

Technical Memorandum #1 IITRI Project E6212 Contract No. N00039-72-C-0106 N E W

A SMALL ELF ELECTRIC FIELD PROBE

U. S. Naval Electronic Systems Command Washington, D.C.

Prepared by

1

A. R. Valentino

IIT Research Institute 10 West 35 Street Chicago, Illinois 60616

DIST	RIBUTI	ON ST	ATEM	ENT I	-
Ap	proved Distrit	for put	blic re Inlimi	ted	-
-					
	-	E)-[) (-
)]PCG	26		וקו
	In	MA	19	1972	

٠.

April 1972

	DOCUMENT CO	ONTROL DATA - R	L D	
Security classification of t 1. ORIGINATING ACTIVITY (Corpora	tte, body of abstract and inder te authors	ting annutation must be a	ntered when t	e overall report in classifi
IIT Research	Institute		Inc	Inseifind
10 West 35th	Street		26. GHOUP	
J. REPORT TITLE	LNO18 60616			* *
A Small FLF F	loctric Vield r	ma ha		
	rectife rield r	rone		· ·
4. DESCRIPTIVE NOTES (Type of re	ort and inclusive datest a		· · · · · · · · · · · · · · · · · · ·	
S. AUTHORIS (First name avidia int	orandum E6212-1			
	tial, isst name)			
Anthony R. Va	lentino			
6. REPORT DATE	مرد و بر مرد مرد مرد و بر مرد	28. 10 TAL NO. 05	hacas	
April 1972	· ·	43	PAULS	None
N00039-72-C-0	106	BH. OHIGINATOR'S E6212_1	REPORT NUN	10 E ft (\$)
. PROJECT NO.		40212-1		
•				
	k 2	b. OTHER REPORT	NO(S) (Any c	ther numbers that may be a
<i>d.</i>				
10. DISTRIBUTION STATEMENT		——————————————————————————————————————		
Distribution (of this document	t is unlimite	d	
T. KINK KAN		12		
A POTT ANTANY NOTES	Y T	12. SPONSORING MIL	ITARY ACTI	VITY
		Naval Floo	tronia	
		Naval Elec PME 117-21	tronic	Systems Comma
		Naval Elec PME 117-21 Washington	, D.C.	20360
3. ABSTULEY		Naval Elec PME 117-21 Washington	tronic, D.C.	20360
The design and	development of	Naval Elec PME 117-21 Washington	, D.C. measur	20360 ing electric
The design and fields at Extr	development of emely Low Freque	Naval Elec PME 117-21 Washington a probe for encies (ELI)	, D.C. measur is desc	ing electric ribed. The
The design and fields at Extr probe is spher and uses a fib	development of emely Low Frequencially shaped a er-optic readout	Naval Elec PME 117-21 Washington a probe for encies (ELI) and relative t. to avoid w	tronic , D.C. measur is desc small (ing electric ribed. The 6.3 cm in dia
The design and fields at Extr probe is spher and uses a fib of the measure	development of emely Low Freque ically shaped a er-optic readou d electric fiel	Naval Elec PME 117-21 Washington a probe for encies (ELI) and relative t to avoid un d. The probe	tronic , D.C. measur is desc small (nnecess c is ca	ing electric ribed. The 6.3 cm in dia ary disturban pable of
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m	Naval Elec PME 117-21 Washington a probe for encies (ELI) and relative t to avoid und d. The probe v/meter and	tronic , D.C. measur is desc small (nnecess c is ca 100 vol	ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Provident
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for incies (EL!) and relative it to avoid und d. The probe v/meter and packaging of e presented	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	ing electric 20360 ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Probe and oper-
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Frequencially shaped a er-optic readound d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington a probe for encies (ELI) and relative t to avoid und. The probe v/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Probe and oper-
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for fencies (EL!) and relative t to avoid und d. The probe v/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	20360 ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Property
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Frequencially shaped a er-optic readound d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for encies (ELI) and relative t to avoid und t The probe w/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	20360 ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Pr robe and oper
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for fencies (EL!) and relative t to avoid und d. The probe v/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Probe and oper-
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Frequencially shaped a er-optic readound d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for encies (ELI) and relative t to avoid und t The probe v/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Pr robe and oper
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for fencies (EL!) and relative t to avoid und d. The probe v/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Probe and oper-
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for iencies (ELI) and relative it to avoid un d. The probe v/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Pr robe and oper
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for fencies (EL!) nd relative t to avoid u d. The probe v/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	20360 ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Probe and oper-
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for iencies (ELI) and relative it to avoid un d. The probe v/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess c is ca 100 vol f the p	20360 ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Pr robe and oper
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for fencies (EL!) and relative t to avoid und d. The probe w/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	20360 ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Probe and oper-
The design and fields at Extr probe is spher and uses a fib of the measure measuring fiel encountered in ational data f	development of emely Low Freque ically shaped a er-optic readou d electric fiel ds between 10 m the design and or the probe ar	Naval Elec PME 117-21 Washington E a probe for iencies (ELI) and relative it to avoid un d. The probe v/meter and packaging of e presented.	tronic , D.C. measur is desc small (nnecess e is ca 100 vol f the p	20360 ing electric ribed. The 6.3 cm in dia ary disturban pable of ts/meter. Probe and oper

