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SUMMARY

This repcrt docum2nts a study undertake:i to evaluate the
feasibilitv of rigidly combining twc CH-53D helicopters in order
to augment their maximum payload-range capabilities. This
Multi-Helicopter Heavy Lift System (MHHLS) is formed by modi-
fying existl g CH-53D hLelicopters to provide the structural and
dynamlic integrity necessary to allow their interconnecticon using
a specially designed kit. Using this kit, aprrocoriate heli-
copter sub-systems - pcwerplants, flight controls, structure
and instrumentation - may be combined to form an acceptable
vehicle witn increased performance capabiii«y. Thus, ccca-
sional missions requiring a2 1ift capability in excess of the
helicopter's basic performance capabilities may he satisfied
in the multi-1ift mode. After completion of these missioens,
the helicopters may be returnced to their normal mcdes of
operation.

Initially, various geometric arrangements of the combined
aircraft were investigated. These arrangements were evaluated
using the criteria of performance, reliabili:tv, handling
jualities, ease of assembly, ship compatibility and cest, and
the tandem nose-to-tall configuration was selected for further
studies. This configuration is furmed by positioning the nose
of a modified CH-53D behind the tail of a second modified
CH-53D, removing the tail of the forward CH-53D and uslng the
kit to connect them. This configuratior was selected for its
low weight and higher control power.

A detalled study of the tandem nose-~to-tail confiruration
w2s made to assess its feasibility and identifv rpotential pro-
blem areas. The structural arrangement was designed from both
2 static and dynamic standpoint. Power tra.asnission svstem and
controls were anaiyzed, and the necessary desipn iayocuts were
carrisd to a peint of feasibility determination. A structural
analysis was performed examining the apnlisd lozds for three
critical fiight conditions and a vitraticn anzalysis made to de-
termine stiffness characteristics. The resuits of these
analysec were uscd tc estimate structural reinfercing required
and its assoclated weipght penalties. For the postulated con-
figuration, fiy¥irnz qualities encompassing trim, control power
and stabllity were calculated and evaluated. Weight analysis
and performance for this MHELS system are presented in charts
of paylcad vs. radius of acticn. Assembly and dlsassembly pro-
cedures as applicavle to fleet operations are revieweé and
anaiyzed fcor compatibility of the MHHLS to an cperaticnal en-
vironment. : . )

As a result of the above design and analysis, a feasible HiH
configuration of two CH-53D helicopters, interconnectec nose-to-
tall in tarndem has been pestulzazed. This vehicle iy predicted
to have a pavload capability of up to 1B.7 tens.

Apollcatlions of the MHHLS to various Naval missicns are
discussed.

Recommendations ars presented to carry this vehicle for-
ward to flight evaiuation.
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The study reported herein on the feaslbility of =z
Multi-Hellcopter Heavy Lift System using two CH-53D heli-
copters was sponsored by Naval Air System Command under
contract N62269-71-C-0581 with Naval Air Development Center,
Warminster, Pennsylvania 18974.

The views and conclusions contained in this document are
these of the author and should not be interpreted as neces-
sarily representing the officlial policies, either expressed

or implied, of the Naval Air Systems Command or the Department
of the Navy.
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1. INTRODUCTION

Quantum jumps in helicopter 1ift capability are usually attained
through the development of a new vehicle involving the design and
, testing of a new rotor system, a new transmission, a new fuselage and
: neu engine. Development and acquisition costs increase rapidly be-
i B cause of the greater size and complexity of the resulting vehicles.
Although new markets or uses become availahle with such increase 1in
capabllity, these new uses or markets may not be sufficient to amor-
I tize the costs of these large helicopters. Similarly, the inventory
3 of military equipment in a given weignt class decreases as the weight
increases. So each improvement in helicopter 1ift capability will
be utilized to a smaller extent. Although a requirement exists for
a particular level of capability, the utilization of this capability
decreases.

- This dilemma has been recognized and several design solutions
as an alternative to a new helicopter have been identified. Each
approach makes different compromises between development effort,
versatility and simplicity of operation.

Recent Russian efforts combined two of their larger helicopter ;
rotors, including their transmissions and turbines, intc a new i
helicopter a2irframe for interral cargo, the V~12 (Mi-iZ), capable
of 1ifting 34.2 tons. Although the V-12 uses dynamic components
from the Mi-6 and Mi-10 series, it is essentially a new helicopter.
The fuselage was designed to carry the same payload items as the
AN-22 fixed-wing airplane, and uses the same cargc structure and
: tie-down fittings. Since the side-by-side rotors are counter-rotat-
! ing, an "existing" rotor with its controls and gear box had to be
redesigned and tooled from right-hand to left-hand. Moreover, the
V-12 is dedicated to the heavy-1ift role, and would be uneconomical
to be used for other functions not requiring heavy 1lift.
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. In the U, S., heavy-1ift flights have been made using a “loose"
i connection between separate helicopters, which share their 1iift
L capabllity to support a payload too heavy for one helicopter alone.

Although this approach involves little or no modifications to exist-
" ing helicopters, there are several drawbacks. Precision formation

pllotage is required, and presently flight 1s restricted tc a maximum
of about 20 knots, and to daytime VFR conditioas. To prevent col-
lision of rotors of two separately zontrollcd helicopters calls for

a generous separation of the aircraft, thus ronopolizing a large

i amount of air space. Most important of all, unless each Lelicopter
individually has engine-out hover capabllity, the failure of any engine
in any helicopter will prevent mission completion and can result in
destruction of valuable cargo.
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The approach analyzed in this report represents a compromise
between the extremes of an essentially new helicopter on the one hand,
and on the other hand, use of existing helicopters with no modifi-
cations. This is the Multi-Helicopter Heavy Lift System (MHHLS).
Two or more helicopters, suitably modified, are rigidly
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connected together, including their drive and control systems,

so that they can be flown by one pilot, and become, in fact, one
helicopter. The modifications, however, do not preclude the use
of the helicopters in their original individual roles when heavy-
1ift capability 1is not required. The concept 1s applicable to
retrofitting of existing helicopters or may be applied to new
designs.

This study addressed the application of this multi-1ift
concept to a previcusly designed helicopter - the CH-53D.The first
rhase of the study investigated several possible methods of
interconnection of two helicopters from which the most promising
configuration was selected. The selected system was then studied
in greater depth, and analyzed for feasibility in terms of struct-
ure, drive system, controls, weight, performance and flying
qualities.
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- 2. INITIAL STUDIES OF PO1“NTIAL CONFIGURATIONS

. the MHHLS concept as presently .postulated combines two CH-53D
helicopters by connecting the fuselages together with an intercon-
necting truss, mechanically interconnecting the flight control
systems, cross-shafting the power plants and providing appropriate
instrumentation. In this manner suitably modified CH-53D's may be
comblned so that they may be operated by a single pilot, function
as a single vehicle and transport payloads beyond the capability
of a single CH-53D. Modifications may be accomplished in such a
way as to allow fleld assembly and disassembly of the CH-53D
helicopters in order to operate in their normal mode and the
multi-1ift mode. Cross-shafting has the important advantages of
1 permitting each engine to supply power to both main rotors, so
3 that in the event of an engine failure, all of the remalning power :
is fully available; and during autorotation, rotational energy i
may be transferred between rotors.

2.1 DESCRIPTION OF CONFIGURATIONS

R R R R P o

initially, three distinct configurations of pairs of CH-53D's -
tail-to-tall, nose-to-tail, side-by-side - were examined and are
described in the following paragraphs.

L T SRS

The tail rotors and tail rotor pylons of both helicopters
are removed at the pylon fold joint. The rear helicopter is
turned to face rearwards, and the two aft cabin sections are con-
nected by a truss structure in the area of the rear ramp door frame.
The cabin structure in this area would probsbly have to be rein-
forced to take the higher applied shears, and bending and torsional

moments.
TABLE 2-1
CONTROL INTERCONNECTIONS FOR MULTIPLE HELICCPTER
LIFT SYSTEM
(2 CH-53D HELICOPTERS, TAIL-TO-TAIL)
INCREASE PTICH ROLL YAW
MANEUVER TOTAL LIFT NOSE DOWN LEFT NOSE LEFT
FORWARD INCREASE DECREASE LEFT LEFT
HELICOPTER COLLECTIVE COLLECTIVE LATERAL LATERAL
PITCH PITCH AND CYCLIC CYCLIC
FWD LONG.
CYCLIC
APFT INCREASE INCREASE LEFT RIGHT
HELICOPTER COLLECTIVE COLLECTIVE LATERAL LATERAL

PITCH PITCH AND CYCLIC CYCLIC
FWD LONG.
7 - CYCLIC
L TO MAKE MANEUVERS IN THE REVERSE DIRECTION, EACH CONTROL MOTION
IN THE CHART IS REVERSED.
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The chart, Table 2-1, shows the method of achieving control
about all axes for the tall-to-tail configuration. Since the tail
rotors are necessarily removed, yaw contrcl must be by means of
differential lateral cyclic pitch (left on one rotor, right on the
other). Because of the large moment of inertia in pitch, control in
this axis is achieved primarily by longitudinal differential col-

i lective pitch.

2.1.2 Nose-To-Tail, As Shown in Fig. 2-2

The taill rotor and tail rotor pylon of the forward helicopter
are removed in the same manner as in the tall-to-tail configuration.
- The rear helicopter, however, faces in the norma. forward direction,
and a truss structure connects the nose of the rear helicopter to
the aft cabin of the forward one. Again, the areas of connection
to the truss must be reinforced because of the higher imposed shears,
and bending and torsional moments,

L tE L e L TE AL HEL A SN M I R LA U ROt i P T Y A e

The method of control about each axis is the same as for the
tail-to-tail configuration, except that it now becomes possible to
use the tail rotor of the aft helicopter fcr added yaw control, to
augment the differential lateral cyclic pitch of the main rotors,
The chart, Table 2-2, shows the method of control about all axes for
the nose-~-to~talil configuration.
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TABLE 2-2
CONYROL INTERCONNECTIONS FOR MULTIPLE HELICOPTER

LIFT SYSTEM %

(2 Ct.-53D HELICOPTERS, NOSE-TO-TAIL) 5

. INCREASE PiTCH ROLL YAW %

MANEUVER TOTAL LIFT NOSE DOWN LEFT NOSE LEFT 3

Ij FORWARD INCREASE DECREASE LEFT LEFT ‘ §

- HELICOPTER COLLECTIVE COLLECTIVE LATERAL LATERAL '

. PITCH PITCH AND cycLic cycLic > 3

fi FWD. LONG. 4

i CYCLIC g

g AFT INCREASE INCREASE LEFT RIGHT LATERAL 3

) HELICOPTER COLLECTIVE COLLECTIVE LATERAL CYCLIC AND 3
PITCH PITCH AND CYCLIC INCREASE

FWD. LONG. PITCH OF TAIL | 3

cYCLIC ROTOR 5

oomam vy

TO MAKE MANEUVERS IN THE REVERSE DIRECTION,
THE CHART IS REVERSED.

