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ABSTRACT

The two-dimensional indentation of an elastic half space by a '
rigid punch under a slowly-applied normal load is considered, for
the case in which there is a finite coefficient of friction p between
the surfaces. The contact area is then divided into an inner ad- i
hesive region -c < x < ¢ in which the surface displacements are |
known, surrounded by regions c < |x| <1 in which the friction is i
limiting and the lateral displacement (wﬁich must increase in
proportion to the overall load) is not known in advance. The
prdblem is formulated in terms of a coupled pair of singular integral _
equations for the normal and shear stresses ¢ and T at the surface;
these are combined to give a single homogeneous Fredholm equation
with positive kernel for a quantity ¢ proportional to the difference
T - po ia the adhesive region. The largest eigenvalue of this
equation, for which ¢ > 0, gives the adhesive boundary c¢ in terms
of p and Poisson's ration v . A similarity transformation shows that

¢ has the same value for both flat-faced and power law punches.



AN EIGENVALUE PROBLEM FOR ELASTIC CONTACT
WITH FINITE FRICTION

D. A. SpenceT

1. Introduction

The problem posed by the indentation of an elastic half space by a
rigid punch has a straightforward solution in the case of frictionless contact,
for which a boundary condition of zero shear stress beneath the punch applies.
As a step towards the physical situation in which the shear stress is con-
trolled by friction, solutions have also been found in a number of cases for
the opposite limit of fully adhesive contact, in which no relative slip between
the indentor and the half-space is allowed once contact has been established.
The simplest such case is the symmetrical two-dimensional indentation of a half
space by a flat punch over the interval -1<x <1 considered by Muskhelishvili (1953
pp. 475-7). The solution of the linear elastic equations in this case, although
physically realistic near the centre of the punch, is not so near the edges,
where the ratio of shear stress T tonormal stress ¢ atthe surface, givenby
tan E}«log(i—t}%%—)] where « is a material constant, is divergerit and oscil-
latory. This behaviour would be modified eitherby slip or, if this were pre-
vented, by plastic deformation near the edges.

In the present paper, the same problem is treated under the more general

assumption of finite friction, with coefficient p, between the surfaces. The
t Mathematics Research Center, University of Wisconsin (Permanent address:
Departiment of Engineering Science, Parks Road, Oxford).

Sponsored by the United States Army under Contract No.: DA-31-124-ARO-D-
462.




case of the flat punch is indicated in figure la (p. 33). We suppose that over a
central part C'C of the contact area, the friction is sufficient to prevent slip
taking place as the load P is slowly increased, but that in the remaining
parts A'C' and CA, the friction is limiting so that the material is displaced
inwards as well as downwards under progressive application of the load. It
is assumed that

(1) the load is applied sufficiently slowly for static equilibrium to apply
at each stage;

(11) it is applied monotonically, so that slip is always in the same
direction.

At the outset, it is not clear that a solution of the simple form indicated
will exist, since there might have been more thar one region of adhesion,
with interspersed regions of slip (and this may well be the configuration to be
looked for in the corresponding "unloading" problem). But we are able to
show that the problem as posed possesses a unique solution satisfying the
linear elastic equations and the physical boundary conditions. The first of
these, over the interval C'C, {s imposed in the form of an inequality on the

stresses

[v| < plel (1.1)

together with a requirement of zero displacement parallel to the interface,
while on the intervals A'C' and CA we set

I+l =p|0'| (1. 2)
but cannot specify the parallel displacement u, which must finally be found

as part of the solution.
-2- #1146



p is then effectively the limiting value of the coefficient of sliding
friction as the relative speed goes to zero. This may possibly be lower than
the coefficient of static friction, but if the inequality (1.1) is satisfied when
p has its sliding value, it necessarily holds also if the static coefficient
is higher.

The extent of the slip region, given by the ratio CC'/AA' = ¢ say is

an eigenvalue of thé problem which cannot be specified in advance, but we
find that for given values of the physical constants (p and the Poisson ratio
v) there is just one value of ¢ for which the inequality can be satisfied.
c 1s identified as an eigenvalue of a certain homogeneous Fredholm equation
with a positive kernel, and the general theory of positive linear forms shows
that only one eigenfunction of such an equation is everywhere non-negative,
so ¢ can be uniquely identified as the corresponding eigenvalue.

Our main object in the present paper is to formulate the mathematical
problem leading to this eigenvalue, and to determine its value precisely. This
provides an analytical check on the accuracy of numerical methods which are
potentially able to give detailed information about the distributions of stress
under the punch more easily. For this reason the stress distributions are not
explicitly calculated here except in limiting cases. A numerical approach to
the problem that will be reported separately is indicated in section 5. 3.

