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ABSTRACT 

The two-dimensional indentation of an elastic half space by a 

rigid punch under a slowly-applied normal load is considered, for 

the case in which there is a finite coefficient of friction  \i.  between 

the surfaces.   The contact area is then divided into an inner ad- 

hesive region   -c < x < c   in which the surface displacements are 

known, surrounded by regions  c < |x| < 1  in which the friction is 

limiting and the lateral displacement (which must increase in 

proportion to the overall load) is not known in advance.   The 

problem is formulated in terms of a coupled pair of singular integral 

equations for the normal and shear stresses o-  and T  at the surface; 

these are combined to give a single homogeneous Predholm equation 

with positive kernel for a quantity ^  proportional to the difference 

T - |ur   in the adhesive region.   The largest eigenvalue of this 

equation, for which   4> > 0,   gives the adhesive boundary  c   in terms 

of  |x and Poisson's ration  v .   A similarity transformation shows that 

c  has the same value for both flat-faced and power law punches. 



AN EIGENVALUE PROBLEM FOR ELASTIC CONTACT 
WITH FINITE FRICTION 

D. A. Spence 

I.   Introduction 

The problem posed by the indentation of an elastic half space by a 

rigid punch has a straightforward solution in the case of frictionless contact, 

for which a boundary condition of zero shear stress beneath the punch applies. 

As a step towards the physical situation in which the shear stress is con- 

trolled by friction, solutions have also been found in a number of cases for 

the opposite limit of fully adhesive contact, in which no relative slip between 

the indentor and the half-space is allowed once contact has been established. 

The simplest such case is the symmetrical two-dimensional Indentation of a half 

space by a flat punch over the interval -Kx <1 considered by Muskhelishvili (1953 

pp. 475-7).    The solution of the linear elastic equations in this case,  although 

physically realistic near the centre of the punch, is not so near the edges, 

where the ratio of shear stress T to normal stress <r at the surface, given by 

tanllKlogf.   [   j 1    where  K is a material constant, is divergent and oscil- 

latory.   This behaviour would be modified either by slip or, if this were pre- 

vented, by plastic deformation near the edges. 

In the present paper, the same problem is treated under the more general 

assumption of finite friction, with coefficient p,   between  the surfaces.   The 
t   Mathematics Research Center, University of Wisconsin (Permanent address: 

Department of Engineering Science, Parks Road, Oxford). 
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case of the flat punch is Indicated in figure la (p.  33).   We suppose that over a 

central part  C'C  of the contact area, the friction is sufficient to prevent slip 

taking place as the load   P is slowly increased, but that in the remaining 

parts  A'C   and  CA,   the friction is limiting so that the material is displaced 

inwards as   well as downwards under progressive application of the load.   It 

is assumed that 

(i)   the load is applied sufficiently slowly for static equilibrium to apply 

at each stage; 

(11)   it is applied monotonically,  so that slip is always in the same 

direction. 

At the outset,  it is not clear that a solution of the simple form indicated 

will exist,  since there might have been more thar one region of adhesion, 

with interspersed regions of slip (and this may well be the configuration to be 

looked for in the corresponding "unloading" problem).   But we are able to 

show that the problem as posed possesses a unique solution satisfying the 

linear elastic equations and the physical boundary conditions.   The first of 

these, over the interval  C'C,   is imposed in the form of an inequality on the 

stresses 

|T|<K|<r| (1.1) 

together with a requirement of zero displacement parallel to the interface, 

while on the intervals A'C   and  CA we set 

|T| -itlo-l (1.2) 

but cannot specify the parallel displacement u,   which must finally be found 

as part of the solution. 

-2- #1146 



..,. is then effectively the limiting value of the coefficient of sliding 

friction as the relative speed goes to zero. This may possibly be lower than 

the coefficient of static friction, but if the inequality (1.1) is satisfied when 

..,. has its sliding value, it necessarily holds also if the static coefficient 

is higher. 

The extent of the slip region, given by the ratio cc• /AA' = c say is 

an eigenvalue of the problem which cannot be specified in advance, but we 

find that for given values of the physical constants ( ._.. and the Poisson ratio 

v) there is just one value of c for which the inequality can be satisfied. 

c is identified as an eigenvalue of a certain homogeneous Fredholm equation 

with a positive kernel, and the general thE:lory of positive linear forms shows 

that only one eigenfunction of such an equation is everywhere non -negative, 

so c can be uniquely identified as the corresponding eigenvalue . 

Our main object in the present paper is to formulate the mathematical 

problem leading to this eigenvalue, and to determine its value precisely. This 

provides an analytical check on the accuracy of numerical methods which are 

potentially able to give detailed information about the distributions of stress 

under the punch more easily. For this reason the stress distributions are not 

explicitly calculated here except in limiting cases. A numerical approach to 

the problem that will be reported separately is indicated in section 5. 3. 

The governing equations are set out in section 2. Before proceeding 

to the solution for the flat punch, we note also the form taken by the equa-

n tions for the more general case of a power-law indentor z = Br as indicated 

Hll46 -3-



in figure lb (e. g. a circular cylinder (n = Z) or a flat wedge (n = 1), and 

show by appeal to a similarity argument given in an earlier paper (Spence 

1968a) that the solution for the stresses in this case can be obtained by 

quadrature from that for the flat punch. It follows that the extent of the slip 

region is the same in both cases, despite the different forms of the distribu-

tion of normal stress. Thus the present solution of the eigenvalue problem 

covers the whole range of self-similar indenters with symmetrical loading. 