EACH CONTROL MOTION IN
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. The synchronizing rotor-drive system is connected at the right
hand input bevel gear of each main rotor gear box. The plug which
mounts the input bevel pinion and free-wheel clutch, and which is
bolted to the gear box proper, is modified so that the free-wheel

- unit is moved forward sufficiently to permit the insertion of an
auxiliary bevel pinfon on the same shaft, fixed to the input bevel
ninion. This auxiliaryv bevel pinion meshes with ancther additional

S gear in the modified plug, which direets the synchronizing torque

- down and to the right, belew and outboard of the engine nacelle,

Here, on each helicopter, is located another gea- box with shafting

> | interconnecting them along the right side of the structure,

2.1,3 Side-By~Side, as Shown in Fig, 2-3

The fuselages are connected by a transverse truss structure
fastened to one side of each main cabin at the location of the
main rotor, Suitable reinforcements of this area of the cabin
would have to provide for the large torsional moments imparted by
the transverse structure,

Because of the greatly increased momert of inertia in roll,
roll control would be achieved primarily by lateral differential
collective pitch (up on one side, down on the other)., Yaw control
could be achieved by differential longitudinal cyelie pitch

A (forward on one side, aft on the other), thus permitting the two
tail rotors to be dispensed with. Alternatively, the tail rotors
could remain to increase yvaw control power. The chart, Table 2-3

TO MAKE MANEUVERS IN THE REVERSE DIRECTION, £ACH CONTROL MOTION
IN THE CHART 1S REVERSED.

; F:!
i shows the method of achleving control about all axes for the side- %
- byeslde configuration, 5
1
,‘n:

= 3
TABLE 2-3 E

T CONTROL INTERCONNECTIONS FOR MULTIPLE HELICOPTER 3
1 LIFT SYSTEM i
.é

” (2_CH=-53D_HEL1COPTERS SIDE=BY=SIDE) b
2 INCREASE PITCH ROLL YAW §
MANEUVER TOTAL LIFY NOSE_DOWN LEFT NOSE LEFT 3

- - E
3

] LEFT INCREASE FWD LONG, LEFT LAT. AFT LATERAL 3
HELICOPTER COLLECTIVE cYcLIC cYcLic § cYcLIC 3

- PITCH PITCH DECREASE %
COLL . PITCH 3

. P
. RIGHT INCREASE FWD LONG, LEFY LAT. FWD LATERAL 3
P HELICOPTER COLLECTIVE cYcLIc CYCLIC & cycLic 3
& PITCH INCREASE 3
COLL,PITCH ’%
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The interconnecting drive system 1is similar to that for
the nose~to-tail configuration, except that the interconnecting
shafting runs transversely and passes through the cabin of the
starboard helicepte:, This latter feature could, of course, be
obviated if the left hand plug were used for the starboard helie.
copter, thus making gear box modifications non-uniform.

2.2 REASONS FOR SELECTEDC CONFIGURATION

The initial studies resulted in the selection of the
nose=toetall configuration as the most premising. Considerations
for the selection aof the chosen configuration (with one taill
rotor on the aft aircraft) are as follows:

2.2.1 Yehicle Performance

The tandem arrangements were clearly superior to the
slde«by=-side in w ight empty. This difference ranged from 2,000 1bs.
to 4,000 1bs, depending on the natural frequency criteria used as a
stirfness requirement as compared to the structural requirement for
strength only. Further, the advantageous span effect of the two
side-ty~side rotors 1s largely negated by the additional drag in the
interccnnecting structure, so that there is no significant difference
in the rate of fuel consumption per mile.

Payload-radius curves based on preliminary weight and per-
formance calculations are shown for take-off weights based on
hover in and out of ground <ffect, (Fig. 2-4and 2-5 respectively)
at sea level 90°F, and at 3,000 ft., 91.5°F, for the nose-to-tail
tandem and the side«by-side configurations.

The mission profile for the pavloade-radius curves 1s derived
from the basic Marine Corps heavy-1ift mission, and assumes the
following:

(1) Warmup, takeoff and pick-up load at the
altitude and temperature noted 5 minutes
at normal rated power.

(2) Cruise out at sea level, 59°F, at 100 knots.

(3) Hover out of ground effe~t for 5 minutes at
rmidpoint with .cad,

(4) Return at sea level, 59°F, at 100 knots
with no load.

(5) Land with 10% of initial fuel as reserve.
Augmentation factor for hover in ground effect was taken at

1.09, corresponding to 2 15=foot wheel height. (In the analysis of
the head-to=tall configuration (Section 4) the wheel height for the
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FIGURE_2-4, PAYLOAD VS. RADIUS, PRELIMINARY
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3000-foot altitude condition 1s taken as 50 feet to be consistent
with Navy Studies).

The nose~to=t2il arrangement includes one tail rotor, and the
5ide=by~side arrangement includes both tail rotors, The payload
advantage of the noseatoetail arrangement is partly because of the
power saved by omitting one tail rotoi, and partly because of its
lower structural weight. The separate CH=53D is also shown for
comparison,

An advantage of the "rigid" multi-1ift system 1s the abiiity
to carry out missions even after an engine failure. Consequently,
range paylocad curves are also shown with take-off weight based on
hover in ground effect with one engine out., (Fig. 2-6 ), The
tancem arrangesment shows a substantial capability even with this
severe limitation,

ROV e L TARG Pt AL SR AR VN LYl U L SR U SR LR (T MACRY T G T e 8

The choice of a tandem arrangement may appear inconsistent
with the Russian choice for their V=12 (Mi-12) heavy~ iift heli-
coptei’, However, while the V=12 was designed for ranges of 200 Km
(162 n.mi1.) and 50C Km (269 n.mi.), the multi-1lift system is beine
considered for tvpical Navy radii of action of 10 and 56 n.mi,
(corresponding toc 20 and 100 n.mi. ranges respectively). For these
short ranges, the less aerodynamically efficient tzndem system is
superior because of the lower empty weight,

T LT R A BRSO

é 2.2.2 Structural Considerations

The amount of additional structure, and consequently
additionel welght 1s much less for the tandem configuration than
the side«by=side,

At T
1

1,

Lt AR

One of the critical aspects of design of the interconnecting
i structures is the rigidity requirement for keeping the resonant

i frequencies well away from the principal frequency of excitation :
- by the rctors, For preliminarv investigatlion purvoses, a criter- i
ion for rigidity was to keep the lcwest natural frequency above ;
, 1.6 times rotor speed. (In the later analvsis of the seiected i
L. nose=to=tall system, it was found that to make the structure so
stiff would be too costly in weighkt, and the 1,5 criterion was
discarded., However, the relative weighrc advantage is still in
favor of the tandem.) For the side-bv-szide confipuration, one
critical mode of vibration 1s an antl-symmetric pitching oscillate
L ion of the fuselage, and the other, even more critical, is the

E- vertical oscillation of the payvload with respect tc the fuselages.
- For tandem configurations, only the last mode was found to be
important and was less critical because of the stiffening effect
of the pitching morent of inertia of each heliconter.

Structure weight estimites were based on standard high
strength steel, closed section members, with steel or aluminum
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(N FIGURE 2-6. PAYLOAD VS. RADIUS, PRELIMINARY STUDIES
HIGE, ONE ENGINE OUT :
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-- end fittings. HNo exotic materials were used such as carbon fiber with
tapered diameter thickness tubing, since this would be applicable to

{ all of the desipgns., However, since the structural beam is larger

in the side=by-side configuration, the use of such exotic materials i

would have a greater advantage to that system, although 1t still

would weigh more than the tandem system of intercounectlon.

= 2.2.3 Handling Qualities

A maAC o mes W ant s m

The moment of inertia in yaw of anv of the three confipgurate
jons was found to be greatly increased compared to the separate
CH=53, and to be substantially greater than would occur in a more
conventionally designed multi-rotor helicopter, where most of the
masses are within the rotor spacing. As a result, yaw control
power from existing main rotor differential cyclic pitch, alone
could be inadequate, and it was decided that at least one tail
rotor would be needed. This decision was one of those leading to i
dropping consideration of the tail=toetail configuration. The :
sidee«by=side configuration can, of course, use both tail rotors,
while the nose-to-tail configuration can use only the tall rotor
on the rear helicopter. However, its moment arm to the sysiem
center of gravity is 1.8 times the arm of the CH=53 (or of the
sideesby=side configuration), while the yaw moment of inertia is
somewhat less than the side<by-side, Hence, the yaw control
power of either of these two configurations is of the same order,

E and vwithin the constraints of the existing CH=53D lateral cyclic
3 pitch, is approximately two to three times the yaw control
power attainable with tail-to-tail,

[PPSR Spy -

2.2.4 Human PFactors

- The pilot's visibility and the load-master pillot's visle
bility are both excellent and with least change of existing
seating and control arrangements in the nose-to-tail configurate
% ion. A tailleto=tail configuration would provide equal visibility
E capabilities with the exception that the load master would have

El to have a new seat position located in the cargo ramp area cf

3 one of the aircraft. The side<byeside configuration visibility
20 would be just as good for the pilct in forward fl1i 'ht, However,
E: in hovering, the holsti: z view would be in a sideways and aft

3 direction, or a new pllot station would have to be made in the

e L forward doorwayv of the port-side aircraft lcoking in a transverse
3 direction, at considerable experse,

N

P
i
[oR—

2.2.5 Power Transmission

- Since the three-turbine gear box planned for the CHe53E

3 will have a different input turbine RPM than the CH=53D, as well
S as a different main rotor transmission ratio for its larger

‘ rotor (79 vs, 72 ft.), i1t is not adaptable to a multi-lift
system using existing CH=53's, Therefore, the starboard bevel
input pinion plug has been selected as the point of attachment
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into the main transmission for the interconnecting drive shaft,

The nose«to=tall design permits two new bevel gear sets
to provide an interconnect system in the form of two additional
gear boxes (see Fig, 3-6 ), Plus a modification of a minor section
of the main transmission box where the input shaft from the stare
board turbine enters. Thus, a modification to the main transe
mission casting 1s not required. Moreover, the interconnecting
points on the pear box need not be left and right handed.

A slide=by=-side configuration would require a shaft through
the cabin area near the center of the rotor (perhaps through
the windows) if the =ame input pickeup point were to be used
(see Pig, 2-3 ). There would not be any fewer bevel sgear sets
except by choosing a new pick-up point into the transmission
that would be fore and aft but with a bevel gear take-off
available to the left or right. However, this area is not as
convenient and would require larger, more costly changes to the
main rotor gear box casting.