The governing equations are set out in section 2. Before proceeding
to the solution for the flat punch, we note also the form taken by the equa-

tions for the more general case of a power-law indentor z = Br" as indicated

#1146 <3



in figure 1b (e.g. a circular cylinder (n = 2) or a flat wedge (n=1), and
show by appeal to a similarity argument given in an earlier paper (Spence
1968a) that the solution for the stresses in this case can be obtained by
quadrature from that for the flat punch. It follows that the extent of the slip
region is the same in both cases, despite the different forms of the distribu-
tion of normal stress. Thus the present solution of the eigenvalue problem
covers the whole range of self-similar indentors with symmetrical loading.

A useful limiting approximation to the slip problem can be obtained by
neglecting the change in the normal stress from its frictionless distribution
due to the presence of shear forces. This is calculated in secticn 2.2 and
leads to an expression for ¢ similar in form to that given by Galin (1645) in
an approximate but much earlier treatment of the present problem. In section 3,
the full linear equations are treated; these are reduced to a single Fredholm
equation for aquantity r(x) proportional to the difference plo’l - (T) withinthe
adhesiveregion, treating its extent as known. Achange ofvariablerelates c to an
eigenvalue of the Fredholm equation, as shown in section4, and theresultsofcal-

culations of the numerical valueof ¢ asafunctionof p and v areoutlinedin

section 5.

2. Governing equations

Suppose ax, ay are physical coordinates parallel and normal to the
surface of an elastic half-space, the surface values of the normal and shear

stresses being denoted by

) = (P/a)q(x)

(0 y=0 = ~(F/A) R, (T ),

yY'y
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where P is the total applied normal force over the contact area |x|<1, so

that
1
[ px)dx =1 (2.1)
-1
and let au(x), av(x) be the corresponding surface displacements due to the

load. Thern it follows from results of Muskhelishvili (1953, chapter 19) that

p, 4, u, v are connected by the coupled pair of singular integral equations

f PO 4 vam = -¢E)2

l1-v'p dx (2.2)
f O o) = (&;)zgi (2.3)

in which v = (1-2v)/(2-2v), v being Poisson's ratio and G the shear
modulus. If the load is applied symmetrically about x =0, p and u' are
even functions of x, q and v' are odd.

Thé"‘-*qpundary conditions on the normal displacements are

0 (flat punch, figure la) (2. 4)

A1<x<l; (ﬁ-) 5
P dx A|x|n'1(sgn X) (power law indentor z = Br" ,

figure 1b) |

n
where A = (%)(%)nB is, a constant, initially unknown, relating the geometiy
of the indentor and the size of the contact region to the normal force.

The lateral displacement W,!thin the adhesive region is zero for the flat

punch; and for the power law indentor similarity considerations of the type

given for the fully adhesive indentor by Spence (1968a) continue to apply in

#1146 - -
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the case of partial slip, ' giving the second boundary condition

0 (flat punch)
G
clx| (power law) ,
In the remaining intervals c¢ < |x| <], :—: ' can not be specified. The

values of A and C are eventually to be determined from the conditions that
the stresses vanish at the boundaries x = *1 of the contact region. (For the
flat punch, by contrast, the stresses become infinite at these edges).

The boundary conditions on the stresses are neatly expressible in terms

of the difference
r(x) = p(x) - q—f‘)(sgn x) . (2. 6)

To prevent slip in the adhesive region we require

r(x) >0 (-c <x<c) (2.7a)

while in the regions of slip
r(x) = 0 €< x|l <1, (2.7b)
In these boundary conditions, c¢ is an eigenvalue to be determined in terms

of the physical constants p, vy .

2.1. Reduction of "power law" equations to the flat punch problem

Before investigating the eigenvalue problem, we note that the equations
for the power law indentor are reducible to those for the flat punch. Using

the symmetry of p and antisymmetry of g to write them on the interval (0,1),

+ This point will be discussed further in a subsequent report.
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they become for x > 0

|

O<x<l:-z;§f -E:;fz&z+yc,x(x)=-l!\xn'l (2.8)
-1t -x
1

0<x<c: %f%ﬁ% - Yy P(x) = an'l 2.9)
0t -x

and the condition that the stresses vanish at the edge is
P(l) = 0 = q(l) . (2.10)
Application of the differential operator "—;‘l = % Ed; to these equations removes

the constants A and C, .educing them to

2x (1 Polthdt
0<x<]l; Tfﬁ +[vqyx)] =0 (2.11)
0Ot -x
1tq. (t)dt
2 0
0<x<c: -- —— - yP.(X) =0 (2.12)
o j; tZ _x2 0
respectively, where
P (X) = P(X) - S(xp)', q.(X)=q - =(xq)° (2.13)
0 n * 0 n '

These are exactly the equations that apply in the flat punch case, so the

solution for the power law indentor is given by quadrature, using the boundary

condition (2.10), as —
1 p, (t)dt 1 q. (t)dt i
p) = mx" ) [ 2—  qx) = nx"! f 2 (2.14)
n
x t x t

If the distribution of po(x) is normalised in accordznce with (2.1), that of

p(x) {is automatically so, since integration of (2.13) gives

#1146 -71-




1 1

[ eixydx = | Py (X)X .
0 0

Moreover, the distribution of p and q so found satisfy the frictional
boundary conditions (2.7a and b) with the same value of ¢ as for the flat

punch, since

| q.(t) =0 -~<x<]
r(x) = nx"'lf t " []:ao(t) - —°——]dt
X . 20 0<x<c .