1

IA. KEY WORDY	1 11	K A	LIN	к D	L. 114	к с	Į.
	HOLF	WT	ROLL	W 1	01.1	W T	
Extremely Low Frequency							L
Electric Fields	ł ·						
Floatronia Massuromonts							
Testmonentablen							
			·				
Nonionizing Radiation							
· · ·		· .					{
		ĺ					
		Į	.				
		•				u .	
···· · · · · ·	1			•			ł
				•			
•							/
							ľ
		· ·					l
the Pity to a Little of the			1 - E	1			
							Į
A CALENDARY AND A C		••				·	_
							!.
							1
and the strength of the second se	i						['
							Ł
	•••	· .	•				
		:	·				l
			<u>з</u> .				ł
							ł
•							
					Ì		
•							Ł
		•					
					l		ł
		<u>Unc</u>	lassi	fied			

FOREWORD

The ELF electric-field probe described in this memorandum was developed at the direction of the Sanguine Division of the Naval Electronic Systems Command, which is responsible for the management of the Sanguine Program.

The probe was designed by Mr. A. R. Valentino with aid from Mr. J. Goode on the experimental work. The probe was fabricated by Mr. R. Heidelmeier.

> Respectfully submitted, IIT RESEARCH INSTITUTE

A. R. Valentino Research Engineer

APPROVED BY:

D. A. Miller

Program Manager

A SMALL ELF ELECTRIC FIELD PROBE

Abstract

The design and development of a probe for measuring electric fields at extremely low frequencies is described. The probe is spherically shaped and relatively small (6.3 cm in diameter) and uses a fiber-optic readout so as not to unnecessarily disturb the measured electric field. The probe is capable of measuring fields between 10 mv/meter and 100 volts/meter. Problems encountered in the design and packaging of the probe and operational data for the probe are presented.