The selected way of providing the helicopter with an
additional drive outlet for the interconnection is through the
replacement of the existing starboard input plus of the rotor
transmission by a modified one, featuring an additional drive
outlet, as shown on Fig, 3-5 . An interconnecting shaft will
run from there, in outboard/downwar® direction, and it will
pass between the engine and the fuseclage (this run was mocked=-
up). There should be no difficulty ia arranging the renaining
portion of the interconnecting shaft as shown on Fig, 3-1
The shaft passes near the main entrance door of the aft CH=53,
Hewever, there is adequate space to open this door and to
enter the helicopter,

A talleto~tail system would recuire an offset lateral
stagger of the two aircraft so that the starboard side of one
would be in the same plane as the (original) starboard side
of the other to give the same number of pear boxes as the
nose«to=tail configuration,

2.2.6 Ease of Assembly

Ease of assembly is materially in favor of the nose-
to-tail configuration, since the individual compcnents, as well
as the completely assembled system, can be handled on deck on
their own wheels (See Fig. 3-17 ). The forward ship with the
field modification kit incorporated in it i1s positioned on deck
and the interccnnecting section assembly joined Lo it., The
interconnecting assembly can be sube-assembled in another area
and brought to location on its own dolly for attachment to the
forward helicopter. When the forward aircraft and inter-
connecting section are completely joined, the dollv is removed
from the interconnecting section and the forward helicopter is

‘)
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positioned on its nose wheel ramp using the aircraft's existing
cargo winch and cable to draw the aircraft up into position on the
ramp., The aft helicopter, with its field modification kit incor-
porated, is moved into position on its own wheels behind the
aforementioned sube-assembly and positioned on 1its ramp by drawing
the aircraft up onto the ramp using the aircraft's existing cargo
winch and cable as the positioning device. The final interconnect-
ion is made and the complete system checked out; the nose wheel
ramps are removed from under both helicooters and the system 1is
completed.

This com -ination has a maximum maneuverability on deck.
Each element is movable individually, There 1is no need for
ground cranes or tractors or any equipment other than the two
helicopters and interconnecting section., In a side-by-side
configuration, *he aircraft cannot easily be moved on the deck
in a precise manner sidewards on its wheels, unless it 1s snaked
back and forth and then eventually skidded on its wheels, Thi:
could be alleviated by making both aircraft main landing gears
swiveling, at a weight penalty.

2.2.7 Ship Compatibility

The landing gear pattern for the tandem arrangements
requires less area within its footprints than the side-~bveside,
and the ease of decoupling the aft heliconter from the forward
interconnect structure gives a much higher rating for the ship
compatibility to the tandem arrangements, The aft helicopter
of the nose«toe~tail configuration, with less items removed in
order to make it a part of the multi-lift system, is more
quickly returnable to its normal single aircraft configuration
than in the talil-to-tail arrangement. However, this is not an
advantage over une side«by~side, which would also have this
quick=return s.lvantage. Both>the nose«to-tail and side-by-side
have the advantage of having the cargo ramp and cargo area
potentially usable in at least one aircraft. In the side-by-
side configuration, both cabins would be usable, provided that
the interconnecting shaft would be routed so that it did not
go through the cabin area. If this were not true, then only
one of the pair wouid be avallable for use in internal cargo
loading. Such an unsymmetrical loading condition for heavy
internal cargo prcbably would result in an unacceptable lateral
center of gravity, In the tandem configuration, the forward
helicopter cabin would not be easily accessible, and again,
the unsymmetrical loading of only one cabin woulc probably not
be feasible for heavy loads.

2.2.8 Selection: Nose-To-Tail Configuration

For each of the characteristics considered ahove, the nose-
to=tall configuration was superior or eaqual to each of the others.
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g o The tail-to-tail configuration was discarded b.:cause of probable
£ . inadequate yaw control power. The side-by-side configuration 1is :
E inferior in ship compatibility, structural weight, and performance,
é and the transmission interconnection is somewhat more complicated. ;
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3. DESCRIPTION OF CONFIGURATION SELECTED .

The configuration selected as most promising for the Multi-
Helicopter Heavy Lift System is comprised of two helicopters
connected together and operated as one, as shown in the Frontise
pilece and on Fig. 3-1 . The helicopters in the system are standard
CH=53's permanently moditied at a depot with local fittings and
reinforcements., The modified hellcopters are then rigidly inter-
connected in the field by structural beams as indicated by the
truss structures., This structure can be removable and therefore
of minimum weight penalty to the helicopter when not being used
in a multi=1ift operation. The fittings and removable reinforce=
ments are to be packaged in kits to be installed in the field
only when required, and removed in the field when using the
helicopters for their normal missions,

Similarly, the helicopter rotor systems are connected by
modifying each main rotor transmission to accep: a crosse-shafting
kit which may be installed in the field when re« ired, Each
rotor transmission is modified by the addition o a pair of
bevel gears, The cross-shafting kit contains appropriate gear i
boxes, shaft segments, adapters and couplings. When assembled,
the synchronizing shafting which 1s connected to one of these
bevel gears in each transmission runs along the starboard side
of each helicopter. Thus, any engine can supplv power to all )
rotors as in a conventional, multi-engine, multi-rotor helicopter. . i

o ANRE A N N o it 2 S RS S N M SR ZT Ao 0 M S G0 LA R B B K WP T Bt

The interconnecting drive shaft 1s a fall safe feature
1n the multi-1ift design. In the event of an engine failure
in any one helicopter, the power in the remaining helicopter
does not have to be reduced for balance as the remaining engines
povwer are automatlically redistributed evenly to each helicopter
through the cross«shafting and modulated by the turbine governor
controls, In the case of helicopters loosely interconnected,
an engine failure in one helicopter demands a rapid and equiva-
lent reduction in power in the other helicopter or static
equilibrium is lost. Thus, one engine fallure results in an
effective power loss of two engines and probably requires the
payload to be dropped.

Power management used in the multi-lift design is similar
to that used in a tandem rotor helicopter where the torque
varies between rotors. The speed of each turbine is controlled
by 1its own governor, all of which are set initially to the same
speed by the pilot or flight engineer. Changes in power level
will cause an initial small change in RPM of the entire drive
system, semnsed by each governor, which then automatically
adjusts the fuel flow to its respective turbine. Minor vernier
adjustments can be made at any time to the governor setting
of any individual turbine by matching the torque indicator
readings. Inadvertent inequalities in power sharing are not
harmful, would not affect safe flight, and in no way differ
from those which occur in existing multi-engine helicopters.
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! In the multi-1lift system involving a beam or spreader-bar

= loosely carried by two or more hellcopters, it is an absolute
requirement to be able to release the beam together with its 1load,

. since if either of the helicopters is in distress, failure to
o release would involve disaster to both, In the scheme proposed
herein, however, the coupled helicopters beccme, in fact, one
helicopter with redundant power, controls and even structure, ‘
If an emergency should develop which prevents a safe landing with
the supported load, it can be jettisoned at any time,

i To permit the complete interconnected system to be
- controlled by one pilot, the flight control systems are meche
anically interconnected. When the pilot in the master helicopter
operates his cockpit controls in the normal manner, the rotor
controls in both helicopters follow immediately.

s

A,

If the requirement for a crane no longer exists in a

;j given theater, the helicopters are separated and made available
- for their normal missions. Thus, the utiiity of the individual
helicopters and the flexibility of operation may be greatly
enhanced,

A more detailed description of the MHHLS subsystems,
toth depot modifications and field modifications, appears in
the following sections:

a., Structures

b, Power Transmission System

¢, Controls

d. Assembly and Disassembly Procedures

b Yb

A summary of the modifications and additions to the
CH=53D's is shown in Table 3-1.

© v e b B AR < 8 N

TABLE 3-1. MGDIFICATIONS AND ADDITIONS REQUIRED i

MODIFICATIONS REQUIRED

Suare a

- NEW TRANSMISSION STARBOARD INPUT PLUG (WITH NEW BEVEL GEAR SET)
o NEW STARBOARD ENGINE INPUT SHAFT

FUSELAGE STRUCTURAL REINFORCEMENTS

NEW ELECTRICAL EQUIPMENT DOORS

j RIGHT ENGINE COWLINGS

— ROTOR CONTROL MJXING UNIT

i A.F.COS.
SWIVELABLE MAIN LANDING GEAF, LOCKASLE FORWARD
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- TABLE 3-1 (COrT'D)

'ADDITIONS REQUIRED

TP R SRR IR

INTERCONNECT ING SHAFTING AND GEARBOXES
INTERCONNECTING TRUSS

MECHANICAL INTERCONNECTION OF FLIGHT CONTROLS

PR AR AT

INTERCOM AND INSTRUMENTATION BETWEEN FRONT AND REAR HELICOPTER

ENGINE CONTRCLS FOR AFT HELIZOPTER IN FORWARD HELICOPTER

VAT SIEN

HOIST SYSTEM OR SLING }

3.1 STRUCTURE

Depot structural modifications to the CH-53D's for use in e
MHHLS consist of installing the interconnection fittings &nd of e
reinforcements required to safely transfer the concentrated
loads from these fittings to the fuselage shell, E

The interconnection fittings are made {rom heat treated
aircraft quality steel. They are protected from corrcsion in
accordance with MIL standards and are attached to the fuselage
using standard hardware,

In order to increase the fuselage strength locally under
the fittings, heavy gage external and internal local reinforce=
ments, made from high strengtii 2iuminum alloy, aze provided.
Further transfer of the fitting loads is by means of light gage
doublers and stringers. These reinforcements cover fuselage
sections from CH=53 station 162 to 202 and from station 482
to 522'

The interconnecting structure, shown on Fig.3-2 has an
upper and lovWer truss, made from high sirength steel tubing,
heat treated after welding. The upper truss contains provi-
sions for attachment of the external load suspension hook cable.

These trusses are loined by 10 struts to form a rigid,
statically determinate central space framework. The struts are
made from high strength aluminum alloy tubirg and have high
strength heatetreated steel end fittings.

prys

The central space framework is jouired with both heli-
copters by means of 15 long struts, also made from high strength
aluminum alloy, with higl! strength steel end fittings.

f11 struts are designed to have resonant bending vibrate
iona. .. .quencies well above the exciting frequency of the air
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flow disturbances, caused by the rotor blades.

T T R

Quick attachment of the struts to the fuselage fittings 1is
2yumeans of "Expando-Grip" pins which are described in paragraph
L ] .1'

The tail end of the modiflied forward helicopter is directly
attached to the central framework by means of a link which takes
only lateral fuselage shear.

L e LR b R S R O T

The nose wheels cf the forward helicopter are not used in
the MHHLS. Instezd, the forward helicopter main wheels become the
front wheels of the MHHLS, and must be made swivelling.

The aft {main) swiveling landing gear of the forward unit
of the MHHLS 1is a modified CH-53D nose wheel assembly. In addi-
tion, each assembly is made manually lockable during the depot modi-
fication so it can be used in the single CH-53D configuration.

An additicnal feature considered, but not added to the MHHLS
design, was power steering of the forward unit's wheels. This
could assist in the deck handling characteristics. However, its need
i1s uncertain and can be one of the itemc determined from prototype
testing.

v,
R AT D s LA A i VSR ST RS NI v A s B A T i NP A A R ARSI A 7 SO AN SN h.mwnmmﬁﬁM

3.2 POWER _TRANSMISSICN SYSTEM

The drive systems of the forward and aft helicopteir : are
interconnected by a synchronizing system which permits the ilow of
powar from any engine to either rotor, and which permits the trans-
fer of rotational kinetic energy between rotors in the autorotation
(power-off) condition.