Therefore the solution of the eigenvalue problem for the flat punch also
gives the solution for a power law indentor, and we shall from now on only

treat the former case, and work from equations (2.11), and (2.12).

2.2. A limiting solution

Since Iq/pl is at most equal to p, the term in square brackets in
equation (2.11) is of order py times the normal stress term, and a first ap-
proximation that throws some light on the physics can be found by omitting

the term, when (2.11) has the normalised solution

Polx) = /= a -82).’ . (2.15)

This approximation, equivalent to neglecting th:e effect of shear forces on the
distribution of normal pressure, has been used for the calculation of the shear
forces themselves in other contexts (e.g. Goodman 1962, Mindlin 1949). On
substitution of (2.15), (2.12) becomes a singular integral equation for qo(x) on

the interval 0 < x < c, since we can write q, ® BP, in (c,Ih
-8- flle6



2 . tqo(t)dt

- — t X(X) = 0 \ (2.16)
® fo tz -xz
where
ltp (t)dt
x(x) 2 f z - YPy(x) .

Inverllor; on the interval (0, c) gives the solution bounded at x = 0 as

' ‘ cf[ 2 2\}
2x c -y x(y)dy
qqo(x) = = ( 5 2) S (2.17)
O\c -x -
The solution is in general unbounded at x =.c, but is bounded if
c
f (cz - yé)'* x(y)dy = 0, and since one of the terms of x is proportional to

p and the other to y, the vanishing of this integral gives an expression for

the ratio p/y: .

w/y = K(c)/K'(e), : (2.18)

n/2

where K(c) is the complete elliptic integral f (- cz

stn 0) *de and K'(c)=K(Wl-c )
Galin's result, obtained by a lengthy analysu using approximations in

a complex plane that are difficult to interpret physically, {5 of the same form.

In his equation 12. 36, the right hand side is identical ﬁm the above, but the

left, in our notaticn, is (tanl'lp)/i loo(:—tz), which is the same when p and

y are both small compared with 1 . The accu\racy of the two solutions relative

to the exact solution is indicated in figure 2. Galin's is very close for

v=0.3, f.e. y=2/7, andreasonably sofor v=0, y=4; equation (2.18)

is not as close as Galin's but is still useful numerically, and knowledge of

146 \ -9-




the limit as p—~ 0, y- 0 with p/y fixed is also useful in the subsequent

\

analysis.

Asymptotic |express%ons when c is small, and when c is closeto 1|,

are found from the limiting behaviour of the elliptic integrals: !

(2/7) log(4l/~ll-c2) as ¢ -1
K(c)/K'(c) ~ -
(v/2) log(4/c) as c -0,

so that the width of the adhesive region is given, according to (2.18), by

s ™Y w~0 for fixed y

e -mi/y

\ (2.19)

1- 8e as p-o for fixed y .

When (2.18) is satisfied, a calculation using elliptic functions (appendix

D) shows that

Z)-% 1 x

q,(%) = [k/7K(©)] (1-X°) 72 F(stn™ 2, ©) (2. 20)
€ 2 2 -}
where F(§,c) is the incomplete elliptic integral f (l1-c " sin"0) ¢d6 . In
§ 0

the further limit ¢ - 0, F()~ £ and K(c) - n/2, so

qo(x)
NEY

-1 (2.21)

=£s1n
v

Q%

i
in the adhesive region 0 < x < c . Figure 3 shows computed curves of q/pp
for the case v = 0 for three values of ¢, for comparison with this expression.
The agreément is best for the smallest value of ¢ . The computed curves for v :
0.3 would lie approximately mid way between those for v = 0 and the broken

curves.

-10- - ) 46



3. Reduction of the dual problem to a Fredholm equation

In this section we treat the flat punch equations (2.1l), (2.12) but will

from now on omit the suffix 0. If q is eliminated in favour of r, these

become
b oty)dy
0<x<]; pi(x) + Zx/w)(cotwa)f 2 2° r(x) (3.1)
0y -x
|
0<x<c¢c; -yzp(x) + (Z/-)(ton:a)f ﬂzn—%m ydy = 0, (3.2)
0y -x
where tanwa = py 0<a<}),

which are to be solved subject to the requirement that r vanishes on (c, )
and is bounded and non-negative on (0, c) in accordance with (2.7). A
singularity in p at x = 1 can however be admitted in the solution.