TABLE OF CONTENTS

																					Page
1.	INTR	DUCTION .	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	SYST	EM DESIGN	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
3.	COMP	ONENT SELE	CTIC	ON (DR	DE	SI	GN	•	•	•	•	•	•	•	•	•	•	•	•	4
	3.1	Probe	• •	•	•	•	•	• •	•	٠	٠	•	•	•	•	•	•	•	•	•	4
	3.2	High-Inpu	t-In	pe	lar	nce	V	011	ag:	e /	Amp	51 1	f	ler		•	•	•	•	•	4
	3.3	Light-Emi	ttir	ıg S	Ste	Ige	:	• •	•	•	•	•	•	•	•	•	•	•	•	•	9
	3.4	Glass-Fib	er I	igl	nt	Gu	id	e		٠	•	•	•	•	•	•	•	•	•	•	9
	3.5	Receiver	• •	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	9
	3.6	Batteries		•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	9
	3.7	Summary .		•	•	•	•	• •	•	•	٠	•	•	•	•	•	•	•	•	•	13
4.	PACK	AGING	• •	•	•	•	•	• •	•	•	٠	•	•	•	•	•	•	•	•	•	16
5.	OPER	ATIONAL DA	TA .	•	•		•	•	•	•	•	•	•	•	•	•	•	•			21
	5.1	Frequency	Res	poi	nse	9		• •		•	•		•	•	•		•		•		21
	5.2	Battery L	ife	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	24
6.	CONC	LUSIONS AN	D RE	:00	ME	ND	AT	101	IS	•	•	•	•	•	•	•	•	•	•	•	25
APPI	ENDIX	AANALYS	IS C	F S	SMA	LL	S	PHE	RI	CAI	LI	PRC)BE	2	•	•	•	•	•	•	26
APPE	ENDIX	BSPECIF	ICAI	101	NS	FO	R	THE	L	IGI	ΗT	SE	ENS	517	SIV	Æ/	DI	[0]	DE	•	31
APPI	ENDIX	CSPECIF	ICAT	101	NS	FO	R	THE	R	ECI	EIV	Æ	R A	MF	L]	[F]	EF	ł	•	•	35
APPI	ENDIX	DSURVEY A PRIV	OF ATE	E LI DWI	ECI ELI	RI LIN	C G	FIE	ELD	s :	EN •	AN •	ID •	NE •	AF	٤.	•	•	•	•	39

LIST OF FIGURES

1770 V -101

ł

l

Į

I

Figure		Page
1	System Block Diagram	3
2	Feedback Amplifier	5
3	Analysis of a Two-Input Operational Amplifier	7
4	Op-Amp Specification Sheet	8
5	LED Specification Sheet	10
6	LED Drive Circuit	11
7	Light Guide Specifications	12
8	Battery Specifications	14
9	System Schematic	15
10	Probe-Receiver System	17
11	Internal View of Probe Electronics	18
10	Internal View of Probe Electronics	19
12	Internal View of Poseiver	13
13	Internal view of Receiver	22
14	E-Field Probe Calibration Curve	22
15	System Frequency Response	23
A-1	Equivalent Circuits for a Small Antenna	28
A-2	Model for Calculating External Capacitance of Sphere	29

1. INTRODUCTION

١

1

ł

The objective of this memo is to describe the design and development of a probe for measuring the electric field in air at extremely low frequencies (20-200 Hz). The primary application for this probe is that of mapping the electric field in certain electric-field simulators used for biological research. The fact that the probe is to be used to map the electric field over small volumes (e.g., $2 \times 2 \times 2$ meters and smaller) requires that it be small by comparison.

A secondary application for the probe is that of measuring and mapping the ambient 60-Hz electric field. The small size of the probe will allow it to be used to seek out regions of high electric field.

It is of interest to measure field levels as low as 10 mv/ meter and in order to properly map the field in an electricfield simulator or other regions of interest, a dynamic range of at least 40 dB is desired. Since certain of the simulators are operated at 10 volts/meter, it was decided that a probe which could measure fields between 10 mv/meter and 100 v/m was what was desired.

2. SYSTEM DESIGN

Į

ł

Since it is required that extremely low frequencies (20-200 Hz) be measured with a very small probe, the output impedance of the probe can be expected to be very high and its open-circuit voltage very low. Therefore, the plan must be to follow the probe with a high-input impedance, voltage-amplifier stage. This stage can also be used to provide the variable gain necessary to achieve the desired dynamic range.