The synchronizing rotor drilve system is connected at the
starboard input bevel gear of each main rotor gear box (Fig. 3-3).
The plug (Fig. 3-4) which mounts the input bevel pinicn and free-
wheel clutch, and which is bolted to the gear box proper, is
modified as shown in the preliminary layout drawing, Fig. 3-5 sc ;
that the free-wheel unit 1is moved forward sufficiently to pernit )
the insertion of an auxliliary bevel pinion on the same shaft, fixed
to a new input bevel pinion which repliaces the existing one. This
auxiliary bevel pinion meshes with another additional gear in the
modified plug, which directs the syrchronizing torque down and to
the right, below and outboard of the engine nacelle. Here, on each
helicopter, is locat.d an intermedia-e gear box as shown in prelim-
inary layout drawing, Fig. 3-6 witn shafting interconnecting tnem
along the starboard side of the structure, Figures 3-7 and -8 are
photographs showing an approximate meck-up of the synchronizing
shaft routing under the engine nacelle.
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The new plug is a factory bullt and assembled unit that is
part of the modifications installed during the depot overhaul
period. The lengthened plug requires replacement of the shaft from
the turbine "nose gear box" on that side with a new shaft approxi- {
mately twelve inches shorter. i

PYSE IO T gy

3.3 CONTROLS

Py

To permit the comple =2 interconnected system to be controlled
by one pilot, the cockpit controls of the two hellcopters are inter-
connected and the relationship btetween control inputs from the
cockpits and rotor motions are modified from the CH-53 values. Wken
the pilot in the master helicopter operates his cockpit controls in
the normal manner, the controls in both helicopters follow immediately,
and in the ratios desired for the tandem configuration. Table 3-2
shows the required flight control actions for typical maneuvers. The
load pick-up pilot in the rear helicopter can also operate the flight
controls through the same interconnected linkage.

YR Y IR AT FTYR TS I AT

LA AT

The basic task is to actuate the controls of the "slave"
helicopt ~ from the master helicopter cockpit, along with those of
the mas .r helicopter itself.

AR RN,

LTIy

An overall schematic of the flight controls 1s shown in
Fig. 3-9. The controls in the two aircraft are mechanically inter-
connected in the area just behind each cocxpit. A low-gain power
assist can be added to eliminate friction, but at this stage 1s not
considered necessary.

rYraeaivee

TABLE 3-2
CONTROL INTERCONNECTIONS *OR MULTIPLE HELICOPTER
LIFT SYSTEM

L0, %Ak 1AL A LN EAd Asved LAt

(2 _CH-53D HELICOPTERS, NOSE-TO-TAIL)

v e c4 s AP AR A b . .

INCREASE PITCH ROLL YAW
MANEUVER TOTAL LIFT NOSE DOWN LEFY NOSE LEFT
; FORWARD INCREASE DECREASE LEFT LEFT
o HELICOPTER COLLECTIVE COLLECTIVE LATERAL LATERAL
PITCH PITCH AND CYCLIC CYCLIC i
FWD. LONG.
cYCLIC
AFT INCREASE INCREASE LEFT RIGHT LATERAL
HELICOPTER COLLECTIVE COLLECTIVE LATERAL CYCLIC AND
PITCH PITCH AND cYcLIC INCREASE
FWD. LONG. PITCH OF TAIL
CYCLIC ROTOR

TO MAKE MANEUVERS IN THE REVERSE DIRECTION, EACH CONTROL MOTION
IN THE CHART IS REVERSED,
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Flight controls use most existing aircraft contrcl system
components, including:

a. Non-modified upper rotor controls of both aircraft.
b. HNon-modifled cockplt controls of both aircraft,
¢c. Non-modified AFCS tandem servocylinders.

d. Non-modified push-pull rods and some bell-cranks
of the mechanical linkage of each helicopter.

Field modification of controls include the following:

a. Replacement of exlsting control mixing units by
new mixing units.

b. Addition of mechanicai linkage interconnecting the
controi systems of the two helicopters.

¢. Removal of the tail rotor controls from the for
ward helicopter.

: d. Replacement of existing AFCS amplifier by a
P modified AFCS amplifier

Depot modifications consist primarily in installing wiring
provisions for the alternate AFCS, and brackets for acceptance of
either the original or the modified mixing units.

e

k-

}

A mechanical schematic is shown in Fig. 3-10.

PCT—
Aom rvem

3.3.1 Interconnection of Cockpit Controls

)

Interconnection of the controls between the two cockpits is
by means of a "conduit" containing all required mechanical and
electrical connecting members. The conduit is comprised of four
modules, arranged in tandem, the fcremost of which is shown sche-
matically in Fig. 3-11. When connected together, and supported
flexibly from the airframe structures, the four modules serve to
transmit control motions accurately between the cockpits, indepen-
dent of structural deflections. Actual connection to the controls
of each hellcopter is at the lower bell-cranks at station 162, which
are medified for this purpose.

§ e
Sevamann

Yoy
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Each module contains six sets of quadrants, interconnected
by stainless steel cables which are preloaded to eliminate stretch-
ing under control loads. The quadrants are supported by a struce
ture, composed of steel elements taking the module conversion loads.
Since, under temperature changes, both the cables and the structure
elongate the same amount, the cable prelocad does not change with
temperature. Low-friction ball bearings are used to support the

32
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quadrants.

Each quadrant is aquipped with a lever for interconnection
witn the adjacent quadrant on the next module or with the heliccpter
bell-crank, by means of push-pull rods. Bearings used in the push-
pull rod-ends are free of backlash.

The modules are supported by the MHHLS structure in a manner
that isolates theeffects of relative structural deflzctions on the
interconnecting ccntrols. The assembled conduit is of fixed
length, and is supported on vertical links, so that fore-and-aft
structural deflections do not affect the relative positions of the
bell-cranks at each end of the conduit. Transfer of mction from
the bell-cranks at each end of the conduit to the CH-53D controls
is in essentially a vertical direction, and is nearly independent
of any fore-and-aft motion of the conduit relative to either heli-
copter. The actual connection to the CH-53D controls occurs in the
so-called "broom-closet" behind the pilot's seat, where bell-cranks
for accepting the interconnection are installed in the depot modiri-
cation.

AT TR A SR AR, TR TR P
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All electrical interconnections alsc .tilize the conduit,
to house the necessary multi-conductor cables, although the iso-
lation feature is of nc importance to electrical signals.

ST NI

3.3.2 Flight Control Mixing

The CH-53 heliccpter incorporates a "mixing unit" in its con-
trol system mounted above the cabin roof deck, just ahead of the
rotor. This mixing unit receives "pure" inputs from the cockpit con-
trols; i.e,, collective stick {thrust control), longitudinal and
iateral cycilic stick, and rudder pedal motions. It "mixes" these in-
puts In appropriate ratios, and threse of its outputs goc to hydrau-
12c actuators which move differentially to tilt the swashplate for
ecyclic pitch, and ralse or lcwer it for collective pitch. fourth
ocutput from the mixing unit controls tail rotor pitch, and a filth
one is an input tc the engine power control. When the pilot operates
the collective stick, the mixing unit produces an input to tail
rotor pitch and main rotor lateral cyclic pitch as well, so that
rotor torque is essentially automatically balanced. Collective
piteh input to the mixing unit also produces an appropriate change
in engine pcwer setting.

In order to explain the method ¢f producing control mixing
in the MHHLS, the cperction of the unmodified CH-53D will be des-
eribed in detall, referring to Fig. 3-12. An input from the cockpit
L ccllective pitch lever rotates bell-crank 1, which 1s fastened
i to torque~tube 2. Bell-cranks 3, 4, and 5 are also fastened to
torgque~tube 2, and rotate in uniscn with bell-crank 1. Mounted on
each cf bell-cranks 3, 4, and 5 is a second bell-crank &, 7, and 8
rezpectively. These latter bell~cranks are additionally operated by
inputs from the stick and pedals to bell-cranks 9, 10,
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and 11, which are mounted to turn freely on torque-tube 2. If the
stick and pedals are held fixed while bell-crank 1 is rotated
clockwise in response tov a collective pitch input, then the output
points o7 bell-cranks 6, 7, and 8 will all move aft. A similar
motion is imparted through rod 12 to bell-crank 13, mounted on

jdler 14. Members 13 and 14 are shown out of true position for
claritv. The lower end of link 15 1is actually mounted on bell-crank
9 as indicated by the arrows. Therefore, ai input is given, 1in

the same direction, to all three swashplate actuators, and to the
tail rotor, as a result of a collective pitch input. If bell-cranks
6, 7, and 13 all had the same length output arms, the swashplate
would move with "pure" collective pitch. Bellecrank 7, however, 1is
shorter than the other two, so that a lateral cyclic pitch compo-
nent is introduced in conjunction with collective, 1in order to
compensate for the tail rotor pitch introduced by bell-crank 8.

If the cyclic stick is moved fore and aft while the col-
lective pitch stick is held fixed, bell-crank 9 is rotated, and
motion is imparied to bell-cranks 6 and 13, but in opposite direc-
tions, causing the swashplate to be tilted for longitudinal cyclic
pitch. Lateral stick motion causes motion of only bell-cranks 10
and 7, to tilt the swashplate laterally. Rudder pedal motlon causes
motion of only bell-cranks 11 and 8 to change the tail rotor pitch.

Arm 16, which is bolted to torque~tube 2 is connected to
the turbine fuel control system, so that a change in collective
pitch, which rotates torque-tube 2, will reset the turbine governor

to counteract the normal governor droop resulting from a change in
power level.

.. The design task, therefore,is to change arm lengths on ap-
- priate beli-cranks of the mixing unit in each helicopter to pro-
L duce the desired combinations of cyclic and collective pitch for
the new tandem configuration. The major constraint 1s not to ex-
: ceed the extremes of cyclic or collective pitch available on the
il CH-53. The requirement for differential collective pitch reduces
the amount available for "pure" collective pitch, and the require-
i1 ment for differential lateral cyclic pitch for yaw control reduces
ig the amount avallable for roll control.

bl 00 SR EENR A K ik 1A T S LU QIR U s SN R AR e M R TRV 20 P T 2, B0 i YA AN st TS A

Most of the functions of the CH-53D mixing unit are also
j applicable to the multi-1ift system. The major difference is that
longitudinal cyclic stick motion must produce differential collec-
tive pitch on the front and rear rotors. 1t 1s also desirable to
o combine thls with longitudinal cyclic pitch for better precision
bl hovering over a spot. A second point of difference is that for
torque balance a collective pitch increase should produce a left
lateral cyclic pitch in the front rotor (Just as in the single
CH-53), but a rignt lateral cyclic pitch in the rear rotor. A
third change is that the rudder pedal input should not only change
tail-rotor pitch (on the aft helicopter), but should also cause
differential lateral cyclic pitch on the two main rotors to provide
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a more effective yaw control. These changes are shown schematically
in Fig. 3-13 and 3-14.

3.3.3 Interconnection of Engline Controls

LU L I SRR B R R B (B L

MHHLS system has all 4 engines fully controllable from the
: forward cockpit. A duplicate engine control quadrant will be in-
a stalled on the cockpit roof, adjacent to that which contrcls the
. engines of the forwar< CH-53D. This quadrant will be linked mech-
3 anically with engine control levers of the enginss of aft CH-53D,
as shown schematically in Fig. 3-15.