A useful limiting approximation to the slip problem can be obtained by 

neglecting the change in the normal stress from its frictionless distribution 

due to the presence of shear forces. This is calculated in secticn Z. 2 and 

leads to an expression for c similar in form to that given by Galin (1945) in 

an apprm.i mate but much earlier treatment of the present problem. In section 3, 

the full linear equations are treated; these are reduced to a single Fredholm 

equation for a quantity r(x) proportional to the difference 1..1. lcr I - (T) within the 

adhesive region, treating its extent as known. A change of variable relates c to an 

eigenvalue of the Fredholm equation, as shown in section 4, and the results of cal-

culations of the numerical value of c as a function of 1..1. and v are outlined in 

section 5. 

Z. Governing equations 

Suppose ax, ay are physical coordinates parallel and normal to the 

surface of an elastic half-space, the surface values of the normal and shear 

stresses being denoted by 

(cr ) 
0 

= -(P/a) p(x), (T ) 
0 

= (P/a)q(x) 
yy y= xy y= 

-4- #1146 
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where P is the total applied normal force over the contact area I xI < 1, so 

that 

1 
J p(x)dx = 1 

-1 
(2.]) 

and let au(x), av(x) be the corresponding surface displacements due to the 

load. Ther. it follows from results of Muskhelishvili (1953, chapter 19) that 

p, q, u, v are connected by the coupled pair of singular integral equations 

1 
.!.. J p(t)dt + yq(x) = -(~) ~ dv 
1r t - x 1 - v p dx 

-1 

1 
!. J q(t)d.!_ _ (x) = (_J;L) ~ du 
1r _

1 
t - x Y P 1 - v p dx 

(2. 2) 

(2. 3) 

in which y = (1- 2v)/(2 -2v), v being Poisson's ratio and G the shear 

modulus. If the load is applied symmetrically about x = 0, p and u' are 

even functions of x, q and v• are odd. 

' 
The'~.~oundary conditions on the normal displacements are 

r- a dv 
-l<x<l: (~)--

1-v p dx 

n 

{

0 (flat punch, figure la) (2.4) 

- n-1 n 
A I x I ( sgn x) (power law indentor z = Br , 

figure lb) , 

where A = ( r?; )( ap ) nB is_
1
a constant, initially unknown, relating the geometiy 

' 
of the indentor and the size o't the contact region to the normal force. 

The lateral displacement W!thin the adhesive region is zero for the flat 

punch; and for the power law indentor similarity considerations of the type 

given for the fully adhesive indentor by Spence (1968a) continue to apply in 

11146 -5-



the case of partial slip, t giving the second boundary condition 

{

0 G a du -c<x<c: (-)-- = 
1-v p dx C lxln-1 

(flat punch) 

(power law) • 
(2 . 5) 

du · 
In the remaining intervals c < I xI < 1, dx can not be specified. The 

values of A and C are eventually to be determined from the conditions that 

the stresses vanish at the boundaries x = ±1 of the contact region. (For the 

flat punch, by contrast, the stresses become infinite at these edges). 

The bm,mdary conditions on the stresses are neatly expressible in terms 

of t.l-te difference 

r(x) = p(x) - q (x) ( sgn x) . 
1.1 

To prevent slip in the adhesive region we require 

r(x) ~ 0 ( -C <X< C) 

while in the regions of slip 

r(x) = 0 (c < lx I < 1) • 

(2. 6) 

(2. 7 a) 

(2. 7b) 

In these boundary conditions, c is an eigenvalue to be determined in terms 

of the physical constants !J., y . 

2.1. Reduction of "power l aw" equation::> to the flat punch problem 

Before investigating the eigenvalue problem, we note that the equations 

for the power law indentor are reducible to those for the flat punch. Using 

the symmetry of p and antisymmetry of q to write them on the interval (0, 1), 

t This point will be discussed further in a subsequent report. 
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they become for x > 0 

1 
0<x<l   */   jpdt q(x) = .^n-1 (2.8) 

-1 t   -x 

0 < x < c:   ^ /*!&*   , Y p(x) .    Cxn-1 u> 9) 

0 t    - x 

and the condition that the stresses vanish at the edge Is 

p(l) = 0=q(l). (2.10) 

Application of the differential operator —^ - - 3—   to these equations removes n      n ax 

the constants  A and   C,   .educing them to 

2x   r1 P0(t)dt 

0 < X < Is =i /    2
U     2     ♦ [Yq0(x)] = 0 (2.11) 

0 t   -x 

2     I'V*)* 
0 < x < c:   » / -j j- - YP0(x) = 0 (2.12) 

0 t   -x 

respectively, where 

P0(x) = p(x) - ^(xp)',   q0(x) = q - ^(xq)' . (2.13) 

These are exactly the equations that apply in the flat punch case, so the 

solution for the power law indentor is given by quadrature, using the boundary 

condition (2.10), as 

n .    1 p0(t)dt n .    1 qn(t)dt   ^ 
p(x) « nx      J  — ,   q(x) = nx      j  — < (2.14) 

X    t x    t 

If the distribution of  P0(x)   is normalised in accordance with (2.1), that of 

p(x)   is automatically so, since integration of (2.13) gives 

#1146 -7- 



~  

1 1 
/ p(x)dx * f p (x)dx  . 
0 0 

Moreover, the distribution of  p  and  q   so found satisfy the frlctional 

boundary conditions (2.7a and b) with the same value of c  as for the flat 

punch, since 

n-1 f    -n\ 

V *_ 

qo(tn 
r<xl -- nx"   '   |    t  "\pjt) --^rjdt 

Therefore the solution of the eigenvalue problem for the flat punch also 

gives the solution for a power law indentor, and we shall from now on only 

treat the former case, and work from equations (2.11), and (2.12). 