In the physical problem it would be natural to fix the values of a and
Y, and try to find ¢ . However, it is more convenient &nalytically to pro-
ceed for the present as if all three were known, but we shall find in due
course that a solution to (3.1), (3.2) satisfying the further requirement that
r(x) is bounded and non-nogative on (0, c) exists only when ¢ certain com-
bination of a,y and c {s equal to the first eigenvalue of the Fredholm
equation {4.7) below. (3.1) is a singular integral equation for p(x) interms of

r(x), with solution obtainable by standard methods (appendix A) as

C
0<x<l: p(x)= (sinwa)>r(x) - x(‘"‘:"" )f ::3 '2 d (3.3)
0 Yy -Xx

2
where w(x) = l-Tx)i-a .
x

#ll46 -1l-




(An arbitrary multiple of 1/xw(x) forms part of the solution, but must be ex-
cluded since it is unbounded at x = 0 . The remaining integral is regular at

1
x = 0, but behaves like (1 - x2)"2te

near x=1.)
This expression for p(x) can now be substituted into (3.2) to yield a homog-
eneous equation for r alone, as follows:

(i) On substitution of p into the second term of (3.2), the equation

becomes

2 sin2na g yr(y)dy simra\ y dy u(u) r(u)du
o (222 oy (e e s

(ii) The order of integration on the right hand side may be reversed by
use of the Bertrand -Poincaré lemma (Tricomi 1957 p. 172) when the term becomes
c 1

2
(sinna)z -r(x) + (—fr)z f w(u) r(u)du f YZ d:’; 53
0 0 w(y)(y -x )(u -y)

The inner integral here can be split into partial fractions and evaluated by

use of a general result derived in Appendix B :

@Ay, (3.5

z(sin va) A dy X Cosma
2X =
w(x)

0 w(v)(yz-xz)
where A(xz) = F(l, 1; 1+a; xz) and g(a) =T'(1+a)/T(1+a)T(3)

(iii) When these results are combined, (3.4) reduces to

C
-(sinwa)® rx) - §i—“:ﬂ' [ {x Mafu) J“Jd“ + —g(a) sinwa f G(x2u)o(u)r(u)dy,

w(x)
where
o0
= 2
G(xz, uz) = [sz(xz) - uZA(uz)]/(x2 -uz) = Z an(x2n+x2n 2u'?'+ ...+ u n)’ (3.6)
n=0

-12- #1146



and a = (i)k /a1 +¢:r)k is the coefficient of zk in the expansion of A(z) .
The first term and the first part of the second term combine to produce exactly
-p(x), by (3. 3), while the remainder of the aecond term cancels the second

term on the left of (3.4), which therefore reduces to
2 2 cC 2 2
0<x<c: (1-y)p(x) - = q(a)(alnwa)f G(x ,u ) w(u) r(u)du=0 . (3.7)
0

Since p(x) has already been expressed in terms of r(x), (3.7) is equivalent
to a Fredholm equation for r on the interval (0,c) . It is reduced to

canonical form in the next section.

In the slip region ¢ < x <1, the right hand side of (3.7) equals
( m‘)( > dx , by (2.3); the displacement u(x) could therefore be calculated

once the equation has been solved for r(x) . It can be confirmed directly from

(2. 3) that :—: and therefore u(x) are negative, {.e. that the displacements in

the slipping regions are inwards. This is consistent with the positive sign
of q for x >0 (shear stress away from the origin) since the frictional force

opposes the motion.

4. The Fredholm equation for r(x)

In (3. 3) and (3.7) write
x = czﬁ. (1-x )i P rx) = o), (- x)i p(x) = &(%), (4.1)

Then the equations become

w(£) = (stnwa)® @(6) -(°°'""“"') f (&)!-e $lnldn 4.2)

o" n-¢
= L¢ say,

#1146 -13



and

- Yejslone 2o f *L Heg, n) etndn, 4.3)
w(l - y) 0

in which c plays the role of an eigenvalue, to be fixed so that (4.2) and

(4. 3) possess a solution such that
0<ef) <o (4.4)

on (0,1). The kernel in (4. 3) is

@0
R T T S =T Tt D M St W St (4. )
m, n=0
say.

The inverse of (4. 2) that is bounded on (0,1) is

o) = wig) ¢ 222 l (‘)*(—‘)’ tua , say. (4. 6)

L 4 0 l-"
(This excludes an arbitrary multiple of e*/(l-t)i'a, to comply with (4. 4)).

(4. 3) and (4. 6) give

1

\eg) = [ na'l K(€, n) #(nKdn, (4.7)
0

where K(§, n) = (::;::)’)L (C)H(E,n) = (':"fﬁ') z cl(mn)h'm’mqn (4.8)

and Ae (- yz)/c:z'(o(a)]z : (4.9)

Here o s L™ = (Mo ), (4.10)

i n-l
¢ g(e)(cotee)( (I-() Z .n 3 '(

-le- slide



where ¢0(§) = L'l(l), which is evaluated using the result in Appendix B, and

can be written in two ways:

