitrary" system of quasilinear equations in partial derivatives
of the hyperbolic type, to demcnstrate its existence, uniqueness, snd continuous
dependence on initial problem data, and to study the properties of these soluvions.
At least formally this theory 3is more general than one=dimensional gas dynamics
and includes the latter as a particular case.

The theory has attracted any mathemsticians and several results cof Soviet
and foreign scientists have aroused = expectations of its further development.

Beginning with this view of the advancement of the theory of generalized
(discontinuous) solutions of systems of quasilinear equations, the authors
confine themselves to the case of only two independent variables and cover
the following fundamental prcblem areas in the bock:

1. Methods of constructing classical solutions to systems of quasilinear
equations; proofs of existence and uniqueness theorems, and the continuous
functions of classical solutions; conditions of forming discontinuities in solu-
tions of arbitrary systems of quasilinear equations., These problem areas are
taken up in Chapter one of the book. Here are presented results obtained for
classical solutions of systems of quasilinear equations in recent years.

2. Classical and generalized solutions to equations of gas dynamics for
one-dimensional nonsteady flows. This problem is taken up in chapter two of
the bcok. The authors deem it advisable to examine in detail several problems
in gas dyramics discussed in many reference worka. Presented are the fundamentals
of thermodynamics, the derivation of equations of gas dynamics for different
symmetries of one-dimensional flow, Hugoniot’s conditions, general properties of
flows, the theory of the shock transition, and self-modeling and analytic solu-
tions of gas dynamics. Including these traditional problem areas of gas dynamics
in the book made it prossible to deal with, from a unified point of view, several
mathematical problems that arise in gas dynamics; moreover, most of the nucerical
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methods in gas dynamics are actually based on this material. Covered in
greater detail than elsewhere is the fundamental problem of the theory of dis-
continuous solutions as equations of gas dynamics, as well as general systems
of quasilinear solutions of the hyperbolic type -=- problem of the collapse of
an arbitrary discontinuity, and also the interaction of shock waves with each
other, with traveling waves, and with the contaci boundary.

3. Chapter ™ree in the book deals with difference wethods of solving gas
dynamics equations. These methods have now become the principal means of inves=
tigating problems in gas dyramics, therefore progress in studying discontinuous
flows is closely linked with difference methods.

In this book we were obligated to present the furdamental concepts of
the theory of difference methods. Unfortunately, most statements in this theory
apply only to the case of linear equations.,

The present status of the validation of difference methods used in the
numerical solution of problems in gas dynamics, briefly stated, amounts to the
following. Classical solutions (smooth flows) can bte calculated with practically
arbitrary accuracy. The main methods = the numerical method of characteristics
== is adequately substantiated for classical solutions. At the same time,
rumerical methods used in calculating discontimuous flows strictly speak:ng hav
not been substantiated and in most cases a nuzver of hypotheses on solution
behavior, on the approximation of some solutions by others, and so on are used.
Mcst often simply equations for which the behavior of the discontinuous solution
is well known are employed to verify any particular assumptions. It is not
fortuitous that in this chapter in moat cases each scheme is checked with one
of the simplest quasilinear equations whose solution can be explicitly written.

This principle in substantiating difference methods shows that progress
in this field is closely bound up with progress in investigating general proper=
ties of the generalized solutions of systems of guasilinear equations and, in
particular, solutions of gas dynamics equations. On the other hand, difference
methods yield experimental material and most strongly stimulate advances in the
theory of genera.ized solutions.

4. Chepter Four deals with the theory of generalized solutions of hyper-=
bolic systems of quasilinear equations and contairs the main results attained in
this field in recent years. Here the chief success must be regarded as the
construction of a theory of the generalized solution of a single quasilinear
equation, which can be assumad to be almost consummated. The existence, unigne=
ness, and continuous depandence of a generalized solution on initial data are
proven for this equation; the equivalence of definitions of generalized solu=
tion from the viewpoint of the law of conservation, on the one hand, and as a
limit of "viscid solutions," on the other, is shown.

At the same time, just as in gas dynamics, the study of generalized
solutions of systems of eguations encounter great difficulties, and here thus
far only very scanty results have been forthcoming. The main problem, which is
now undergoing comprehensive investigatiem, is the problem of the disintegration
of an arbitrary discontinuity. By means of this simplest problem, we can study
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the structure of the generalized solution and even cvmstruct generalizsd solu=~
tions for the case of a systsm of two equations, by rzlying on the fourmer solu-
tion.

Chapter pour represents the main result obtained for a single quasilinear
equation; covered ir this chapter is the problem of disintegration of a dis=
continuity for an arbitrary hyperbolic system of quasilinear equations; also
presented are some results appsrtaining to more general case#, This chapier
concludes with a dsscription of sevsral problems of diffsrsnt fields of science
associated with the theory of systems of quasilinear equations and, in parti-
cular, diccontinuous solutions of such equations.

The book is dividsd into chapters, sections, and subssciions. Ths nue=~
bering of formulas is self=-contained in each subsection. Therefore in dssig-
nating formulas, along with formula number ths subsection number and the section
nunber are added, so that formula (2.7.18) stands for formula {18) in subsectior 7
of section 2 or a given chapter, Only whsn ths rsference is rot mads outsids ths
corfines of a given subssction is the formula number alone indicated.

In writing the book, we try to treat as fully as possible the entire
range of problems associated with classical and generulizsd solutions of g-a
dynaeics equations and more general quasilinear systems. Still, our personal
points of view, undoubtedly, have affected ths choice of material.

In writing the book, the authors consulted with different teams of Soviet
mathematicians. Among these we can cits the collectives headed by M. V. Keldysh,
A. N. Tikhonov and A. A. Sawerskiy, and I. M. Gel'fand. Our opinions and points
of view were inevitably affected by consultation with friends and collsagues ir
work; several results were made kncwn to us by oral communication with thea.

For a number of years each of us hes given special courses %o studsnts
on the subject areas of this book. As a resuli of working on the book, a number
of new results, presented here for the first time, were obtained.

Summing up, it must be clear that mathematical theory of dis-
continuous solutions of systems of quasilinear equations and, in particular,
equations of gas dynamics though containi. ~ many remarkable results and contain-~
ments, is s8till far from its culmination e that our book will afford the
reader a grasp of modern methods of sclutio. and investigation of systems of
quasilinear equations and at the same time spur him to furthsr invsstigation in
this highly interesting and rapidly growing field of applied mathematics.

This book grows out of many long years of work during which ws always
enjoy the cooperation of many of our friends and colleagues at work as well as
many of our students. To all we express our heartfelt gratitude.

We are also indzbted to A. N. Tikhonov whose advice we were continually
favored with,

The assistance of L. V. Oveyanikov was especially valuable for us, sincs
he not only reviewed the manuscript of the entire book and made a number of
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valuable comments, but eslso plas 2d our disposal materials which we used in
writing section 13 of Chapter QOne.

A. A. Samarskiy read the manuscript of Chapter Three of this book and
made aeveral valuablie comments.

We were given a great deal of help by N. K. Kuznetsov, who read the entire
manuscript, made several valuable observations, and as an editor of this book
did much to promote its improvement.

We express our deep sense of appreciation to all of these.




CHAPTER ONE FUNDAMENTALS OF THE THEORY OF HYPELBOLIC SYSTEMS OF QUASI-
LINEAR EQUATIONS WITH TWO INDEPENDENT VARIABLES
Section I. Bpasic pefinitions

In this book we will limit ourselves to considering differential equa~
tions for functions dependent only on two independent variables.

The system of relations

3 : Oup | <0u. d; | o ‘
”.'(xl t‘n .l- ug- sy a.' -d}'l'n ce et "OT:‘- '&Ll es e ‘_o“'n')=0 (1)
(t=‘. 2. EX) m)-

relating values of the unknown functions u1(x, ) uz(x, $)y ooe un(x, t) and

their first derivatives .?_-"—", .., Pin U . SUn is
22X ’ DA 2 -—Ta o, ] -;———_t s

called a first=order systiem of differential equations with respect to the
function gy eeey Vpe System (1) is referred to as determinate for the case

when m = n. We will limit ourselves to considering only this case.

Introducing the vectors

‘a_.=.=-[a,._ vee Bg) %u;={%a;|_' i o %u;,_}'
ou __fou " Ousy
G={% 3t

we can write system (1) more concisely:

Fi(xtw o B)m0 =12 ) (2)




The functiomsu, = vi(x, t), exhibiting continuous first derivatives and satis~

fying the equations of system (2), are called the solution of this system of
equations.

If the system of nonlinear differential equations(2) can be represented
in a form that is solvable with respect to the derivatives of the functions
U,, ..., U_ with respect to any derivative (for example, t):

1 e

. %=qu(x. t u ‘g;‘) G=1.2 .. )] (3)

then shis form of system (2) will be called the normel form. System (3) is
called a Cauchy-Kovalevski type system. We note that when system (2) is
reduced to normal form the transformation of variable x, t is admitted.

Systew (2) is called a system of quasilinear equaticus if the functioms
% ; are linear with respect to the variables Ju/ox, Ju/)t; if however func-
tioms %, are linear over a set of variables u, du/dx, dufdt, then system (2) is

called linear.

A first~order system of quasilinear equations can be writien as

2%7’4 byigr e =12 .. % (4)
el o B B o CLoewaTe g 91

where the coefficients aij’ bij’ c; depend on x, %, u. If the coefficients
8540 bij do not depend on u, then system (4) is called semilinear (if in this
case cy is linearly dependent on u, then it is linear). We can somewhat simplify

the notation of system (4), if we bring into our consideration the above-defined
vectors u, 2ufx, dufdt, the vector c = {01, ceey cn.} and the matrix

o ete m

- Ia vee, @ . ' .v '
as|or e s=wy.

When using matrical notations it is assumed that the symbol Au and ui denote
vectors whose couponents can be computed by the rules
. Sm ' "o oo . !
(A“)r‘-"Flau“p (“A)n='}§0n“/=(ﬁ )N {é
(Re=l, 2 ..., 8), | 3 (5)
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vhere A!' is a transposed vector.

If matrix A is symmetirical, then A' = A, and Au = uA. The scalar deri-
vative of vectors u, v is given by the formula

N T PR
ﬁvn(l. )ﬂ%';’%
Therefore for formulas (5) it followa that v(Au) = (vA) = vAu, We will denote
by the norm |[u || of the vactor u the quantity

We will refer to as the norm of matrix A that smallest number [/ A {{ which for
any vector u eatisfies the inequalities [[Au[f < [is)/[fuj/. It is not diffi-
cult to see that |[[A[| = /X , where A is the largest eigenvalue of matrix AA®
(or A'A, which amounts to the same thing). Since A < Sp AA', then

let uc recall several more defiritions from linear algebra. The vector
l= {11, . ln} and the number [ are called, respectively, the left eigen-—

vector and the eigenvalue of matrix A if
1a=E1, [I1] #o. (6)

Similarly, vector r is called the right eigenvectoir of matrix A if

Ar =gz, ||zl £ O. (7)

By formlas (5) and (6), the eigenvalues ¥ of matrix A is a root of the charac-
teristic equation

Det ((aij = Eéi,‘])) =0 (8)
vhere éij is the Kronecker delta (éij = O vhen i £ j and 613 = 1 when 1 = j).
To each eigenvalue E of matrix A corresponds a linear space of left eigenvectors

1l and right eigenvector r. The measure of these spaces is n = ﬁ , where B is the

length of the matrix
A - EE - ((ai;j -Eéij))~ (9)

The matrix rark (9), as we know, is not smaller than n = o, where o is the
miltiplicity of the root & of equation (8).
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let us assume that the eigenvalues éf of matrix A are real. Let us num=
ber them in increasing order, i.e., we will assume that

£, <8, . S5, (10)
The equality sign in (10) is admitted owing to the possibility of multiple
roots of equation (8), and each multiple root of £ is repeated in (10) as many
times as its multiplicity.

If for any eigenvalue E of matrix A of multiplicity oC, the matrix
raxk (9) is n -ol, then the eigenvectors, both tho left 1 and the right r
corresponding to all eigenvalues, form the basis in space En of the vectors

um=s {u1, seey un}.

. - . . 1
Thus, in this case we will assume that there exist eigenvecters 1,

12, veey 1 forming the basis in space En’ i.e., satisfying the condition

(11)

The index of the left eigenvector lk in this case corresponds to the number of

eigenvalue § K’ the latter are o.dered by means of inequalities (10).
If Ek" Ej’ then lk and 9 are orthogonal. In fact, suppose

4= £25, AP - gr . (12)

Multiplying scalarly the first of the equalltles (12) vy ! , the second by lk,
and subtracting, we get

7y J'n'quw A PAEAT | 5-ade KOOI B CONCC s b, toe "

SRV A e DA A2 I (Arh =0 (13)
uﬂ‘..t.m'h.

Since Ek,l gj, from this follows the orthogonality of 1k and rJ. For the
case when all eigenvalues of matrix A are simple, the equality sign in inequa-
lities (10) is canceled out and the left and right eigenvectors form a biortho-

gonal system, i.e.,

- 12 -




i SRR e S S s e s s b

2 la'a::o when k ,‘ Je (14)

If motrix A lssmmmemic then we can assume that rk = lk. We require that the

left eigenvectors 1 of matrix A satisfies the norm on condition that;

2% = 1 (k = 1y woes 1)e (19)

E= Ek’ the matrix rank (9) is n ~«, the eigen=
s in B and naturally satisfy condition (11)s if in
basis { } can be chosen as ortho=

Then, if for any eigenvalue
vectorslk form a normed basi
this case matrix A is gymmetric, then the

normed.

Matrix A is referred to as positively defined if all the eigenvalues &re

positive; it is nonsingular if E 0 is not its eigenvalue, and singular, other=

wise.

Limiting ourselves to this brief recapitulation of linear algebra, let

us write system (4) as

AduPt + 3B duPx = c. (16)

For the case when matrix A is nonsingular, system (16) reduces to the

normal form (3) and can be, after transformations, written as

dupPt + A dufdx =Db, (17)

where A, = A1(x, t, u)y, b =Db(x, %, 1) are certain new matrices and a new vector,

respectively. Below we will 1imit ourselves to studying system (16) which can

be reduced to normal form (17).

Above we made an assumption on A(x, t, u) of the system of equation (16).

ends on u, i.e., on the assumption which is asanile unknown to

Hovever, A dep
mptions on the

us. ‘herefore let us stipulate in which sense we make the assu

coefficients of systems (16) and 7).
jon u = u(x, t) of sys*eums (16) and (17)

1) Either we will assume that solut
t, then the realizaticn of any restrice

is given as a function of the variable X,
tion imposed on matrices A, B, and A1, and on vectors c, b, is verified fcrthwith.

2) Or else these regtrictions are satisfied by identity (for any valaes

u = { Upy oooy u } ) in scme gingly-connected domain of space (x, t, u) in whizh

- 13 -




the system of quasilinear equatiuns and its solutions will be considered.

In this chapter we will impose the restrictions mainly in the second

sense.

Section II. Characteristic Directions of a System of Quasilinear Equations

1. Derivative relatietc direction, Assume f(x, t) is a differentiable func=

tion of its variables. At some point (xo, to) we will consider the expression
of 9
A +8% (1)

assuming that A, B are not simultaneously equal io zero,

For any A and B that are continuous in some neighborhood of the poin%
(xo, to) we can find & smooth curve [’ running through thic point and such that
when it is suitably parametrized equation (1) is proportional to the derivative

of the function f(x, t) at the curve /7 with respect to the parameter T .
Actually, suppose the curve [~ is given by the equations:

Pix=x@), (=10 x()==x, tx)=t,. (2)

Then at the curve /  the function f£(x, t) is a function of one variable T:
f(x(r), t(2)) = F(t ). Let us reply that expression (1) be proportional to
F'( ¢ ) whatever the function f.

This will be done if

dx/dt = B, dt/d¢ = oA, (3)
where 4 1is any derivative function T . Clearly, the essential condition uniquely

defining the direction of curve [/ at the point (x,s to) is the equation

dx/B = dt/A, (4)
and formulas (3) define the corresponding parametrization.
We will call the derivative ®'( T) for the natural parametrization o
' . 3 L3 ) . .
[ vhen ol = AT the derivative of function § with respect to direction

" . In this case the parameter < is the length of the arc of the cuzve /7.

When o = 1, expression (1) will be called the derivative of function f

with respect to parameter T in the direction of the curve /'. This simple
-14-




concept finds important applications in the thecry of equations with partial

derivatives.

let us consider the simplest differential equation

(5)

assuming that functions A and B sre continuously differentiable. Equations

g th \w ‘p(x. (6)

or equstion (4) defines the single-parametric family of curves /. The para=
meter « is defined along each of these curves uniquely if along some (arbitrarily

chosen) curve YV interseciion of the curve /' we set T= T, (Figure 1.1).

Fig ¢ 1.1
i Jet us bring into correspondence to each curve I" the value of a certain

parame ter & (for exauple, the length of the arc of the curve v measured from
an arbiirary point on it to the poirt at which intersects with the given curve
/7). Then to each point (x, t)there will correspond one end only one number of

pair T, W.

We can therefore assume the function u(x, t) to be the function of the
variables T, @ ; the equations of the lines /" are of the form w= const, while

equation(S), according to the foregoing, is written as

u(r o)
l} =0 (7)

e

Hence it follows that u = F(e ) is the general solution of equation (5) and the
function u(x, t) is constant along [’ curves 7, w.
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The directions of the curves / defined by the vector {B, A} are called
the characteristic directions of equation (5), and the curves /7 are the charac-

teristics.

Let us note that the form (7) of equation (5) no longer assumes the exis-
tence of the derivatives du/d x, Ju/d t: equation (7) is satisfied by an arbi-
trary function P(w), in particular, even a discontinuous function. Here the
function u = F(w) can be interpreted as the solution of equation (5) in the

generalized sense.

2, Hyperbolic systems of quasilinear equations. Let us consider the system

of quasilinear equations
du/dt + 4 dufox =b. (1)
Multiplying it by the vector 1, we get the scalar equation

t-dT-HA_.:zb (2)

If 1 is the left eigenvector of matrix A, then equation (2) can be written as

(2 1) =0 (3)

where é is the corresponding eigenvalue of matrix A.

In equation (3) all components u; of vector u are differentiated in the

same direction. Actually, by writing equation (3) in components, we get

IICRELLE 0
denoting by -

() = e

the derivative of function ui(:' 1) with respect to the variable t in the

direction dx/dt = £, we see that « 'uation (3) containsa linear combination of

the derivative (.dui/dt). The equai on dx/dt = E defines the direction of
- 16 -




differentiation in equality (3), called the charaoteristic direction of the
system of equations (1), which is common to all functions u'i(x, t).

We will refer to the quasilinear equations (1) as nyperbolic in some
singly-connected domain I of the space of variables x, t, u, if the following
conditions are satisfied at each point of this domeins

1) all eigenvalues £ = gk(x, t, u) of matrix A = A(x, t, u) are real;
and

2) there exists the basis {11(x, ty W)y eeey 1n(x, n)} in the space
E , composed of left eigenvectors of mairix A governed by the rorming condition,
i.e., there exist normed eigenvectors 11, Xt arry i satisfying the condition
(1.11).

Let u3s note that a system (1) is semilinear, then the eigenvalue Ek and
the left eigenvectors 1k do not depend on u. Therefore the condition of hyper=-
bolicity for the semilinear systems is defined in some domain of variable (x, t)

for arbitrary u (in a cylindrical domain).

As a part of the definition of hyperbolicity, let us note that often
conditions 1) and 2).are supplemented further by the requirement of a determinate
smoothness of eigenvectors 1k and eigenvalues £ X Thus, for ezdmple, in the
book [1] system (1) is celled hyperbolic if conditions 1) and 2) are satistied,
and moreover, gk(x, t, u) and 1k(x, t, u) exhibit the same smoothness as the
elements of matrix A(x, t, u).

In the following we will of course have to resort to assumptions on the

smoothness of e‘,’k and lk. We will do this to the ex+ent that it is neceszsary.

let us note in this regard that a given smoothness of 1 and Ek does not always

stem from the assumption of the same smootuness for the matrix 4.

let us show this in the following exawple of a system of two Quasilinear
equations:s

oed mlt R

P o +a,-a—-¥-=0 %f‘,i+a(up S,)—a—*+-a -'-Q' »

Matrix A in this case is of the form




e s ni ke

o Ak

Yot tidad

1__*‘ | . i a; 0|
E,f?ﬁ(ﬂ)ﬂ' a(u.l_. “g) aj‘. ..
and its eigenvalues £, E , are determined from the equation

( oy = u1) ( g ) = 0’
from whence 51 = u, 52 = Uye The elgenvectors 1 ’ 1 are defined from the
equations

o ?,..“ e
o

‘-,.I;+a(-;--,)lz=0 ozx+(u,—u,>z= @
%-.)t¥+a(u,.-,)ti-=o. 0-4+0- lz==0 ®)

£ AT

.-' .Fq_

taking the norming condition into account, let us now define 11 and 12 in the
domain u, # uss

et us consider the straight lire u, = u, on the plane of variables (u1, u2) If

1
a(u1, u1) # 0, then from (5) we find 1° = {1; 0}, and the hyperbolicity condi-

tion 2) is violated on the straight line u, =u,. Let us consider in more detail
the case a(u1, u1) = 0, BHere equations (4) and (5) become iGentical at the straight

line u, =u, and we can select as 1 and 12 two arbitrary noncollinear unit factors
and, therefore, the system is hyperbolic.

But if we have required that the vectors 11, l2 exhibit a certain smcoth*~
ness, then the requirement of the same smoothness for the function a(u1, u2)
would not guarantee this. Suppose, for example, that we require the vectors

11, 12 to be continuous at the straight line u, =us.
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Obviously, the only vector l1 that is continuous

at the straight ijine
Yy = u, would be the vector 11(u

19 Y) = {15 0}; as for the vector 12
continuy+;r necessitates, for example, the continmuity of the function a(
(u2 - u1)-1. For example, if

y its

B0 Bp)

8@ s)=|uy—u['b(uy. u) (blwy. @) +0),

then when o > 1 the unknown continuous vector

u, £ u,) by the formula 12(u
tion 1% exists,

p# is given by formula (6)(when

1 u1) = {0; 1}. When « <1 no continuous funce

It is not difficult to verify that in th

is example, to ensure the conti=
mity of

m~th derivatives of 1° we must require that the function a(u

B continuous derivatives, and also (m + 1)~
u, =y_,

1 u2) have
th derivatives at the straight line

@pler in a highly important particular
case 0Of hyperbolic systems, which we will call hyperbolic in the narrow sense,

We will refer to the system of equationg (1) as hyperbolic in the narrow
sense in a singly=-connected domain D of variables (x, t, u)

this domain the eigenvaluc ]

if at each point of
¥ o4 ucs E1, §

21 seey E’n of matrix A are real and distinct,

In this case +he eigenvalues can be ordered, and we will assume that

everywhere in D the tollowing inequalities are satisfied;

r&i(x. L L)< ... <E(x b u)

Then, as indicated in section I,

the eigenvectors lk(x, t,
pendent,

It is easy to see that in this case lk(x,

the same degree of 8moothness as the elements of the

u) are linearly jinde-
t, u), £ (x, t, u) possess
matrix A(x, t, u),

Ard so, system (1) hyperbolic in domain p,

by multiplying it by the
left eigenvector 1 » 18 reduced to the form

Px.e, a)[-g-f-g.(;.‘t. a)-g;];:j_,(z. L8 (k=1..., 5,

(7)

)

where

Coom .}
f,a:l'oazllzbq,
| pe




From condition 2) of the definition of hyperbolic system (1, foilows the equi-

valence ~f system (7) of initial ccndition (1).
We will call equation (7) the characteristic form of the system of equa-

tion (1).
Expanding the notation of this system in compcnents thuslys

e
n

e {
2‘.(’. f. l) %!".}.(S. ¢ l):-a;]:zfl(x- -

Sometimes we will write it in the following forms

Vo ITELa

g . p(x : ‘.)i( % ).=- 7 (,g, ¥) TP PR

where the symbol (df/dt) denotes the quantity

() =% Fu

3. Hyperbolic system of nonlinear equations. Let us consider a system

of nonlinear equations written in the normal forms

-

«5'—-}-%(5 f 2, g) (zal. u). (1)

Setting
avi/ax = W, (2)
let us write system (1) in the form
B2l o =0 i WS )
P TR A 4 ".-"* ?@@* * Loy e P UL S «nw:f

Suppose <Pk(x, t, v w )& Cro Let A(x, t, v, w ) refer to the square matrix

of all n:
A

L

g—

Are( =)= (%)) @

L AL‘\;..

gr

We will call the system of nonlinear equations (1) hyperbolic in soue

domain of variation of variables x, t, v, w , if at each point of this domain
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R the eigenvalues £ = Ek\x, t, v, .« ) end the left eig-nvectars 1 (x, t, v, @)
of matrix A satisfy requirements 1) and 2) of subsection 2.