The electric field to be measured must not be perturbed any more than is necessary. For this reason, the use of metallic cable to carry the measured information from the probe to the receiver is undesireable. A fiber-optic light-guide system is selected to provide this link. It is anticipated that a buffer, in the form of a power amplifier, will be required between the voltage-amplifier stage and the light source.

The receiver will consist of a light-sensitive diode followed by an amplifier, the output of which may be monitored by a laboratory oscilloscope or voltmeter.

A block diagram of this system is shown in Fig. 1.

Į

Fig. I SYSTEM BLOCK DIAGRAM

3. COMPONENT SELECTION OR DESIGN

3.1 Probe

The two primary requirements for the probe are conflicting. First, it is important that the probe be small so that it can be used to map electric fields. In this way the probe can be used to evaluate the uniformity of the electric field in certain simulators. Second, the sensitivity of the probe will increase with its size and for this reason it is important that the probe be as large as possible.

In order to avoid unnecessary distortion of the electric field to be measured, it was decided to place the electronics inside of the probe. Therefore, the probe should provide a large internal volume.

The shape chosen for the probe is that of a sphere for the following reasons:

- 1) for a given maximum dimension the sphere provides the largest internal volume, and
- 2) the behavior of the spherical shape in an electric field can be analyzed (see Appendix A) providing theoretical understanding for the operation of the probe.

3.2 High-Input-Impedance Voltage Amplifier

The diagram and equations in Fig. 2 show how a high-gain amplifier and a variable-feedback resistor might be employed to provide the required variable voltage-amplification stage. However, since the source which will drive this stage is a small, low-frequency electric field probe, the source impedance, Z_s , will be a very large, capacitive reactance (see Appendix A).

$$\frac{v_i \cdot v_i}{z_s} = \frac{v_i}{z_i} + \frac{v_i' \cdot v_o}{z_f}$$

$$\frac{\mathbf{v_i}}{\mathbf{z_s}} = \frac{\mathbf{v_o}}{\mathbf{A}} \left[\frac{1}{\mathbf{z_s}} + \frac{1}{\mathbf{z_i}} + \frac{1}{\mathbf{z_f}} \right] \cdot \frac{\mathbf{v_o}}{\mathbf{z_f}}$$

For A large

$$\frac{v_o}{v_i} = -\frac{z_f}{z_s}$$

Fig. 2 FEEDBACK AMPLIFIER

Furthermore, the source voltage, V_i , will be the probe's open circuit voltage ($V_{\rm OC}$) which is given by definition as the product of the electric field and the effective length ($\ell_{\rm eff}$) of the probe. Since we expect $\ell_{\rm eff}$ to be on the order of the radius of the sphere, we do not expect a very large $V_{\rm OC}$. It has, in fact, been shown experimentally that the configuration presented and analyzed in Fig. 2 is inadequate.

l

١

The problem discussed above is circumvented by employing a commercially available operational amplifier which provides two separate inputs. The operation of such an amplifier is analyzed in Fig. 3. Note that if the input impedance, Z_{ip} , is of the same order of magnitude as the source impedance, Z_s , the ratio of V_o to V_i will be adequate. Note also, that this ratio may be controlled by varying the feedback impedance, Z_{fl} . The magnitude of Z_{fl} is limited by the oscillation problem. That is, the negative feedback provides stability and prevents spurious oscillation.

A copy of the specification sheet for the amplifier chosen for this purpose is presented as Fig. 4. This amplifier was chosen for its high input impedance and its low-power drain.