3 1 L
$o(€) = [F(L-@)/THT(5-0)]E2(1 - §)° T F(L, 1-a: 5- a3 1-£)
(4.11)
=1 -2[ri-e)/ri )r‘(‘,,-a:)]tgz F(3, ,_+a,2;g)
1
The first shows that ¢0 and therefore all the ¢n tend to zero like (1-£)2 @
as £—+1; the second shows that ¢0=’0) =1, while 4:m(0) =0 forall m>0.
Insertion of these expressions in (4. 8) shows that K is bounded on 0<§¢,n<1,
1(l-0) *
and if we write ¢(£) = ¢ ¢ (§) the equation is
% 1 -L(l-a) &
" (8) = [ (&) 20 YKE, n)¢ (n)dn (4.12)
0
in which, because of the boundedness of K, the kernel is square integrable
provided « > 0, so the standard Fredholm theory shows that solutions exist
for at most a discrete set of eigenvalues xl > xz >\ 3" say. Moreover,
all the coefficients hmn are >0 (this is confirmed by a detailed calculation
in §5), and ¢m(§) > 0 on the open interval, so K is positive, and )\1 is
the Perron root, which is positive and is the maximum in absolute value; and
the corresponding eigenfunction ¢ (g) (i. e. the solution of (4.7) when
A= Xl) is the only eigenfunction which is positive on the whole interval
(0, 1) . This therefore gives the solution of the physical problem. Since the
kernel K depends on c and o, we find )‘1 (c, @) from (4.7) and must finally

determine c(a,y) numerically by inserting this value for A\ in (4.9). As a

first step we replace the integral equation by a set of linear algebraic equations.

#1146 -15-



Solution of the integral equation (4.7)

The separable form of the kernel suggests a solution of the form
(- ]

¢ =F a cTo ). (4.13)
m=0

Then since the ’m} are linearly independent, the coefficients of chm(g)
on the two sides of the equation can be equated. This gives a set of linear

equations for the (am) which can be written

[l
a =y MHh g Pa (4.14)
m mn np P
n, p=0

|
sin wa a+n-1
wh i e
ere ‘np: 9 (a) {,n ¢p(n)d'l

Now a detailed calculation in appendix C shows that

fp = Pop (4.15)

SO (4.14) can i+ ‘written {n matrix form as

\‘ =z Kz‘ (4.16)

1
where K= CHC, H = {hmn }, C= ( c, ) being infinite matrices.
c

Since K and Kz are positive, {f \ 1is the Perron rmot of Kz it follows

1
(1)
that sf);' is the Perron root of K, the comresponding eigenvector a

(1)

and
eigenfunction ¢ () = Za:) ¢m(g) being the same in each case. Moreover,

Q(l,(t) is the first eigenfunction of the cimpler equation

-16- #1146



l -~
VX o) = [ n* " Keg, ) otnidn (4.17)
0

-~ -l 2 - =
where (ﬁggl)m,nm (€N - cgm) '=n§0 ™o " .

Because of (4.15), it follows from (4. 8) that

1 -
[ K6, 0 K@m e g = Kig, ) (4.18)
0
1 a-l 2 5
[An equivalent result 1s [ £°7(1-c“¢¢)™ K(g, n)dg = H(E, n). (4.19))
0

So all eigenfunctions of (4.17) are also eigenfunctions of (4.7). The reverse
does not follow in general although it is true for the Perron root. It may be

noted that (4.17) can also be written in the form

1
%""d" (4. 20)

l-c §q

sinwa fl fLa-

VM Leg) ==
0

in which the left hand side equals ~'X (§), but the author has not been able

to derive this equation directly from the physical problem.

5. Calculation of the Perron root \1 and the physical eigenvalue

The matrix H formed by the coefficient hmn (mn=0,1,2,...) {n

equation (4. 5) is the product

H = BA (5.1)
1 al az 1
where A=| %1 %2 % B= | B !
°2 a3 04 bz bl i

Jll46 J7.-




are respectively an infinite Hankel matrix and an infinite lower triangle, the
a's being the coefficients in the expansion of A(x) already quoted (equation

(3. 6) and the b's those in the expansion of (1l -x)}"', namely

bk ® (a' *)kﬂ’ . (s' z)

The fact that all elements of H are positive is deduced as follows:

(1) The mth element in the left hand column is

m <11

This function equals F(4 + a, a; | + @; x) by Kummer's transformation (Erdélyt

et al 1953, p. 105 §2.9 (2)),

whence h =2 ﬁ3‘"“‘>0

m0 méa m! £5:63)

(1§) h h = -bman >0 forall m>0 (since all the b's ex-

m-1,n+ ~ mn
cept bo are negative) so the elements of H increase to the right along lines
of constant m + n, so are all positive.

The Perron root of K is JTI, and may be computed by the power method
of successive multiplication by K until converge:ce in achieved. In numerical
work, K was first truncated to KN containing the first N rows and columns,
leading to a value (JTI)N; the procedure was then rapeated for N ¢+ 5 until
the value of ﬁl did not change by more than 10 ¢ . With incroasing c ,
the value of N to secure convergence increased from 10 a! cz «0.] tn 45
at ¢t 0.95.