2.2.    A limiting solution 

Since   |q/p|   is at most equal to |&,   the term in square brackets in 

equation (2.11) is of order py  times the normal stress term, and a first ap- 

proximation that throws some light on the physics can be found by omitting 

the term, when (2.11) has the normalised solution 

P0(x) - (lAui-icV*   . (215) 

This approximation, equivalent to neglecting the effect of shear forces on the 

distribution of normal pressure, has been used for the calculation of the shear 

forces themselves in other contexts (e.g. Goodman 1962 .  Mlndlln 1949).   On 

•ubstitutlon of (2. IS), (2.12) becomes a singular Integral equation for q0(x) on 

the Interval 0 < x < c(   since we can write q   ■ |tp0  in  (c, l)t 

11146 



2   f
C ^Q^ 

» ^ "3   2 
0  t   -x 

+ x(x) = o (2.16) 

where 

''<x'^;-j-r-vp0(x) 
0 t   -x 

1 

Inversion on the interval   (0, c)  gives the solution bounded at  x « 0  as 

0\c-x/    y-x 
(217) 

The solution is in general unbounded at  x s c,   but is bounded if 

rC   I     i -k j   (c   -y ) ' x(y)dy * 0,   and since one of the terms of x  1* proportional to 
0 

it and the other to  y*   th* vanishing of this integral gives an expression for 

the ratio (i/y: 
1 

\ 

li/YSK(c)/K'(c), (2.18) 

\ r/2 W/     2       2       4 PT 
««here  K(c)  is the complete elliptic integral /(I-c   sin e)''det and K'(c)«KKUc ), 

0 
Gal in's result, obtained by a lengthy analysis using approximations in 

a complex plane that are difficult to interpret physically, tä of the same form. 

In his equation 12. 36, the right hand side is identical with the above, but the 

left, in our notation, is  (tan' JO/I logfr—^J,   which is the same when K   and 

y  are both small compared with   1 .   The accuracy of the two solutions relative 

to the exact solution is indicated in figure 2.   Galin's Is very close for 

v ■ 0. 3,   i.e.   Y ■ 2A>   and reasonably so for   v s 0,   y» \:  equation (2.18) 

is not as close as Galin's but is still useful numerically, and knowledge of 

#1146 \ (    -9- 
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the limit as (x-* 0,   -y-* 0  with yy/y fixed is also useful in the subsequent 
\ 

analysis. 
\ 

Asymptotic expressions when  c  is small, and when  c   is close to  1 , 

are found from the limiting behaviour of the elliptic integrals: 

Klcj/K'fc) ~ 
(2/ir) log(4/Vl-c )     as  c - 1 

(ir/2) log(4/c) as  c -* 0 

so that the width of the adhesive region is given, according to (2.18), by 

■irY/2ji 

C = 
4e 

1 - 8e ■irji/v 

as  \i. -* 0     for fixed   y 

as  n -» oo    for fixed  \  . 
\ (2.19) 

When (2.18) is satisfied, a calculation using elliptic functions (appendix 

D) shows that 

\ Q(,(x) = [l»M(c)] (1 -x2)'' F(sln'11« c) {1.20) 

J, where  F(§,c)  is the incomplete elliptic integral J (1-c   sin 6) *de  .   In 
0 

the further limit  c - 0,   F(^) - |   and  K(c) - TT/2,    SO 

\ q0(X)       2    ,   -1 x  T-T- = - sin    — 
jipA(x)      IT c 

(2.21) 

in the adhesive region  0 < x < c .   Figure 3 shows computed curves of q /Vp 

for the case  v = 0   for three values of c,   for comparison with this expression. 

The agreement is best for the smallest value of c .   The computed curves for w 

0. 3 would lie approximately mid viray between those for   v = 0   and the broken 

curves. 

-10- #1146 
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3.   Induction of the dual problem to a Fredholm equation 

In this section we treat the flat punch equation! (2.11), (2.12) but will 

from now on omit the suffix 0 .   If q Is eliminated in favour of r,   these 

become 

0 < x < It   p(x) ♦ 2x/w)(cotwa)/ £^1^ . r(X) (j# x) 
0 y -x 

0 <X<CJ-Y2P(X) ♦ (2/w)(tanwa)/   Hp ' p* ydy • 0,     (3.2) 
0  y   -x 

where tan wo r My (0 < o < j» , 

which are to be solved subject to the requirement that  r  vanishes on  (c. 1) 

and Is bounded and non-negative on  (0, c)   in accordance with (2.7).   A 

singularity In   p  at  x ■ 1  can however be admitted In the solution. 