. %he hyperbolic system of nonlinear equations (1) reduces to a hyperbolic
system of quasilinear equations. Differentiating each of the equations (i) with
respect to the variable x and taking the symbols (2) into acconnt, we get

(5)

In formula (5) summation*) is carried out with respect to the Greek subscript
o within the limits from 1 to n. Belcw, for simplicity of notation, we will
oxtven employ this convention.

Combining equations (3) and (5), we get a system of 2n equations

s ‘m‘%

where

Lo 208t ot hoin i B3 S

i

which we can consider as a sysiem of quasilinear equations with respect to
2n unknowns

5 To avoid confusion, let us stress that the summe.tion is carried out

P deyn, - g

only with respect to (reek subscript. For example, .’.‘ ‘ - l,h%p_‘_ |
A q

and summation is now carried out witi: respect to the Latin aubscnpt k.
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Let us show that the system of 2n quasilinear equations (6) is hyper-
bolic. Multiplying the second group of squation (€) by the left eigenvsctor
lk(x, t, v, & ) of watrix A(x, t, v, w), we get

STa s T FRTONT 7Y R
7 T X £ & i

OO 2
A i

Thus, system (6) is reduced to the form

URHTR T Ve e T b |

{08 T AT T g U A |
el AT R AR T et T (10)

PR

from whence comes its hyperbolicity.

I e - ?k(x, ty )y deeu, a¢k/avi = 0, then the first group of
equations (10) can be considered independently as a hyperbolic systsm of n
quasilinear equations with respect to n unknowns 401, seey Qe

Of course, we cannot refer to the equivalence of system (10) and system

(1).

Pirst of all, it is not any solution v, ,w, of system (10) that yields
the solution vk(x, t) to system (1). Actually, the solution Vi o @, of system
(10) does not necessarily, generally speaking, satisfy equations (2).

As we show in subsection 3 of section IX, satisfying conditions (2)
reduces to satisfying them at the straight line t = 0. Thus, solutions to

system (10) reduce
(2) are satisfied.
is manifested also

requires that v(x,

to the solution v(x, t) to system (1) only if conditions

On the other hand, the nonequivalence of system (10) and (1)
in that the soluiion to system (10) satisfying conditions (2)
t) & C,. At the same time the definition of the solution

v(x, t) to system (1) requires only its continuous differentiability.
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Therefore the equivalence of system (10) to system (1) cannot hold only for
solutions v(x, t) to system (1) of class Cye

Section III, Riemann Invariants

1. Invariants of a semilinear system of equations, In each equation of
the characteristic system (2,2, 7) functions u, (x, t) are differentiated in the
same direction. In several cases further simpllflcation of the characteristic
system is possible: by change of variables we can succeed in differentiating
only one function of the variable x, t, u in each of the equations.

Iet us first consider the case of the semilinear system. Then equation
(2.2.7) can be written as

i At PR

(1)

vhere

o SR e ANy
ﬂ A 8'.—!. i.(—ai *HL #4-;;# (2)

awf_‘ R
Since for the hyperbolic system Det((l.)) f 0, then
-

e ita i 2

and the variables rk(x, t, u) can be taken as new unknown functions., Let us

express from equations (2) Ugs eeey U in terms of Tys ooy I8

== A, a;.',,; (4)

where we let r stand for the vector {r » wewy T } , and A are the coeffi-
cients of the matrix 1\ that is the inverse of matrix VAY )

Am(@e oD AT (W D]

Substituting formulas (4) in the right sides of system (2), we arrive at the

system of equatons
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- 4-'7\ U

L RSN B SR (5)

which we will ¢a&ll a system written in invariants.

let us illustrate the concept of invariants with the example of the wave

equation

— - - R S
Fage | L3 -

o SE- o 5F  (a=const).

It reduces to the hy\erbol1c ayatem

whose characteristic iorm is

—— -~

(s #)-o(F—og)=0
(‘a"f"“r)“"“(w“ %) =0

Therefore, the inveriants defined by fo.mulas (2) are as follows:

A
kY
D

ry=u-av, T, =u -av.

1
(Let us note that here we have used the nonnormed vectors 11, 12.)

E The system written in the invariantss
oS, ‘H‘VVWW;M‘TW:'&'N- SR Yt

By fory hall #-’-a
? !ﬂﬂl‘:‘f AT -W?rnﬂm.;',.

shows that the invarlant r1 is cons.ant along the stra:ght lines x + at =

const, end r, = along the line x - at = const; therefore

r,=f (x + at), r, = g(x - at),

where f and g are arbitrary functions.
Returning to the function u, we get a known general solution of the

wave equations

Nt et s
In the case of a system of juasilinear equations, the vectors 1k depend

on x, t, u., Let us conaider the differential forms
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o>t ow, diy=1"(x, f, )du==1"(x, ¢, u)da, (6)

Suppose that each of these forms, considered for fixed values of variables x,
t has an integrating cofactor Ay = ,ak(x, t, u) so that for any k = 1,,,,, n,
we have

Bl bt )0y (%, 1, &, du) =iyt X dy, %ﬂ'ﬁ du, )

(Let us recall that the summation is carried out only with respect to the Greek
subscripts; the mumber k in formula (7) is fixed). Equations (2.2.7) after
multiplication by Ayk becore

)*=%."f'§l 0’: =E.(x. t, a) k=1, ..., a, (8)
and

Ev=wfs+r+ 4L, ®)

In formula (9) the variables rﬂx, rit are partial derivatives of the functions
rk(x, t, u), respectively, with respect to x and ¢ for fixed values of the
variables u = {'u1, ey}

Now using independence of the functions rk(x, t, u), let us express
the variable u in terms of thew, after which we get from (8) the following
system of linear equations;

%"“h%’f‘-e.(xo tl ') (k“l. sy fl). (10)

The quantities L, 8re called invariants (Riemann invariants), and the systenm
(10) is called a systen in inveriamts. Riemann first introduced the concept of
invariants in his classical work (2]. 1f systems (2.2.1) and (2.2.7) are homo=
geneous and do not depend explicitly on x, t(A = A(u), f = 0), then equation
(10) is also homogeneous
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FHuOFE=0 G=1....m, (1)

i.e., the functions rk(x, t) are constant along the integral curves of the

equation

(12)

SF=hn)

IR

which are called characteristics of system of equation (11).

2. Systems of two and three quasilincar equations. We know that not
every differential form auk(u, du) has an integrating cofactor. An excep-
tion is the case n = 2 when this cufactor always exists. In this case the

Riemann invariants can be defined thusly. Suppose the equations

0y (2% £, 4, du)=0 (k==,h'.“2)‘ g

have integrals _
O, (0 O, w)y=const (k=1 2)..

E

Then, obviously, the following functiors can be taken as Riemesnn invariantss
rk = ék(x’ t, u)o

f
E Kow let us consider the case n = 3. We know (cf [3, 4]) that in this
T case the arbitrary differential form
a)k(x, By oug da) = 1k(x, t, u) du (1)
(x, t fixed) can te represented one of the following forms
a) dU, b) Vdu, c) dU + V dw,
g where U, ¥, W are functions of x, t, u. The cases a), b), and c) follow one
i after the other in order of generality.
F If the forms wk refer, when k = 1, 2, 3, to types a) and b), then this
I means that integrating cofactor,uk' is present for each form (uk, i.e., the
4 possibility of reducing the system of quasilinear equations to invariants#).

*) We know (cf for example [5]) that the form 1* qu belongs to type a)
if rot 1k = 0, and this form belongs to type b), if lkrot 1k = 0, where these

conditions are essential and sufficient (the operation rot is taken with respect

to the variables Ugy Uy uj).
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In the general case tae forms W, belong to the type c) and the charac=

teristic system rea.aces the form -

TR T R il ‘{F -
: ﬂ et & " @)
e B e £,

where U k’ Vk are functions of the variables Uyy Up, “3' x, t. Suppose

= 0 then equations (2.2.7) can be written in the form

V3

where 03 - Ui(x, %, u).

If the forms w, (x, %, u, du) (k = 1, 2) are considered at the surface

U

plzer. Hence it follows that

‘ ‘:{? i")‘ *f')“ e s-,-';i“‘ "g\i . “\ =, 5
2 '. &.{ “El)*-w.'dlf*-:—&!-dt—;-rdx ’ (kﬂi 2),'

J

- (x, t, u) = const, x = X, t=t, then they have an integrating multi-

h ,.,-.

,.\ .

? &

where it is assumed that
z& #. tl "b U.(S. “s h]. dp 2"(']- .’u .3- xl , 31
The system of quasilinear °quntions 1n this case can be vritten in the follow=

ing characteristic forms

k=13 } \_" 5)

where ﬂk, Ek are functions of the variavles Uk(x, Sy Bl By e
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Section IV. Transformations of Systems of Quasilinear Equations

1. Transformation of systems with respect to solution.

By the irans-
formation of dependent and independent variables

S tmewe e . § o SN
CEMKG CRlED emoimtn. )

which have a reciprocal, i.e., such that
o

RS i

i 3@6-{1-4”»“;:?1--‘6._ ¢ :.m-gs--,f?j

= 70 loRiind -0, ;

f‘.‘.:.__...;xg*s‘f-'t:zm;;;.. B R A N A T

the erbolic system of uasilinear equations is co
Y

ﬁverted into some new
hyperbolic system of quasilinear equations,

The characteristic directions of
the hyperbolic system are the invariants of transformation (1).

This means
that if the direction dx/dt =&,

is characteristic for the original syste i
then after transformation (1) the direction

will also be characteristic,

Let us consider the transformation of independent
gasdynamics, which we will call the transfo
with respect to the solution,

variables used in
rmation of independent varisbles

Suppose the new variables x', ¢!

are associated
with the old x, t by the formulas

T =@ (et ) dX =, (v b, a)dt, }“_‘ )
l' df"ﬁé@,‘(lv". L a)dx — py(x. ¢, u)dt.

For the line x' = const, t' = const to form a regular net

u = u(x, t) of the initial system, i

correspond to each point x, t,

for any solutions
€., for one and only one point xf, ' to

it is sufficient that in the singly=connected

domain of variable X, t undez consideration, the following conditions are

satisfied;
XAV IS . :
=0 =1, 2. @)
8 = 9,0, — 3%, # 0. @
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In inegquality (3) u = u(x, t) is the arbitrary solution of ths initial system;
in the differentiation, the dependence u on x, t must be taken into account.

Since inequality (3) must obtain for any solution u = u(x, t) of the
initial system; they must themselves be its corollaries. Let us assume tiat
this does occur and that (4) is satisfied. Then from (2) follow the differ—

entiation formulas

LT e e 5
TEETAYES, BHL Y ®)

By formulas (5), the derivatives Ju/d¢ ,du/d x are linearly expressed by
dufdt',duf2x', and after substitution .n the initial system, obviously, we

again will obtain a system of quaailinear' 2quations.

Tranaformation {2) is one that is more general compared to the ordinary
transformation of independent variables (1). For its applicability, however .
(in the case when <Pi and ¢, depend cn u) it is necessary that the system of
quasiiinear equations have as corollaries special equations. ps we will see in
section V, it is not any system of Quasiilnear equatinns tnat nas even one

equation of the type (3) a8 the corollary.

let us present an example of the conversion of independent variables
with respect to solution. The system of equations of gas dyanmics (cf chapter
™o, Section II).

bt TP = e g
- O S ot) u’.'%.. % PR .

Rt St Y. 3 SAR N I
/ »?. "'.(‘. B{iﬂ"'&i * ‘&3“ v%}‘ R‘ JI.‘: 40

- ‘o

w10 & /
A 8y A ﬁoa' ﬁ"*P("-.s); 6)
? : ?u;: W :,F% :’3 ; RS IR o TR, (Y
R RS o ! . Pact . .. Yot g
Ay %fa“*o SEEANTE Y LY

contains three equations with three unknowns A, u, S. Let us consider the
transformation

d:x'npdx—pid!. dt’md}'f? (1)
In this case @, = Py ¥, =fu, ¢, = 0, ¢, = =1} conditions (3) are satisfied

by virtue of the first equation in (6), and condition (4) leads to the require-

ment £ > O. Thus, if £ > 0, then
- 29 -
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ﬁ‘r&g" r2 I:w=£v*"" = =3 o]

Vol o 12 i

and system (6) changes, after iransformation (7), into the new system:

.?o _‘?‘iii' (h" ¥ o ﬂl 68 ‘-_. -"3 8
e G Fo0 *

in gas dynamics the variablesx, t are called gulerian variables, and the variables
q = x', t' = t are [ggrangian variables.

2. Hodograph transformation. For a homogenous system of quasilinear

equations whose coefficients do not explicitly depend on X, 1 in the case n = 2:

[N A T TR :-'y:f - '. o
.‘r%«}-’.i(q-g-so. u=={#; _"2]' (1)

let us interchange the roles of dependent and independent variables, 1684,
we can assume that x = x(u,, u)y t = t(u1, u2). Siople calculations lead to
the result '

where

1If A 0, then by substituting formulas (2) into (1), we arrive at a linear

system of two equationss

t
%-——-an(ﬂ)-a;'-}'“u(“)—“o' (4)

'&Wr—-a,‘(a)-a;-+%(u)-;;;

- 30 -

Hl s 22

e e R TR o e e aa iy, B



where aij(u) are elements of matrix A(u).
This transformation of variables is called the hodcgraph transforumation;
it is used in gas dynamics.

3, Extended system. Let us write a system of quasilinear equations of

the hyperbolic type in the following characteristic forms

P 0[S Hhaie to0 5] =
| =z:[i¢,‘it"—+g,~i’a‘-j‘9~]=f,(x. tu) (k=1 ..., n). (1)

In many investigations, along with system (1) it is useful to consider a system
of equations in which the unknowns are also derivatives of the solution u(x, Tk
This system is obtained by differentiating (1) and is its differential corollary.

We will call system (1) and its differential corollaries an extended system.

Let us denote

Bmp B=q (Si=p F=a) (2)
then system (1) can be written as
BEtbA)=RE L) =S, G=1... . (3)

Differentiating each equation (3) with respect to the variables t, x, we get
daq ap &3 - oq P\ __ &
#E+uP)=a. r(E+uE)=F 4)

where
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9.“‘&"'+Tq°

_ . ofy, s (qa_*,g.pa)(-g-‘-a‘—aqg) }
" T __,a( +3.u°qb)p.,.

: ol ' t2l
5,=%’} %’ip.,-(q..+§.pa)(-5;°-+3&:"’e)" f
) )

- lﬁ(%g‘;%-mf’a)”“ '

From (2) follow, as conditions of integrability the equations
2afx =2ppPt, (6)
and, therefore, equations (4) can be rewritten as

p(frudl)=t o(F+ud)=ri, @

RN

where f}k, f};k are, by (5), functions of x, t, u, p, Q.

We will call equations (2) and (7) an extended system. The extended

system can be written in a different representation. The equations

=:q,. l'(%-+§a%£)==5n ; (8)

ccnstitute an extended system of 2n equations if the variables p appearing in

gk are canceled out by means of equations (3). Here it is assumed that

E A O0%).

The extended system wes introduced in this form by R. Courant and P.

lax in article [6].

*) The requirement Ek ;‘ 0 is not essential. By change of variables we car

achieve the result that ék #£0 for all k = 1, «ue, N
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If we consider an extended system in symmetric form (7), ther it is
equivalent to the initial system in the class u(x, t) & Cye

Let us dwell on a remarkable feature of the extended system. As was
shown, a hyperbolic semilinear system can be reduced to invariants. This,
generally speaking, does not obitain for systems of quasilinear equations. How=
ever, an extended system of eny hyperbolic system of quasilinear equations
already possess this property, i.e., is reducible to invariants.

Actually, denoting

%unp- )‘»"1 (9)

i !

' d
‘JLA " 4~.'.1._‘_ .d_..!_.

and converting in equations (7) to the variables ?k, &k’ we get

where

e d u. l \ - '.‘.' ] > . | i
& R

" LA i
? ] ;@.’P%[‘ﬁ}"‘"a :'\F ﬁ‘. ( p ‘h)’,) l ;‘\ ,:,’1..;

Doy W

Since Det(( l:‘ )) # 0, then the variables p, q are uniquely expressed by P,
& , and can be canceled out of F., F,.

Adding to equations (10) the equatio:
il Xoqumile, (12)
G e ik Aatle -

we get a system of 4n quasilinear equations written in invariants.

We can reduce the number of equations down to zn, if, for example, we
add to the first group of equations (10) the first group of equaticns (2), i.e.,

consider 8 systew of 2n equations in the invariantss
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’%&M’%”‘r‘ . .%"““‘:?3"'«-"3 (13)

and assume that in the functions f?k the variables g are canceled out by means
of (3}, and p == by means of (12).

Bowever, the second group of equations (13) is unsuitable for investi=

gation. We will trarsform it. From equations (3) we have

=R =R =AY — M (14)
Therefore instead of system {13) we can consider the system
o ”» & .
.%'{"Ek'—{f:ft' ,‘-&5-=q.=lﬁfa—lﬁ§‘f“. (15) :

vwhich is also written in variants, and the function :?k are functions of x, t,
u, .

Let us write extended system (15) in its final form:

LAY AN S a
i’g?*_ =Fy(x. ¢, u, &P). (17

From formulas (15), (11), (5), and (3) it follows that

Ta=F (5t )+ T a2 b 1) ot T ip(x. b )PPy (18)
Py == F*(x, t, )+ Fi(x, t, 6) P, 19)

where g;k, grk 5 ng; 3 Fk, Fi_ are certain functions dependent only on x,

t, u. The formulas for these variables are quite cumbersome and we will not

wvrite them out here. Let us however note that Fk, F{i are expressed in terms
. - k k k )

of the coefficients of the initial system, and 37 3 gzi » Fug in terms of

the coefficients and their first derivatives with respect to the variables x, t, u.
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The extended system (16) 2rd (17) will be used by us in the following
in estimating the growth of the soluticn to the system of quasilinear equations
and its derivatives (cf section VIII).

By section 1I, a hyperbolic system of n nonlinear equations reduces to
a system of 2n quasilinear equations. The extended system for arbitrary hyper—
bolic system of quasilinear equations reduces, in turn, to equations in invarirats.
Therefore a hyperbolic system of n nonlinear equations reduces to a system rf not
more than 4n quasilinear equations in invariants by means of forming an ertended
system,

Section V. Conservative Systems of Quasilinear Equations

1. Definitions. If the equation

- VSR S
r',..;;“P_(‘v"n )Q: (1)

B

is a corollary of the system of quasilinear equations

2u/dt + Ad2ufdx =1 (2)
for any solutions to system (2), then we call it the law of conservation of
system (2).

Suppose system (2) has m laws of conservation (1) corresponding to the
functions 4’1, vesy Pm; &P1, ooy sUm. These laws of conservation will be
called independent in the domain D if the functions 1, 4'21(x°, t ), ey

P m(xo’ to’ u) are linearly independent for all X to of the domain D under

consideration.

If = @(x, t), then by the definition of equality (1) is not independent
law of conservation,

If system (2) has n independent laws of conservation satisfying the condi-

tion

then we call it conservative, otherwise == nonconservative.
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Thus, the conservative system (2) can be reduced to the form

af(& 20l (3)

T e B e Y

where we understand €, ¢, and P to refer to vectors with n components. Let
us note that a system of the type (3) is often called "divergent"; sometimes
this term applies only to the case F = 0., We obtain equations that will serve
for defining all laws of conservation of system (2), i.e., functions of @ and
Y . To do this, let us multiply system (2) by the vector ol =d(x, t, u) =
{11, P d-n} and require that this result be of the form (1).

Let us arrive at equations

A »g_ I SAr A AR

m ==aér'“"9' *‘OA I’!'

g,:;‘.‘s .{xp’:.- 3 .-".'\- o “, g “‘
where hE '9 T3 "‘ nw”.- oY 'h
={ar i w-:}"'
Canceling the vector oL from these equatlons, we get the systeu
Dy Ffﬂf S i
1‘,“\( x- " )=%'. i (4)

Wiy ‘ ‘. lh)

in which only two unknown functions 4D(x, t, u) and ¢(x, t, u) appear. The

system (4) consists of n equations and is described in comporents as follows:
T ST S At R s Sl

ﬁ %(M L) <t==-t. o ek (5)

The variables x and t appear in the coefficients of this system as parameters.

A set of linearly independent solutions to system (5) defines the

system of independent laws of conservation of system (2).

If system (2) is linear or semilinear, i. iz conservative. Naturally, in

this case A = A(x, t) and system (5) has n independent solutions:

DT e s D= 0e (L )

Wikt Lk W 1

Waen n<2, system (5) is either indeterminate or determina!: and has an infinite
mumber of solutions. When n 23, system (5) is over determined and cannot in

general have a single solution ¢, ¢, which would depend essentially on u. The
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proof of this assertion can be obtained for the example of the system
Frufioo Siulro Praf-o
A e N e . ¢ ! .
for which it is easy to establish that system (5) does not have nontrival solu=
tions (cf [7]).
2. laws of conservation of gas dynamics. As an example (cf [6]), let us

consider a system of equations of gas dynamics in lagrangian coordinates (chapter

two, section II), which we will write as

v o | (oY
T FHERY =0 Fl+pHP=0

Let us pose the problem of finding all laws of conservation of this system of
equations (obviously, system (1) has already been written in the form of iaws of
conservation and is therefore conservative). Representing the system as

’ % , od
iz_u_o. -&-+""'+p,;——o FHrm=0

we will write for it vhe system of equations (5.1.5) with respect to @ = ¢(V,
use)s Y= ‘P(vs us£)3

ga-:pv(v 8;-2 ) \.. , 2)
B e BtV 0 @
LR AL @

Suppose p = p (V, £ ) is a doubly-continuously differentiable functions of its
variable; we will assume that @ (V, u, &¢), ¢¥(V, u, £) is also doubly-continuously
differentiable. Combining equalities (2) and (4), we obtain .

PV O b —p, (V. O gL =0,

which denotes a functional dependence with fixed change u of the variables ¢, p,

i-e.,

¢ = ¢ (p,u) (5)
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Similarly, writing out the conditions for consistency of equalities (2) and (4),

we get
rar (@) =s & (3,
i.e. | |
o¢/ou = F(p, u) (6)

where F(p, u) is an arbitrary function.

Substituting (5) into (3), we find

where ¢ (p, u) is an arbitrary function.
Integrating (6), we get

o(V. s, =F,(p. )+ F (& V). (8)

where as before F1, F2 are certain arbitrary functions.

Substituting this expression into equality (7), we give the latter the

fOllOWing form:
éF, (e V ) 0F, (e, V) of P, u) .’
P l(- . l( __-(l)(p' a)... I(p —[pp. p’vl.