A difficulty which is encountered when feeding an amplifier of this type from a capacitive source impedance is that no dc path exists between the positive input lead and ground. Under this condition the proper input bias current is not allowed to flow and the amplifier does not function. This problem is solved by providing a dc path from the input lead to ground. Of course, the resistance of this path must be made as large as possible so that the source is not loaded down unnecessarily. For the amplifier used here, it was found that a $500M \Omega$ resistor was adequate. Additional source loading due to stray capacitance internal to the sphere will swamp this resistance.

$$v_{o} = A (v_{ip} - v_{in})$$

$$v_{o} = A \left(v_{i} \frac{z_{ip}}{z_{s} + z_{ip}} - v_{o} \frac{z_{f2} z_{in}}{z_{f2} z_{in} + z_{f1} z_{f2} + z_{in} z_{f1}} \right)$$

 $\frac{v_{o}}{v_{i}} = \frac{AZ_{ip}}{Z_{s}+Z_{ip}} \cdot \frac{Z_{f2}Z_{in}+Z_{f1}Z_{f2}+Z_{in}Z_{f1}}{Z_{f1}Z_{f2}+Z_{f1}Z_{in}+Z_{f2}Z_{in}(1+A)}$

For A large

$$\frac{v_o}{v_i} = \frac{z_{ip}}{z_s + z_{ip}} \cdot \left(1 + \frac{z_{f1}}{z_{f2}} + \frac{z_{f1}}{z_{in}}\right)$$

for $|z_{in}| >> |z_{f1}|$

$$\frac{v_o}{v_i} = \frac{z_{ip}}{z_s + z_{ip}} \left(1 + \frac{z_{f1}}{z_{f2}} \right)$$

Fig. 3 ANALYSIS OF A TWO INPUT OPERATIONAL AMPLIFIER

model 1402/01/02 microcircuit FET OP - AMP SPECIFICATION SHEET operational amplifier Fig. 4

TO-8 CASE **BIAS CURRENT 15 pA** $Z_{in} = 10^{12} \Omega$ OUTPUT = ±14 V ±5 mA SUPPLY RANGE ±4 to · 24 VOLTS QUIESCENT CURRENT ±0.5 mA

DESCRIPTION

Philbrick/Nexus Type 1402 is a FET input, hybrid thin-film microcircuit operational amplifier. The unit is packaged in a TO-8 case to match modern demands for a versatile FET amplifier in minimum dimensions.

Hybrid construction of Type 1402 combines the advantages of both discrete and of monolithic construction, FET inputs are specially matched and optimized for best thermal performance, as well as high input resistance $(10^{12} \Omega)$ and low otiset voltages $(300\mu V)$ A smooth reli-off at 6 dB octave is assured by internal phase compensation.

Alternate Types 1402-01 and 4402-02 are available for critical applications. see design data for tabillation of improved offset voltages, bias currents and temperature coefficients. Design

for performance over a wide range of supply voltages (±4 to ±24 volts) assures versatility in a wide variety of applications. Suggested applications are as integrators, sample and hold circuits, voltage comparators, and with wide dynamic range log functions modules and accurate multipliers.

DESIGN DATA*

or the f	Lypical	Guaranteed
E will all a state and the	+14 V	•13 V (100)
futures a complete complete	5 inA	2 mA mm
Maria and Alexia territorial		01005 µE-max
Chick place importance of sport by p	1 4 52	
INP: 1		
Compared to the current store	765 dB	
Comparing this draw range	1	*1.2 V min
tra net npedance, com non-mode	107 12	
Is put I, spedimee, differential	$10^{17} \Omega$	
Vicass diset Lyp. 1402		CmV max
4×10×1362-01		1 mV max
ine factor		O CmV max
Salation of the	4(n) µV V	
A commo modely list	SUDAN	
No transmission		
1 x pc 3 40 *		su pv "C max
1 N 10 1 10 1 10 1	• ··	REAL CINAN
Ex. 5 (E.4.1240).		$10\mu\text{V}$ C max
Testines and the	IS aV C	so µv i cinax
buss in the		30 pA 1148
X /competations		3 p Y C max
OPERATION		
Gam tultioad	20- AND	(0,000 min
Frequency for bloty ea b	2.5 MHz	
Maximum full output frequency	NUKHZ	70 kHz iom
Slewing rate, full load		3 Vapper min
Overload receivery time		15 µsec max
Wed hand noise	₹µV rms	
Oper thing temperature		25 to 185°C
Storal - temperatu -		5° C to +125°
POWER		
Supply voltage		· · · · 24 V
No load current	0 % mA	i ittax
Fud output carrent	2.5 mA	
•At +25%, +15% except where indicated		
7 k:2 load including feedback resistance		ATT TO LO KIN