In the physical problem It would be natural to fix the values of a  and 

yt   and try to find  c .   However, It Is more convenient analytically to pro- 

ceed for the present as If all three were known, but we shall find In due 

course that a solution to (3.1), (3.2) satisfying the further requirement that 

r(x)  Is bounded and non-negative on  (0, c)  exists only when r certain com- 

bination of a, Y and c  Is equal to the first eigenvalue of the Fredholm 

equation (4.7) below.   (3.1) Is a singular Integral equation for  p(x) In terms of 

r(x),   with solution obtainable by standard methods (appendix A) as 

where   w(x) = [ LJÜ""* . 

#1146 *        ' -ll- 
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(An arbitrary multiple of 1/xw(x) forms part of the solution, but must be ex-

eluded since it is unbounded at x = 0 . The remaining integral is regular at 

2 -i +a x = 0, but behaves like (1 - x ) near x = 1. ) 

ntis expression for p(x) can now be substituted into (3. 2) to yield a homog-

eneous equation for r alone, as follows: 

(1) On substitution of p into the second term of (3. 2), the equation 

becomes 

( ) 
c (~2 1 2 c _ 2 (x) _ sin21Ta J yr(y)dy = 4 sin1ra J y dy J w(u) r(u)du 

y p 1r 
0 

2 2 1r 
0 

2 2 
0 

w(y) 2 2 · 
Y -X Y -X U -Y 

(3.4) 

(11) Tile order of integration on the right hand side may be reversed by 

use of the Bertrand-Poinca~ lemma (Tricomil957 p. 172) when the term becomes 

2 [ [2~ 2 c 1 2 d J (sin 1ra) -r(x) + \-; J w(u) r(u)du J Y2 ~ 2 2 · 
0 0 w(y)(y -x )(u -Y ) 

The inner integral here can be split into partial fractions and evaluated by 

use of a general result derived in Appendix B : 

1 
2x2( si:1ra ~ J dJ 

2 
} 0 w(y)(y -X ) 

= XCOS1ra _ 2 ( )A( 2) 
w(x) x g a x , (3. 5) 

2 2 
where A(x ) = F(l, i; l+a; x ) and g(a) = r(-} + a)/r(l +a) r(-}) 

(iii) When these results are combined, (3. 4) reduces to 

( 1 )2 ( ) sin21TaJc~ uw(u)~ r(u)du 2 Jc 2 2 - s n 1ra r x - x- - + - g(a) sin1ra G(x, u )w(u)r(u)du, 
1r 

0 
w(x) Z 2 1r 

0 U -X 

where 

00 
2 2 2 2 Z 2 2 2 \' 2n 2n -2 2 2n 

G(x , u ) = [x A(x ) - u A(u )]/(x - u ) = LJ an(x +x u + . . . + u ), (3. 6) 
n=O 
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b 
and      a   ■ (2)1. /(l +0)it   

ls ^xe coefficient of  r    In the expansion of  A(z) . 

The first term and the first part of the second term combln*» to produce exactly 

-P(x),   by (3. 3), while the remainder of the second term cancels the second 

term on the left of (3.4), which therefore reduces to 

2 2 C       2     2 
0<x<ct   (I - Y )p(x) - - g(o)(slnira) f G(x ,u )«(u) r(u)du« 0 (3.7) 

' 0 

Since  p(x)  has already been expressed In terms of r(x),   (3.7) Is equivalent 

to a Fredholm equation for r on the Interval  (0tc) .   It Is reduced to 

canonical form In the next section. 

In the slip region c < x < 1,   the right hand side of (3.7) equals 

( ^»(-)-p 1   by (2- 3):  the displacement  u(x) could therefore be calculated 

once the equation has been solved for  r(x) .   It can be confirmed directly from 

(2. 3) that  ~ and therefore  u(x)   are negative, I.e. that the displacements In 
ax 

the slipping regions are inwards. This is consistent with the positive sign 

of q for x > 0 (shear stress away from the origin) since the frictlonai force 

opposes the motion. 

4.   The Ftedholm equation for r(x) 

In (3. 3) and (3.7) write 

x2-c2e,   (l-xV"ar(x) - ♦(4), (l-x^'^ptx) .4.<»,), (4.1) 

Then the equations become 

I 

0 

■ U   ••Y, 

«1146 -IS 
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and 

In which   c   plays the role of an eigenvalue, to be fixed so that (4.2) and 

(4. 3) possess a solution such that 

0<^)<« (44) 

on (0,1).    The kernel In (4. 3) is 

H(e.tO-0-cV"tfG(c2e.c2n)-f    c^^h^tV (4.5) 
m, n = 0 

•ay. 

The Inverse of (4. 2) that is bounded on   (0,1)   la 

(This excludes an arbitrary multiple of  (VO-O      •   to comply with (4.4)). 

(4.3) and (4.6) give 

1       . 
^♦(t)" / n      K<t,n)4(n)dn, W.t| 

0 

«*- ««•-•• (^rK'«)H«.,..(^) I«"-"'^♦«H," <«... 

and K. U - t*)/cU{Q{m)f  . Hfl 

Kara 4^(0 • L^l") • t%0(l». W-10) 

•1 

#1144 
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where -1 
<1»0 (~) = L (1), which is evaluated using the result in Appendix B, and 

can be written in two ways: 

(4.ll) 

1 

The first shows that cjl 
0 

and therefore all the cjl n tend to zero like (1-s) 2 -a 

as ~-1; the second shows that cp
0

(0) = 1, while cpm(O) = 0 for all m > 0. 