Since here the left side dres not depend on the variable u, then
. i
3%F, (p, 1) !
R e LA (9)

We will limit ourselves to a consideration of the case when the variable

pp' is functionally independent (as a function of the variables V, £) with the

function p(V, £): )
0 ’ B ¥ 4 .
by [ppi— BV # Piw [P AVl (10)
-4
Therefore,in %= ognt side of equality (9) appeers a function of p, U, V, & that

is not reducible to a function of p, u. Therefore equality (9) is possible if

and only ir . . ;
a’Fl (pv u) i g = -.K;‘
W—‘Ql @u(p' u) 0;4‘

-38-




Thus, assuming that condition (10) is satisfied, ¢ (p, u) = ¢ (p) and, by (8)

s e m'vv-v A

LRI

(1)

(12)

Therefore, substituting formulas (11) and (12) into equality (3), we get

@) L OF - O
pfne A p o0 dy (12)
Since F, = F (é V), then the right side in (13) does not depend on u; there=

fore S

m -"%lp(s)- | ._i'_) :::6

Fx(“)’=cl‘§‘+ca“- Fs"*_ba..'

and

since the constants are imaginary. Finally, equation (13) becomes

J p(v, e) 9y %?—zclp(v ¢)+ct- ;

aana

i.e., F2(é y V) satisfies tie mmrematmn in partlal derivatives, assuning

Y V)ac,e~c.v+ﬁ,(s. V) 1

(AT

we get for F2(£ V) the homogeneous equation

1ALy (14)

iy
Ne . i

As for the variables V, £, let us consider the ordinary differential

equation

; dep(V, )aV =03 (15)

Suppose S = S(V, £ ) = const is the general integral of this equation, i.e.,

Si(Vie)p(V. )—Sy(V, & =0.
The funciion S(V, &) is called entropy in thermodsmamics. Since equation (15)

determines the characteristics of equation (14), then (cf for example [5]) the
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general soluvion to equation (14) is
R S ST ”Cj
where £ is an arbitrary function of one variable. And thus, we obtain the

general solution to equations (2) = (4) for ¢

s "

bong ety s el anidea et

ot
_?)
&

after which we can easily find ¢:

(17)

PGt G0 TG0 DY

Formulas (16) and (17) give us a grasp of all laws of conservation of this system
of equation for the case when the inequality (10) is satisfied. It is easy to

note that they contair laws of conservation (1), and also a new law of conserva=

0!(3("; 9) > 0 ]

which in gas dymamici is called the law of conservation of entropy.

tion

From our proof it follows that when condition (10) is satisfied the equa=
tions of gas dynamics (1) do not have any other laws of conservation except for

the known laws of conservation of mass, momentum, energy, and entropy.

By way of y:t another example, let us consider the system

%‘%%'*‘31%%1‘ \ ¢=L..m (18)

where & -é_’(u,‘, vrey un), OZ” - ! (u1, coey un) are scalar functions (cf
[9]). System (18) is hyperbolic if the matrix

zu=((%))

is sign-determined,

The system of equations (18), obviously, is conservative. It is easily
seen that it has yet another law of conservation, independent of the laws of

conservation of (18) if ai? is a variable matrix:

q>==llq.7.a—.?. ‘P’-‘-“a-?ua“"-?"

It 's interesting to note that equations of gas dynamics, as well as certain

othe. systems of equations in mathematical physics are reducible to the form (18).
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3. Potential of the solution of a conservative system of quasilinear
equations. Let us consider a conaervative system of n quaeilinear equations

Therefore, as new dependent variable we can select the variable vi'- 4’1(x, t, u)
and consider only the conservative systems of the special form:

(1)

Suppose we know the solution u(x, t) & C, to system (1). Let us find the vector
F (x, t) such that

Obviously, the vector ¥ (x, t) is nonuniquely determined; for determinateness,
ve must set

¥ 0= jm 3 & O)JJ (2)
e e R1L B . '

where x = xo(t) is a smooth curve uniquely projectible onto the axis x = O,

The system (1) can be rewritten as

y+3-l¢9(x- t, a)—J'(x. f)l==*°, .

Integrating this equation of the domain ;ﬁc bonded by the contour C, we conclude
that the contour integral

ﬁudx-—-[cp(x. . u)-..r(x. 0l dt==0 {

tends to zero for any piecewise-Buoth closed contour C. Therefore the curvilinear
integral

(x-f) :
(D(x. f)== [ adx — (p— F ) dt (3)
(‘ufd
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doea not depend on the path of integration and defines the vector (_P(x, t) f C2,
if¢é%,Pém

From (3) follow the formulas
‘“‘._‘, R . “,?ﬂ“.‘v‘*

| 'ay;*‘-;“ #‘wr&, 4RI (E D

,:'.,',/"r-

R vk SENR S .L CEVE RIS WL NPV o S

Canceling out u and using formula (2), we find

Do N, All"'

%Qh;?@%ﬁ%—d& (4)

cmoce SRR AL e BT R

Now the system of nonlinear integro-differential equations (4) can be considered
independently of (1). If we know the solution & (x, t) & C, to system (4), then
u=239/2x C, is the solution of system (1). Reducing system (1) to system
{4), we can consider, in this way, less smooth solvtions u(x, t) cf system (1) as
derivatives of solutions @ (x, t) of system (4) that have greater smoothness.

For this reason, this apprach find use in the examination of gener-

alized (f'or example, discontinuous) solutione of systems of quasilinear eguations.

We will call the vector ¢ (x, t) the potential of the solution u(x, t)
of system of equations (1) {cf [10]).

Let us note several particular cases. I F = 0, tnhen eystem (4) becomes
a nonlinear system of the Cauchy~Kovalewki vype. Reducing system (1) to system
(4) in this case must be compared with the opposite procedure =~ reducing &
nonlinear system to a system of quasilinear equations (section 1I). Therefore

this processes of increasing solution smoothness can be used even ir the following.

Section VI. Formulation of Cauchy's Problem for & Hyperbolic Sysiem of Quasilineay
Equations

1. Formulation of the problem. For a hyperbnlic system of quesilinear

equations L. . .
L: o

Az = (1)
which we will also write m the characterisiic form

"[‘H""&T]—f' (Rem1, ..., 5),

let us consider the following problem:
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In  gome vicinity of the arc a8 < T< b of curve &
x=x(t), t=1t(%)

find the solution u(x, t) of system (1) that takes on assigned values on L,

..',"(,é'('._)'ny.t(t))=u°(t), };<1<5-, @)

conditions (2) are called initial, the vector-function u® is the initial func-

tion, and curve ol is the initial curve.

The problem (1) and (2) is called the problem with initial data, or
Cauchy's problem.

Cauchy's problem for equation (1) is interpreted geometrically as a prob=
lem of constructing in the space of n + 2 dimersins of variables (x, %, u) a two-
dimensional integral surface u = u(x, t) passing through the given curve

x = x(T), t = t(T), u=u(T), ‘

which we will also called the initial curve.

To render the formulation of Cauchy's problem more precise, we must indi-

cate:

a) the smoothness of the matrix A(x, t, u), vector b(x, t, u) (or lk,
g fk)s the initial curve, and the function u’(t) (we will cail these vari-
ables the initialdata of Cauchy's problem);

b) the domain G »f the variables x, t in which we seek the solution to

Cauchy's problem.

These problems will be examined in the following subsections in the cons-

truction of the solution of Cauchy's problem.

"2t us note that, by definition, the solution u(x, t) of system (1) is
continuously differentiable (u < C1). If u(x, t) exhibits less smcothness,
but in some sense satisfies system (1), then the function u(x, t) is called the

generalized solution of system (1).

In this chapter we construct the solution u(x, t)é& C, for a hyperbolic

system of quasilinear equations; a generalized solution u(x, t) & C will be
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constructed for linear and semilinear systems. Following K. O. Friedrichs,we

will call the latter the solution to Cauchy's problem in the broad sense.

2. Solvability of Cauchy's prcblem. Characteristics. Suppose x(T),
(), u°(t ) éc1, 1k(x, t, u), E fkéC and some vector=function u(x, t)
& c1 takes on the value u°( T ) on the curve Z and suppose its derivatives P,

q satisfy the equations of system (6.1.1) on the line &.

Let us formulate the problem of whether the derivatives p, q based on
these data can be determined (on the line &%), i.e., the problem of whether the

function u(x, t) & c, satisfying these requirements exists.

On the line & we have the equality
a(x(0), 1)) =0@).  Plg+hapl=/s | (1)
s i B . o - 4
where lk, E ¥? fk are obviously known functions of the variable € on %A
Differentiating u(x(z ), t(¢)) = u®( ) with respect to T, we get

PEg+¥ @p=2E — o), (2)
ad

and, therefore, (<€) & C.

Equations (1) and (2) form a system of 2n equations for the determination
(on the line & ) of the derivatives p, q. Since the matrix ((1,5_ )) is non-

singular, then by canceling out the vector q from equations (1) and (2), we get

Fon—ralP=roL-ro—1E ()

where fk is a continuous function of the variable ¥. The determinant D{T ) of

system (3) can be easily computed:
‘ a . o 4 a - . ﬁ'
D(x)=[pet ()] JT¥ Wt — ' o1 =DetA JT ¥ & ta—# ).
It differs from zexro if for all k=1, ..., n

& =5 (‘3+§,.—_—§.(x(lt)-t(f)-‘"“’(t?)-j (4)
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We assume that [x'(T)| + [t'(T)| ¢ O. If ¢'(t) = O, then plainly
D{t) # 0, since £, are bounded. ’ Y

Thue, if conditions {4) are satisfied, then the system of equztion (3)
has the unique solution p = p(= ) and, therefore, the derivatives p, q of the

function u(x, t) are uniquely defined on the line & from conditions (1).

Now let us assume that u(x, t) €0, x( ), t(-z),/'u/o(c ) &0y lk, Ek’
f,E€C. Ifun= u® on ¥, the first derivatives of u(x, t) satisfy on ¥ equa-
tions (6.1.1), and the second derivatives of u(x, t) satisfy onZ the differen=
tial corollaries of system (6.1.1) (i.e., equations obtained by formal differ-—
entiation of system (6.1.1) with respect to variable x, t), then providing tha+
conditions (4) ere satisfied, on .# the second derivatives of u(x, t) are also
uniquely defined.

Similarly, if conditions (4) are satisfied, we can define on .# derivatives
of any order m of the function u(x, t) if conditions (1) are satisfied then, more-
over, &il derivatives of u up to order m inclusively satisfy on & all differ-
ential corollaries of equations (6.1.1) up to order m inclusively. Of course, the
input data must be sufficiently smooth.

Let us note that, as we can easily appreciate, in these arguments it is
sufficient to speak not of all differential corollaries, but only of those that
are obtained by differentiating equations (6.1.1) in any fixed direction not co~
incident with the directicn of the curve & (so-called exit direction). For

example, the direction of the normal is such & direction.

This procedure of determining derivatives can be extended as far as one
wimes if the initial data are analytic, and it permits constructing an analytic
solution for the problems (6.1.1) and (6.1.2) for such data. This fact is the
analytic basis of the well-known Cauchy~Kpovalevski method.

If conditions (4) are satisfied for all k = 1, ..., &L on curve .. we
will call Cauchy's problem noruwal.

The curve & assigned in this space of n + 2 variables x, t, u by the
equations

x = x(x ). t = t( ), u = u’( ), (5)
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is called the characteristic of number ko of system (5.1.1) if the following

equalities satisfy at this curve:

@) ;

FALE

2

W

el @I
..if'if"?."?’;%(t.f?-(" (0. ¢(x). (6)

K.+ Ry

For the case whence several characteristic values gfk coincide on o, the curve

ol can be a characteristic of several nambers k at the same time.

Sometimes we will also refer to the projection of the curve (5) onto the
plane of variables (x, t) as a characteristic, bearing in mind, however, that

equality (6) has been satisfied for it.

Suppose the curve & under Cauchy's problem conditions is the characte=
ristic of number ko. The left side of the equation of system (3) corresponding
tok = ko then tends to zero. If the right side of this equation fk('c) does
not tend identically to zero, then the system of equations (3) has no solutions
at all in general. Therefore there does not ecxist a function u(x, t) & C1 which
on & takes assigned valuesu®(<c) that would satisfy on £ system (6.1.1).

Nor does there exist the solution u(x, t) & C, to Cauchy's problem (6.1.1) and
(6.1.2).

Thus, if the initial curve is a characteristic, then the initial condi~
tions (6.1.2) and the system (6.1.1), generally speaking, contradict each

other, and Cauchy's problem is nonsolvable¥),

For Cauchy's problem to be vhysically meaningful also in this case, we
must stipulate that fk (z)= 0.
o

Thus,if the initial curve has a characteristic of number ko' then the initial

data cananot be assigned arbitrarily; they must satisfy the condition

H@O=f ©f, (@), (@, @)~ (x(). 10, () B0, (7)
*#) From this examination follows anothcy definition for tne characteristic,
as & curve & at which a linear combination of equatiuvns of the system under
congsideration contains only interior derivatives, i.e., derivatives with

respect to the parameter = in the direction of the curve 7 .
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- which is called the conditicn of solvability.

Suppose the initial curve & is a characteristic of number ko and
suppose the solvability condition (7) has been met. Then system (3) is com=
sistent, but has infinitely many solutions. Therefore, the solution u(x, t)
to Cauchy's problem is not determined uniquely by the initial condition (6.1.2)
and there exist infinitely many solutions to system (6.1.1) satiafying the very
same initial conditions. Thus, we arrive at the general definition of the
characteristic of system (6.1.1):

A characteristic curve is a curve & for which Cauchy's problem is either

nonsolvable or solvable, but not uniquely.

For the unique determination of the solution u(x, t) for the case when
the curve &% is a characteristic and when the solvability conditions have been
met, several additional conditions can be imposed. Examples of these problems
are taken up in section XI.

Related to Cauchy's problem is the problem of the extension of the

solution u(x, t) through curve & . Suppose the solution u(x, t)& C, is known
along one side of curve & and it is required to extend it to the other side.

This problem reduces to Cauchy's problem with the curve & as the initial curve.

If & is not a characteristic, then this Cauchy's problem is normal and
tke problem of extending the solution is uniquely solved. In this case, from
4 the condition of the continuity of the extension follows the noncontinvity of
ﬁ all derivatives of u(x, t) which exist on the line & , in particular, there
follows u(x, t) €C,. If however the curve of is a characteristic, then the
E corresponding Cauchy's problem is nevertheless solvable, for the solvability

condition (7) has obviously met (since u(x, t) is the solution on one side of

o S o

Z ). However, it is solved nonuniquely.

E Let us consider, for example, & continuous extension. As 'we have seen,
E the valuesof u(x, t) at the curve & do not uniquely define its first derivatives
é P, Q; therefore the continuous extension of the solution with discontinuity of
E the first derivative &t the characteristic ;¢ is possible by an infinite set

of ways. If however the continuity at o of the first derivatives is required,

then derivatives of higher order can experience discontinuity, so that in this

i case the extension is defined nonuniquely.
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And so, & characteristic is a line through which a solution is extended
nonuniquely.

The problem of extending the solution u(x, t) through the characteristic

f is uniquely solved only for the case of analytic solutions, just as, obviously,

is the case for any problem of the analytic extension of a function.

Now we will concentrate on the normal Cauchy's problem. By transformation
of the variables x' = x'{(x, t), t' = t'(x, t) converting the curve 2 to the
segment of axis t' = 0, the general problem reduces to a special Cauchy's
problem with initial conditions assigned at the axis t = O: find the solution
u(x, t) to system (6.1.1) satisfying the initial conditions

u(x, 7) = u’(x), a<x<h, (8)
From the boundedness of the variables E k it follows that this Cauchy's problem
is normal., We will solve Cauchy's problem (6.1.1) and (8) only in the half-
plane t > 0. The solution u(x, t) is constructed in the half-plane t <O by

analogy, when necessary.

3, Domain of dependence and domain of determinacy. The concept of correct=-
ness of Cauchy's problem. Suppose we know the solution u(x, t) to the system
(6.1.1), taking on the initial value (5.2.8). ILet us draw the characteristic
X = xk(xo, t°, ¢ ), given by the equation

& _!d??__._w ;—1(;;.,»!". .a(ié.':‘)r) i :‘.\__‘&'k ; i ‘.' } 2;'; .-. ‘.' :n).--‘

until they intercept the axis t = O through the point /(= (x°, t°) of the half-
plane . }0. Suppose they intercepi the axis t = O at several points, the far—
thestof which are denoted by a' and b'(a' < b') (Figure 1.2). The segument of
the initial axis t = 0 a' £ x < b' is called the domain of the dependence of
the solution u at the point /.




The domain of determinacy G of the solution to Cauchy's vroblem is the
nsme given to the region of the half-plane t > O consisting of all points(x, t)
for which the domain of dependence a' < x < b' belongs to the initial segment
{a, b], i.eey [a', b'] < [a, b].

Finally, the domain of the influence of segment a'<x < b' of the initial
axis refers to the domain G' of the halt-plane t =0 consisting of all points
(xy t) whose domain of dependence has a nonempty intersection with the segment

[a', b'].

Since the characteristic of the system can be found only simuitaneously
with the solution u(x, t), determining the domain of determinacy is difficult.
The situation becomes much simpler for the case of a semilinear system, when Ek
= Ek(x, t). Here the domain of determinacy G is given by the conditions

G: t=0, Xn(t) £ x < X1(t),
where x1(t), Xn(t) denote the solutions to the differential equations

dx, -
= e o0, 0= mn (L0, ),

which take, on where t = 0, the values X,l(O) = a8, X, (0) = b,

For the case of a system of quasilinear equations, the a priori determina-
tion of G is difficult. However, if we know that [fu(x, t)]| < U, then the
following assertion is valid:

dga. |
where . _ .
G >0 X, 0 <x<X0)
) A ) T
LA .{Qn(z?.(t). to) X, 05 .

ax; . = ¥ (f X.(0)==b.
S ._,r'n{fl_._"Tgluie.(xl(t).qt. 0} X, (0)=0b.

Cauchy's problem is called correct or correctly formulated if its solu-
tion u(x, t) exists, is unique, and dcpends continuously on initial data. Of
course, the questicn of the metric in which the continuous function obtains depends
on the classes of the solutions and initial data under consideration and is solved
in each of these classes in a different way. When proving the existence theorems
for the solution to Cauchy's problem, it will be stated in which sense the conti-

nuous dependence or solutions on initial data obtains.
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let us explain these concepts with the example of a linear systea with
constant coefficients:
duf/at +Adufox =0. (1)
The invariants
k
r,=lu=1lu (2)
satisfy the equations
—#+§.#?0 (k=’l' very )-
i.e., system (1) is decomposible into n 1ndepenuent equations. The character—
istics of system (1) are straight lines:
- %
x=x =X + g}:.
Therefore the domain of determinacy of the solution to Cauchy's problem for
system (1) is the triangle
Gs t 20, a +,_,té b+§1t,
and the domain of dependence of the solution at the p01ntu44 (x, t) is the
segment [a', b’] of the axis t = Q, whers a! = x -Ent, b! « x -§1t (Figure 1.3).

¢

x| ¢ x

&4
a g Vi =z

Figure 1.3

The functions rk(x, 1, are easily defined:
rk(x, t) = fk(x b _Ekt),
where fk are arvitrary functions.
If the initial conditions u(x, 0) = u®(x), are posed, then by (Z)
k o (¢]
rk(x, 0) =1lu(x) = r (x).
From whence s
r.(s. Q.—n(x——bl)=-l’l (x-—hl)al:-&(x——wﬂ
Retrrning by formulas (2) to the functions u, we get

a(x, =00868 (5 — g
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From this formule there directly follows the continuous dependence on initial
data - matirix A and initvial functions u®(x) == of the solution to Cauchy's

problem of system (1) with constant coefficients.

4. Method of characteristics and review of results. Sections VII and
VIII will set forth in detail the application of the method of characteristics
to proving the principal theorems on the solvability of Cauchy's problem.
Here we will only briefly describe the concept of the method of characteristics
in order that the readez rot interested in details will grasp the method of
characteristics and the results achieved witbout having to read the proofs of
the related thecrea.

Suppose that for the systeam

W A

‘4“*"'«.,' ()

the initial conditione  u (x, 0) = u’(x) (2)

ave formulated., For sake of simplicity, assume that a = g0, b = 00; the quan=-
tities 15, &, £,, u® arv acsumed to be sufficiently smooth functions of their
variables.

Suppose that in the eirip 0< t < t the smooth solution u(x, t)
to problem . (1), (2) is known. The functions

it _'.i,,“': j;}.’i‘ % ;t;qh(x; t, :s(:. o)%
BRI (‘*JL"("‘@‘)’ i

can then be regarded as functions of the variables x, t, and system (1) can be

s

considered as a system of linear equations
e
‘*?.[ f '33']&'7' ‘\'{
and it can be written in the invariantss

%4#5}2\; .(x,,i{j (3)

o SN

Here the functions sk(x, t) are expressed in terms of u(x, t), t " % . 5k

and <he first derivatives of l d




Each of the equution (3) can be integrated. Actually, if we let x =
xk(x ’ +° y T ) stand for the soluflon to the probiem —
A AT
then the expression 5)_; + gl( 3‘% is the differentiation operator with

respect to the variable ¥ in the direction of the characterisiic x = xk(xo, to,

< ); therefore

ﬂ]-th fm;'ﬂ' ‘i .ﬁ,n (;4 ;

.'Tz"-.;_t,', vl T R T A ST e bl e L

In view of the hyperbolisity of system (1), matrix ((1 )) is nonsingular,
therefore u(x, t) can be determined from (4):

(cf formula (3.1.4)). Howevei, the solution u(x, t)is unknown to us ard, there=

K fk Sc, with the exception of the most

simple cases,construction of the solution u(x, t) does not ruduce to this

fore, so are the quantities 1 , 5

uncomplicated procedure, but rsguires the application of the methcd of successive

approximations.

Suppcse that in the strip 0Lt < t an approximate value(ékx, t) of
the solutlon to Caughy s problem (1), (2) is known. Then we can determine the
gnantities lK ’ gkﬂ ard find the next approximation of u (x, %) by the
above~indicated method.

st1)
Thus, the approximation u (x, t) can be regarued a8 the results of spplying

DY (x, t) = ™ (x, t).

This operator is nonlinear and contains the operation of differentiation with

)
tou (x, t) a certain operator T:

respect to x, t and integration along the characteristice. The solution u(x, t)
to problem (1), (2) under this approach satisfies the equation u(x, t) = Tu(x,t),
which obviously symbolically describes Cauchy's problem (1), (2). To prcve the
convergence of succesaive approximations{(ﬁ' (x, t) } , we must first of all
establish their uniform boundness in some strip O < ¢t £ to. Then, the proof

of cunvergence reduces to establishing the couwplete continuity of operator T

(i.e., the fact that it .maps any bonded set into a compsct set) Finally, it is
-52-
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shown that the limit possesses the required smoothness and is a solution to a
problem, Ordinarily this last stage involves investigating the seduence of
derivatives \a(ﬁ)/a Xe These problems are studied in detail in the raxt two

sections.,

The first resulis on the existence and uniqueness of solutions to Caucky'a
problem were obtainec by the Cauchy¥owlevswye method for systems of the Cauchy=-
Kovalevsap €quations on the assumption that the initial data of the Cauchy's problem
were analytic. These burdensome restrictions deiract from the value of the results,
since Caucby's problem for hyperbolic equations is best considered with minimum

requirements on the smoothness of initial data.

In 1927 H., Levy (cf [11]) ghowed that esgentially the solution to a hyper=-
bolic system of linear equations with two independent variablea reduces to the
solution of Cauchy‘s problem for systems of ordinary differential equations.

This work laid the foundation of the classical method of characteristics*®).

We will briefly present here the result obiained recently c¢n the yuestior
of the solvability of Cauchy's problem for hyperbolic systems of eQuations with
two independent variables.

In 1948 K. 0. Pridrichs (cf [12]) considered the problem of the existence
and univueness of the solution to the problem (1), (2) for systems of linear,
semilinear, and quasilinear equations. For the linear system K. C. Fridrichs
proposed contimuous differentiability of lk(x, t), Lipshits=contimuity of Ek(x, t),
and the continuity of fk(x, t, u) = fk(x, i) + ﬁi (x; t) u, . Given these condi-
tions, he established the existence of a solution in the broad sense on the
assumption only of contimuity of w°(x) (the concept of the solution in the broad
sense will be taken up in section VII). For 1 system of quasilinear equations
Pridrichs required that li . gk & Cos fk 'S Cys uo(x) = C,. Here the existence

of the soluvion u(x, t)& C, was proven.

R. Courent and P. lax (cf [6]) used the concept of an extended system in
invariante., In spite of the elegence of the prcof, in this work moce rigid

assumptions on the smoothness of the initial data are male. Thus, for example,

*) The method of characteristics was developed earlier for a single equation.
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the existence of third derivatives is required for the initial functions uo(x).

In papers by A. Douglas (cf [13]) and P. Bartman and A. Wintner (cf [14]),
published in 1952, the solution to the problem (1), (2) is constructed on the
assunption of continuous differentiability of initial data. A. Douglas first
constructed the solution for smoother initial data; these initial data are consi-
dered by means of passage to the limit. P. Hartman ard A. Wintner constructed
the solution v -1er these assumptions directly by the method of characteristics.

Lemma 2, presented in the next section, plays a key role in their comstruction.

Thus, the minizum requirement on initial data under which the existence
and uniqueness of the solution u(x, t) & 01 have been proven at the present
time is the requirements of the continuous differentiability of these data. It
must further be required that, as shown by the simplest examples, no solution
u(x, t) & C, exists if the initial data are not differentiable.