. ' AdGitional electric speed trim switches will be installed
£ on the pilot's and co-pllot's collective stick control pancls to
: trim the speed of the engines of aft CH-53D.

3 3.3.4 Automatic Flight Control System (AFCS)

The CH-53D AFCS. 1s basically suitable for stabilizing the
MHHLS. The following changes are required.

= a. Replace the removable "gain capsule" with one with
4 gains adapted to the MHHLS requirements {(forward heli-
copter only).

b. Disconnect the AFCS electronics from the AFCS servo
actuators (aft helicopter). It is not needed for
the MHHLS.

¢. Install wiring so that signals from the forward
AFCS electronics unit operate cn the AFCS servo

E actuators 1in both helicopters. The AFCS servo

actuators are connected "upstream" of the mixing

TR

Ty

e unit, so that the modification to the mixing units
5 for the cockpit controls are equally suitable for
H the AFCS.

3.3.5 Summary of Control System Modifications

E. a. Interconnect the cockpit flight and engine controls
3 mechanically, in a flexibly mounted conduit which
isolates the ccntrols from structural deflections
between the two helicopters.

Ut
(2

Replace the mixing unit in each helicopter with one
3 in which the mixing ratios are adjusted and suitable
= interconnections are added to suit the reguirements
of the MHHLS.
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Install wiring so that the AFCS in the forward
helicopter will operate the AFCS actuator in both
E helicopters.
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d. Replace AFCS electronics unit with a modified unit
which has the proper gains for the MHHLS configura-
tions.

3.4 ASSEMBLY AND DISASSEMBLY PROCEDURES

The total conversion process to provide an MHHLS capability
may be divided into two distinct tasks - the first being the per-
manent aircraft modifications required to accept the MHHLS field
conversion kit and the second being the final assembly of an MHHLS
system in the field using two modified CH-53D's. A flow chart of
assembly procedures for converting two CH-53D's into one MHHLS 1s
shown in Fig. 3-1€.

Prior to utilization as a unit of a MHHLS, a CH-53D must be
modified to accept the varicus attachments, additions and variations
that will occur later when it is assembled in the field or on ship-
board to be an MHHLS. The depot modifications are discussed in
Section 4.5. This "standard depot modification" enables the CH-53D
to serve as either a forward or aft unit of the MHHLS.

The final assembly of an MHHLS system may be divided into
three major areas of effort: first, the field preparation of the
: two depot modified CH-53's as a forward or aft vehicle by the in-
= stallation of the respective field kit; second, the pre-assembly of
¢ the interconnecting structure preparatory to joining the two air-
! craft; and last, the joining together of the three elements -- for-
ward aircraft, aft aircraft and interconnecting structure -- into
a complete MHHLS system. The assembly sequence is illustrated in
Fig. 3-17, and detalls of the assembly procedure and man hour es-
timates are discussed in Operational Aspects.
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FIGURE 3-17
ASSEMBLY SEQUENCE DIAGRAM NOSE-TO-TAIL CONFIGURATION f
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i, ANALYSIS OF SELECTED CONFIGURATION

A feasibility investigation was made of the selected MHHLS
configuration, which consists of two CH-53D helicopters mounted
nose-to-tail in tandem, with the tail rotor and its pylon removed
from the forward nelicopter. The investigation considered the fol-
lowing aspects of feasibllity.

a. Welghts an. Performance

7
G
s
X
=i

(4
o
.

Structure

DS A

Flying Qualities

%
(2]
]

1. d. Reliability and availability

T

e. Complexity and cost of conversion

il
ad )

f. Operational aspects

o

ol

The remainder of this report presents the results of the
z investigations in the order given above,

Nt on

4,1 WEIGHTS AND PERFORMANCE

PRI R P

4,1.,1 Weight and Center of Gravity

Welght empty of the MHHLS has been estimated on the follow=-
K ing basis.

- a. Incorporation at depot level of all required permanent

Ik modifications so that any modified CH-53D can become

: either a forward or an aft aircraft. This is designa-

- ted as a "standard" aircraft. The MHHLS is then field

assembled as shown by removing "mandatory" items (such

3 as the tail rotor of the forward helicopter) and adding
; L necessary compcnents as shown in table 4-1.

Rty P A A SRS AN e 28 DY AR B PR A T SR AR R0 S R R s RN

e b, Field removal of those items of equipment which can

A be removed or re-installed within thirty minutes,

as shown in Tatle 4-1. These "optional removal items"
save 1258 pounds per CH-53D, for a total of 2516

pounds per MHHLS.

RPN

A
14
[ p———

[ty A

Payload-Radius curves are shown on the baslis of the
welghts shown in Table 4-1, which shows an operational, zero-fuel H
weight of 50,468 pounds. ;

§.1,1,1 Balance

D AT o] LTI e

by
e

At the operational weight with full fuel and no payload, the
c.g. of the MHHLS lies 1 inch forward of the bisector of the rotor
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TABLE 4-1. MEHLS SUMNARY WEIGHT STATEFMENT
F
(2) CH-33D DEPOT ¥ODS 1ELO_MODS 1
MANNATORY CHANGES PY
OEPO™ DEPOTY INTERCONMAX, T, [30 MIN, BASIC
UN-HODF| ynos  popirieg ™0 A/C PFT A/C L acey | minis” pemovatd smmLs
ROTOR GROUP_
BLADE ASSEMBLY 4,239.9 4,239.4 s,239, e 239,
HUB 800.4 800, +800, 4520,
HINGE AND BLADE PETENTION 73,969, 2 3,969, k3,969, 3,969,
TAIL GROUP
TAIL ROTOR 744.,0 744.4 -372.0 +372, 37,
STABILIZER-BASIC STRUCTURE 202.4 202.4 -101.2 4101, «101.
80DY GROUP
FUSELAGE OR HULL-BASIC STPUCTURE 6,393.2 +654.0 7,047, +52.1f +345.0( 2,346.009,790. b9,679,
BOOMS-BASIC STRUCT® 3 1,037.6 1,037, p1,037, pt,037,
SECONDARY STRUCTURE~FUSELAGE OR HUL' 1,34%.8 1,345, bi,348, rl.&ls.
BOOMS 5.4 3.4 .4 .3,
DOORS, PANELS & nISC. |[2,743.8] +40.0} 2,783, -3.0 -0 b2,775. ~691.0ﬁ1,°1..
ALIGHTING GEAR 2,054.6] +128.0] 2,182, -39,7 b2, 142, p2, 142,
FLIGHT CONTROLS GROUP
COCKPIT CONTROLS 232.9 252, 4252, *252,
AUTOMATIC STABILIZATION 193.6] +40.0] 233, +233, 233,
SYSTEM CONTROLS-ROTOR NON ROTATING 490,07 +34.0] 524.0{ +117.3] +38.0] +125.0] 804, *804 .
ROTATING 524.8 S24. +524, *9524,
HYDRAULIC 800ST 889.6 889, +889, *809,
ENGINE SECTION OR NACELLE GROUP 788.4 788.4 +788.4 +708,4
DOORS, PANELS AND MISC, +20.0 20,00 -6.0] -6.0 +8, ..,
PROPULSION 3ROUP
ENGINE INSTALLAT!ON 2,776.0 2,776.0f b2,776, b2,776.
ACCESSORY GEAR S0XES AND DRIVES 218.8 218, +218,8 2218,
AIR INDUCTION SYSTEM 102.8 102.8 +102.98 «102,
EXHAUST SYSTEM 69.8 69.8 +69.8 .9,
LUBRICATING SYSTEM 109.4 109.4 +109.4 +109,
FUEL SYSTEM 777.8 777.8 +7177.8 S i S
ENGINE CONTROLS . 99.2] +60.0| 159.7 +159.2 +199,
STARTING SYSTEM 304.3 304.4 +304.4 +304. 4]
DRIVE SYSTEM +12.0 12,0 +107.0 +119,0 sl
GEAR BOXES 6,317.0] +140.0}6,457.0] -42.6] +250.0 }6,664.4 }6,664.4
LUBE SYSTE™ 123.6 123.6 +123.6 +123,
CLUTCH AND DISC 191.4 191.4 +191.4 +191.4
TRANSMISSION DRIVE 596.2 596.2] +54.0 +%507.01,157,2 Ll_l!’.z
ROTOR SHAFT 900.0 900.0 +900.0 +900.0
AUXILIARY POWER PLANT GROUP 480.4 480.4 +480.4 +480.4
TAUNENT AND WAVIGATIONAL EQUIPKENT GROUP . )
'.ngTIUIElTSD s18.4 8.0 3235.40 +20.0 +543,4] 0543, 4
NAVISATIONAL EQUIPNENT 299.6i 299.6, +299.6: 2.8
HYDRAULIC AND PKEUMATIC GROUP 227.9] 277.0. *277.0 77,0
ELECTRICAL @ROUP 1,239.0 1,239.0; 1,239.0 1,239.0
ELECTRONICS GROUP 1,346.2] 12,0 1,3508.2 +175.001,332.2 01,935.2
ARMAMENT GROUP-INCL GUNFIRE PROTECTION 47.0f (7.‘)! +47.0 *47,0
FURMISHINGS AND EQUIPNENT GROUP ; - i
ACCONNODAT | OMS FOR PERSOMNEL 1,230.8 1,730.8 +1,230.8) -200.8 ¢942.2
WNISCELLANEOUS EQUIPMENT X INCL 780.0 +12.d4 792.0 +792,0! -248.4 ¢543.9
FURRISHINGS 427.0 427.0 +42,.0] =389, 39,0
ENERGENCY EQUIPNEAT 15%.2. 15%.2 *19%,2 *159,2
AIR CONDITIONING AND ANTI-ICING EQUIPMENT 64al.4 s41.4 «641.4] -223.4 +418.4
AUXILIARY GEAR OROUP 767.8 767.8 +767.8 +767.8
LOAD HAMDLING GEAR -42.0 +400,01 +358,0] -669.6 -311.6
MANUFACTURING VARIATION -381.2 -381,2 -381.2 -381.2
TOTAL WEIGHT EMPTY k7,089, ¢f+1,160,048,244.6| -363.1} +729.0 }3,553.0 2,:53.5»2,5|n.qbo,6ns.7
TRAPPEDR FUEL 30,0
TRAPPEC OfL 8.0
ENGINE OIL 96.0
WINDSHIELD WASHER FLUID 26.0
CREW (3) 660.0
OFERATIONAL-2EPD-FUEL
MEI1GHT 50,468.7
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axes, At maximum gross weight, the c.g. lies 9 inches forward of the
bisector. The reason for this relatively small c.g. shift 1is be-
cause only one point is assumed for 1lifting the cargo. This point

is 23 inches fc ward of the c.g. without payload.

The most ferward and most aft c.g. pesitions are obtained
by aisuming a flight mission using full fuel, during which an
engine failure occurs just after take-off and the nission continues
until fuel 1is exhausted in one CH-53D and half of the fuel still re-
mains in the other CH-53D. Under these conditions, the most aft
c.g. is 18 inches aft of the bisector and the most forward is 20
inches forward of the bisector. These c.g. locations are shcwn
on Filg., 3-1.