Insertion of these expressions in (4. 8) shows that K is bounded on 0 :s_ ;, 11 .:5. 1 , 

!.(1- a) * and if we write cjl(~) = ~a cp (;) the equation is 

(4.12) 

in which, because of the boundedness of K, the kernel is square integrable 

provided a > 0, so the standard Fredholm theory shows that solutions exist 

for at most a discrete set of eigenvalues x.
1 
~ x.

2 
~ x.

3 
. . . say. Moreover, 

all the coefficients h are >0 (this is confirmed by a detailed calculation 
mn 

in §5), and cpm(;) > 0 on the open interval, so K is positive, and x.
1 

is 

the Perron root, which is positive and is the maximum in absolute value; and 

the corresponding eigenfunction cp(l)(;) (i.e. the solution of (4 . 7) whe n 

X. = X. ) is the only eigenfunction which is positive on the whole interval 
1 

(0, 1) . This therefore gives the solution of the physic al problem. Since the 

kernel K depends on c and a, we find x.
1 

(c, a ) from (4. 7) and must fi nally 

determine c(a, y) numerically by il\Serting this value for X. in (4. 9). As a 

first step we replace the integral equation by a se t of linear algebraic equations. 
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Solution of the Infgral equation (4.7) 

The separable form of the kernel suggests a solution of the form 

00 

♦(ü« Z a
ro
cmVfc) • (4•13, 

msO 

Then since the   {4 )  are linearly independent, the coefficients of c  *  (£) m m 

on the two sides of the equation can be equated.   This gives a set of linear 

equations for the   (a   ) which can be written m 

00 
m +2n . p Ka    -y      Cm*'nh     i     cPa (4.14) 

m  n, p-0 ** nP P 

where i     «       . ■   f  n e (n)dn   . np     wg(o) J0 
n ^p^^ " 

Now a detailed calculation in appendix  C  shows that 

i     sh       , (4.15) 
np      np   ' 

so (4.14) can 11 vrltten in matrix form as 

Xg « l^g (4.16) 

where  K ■ CHC,   H = (h     },   C =     c ] being infinite matrices. 

Since  K and   K    are positive, if  v    it the Perron rrot of  K    it follows 

that  «yTT   is the Perron root of  K.   the corresponding eigenvector a      and 

elgenfunction   ♦  '(() ■ T e     +  (()  being the same in each case.   Moreover, fc   m     m 

+    if,)  is the first elgenfunction of the cimpler equation 
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>rr ♦(!)«/ r/""1 Kce.tiWTiKiT, (4.17) 
0 

00 

0 " 

Because of (4.15), it follows from (4. 8) that 

l- - 1 
/ K(fc,U K(t,Ti)ta   dt ■ m,y\) - (418) 
0 

[An equivalent result Is / I*'1» -c2^ t)'1 K(Cf t,)dt = H(i, i,). (4.19)] 
0 

So all elgenfunctions of (4.17) are also elgenfunctlons of (4.7).   The reverse 

does not follow in general although It is true for the Perron root.   It may be 

noted that (4.17) can also be written in the form 

^1 l4{i) s 1*21 f   J'1 th^T (4. 20) 
M9la)    0      l-C^fcr, 

in which the left hand side equals   >/T 4,(£),   but the author has not been able 

to derive this equation directly from the physical problem. 

5.   Calculation of the Perron root   \.   and the physical eigenvalue 

The matrix  H  formed by the coefficient h       (m, n = 0, 1, 2, ...)   in mn 

equation (4. 5) is the product 

H = BA (5.1) 

I   «I   «2    •• • i /I 

*here  A - |   al a2   a3    '''  j B «   I    bl     1 

a2a3   a4    ...I \  *»2    bj    1 
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are respectively an Infinite Hankel matrix and an Infinite lower triangle, the 

a'8  being the coefficients In the expansion of  A(x)   already quoted (equation 

(3. 69 and the  b's  those In the expansion of  (1 -xr'af   namely 

bk" ^-IV*1 • <5-2) 

The fact that all elements of H  are positive Is deduced as follows: 
Mi 

(r   The  m     element in the left hand column Is 

hsb   +b    .a. ♦...a    « coefficient of  xm  In expansion of (1-x)''<rA(x) mo      m     m-i i m 

This function equals   ?{\ 4- a, a; 1 «■ a; x)   by Kummers transformation   (Erdllyi 

et_al_l953,  p.  105 (2.9 (2)), 

whence h  A .-2-ÜlHl« > o, (5. J) 
m0     m + a      m! * 

(11)  h     ,      .-h     « -b   a   > 0  for all   m > 0  (since all the  b's  ex. m-', n+i       mn        m  n 

cept  b    are negative) so the elements of H   Increase to the right along lines 

of constant m + n,   so are all positive. 

The Perron root of  K Is -A      and may be computed by the power method 

of successive multiplication by  K until convergerice In achieved.   In numerical 

work,   K was first truncated to  K     containing the first  N row« end columns, 

leading to a value   ("^i )N;  die procedure was then repeated for  N ♦ S  until 

the value of v/ v  did not change by more than  10     .   With increasing  c , 

the value of  N  to secure convergence incrcaeed from  10  et c   • 0.1  to 4 S 

at  c    - 0.95. 