Finally, the solution of the physical problem in the formof o as 8
function of ¢ and y {s found by fteration from (4.9), written logarithmically

in the form
-18- 01146
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2
= flog(l -y
a TG tc, o : (5. 4)

logc + e

i log g(a)

Starting from a trial value of o on the right, with ¢ and y held fixed, this
converges very rapidly. Results are given in table 1.
The friction coefficient is then found as

p=(1/y)tan va .

Values of p so found from the values of a given in table 1 are listed in

teble 2 for thecases v =0 and v = 0.3, and plotted as solid lines in

figure 2 .

5.1. Limiting form of solution as a ~ 0
2a
ferred directly from the matrix (see footnote page 21), or from the limiting

L
Inthe limit a - 0, tends to a limit \ (c) say, as can be in-

solution of section 2. 2.

Tae limit can be approached by allowing y to tend to zero, and since

(}/a) logg = - log 4, (5.4) gives

lim “—"Eg— = X/ (logc +p*-10g4) . (5. 5)
Yy=0|log(l-y)

The limit on the left 1s p/y = K(c)/K'(c) by (2.18), whence

w'(e) = logd -2 K'(e)/K(C) - (5.6)
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A convenient table is given on page 608 of Abramowitz and Segun.
Table | ~hows that (log Xl)/a differs appreciably from ¥ only when

c iscloseto ! and y closeto 4; for v = 0.3 it is sufficiently accurate

to write x‘ in place of (log xl)/a so the determination of )‘l from the matrix

can be avoided, although iteration to find a is still necessary since

(logg)/a« = -log 4 1is not sufficiently accurate. The full expansion is
0

loggla) = -alog4 + ), (-2a)" 2 (5.7)

n=2

where n(n) is the sum of reciprocal nth powers with alternating signs

(n(2) = 12/12), and if one extra term is retained, (5.1) can then be written

, -1
wa/log(1 -v%) ! = K—K% - "7“:] (5. 8)

which leads to values of p in 4-figure agreement with those tabulated in
most cases. This expression was used to calculate the entries in table 2
for ¢ <0.7. '

The solution for ¢(£) can be written down explicitly when a - 0, since
in this 1imit the first eigenvector of the matrix K is (1, 0, 0, ...) (This is
because in the limit all the elements of the left hand column of K are zero,
except for k

00)'

Therefore, as a = ©

oM(e) = 1m 4 €)

a0

1
=1-2¢3pg, & Y20, by 0.,

=] - % sin”} ﬁ% (5.9)
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in perfect agreement with (2. 20) when allowance is made for the change

of notation.

Footnote:
| To infer the existence of the limit directly from the matrix, note that all
the elements of the left hand column of K except the first contain a as a
factor. Therefore if we write
A =1+ 2a),

~ *
as a—-= 0, )\ tendsto \ (c), given by

% 2. % 4 %
-\ c hO’l c h02
* 2. % 4. %
(hlo/a) c hll | c h12
det * 2, * 4 * =0
(hzo/a) c h21 e b, -1

where the stars denote the limits of the quantities as « - 0, so (hmo/a)a
1 1
(Z)m/m' m! etc.
I have not found a direct derivation of (5. 6) from this determinant, but
have satisfied myself that the two expressions for K* are the same with 6
figure accuracy by means of a computation, which took only a fraction of a

second of machine time.
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5.2. Asymptotic expressionas c —+ 1

The writer has also carried out an analysis parallel to that reported heie,
in which the problem is cast into the form of an integral equation for the unknown
strain u'(x) in the slip region ¢ <x<1 . This is tractable by the Wiener-

Hopf technique when ¢ isclose to 1, and as in the present approack, an
eigenvalue problem for ¢ follows from the requirement of bounded stresses
at x'=c, giving rise to the condition
-1
-E‘i‘-r&— = tanh L ¢ + ¥ (, ) + log2 (5. 10)
with an error of order (1 - c)z, where

k= (2/m) tanh_l'y = (1/7) In(3 - 4v)

and ¥ (a, k) = (1/x) Im log[T'(l - @ _i?" )/T(1 _1_; )]

amw m 2 Kk
T[1+0'2326"Q+E(Q —T)+]

"

Values of p calculated from this expression are included in table 2 and are

seen to be extremely accurate for c greater than about 0.6 .

5.3. Numerical solution of the coupled equations

Mention may also be made of a numerical attack on the problem, which

will be described separately in an MRC Technical Summary Report by the
X X
author. If we write y for x, and apply the operators _];’ <3 J;) J;E—;? )

to (2.11) and (2.12) respectively, they are put in the form of coupled Volterra
equations:

1 tpo(t)dt xyqo(y)dy

0<x<1: + v - =
.Jr( t -x j;)Jx -y

X2 - #1146
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| ) .
\
\

\. '
x po(x)dv 1 ao(t)dt

0<x<cC: y - =0 (5.12)
A e 7

\

‘ 1
|
which are partldularly suitable for numerical! solution, as the earlier singular

equations are not. They have been solved numerically on the Univac 1108
commtgr at the Unlverst\ty of Wisconsin Computing Center, \\ulnq plecewise |
constant interpolations to P, @ with up to 64 sub-intervals, the condition
q=pp being app'ted on the portion ¢ < x <1 with an initially guessed value
of p . For each fixed c, a|'n iteration was performed unt}l the value of ¢
was such that q - up was positive throughout (0,c) and tended to zero at
c . In this way the points shown by circles in figure 2, and the corresponding
stress distributions in figures 3 and 4 were obtained.