Let us note that several existence theorems canbe gotten by specialization
of more general theorems to the case of two independent variables. Thus, for
exauple, papers by I. G. Petrovziciy (cf [15]), and S. A. Knhristianovich (cf
[16]) presented general results, from which derive, in particular, existence

theorems for the case of interest to us. Let us however note that here the

requirements imposed on the initial data are naturally overstated.

Finally, we make several remeicks on the presentation of these questions
discussed in this book. Cauchy's problem for the linear system is studied on
the tasis of the paper [12] by K. 0. Fridrichs; the existence theorem is proven

with these same assumptions.

The method of characteristics as propounded by F. Hartman and A. Wintner
is adopted has the basis for systems of quasilinear equations. However, our
% presentation differs in several key respects. We cite a number of them. Proof
5 of theboundness of successive approximations and their derivatives is usually
extremely cumbersome in the method of characteristics. Gross estimates using

the "ma jorant" which we employ essentially considerably simplify and meke

more general these estimates by bypassing the necessity of arithmetic computa-
tion. Another point of distinction in our presentation is in the proof of uniform

convergence in the domain of determinacy G not only of the successive approxi-

wations, but also of the sequence of their first derivatives.
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5« Two lemmas.

Lemma 1. Suppose that the vector-function u(t) = {111, veoy un} continuous

on the seguent 0 <t £ to satisfies the inequality

]
Ne®I<Up+ [ 1A@+ B mex |u®]1dv, (1)
L e LR . ushbEl ‘
and suppose that when 0 £ t < t, |a (t)[< 4, |B(t)<B, u, >0.
Then when 0 < t £ to the following estimate obiains:
G el e et N7 o At
.'_Ill(f)ﬂ<°‘<”:2‘""(f)"<Uul“+—§("‘—1)- (2)

When B = 0, formula (2) is transformed into the obvious inequality:

|u(t)[]< max ||u(1:)u<U°+At

~).| EXY

Proof. Let U(t) stand for the quantlty max éu (f )i . Suppose t >0
is any number from the segment [0, to] and U(t) = futt)l] (0t < t).
Writing the inequality (1) for the point t', we get

aa(t')u—U(o<Uo+ j’ 1A+Bumldr<

<U°+I[A-{-BU(t)}dt-—Uo-(-At«t-BI U (x)dr.

Applying this estimate many times, we will have

U(o~<uo[l+8t+ + LOA
+A[t 4 (Bly* ]+U(t s
2r -+ BT B(s+ 1)1 07_—1—'

from whence follows inequality (2).

Corollary. Suppose the continuous vector u(x, t)& C1 satisfies the
inequality Pr] o .-
Ll<ron+js2, 0}

Then estimate (2) holds, where U, = Hu@)ll, 2= max I£(t){, B = mgx

s anlil.
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k=

Lemma 2. Suppose u(x, , T ), v(x, t, ) € C,. Then the function
T 2 TR

1(; g)n;fu(x.t z)b"'"' 4"4

o
i 5
? N Yoo a

is continuously differentiable (I(x, t) €C, )

Proof. Let us compute, for example, the Gerivative 31/:3 x. We have:

B/ B =i m=- A o

j{-(x-{—Ax 6 1) ou (s

2 N :
I-(x+w,n-w.t.z 60(£+Ax- L

3, e Pt

X I.’;':'.-w" P ] . ‘:'.‘ BANREEIG IR S AP 1LY
M‘I a(x, t t) Fo [v(x-{-Ax.’f t)—v(z. t ﬂidf, 4
. T v ?“?",;.', T S -4

Performing integration by parts in the last integral and passing to the

limit as Ax —~0, we get

AR ] W or e er
“

"_!_‘;;f---u(x. t, :)o,(x. , t)—-u(x. t, O)vx(’c- b °‘+ “”*

R T wfﬁ,ﬁ;

B T s I

w0

Formula (3) proves lemma 2 and s:imultaneously gives us a rule for computing

derivatives of the function I(x, t).

Section VII. Cauchy's Problem for Linear and Semilinear Systems

1. Existence and uniqueness of the solution of Cauchy's problem in

the oroad sense. Let us consider the semilinear system

F‘*'A(x' [).5_.'_-—-_b(x. l. a).

[‘
) g ,I.’ R
and suppose that the system ‘ i ‘ ‘ K e e
B 0—5-—-»4:.(:. 6N O
A e TRl e , ‘ ‘1 '. fe v ‘
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is the notation of system (1) in invariants.

Suppose that for some segment [a, b] of axis t =« O the initial conditions

. .o,
i a(x, 0) = w2(x). (3)
1 are assigned for system (1). Note that the segment [a, 0] can be unbounded.
Denoting J:;Z(x) - lk(x, G) u° (x), we get the initial conditions
r(x, 0) = r’(x) - (4)
for system (2).
k

let us assume that the funotionms A, Ek’ 1 & ¢, in G (recall that G
refers to the domain of determinacy of our problem), fk, and 31}/9¥¢ & Co in
the domain G X ful = oco<llujj< oo}, w(x) & C, on [a; b]. Then g 2 gk/ax;{_
& C, in the domsin ¢ X {r} - ooljrjj< oo} r’(x) e C, on [a, bl

The functions r(x, t) continues in G are called the solution to Ceuchy's
problem (2), (4) in the broad semse if r(x, 0) = r°(x) and if each of the
functions rk(x, t)_ is continuously differentiable with respect to the variable t
along the corresponding characteristic x = xk( E, T, t), where

S IO NENC
The vector u(x, t) obtained from the vector r(x, t) by formulas (3.1.4) will be
called the solution in the broad sense of Cauchy's problem (1), (3).

The uniQueness theorem of the solution in the broad sense. Suppose that
two solutions in the broad sense u(x, t) and u(x, t) to problem (1), (3) exist
in G. To these correspond two solutions in the broad sense r(x, t), r(x, %) of

problem (2), (4).

We introduce the difference v(x, t) = r(x, t) = r(x, t) (v(x, 0) =0) (6)
Subtraciing from equation (5) written for the function r(x, t) this same eyuatio.,

writien for r(x, t), we get
Tdo(n @ nB.0 _ oy ety !
L amanl ALY (1)

where gli (x, %) denotes the quantities

. . .;._’ o
| g 0= ke b r(x5 —Do(r, Hah.
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By the definition of a solution in the broad sense, the functions r, ;, v are

continuous in G. Therefore the functions gi are continuous in G and are

bouded in any strip 0 ¢ t £ to.

Integrating equation (7) with respect to t from 0 to T , allowing for
condition (6), we get ’

o.<; 1)-=:Jg'(x.. ¢) (x,.‘ f)di (k'g:-t. u).‘i.
In view of the bouniednesa of matrix ((gd' )), hereafter applying lemma 1 from

secticn VI it follows that everywhere in ¢ |{|v(x, t){/ = O and, therefore,

r(x, t) = ¢ (x, t), u (x, t) = u (x, t). The theorem is proven.

Of course, from this theorem naturally follows that the classical, i.e.,

continuously differentiable, solution to Cauchy's problem is also unique.

Existence theorem of the solution in the broad sense for a linear system.
We will construct the solution to the problem (2), (4) for a linear system by

the method of successive approximations.

Suppose gk(x, t, ) = gk(x, t) + gli (xy t) r, . By formula (5), the

solution r, satisfies the equation

k
s "', fy s f'i«- e "& :3: ‘\“':‘.‘.!
r,(x. t)u— rx(x,(x. t, 0))+ [ g'(x,(g t. 1). 1\41-+l SEUPEAN
W o 'f +Ig"‘(x.(x. 1) t)r (x,(x. t r) 1)4!1 (8)

Applying tre method of successive approximations, we set

'j ! vy hots

r.(x.t):..r,(x. 0+J g (x, (x £ 0. Yr, (x,(x t v, qu (9)
(=0, 1,...),

40
it

where o + . ' ;
ra(x, )=r{(x,(x. ¢, 0))+J g (xp(x. £, T), Vdv. ‘
0

*

Hence it is clear tha(:sfl) (x, t) are defined and continuous in G and have a
continuous derivative in t in the corresponding characteristic direction. Ilet

us prove the uniform convergence of the dequence {(%) (x, t)}.
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From formula (9) follows

(I XTRRY WL SR o
a & (x.f)—r(X,t) <8

AN ..“&.u,‘-.,l;d_f_.-;;:_

where G, denotes the intersection of G with the strip 0Lt ¢, and B is
the comtant bounding the norm of matrix ((g « )) in the domain G.

Denoting

}:‘

let us writing (10) as i
( 45

:}-,,m,‘a‘ e S Y

Then

s wziw V(o_; when $§ — oo

“ and, therefore, the sequence {(%) (x, t)} uniformly converges to the ccnutinuous func=
i tion r(x,t)if the domain G is finite with respect to variable t. If owever the
domain G is infinite in t, then the soquencegg)(x, t)} converges uniforrly in any
of its finite (with respect to t) subdomains C, - Passing in thie equality (9) to

0
b the limit as 8 =+ oo , we get the result that r(x, t) satisfies equatione (8).

4 Since xk(x, t, T) = xk(x y b T ), if the point (xo, to) lies on thin character—

istic, then equalitnes (8) can be rewritten as
NSRS I IO U\jﬂ'ﬁ"}!',

.(x.(xo. r)f)aro(x,(xo. 0))+!g"(x,( s by ¥ V)l

Ty

v _ e

bt

"' + I g'(x,(xo. t, T) t)r.(x.(xo. ‘v 1), Tld";l (11)

~.\)

From the continuity of the integrands follows the continuous differ+
entiability of the right side of (11) with respect to the variable t. Therefore,
rk(x, t) is contimuously differentiable along the characteristic x = x i here
the equality (5) is satisfied. Thus, T (x, t) is the solution to the problem
(2), (4) in the broad sense. By forrulas (3.1.4) the solution u(x, t) to the

problem (1), (3) can be obtained.
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For the case of a semilinea. system, successive approximations are
assigned analogously to (9):

i zu R --.,r.< . - \
.-—1.'. A

.‘..

({f’-h‘ _tH- j' ;.(x.(x. r. Dt Xﬁ.(«“- . f/- ndv, .

and converge uniformly in the subdomains G of the domain G in which they are
uniformly bourded. °

Thus, the construction of the solution in the broad sense for the semi-
‘ linear system differs from the linear case only by the fact that the domain Gt

in which the solution of the semilinear system remains bounded appears as the &

b domain of convergence of the successive approximations. We will delay the dis=~

cussion of the boundedness of tre solution to section VIII.

2. Existence of the classical solution to Cauchy's problem for the linear
system. Suppose the system (7.1.1) is linear, i.e., b(x, t, u) = b (x, t) +
1 B(x, t)u. Tien in the system (7.1.2) gk(x, t, T) = gk(x, $) + g%( &y thng
where gk(x, t) = lk'b1, and

o 62 S B
'“I l “ e

FrE L S U (1)

vhere V a lf’ Bgs A, 28 (cf formulas (3.1.2)).

Ve assume that 1%, &, Bp € ©y inC. Obvieusly Ap’ Y, < ¢, inG.

k
o
Suppose also that u®(x) < Cip T °x) € c,.

1°

Let us show that the solution constructed above is under these assumptions
continuously differentiable in G and, therefore, yields the solution to the problem
(7.1.2), (".1.4) in the ordinary sense.,

In the case (1) formula (7.1.9) becomes

"'i""‘ -—

.

[
r. gx. l)a-‘rh(x. t)+[v‘(x.(x. L, 1:) 1:) (x (x. ) 1:) v)dt+
‘ e SR R SNE A :

“+‘[[“ 1 ixntx. t.“?) V)Jk(x.(x. £ %), 1:) r,(x.(x.t 2, Ydv. (2)

- 60 -




Cbviously, from these assumptions there follows the continuous differentiability
in G of the first two members of the right side of (2) if in ¢ the approximation
(%)(x, t) is contimuously differentiable. As for the last member of
formla (2), it is also continuously differentiable in G if(:sé)(x, t) € C,» This
follows from lemma 2 of section VI.

Differentiating (2) with respect to variable x (the last term in formula

(6.5.3)), we get

(a1 ' (o) ) 5
0xy (x, £, 1) 0y () or
T j—a—— LT

)
+H[ Bt b0, 0] M o race 5—
—[7;!- lg(x,, . ¢ ), ‘t)] xﬁ(Jc. (x. ¢ 0),0) (;:;(xk(x-, t, 0), 0)

+J le' (xalx. & ), 7) "a(xk (x. t. ), ")] X
(O]
X[& Bt 9. 9]~ 5 [8xa e, 8. 9. 0 oo 100X

X[% I} (xa(x. t. 7). *r)]}dr.

Hence it follows that

s+1) )] 1
9) 3
%ol e o e 0—"cx. o]+
¢

+J A(x, £, T) n(l)ﬂx” (;')—(’-rl)” dv+
*

" & (B =D
s or
+JA ‘%, 1, t)n:)a‘x = dx,

and the functians A1, A2, A3 are continuous and bounded in G.

Since the sequence {( )(x, t)} converges in G and the quantities A1, A2,

e

are bounded in G, then the uniform convergence in G of the sequence {a(rg/ 2 x}

is proven on analogy to the preceding., This means that the above-constructed

solution in the csveral sense is continuously differentiable in the variable x.
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The continous differentiability of r(x, t) with respect to t is similarly
proven. Incidently, this already follows from the continuity in G of the
combination of derivaiives o O _

FHug=aman’
Thus, when the formulated conditions are satisfied, the solution r(x, t) in
the broad sense is also the solutions to Cauchy's problem (7.1.2) and (7.1.4)
in the ordinary sense. Passing by formulas (3.1.4) from r to u, we conclude
that the resulting function u is a solution to the system (7.1.1) in the ordi=~

nary sense.

The following assertion is quite analogously proven for the semilinear

4 the solution u(x, t) of the problem (7.1.1), (7.1.3)
is bounded and Ek, 2l & 81; fk(x, t, u) € Cyo uo(x) & C,, the above-
constructed solution in the broad sense is continuously differentiable, i.e.,

u(x, t) & Cye

systems if in the domain G

By direct differentiation of systems of equations (7.1.2) we see that on
these assumptions, the derivatives p, q satisfy in the broad sense the equations

of the extended system.

3. Some properties of solutions of linear and semilinear systems. The
solution to Cauchy's problem in the broad sense for linear and semilinear systems
is uniformly continuous in G if the domain G is finite; if G is an unbounded
region, uniform continuity obtains in any firite region of G. Here, for the
cagse of a gemilinear system the uniform continuity of the solution in the broad
sense obtains only in the domain Gt of the boundedness of the solution. These
properties are easily derived from formla (7.1.8) defining the solution r(x, t).

in the case of the classical solution (u(x, t)e& C1), the deriva:ives p, q
satisfy in the broad sense equations of the exiended system (cf subsection 3 of
section IV). Noting that in the case of a semilinear system the extended system
ig linear with respect to the derivative p, q, we conclude that the derivaiives
of a solution to a semilinear system remains bounded in the domain Gt in which

o
the solution itself remains bounded.

Suppose now u(x, t) and u(x, ) are to solutions in the broad sense to

Cauchy's problem, whose initial data we denote by lk, Ek’ fk, uo(x) and Ik,

"
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el s i i e L

E e’ ?k, u’(x). We will assume that the initial data satisfy the conditions
formulated in the proof of the sxistence theorem of the solution in the broad

' pemse.

It is easy to see that when ;’k, Ek € cC, ;k(x, t, T ) = xk(x, t, T),
if Ek — Ek; then when E-k s gk , G = G. From formula (7.1.6) it
follows that if ék — £, Ik —= 1., and 80 on, then ;k(x, 1) ——— rk(x, t),
;k(x, t) ====u (x, t). Thus, the solution to Cauchy's problem in the broad sense
depends continv-usly (in the norm C) on the initial data of this problem. Thus,

Cauchy's problem is correct in this formulation.

If the initial data are continuously differentiable, then as we have sgeen,
the solution has continuous derivatives and is classical. Of course, the above

statements on continuous dependence apply also to these solutions.

If, further, not only the initial data, but also the derivatives of the

This follows from the fact that the derlvatlves cf the solution satisfy, in the
broad sense, the equations of the extended system which are linear with respect
to the derivatives. Similar conclusions can be made also about derivatives of
higher order if the requirements on the smoothness of the initial data are made

suitably more rigorous.

The construction of the solution to Cauchy's problem reduces to constructing
a representation that transforms the initial function into the solution to Cauchy's
problem at the time instant t. let us consider, for sake of specificity, the
linear system with right side equal to zero (system (7.1.1) with b = Bu). Then
um= Suo, where the operator S is linear. Obviously, the domain of definition of
this operator is a set of continuously differentiable functions. We will consider
S as the mapping C =% C. Then the operator S is defined on an everywhere-dense
set (which is a set of continucusly differentiable functions in C) and is bounded
on the set. According to the familiar theorem of functional analysis, S permits
continuous expansion with norm preserved to the entire space C. S¥ is the result

of this expansion. Then u = S*uo, w’ < C 1is the solution to Cauchy's problem

in the broad sense whose existence we have proven to be independent.
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Hence it follows that to consiruct the generalized (in the sense of
extensions of operators) solution, it is sufficient to approximate the initial
function u% (x) by an element of everywhere-dense set u% (x) (i.e., "to smooth"
the initial function) to construct the smooth solution ug = Sug » and to pass

to the limit as & ~— 0, using the corresponding metric.

Similar considerations apply also for the semilinear cnse. It is cowm~
plicated only by the fact that the operator S assigning the solution to Cauchy's
problem: u = S(uo), is now nonlinear. It is determinate, bounded, and continuous,
as the operator from C to C on a set of continuously differentiable functions
satisfying the equality

e’ < U, > U, = const (1)
o o

0 <t « t, is the strip in which the solution is considered). wuite analogously
to the foregoing case, the operator S can be extended to the continuous bounded
operator defined on the entire set of elements C satisfying inequality (1). The
result of this extension, just as in the linear case, yields the sclution in the

broad sense.

We stress that generalized solutions of linear and semilinear equations

are, thus, limits of the classical solutions in a given metric.

Section VIII. Cauchy's Problem for Systems of Quasilinear Equations

1.Growth estimate of a solution snd its derivatives. Majorant system.
For the system of quaslinear equation ¥ lk(x, t, u); Ek‘- ;k(x, t, u). In
this case the construction of the solution of Cauchy's problem is complicated
compared with the linear system. Let us indicate several points of distinction

for this case;

(1) for a system of quasilinear equation we can no longer introduce the

concept of a solution in the broad sense in view of the absence of invariants;

(2) the domain G of the determinacy of the solution to Cauchy's problem
is defined simultaneously with the solution u(x, t) and, generally speaking,

cannot be prespecified; and

(3) the solution u (x, t) and its derivatives do not remain bounded.
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Therefore, first of all we establish the pru-estimates of the solution
and its derivatives and indicate the domain G € G of variables X, t, in which

the solution and its derivatives remain clearly bounded.
Let us introduce the domain GO(U) of the space (x, t, u) as given by

the conditions:

o,(v)=.(a,<x<o.. 0<t<1‘°. uuu<z)\
s v ¢°<., b°>b

*;a.' . |

Suppose P(x, t u). ;,(x. t, &), f.(x- t 0)60 (ao(U))g for any U >0; uw’(x)€
01(3, b).

By subsection 3 of section IV, the extended system for a hyperbolic

system of quasilinear equations is of the form
” 6’ - M SHPERE - . :. _‘;.:‘\.,{
-ae—""&'s::'-"n‘ -&'--‘-"’n- L m

where TSI x L c)+J',(x.t c)a‘.,-i-J'..p(x. 4 c)ﬂ'efa- [
F.===F'(x. t ¢)+Fh(xt (3 R)’a. ' N o
Z, = L& Lw)p. 4 B g H‘ !

=

The quantities ?k, g’i 5 3;(}(3 ; Fk, FI:L are expressed by 11:1. y Ek’ fk’ and
their first derivatives. Therefore these quantities are continuous in the domain

GO(U) for any U > 0. Let us introduce the following notation:

oF o (U)= maxlln‘f(x. Lo oF =|F"Y,
o GW 29N

97"1(U)=,, g‘:a:g’ﬂaf:(x. ¢, w}. ,' v
FyU)= max  max | 2 . . a)L
Fy(U)e= max |[F(x, t, w)fh. - = =
OXI(U) , . . - . d
FyU)= max| Fa(x, ¢ wl I
A 3 : e
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and let us consider a systex of two ordinary differential .Jjuationss

——~=JO(U)+J.(U)5'+J:(U)” o
’- ., Fo(U)—{-F(U)&’ Y €'

which we will call the majorant system. lLet U ’ ?o stand for the quantities

s

"U.,:a“m::.a,o(x)". ‘ _ao= max Hl.(x, 0. a%(x )) duy (x)H

(X424}

For the system of equations (2), (3), we assign the initial conditions:

P@©) =L,  T0)=T. (4)

For a comparison of equations (1), (2), and (3) it follows that if

N L 0u<U<t) I . 01 <& . @

then Iidu.(x. 0 I<—ﬁ)‘ l{ o"‘:' 5] +t a.f.aix. t). }|< d&‘dt(t)_

Since from (4) follows the satisfaction of condition (5) when t = O, then for
any t 20 Jlu (x, t)/] < u(t), | P (x. t)[)<JXt). Thus, the functions
U(t), 2P (t) majorize the growth of the solution u(x, t) and its first derivatives.

iRl B gt

Suppose that when O < t < t_ the solution U(%), <P(t) of the majorant
system satisfying the initial conditions (4) remain bounded. Then clearly when
0 < t < t_ the solution u(x, t) and its derivatives p(x, t) remain bourded.

Therefore we can determine the domain G <= G by specifying it as follows:

L B=jogt<ty T <2< X, 0)
ax, we mat max {g.(’,\" O t o), X, 0)=a,

X i *“( l‘ i<l

9

E gbgg ;'nln . lmlm<!n {gh’.fz(‘)- t, ), X’;(O):b.

R T
2. PSSR

We will construct the solution to Cauchy's problem for a system cf quasi-~

linear equations in the domain G < G (Figure 1.4).
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let us write out the majorant system for several examples,

(#) Linear System. Suppose il:==l:(x.tﬁ-£,==§,(x- 8, f
fo= 1" 94125 0a, Then

Fo)=F+FU. F U=, F L U)=0,
FRW)=F+F,.U, FWU=r,

where dr}adii;éynifi-i%' F, are constantg that depend only on the domain

G of variables X, t. The majorant systenm for all the 8ystems of linear equations
is glso lirear. Thig eans that the solution to the majorant system, angd together
with it the solution u(x, t) and its derivatives p (x, t) remain boundeg in any
finite region of thre half-plane ¢ Z 0. The Quantity to in this case i3 arbitrary,

in of determinacy G.

Figure 1,4

(2) Semilinear system. Suppose li_ » lﬁl (x, t), §k » gk(x, t), £ =
fk(x, ty u). Then ;Brz(U) = 0. The majorant System (2), (3) takes op the form

=T +F,W) >, F=RO+FW)>.

Hernce it follows that o {t) is bounded if U(t) is bounded. This lact expresses
the general property of solutions of semilinear System: the derivatives of the

solution remain bourded as long as the folution itself ig bounded,

2. Theorems of the uniqueness and existence of g solution. (n the assump~

tions made in subsection 1, let yg consider the Cauchy's problen
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N |- SENEAY A BN S
: a(x, 0)==a%(x). @

First of 81l let us prove the uniqueness theorem. Suppcse that in the domain
G exist the two solutions u(x, %) and u(x, t) to Cauchy's problem (1), (2).
Then the difference v(x, t) = u = u satisfies, in dowain G, the system of linear

equations . :
R +Ee]=Tn  ¢=loun
and the zero initial conditions v(x, O) = 0. Here we introduce the notatiams:

mLtumm =L t a(x H)

"f' L (5, t, a0 (x 0)—

°u_

®)

w ata(x, t, s4Av(x, H) —

"“s(x H a ( L) £ '+M)}a

The quantities il:(_ y £ Kk are obviously contimuously differentiable in G, and

=k .
f o are continuous.

By the uniqueness theorem of the solution to Cauchy's problem for the
system of linear equations established in section VII, we obtain the result that

in 6 v(x, t) = 0, i.e., u(x, t) = E(x, t). The uniqueness theorem stands proven.