Finally, the solution of the physical problem in the form of e es • 

function of c  and  y  is found by iteration from (4.9), written logertllualcelly 

in the form 
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a   -   — i-A1^1-^2  • (5.4) log^«:,«)    J 
log c ♦ ;  + - log g(a) co a 

Starting from a trial value of a on the right, with c  and  \ held fixed, this 

converges very rapidly.   Results are given in table 1. 

The friction coefficient is then found as 

v- • (l/v) tan wo . 

Values of ji so found from the values of a given in table 1 are listed In 

table 2 for the cases * = 0 and v s o. 3, and plotted as solid lines in 

figure 2 . 

5.1.   Limiting form of solution as o -» 0 
logKj 0 

In the limit a-• 0,  —s—   tends to a limit   x (c)  say, as can be in- 

fenred directly from the matrix (see footnote page 21), or from the limiting 

solution of section 2.2. 

Tne limit can be approached by allowing  -y to tend to zero, and since 

(I/o) logg - - log 4,   (S.4) gives 

im r^q] = I 
-0[toga-t)J        / 

lim 
V 

(logo +ji*-log4) . (5.5) 

The limit on the left is  ti/y ■ tycl/K'fc)  by (2.18), whence 

/(c) « logi -7 K'(o)/K(c) . (5.6) 
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A convenient table Is given on page 608 of Abramowitz and Segun. 

Table 1 "hows that  (log \.)/a differs appreciably from X    only when 

c  Is close to  1  and  y close to £;  for  v = 0. 3  It Is sufficiently accurate 

to write   \   In place of (log \.)/a so the determination of X.  from the matrix 

can be avoided, although iteration to Und a is still necessary since 

(logg)A = -log 4  is not sufficiently accurate.   The full expansion is 

00 

logg(«) = .alog4   + £ (-2a)n ^ (5.7) 

where Ti(n)  is the sum of reciprocal  n     powers with alternating signs 

2 *. 
(TI(2) = ir /12),   and if one extra term is retained, (5.1) can then be written 

-1 .^V'-f^-a]- 
which leads to values of fi in 4-figure agreement with those tabulated in 

most cases. This expression was used to calculate the entries in table 2 

for c < 0.7 . 

The solution for $(£)  can be written down explicitly when a -*- 0,   since 

in this limit the first eigenvector of the matrix  K is   (1, 0, 0, ...)  (This is 

because in the limit all the elements of the left hand column of K are zero, 

except for lc00)- 

Therefore, as  or -• 0 

♦(1)(e) = llm   «t»0(l) 
a-*0 

■ I - I e* P(i, i; 3/2; 6* by (4.11), 

s 1 - ^ sin"1 e* (5. 9) 
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in perfect agreement with (Z. ZO) when allowance is made for the change 

of notation. 

Footnote: 

To infer the existence of the limit directly from the matrix, note that all 

the elements of the left hand column of K except the first contain a as a 

factor. Therefore if we write 

~ = 1 + Za~ , 

* as a - 0, ~ tends to ~ (c), given by 

* - ~ 
z * 

c hol 
4 * 

c hoz 

{hlO/a) * z * c hll -1 
4 * 

c hlZ 
det 

{hzo/a) * z * c ·hZ1 
4 * 

c h22 -1 
= 0 

where the stars denote the limits of the quantities as a .. 0, so (hm
0
/a)a = 

(i) /m. m! etc. m 

I have not found a direct derivation of (5. 6) froT\'\ this determinant, but 

* have satisfied myself that the two expressions for ~ are the same with 6 

figure accuracy by means of a computation, which took only a fraction of a 

second of machine time. 
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5. 2. Asymptotic expression as c- 1 

\ 
\ 

The writer has also carried out an analysis parallel to that reported ht:ra , 

in which the problem is cast into the form of an integral equation f<.">r tt.e unknown 

strain u' (x) in the slip region e < x < 1 . This is tractable by the W~ener-

Hopf technique when c is close to I, and as in the present approacf._, an 

eigenvalue problem for c follows from the requirement of bounded stres~es 

at x ·= c, giving rise to the condition 

-1 
tan tJ. = tanh -l c + 'it (a, K) + lc.g 2. 

I( 
(5.10) 

2. 
with an error of order (1 -c) , where 

K = (2/w} tanh -I y = (1/w) ln(3 - 4v) 

and I iK I iK 'it (a, K) = (11K) Im log(r(l- a -2) r(l --z )] 
2. 2. 2. 

aw 1T 2. K = 12(1 + 0. 2.326 1r a + f5 (a -4) + .. . ] 

Values of tJ. calculated from this expression are included in table 2. and are 

seen to be extremely accurate for c greater than about 0. 6 . 