I am very grateful to Professor Ben Noble for suggesting the limft looked

at in section 2.2 and for his continu\ad interest, and to Verlyn Erickson for

programming the calculations.

S —
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Appendix A. Inversion of singular integral equations

Carlemann (1922) showed that the general solution of the equation

1
a(s) uis) - A [ HEEE g (A)
-1

(A >0) where a(s) and g(s) are analytic for -1 < s <1 can be written

T(s) 1 -7(t) 7(s)
u(s) = a(s)g(s) , re s g(t)dt _ Ke , (A2)
bZ b(s) b(t) (t - 8) l-8
(s) -1
where K is an arbitrary constant, and
1
. [ S8(tdt _ 1 a(s) + At
T(8) = £ t.s ’ e(s)-z“1 log a(s) - hwl (0<6(s)<l) ,

bz(s)=az(s) + (Xn)z .

Equations (2.16), (3.1) and (4. 2) are all of this form, and the inverses quoted
are obtained by suitable changes of variable and choice of K: eg. in (3.1)
write xz = (s +]), yz = 3(t +1), x°lp(x) = u(s), x'lr(x) = -g(s), when the

equation becomes identical with (Al) witha = -1, w\A=cotwa. Then 6(s)=

1
1+ a expr(s) = (-l‘_s) ata

17s b(s) = cosec wa and the solution (A2), translated

?

back into the original variables, is

cosma (fl-x° %+a(x)20 yr(y)dy
){;( 2 X 2

2
1r 1y

(cosec ma)p(x) = (sinwa)r(x) - 2(
y -X

= !
. }Kx 2a(1_xz) $ta )

If we choose

#1146 -25-
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g R 1

the last two terms combine to give the expression for p{x) quoted in (3.3),

which is regularat xa 0.
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Appendix B. Evaluation of the integrals (3. 5) and (4.11)

These are special cases of the following general result for real a,b <1,

0<s<l:

1
cosma_ sinwa f dt - I'(1-b) F(l, atb;a+l;s). (Bl)

21-s)” " 0 t20-tPit-s) ra+a)rd-a-b)

(0-)
This is obtained by evaluating the loop integral L f dz/z%(z- l)b(z s)

round the two sides of the positive real axis in the 2 plane, with semi-circular
indents above and below the point z = s . The second term on the left hand
side is the contribution from the two sides of the interval (0,1), and the first
that from the indents at z = s . The right hand side comes from the integral on
(1, ), which can be transformed into Euler's integral for the hypergeometric
function. (In the special case a + b = 0, the contour can be replaced by a
closed loop surrounding the points 0, 1, and the right hand side, which re-
duces to 1, is the residue at infinity.) From this result

(1) (3.5) is obtained immediately by writing a=a, b= 1-a, s= xz, t= yz,

(i) To derive (4.11), write ¢ =1 in (4. 6) whence

)__g’-(l §£ s sin ra , cosma 1 dn

1 1 1 P
SInTE eiag)i® T 0 2(1n)? % (n-£)

LN
Use of (Bl) with a=3-@, b=1 s=1-¢, t=1-n shows that the quantity in

square brackets is

[r(%)/r(a)r(% -a)] F(l, l-e, -23-‘- —a;l-g)

from which the first line of (4.11) follows since I'(a)I’(l-a) = v/sinma .

The second line is obtained from the first by writing a=0, b=¢a, c = }
in lines (22), (43), (1) and (17) of Erdélyi §2.9, pp. 105-108.
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1
. _ sinwe a+p-1
Appendix C. Evaluation of lpq i) J(; £ ¢q(g)d§

Substitution from (4.10) and the first line of (4.1l) gives

1
1, = — [ P2 gz "Z L2 gyae
r‘(%ﬂ-)r(%-a) - 0 (3-e),

q-1
cos ma i.a r+a+p-1
+ ———fg (1-€) Z a1t dg . (2)
On termwise integration,
0§ = al“(p+q+a+§ (l-d)n
r(i+a)T(ptq+2) n=o (PFTI+2),

The sum of the series is F(l, 1-a; p+q+2;1), which equals (p+g+l)/(p+q+a)

by Erdélyi 1953, p. 61(14), so

(1) = ( y letdlptg %}Lq a_b by (5.3)
D+Q+a (p+q)! 's=0 s p+q-s '

Similarly, integration of the second term gives

cosma o m S
@)==—"= ) a_ _ (——)b_ . =-) ab
T o q-r-1 " coswa p+r+l 520 s p+g-s

Adding the two expressions gives

p+q

1pq = sz_q asbp+q_s = hpq i

by (5.1)