To prove the existence theorem let us emplcy the method of successive
approxlmatlon. Suppose we have constructed the approxlmatlon(u) (xy, t) € Cye
Deflnssiﬂ (x, t) as a solution to Cauchy's problem for the linear system

(841) (-'H)

o +&mAaa0)

] [())
I(x, ¢t a(x '))l

=

—heteEmn ()




_taking on the initial values (2):

&~ ¥
‘i'{

Rod)

Pl L.!O)"‘I (%)
From the existence theorem of the solution to the linear system of equations
established in section VII it follows that in the domain of deteminacss@)
for Cauchy's problem (4), (5) there exists the solution(sﬁu(x, t) € Cys 80
that all successive approximations are defined and continuously differentiable
in the domain‘@’.

The first stage of our groof will be proving the existence of some domain
[ belonging to all domains &

approximations and their first derivatives are uniformly bounded in this domain.

and also tie domain G, and sucn that successive

Denote W - ( 5=1) {0 ’,
&.=lu(x. t, u)

\___-.L B

and let us write the extended system for the lmear system (4). It is of the

form

R i JH) -
T-H,(x.: u)—o—=3"(x.t u)+

) (s~ 9 (=1 (41
B A ) &,_}- Wi, t, 4, 8 )P+
8) (s=1D () (s4)) ®)
_ + T tou a) a g :
B (s+1)

«%—--‘-F"(x.t a)—|-F'(x. -“);') ‘ i

We will not here write out explicit expressions for the functions appearing

in the system, since they are obtained quite analogously to formulas (4.3.16) =
(4.3.19). Let us merely note that they are associated with the functions appear-
ing in the system (8.1.1) by the following obvious formulas:

Fix o, u);%(x. t 4, u)-i—‘l’z;(x. t, u, u),

| 7
J&(X. ¢ u)=J;(x. ¢t u, Il). ] ! ( )

Along with system (6) let us consider the system of ordinary differential

equations
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e

L =5 O+ 0,O P+, O P,
:‘g-wr.,<0>+mwi’ s (8)

Y R S, s

where the functions 3’0, Fo, F1 are defined in subsection 1, and

¥ AL

: O;(Ozuv@w@r g

For system (8) we assign the initial conditions: P (0) = ,;70, T (0) = v, (com=
pare with conditions (1.4)).

Since f-om (7) it follows that %, (U) < $,(U), F,(U) <P,(U), the
solution to system (8) majorizes the solution to maJorant system (8.1.3) - (8.1.3):
U(t) < T(t), P(t) < B(t). So if the domain G is constructed according to func-
tion U(t) just as domain G was constructed in subsection 1 according to function
U(t), then § < G.

Now let us assume tha“ all the successive approximations(llg) satisfy the

inequalities =1/, 2, ---, S,

. !
lau<0(o. IF1<Po. - ®

Denoting Hd"‘(t)ésl::puuﬂ. . ,+1(‘)=auplw°if

from system (6) we have
W & F D)+ P+ YD+ O U) PO,
Wesr PO+ FO)P,
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such that, obviously, U  ,(t) < u(t), P 4q(t) <.P(t). Since the initial
approximation can be chosen so that (9) is satisfled, then we have thus prover
that all successive approximations satisfy equaiities (9). Hence follows the
existence of the domain G belonging to 5, as well as to all domains(e) in which
inequalities (9) are satisfied.

The second stage of our proof will be to demonstrate the uniform conver-:
gence in the domain G of the sequence {(131)}

Suppose N e l‘b Ual't
"Ya“l ZCRE % .1 ‘k‘ ‘?ﬁ

Then from (4) we get

R PR R A AT
3 @'y Tﬂ o
#"*&6&;‘( .)°T"'$gg :'.2‘7"‘ ‘?g

where everywhere in G, by virtue of (9), ‘;"_< B, ﬁ” Qﬁ

Since the domain of determinacy of the system co..'ains the dcmain E, then

by integrating along the characteristics, we o}atg‘in for each point in (

® o (m‘ - vedq

ir.|<j|/. A AL 4.

' . g

such that pA
,ﬂ(t).gaj [R (1)+l,“(t)] &, i

where T . s z 1

) . @ .
T R ()= max - jrf -
'('0 x VEC, ‘N:ln i

Employing lemma 1 of section V L, we get

&

.+1(t><c f R, @ ds.

or b
1
R4y (f)<covst « ',) j

which then proves uniform convergence in G of the sequence {(181) }.

Now let finally advance to ihe last step of the proof. Let us show
that derivatives of successive approximations uniformly converge in the domain

B Qbviously, this is tantamount to proving uniform convergence of the sequence

().
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We first prove the equicontinuity of this sequence in x. In other words,
we show that there exists a function M(J), M( § ) =~ O when &= 0, such
that everywhere in T and for all s

R S N« AT S T A - -
WBlio— PR ke e e -xl<s
% (M o
Above it  was shown that the sequence { éf)} is uniformly bounded. Hence it

follows that the functions(ﬁ)(x, t), and together with them the functions

i.(ﬁc. t ‘2(& 1)) ;7'"(x. ) %."0.‘,(;." ¢ (;). (‘;“).

S T S @ (- -

LHE bR ), Tt o 8)
(cf systems (6)) are equicontinuous in G. Moreover, from the equicontiruity of
the functions gk(x, t,(ﬁa there follows the analogous property of the functions
xl(:S)(x’ t, ¥ ) giving the characteristics of system (6).

Therefore, denoting
R I T T
: %)
9P, D

1

,‘).14"" N CRERE

| & e Cod (i)
M, 8)==max sup || F(
- A< (X-2| <O
; . . LK 41 .

and integrating equations (6) along the characteristics, we get
» g t

f M (v Ydr,

0

f My ¢ YSUE+HHDN®HC
w Emryin @, e L .
where the funciion N(S ) is such that N{( &) —= O when §—> 0. Using lemnma
1 from section VI, we wonclude that the required function M( é) exists such

that the sequence § éjs’} is equicontinuous.

Since, by the familiar Arzela's lemma, from any uniformly bounded and
equicontinuous sequence we can separate a convergent (uniformly) subsequence,
jhen some sequence {%)} , therefore also {(Sﬁ)} is uniformly convergent in
G to the continuous function Py + By the familiar theorem of analysis, this
means that the function u -;L_igo 3) is continuously differentiable in G and

] o
duy,/2x =p .

Hence it follows that the family {(Sl} has only one limit point, and
therefore the sequence {(18)3} is not only compact, but convergent. Thus, the
proof of the convergence of the sequence IS) (consequently, also of (a)) is

complete.
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Passing in the system (4) to the limit, we can conclude that u with

a solution to problem (1), (2). The existenre theorem is rroven.

3. Certain properties of solutions to Cauchy's problem for systems of
quasilinear equations. Suppose u(x, t) and u(x, t) are two solutions to Cauchy's
problenm for a system of quasilinear equations, corresponding to initial data

5 L - , . L
l,. b fr "o; l:. E. o 0 We will assume that the initial data

of these two Cauchy's problems satisfy the conditions in subsection 2, i.e., are

continuously differentiable.

In the intersection G of the domains of determinacy of solutiom u(x, t)
and u(x, t), the difference v(x, t) = u(x, t) = u(x, t) satisfies the system of
linear equations y -

—afdv , &= Ov
T[S+ 37| = Vio, + 01,

where \ch s Ai‘k are bounded and continuous in G and Afk tends to zero when

T:' gﬁ' }1_;1:' §3' f",

As we have seen in section VII, solutions of systems of linear equations
depend continuously on initial data of the Cauchy's problem. Tlierefore it follows
. . =k k S =
from this that :va(x; t) = Owhenl, =1 _, Ey, = & i, 21
and v(x, 0) = u%(x) - u (x)=>0.

Here, however, we must make a clarification. It is essential that the

initial data of each Cauchy's problem have bounded derivativea.

In contrast to the case of a semilinear system, the strip 0 £t < to
in which the solution u(x, t) (and its derivatives) remains bounded depends on
the derivatives of the initial functions and t_ = 0 if || du’/dx || =~ oo,
Therefore the continuous dependence of solutions to Cauchy's problem for a
system of quasilinear equations obtains only in the case of initial data with

uniformly bounded derivatives.

If as before we sysbolically write out the procedure for the solution
of Cauchy's problen in the form of the equality u(x, t) = Su®(x), the nonlinear
operator S defines the solution u(x, t) only in the domain G of the half-plane
t 2 0. The width of the strip 0 € t<t_ in which the dozainG is enclosed depends=

on the derivatives duo/dx and tends to zero as (Iduo/dx i = oo,
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Therefore the operator S, in contrast to the case of the linear syestem
does not admit of extensions to the class of contimuous initial functions u’(x).
For this reason the generalized solution to a system of quasilinear equations
cennot be determined formelly by extension of the space of possible soluticns.
Tk2 concept of the classical solution to a system of quasilinear equations must,
thus, be introduced independently of the concepi of the solution of this system.

Generalized solutions will be studied in detail in chapter four.

Let us note a limited extension of the class of initial data for which

the existence of the solution to Cauchy’s problem follows from the foregoing.

The function Eig(x, t, u) is called Lipschitz~continuous in the domain
GO(U) with respect to the totality of the variables x, t, u if there exists a
constant ¢ > O such that

IWE LD —t(x b ) <CF— x|+ F—t]+i—e])
for any (x. f, ;)_'(x. t, )€ O, (V).

If we consider the class ol Lipschitz~continuous initial data characterized
by the Lipschitz constant K, it can be regarded as the closure of the class of
initial data with first derivative uniformly bounded by the same constant K.
Therefore the solution to Cauchy's problem with Lipschitz~continuous initial data
can be treated as the limit of the classical solutions u(x, t) & C1 since the

latter form a family with uniformly bounded first derivatives.

0f course, this limit no longer is the solution to Cauchy'!s problem in
the ordinary sense since it does not possess continuous first derivatives. How=
ever, it is the Lipschitz ontinuous function of the variables x, t and exhibits
derivatives almost everywhere in the domain G. These derivatives almost everywhere
in G satisfy the system of quasilinear ecuations. The class of Lipschitz=continuous
salutions u(x,t) of Cauchy's p‘oblém is an example of the formal extension of the
operator S defined in the class C1 to the class of Lipechitz-continuous input
data.

Section IX. Cauchy's Problem for a Single kquation

1., One quasilinear equation. The results of section VIII unreservedly
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apply to the case of a single quasilinear equation. However they are too
general to apply to this case in which there are important simplifying details.

Therefore let us consider in greater detail the Cauchy's problem for a

single quasilinear equation

Eﬁfvfg (1)

with initial condition u(x, 0) = u (x), a £x < (2)
Integration of equation (1) leads to the solution of the system of two ordinary

differential equations

4 s s AT (3)

DA 751

which are called the characteristic system of equation (1). Each solution x =
X(t), u = T(t) gives the characteristics in the space of variables x, t, u.

It is agsumed that the functions &, f are contimuously differentiable.
Then one and only one characteristic passes through any point (xo, to’ uo).

Cauchy's problem (1), (2) can be geome *~ically interpreted as the problem
of constructing the integral surface of equation (1) passing through a given
initial curve: t = O, u = u_(x). Since here we wish to obtain a unique differ-
entiable function u(x, t) of variables x, t, this surface naturally must be

uniquely projected onto the plane u = Q0 of variable x, t.

Since the solution u is uniquely determined al.ung each rharacteristic
passing through the point (xo, ty uo), this problem amounts to constructing a
surface consisting of characteristics join through the given initial curve and

uniquely projectible onto the plane u = O,

Let X = X(t, X uo), U = U(t, X uo) stand for the solution to the

characteriztic system (3) satisfying the initial conditions
X0 2 d)=x,. U@, x5 8) =42, (4)
Then the solution u(x, t) to Cauchy's problem (1), (2) is yielded by the formula
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s (X (¢ Sr L (-é;))- f) "' e _*o'_‘o_.(f'o)i)'. 1 (5)

Formula (5) implicitly defines the function u(x, t), which in the case
of uo(x) = C1 is continuously differentiable at all points x, t in which the
o (%)) (6)

is uniquely solvable with respect to parameter x and in which the right side

equation x = X(t, x

of equation (5) remains bounded.

Suppose that at these points _
For= X7t 9= xy(x. §) (7)
is the result of solving equation (6) with respect t9 x,» Then from formula (5)

we obtain an explicit formula for the solution u(x, t) of the probiem (1), (2):

B =U (. xo(x. O, so(¥o(x. D)), (8)

Let us explain graphically the construction of this solution to Cauchy's
problem (1), (2). We draw through any point X, & [a, b] tke characteristic (4)
on the plane u = 0 (plane (x, t)), setting u, = uo(xo) (Figure 1.5)., We will

also call this projection (6) a characteristic.

A continuously differentiable function U(t, x , uo(xo)) of variable t,

o
which then yields the soluticu u(x, t) at line x = X(t, x

at the characteristic (6).

o? uo(xo)), is aseigned

Figure 1.5

It may be that at several points (x, t) as t >0 to more lines x =
5 it X
1.5) can intercept each other. At these points equation (6) with respect to
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, uo(xo)) corresponding to different values of the parameter x (Figure




x  has more than one solution and formulas (5) and (8) define some multivalued
function of variables x, t. In this case no continuous solution u(x, t) to
the problem (1), (2) exists.

Iet us show that wvhen 0 <€ t < to and for sufficiently small to >0,
a unique characteristic (6) passes through any point (x, t) & G, i.e., equation

(6) has a unique solution with respect to X

To explain the possibility of the unicue solvability of equation (6)
with respect to X it is sufficient to show that

oBegaesi g
gince x(o. x' yo(x.))sa;;{ and’ s AR
RO mGH=1_ [ a0

Denaoting

0=4w—“,'%:—(‘-'ll (U ©. ’éo-"fq(io))\a,;‘z("'a) '(lxl)-j

and differentiating equations (3), we get

;%_;;ﬁé}% :?Ff;t'/w,x;;; (12)

where for brevity we owit the argument for all quantities. And so, X and 0
satiofy the system of ordinary linear differential equations (12) and the
initial conditions (10) and (11). Hence it is clear that fcr sufficiently
small t inequality (9) will obtain.

and (8) define the function u(x, t) & C, satisfying equation (1) and initial
condition (2).

Thus, there exists a toi? O such that when 0 £ t < to formiles (7)

Cauchy's problem (1), (2) presupposes, as we have already pointed out,
the existence of a unique function u(x, t)< C, of variables x, t satisfy

equation (1) and initial condition (2). At the same time the more general

problem of determining the integral surface S passing through the initial curve

does not at all assume that this surface is uniquely projectible onto the plane

E = T -




of variable x, %, and can have, and as a rule does have a solutior in a larger
domain of variable x, t and does the Cauchy's problem (1), (2).

We will, for example, seek the equation of the surface § in the form

(x’ t, u) = 00 (13)
Any characteristic (4) of equation (1) must lie on the surface S, therefore
‘P (X’ t’ U) = Oo (14)

Dilferentiating (14) with respect to veviable t and taking (3) into account,
we get the equation
PN P N
R b oy S ) 5 =0 (15)
which is a first-order linear differential equation for the function dependent

on three independent variables (x, t, u).

The surface S is defined by equations (13) and (14) uniquely for any
X » t at which X, U are finite and is a smooth surface (p & C1) if uo(x) € Cy
£,f €.

From equation (13) the function u(x, t) & C, is defined, yielding the

1
solution to the problem (1), (2) only in the domain of x, t values in which

equation (6) is uniquely solvable with respect to X .

Thus, the difference in the formulation of Cauchy's problem (1), (2) and
the problem of defining the surface S is that in the first case we seek the
integral surface u = u(x, t) uniquely projectible onto the point u = O; in the

second case this surface can be arbitrary.

For sufficiertly small t_values in the case uo(x)e§ C, above these
Cauchy's problems are equivalent; overall (i.e., for any t > 0), the geometrical
formulation of Cauchy's problem is the more general and admits for She solu=~

tion if and only if problem (1), (2) is nonsolvable.

If we assume that the function u(x, t) describes any physical quantity
in the space of variable x, t, then naturally this quantity must be a unique
function of x, t. Therefore the physics problens reduced to Cauchy's problem
(1), (2) require the definition of the unique function u = u(x, t). As we have
seen, Cauchy's problem (1), (2) is solvable in this formulation in the class of

continuous solutions u(x, t) & C only in a sufficiently small strip 0 < t < to.
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Figure 1.6
Figure 1.6 shows the typical appearance of the surface S. From this
figure it is clear that; du(x, t) | , oo 8t those points (x, t) close to
2x !
which the surface S is nonuniquely projected onto the plane of variables (xy %)

Let us explain the foregoing with the example of the simplest quasilinear
equa tion Ju/>t + udufdx =0, (16)

for which we pose the initial condition

a‘=w+p when X é a
u (%, 0);u°(x)'= ox+B when a <x < b, (17)
' ' ut=ab+p when x = b.

The initial function uo(x) is continuous when =20 < X< ooj the derivative
u'o(x) suffers a discontinuity at the points x = 8; X = b. Let us construct
the solution to problem (16), (17) satisfying equation (16) in the broad sense
at the points at which the derivatives du/dt, >u/dx did not exist.

The characteristic systen (3) of equation (16) has the solution
X Xy ) = %o+ ch Ut xp ) =to (18)

which remains bounded for any values t, X U Suppose oL 2 0. Prnjections
of the characteristics (18) onto the plane u = O are of the form shown in
Figure 1.7. In this case through each point {xs, 1) of the half-plane t 20
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3
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4

passes the unique characteristic x = X(t, X uo(xo)), i.e., equation (6) has
a unique solution with respect to X, The function u(x, t) is constant along
the characteristics (6), therefore in the zone I, i.e., when x < a + u t,

u(x, t) =u a«a+ B , in zone III, when x 2 b + utt, u(x, t) = ut =«b + B

In zone II, whena +u t < x <b + u+t, equation (6) can be solved with respect

to Lt g e
o =1Fe:
By formula (8), let us define the solution u(x, t) in zone II:

1

a(x, 0==u(xy(x. ) =a. .’f-ggﬂr__.t_ﬁ;; |

Thus, the solution to Csuchy's problem (16), (17) when oL 20 is given by the
formula

(rswde M egaper
a(x, H= -‘;f +uf when a-t-ut \§£$h+ u*t.f: (19)
ut=ab+B o — 204wt s

Selution (19) is continuously differentiable when t > O everywhere, except for

the line x = a3 + u-t, Xx=Db 4+ u+t, where the first derivatives suffer a dis~

continuity. : ¢ By

4

Figure 1.7

-

Figure 1.9

|



In the space of variable x, t, u, solution (19) defines the irtegral
surface S showp in Figure 1.8. This surface is uniquely projected onto the

plane u =  when t 2 O.

For the case « <0 u > u+, the pattern of characteristics in projec=
tions oato the plane (x, t) is one of the forms shown in Figure 1.9. All charac=
teristics (6) whena < x < b converge at the point x = (a + b) - B/« ,

& =1/ >0. In zome I, u(x, t) =u j in zone IT u(x, t) = u'. In zone III
u(x, t) = (£x +B)/(1 +eLt), since oL < O, then this formula does not define
the solution u(x, t) when t = =14 . Finally, in zone IV, the function U(t,
xo(x, %), uo(xo(x, t))) is three-valued and takes on the following three values:
uI(x, t) mu, ur (x, t) = (Lx +B)/(1 +aLt), uIII(x’ t) = u'. Thus, for the
caseo < O the continuous solution u(x, t) of Cauchy's problem (16), (17) exists
only when 1t < -1/aL , and the integral gsurface S is determinate for all t Z0
(Pigure 1.10); however, when t z -1/aL it is not projected uniquely onto the

plane u = O,

- S

-

Pigure 1.10

2. One nonlinear equation. Cauchy's problem for a nonlinear equation

\\%';i-‘p(x. & é c.?)=0,\ ‘°=§§- o(x. 0) = v,(x) (1)

for the case pécz, vo(x) & C2 is reduced after differentiation with respect
to x of equation (1) to Cauchy's problem for a system.of two quasilinear equa-=

tions
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,-..;._

-l-Q.(x. {0, o))?————-ip'c) cp‘, “ (2)

F=—ew o0

with the initial conditions: v(x, 0) = vo(x), w(x, 0) = . (x). Transforming

the second equation of system (2), let us write it as

,(“.’pvﬁh, ».~44'1 (R = ""l{ Zw ¥
w+9.r= W—% S
P -v$"+’w~. § o . A . ..,,._!.
. %—l—g{.-;;_?-—v+v;- . OF

Equation (4) is usually called the strip condition.

We can readily see that if we know the solution to the characteristics

system for equation (1):

' “% #¢z (X' LV, d)' _
A —Og (X, 6V, Q—g(X. £V, D), ©
98 QX 4V, O (X, 1V, D, ‘

vwhere X -
X=X(t. Xo» Tpe (l)o)o V=V(t, X0 Yo mo)’ Q=Q(t, Xou Ug» (l)g)u

satisfying the initial conditions:

XO, xp vy =25 V(0 xp 05 @=1, Q(0, xp v, 0= O (6)
then the solution v(x, t) &C, to Cauchy's problem (1) is given by the formula

duy xo))
*

( (t %o g (X0 _‘10_3_%@_) ) (’- Xp Yo%), —dx,

which parametrically defines the function v(x, t). If x = xo(x, t) is the

(7)

result of the unique solution of the equation
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with respect to the parameter X, then from (7) follows the explicit formula
for the solution v(x, t) to Cauchy's problem (1):

ofx = ux;t) v{:.’?x. ).5’&? @ )

Formula (9) defines the unique function v(x, t) €C, only at first point (x, t)

at which equation (8) is uniquely solvable with respect to X,

The solution to Cauchy's problem (1) was obtained by us only for the
case vo(x) € C,. Simple examples show that if v")(x) is only continuous, then
generally speaking there does not exist the solution v(x, t) & €, te problem (1).
Formulation of Cauchy's problem (1) for the case of initial functions vo(x)é Cy

is in need of refinement.

3. Hyperbolic system of nonlinear cequation. For the case of the Cauchy's

problem for a hyperbolic systeu of nonlinear equations

L *3 K ii v" i att I
d ‘&‘+w(x-f °, o)-=0.,« it B H{Fq

o, t»-—-v‘”(x) CAE T 5
Lo gy Pged T gedt "u’?iﬂ*’fﬂ Mbs;m ke ;
Lo o= SR R i s 1A

'\ A3
: AR U DM &

we will assume that 4’602, v° <= 02. Then, by subsection 3 of section II,

the functioms v, w are the solution to the system

BN e e g e ey ol e
%ﬂ’.-_-.l...@(x. £, ,v.‘uﬁ.“ %+A§x. ;‘. 5.' m)‘%‘:-f-’:

" &

(4)

i -

(cf section 1II, subsection ) where the metric A -53-5 ((Eﬁ)). If we compose

the initial conditions
., "‘f“ S L - qd". x_ (_-}"
To(x, O=(x), o(x 0)=0’(x)= ¥ (5)
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for system (q), and the question of wheiher the function v(x, t) defined as
a result of solving Cauchy's problem (4), (5) is the solution to the initial
problem (1), (2) as a problem of satisfying equality (3) for any (x, t)& G.

Differentiating the first group of equations (4) with respect to x,

subtracting from the result the seccnd group of equations (4), and considering

that £m - Py - —g—; «@ (cf formula (2.3.7)), we find
AT LSRR o
'.‘?\?' 'S 4 h ) PR,
,QE‘(YE%ff?ﬁ)=?'“ d"(jif"“k) ¢=1...,m (6

I Y L T A N
Filt .#(x,_O):-.ﬁ),(x, 0). - . ™.
Based on lemma 1 (subsection 5 of section VI), from (6) and (7) it follows
that ' ‘

n.“" (x ‘) X

‘-a?(x. i)a 0;(Xy §), (8)

i.e., equality (3) is satisfied by identity.

Since the existence of the solution to the system of quasilinear equations
was proven for us cnly for the class C1, the hyperbolic systems of nonlinear

equations the constructed solutions belong to class Cz.

Section X. Behavior of Derivatives of the Solution to a System of Quacilinear
Equations

1. Week discontinuity. Transport equation. Sections VII and VIII outlined
the construction oi the solution tc Cauchy's problem for a system of quasilinear
equations possessing continuous first derivatives. In considering the Lipschitz-
continuous initial data, we arrive at a certain generalization of classical solu-
tions == to Lipschitz~continuous solutions to Cauchy's problem possessing first

derivatives almost everywhere in the domain of definition.