5. 3. Numerical solution of the coupled equations 

Mention may also be made of a numerical attack on the problem, which 

will be described separately in an MRC Technical Summary Report by the 
X X 

author. If we write y for x, and apply the operators J J 2 2 , J J 2 2 
0 X -Y 0 X -Y 

to (2.11) and (l.l2.) respectively, they are put in the form of coupled Volterra 

equations: 

0 <X< 1: 
1 t p

0
(t)dt 

f 4 z z 
X t -X 

xyqo(y)dy ·1 

+:vfJz z=z 
0 X - y 

(5.11) 
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i 
x p (x)dy        1 q (t)dt 

0<x<ct  YJ     J g     ;   -/    i |     | 
0 vx   -y       x vt  -x 

= 0 (5.12) 

which are particularly suitable for numerical!solution, as the earlier singular 

|     equations are not.   They have been solved numerically on the Unlvac 1108 

computer at the University of Wisconsin Computing Center, using piecewise 

constant interpolations to  p, q  with up to 64   sub-intervale, the condition 

q ■ pp being appUed on the portion c < x < 1  with an initially guessed value 

of )&   .   For each fixed  c,   an iteration was performed until the value of ¥■ 

was such that q - HP was positive throughout  (0, c)  and tended to zero at 

c .   In this way the points shown by circles in figure 2, and the corresponding 
1 

stress distributions in figures 3 and 4 were obtained. 

I am very grateful to Professor Ben Noble for suggesting the limit looked 

at In section 2.2 and for his continued interest, and to Verlyn Crick son for 

programming the calculations. 
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Appendix A.   Invenlon of tlnqular Infqral •quatlom 

Carlemann (1922) ihowed that the general solution of the aquation 

a(a) u(.) - X /-i^-. g(t) (Al) 

(\ > 0)  where   a(s)  and  q{s)  are analytic for  -1 < ■ < 1  can be written 

^W     I  .-Tft).™^        „SO 
*    V 

(■) 

where  K  Is an arbitrary constant, and 

b2(.)    b,,, -ib(,, («-»>»-•■ 

'«•»■/|-^. •<•>-^r4^H^]  <0<t<•,<1•• 
b2(8) = a2(8) + (Xir)2   . 

Equations (2.16), (3.1) and (4. 2) are all of this form, and the Inverses quoted 

are obtained by suitable changes of variable and choice of  K:   eg. In (3.1) 

2 2-1 -1 write x   = £(s +1), y   = |(t +1), x   p(x) = u(s), x   r(x) = -g(s),   when the 

equation becomes Identical with (Al)  with a = -1,   wX = cot TTO .   Hien   e(s) = 
/l      _   V   i.A. a 

} + o, expT(s) = (TT—) 2     ,   b(s) = cosec wa  and the solution (A2), translated 

back Into the original variables, Is 

(cosec ira)p(x) = (sinira ™-i^)Mf*i$2ttfSr 
+ JICx-2',(l-x2)-i+'" 

If we choose 
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^w^^ 

r.iaui f'^Ütiiaft 

tho Ult two termf combine to give the exprotilon for   POO   quoted to (S. n. 

which If regular at  X • 0 . 
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Appendix 8. Evaluation of the integrals (3. 5) and (4.11) 

These are special cases of the following general result for real a, b < 1, 

0 " s < 1: 

1 
r(l-b) 

---------- F(l, a+b;a+l;s). {81) 
cos 'II' a _ sin 'II' a J dt 
a b 11' a b = 

s (1-s) 0 t (1-t) (t-s) r(l+a)r(l-a-b) 

{0-) 
This is obtained by evaluating the loop integral 2~i J dz/za(z-lf{z-s) 

+co 
round the two sides of the positive real axis in the z plane, with semi -circular 

indents above and below the point z = s . '!be second term on the left hand 

side is the contribution from the two sides of the interval (0, 1), and the first 

that from the indents at z = s . The right hand side comes from the integral on 

(1, oo ), which can be transformed into Euler's integral for the hypergeometric 

function. (In the special case a + b = o, the contour can be replaced by a 

closed loop surrounding the points 0, 1, and the right hand side, which re-

duces to 1, is the residue at infinity.) From this result 

2 2 
(i) (3. 5) is obtained immediately by writing a = a, b = i- a, s = x , t = y , 

(1.1) To derive (4.11), write 41 = 1 in (4. 6) whence 

Use of (81) with a = i- a, b = !-, s = 1- g, t = 1- 11 shows that the quantity in 

square brackets is 

3 3 
[r<t>/r(a)r{z- -a)] F(l, 1-a, 2 -a;l-;) , 

from which the first line of (4 . 11) follows since r{a)r(l -a) = 11'/sin'll'a . 

The second line is obtained from the first by writing a = 0, b = a, c = ~ 
in lines (22), (43), (1) and (17) of Erd~lyi §2. 9, pp. 105 -108. 
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Appendix C. 
1 

a1 f = sin 1ra J ~a+p-1 '" (~)dl: Ev uation o ipq ( ) .,. 't' .,. .., 
1r9 a 

0 
q 

Substitution from (4.10) and the first line of (4.11) gives 

(1) 

1 1 1 q -1 1 
+cos 1ra J ;z(l-;)-z-a ~ a ;r+a+p- d; 

1T' 0 r=O q -r-l 
(2) 

On termwise integration, 

1 co (1-a) 
(1) = ar(p +q+a+ 2 ~ n 

r(t+a) r(p+q+2) n=O (p+q+2 )n 

The sum of the series is F(l, 1-a; p+q+2; 1), which equals (p+q+l)/(p+q+a) 

by Erdelyi 1953, p. 61(14), so 

1 p+q 
1) a (a+ 2) p+q = L: a b 

( = (p+q+a) (p+q)! s=O s p+q -s by (5. 3) . 