An alternative demonstration of this result is possible by direct integration of
various hypergeometric functions to obtain the equivalent equation (4.19), but

the analysis is more lengthy.
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Appendix D. Ellipric integrals for limiting stress distribution

If the order of integration is reversed in the first term on the right of (2.17),

we have
c

q, %) 7—2' uf l]—m oty [ B
s SIS | ’
» -z t:z-uz c l-tz . l-y Yy -xz

0

c , 2.2} 4,2 2]
2 _fc -y )dy -t (t.-c)
where lo(x.t)-'f 33 3 3 " 3 > when 0<x<c<tc<]

0(t -y My -x) t -x

2x N § dt = cz-zz § __dy
) 'Z cz.x c l-t t - 0 l-y Yy -X

exhibiting a singulerity at x = ¢ unless the sum inside the square bracket

vanishes at this point, {.e. unless

\ l C
A ook — g —g )
 a-t) d.cd 0 1-y?) (c2-v%)

which gives u/y = K(c)/K'(c), equation(2.18). When ik!s is satisfied, the

previous expression can be rearranged as

qy (%) = (%‘-) ch-xz [ull(X) - vlztx)l '
w

1 2
where I, (x) =f gt - nl(l'cz, Jl-cz )

: 3 2
c (Mz) (tz_cz) “z_xz) 1-x 1-x

1
= xJT_ =S5 [E'F(§,¢) + K'E§,c) - K'F(¢, c)]
(c -x")(1-x")
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C
dy i c
and L(x)s [ 3 -3 0.0
2, Ju-hold i ady o Vi

|
xJ(cz-xz)(l -xz)

(KE(E,c) - EF(E,cl) .

Hrre 11, is the complete elliptic integral of the third kind (Byrd and Friedmann,

1
p. 225), ¢ = sm'l %, K= K(c) and E = E(c) arc the complete integrals of
the first and second kinds, and dashes denote the same integrals with
argument l-cz . E(¢,c), F(§,c) are the incomplete elliptic integrals

¢
f (l-cz unzo)*l do . Then since y = uK'/K, these results combine to give
0

—Z“—[KE‘ + X'E - Kx-lﬂ.L_cl .

qy(x) = Kic)

n ]l-x

The quantity in the square brackets equals n/2 by Legendre's formula, so

qo(x) reduces to the expression quoted (2.19).
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Iteration to find a, for ve 0 (y<§) and V'°-3(Y'$)

N

10

10

10

15

20

25

30

30

35

35

40

45

TABLE |

vs 0

x.(c) loq ).‘ !

(equation 5. 5) 3 a
.026080 .025997 . 059399
. 054620 . 054370 .070821
.086190 . 085680 . 080634
. 121604 . 120699 . 090332
. 162072 . 160555 . 100748
. 209533 .207058 . 112806
. 267427 .263323 . 128027
. 302242 .296837 . 137751
. 342929 . 335596 . 149923
. 392360 . 381957 . 166332
. 456536 . 440404 . 191387
.552638 . 521275 . 24168!

ve0,3
oo, 1
2a a
. 026069 017140
. 054586 . 020233
. 086155 . 022824
. 121521 . 025303
. 161932 . 027886
.209308 . 030765
. 267064 . 034229
. 301768 . 036342
. 342307 .038884
- 391447 .042121
.455181 . 046695
. 549429 . 054643
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TABLE 2

Friction coefficient u as a function of ¢

ve 0 vs 0.}
/ m " 1 " " |
c (equation 5. ¢) (equation 5.10) (equation 5.4) (equation 5.10)
.05 . 20952 . 10728
.1 . 25064 . 12771
. 15 . 28356 . 14384
ol . 31313 . 15815
.25 .34118 . 17154
.3 . 36869 . 18449
.35 . 39633 . 19733
.4 . 42466 .21028
.45 . 45422 . 22356
.5 . 48557 .23738
.55 .51941 .25199
.6 . 55660 . 26766
. 6325 . 58332 . 27882
.7071 . 65504 . 65722 . 30741 . 30819
.7746 . 74003 . 74142 . 33934 . 33973
. 8367 . 85080 . 85168 . 37782 . 37805
. 8660 . 92393 . 92465 .40135 .40150
. 8944 1.01845 1.01914 . 42969 .42978
. 9220 1.15190 1. 15260 . 46587 . 46597
. 9487 1.37198 1. 37300 . 51715 . 51720
. 9747 1.89811 1.90518 . 60680 . 60756

-32- #1146




(a) Flat punch

¢ ¢

A/ ) 1x=c A(x=1)

Siip Adhesion

(b) Power law indentor

Slip

Adhesion

Figure 1: Frictional indentation by rigid punch
(Schematic)
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FPigure 2; Two dimensional punch: u versus c
for v=0 and v =0,3

Exact
lL6p— ececee-= @Galin

#ssssecscee approximate (equation 2.18)

@ Computed using Abel equations (5.11, 5.12)
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