Consider a more particular case of generalized solutions u(x, t) of
a system of quasilinear equations == the class of continuous functions u{x, t)
exhibiting piecewise=continuous first derivatives. Let us assuwe that the

vector-function u(x, t) is continuous and exhibits first derivatives that are
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continuous everywhere except for certain piecewise~differentiable lines on
which the first derivatives p, q suffer first-order discontinuity; let us
assuke that exverior to the lines of discontinuity of the first derivatives of

u(x, t) the following system of quasilinear equations

5[5+ u g =h (1)

is satisfied. Suppose x = x(t) is the equation of the line of discontinuity

of the first derivatives of the¢ function u(x, t); let us denote
pi=p} () H=p,(x(O 0. f)=%"f(x(f) to0 9
q$=q:<x(xo. =gy (xO 0. H= TGO 0. 0.
If p+;4 P , but the solution u(x, t) is continuous on tue line x = x(t), then

this feature of the solution is called a weak discontinuity, and line x = x(t)

is called a line of weak discontinuity.
From the condition of continuity of u(x, t) at the weak discontimuity

line x = x(t), it follows that x'(t)p +q = x'(t)p’ + q¥, i.e.
[plx'(¢) = ~[al, (2)
where [p] = p+ -p, [q] = q+ = q-. In the assumptions made, the function
u(x, t) to the left and right of the line x = x(t) satisfies system (1); there=-

fore points of this point

l'(0‘+§ap*)=fn- B+t =/ (3)
(the quantities lk, Ek’ fk are continuous at the line x = x(t)).

Subtracting the second group from the first group of the equations (3),

we get . .
L@t —a)+8 (& —F5)=0. .

where
off:l:p: k=1,.... n).

Canceling out (q+ - q ) by means of (2), we get

[t — & O] sl = [ta-- ' 0] [P§ — i) =0 (4)
k=1 ....n).
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We denote 2

S - -
T “Tsya'?fﬁ?}Lf?n?au
- + - . .
If x'(t) 4 Sy for all k = 1, ...,kn then Ty = :7’1.‘. In view of the linear
independence of the eigenvectors 1 » in this casge P, = pI for all i = 1y ooey

n, i.e., the discontinuity of thz derivatives is absent.

Toerefore, x'(t) = £ o(X 1), 1, u(x(t), t)). (5)
This equation denotesg that the line of weak discontinuity x = x(t) is a charac-
teristic of system (1). This conciusion naturally is in agreement with the
definition ¢ the characteristic Cauchy line through which the sclution to

system (*) is oxtended honuniquely (cf section VI, subsection 2).

under consideration equality (5) is set aside, and suppose x = x(t) is the
m=tuple characteristic ¢f system (1), i.e., equality (5) is solid when g = iy
J+1, ..., J+m=-1,

Then from (4) and (5) it follows that
r]k-y’g ~:}"; =0 when k<j ang k2§ +n.
Let us derive the equations better satisfied by 77k characterizing the value
of the weak discontinuity. Since the solution u(x, t) to the left and right
of the weak discontinuity line x = x(t) is a classical solution of systeu (1),
the quantity :Ti satisfy at th: line x = x(t) the equations of the extended
system (section 1V, subsection 3), in the broad Sense, written for the charace-

teristic x = x(t);

(
(

.4_._0&':.‘ l’a"z'__— & Rent Foanbens

C?k k—j,t—-'{"ﬁn—a'x———o’- +o?‘u¢7°a+orab¢7’a‘9>ﬂv ()]
ory oy

,9;).__. *+§,._;L=J“+J'§c?a'+e7':a§°§?€ @

=/, f41, ..., J+m—1.

LU Y RN

8|

The coefficients of the equations (6) and (7) are continuous et the line x =

X{t), therefore we do not furnish their sign +.

bubtracting (7) from (6), we get
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Since

and 7], = O when o FJs» 341y eeey § +m =1, then equation (8) can be
writter in the forw

| o Ty ﬁ"‘ﬁt iﬁ{-ﬁﬂmhaﬁa @
g aig . . 3 * B ¥y
." *ﬁ"‘ﬂf’ﬁ*ﬁx' a.-;-*t.- ;‘ii.'a -.J..-"s ltv* inint ﬁ*‘n
Lt Jq',.‘“ “- it r..*"\ I_r g 8 eoes 1 g“; r‘; r‘}

e *’amzacww:;«r: AR ]

From the linearity of the system of ordinary differential equations (9)

there follows an important conclusions the weak discontinuity of the solution

REETBE, FUiMenaoqa . phEw mploy gy o j
"%

where

to a hyperbolic system of quasilinear equations, extended along the character=
istic, can npeither arise or disappear if the solution and its first deri=

vative remain bounded.

For the case of a system that is hyperbolic in the narrow sense (section
11, subsection 2), the characteristic x = x(t) is simple. Therefore system (9)

is converted to a single ordinary differential equation.

Equations (9) are called transport equations for the weak discontinuivy.
Noting that e AT B R
Rt i Tl Rt ) WA
the system (9) can take on the following form:

(""') h«f'm%ﬂ[m%’o%%’“m] (10)

T W J+1 coee JAm—1).
System (10) is nonlinear. From it we can conclude that the value of the weak
discontinuity 7 can become infinity in a finite time. Actually, for example,
for systems that are hyverbtolic in the narrow sense, system (10) is converted
into a single equation of the Ricatti or Sernoulli type. However, the values
of 7 K tend to infinity only simultaneously with ZT;, 27;. Therefore this
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and 7, = 0 when o £33, 3+ 1, ceey J+m =1,
written in the form

A i I 3 REWANGIY 7

R K

: o
Lo RES 3 vy
e B g Ei , RO
L 18) weittn R U O E 9 et oY ey
where HeEe e F heny fﬁiﬁ'ﬁ_-;"}i}-ﬁiﬁ'ﬁk};:ﬁ.{ﬁff,-.%:j{ Ry )

LERAURIT By + iy e 4

From the linearity of the system of ordimary differentia

1 equations (9)
there follows an important conclusion;

the weak discontinuity of the solution
to a hyperbolic system of quasilinear equations, extended along the character=-

istic, can neithar arise or disap; 2ar if the solution and its first deri~

vative remain bounded.

For the case of a system that is hyperbolic in the narrow sense
II, subsection 2}, the characteristic x = x(t) is simple.
is converted to a single ordinery

(section

Therefore system (9)
differential equation.

Equations (9) are celled transport equat
Koting that Y P A R ST At s
S e AR AT Y

ions for the weak discontinuiiy.

g o .
T R

the system (9) can take on the following form;

R N e ey
v (7'%")‘-;{9"«-'*Jao["g"p*"?a‘!a'*"?a%] :
MWL L fhm—),
System (10) is nonlinear.

(10)

From it we can conclude that the value of the weak

discontinuity 7 can become infinity in a finite time. Actually, for example,

for systems that are hyperbolic in the narrow sense, system (10) is converted

into & single equation of the Bicatti or Bernoulli type. However, the values

of 7, tend to infinity only simultaneously with s :7’;.
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effect is not specific for the weak discontinuity of a solution, but is the
consequence of the ge.eral property of the unbounded increaseé in derivatives
of the solution to a hyperbolic system of quasilinear equations.

For a sysiem of two quasilinear equaiions that is hyperbolic in the

narrow sense, the transport equation in form (10) was obtained by J. Nitsche
(e [17]).

We have established that for a system that is hyperbolic in the narrow
gense the weak discontinuity differs from zero at all points of the character=
istic. Therefore, the weak discontinuity of a solution to Cauchy's problem
occurs only when the initial functions exhibit discontinuity of the first deri~

vatives.

The arbitrary discontinuity of derivatives of initial functions breaks
down into weak discontinuities, which extend, generally speaking, over all
characteristics exiting from the point of discontinnity of the derivatives of
the initial functions satisfying conditions (9) at each characteristic. Some=

times this effect is called the breakdown of the arbitrarily weak discontinuity-

2. Unboundedness of derivatives. Gradient catastrophe. By subsection 1
of section VIII, the graph of solution u(x, t) and its first derivatives with
increase in t is estimated by means of a solution to the majorant system (8.1.2),
(8.1.3). This system is a nonlinear system of two ordinary differential equa=-
tions and from it they directly follow the fact that for sufficiently large t>0
the quantities 7P (t), U(t) simultaneously tend to infinity. Thus, the growth
estimate of the solution and its derivatives by means of the solution to the
majorant system leuds to the conclusion that for an arbitrary hyperbolic system
of quasilinear equations, the solution u(x, t) and its derivatives p(x, t) tend

to infinity with growth of t, generally speaking.

This conclusion applies to an arbitrary system of quasilinear equations.
However, particular classes of systems of quasilinear equations are also of
interest, for example, systems whose solutions remain bcunded for any values of

the variable 1.

This property is exhibited, for example, by systems of linear equations,
and also by systems leading to invariants, i.e., those representable in the form
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if here fk does not grow too rapidly with growth in r, for example, if for aay
x, t, u

It is not difficult to note that the solution r(x, t)-io systems of this type
remain bounded for any t value, however, their derivatives nevertheless increase

unbounded1y up to absolute value & k(x, t, r) depenas essentially onr =
{ r1 ’ [N ] ’ rn } »
The effect of the formation of unbounded derivatives when the solution

to a system of quasilinear equations is oounded is called the gradient catas=
trophe.

let us explain this with a simple example. Consider the homogeneous
system of two quasilinear equations whose coefficients do not depend explicitly
on x, t it leads to invariants and can be written as

By g
Lriofeeesi] @)

AR

let us assume that afk/a r, > 0 and let us consider for the system (2)

Cauchy's problem with the initial conditions formulated for the entire axis t = O

r(x =A@, s O=rix)=r=const. ®
Suppose zg(x)ecl..‘r‘,’(xH(Mgf ‘( The solution to Cauchy's problem (2),

(3) reduce to Cauchy's problem for a single quasilinear equations:
S g e L
FRUCe AT =0 Al 0=
By section IX, the solution r, (x, t) of this problem is yielded by the formula
0 o
r1(x, t) = I1 (x - 5_.1(r1(x, t)’ rz) “ t)‘

Let us compute the derivative dr,/d xi
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b = R * _F:_ Ta N dx. .
3 ."3:-'\ 5 x(xo)
'y . 1 r (x, t)
SERRT +‘5F‘(l V-
-4
where "_gx('x' ’;9 " Hence it follows that when 27 (Xl v,

2

the derivative 2r1/ 2 x monotonically decreases with increase in i at the

characteristic x = x_ + 5 (r1, r2) -+t and when
L t t =

5 b (': (o). "x’)

becomes unbounded.

d
Thus, if Tf-: # O, then as a rule the derivatives of the solution
r(x, t) to system (2) increase unboundedly (with respect to module) with increase

in the variable t.

3. Strongly and weakly nonlinear systems of quasilinear equations. We
will call a system of quasilinear equations (10.2.1) weakly nonlinear in some

domain of space of variable x, t, r if in this domain
‘,_@.#.c_(’"";"f'. a0 (k=L 2. ... M 1)

otherwise we will call the system (10.2.1) strongly nonlinear.

By definition, a weakly nonlinear system of two quasilincar equations

is written in the form

Sk M) el

,_+§|(-\'. % r,)T f,(x. t, r,. r,) I (2)
‘lf}n(x'f ’t)"a—' fa(x- ¢ ry, fz)-
Note that if gf'f(). %—»" 0. then the system (2) is reducible to

the form

Y e

'%"—Fr’%:f" +’l # F’fr
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4
. ¥ 4 We now will show that the derivatives of the solution of weakly nonlinear sys=
£ tem (2) remain bounded for any t values if the solution r(x, t) itself remains
b3
i bounded.
§ Theorem. Suppose the solution r(x, t) to system (2) is bounced*) when
¥ 0=t <11 'rk (x’ t)'ﬁR’ (3)
3 but system (2) is hyperholic in the narrow sense*¥), i.e.,

ana the functions Ek, fk < C1. Then the derivatives Arkfa X, d rk/at are
bounded when 0 << t < T if they are bounded when t = O,

Proof. The solution r(x, t) will be considered a solution to Cauchy's
problem for system {2) with the initial conditions

ryx 0)=r3(x) (—o0<x< o).
By the conditions of the theorem,

b st R A

sl W

ar?
|| <R ’E;“(x)l<Po-

Suppose x = x1(t, xo) is the equation of the characteristic of system (2) passing

through the point > = X, of axis t = 0. We rewrite the first equation of system
(2) in the form

(f;TI) "‘qq;‘il‘"*'gl(x- L, ry(x, f))%g—=f,(x. t, r. 1)

1

If we assume the function r,(x, t) to be known, then the definition of r,(x, t)

rrduces to the solution to Cauchy's problem for a system of two ordinary

5‘ differential equations
Dy b b 1y (e D) ®
B i T 1 ) =T %9)  (©)

*) As we have noted, condition (3) will be satisfied automatically if
|25, /ox;l s ¢

*#*) It is sufficient for us that condition (4) be satisfied for the given

et

solution r(x, t). Of course, system (Z) can be hyperbolic in the narrow

gsense by identity, i.e., for any Ty Tpe
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with the initial data

%, (0. *o) = *or ;1(0' xo)='§(¥0)" ! (M
If ;1(t, xo) is the solution to problem (5) = (7), then the formula
5 (8 %, =Tt %0 (8)

defines the sclution ri(x, )

let us note . F i
f m= g 5

and let uc differentiate equation (5) with respect to the parameter X, Ve

il

get
Sr=l@betnwon}  Aen O
Since '
1 .t. ) ‘kl — '-."‘x
(Brlzhrd) =B = o
=-‘£¢.(x. t, ry) —aa%‘i‘Ea %;_’]+§;t+§2€;‘- .
then o . :
By, F=Folx b ), (10
where - ' -
f2=$:‘f2+§;:+§2§{r ot
Subtracting from (10) the inequality
%"“Hi%%‘*(%"):' Ny ;
we find o I

k3 b—h

On analogy with the foregoing, we get

=y i =7
H = o
ﬁ;'::’”ﬁ%if.(%ﬁ).._".'..}
Let us transforu squality (11) by means of the identity transformaticnss
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(12)

J-J.(l. -'J

From the initial condition (7), we have £, (0, xo) = 1; therefore, integrating
equation (12) from O to t, we get

(13)

From the assumption (5) on the boundedness of this solution under conti-
nuity of the functions f ) Ek’ it follows that there exists same number
M > O such that
RIS u—bI<M VR—Fil<M
Moreover. by condition (4) of the theorem, we have
hh>e>0

Therefore from formla (13) we get the estimate

. Ml'
<x,(t x°)<—c' - (14)

which shows that the field of characteristics of the first family x = x1(t, xo)
is differentiable witk respect to X, for all t from the interval [O, T].

Hence it follows that the characteristics x = x1(t, 10) do not intersect

each other when 0 £t < T. Now it is easy to obtain the proof of our theorem.
Denoting 5 R L L
f‘lﬁ;;'(f. x&-:.?_l.g;ﬂ.)_
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and differentiating equation (6) with respect to parameter X s ve get

e

| fediiff BLo o
L>t us note P(")- vo"zt‘!a" 2?"&(&1)1 €

i . — e -w<'<w e F R

and we will assume that the constant M is so large that for all 0 <€t < T,
5 -0 L XK oo

I‘?F,‘_|<ML‘ . lf'ul'<M ('.' j=l’ 2)" - ' (16)
Integrating equatlon (15), we get o '

r,(t x)=r; (0. x)eXP{J }+

.+J' [% ,%fé:_'.{_f;x].é,(t. 'xo)exp{_[-%'- dtldt-.

Substituting here the estimates (14) and (16) and using initial condition (7),
we getl

, o
Ine xo)l<Poc“'+—- of P@O+1a (1)
From form:la (8) we have

or (x, 1) 'l (¢ xo)
: ox X| (t xo)

such that from estimates (17) and (14) there follows

M ”‘+ M3 Mt G+l)

o, s,
| Een | M T J.IP(t)-i-lldt

It is easy to observe that the estimate is analogousiy obtained for the quan=

tity 2 rz/a x; therefore
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From these 1nequallt1es there derives the estimate

——

F R )

i W ;

Boi NJ {‘ A ST s‘s,\ pred '.-;».j{pﬁ,,- r :

. ;(0)%%‘%3;: M m(u-)‘ ,;43_',5

&

LRI Is..u & -~;.-§.. }3

is valid when 0 £ t < 7T,

where

Now applying lemna 1 from section VI to the resulting inequality, we
get P(t) < [APO + Bt]eBt, from whence follows the boundedness of the derivatives
P rk(x, t)/2 x over the entire interval 0 <t < T. The theorems stand proven.

In view of the arbitrary selection of T, the derivatives o rk/é xof a
solution of weakly nonlinear system (2) remain bounded in any strip with respect

to the variable t in which theorem conditions (3) and (4) are satisfied.
From the proven theorem there follows:

Corollary. Cauchy's problem for a weakly nonlinear system of two quasi-
linear equations, hyperbolic in the narrow sense, is solvable in the domain of
determinacy G if the solution r(x, t) remains bounded in it#*),

let us explain this corollary in more detail. For an arbitrary system
of quasilinear equations, the derivatives become unbounded even when the solu-
tion itself is bounded. If we consider Cauchy's problem with initial conditions
agsign~d, for example, for the entire initial axis t = O, then for a strongly
nonlinear golution the derivatives tend to infinity for a finite valiue to>0 and

wher t > ¢ no solution (classical) to this Cauchy's problem exists.

For a weakly nonlinear system that is hyperbolic in the narrow sense,
whose solution remains bounded (for example, when |3 fk/éri[ £C (i, k=1, 2)),

#) This very same property of weakly nonlinear systems was recently proven

[32] for the arbitrary system (10.2.1) when £ = 0.
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the derivatives remain bounded for all t > O. Therefore the solution to Cauchy's
problem can be constructed in any finite strip 0 £t € T by the procedure out-
lined in section VIII. Thus, for a weakly nonlinear system there exists a solu-

tion to Cauchy's protlem as a whole, i.e., for any finite vaiues of the variable

YL, SN

§ t. This circumstance brings weakly nonlinear systems closer to linear systems.

' On the other hand, this shows thai any feature of initial data, being

: ‘ smooth when t = 0, po longeris repoducide whemn t > O, Therefore the generalized
,- solutions of a weakly nonlinear system thai is hyperbolic in the narrow sense
can be considered ac *he limits tu smooth solutions at once for the entire half-

plane t 2> 0, much as occurs for linear equations.

Let us consider by way of example the weakly nonlinear system of two equa-

tions *)
‘‘‘ e O e or . .
. %'l‘ﬁh(’a-h)‘af': k=12 (18)
Bere fi=h=h=h=0 therefore formula (13) convertis to the equality

1 N ==E!(’l'(xv’l))—gl(ri(xv‘)) b==1, 2),
, S 5 )

and for the derivative 9 rk/a X we have

; rat ) _ aRd)  u(A)-4 () (9)
1 ox i W=k )

Hence follows the more exact estimate of cerivatives of the solution to system

(18): PMM)K

Let us note an interesting consequence of formula (19): if 52(1'1 (xy t)) =
£ (ry(x, t)), then dr (x, t) /2 x moe.

Remark. The definition of weakly nonlinear systems of quasilinear equa-
: tions was introduced only for systems leading to invariants. This is possible
E in the general case only when n < 2 (cf section III). The theorem cn the bounded-

ness of derivatives was all ihe more 80 proven only for n = 2,

#) The general integral of system (18) was obtained in the paper [35]
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The question of separating of the class of systems which do not lead to
unboundedness of derivatives for the case n > 3 remains open. Possibly, deri-
vatives of the solution to a system that is hyperbolic in the narrow sense

renmain bounded for the case when the following conditions are satisfied:

et BEED 20 @ p=1, ..., (20)

(cf [18]). We can easily see that the conditions (20) and the conditions (1)
coincide in the event that invarianis exist.

If conditions (20) are satisfied, then it is easy to see that the coeffi=
cients ydkd of the extended system (4.3.16) = (4.3.19) identically tend to
zero. In combination with the requirement of hyperbolicity in the narrow sense,
this possibly enables us to prove the boundedness of derivatives of the solutions

of such systems as a consequence of the boundedness of the solution itself.

Section XI. Remarks on the Mixed Problem

1., Formulation of the mixed problem for a linear system. Let us consider

the typical mixed problem:

Find the solution u(x, t) tc a hyperbolic system of linear equations that
takes on, when t = 0, the assigned values
u(x, 0)=u'(x), axb (1)

and that satisfies certain boundary conditions

ct(x, D (x ‘0 ,n=cla |n=c,(x. ) (<) 2
d(x, Dag(x Ol =dul,=dxnH (A<I<m). @)

which are specified for certain lines [’1, [’2, exiting, respectively, from

endpcinte X = & and x = b _f the interval [a, b] of the axis t = 0 (Figure 1.11).

wWe will assume that the curves [, f’2 have a contimiously variable

tangent and li(x, )5 Ek(x, t), fk(x, t), fl:( (x, t) & C, in the domain
5 0. 4, (x 0. f*(x. 0. f2x DEC,
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bounded by the curves ./q, ./Z and by the axis { = 0; qi » C & C1 at the
i
curve ['1, de di & C1 at the curve ['2.

Suppose the conditions for the agreement of initial conditions (1) and’
boundary conditions (2) and (3) are satisfieds:

¢l (a, 0) & (9)=¢,(a, 0) Zl‘<l<nl),' y -
Ao, 0K (B)=4,6.0 (1<i<n). ]

If conditions (4) are not satisfied, then the solution u(x, t) of the

mixed prcblem is discontinuous, and it must then be regarded as a generalized
solution.

lLet us decomypose the vectors ci and 4~ into the vectors lk(x, t)s

¢ Ompix D 0 d'en Hmvl(x DR O
Then the boundary conditions (2) and (3) will be rewritten as

p;i:u"n=c,(x. n  (=1....m)
Vgl =d,x. 0  (I=1.....m)
or, in invariants, B .
Wral=c(e 0 (=1 ....n) ")
"f:’afr,=dt("' n (=1... n,).. " ()

Suppose conditions (5) and (6) are consistent and are linearly independent,

i.e., the rank of the matrix ((,U:' )) is n,; and the rank (( v: )) is n,.

Suppose ¢° is the domain of determinacy of the solution to Cauchy's
problem with initial condition (1).

Obviously, the curves f; and /. 2 mist lie outside the domain G°, since

the solution to the linear system of equations is uniquely determined in the
domain G° by the initial condition (1) and, in general, does not satisfy in it
the conditicns (5) and (6).

Let us consider the case when the curve x = X1(t) intersects 1"1 at

the point D, and the curve x = xn(t) (cf section VI, subsection 3) intersects
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[’2 at the point E.

The solution u(x, t) is uniquely defined in the domain ¢° and can be
constructéd in this domain by the method of successive approximations (cf section
VII). Therefore it is sufficient to consider the problem of constructing u(x, t)

in the domain ACD; the solution is similarly constructed in the domain BCE.

Figure 1.11

To explain the conditions for the solvability of the mixed problem, it
is essential to know which families of the characteristics x = xk( E, 0, t)
exiting from the poinis of the interval [a, b] of the initial axis (a< £<
b) intersects the arcs AD and BE of the curve [, and /7.

Suppose that at k = k., kyy eeey kp, the characteristics x = xk( £, 0,
t) for & € [a, b) intersect the segment AD by the curve [' y and when k = k1,
2, osey k intersect the segment BE by the curve f’

Let us number the variables Ek(x, t), setting k, = 1, k, = 2, .4,

k = .
D p

Denoting uo(x, t), ro(x, t) as the solution to Cauchy's problem with
initial condition (1) in the domain G°, we advance to the next problem in the
domain ACD{(G'):

Find the solution r(x, t) the linear system

_,%L'_i_'gi%'}=g'(x. 0+gh(x. fry, (7)

L e

satisfying the conditions
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{

at the line AC and the conditions (5) at the line AD.

By the definition of the domain Go, its frontier consists of the segmentis

of the characteristics of system (7).

Thus, the definition of the solution in the domain G1 reduced to defining
the solution of the system (7) taking on assigned values at the characteristic
AC and satisfying conditions (5) at the line AD (Figure 1.12).. In view of the
existence of the solution to system (7) ir tke domain Go, the values ro(x, t)
at the line AC satisfy the solvability conditions (section VI, subsection 2).
Thus, here we first encounter the problem when the initial values are assigned
at the characteristic. The problem with data at the characteristic is usually

called Goursat's problem.