Without instability

+ 25°C to +85°t

that use of its molules in the circuits descri-rings on existing or future patent lights nor ar self seutement constructed in accordance

RICK NEXUS Allied Drive at Route 128, Dedham, Massachusetts 02026 Tel: (617)329 1600 TWX: (710)348 6726 Telex: 92-4439 8

Prices and data subject to change without notice.

3.3 Light-Emitting Stage

In order to transmit the measured information from the probe to the receiver without using metallic cable, a fiberoptic light guide is used. The light-emitting source is a Gallium Arsenide electroluminescent diode. A copy of the specification sheet for this diode is presented as Fig. 5. The primary requirements for the drive circuit for this diode are that:

- 1) it provide a buffer between the relatively high output impedance operational amplifier, and
- 2) it provide adequate forward bias current for the LED without undue battery drain.

The circuit design for the drive circuit is shown in Fig. 6.

3.4 Glass-Fiber Light Guide

Specifications for the light guide used in this system are presented as Fig. 7. A six-foot length of light guide is used in this system.

3.5 Receiver

l

I

I

The receiver portion of this system employs a light sensitive diode followed by a high-input-impedance amplifier. These components were chosen rather arbitrarily and based on their availability. The specifications of the LSD are presented as Appendix B. Appendix C presents the specifications for the amplifier.

3.6 Batteries

The minimum requirements for the electric-field-probe batteries were determined as:

1) they deliver both positive and negative $5v \pm 10\%$ at 4 ma for approximately four hours, and

DESCRIPTION

The **5082-4403**, **-4415**, **-4440** and **-4444** are plastic encapsulated Gallium Arsenide Phosphide Light Emitting Diodes. They radiate light in the 655 nanometer (red light) region.

The **5082-4403 and -4415** are LEDs with a red diffused plastic lens, providing high visibility for circuit board or panel mounting with a clip.

Both LEDs are designed for low power consumption, thus applicable for use in mobile and portable equipment.

The **5082-4440 and -4444** are economically priced LEDs with a red diffused plastic lens, providing a wide viewing angle for circuit board or panel mounting with clip. Both LEDs are designed for circuit status and other light indicating functions.

The 5082-4415 and -4444 have the added feature of a 90° lead bend for edge mounting on circuit boards.

MAXIMUM RATINGS (25°C)

DC Power Dissipation
DC Forward Current
Peak Forward Current 1 Amp (1 //sec pulse width, 300 pps)
Isolation Voltage (between lead and case)
Operating and Storage -55°C to +100°C
Lead Soldering Temperature

Sumbal	Parameters		5082-4403 5082-4415			5082-4440 5082-4444		Units	Test Conditions
Symuol	Farameters	Min.	Typ.	Max.	Min.	Тур.	Max.	-	
I	Luminous Intensity	0.8	1.2		0.3	0.7		mcd	$I_{\rm F}=20~mA$
λ_{pk}	Wavelength	640	655	670	640	655	670	nm	Measurement at Peak
τ,	Speed of Response		10			10		ns	
с	Capacitance		200			200		pF	
$\theta_{\rm JC}$	Thermal Resistance		270			270		o _c /W	Junction to Cathode Lead
VF	Forward Voltage		1.6	2.0		1.6	2.0	v	$I_{\text{F}}=20 \text{ mA}$
BV _R	Reverse Break- down Voltage	3	4		3	4		v	$I_R = 10 \ \mu A$

ELECTRICAL CHARACTERISTICS (25°C)

Fig. 6 LED DRIVE CIRCUIT

19.49

Fig. 7 LIGHT GUIDE SPECIFICATIONS

2) they be small enough so as not to limit the utility of the probe.