Because of the interconnecting shafting, gearboxes, and
supports located on the starbocard side, the lateral center of gravity
is 2 inches to the right of the vertical plane through the rotor
axes 1in the no-payload configuration., Locating the payload in this
"central® vertical plane reduces the center-of-gravity effect in the
fully loaded configuration to 1.36 inches to starboard.

"Standard" depot modifications of the CH-53D which make 1t
suitable for use as either forward or aft MHHLS aircraft increase
its welight empty by 580 pounds and move the c¢.g. fcrward by 1.6 inches,
compared to its allowable range of 24 inches. The 580 pound increase
in empty welght reduces the CH-53D payload capability by the same
amount.

§,1.2 Performance

Perforirance has been calculated using CH-53D performance as
a base, taken from Ref, (9). Hovering performance, out-of-ground
effect, data was corrected for the fact that the MHHLS (2) coupled
CH-53D helicopters have only one tail rotor and, therefore, only
cne-half the tail rotor loss per helicopter.

In hovering, the power transmitted through the interconnecf.-
ing system is of the order of 4% of total power, and the losses in
the interconnecting system would be 4% of this, or less than 0.2%.
This loss was neglected in calculating hover performance, but it .is
included in forward flight calculations, where it increases to the
order of 1% at 125 knots.

In assessing vertical drag (download), it was assumed that
the interconnecting structure between the forward and rear helicop-
ters replaces the tall rotor and pylon which 1is removed from the
forward helicopter. To be consistent with the Navy study, Ref. (2),
HIGE gross welghts are obtained by applying the HIGE augmentation
factor of 1,09, used in Ref., (2), for a 15-foot wheel height, to sea
level conditions, and a factor of 1.034 for a 50-foot wheel height,
for the 3000-foot altitude condition.
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Power versus gross weight, and turbine power available, is
shown on Fig. 4-1 for hovering in and out of ground effect at sea
level 59°F., sea level 90°F., and 300) feet, 91.5°F and for hover
out of ground effect at 4000 feet, 95°F. The latter condition is
not a naval requirement, but is included becavse it is the design
condition for the Army heavy-lift helicopter.

Vertical rate of climb was calculated on the basis that, at
the sam2 disk loading, altitude and temperature. the MiHLS would have
the same rate of climb as the CH-53D, taken from Ref. (9), for the
same excens power per rotor (excess above the power required to
hover out of ground effect). This implicitly assumes that excess
power 1s distributed between main and tail rotors in the same pro-
portion as for two single CH-53D's, and is conservativé because the
MHHLS has only one tall rotor. Vertical climb versus gross weight
curves are shown on Fig. 4-2, -3 and -4, for sea level/59°F,, sea
level 9C°F,, and 30600 feet/S1.5°F, respectively

For forward flicht calculations, rotor profile nower was
taken from the CH-53D, per rotor, at the szme weight, speed, and air
density. Rotor induced power wa: taken as twice the Ch-53D valte
at the same disk loading, th«n further increased to acvount for tan-
dem rotor mutual interference. The factor for interference was de-
rived frem the longitudinal t.im computer program {or sea levol,
59°F (see Section 4.3 Flying Qualities) which gives froant and rear
rotor power as an outrut and is a linzar functiom of sveed, varying
from 1.00 at hover to 3.05 at 1B¢ ynots. As in the hover calculations,
tall rotor losses were conservatively assumeZ is cne-half the amount
per rotor as the Cii~-53D. A plat of tail rotor loss ver<us speed,
from Ref, (39), 1s shcewn on Fig, 4-5. Other mechanical losses were
taken at 5.8% cf total power for main gear box ani azcessory cdrives,
and U% of synchroni:ing shaft power for the additional gear meshes.
Fig 4-6 shows the i:ncrease in equivalent drag area assumed for ‘he
MHELS compared to a single CH-53D (taken from Ref 9) The drag
area of the MHHLS, as siven in Fig. 4-%5, was calculated as follows.
The drag area of the CH-53D was broken down into three parts:

(a) the drag arez at 0° angle of attack, less the rotor hub drag;
(b) rotor hut drag; (c) tne incremental drag varying with angle

of attack, Part (a) was assured to be increased by 50% in the MHHLS,
since at 0° angle of attack, che frontai area is nearly the same, and
the rear helicopter is largely blanketed by the front one. Part (bj
vas dcubled for the MHHLS, since it has two hubs. Part (c) was in-
creaseu by 70% because of tha partial loss of blanketing in the

range of angles of attack of inter~sstc.

Plots of power required versus speed are shown in Fig. 4-7,
-8, and -9 for sea level/59°F., sea level/90°F , and 3000 feet/91.5°F ,
raspectively. On each plot is also shown the power available from
all four turbines, from three turbines (one-engine-out conditior),
and from two turtines (two engines nuti. Fig. 4-7 shows that at
sea level, 59°F., the MHHLS with no payload can hover with two
engines out, using 19-minute power on the remaining two, and can fly
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A summary of weights and performance is given in Table 4-2,

The latest production model turbine (T64-415) can be used

in the MHHLS to provide better hot day and/or altitude performance.
However, its increased power under sea level/normal temperature

.- operation cannot be fully utilized in the CH~53D unless the main
i rotor collective pitch is incr. ased. This can be rigged at the ex-
| pense of increasing the lower collective pitch setting. Since the
& . lower setting of collective pitch is used in autorotation, it is not
A considered good aeronautical engineering practice to compromise the
autorotation performance of the aircraft, Therefore, the usesof
the larger powered versions of the turbine would be for hot and/or
high altitude missions and the increased sea level capacity could be
utilized in an MHHLS version of the CH-53 that would be designed for
the larger power input.

R D b U T B AL s s o
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b,2 STRUCTURE

: The purpose of the structural investigation was to determine
£ the areas of the CH-53D structure which will need reinforcing, and
to determine appropriate sti ‘fness and strength requirements for the
interconnecting structure, 11 order to better estimate the empty
weight of the MHHLS.

The MHHLS system was investigated for strength to meet
structural integrity requirements and for stiffness to ascertain
that the structure would not be in rescnance wit> predominant ex-
citing frequencies. 1Initially, the interconrnnecting structure was
caiiservatively designed to reet the strengt: requirements. Based
on this design, the stiffnesses and the weight distribution were

- established for the purpose of finding the vibratory i-esonant
: frequencies,

AR

F AT N NTYTH
AL 1 A I ANRRARA G

ey

Using a computer program, resonant frequencies in varicus
modes were found for the MHHLS witnh interconnecting structure as
initially designed, and varliations representing 3/4, 2 and 3 times
heavier (and stiffer) interconnecting structure. For each case, the
= stiffrnesses and the welight distributions were adjusted as required.
For ai. cases, the basic geometry of the interconnecting structure
: was kept the same and the stiffnesses and weights were modified,
using lighter or heavier tubing walls of the structure as required.

e
2wy fams kg« rmremt sahe

To avoid costly and lengthy development of any structural
members of more sophisticated materials such as boron or graphite
T3 composites, beryliium, titanium, etc., in all cases, the design of
£ the structure was based on conventional steel or aluminum alloy
) material.

§§ The vibration analysis revealed that it would not be prac-
-~ tical to build a sufficiently r*gid interconnecting -tructure

wh* 7 would have 1ts first-mode natural frequency exceeding the
roi.. exciting frequency of 1 per rotor revolution. However,
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suitable stiffnesses were found which produce natural frequencies
sufficliently far removed from 1 per revolution to avoid resonance.

4 2.1 Loads and Stresses

Several representative critical flight conditions we -e in-
vestigated in order to determine the arcvas of CH-53D structure which
will need reinforc:ng and to be able to estimate the weight conditions
involved. The drive system was investigated to determine the effect
of interccnnecting the two rotors on drive system loads, both under
normal conditions and in event of an enginhe failure.

4,2.1.,1 Fuselage Structure

Limit rotor load factors were based on the 3,0 factor used
for the CH-53 at its design gross weight of 33,500 1b.,, reduced pro-
porticnately for increased gross weight, as shown in Table 4.3,
Flight loads were calculated at a weight of 87,300 1lb,, correspond-
ing approximately to the conaltion H.I.G.E. at sea level, 90°F,
(highest weight considered in :he study).

TABLE 4-3. TABLE OF LOAD FACTCRS

T

z Based on a design limit load factor for the CH-53 of 3.0 at
33,500 1b. gross weight, the limit load factor for the gross weiguts

i associated with the MHHLS payload radius curves ar=2: -%
3 CPOUNDS) O %
3 GROSS 1.0AD g
A WE IGHT FACTOR g
3 H.0.G.E, S.L. 90°F 79,200 2.54 3
3 3,000 FT., 91.5°F 71,400 2.82 £
3 H.1.6.E. S.L. 90°F 87,300 2.31 3
4 3,000 FT., 91.5°F 78,800 2.55 :
3 Note: Later refinements of performance calculations 3
1 changed these gross weights, but not by more b
- than 4.5%, which is not believed to affect any g
K conclusions of this study. 3
3
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The conditions investigated were a symmetrical pull-up to limit load
factor, and an unsymmetrical rolling, yawing pull-up to limit load
factor on the front rotor combined with maximum roll and yaw control.
Details of these conditions are presented in the following discussion.

Critical Flignt Conditions for Load Analysis

a. General - Maximum gross weight considered is 87,300
pounds (H.I1I.G.E., 90°F). Maximum design thrust for the
CH-53 1is

33,500 1b, x 3,uC = 100,500 1b.

Applying thls maximum design thrust to the multi-iift gives

RSN SR U B St LT A LR R G S UTOA DI L AL S L G s AN Ll 3

™}

N, = 2 x 100,500 1b. = 2.31
87,300 1b,

T

i

This compares with N, = 2.5 per Ref, 14 for cargo helicop-

bR

ters at design gross weight, and NZ = 2.0 minimum at alternate
gross weight. It is considered sufficient for this application,
since the multi-l1ift system will not be maneuvered rapidly

3 b. Critical Symmetrical Condition - (limit loads)

: Nz = 2,31 (100,500 1b. at each rotor)
{ Ny = 0 (sufficient for prelir .nary design, since

structure is not designed by fore-and-aft loads)

E Hy = 0 (symmetrical case)
5 p = 0 {symmetrical case)
; q = 0 (symmetrical case)
i r = 0 (symmetricai case)

E Torque at frent rotor from 5,563 HP at 185 REM

k! Torgue at rear rotor from 17,987 HF av 185 RPM
Total HP = 3,925 HP/eng x U engines x 1 5 = 23,550 HP

b= This distribution is from trim analysis av 125 Kts.
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Lateral differential cyclic pitch introduced by applica-~ - 3

RIS ST

tion of full collective pitch is + 2°.

AL U Ly

e« Y force = 100,500 lb. x 2° = 3,508 1lb.
57.3

(i s L

J, e 5,
i 7

to left at front rotor and to right at rear rotor.

digUfa e

Rotor torque not balanced by lateral differential cyclic
pitch 1s reacted by tall rotor ferce to right and equal

Y force to left at both rotors (combined with differential

LS A L AR R N

AN 2y et Fe

Y force per above).

c. Critical Unsymmetrical Condition (Limit Loads)

Rolling pull-out with 1limit load on front rotor, and

FI AT

pitching acceleration (q) from max. aft stick.