A

A0=1,(51) Aap+#s
tk= Z'k(.g t) kfp

<z

Figure 1.12

Let us consider an arbitrary point (x, t) in the domain G (Figure 1.12)
and draw through it all characteristicas x = xk(x, t, T) of this system (7).
Under our assumption, characteristics x = xk(x, t, T) intersect the curve AC
when 1 € k < p at several points (xk(x, s 1‘k), Tk), and here T = Y
(x, t) <.

Similarly, the characteristics x = X, intersect the curve AD at the

points (x.(x, t, T, ), T, ) whenk 2p + 1 and T, = T, (x, t) < t.
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o We will call boundary conditions (5) correct ifs

(1) the number n, of boundary conditions (5) equals the number g = n =~

p of characteristics x = xk(x, t, T ) descending from arbitrary point (x, t)
G on line AD:

U Tl e

(2) conditions (5) can be uniquely solved with respect to the quantities
T, (x, t) wvhenk 2 p + 1.

Suppose these conditions are satisfied, i.e., n,=q=n-=p and when
(xv t) € AD

|;),l ".‘-", 'p,i_ "y . ¥

SN AL Al ol SIEN

’ Detf - + & .. " w'e o *o.:‘j
“’+‘ LX) l»l. °

Then condltlone (5) can be rewrltten as
,(x. B)4p =5, o+2 m(x 1 (s, oL,,
t=p+1, p+2-~--- p+q—n) g!

—

In the following we will omit the bar over c., ,uoL . Solution r(x, t) satisfies
in G1 the equatione

r.(x.f) r"(x,(x.t 'r.) i.)+ ”c

A '. “' o

? (k<P)i
ry(x, f)-—ck(xh (x £, T, "A)+ H

+ B s e )

-+ I (8% (%, {x. £, %), -r)+g"(x.(x. ). Y)r, (x‘(x. l -r). t)] dv
(2 ) .
' >p+1).

We will seek the soluticn r(x, t) by the metlod of successive approximationss
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9% rb(x;t)==r°(x.(x.t 1;) ﬁJ-F
B S B (Al CAUE Y {E 1)r (. 9] e« (*k<p)

(0 xaxy (&4 T)
s ' 2 D
7y (x, [c.(t. n+ qg (& n)‘r.a. m] +

L=ry(x 0 y)
=T,

! o
| o 6! ) {g:‘(x,.t)-l-g:(x. DI (% 1)}:_“0'.'.”.« (k> p+1),

selecting the suitable initial approximation exhibiting continuous first deri-
vatives in the domain G1.

If we denote

v@~mu.mx]q@n—rﬂtm

then on analogy with section VII we obtain the estimate

' (0(3!‘?(‘6&4- [V(T)dt—(B-{-pnu)IV(t)dt

r';.. LAk *

byt o . S
Here we assume that 1n G w'“-"f

IS TN

From the resulting estimate follows the uniform convergence in the domain

),
¢! of the sequence { r (x, t)} to the solution r(x, t) of the mixed problem.

The solution r (x, t) (u(x, t)) constructed in the domain G' exhibits in
it all properties of the solution of Cauchy's problem enumerated in section VII;
it is continuousl; differentiable and depends continucusly on the initial data

of the mixed problem, as well as depending on curve 1"1, if it satisfies proper-
ties (1) and (2).
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Figure 1.13

Note, however, that the line AC, generally speaking, is the disconti-
nuity line of derivatives oi ile solution to the mixed problem. Xor the solu=
tion to the mixed problem to have continuous first derivatives in the domains
¢° + G1, it is necessary that tane initial and boundary conditions satisfy the
conditions of congruence for the derivatives. These conditions will be obtained

below for the more general case.

Above, for sake of simplicity it was assumed that for a fixed k all
characteristics of the k~th family x = xk(x, %, T ) passing through any point
(xy, t) & ¢ intersects, when v<t, either only the line AC or only the line AD.

It may be, however, tha® this is not the case.

Suppose, for example, that through the point A passes the characteristic
x = x (a, 0, T) partitioning dumain ¢! into two parts (Figure 1.13). In this
case the solution is constructed on the analogy with the preceding, with obvious

changes.

Note thet this characteristic will also be a discontinuity line of the

first derivatives.

In general, derivatives of the solution r(x, t) suffer discontinuity at
the characteristics exhibiting from the point A if and only if at this point

the conditions of consistency of the derivatives are not satisfied.
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2. Correctness of boundary conditions for a system of quasilinear equa=-
tions. For a hyperbolic system of quasilinear equations we imposed the initial
conditions  u (x, 0) = u°® (x) (1)

and the boundary conditions

Gt =0 (=120 @,

Gxt D=0 C¢=L..m. O
We will assume that the coefficients of the system satisfy their requirements
that were imposed ix section VIII when proving the existence theorem of the
solution to Cauchy's problem.

Suppose uo(x) & C,» and tke curves 111, 1f; are certain curves with a
continuous tangent line in the half-plane t 2> 0 and passing, respectively,
through the points (a, 0), (b, 0), and ¢y (x5 1)y di(x, t, u) are continuously

differentiable functions of their arguments.

We will state that the consistency conditions (conditions for contimuity
of a solution) are satisfied that the point (a, 0) if
(8. 0, 4%(a))=0 (I=1,....n)!
let us establish the consistency conditions for the derivatives at the point
(ay 0). Suppose x = X(t) is the equation of the curve 17‘. Let us assume the
existence of the solution u(x, t) éEC1 of a system of quasilinear equations

satisfying conditions (1) and (2).

Differentiating the boundary conditions (2) with respect to the variable
t at the line x = X(t) we get

- -

L gt X OW+ 5+ EXO=0 @=L .m)

The derivatives P, = 24,/o>x at t = O are defined from initial conditions (1),

therefore from the system of equations
Blg,+&0p]=1,

we can define the derivatives q = duy, /dt at the initial axis t = O3
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In these formulas the quantities A’ Fa ,ls. f are known functions of the
variable x, for example: )\f - z\i (x, 0, u°(x)) and so on.

We will state that at the point a(a, 0) of curve /[~ 4 the condiiiozs
for consistency ef the derivatives are met if

é_‘_& ‘ C:: Ce
here the famcxctions oay ’ ’ %i«- are taken at the point (a, 0), for

exemple, =¥ S, 2 2 (a; 0, u° (a)).

Assuming as before the existence of the solution u(x, t)é c1 of the
mixed problem, let us establish requirements that must be satisfied by the
boundary conditions. In general, the conclusion that the curves [' [’ must
lie exterior to the domain of determinanch of the solution to Cauchy's prob-
lem for essentially nonlinear equations (9§ k/ 2 ug # 0) is invalid. Correctly
formilated mixed problems exist when the curves ['1 and [' are in the domain
¢°. in example of this problem is the problem of the piston in gas dynamics
(cf Chapter Two, Section III). However, the solutions of these problems are
discontimuous. Confining ocurselves to a consideration of classical solutions,
we now exclude this case, assuming that I 1 and [2' lie outside 6°. Let us
denote

i
v

(x. t)==l'(x. ¢ a(x. ‘))v
Ta=hin t a ) A

and so on and we will consider our problem as a mixed problem for the linear

-.L%"H‘ ou.] i

given the initial and boundary conditions (1) - (3).

system
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Figure 1.14
The functions ;K = 1¥u, satisfy the linear system of equations
BAL DD 0+ B 07,
let us examine domain G' (Figure 1.14) and let point (X(t), t) lie on
the line ]"1.

We will call the characteristic x = xk(x(t), t, T ) the arriving charac-
teristic at the point (X(t), t) of line ['1 if it lies in the domain G' when
T £ t and an exit charac’eristic if it lies in the domain G1 when z2t., In

Figure 1.14 MM' is thr. arriving characteristic, and MM" is the exit character=-
istic.

Suppose that at each point of ['1 the characteristics x = x, when k = 1,
2, «sey p are arriving, and wheu, k = p + 1, ..., n ere exit characteristics.

As for the case of the linear system, we require that

(1) the number of conditions (2) equals q = n - p, and
(2) equations (2) are uniquely solved with respect to the quantities

;p+1, -;P‘.Za"' - ;"t fOI‘ krlown;1, FXJ---"—:P'
If (2) is rewritten as

c,(x. {, i:r_a)'=0 (=12, ..., =9,

then condition (2) will be satisfied if

bex((a"i';'xg))g«-o (z=1.(..;).6q; E=p+1, ..., n=p+q)‘
o X. 9¢
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We note, howaver, that it proves very difficult to verify tbe correctness of
the boundary conditions for a system of nomlinear equations, since conditions
(1) and (2) depend on the solution u{x, t), which is unknown to us. Kevertheless,

in solving the mixed problem we can proceed as follows.

Over a sufficiently small segment of the curve /7, adjoining the point 4,
the solution u(x, t) (if it exists) will be sufficiently close to the value
u®(a). This makes it possible to verify the conditions for the correctness of
the formulation of the mixed problem for sufficiently small values of the variable
t. If they are satisfied, then we solve the probleﬁ for this small interval and
we will consider the values of the solution u(x, t) at the endpoint of the
interval as new initial values. In this way we can construct the solution to

the mixed problem in the entire domain of the variable x, %, where it exisis.

let us consider an example, For a system of two guasilinear equations

¥ s o o e iy
UG =0 e g =D

TCEL R, AP R 4 §

the initial conditions o, (BEN St
ry(x, O)=r0=const, |x|<a:: % ‘1

and the boundary corditions . A ‘ IR iy

et (=0 0. 1y(—3, 0)=0, (4 1, (6. B. (e H)=0
are formlated. Suppose E’<' 0, Ez >0. The consistency conditions are satisfied
if

o ol e LI L

(0 R A0 A0, Y ] @
When this condition is met, the solution r(x, t) is continuous in some neighbor-
hood of the axis t = 0. If in addition to (4) the conditions for the consistency
of the derivatives

0.7 9=,
0 =0,
are satisfied, then the solution r(x, t) has continuous derivatives.

The solution r (x, t) is constant in the domain G°(Figure 1.15): ri(x, t)

= rg. In the domain Gl r1(x, t) - r?. The boundary conditions are correct if

< (¢ r? od(¢, ry, 1) g
(}'(t,fl.rz)+ _._(_‘F?_:_g—+oo

2

0,
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Figure 1.15

Section XII. Analytlc Methods of Separating Solutions tc Systems of Differ—
ential Equations With Two Independent Variables

1. Investigation of the compatibility of several cverdetermined systems.
Analytic methods of seeking soluiions to systems of quasilinear equations in
wany cases lead to overdetermined systems,i.e., systems in which the number of
equations exceed the number of unknowns. Here analysis of the compatibility
of the overdetermined system is called for.

At the present time the most universal method of analyzing the compatibility
of systems of equations is Cartan's method of external forms (cf [3, 4, 21, 22]).
In a number of examples we will present a simple method of investigating compati-

bility which precedes Cartan's method and is sufficient for our purposes.

Example 1. Let us consider first of all the system of equations

ﬁa/,,(xl. Xy By o B (=l .., 8 =1, 2) (1)
for n unknown functions Uy Upy eeey U of two independent variables X, and Xpe
This system can also be written in differentials:
1 4ﬂ¢-=-/,“dx. f (]wl. vees B; a-l. 2). L (2)

Compiling the conditions for the integrability of equations (1), i.e., equating
the mixed derivativess
ax -~,(1r‘

X

L W = ) )
T { 3'“ E c '
we find S d}“f.vf
d d
?}'.‘“‘x% oo +%ﬁ%fu @,
\1.-.',_.‘ -1.': TN Y ¥ cmu ver M) J
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o If relations (4) are satisfied by identity, system (1) is called wholly inte-
grable. In this case solution (1) can be defined by using the following algo-

rithn. let us assign at the point M : X, = Xy (j = 1,2) of the value ug = u, o

(i =1, vesy n) and let us consider a certain curve x; = xj(t) passing through
the point M.o and through the arbitrary point M(x1, xz). Let us further consider
the system of ordinary differential equations
J B
L= Ll O %O, ... PRE= (5)
(a=1, 2). '

Jor known conditions imposed on the function fi&(x’ u) and at the curve .’

integration X, = xj(t), system (5) has a unique solution which takes on the

value u; =, at the point M and is defined everywhere in the domain G con-
taining the point M. Thus, u(x x2) can be defined at each point of the domain.
Let us show that for the case of a wholly integrable system the value u(x) at the
point M(x) does not depend on the choice of the curve X, = xj(t). Suppose ;2;,
éfz are two curves that have common endpoints Mo, M, and are bounded together
with a certain domain G C G (Figure 1.16). Then

b du= § foa, ®
21+2, £,+2;
By the Gauss-0Ostrogradskiy theorem,
= df; d/
§ Jiad*q .‘. f dx.’ d;,' dx, dx,. ()

FRTS 5
Figure 116
By conditions (4), integral (7) is equal to O, which means the independence
of the value u(x) from the selection of the curve of integration. In practice,
it is more convenient to adopt as the path of integration the strict raise at

MOM or a broken line whose segments are parallel to the axes Xy Xope

If conditions (4) are not satisfied identically, they constitute a system

of finite relations between Ugy eoey Upy Xoy Xy which makes it possible to

n
cancel out several of the quantities u; and to reduce system (1) to an analogous
system with a smaller number of unknown functions. Extending the analogy further,
we arrive either at an inconsistent system, or at a wholly integrable system.

In the case of compatibility, we obtain a set of solutions dependent on arbitrary
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constants (a class of solutions with arbitrary constant).

Similarly, an analysis is made of compatikdlity for the system

%:/,,(x,. veer Xpgo Byy eeey ) (I=1, ooy J=1,"000, m).. (8)

in which uy depends on m argunents. Conditions of total integrability are of
the form

df af afi dﬂ Qﬁn dﬂh
= 7+ & ~fu= : e )

(. a==l. e B ], k.—l . ol m)

and for system (8) we have no more than the arbitrary constant in the solutians.

Example 2, Now let us consider the linear homogeneous system with a

single unknown scalar functicn of u(xq, ..., xp):

L,u=a,¢3%=0 G=1 ... pia=1,.... m, (10)

vhere coefficients ey, &re sufficiently smccth functicne of x4, ..., Xp
In this case the compatibility algorithm is known and reduces to the successive

formation of so-called Poisson's brackets (cf [/;, 23, 2417),

let us form the commutant

(Llj=Li;—LL, (11)
for the linear operators L = auaax , l}}. =a;, ;2» « It is not difficult
3

to see that the operator [L L ] is a first—order linear differential operator:

) daja 0y 12
[L Li}— bU“FF' b,,.::als —5—— a,b-a—xb . ( )

Operator [LiI',j] is called the Poisson's bracket. If u(x1, ceey xm) is solution
(10), then it satisfies, as a consequence, also the first-order linear homo=

geneous equation:

Llja=0 (¢ Jj=1,....p). (13)
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Adjoining system (13) to system (10), we obtain an extended first-order system
of linear homogeneous equations and cgn apply to it the algorithm for the forma-
tion of Poisson's brackets. This cycle of operations will be called an exten-
sion. After a finite number of extensions we arrive at a linear system coatain-
ing all the preceding equations, for which the adding cn of Poisson's brackets
does not yield new equations, i.e., the commutants of the differentirl operators
of the system are linear combinations of these operators. The systems are
called complete. Thus, by definition, system (10) is called complete if

t\;‘ﬁ%uﬁe:
i‘ﬁ S w4

yd
hs

I W SO R, ST e

NS I A T T A TR
Bl f 0 8D RS N B v ()

Por a complete system (10) equations (13) are no longer differentiable, but
algebraic consequences.

Assuning the equations of the complete system (10) to be linearly inde-
pendent, we see that twu cases are possibles

(a) p = m, then system (10) admits only of the trivial solution u = const;
and

(b) p< m.

We can ensure (cf [23, 24]) that in the second case the system is reduced
by change of variables to a single linear homogeneous equation for one unknown
function v of m - p arguments Yqr ceoo ym-p’ and thus the solution depends on a
single arbitrary function of m - p arguments.

Thus, the final conditions for compatibtdity consists in estimating the
rank of the matrix of the coinplete systen.

The distinguishing feature of the investigation of the compatibility of a
linear system with a single function is the simplicity and homogeneity of the
operations employed.

This is related to t"e fact thet the conditions for the compatimility of
linear equations are again li. ‘ar equations, i.e., the extended system Las the

sace structure as the initial.

Example 3. Let us consider the overdeterminea sysi:m of two nonlinear

equations, one of which is the Monge=Ampere equation
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and the other is the fu'st-order equation

vh%%rrﬁo

. - T R

/ . o . ey - ap 3 {
e o

af

i 2« -
Here b, adB , 8 are functions of x1,xl, ,‘,x azz ’ adﬁ'aﬁ"

We now consider conditions under which the overdetemined system (15),
(16) admits of a family of solution dependent on a single arbitrary function of

one argument.
Setting
MEntn Spidy Ge=ty (1)
let us write equations (15) and (16) in the form of finite relations in terms
Ofx-‘;leu' P;/.PZ H/PIZ"'/’Z/JPZZL
‘e Pu Pu o

bll’n pﬂg-f- ooy +6=0 " (a, q_l 9 (8

‘ 'P("n- -"r “ Pn- Py ==0. (9

kquation (18) for fixed Xy Xp 4 P, P2 defines a three-dimersional

space of components Pyqr Pyos Poos a second-order surface (quadric) that has,

generally speaking, two families of rectilinear generatrices.

A8 we know (cf [25]), these families are defined by the eguation

bm—Wm+%mM=&} -
bp, —bupp+ 2y —iay,; =0 -

and, therefore
bpy — dupyy+ 8 — iy =0, } @n
bpy3—bpa+24 —payy =0,
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where A1, /\2 are the roots of the chasacteristic équetion
Xz JT PR l" £
B Kt S 5 | (22)

Equations (20), and correspondingly (21), for fixed [t define a specific gene=
ratrix, and the value Py is a point on this generatrix. Changing indepen=-

dently 4 and p,,, we obtain the initial quadric (18).

Differentiating relation (19) with respect to x, and x,, we get

,
P+ p,,+3—+-2p, -0 {1

},+§3‘pm+§!-+§§b,==a | g

Lem i

;f15“f

(23)

For system (15), (16) to be compatible andé to admit of a one=functional
arbitrary constant, the linear algebraic system (18), (23) must admit of an
infinite number of sclutions. Actually, otherwise Pyqr Py Poo would be deter-
mined from conditions (18) and (23) as functions of X4y Xpy Uy Pyy Py, the sys-
tem of equations in total differential (17) with the closed and would admit only
of an arbitrary constant (cf example 1j. The requirement of an infinite number
of solutions to system (18), (23) signifies that the straight line (23) is cne
of the generatrices (18). Assuming that the straight line (23) belongs to the

family (20) or (21), we see that ,2¢

5. %{% must satisfy the equations
¢

blw
xle
QO

» nom nd
T— ?-‘ xl +’l 3-”_1. % _..'E-*-p’.a: i (2'4)_ i
.-el- - , a”-ﬂl ‘ '—WE - x.-—-,ux“ 'l ' ’ 1‘
or else, correspondingly, o St %

dy op
~ r“"w -
‘ —'_m M] ) b

Canceling 4« from equations (24), we advance to a system of equations for

? (X;) X5 U, Dys D)
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Canceling out 4 from equation (25), we thus obtain the equations

r“\ t

@n

B

l

(vzﬂx%!-l-% r"‘ﬂ“”

Let us show that equations (26), and therefore (27), are also sufficient for the
compatibility of equations (15) and (16) with a one~functional arbitrariness.
Suppose @ is eolution (26), and u(x1, x2) is the solution to equation (16); let
us show that u(x1, 12) is the solution to (?5). By differentiating (16), we

get equation (23). Equations (26) signify that we can introduce the parameter u
so a8 to satisfy cquations (24). Equations (24) signify that the straight line
(23) 1ies in the gquadrant (18), that is, u(x1, x2) satisfies equation (15).

he assertion stends proven.

And so0, equations (26), and therefore {27), are necessary and sufficient
conditions for the compatbility of system (15), (16) with one~functional arbi-
trariness. Thus, the problem of determining the compatibility of system (15), (16)
reduces to the familiar and simple algorithm for investigating the compatibility
of the linear homogeneous system with a8 single unknown function, which we treated
in example (2).

Martin [27], Ludfora [28], snd Tu. S. Zav'yalov [29] made an analysis
of the campatitdlity of system (15), (16) on the special assumption when

FFR EFR, amp | ()

In this case system (26) takes from the form




g ¥ 4
E . | 9% .00 __ A
| 3;;’*‘P13;‘4‘f’3;;-—(h
4 » (29)
: o5, TP~ 3, =0
Let us dencte , :
X=Xy Xy=Xp B=8 L=p. %=pp _ (30)
g Twice extending system (29) by means of the formation of Poisson's brackets,
; we arrive at the system
% - -
; Ll=ala% =0 . (’n a=l. Y 5). (31)
z where the matrix aij is of the form | _.
’ ¢ x o 7
01 X —f 0
0 0 —2f h hi 32)
: 0 0 —3f fu fa
7' 00 -3, fia [l
” For the presence of functional arbitrary choice, it is necessary that
the rank of the matrix of the system obtained by adjoining Poisson's brackets
does not exceed 4. Denoting by Ai (i=1, ..., 5) the algebraic comple-
E ments to matrix (32), equation (31) can be rewritten as
L=00. (33)

where ¢ is some function of Xy Xge From (33) follows the representation
dp=0(Bdx) (a=1, ..., 5), (34)

which means that @ is the integrating cofactor of the differential form 4, dx, .
From equation (33) we get equations for « and the compatbility conditions for
system (31).
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Without delving into details, and referring the reader to the works
[27 - 29], where a complete analysis was made, we only point to the end result:
for a system (31) to be compatible and to admit of a solution dependent on an
arbitrary function of one argument, it is necessary and sufficient that there

be the possibility of representing f(x1, 12) in one of two forms:

f=F (axx__;-i—aax;)-_l ' ’ + e
' o 28 4
=g () =l P (25) 00,

where F is the arbitrary function of a single argument, d,1, -62 are arbitrary

constants.

Different expressions are obtainzd for the function ¢, depending on the

function f.

If f is represented in the form corresponding to (36):

then
R (% 2t
§= X3 — x,(x;+a,) xs(x2+°2)i§|(x£+“&)‘b” (3?)
where g(®) is associated with F(®) by the relation g' = Jiﬁ (39)

and the sign # denotes the different possibilities of selection of the roots

of the characteristic equation.

If £ is represented in the form corresponding to (35):

thon =V F (x+axy (o)
v=ax—artgantan @),

where g as before is associated with F by the relation (39}.
- 116 -




Finally, for the case when f = 0, ¥ = ¢(x y X ) ' (42)
These results were useé¢ by Martin [27], Ludford [28], and Yu. S. Zav'yalov
[29] to obtain generalized Riemann waves (cf chapter 2, section I1X, eubaection

3).

2. Solutions with degenerate hodograph of systems of quasilinear equations.
The main task in the analvtic theory of differential equations with partial deri-
vatives is to obt, i particular solutions and to construct solutions of a broader
class by relying on em. Particular soluiions are obtained for the most part
by means of contraction of the space of the equation, i.e., by reducing the
number of active variables.

Thus, for example, Fourier's method allows us to proceed from
an equation with partial derivatives to ordinary equations and thus to obtain
particular solutions containing the additional (passive) parameters. Then, the
general integrals obtained by superpositioning particular solutions contains

arbitrary functions of passive parameters. However, Fourier's method is appli=~
cable only for an extremely narrow class of linear equations. For the case of
nonlinear equations the method of contracting the space of equations is also
used. It allows us to obtain particular solutions, but the superposition prin-
ciple becomes inapplicable, and obtaining a broad class of solutions that contain
arbitrary functions of passive parameters becomes greatly complicated.

The familiar method of envelopes permitting converting from solutions
containing arbitrary parameters (total integral) to solutions containing arbi-
trary functions (general integral) becomes, generally speaking, unsuitable for
systems of equations with several functions.