Specifications for the NiCad batteries chosen for the application are presented as Fig. 8.

3.7 <u>Summary</u>

Press and a

As a summary to this section and a prelude to the following discussions of packaging and operation of the probe system, Fig. 9 presents a schematic diagram of the system.

NICKEL-CADMIUM RECHARGEABLE

SEALED CELLS

Fig. 8 BATTERY SPECIFICATIONS .020/.050 AMPERE HOUR CAPACITY

- BUITON TYPE CELL
- PRESSED PLATE ELECTRODES
 POSITIVE ELECTRODE -- NICKEL
 NEGATIVE ELECTRODE -- CADMIUM
- HERMETIC SEAL-MECHANICAL PRESSURE
- CONTAINER--NICKEL PLATED STEEL
- . MAY BE CONNECTED IN SEPIES FOR INCREASED VOLTAGES
- . AVAILABLE WITH SOLDER LUGS

		20 8	500
SERVICE CAPACITY -10 HOUR BATE		AND MAN	SO MAH
RECOMMENDED CHARGE -14 HOURS		O MILLIAMPE	S D MILLIAMPS
TRICKLE CHARGE RATE		02 MULLIAMPY	D 5 MILLIAMPS
MAXIMUM CHARGE VOLTAGE		I VOLIS	1.5 you15
	CHARGE	12 10 11/1	34'9. TU 115'F
OPERATING TEMPERATURE	DISCHARGE	-nit to ifin	+ 9'4 TO 115 7
STORAGE TEMPERATURE	1	+05 tor +04-	- 40 ⁴ F. 10 140 ⁴ F.
		I MONTH -IST.	1 MONTH -75%
CHARGE RETENTION -STORED AT 70°F. NOTE Higher temperature will decrease charge during storage. Charge prior to use for	te retention	3 MONTAS - 10-	3 MONTHE-70%
	full capacity.	& MONTHE- 60%	6 MONTHS- 60%
CELL WEIGHT	1	0.0-OUNCES	D.03 GUNCES
INTERNAL RESISTANCE NOTE: Initial load voltage for high rate discha circuit voltage (1.33 volts), minus load internal resistance V, ==Vo- IR	arge equals open I current times	со они	2.0 01195
INTERNAL IMPEDANCE - FULLY CHARGED CELL NOTE: For semi-discharged cells impedance inc mately 20%. For fully discharged cells shown by a factor of 3	reases approxi- increase value	CAS- 2 DHW	SO CPSHI OHM

Individual cells available with solder lugs or snap on terminals. (Refer to Button Cell Battery Bulletin).

٠.

•.

٠,

. ...

- -

ł

ł

...

1

.

•

۰.

Fig. 9 SYSTEM SCHEMATIC

.

4. PACKAGING

Since we require a small probe which must enclose electronics and batteries, the internal layout and packaging becomes an important and critical task. The probe package will be described here through a series of photographs.

Figure 10 shows the complete system. That is, the spherical probe, the light guide, and the receiver package. Figure 11 shows one view of the layout of the electronics internal to the probe and identifies the visible components. Figure 12 is a view of the other side. Figure 13 shows the inside of the receiver package and identifies some of the components.

As shown in Fig. 9, one probe hemisphere is connected to circuit ground and the other to the positive input of the amplifier. The hemisphere chosen to be connected to the positive input is the one which covers the batteries; (i.e., that side shown in Fig. 12). It was found that if the positive input were connected to the other hemisphere (i.e., that which covers the side shown in Fig. 11), the circuit was unstable and oscillated. This is due to the capacitive coupling between the output and the positive input by the hemisphere. By connecting the hemisphere which covers the batteries to the positive input, this problem was avoided.