G2t N i

4 = 0.1 rad/sec?/in. of stick (from stability analysis).

Xe:

«emax. @ = 0.1 x 11.54" = 1.15 rad/sec? =

.

This results in:

Front rotor thrust 100,500 1b.

Rear rotor thrust 7,830 1b.

TOTAL thrust

il

108,330 1b.

" N, = 108,330 1b. 1,241 (1.2446 was used in ca: :ulation) k-
~B7,300 1b. = ;

NX = § (sufficient for preliminary design sirce structure f
is not designed by fore-and-aft loads). :

p = -2,746 (same as CH-53, Sikorsky Report 65165, page 13) ;
Max. tail rotor force = 7,000 1lb. (same as CH-53) ;"

%Max. differential lateral cyclic pitch = + 3.75°

¥ This is slightly different from the final values selected (see
Table 4-3), but ithe difference does not have significant effect
on this design flight condition.
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#Max roll lateral cyclic pitch = + 5.25°

s¢Y force at fwd. rotor =

100,500 1b, x _9.0° _ 15,785 1b. to left
57.3

and Y force at rear rotor =

7.83C 1b x 0.5° 68 1b. to right

57.3
Hy and r to balance this set of applied forces are:
NY = 0,10
> = -0.396 rad/sec?

éd. Same applied loads as c¢. above, except combined with
rotor torques per b, above.
Front rotor = 5,563 HP at .° .PM
Rear rotor = 17,987 HP at 1. i«
This produces torques of 157,865 _.. ft. (front)
510,442 (rear)
and reduces r to -.167 rad/sec?

Study of Required Fuselage Reintorcements

In order to establish which structural areas of CH-53D fuse-
lage reguired reinforcements, bending moment, shear and torsion diagrams
were calculated fcr the three cvritical load cases discussed above.

®This 1s slightly different from the final values selected (see
Table 4-3), buv the difference does not have signifizant effect
on this design flight condition.
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The results were superimposed as limiting envelopes on corrfesponding
diagrams of the CH-53A aircraft, and appear as Fig. 4-12, -13, =14,
-15, and -16, for vertical shear, vertical bending, lateral shear,
lateral bending and torsion, respectively. :

P T b e &y iy 14

These dlagrams, together with additicnal structural analysls,
indicate that some areas of the fuselage skin, mostly between Sta.
162 and Sta. 202 and between Sta. 482 and Sta. 522, will reguire re-
inforecing by stiffening with additional stringers. 1In addition,
there will be several doublers and local stiffeners required to
spread corcentrated loads from interconnection fittings into the fuse-
lage shell. These will be part of the Depot Modification Kit, and
welght allowance has been made for them in the weight estimate, Table
4.1, and in the weight by which the CH-53D is increased during modi-
fication.
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4,2.1.2 Drive System

Power to the rear rotor is higher than that to the front
.- rotor at all speeds except rearward flight (including hovering be-
- cause of tail-rotor power). The reason for this is that in forward
3 o flight, the rear rotor operates in the downwash of the front rotor,
e P and its induced power is increased. If normally all four engines
= will be adjusted to equalize their power outputs, there will be a
2 .- flow of power from the front helicopter to the rear rotor in response
A to the rear rotor's demand for more power than the front rotor. The
e critical component in the transmission system will then be the starboard
E i bevel pinion mesh, in the rear rotor, which transmits not only the
E power from its own engine, but also power from the synchronizing shaft,
5 . introduced by the front engine(s). This situation can be substantiaily
. alleviated by controlling the turbines in such a way that the power
-- in each helicopter is supplied by its own turbine. A torquemeter on
the interconnecting shaft would control fuel flow differentially to
the forward and aft turbines in such a way as to maintain zero torque
N S in that shaft.

)
Al it )

- Fig. 4-17 shows the total power to each bevel pinion of the
rear rotor with the engines controlled as described above. Also
shown is the power normally used in a single CH-53D operated at an
equivalent gross weight, with and without the drag of external cargo.
Although the power in the MHHLS rear rotor is somewhat higher than
the normal CH-53D throughout the expected cruise speed range, it is
well within the traasmission rating.
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In order to balance the power used in the front and rear rotors,
the centerline of the noist cable is placed forward of the bisector
centerline, mid-way betvieen the two rotor centerlines. The minimum
amount oi this forward effset will be the amount to Lalance the power
in the hove:-ing condition in order that the front rotor power will be
the same as the rear rotor (plus-tail-rotor) power (L%), An addi-
tlonal amount of forward offset can be made to partially compensate for
the increased rear rotor power in cruise flight.
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1 RH FIG. 4-17. 2 CH-53D MULTI-HELICOPTER HEAVY LIFT SYSTEM '
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Fig, 4-18 shows the total power to the rear rotor, as a funce
tion of weight and speed. If the aft port engine should fail, all
of the power to the rear rotor would have to flow through the star-
board bevel pinion mesh, In this particular case of failure of the
aft port engine, the power to the starboard bevel mesh would ex-
ceed the Sikorsky sing e-engine rating. An analysis of this gear
mesh was made, using gear characteristics computed by the Gleason
Works for teeth representative of the existing CH=53 gears and also
Ior teeth of the same design but made from vacuum-melted steel, The
line for infinite life is shown on the graph, aiong with lines show=
ing limited life-of 30-hours for the existing ring gear mesh-
ing with a new vacuume-melted steel pinion which is part of the modi-
fied plug., The gears have at least an 3G«hour 1life in this emergency
condition, within the speed range of 67 knots 101 knots,

4,2,2 Fuselage Vibration

Stiffness properties of tane CH=53 fuselage in vertical bend-
ing, lateral bending, and torsion were taken from Sikorsky stress
reports. A mathematical model was constructed of the multi-lift
configuration, using the Sikorsky stiffness properties and weight
distribution where applicable, The structural model consisted of
20 massless segments, each of constant stiffness, simulating the
local stiffnesses of the MHHLS, and strung out along an elastic
axis with bends and offsets simulating the probable locations of
the local elastic axis in the MHHLS (See Fig. U419, -20 and -=21).
Suiltably located in X,Y, and Z coordinates with respect to each
segment were 39 "lumped"” masses, along with their local mass moments
of inertla about each axls, to simulate the mass distribution of
the MHHLS, The interconrecting structure, which wiil be new, was
assumed to be of constant stiffness, with three different stiffness
values each, for vertical bending, lateral bending, and torsion
covering a range of 4:1 for each. For each value of stiffness of
the interconnecting portion a weight distribution consistent with-
a reasonable structure of this stiffness was used (three different
weights), Table U=l summarizes the cases investigated.

For each assumed set of stiffnesses of interconnecting
structure, a natural frequency analysis was made, using a computer
program, both in vertical bending, and in lateral bending coupled
with torslon., Each stiffness was investigated at minimum Ilying
welght (zero payload and minimum fuel), and at maximum gross weight
(H.I.G.E. at sea level, 90°F), The frequency range investigated w' -

frem 0,16 cycles per second (approximately 5% ro%or speed) to 8 cy .es

per second (2.6 times rotor speed). Fig. L4=22 shows typical elas=
tic mode shapes in vertical bending. This particular figure is for
the 3selected value of stiffness of the interconnecting structure.
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i FIGURE 4-18. MHHLS TRANSMISSION LIFE
i UPON FAILURE OF PORT AFT ENGINE
(MOST CRITICAL CASE)
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TABLE 4-4

VIBRATION ANALYSIS

MULTI-LIFT STRUCTURE

Type
Vertical Bending
Vertical Bending
Vertical Bending
Vertical Bending
Vertical Bending
Vertical Bending

Lateral
Bending/Torsion

Lateral
Bending/Torsion

Lateral
Bending/Torsion

Lateral
Bending/Torsion

Lateral
Bending/Torsion

Lateral
Bending/Torsion

Lateral
Bending/Torsion

Latefal'

LIST OF CASES

Full

Full

Full

Full

Paylcad

0

Full

Full

PN =i £ 3

39~X-11
7.45 x 1019 (EL,)
7.45 x 16*% " (21
15.9 x 100 1t (E1))
14.9 x 1010 18" (E1y)
29.8 x 1019 " (E1y)
29,8 x 1010 zxt (E1,)

7.45 x 1019 187 (£12)
7.45 x 1019 Y (E1z)

10 x4 (212)

7.45 x 10
7.45 x 1639 v (E12)
14,9 x 1010 18 (EI2)
15,9 x 10 2 " (E12)
29.8 x 161% ¥ (E12)

23.8 x 1010 Y (£1z2)
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Results are shown on Fig. #4-23, for vertical bending, and
Fig. U4-24, for coupled lateral bending and torsion. From these re-
sults, suitable stiffness values for the interconnecting structure
have been chosen to avoid rotor-excited resonance, as summarized on
Fig. U4-25, The shaded bands in Fig.4-23 (vertical bending) represent
the shifts in natural frequency caused by different loading condi-
tions ranging from zero fuel and payload to full fuel and payload.
In the case of lateral bending (Fig. 4-24), the payload {cargo) would
not be tied rigidly enough laterally tc follow the relatively high-
frequency lateral motions, and the hynhothetical frequencies of vibra-
tion with full cargo are, therefore, shown by phantom lines. The
frequency bands in this ca.e represent the differerce between zero and
full fuel, regardless of the amount of cargo.

k.3 FLYING QUALITIES

The flyinz qualities cf the MHHLS were investigated using blade
motions within the limitations of the CH-53D cyclic and collective
pitch ranges. Ref. 12 and particularly Ref. 13 were used as design
guides. Ref. 13 defines three "levels" of flying qualities, as
follows:

Level 1: Flying qualities clearly adequate for the mlssion
Flight Phase

Level 2: PFlying gualities adequate to accomplish the
mission Flight Phase, but some increase in
pilot workload or degradation in mission effective-
ness, or both, exists,

Level 3: Flying qualities such that the aircraft can be
controlled safely, but pilot workload 1s excessive
or mission effectiveness 1s inadequate, or both.
Category A Flight Phases can be terminated safely,
and Category B and C Flight Phases can be completed.

Control power, control margins, and stability were investigated,
with and without the CH=-53 automatic flight control system (AFCS).
Thie CH-53D is normally flown with the AFCS on, and this would alsc be
the case for the MHHLS. Because of the reliance of the CH-53D on the
use of AFCS the twc critical control axes, pitch and roll, are equipped
with dual AFCS channels. Yaw and collective pitch are considered
manually controllable if thelr single AFCS channel falls. This same
arrangement is used in the MHHLS, although with four chanrels of AFCS
available for the two helicopters it would be possible to increase the
AFCS fail-safe redundancy if desired.