:: If ui(x, t, a) (1-1, esey n) (1)
E is a solution to an arbitrary nonlinear eyetem
" ‘ ‘p IA ) 1& %“‘% ‘?# %.)no
ém’u:ﬁ* r{“"M\ 'e,)\‘}‘(’q’. etey .x
then the envelope does not always correspond to it. This fact is pure geome=
trical in origin.
, For the case n = 1 the space (u,, X, t) of equation (2) is three-
1 dimensional and infinitely close two-dimensional integral manifolds (1)
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corresponding to =~ values of the parameters a, a + da intersect along the
line (characteristic). A one-parametric family of characteristics forms an
envelope surface, which is an integral manifold (2)e If n = 2, the space
(u1, Uys Xy t) of equation (2) becomes four-dimensional and infinitely close
two~dimensional manifolds (1) intersect, generally speaking, not along the
line but at a point.

Thus, for a one-parametric family of solutions of system (2), the aggre=
gation of manifolds of intersection yields now not a two~dimensional integral

manifold, but only some line.

Let us consider by way of illustration nonlinear equations for the

potential of a conservative system of equations.

For the homogeneous conservative system

o el W (3)

let us introduce the potentials (cf section V, subsection 3), which are asso=

ciated with Uy eoes u, by the relations

? R i (4)

For ¢ i we obtain the equation

r%%'ﬁ@%ﬁ %‘)" . el Koy (5)

It is not difficult to see that we have a 2n-parametric family of solutions

to system (5)s P, = a;x + byt + ¢y (i =1, eesy 0) (6)

where 8. bi’ ¢y are constants, and 8y and bi are associated by the relation

BN 000 3

In the (n + 2)-dimensional space {tﬁ1, ceey qﬁn, t, x } of system (5), sur~

faces given by the totality of equations (6), with fixed parameters a, and c.,

1

are two-dimensional planes. Suppose the functions
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separate from family i6) some one=-parametric family. We require that the
corresponding planes intersect along a line (characteristic); the set of inter=-
section points is deternined from conditions (6) and from the additional equa-
tions 0= S-ix + 56+ 61, (9)

where the dot over the letter denotes differentiation with respect to <.

For a characteristic (the general line of intersection of the planes (6)

and (9)) to exist, it is necessary and sufficient that system (9) ve of rank 1,
i.e.y that the condition

' ':‘1(;)- Pé‘ .- . - 1 ‘ MM D a (10)

be satisfied. From this we get equations for determination of ai and «s

MEBT]

N NI R A IR O AL u' «$
. [a,;+‘u(r)6,,la;=(f.'&;:..‘_ g Y
bet((“u"‘l‘bu))":o ‘ ) (“")1

: . &
.."“u m&j.".‘a",l.&, RS (13)

where

Equations (11) and (12) define a;( ) with accuracy up to one arbitrary func-
tion of parameter ¥ . From equations (10), ci(-t) is also defined with an
accuracy up o one arbitrary function of parameter T. Since parameter 7 is
undetermined, we obtain a family of solutions depending essentially only on

a single arbitrary function of one parameter, i.e., this family is not a
general integral.

Let us show that the resulting family is a family of so~called simple
waves,

Definition. A simple wave of & system of equations
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Equation (15) signifies that functions ui(x, t) can be represented as
%(i”?j’uuﬁt) ="='1'»(x.' t). . (16)

where T (x, t) is some parametric function. Substituting (16) and (14), we find

&g, =0 D)
For solution ui(x, t) = ui[ T (x, t)] to be nontrivial, the equations
TTTTTY T
’Mugg =,g,=._..&-’\ (18)
A

miast be satisfied, Therefore for thla is necessary and sufficient that

Det((@— W)= (19)

then ¥ is the eigenvalue of matrix | aidll ;, and the vectoru = {1.1} is
its right eigenvector.

From the algebraic relations (18) and (19) we find ¥ and u, and T(x,t)
is defined as the solution of the equation

W e
\FiE=0 (20

If system (14) is hyperbolic, then there exist n eigenvalues §1, an)
E . and travelling waves corresponding to them, which we will denote with
the same number as the characteristic. It is not difficult to see that in
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2 the k=th simple wave the characteristics of the k=th family are straight lines.

If system (14) is conservative, i.e., if the following conditions are
satisfied:

au(al. .-‘... u.)=g5‘(%u;;2£"!')o (21)

vhere <Pi(u1, ceey un) are certain functionz, then we can proceed to equation
(5) in potentials. We will show that the envelope of family (6), (8) is a
simple wave. Taking (6), (7), and (9) into account, we have

iu‘=%=(&,£-{—‘b,t+.;,'~,)%-{-a,=a,(t). (22)

Thus, at the envelope surface of family (6), (8) functions ui(x, t) depend
on a single parameter, and by definition solution u; = ui(x, t) is a simple

wave. The statement stands proven.

A special case of the simple wave is the centered wave, when straight lines
of the characteristic of the k~th family intersect at the same point X to. Then
we can choose the inclination of the characteristic

=iz (23)

as the parametric function. Equation (20) retains its meaning, and the relation
§l=t' (24)
is valid.

Let us note one interesting property of simple waves. Relation (16)

signifies that the (n =~ 1)-th functional relation exists in the k~th wave:

_r:(al.'.... g)=¢ (=1l...m i+k). (25)

Let us consider the one-parametric family of k=~th centered waves in
which the constants c; (i f k) from (25) are fixed, and X » t  are associated
ﬁ by tne function x, = 47(t0). Then we have a one-parametric family of integral
]

surfaces of equation (20), which has an envelope. This envelope is a simple

wave, but no longer centered. Therefore, simple waves are centered envelopes.
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Let us now consider simple waves of inhomogencous systems.
For the inhomogeneous system

4‘%‘-+a;¢(u,. a,)%:ig,'(t‘:,..‘ a,) ‘(lj=l.'.... n)._i (26)

assumption (16) leads to the equation

S+HNE=F t=L..m = @n-

where . ( - ' o .' ’
= Bilalla = & - .

f.————‘;.‘ N = Ga=1..,m. (28)

-k

For simple waves with arbitrary functional to exist, it is necessary and suffi-
cient that the rank of the matrix

s EY
JL A Ala (29)

,“.‘»"(fa F, ‘:

1

equal 1. In the general cases condition is not satisfied. For waves to

exist with arbitrary constant it is necessary that the rank of matrix (29) be
20

From this condition, n = 2 quantities ‘;‘i(i =1, ..., n) are determined

for every two of them, for example, uj, ceey u =T at & spacing of l.).,', \.12.

Then, considering these functions, we arrive at subsystem (27) when
i=1, 2, where fi, F, are now the functions only of Ups Uy Solving (27) with

v 2T 5 ¢
r1espect toﬁ 5% we find

K PP & Fifa—Pofy
=P, =2 A d = = 121 0
ax i £~ r ',Qt ?'__‘ﬁ‘&“;' (30)
Setting up the conditions for integrability of equations (30), we find

OO =00, (1)
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Hence follows the integral 4’2/ é1 = C. - (32)
From equations (30), bearing (32) in mind, we find

v.w L
t'!l e %' o

THA ?ﬁgs PR W ) L '-"'
ae Mﬁ!(h }!\ ,‘ -.‘.r S l

The simplesat solution for T is of the form «k 4 SREEN N S5 18 :

PR G ruly d l’ R H !ﬁ'" ié a(l ﬂ
L* t?'#:!-}qa o e z_r‘n,,r 1 -»f'(aqi

B - VP

Thue, U,y u, are functions of parameter E and the following system of ordinary

differential equations is satisfied:

; ’x," *(,"’ i 59*! (35)

s ....__'.__- - b Ly

Let us further point to a class of equations that admit of simple waves

with arbitrary functional. For the system

w.(m .r,s..-.:,‘—'ﬁ-'i g (36)

the parametric function — (x, t) satisfies the equations

N
(sn°
v" ' "\‘ i

where

The conditions for the integrability of equalities (38) yield

B w0

Hence it follows that when of = 1 system (56) admits of a simple wave with

an arbitrary constant.
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Let us indicate the classes of equations leading to equations admitting
of simple waves.

Suppose the system
; ‘ :«’e

L&L+};(r,. m-&LqM u-t 2)# (41)

has the coefficients fi cry, ), 8. (%, rz), exhibiting the property of homo-
geneity, such that the relations

2 f,(ﬁr,. Bry) =047, (r 1] (42)
t g_‘_(?’l‘ e"‘)ﬂ”(’p r,)
are valid. By the substitution r, = x“'Ri (43)
system (41) is reduced to the form
%’L+x‘“/.<«.. Ry wa***‘e, R Ry —yx* ' fR, m)
= Ty (‘u! 2,
If La e ey g _
\‘l@:"‘i)"-hlml‘*l S '(45)
then after the substitution
g T o
""T-FT‘ G j
system (4,) takes on the form o ‘ .
!§‘-+ ,I(Rl' R:)-;,—*'T—g—,;m(lﬂ- Ry —Y/iR,). (47)
i.e., admits of a simple wave.
By the substiwtion T, = (x/t)" Ry (48)

system (41) 78 converted into the form

A +( ) Ji(Ry, Rz)aR‘

tﬂ

L -v—i—v( )m l-——-f,(R,. R,)T(_:.)"'T"" g(R Ry (49)5
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If VR =1, d=1, VB~V -« =0, (50)
then systewn (49) becomes

I Pl g : - 'r

s R hwR, Ra-gaﬂ.‘ta. R i o O
where :5 *ﬂ*n ERTEAEE R 1T 8 -_‘*Bﬂsﬂr -
; 4

H=WRIL £ Ry, Rmﬂ-mé R *é-ﬂ (Sn

SPMPRSI

i.e., also admits of a simple wave.

The possibility of the substitutions given above is related to the group
properties of the equations (cf section XIII on this subject). In particular
equation (51) is invariant with respect to the similarity transformation z ==

kz, T~» kx,

Relation (16) indicates that in the case of a simple wave the two=

dimensional integral surface u; = ui(x, t) maps on to the plane of hodograph
purely {u1, cooy un} in the form of the line 1: u, = uj('r) (=1, voey n);
3 therefore we can now speak of simple waves as solutions with degenerate hodo-
{ graph.

If the system is homogeneous, then to the line 1 there corresponds a

family of solutions with a one=functional arbitrary choice.

In the general case the two-dimensional integral surface u; = ui(x, t)

(i=1,2, ..., n) maps onto a two-dimensional plane in the hodograph spsce.

It can be shown, as a rule, that to the surface S there corresponds a family

of solutions with not more than an arbitrary constant and only in exceptional
cases does surface S map onto a family of solutions with a functional arbitrary

choice.

For sake of simplicity let us limit ourselves to the case of a system
with three unknowns o - "

To each solution u, = ui(x, t) of system (53) that is not a simple wave there

corresponds a wholly determinate surface S in the space { Uy Ups u3} » which

we will give, for specificity, by the equation
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u5 - f(u1, u2)o (54)
After the substitution of (54) into (53), we arrive at the over=determinad
system
$o M0 o=t2. ]
i "% ' LY . (55)
e ) a=1, 2,1 = :
£ O?E%E?i?? { - LL) o b
f where 24 Rl \ > o .
_ ¢=%2 3 a=12. (56)

The condition for the consistency of system (55) leads to a third-order
quasilinear equations for the function ¢ (u1, u2). By defining surface (54),
we can restore the solution by quadrature.

i We will not slight the operations, referring the reader to work [25] and
to section IX of chapter two.

3. Solutions characterized by the differential relation. The analysis
made in the preceding subsections shows that solutions with a degenerate hodograph
(simple waves) do not always have a functional arbitrary choice. This means that
to obtain solutions with an arbitrary functional choice or with an arbitrary
constant choice with a large number of constants, classes of soluiions must be
geparated in a4 more general fashion.

A T e

Functional relations in the space of the initial equation must be replaced
¥ by functional relations in the space of the extended system (cf section IV, sub=-
section 3). Punctional relations containing not only the unknown ana independent

variables as such, but als» derivatives, will be called differential relations
(ct [26]).

The highest order of derivatives appearing in a differential relation will
be called the order of the relation.

Let us clarify these concepts with the example of a system of two inhomo=

geneous equations written in invariantsi
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A

g—;l"“l"'f](fp ry Xy, x?.)'gel'——-gl(rl' ry. Xy, Xg) l

ér,

: 0 ' (1)
3};+f2(’1- Fa Xy xz)_‘,);—,l=g2(’l' ry Xy Xy l

We will seek the solution r, = ri(x1, x2) of system (1) satisfying the first=-

TR TR TN ?W@.GM

order differential relation:

6f| dr’ df] af3)=0

i . .
g F(x,. Xov Fyy Tos -6;1-' -a'z- 'aT;. 'aT; (2)
3 Clearly, using equations (1) the dependence of F on 523 ,£;£; can be canceled
% out and relation (2) can be rewritten as
: B}—l ors\ __

Q(x‘..xg. "n ’2. 5};"' z'x—')—'()v (3)

Here @ is a thus far unknown function, but a fixed function in our entire

treatment.

ILet us find the conditions under which a family of solutions satisfying

the fixed relation (3) as a one-functional arbitrary choice.

Let us consider the first extension of equations (1) and relation (3).

We set
g uge p 25 o
S P G =0 g =% g =h  (=L2) (4)

In equations (1) take on tne form of the finite relations

-ﬁiﬁh+gz d=hm.- J.'(&
using (4) and (5), we;f;g@f" T I
dr,np;dx,.-}-q, dx,= p,dx,4(&,— fip) dxy | )

3

The conditions for the integrability of relation (6) lead to the equations

t

%47f1%%=21+f131=ﬁ- [ (1)
-%z—:+fg-g£:—=fz+frsz=F2-

where
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j ". ——"é:— P‘ é—i (8)

; and the symbol 5/ é xi denotes differentiation with respect to X9 taking
! into account the dependence of T T, (but not Pyr p2) on X,y X5t

um. .’l' r’l (ﬂd e plt Pa) or xl-A;VQ: SR g oo :.',-'. ’- vt T
8 o9 ) PR . »
kel s wa--l-p,;,—. wE B
6 - g METAUN OO N RN ]
‘5"‘+‘h F"l“h ;—== = -
‘ | ©®
—T'+[gl flPl] dr +lgz sza]-F—- o
. -—:--Fgrar'Fgrar APFET hpfﬁ? '-SH, |
Differentiating relation \3) we find. ,“ p o piE ) 5
et =0 @=12 L
t 0 @ g W8
T Xl UL S

In the four—dimensional space of derivatives 849 By t1, tz, each of the equa-
tions (7) and (10) constitutes a three-dimensional plane. For the functional
arbitrary choice it is necessary that these planes have a common s' ight line,

i.e., that the rank of the matrix

PRV ORGP R

N R T abe T i,

¢ .0 f, V5 —F g

[ Aijl" ’ “ 3 -} w . B

’ 28 0 :
A A g.’ j (1)

g o0 ol L 80 |

o I 0 o .?

s w0 Sy

be equal to three. Actually, if these planes intersect a% a point, then this
signifies that from equations (7) and (10) the derivatives 8; = ] pi/a X
=2 pi/a x, are determined in terms of x,, X;.,%. 2 ,f,, P, , and we arrive
at the system of equations with an arbitrary constant choice that we investi-
gated in subsection 1.
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HBence, as the first corollary, when f, £ £, we get

(12)

let us assume for sake of definiteness that 34’/a Py = 0. Then, as the

second consequence we have

;3 "‘7""1( TN, »‘LV K‘»t iR

S ool === 1

Il e

Taking (8) and (9) into account, relation (13) can be transformed to
A+p,B=0 (14)

where

'h“ “".‘ b} rh A rl i j‘| 4
*l Iu 4 g ,‘\.O l, G

ks ﬁs: ‘;T’é}i%f il

If B # 0, then relation (14) is a new differential relation, from which we

can explicitly define Pyl in this case we arrive at the arbitrary constant
choice. Therefore, for a functional arbitrary choice the linear equation

A =0, B = 0. (17)
mst be satisfied.

Thus, the following statement is valid:

For differential relation (3) to admit of an arbitrary functional choice
it is necessary that 4’ satisfy one of the two systems:

L"f ‘”'%”Ro'»*‘i 3. ‘il,"c.;‘*g-»-&--f,'z- : _ Y .
Ty o e B :

c : ot |
i’féﬁ**wmw:%%%” - G D
AT [ (G ",{l)f.‘ Longp=o| |

8 -:“_1?

e e
Wt '.“-y-\

Nt v, A

’
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.N‘;;_:o'_.""" R R T ,r yar. oW ULPERE P iR ‘;‘;‘t S
m ! RS R :'3 "'.’. ~‘" Q I AL R N Ral )
f:‘r‘+’3—+81?r'.'+8’2'&"+‘ GtV 19) |
. o (

e 2 Og 0 éf éf M i
L - ’)"a - P aﬁ“
(f fx)w—+( -;—Pg)-a—’-:O.

[ N

Differential relation (3) corresponding to the condition 3‘5/2 P, = 0 will be
referred to as the first-order relation, and relation (3) corresponding to the

condition 3‘?/3 p, = O -— as the second-order relation.

Again we have reduced the problem of investigating consictency to a

standard problem for a system of linear homogeneous egquations.

The study of systems (18) and (19) is carried out with the aid of the
familiar algorithm for the formation of Poisson!s brackets. Since each of the
systems is considered, essentially, in a five-dimensional space: the second
and third equations of (18) == in the space (x1, X9 Tqs Tp p1), the second
and third equations of (19) == correspondingly in the space (x1, X5y Ty Ty
p2), then a sufficient condition for the existence of a relaticn with a one=-
functional arbitrary choice is the condition r = 4. (20)
vhere r is the rank of the complete Jacobian system formed by adjoining Poisson's

brackets to equations(18), and, respectively, to equations (19).

The algorithm for defining the differential relation with a one-func-
tional arbitrary choice can be transferred almost without modification for the
case of a relation of arbitrary order. Withcut carrying out the operations,
we ctate only the final result. On snalogy with the preceding, the differential
relation

L . (- v ~ [ K e . s
o(xl. x’) rg."}. ey ’,+l)=o. (21)
where the following 1is assumed:, ’ . Fa ly on a g

ot o
H=r, ri=opi— (8=-=l... TS S
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. can be of two orders: a first-order differential relatiPn when «5-7:," =0,
: 2
and a second-order differential relation, when Sy R =0
’

Por the case .of & first-order relation function é satisfies the system

. -. ’&in'(’w&*% "0 eﬁ'

Y ‘
. W k)

1'1 ¢ i b .-7“-"? 5\‘ el
PRNAL W GT RS W S
S (la‘ !f.d gl A BT SPE

.-,a‘h%i Lovne e e o g

f.;’—m-—*i-[e(‘" f.’ﬁ];;rr
™ '(2»,

x‘. s >, n"
<] \.y

where

=, 2 p==1, ,Iz+l)

S “‘u- i

and the quantities gi(:‘: /,2,5=1.. )are defined from the recursion rela~
tions

- » - A

£y d" dt‘f- :

g‘ ' ."d'.'x‘:;'r‘i t‘}ll gg=g“ { (24)

Here d/dx is the total der:.vat:.ve with respect to X4 taking account of all
arguments on which functions 81 , f depend.

The space of system (22) is a space of the valuables Xy Xpy ¥ ,, z , rf"’
(s =0y «oey k). Since it has the dimension 2(k + 2) + 1, for the relation
to admit of a one-functional arbitrary choice it is necessary and sufficient

that the rank of the complete system corresponding to system (22) he equal to
2 (k +2).

Remark. Differential relations for a given system of d:‘‘srential equa-

tions can contain not only derivatives, but also potentials,

Let us consider the conservative system

on, | 0%,y By N
Sy Mt Tt ou =0 au= (25)
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For it the potentials

""&mr: St 0y : =1 = I

SRR U AT

i oo TR A L R ey

can be introduced, satisfying the condltlons S '

%?5'%4*3?%- ce)=e o an

If we take as the starting point not system (25), but the system in potential
(27), differential relations must also contain the variables ¢p g9 oo ¢
Thus, the first-order differential relation for eguation (27) is of the form

w(xl' ‘xr ‘._ .‘.. 0., #‘. ssesn TL) . T w - ".
edd —‘l’(xl.x,.ml... 0.. .. a)=0. (28)

o 01

We similarly discuss relations of this type in subsection 3 of section IX,

chapter two.

In concluding this subsection, let us deal with the application of the
concept of differential relation to ‘several problems in the theory of linear
equations. Ve limit ourselves to Darboux's equation:

a0
I ag = e #)e. (29)
which plays a major role in hydrodynamics.

Setting 2u/2 X, =T, (1 =1, 2), (30)

we write (29) in the form of the system

;_a_zsfl.. 'a';"-—-flk ; (31)
The extended system for equations (30) and (31) is of the form

-

of '
;;-e.- 37’==e;- , (32)
where - ! ‘ ..
g‘;s_—(fc)m( )M-c’f"‘ (=1, 2 a=0, ..., 9, (33

' che v r‘n—a—n (r?-nr‘. ry -ul). - (34)

PRI PRVIELT I ‘o
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Since part of the higher-order derivatives is determined from the conditions
of the extended system, a relation of the (k + 1)=-th order can be sought for
in the form @ (x,5 X5 U, rg, - rg) =0 (i=10r1l=2) (35)
Without going into details of analysis of the consistency of (35) with the

equations of the extended system, let us give the final result.

For functional arbitrary choice the condition
-:.',‘.6' 6’,,0,
o= (36)

is necessary, 8o that relation (35) will be of the first or second order,
depending on whether condition g%é" C or {;g;. = 0 is satisfied. ILet us
2
assume for concreteness that«gjjg =0 (first-érder relation), The following
2

theorem is valids

Theorem. For the first-order relation (35) to admit of functional arbi-
trary choice, it is necessary and sufficient that ¢ not depend on u, rg (8 =

0, ...y k) and that it satisfies the linear homogeneous system

TAY T |
3.“,’)0#—_'0. (@=0, 1, ..., k)'. 37)
_1 .1= _ ‘
e Pass @=0. 1. ..., &) (38)
where L .
. o g -e-1
P°==0. P'=(:)0I{—:r?-l=(¢~:-1)s;"l7“%r? s=1,.... &)
- (39)

An analogous statement is valid also for the second-order relation. Conditions

for the consistency of system (37), (38) lead to conditions or *he function f.

The conditions for the existence of first-order relation*)

Q(xy, X5 r)=0 (40)
is of the form f =0, (41)
i.e., the Laplace invariant tends to zero, and Darboux's equaticn converts to

an equation of oscillations.

#) The order of tne relation is established for equation (29) with respect to

the function u.
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For a second~order relation ¢ (11, X5y Tqs r:) =0 (42)
to exist, it is necessary and sufficient that

=i (43)

This means that by the Laplace transformation (cf [30]) we can reduce equation
(29) to the form ST
o =0
n 0x; 0%, I (44)

These criteria point to the intimate connection Jetween Laplace transformation

and the differential relation method.,

Obviously, the following asse~tion is vulid: if equation (29) admits of
a differential relation of (k + 1)=-th order, then by the k~th Laplace transforma=
tion it can be reduced to the form (44). Since the Laplace transformation theory
is group~oriented (cf [30]), this also points to the close connection be tween
the concept of differential relation and the group properties of differential

equations.

The effective construction of Riemann's function is possible for hyper—
bolic equations admwitting of a differential relation (cf [4]). We will briefly
summarize Riemann's method, confining ourselves for simplicity to Darby's equa-

tion, which is self-adjoint.

Iife u(x1, x2), v(x1, x,) are solutions to equation (29), for any domain
G bounded by the curve C, the relation

[ [ wLu—ulv)dx, dx, = f X dx,+ X,dx,=0,  (45)
A | |

is valid, where FY
: L=mem ) . 9
1 v du 1 du dv :
X‘=7(a37.—°7;f)' 4.,=§-(0-a?’—ll'a;;)- (47)

and the integral along the contour C is taken counterclockwise.
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Riemann's function R , 3 X, is defined as function v( §_,

1° 528 X0 % 1
52; X, x2), vwhich is == with respect to Xqy Xy 77 the solution to equation
(29) and satisfies the additional conditions:

== arbitra
"2 i (48)

x, = arbitrary

1
In other words, R(E1, Ea; Xy x2) is the solution of (29), which tends to
1 at the characteristics PM and MN.

Suppose u(x,, x,) is the solution of (29) for which u,du/2 x1,3u/a X,
are given at the line PN, i.e., for which Cauchy's problem is posed at the line
PN.

Emp’oying the identity (45) for the functions u, v = R for the domain G
and the contour C = PMNP (Figure 1.17), we get after uncomplicated transforma=

tions
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