Similarly, integration of the second term gives 

q -1 q -1 
2 COSlra ~ -1r 2: ( )= a ( )b =- a b 

1r q-r-1 cos1ra p+r+l s p+q-s 
r=O s=O 

.Adding the two expressions gives 

p+q 
i =~ab =h 
pq LJ s p+q - s pq ' 

s=q 
by (5. l) . 

An alternative demonstration of this result is possible by direct integration of 

various hypergeometric functions to obtain the equivalent equation (4.19), but 

the analysis is more lengthy. 
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Apptwdu D.    Dlipuc tnfqfl» for HmlUng rtfi« dlitrtbuUon 

If ih© onJer of mtogrttion if reverted In lh« fUtl term on th« fight of (2. ll\ 

90(K) • 

iww I0(M>^JC  fV^iS   '"'yf^   ^•nO<x<c<t<l 
0 (t -y )(y -x )        t   - x 

q0(«) • 
SjT^T   l   c l-t*       t'-x' 0   |.ya     y'-x'J 

•xhlbltlnQ a »irvjularliy at   x ■ c   unle«» the lum Intld« the square bracket 

vanj»he» et this point, 1. e. unless 

o ■ -V/  p r ♦ •. / P- j- 
e B-tV«1^, 0 (l-yV«cV. 

which gives H/Y « K(c)/K(c),   equatlomZ. 18).   When this Is satisfied, the 

previous expression can be rearranged as 

qo(x) B (T) ^«2-«2   i»\W - vyx)!, 

w . x     r dt        1      „ .l-c       r~T. 

C (l-t2) (t -c ) (tZ.xZ)       ' X l * 

W(c2-x2)(l-x2) 
[ET(e,c) +K'E(e,c) - K'r(e,c)l 
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G 2 
•nd tyx). /   , 1    z

dy
2    2   2    ■ - -y n (Sj , c) 

^ 0 J(l.y')(x .y'uy'x2)        xZ     i xZ 

xV(c*.x HI-K ) 

H'-re   n.   If the complete elliptic Integral of the third kind (Byrd and PMedmann, 
.1 « 

p. 225),   4 « sin    -,   K ■• K(c)  and   C ■ C(c)  are the complete Integrals of 

the first and second kinds, and dashes denote the same Integrals with 

argument   ^1-c C(iiC),   ?(i,c)   are the Incomplete elliptic Integrals 

f U-o   sin 0)   ' d6 .   Then since   y « »tK'/K,    these results combine to give 
0 

»  Vl-X 

The quantity In the square brackets equals   ir/2   by Legendre's formula,  so 

q0(x)  reduces to the expression quoted (2.19). 
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TABLE 1 

Iteration to find a,   for  w ■ 0  {y ■ {)  and   w = o. 3(Y - - ) 

v ■ 0 v ■ 0. 3 
c2 N 

(equation 5. 5) 
'loflK, 

2« 

1 'log^ 

la 

1 

10 .026080 .025997 .059399 .026069 .017140 

10 . 054620 054370 .070821 .054586 .020233 

10 .086190 .085680 .080634 .086155 .022824 

15 . 121604 .120699 .090332 .121521 .025303 

20 . 162072 .160555 .100748 . 161932 .027886 

25 209533 .207058 . 112806 .209308 .030765 

30 .267427 .263323 .128027 . 267064 .034229 

.75 30 .302242 .296837 . 137751 . 301768 .036342 

35 . 342929 .335596 . 149923 . 342307 .038884 

85 35 .392360 .381957 .166332 .391447 .042121 

40 .456536 .440404 .191387 .455181 .046695 

.95 45 . 552638 .521275 .241681 .549429 .054643 
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TABLE 2 

Friction coelficient  |t as a (unction of c 

v ■ 0 v ■ 0. 3 

r 
c (equation 5.4) 

i.  n 
(equation 5.10) 

IK                  I.       -I 
(equation 5.4) (equation 5.10) 

.OS .20952 .10728 

.1 .25064 . 12771 

.15 .28356 . 14384 

2 .31313 .15815 

.25 .34118 . 17154 

3 . 36869 . 18449 

.35 .39633 . 19733 

4 .42466 .21028 

.45 .45422 .22356 

.5 .48557 .23738 

.55 .51941 .25199 

.6 .55660 26766 

.6325 .58332 .27882 

.7071 .65^04 . 65722 . 30741 . 30819 

.7746 .74003 .74142 .33934 .3397 3 

.8367 .85080 .85168 .37782 . 37805 

.8660 .92393 .92465 .40135 .40150 

.8944 1.01845 1.01914 .42969 .42978 

.9220 1.15190 1. 15260 .46587 .46597 

.9487 1.37198 1.37300 .51715 .51720 

.9747 1.89811 1.90518 . 60680 .607 56 
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(a)   Flat punch r 
c 

*/ t x«c    A(x«l) 

Slip Adhesion 

(b)   Power law Indentor 

Adhesion 
Slip 

Figure 1:   Frlctlonal Indentation by rigid punch 

(Schematic) 
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Figure 2:       Two dimensional punch:   ti versus   c 

for  v m o  and   w = o. 3 
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