The higher yaw inertia of the MHHLS, due to the over-hanging
masses in the nose and tail, regquires more yaw control power than the
conventional tandem helicopter. This can be provided by increasing
the lateral cyclic control. iHowever, since it was desired not to
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§ FIGURE 4-25. MHHLS STRUCTURE AMPLIFICATION FACTOR
£
s VS. UNDAMPED NATURAL FREQUENCY RATIO
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CONTROL MIYING FOR MHHLS COMPARED

TABLE 4-5

39-X-11

WITH SINGLE CH-53D

XOLL.PI1CH
COCKPIT CONTROL | (THRUST LONGITU~ LATERAL| PEDALS
DEFLECTYION CONTRGL) | D*NAL STICK] STICK
TNCHES 0 fo 37 FWD | 6.76R 2.4551
7.44 4.77 AFT 6.76L 2.45L
ROTOR RLADE PITCMH (DEGREES) RESULTING FROM
ABOVE COCKPIT CONTROL DEFLECTIONS TOTAL
MULTI- | COLLECTIVE 3.7 TC -4,00 0.3
LIFT | piTCHee 12,4 +2,81 - - 15,21
FROMI LONGI TUDI NAL 12.85 FWD 12.85FWD
RO OR CYCLIC - 9,08 AFT - - 9.08AFT]
TXTERKL 1 9] 5. 25K .75 1 7. '
WULTT- | COLLECTIVE 3.7 10 +4.00 p 0.89 ¢
LIFT PITCH®® . 12,4 =2.81 ‘- - 16,4 !
E REAR | RAT 12.85 FuD 12.85FWD
2 ROTOR cYCLIC - 9.08 AFT - - 9.0BAFT
IoRTenRC TS 2% 4.1 M N ) | S A1} S
3 cYCLIC 2.R - 5.25L 1..75R_| 9.Q0R }
=3 [ TATU to <15.0 -Sg""'-
4 *ROTOR +6 - - 13.0 +27
% COLLECTIVE 0 TO 13 To
E : SINGLE |PiITCHE® 13- {>nes
% 12 CH-53 TNRL 15.3F¥D 15,3
CYCLIC - 1§, AFT - - 11, AFT
5 ;'; 1 AL 5 |6 G.M 6.
= 1o leyetic 3L - } 6,250 - 9,25L
br - 0 10 -5, -
. ROTOR 8 - - +13 +27
RN ®THE PEDAL A
£ _REACMES ITS LIMIT FROM A THRUST CONTROL INPUT, THE PEDALS CAN BE MOVED
4 "TO IHEIR NORMAL STOPS, ($3.68"), BUT DO NOT Paooucs ANY FURTHER FITCH

CHANBE AT THE TAIL ROTOR,

| *SAT 3/4 RADIUS

SREcoOM RIGGING INSTRUCTIONS IN MAINTENANCE HANDBOOK, HOWEVER,
AVAILABLE PER SIKORSKY REPORT SERESI{I.

15.5°% 1S

- NOTE: ABOVE VALUES BASED ON RIGGING LONG. CYCLIC WiTH A DIHEDRAL OF 0°

WITH A =2° SHAFT DIHEDRAL RESLLTING IN A -2° EFFECTIVE DIHEDRAL
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modify the upper contrcl components of the CH-53D, the existing lateral
cyclic limits were retained, and the additional yaw power to meet

the required criteria 1is provided by the tail rotor of the rear
helicopter.

§.3.1 Control Mixing

The chosen amounts of cyclic ard collective pitch and tail
rotor pitch caused by individual cockpit controls 1s shown on
Table U4-5 together with those on the existing CH-53D. It was found
: that the major portion of the anti-torque need was met by the col-
L lective pitch mixing to the tall rotor of 6 degrees and to differen-
tial lateral cyclic of 2 degrees. Thls provided the optimum comblina~
T tion of lateral cyclic for lateral control and tail rotor pitch
L range coupled with differential lateral cyclic for directicnal con-

trol. Differential collective pitch satisfiles the major pitch con-

- trol requirements, but sufficient longitudinal cyclic control is
included for precision hover tasks.

o
%
!
%
§
?

G AN A A R s st S LT
I

4.3.2 Trim

The MHHLS can be trimmed in steady flight for all conditions
investigated.

At kb i )

a. Longitudinal Stick Position

The trim longitudlnal stick position was computed as a
function of airspeed, up to 125 krots, and is shown in Fig. 4-2€,
The extremes of trim stick travel allow ample control power as given
in Table 4-6, which also gives the requirements of Ref. 13.

b. Lateral Directional Control Position

The trim lateral stick position, pedal displacement and
roll angle have been computed for level flight speeds up to 125 knots
; and for sideslips up to 30°. The results are given in Fig. 4-27
ks | for 59,486 pounds and Fig. 4-28 for 87,300 pounds gross weight.

! Ref. 13 requires sideslips of 25° up to a speed of 71 knots,
: decreasing to 15° at 116 knots, and 14° at 125 knots. In the cri-
tical heavy weight case steady sideslins of 25° are attainable up to
85 knots before the contrcl limits are reached, and 15° up to *"0
knots, which is considered adequate for the MHHLS mission. Correspond-
ing roll angle is only approximately 5°. A part cf the pronounced
left-stick position throughout the speed range is because the center
of gravity 1is displaced to the right. As discussed in Section 3.2,
the interconnecting shafting and auxillary gearboxes are shown on the
starboard side through this revort. The welight of these components
causes the lateral certcer of gravity of the MHNLS to be displaced two
inches to starooard in the nc-payload configuration. If the paylcad
is considered to be centrally located, then the fully loaded center

87
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TABLE 4-6. MHHLS CONTROL RESPONSE, AFCS OFF

(WITH CONTROL REMAINING AFTER TRIM)

HOVER AND LOW SPEED
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of gravity is 1.36 inches to starboard. Since the latcral stick trim
position tends to move to the left with increasing airspeed because

of lateral rotor-blade flapping, this condition is aggravated by also
having to overcons a starboard ceater of gravity, and at 125 knots,
Fig, 4-28 shows that the stick is within .72 inch of the left stop.

The stick would ra=main more nearly centered by about 1,2 inches 1if

the interconmecting drive system were located on the port side instead,
and the required sidesiip angle could probably be attained out to

125 knots.

y_.3.3 Control Power

Control power AFCS off is shown in Table 4-o and 4-7 includ-
ing control available from trim, and attitude change for this amount
of control, compared to the regquirements of Ref. 13.

Table U4-6 for hover and low speed, indicates that the attitude
change in one second, using maximum control from trim, is more than
required for level 1 of Ref. 13 in pitch, roll and height control,
and meets level 2 for yaw control. In forward flight, (Table 4-7),
roll control power meets level 1 for speeds up Lo at least 100 knots.
At 125 knots, the lateral stick position is only .72 inches from the
left stop, and control power in this direction falls 19% below level
2, If the lateral center of gravity were shifted to the left linstead
of che right, as mentioned in section 4.3.2, the lateral stick position
would be 2 inches from the left stop, and the control power would be
well within level 1. Yaw control power meets level 2 in hover and
low speed (Table #-6) and for speeds up to 125 knots (Table 4-7).
Although 1t would be desirable for the yaw control to meet levei 1,
as does all the other controls, this 1s precluded by the limlitatlons
on allowable control motions in the existing CH-53D., However, since
the MIHHLS is not expected tn be maneuvered rapidly, its yaw control
should be adequate. If the CH-53D swashplate motions were modified to
increase the lateral tilt available, the aft tail rotor could be re-
moved, or the yaw control poier could be made to meet 1level 1.

An investigation was made to determine the effects of AFCS
operation on the criticai yaw response case which was found to te 60
kncts. The yaw response for a full pedal displacement from trim 1is
shown in Fig. 4-29. This response is greater than that with AFCS off
hecause, in the lateral-directional dynamics, only the roll channel
is provided with displacement and rate augmentvation, and nc yaw aug-
mentaticn has been considered. With a moderate amount of gain in
the yaw channel, the yaw response will be reduced, but not to an ex-
tent which would make it less than the AFCS-off value of 3.6° in one
second.

4.3,4 Stability

4.3.4,1 Static Scability

a. Statlc Longitudinal Stability - AFCS off

The iocal slopes of stick position change with respect

P S A S 2, .
AT T st m SR a0, O RS i e s O s ey i e e

)

roth v TR

O A W A A T R N AP o S G S R S A MO b AR A 2, XN

2

"~

SERAA I b ok omr e ¥

R AL AR IO R A S U e s e NI AN K DA e A LR e B 3 i

il

s kel Emedad s Ntk R

s

3



39-X-11

H
t
Log
:
#
5
5
i
?
s,
i
W
&
7
3
o
J
;
Ly
;
7
y
}1
,
i
¥
J,]
!
3!
-
w
]
I b
o
k
d
]
I
i 1
{
.
I iﬂ
A I AL I DRI AN SR T O

E: JABLE 4-7
i MHHLS LATERAL/DIRECTIONAL CONTROL RESPONSE IN FORWARD
FLIGHT, AFCS OFF
i
3 ROLL YAW z
; MIL-F-83300 - LEVEL 1 2 3 1 2 3 %
3 REQ'T AT SPEEDS ABOVE 35 |MAX. TIME 7O ROLL | MIN. ATTITUDE CHANGE %
E KNOTS 30 DEG. (SEC) IN 1 SEC. (DEG.) %
: (NO LONG. OR VERT.REQTS) 2.5 | 3.2 |u.0 6.0 3.0 1.0 g
% _— = — ~- eSS é
3 GROSS WEIGHT 87,300 LB. 3
: 35 KT. STRAIGHT § LEVEL 1.6 4.0 'g
ég 60 KT. STRAIGHT & LEVEL 1.8 3.6 %g
3 60 KT., 500 FPM CLIMB 1.9 3.8 %g
3 60 KT., 500 FPM DESCENT 1.7 3.4 §§
] 100 KT. STRAIGHT § LEVEL | 2.4 3.6 3%
125 KT. STRAIGHT § LEVEL :=£3.84 3.8 | g
GROSS WEIGHT 59,486 LB. :
3 35 KT, STRAIGHT § LEVEL 1.5 3.3 ;%
gf 60 KT. STRAIGHT & LEVEL 1.6 3.0 §
'é ; 60 KT. 500 FPM CLIMB 1.7 3.0 %
i: : 60 KT. 500 FPM DESCENT 1.6 3.0 %
é ? 160 KT. STRAIGHT § LEVEL 2.1 3.0 %
3 125 KT, STRAIGHT § LEVEL 2.9% 3.3 | 5

. .
A

#IF LATERAL CENTER OF GRAVITY WERE SHIFTED 7O THE LEFT INSTEAD OF
THE RIGHT, AS DISCUSSED IN SECTION 5.3.3.1, THE CHANGE IN TRIM
STICK POSITION WOULD SHIFT THE ROLL RESPONSE AT 125 KNOTS WELL
WITHIN LEVEL 1.
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FIGURE 4-29, YAW ANGLE TIME RESPONSE
FOR FULL CONTROL INPUT FROM TRIM POSITION
AFCS ON: G.W. 87,300 LB.

ROLY CHANNEL PROPORTIONAL
GAIN = 3,74 {N,PER DEG|
ROLL CHANINEL RATE o
GAIN = §.10 {N., PER DE¢. PER SEC|

YAW | CHANNEL Z8RO PROPORTIONAL AND| ' G
RATE GAIN | 1 i
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