The problem of stability described above is critically dependent on the physical layout of the circuit. Based on the experience obtained in packaging this probe, it is recommended that in the design of the physical circuit layout for a probe of this type, care should be taken to separate the output circuit from the high-impedance input to the amplifier. A shielding compartment enclosing the output circuitry would probably increase the circuit stability.

Fig. 10 PROBE - RECEIVER SYSTEM

0

ţ

l

Fig. II INTERNAL VIEW OF PROBE ELECTRONICS

Į

•

Fig. 12 INTERNAL VIEW OF PROBE ELECTRONICS

ī

I

I

-

1

Fig. 13 INTERNAL VIEW OF RECEIVER

5. OPERATIONAL DATA

The voltage-amplifier stage has been provided with five different feedback resistors and, therefore, five different range In each range the minimum electric field which can settings. be measured is determined by the signal-to-noise ratio at the input to the receiver. The maximum signal which can be handled is determined by the linearity of the LED and therefore its bias Figure 14 presents the calibration curves for each of current. the five ranges at 60 Hz. The calibration was performed by placing the probe in a known electric field established between one-meter-by-one-meter parallel plates separated by 30 cm. Note that the probe can measure electric fields as small as 10 mv/ meter and as large as 100 volts/meter. Of course, the probe could be made to measure much larger fields simply by loading it down at the input to he voltage-amplifier stage.

In Fig. 14, a reference voltage is given for each of the five calibration curves. By applying the given input voltage directly across the probe and then adjusting the receiver gain to obtain the reference voltage at the receiver output, one can be assured that the calibration curve is valid and that minor drifting due, for example, to battery drain has been compensated. A convenient jig has been fabricated so that the voltage may be applied with ease.

5.1 Frequency Response

Figure 15 presents the frequency response for each of the five ranges. The roll-off at the low end is due to the very high, capacitive source impedance. For this 6.3-cm diameter probe, the source capacitance is about 3 pf which represents a 900M Ω reactance at 60 Hz. The equivalent-source circuit for this probe is derived in Appendix A. At the high end the roll-off is due to the limited frequency response of the voltage amplifier as it is configured and packaged.

l

I

I

5.2 Battery Life

Breaking and such a close of a

The probe may be operated for approximately four hours without need for a change in batteries. Periodic spot checks of the reference voltage using the calibrator are required.

•

6. CONCLUSIONS AND RECOMMENDATIONS

Details in the design of a small ELF probe have been presented. The probe can measure electric fields from 10 mv/meter to 100 volts/meter in the 20-1000 Hz range. It has been used successfully to survey the electric field environment in and near a private dwelling and to measure the electric field near small electrical appliances. A memo describing a survey of this type is presented as Appendix D.

Based on the experience gained in the design and packaging of this probe, it is recommended that the following be considered in any probe design of this type.

- Provision should be made for additional battery and/or electronic circuitry to provide a constant LED bias current over a longer time period.
- The positive input to the operational amplifier must be carefully isolated from the output circuitry to provide stable operation. A shielding compartment for the output circuitry is recommended.
- A smaller switch should be used. Five operating ranges are not necessary, and a smaller switch would probably reduce the input-to-output coupling.

APPENDIX A

WITH WEIGHT AND AND AND AND

ANALYSIS OF SMALL SPHERICAL PROBE

APPENDIX A

ANALYSIS OF SMALL SPHERICAL PROBE

Two equivalent circuit representations for a small (largest dimension much less than one-tenth of a wavelength) antenna are shown in Fig. A-1. For our case, that of a small spherical probe, the short-circuit current, I_{sc} , may be determined by considering a solid metallic sphere immersed in a uniform electric field and computing the total current passing through a plane perpendicular to the field and cutting the equator of the sphere. This is done by solving the static-field problem for the total charge, Q, induced on the surface of the sphere and taking the current for low frequencies to be jaQ (quasi-static solution). The result of this calculation is:

$$I_{sc} = j\omega (3\pi a^2) \varepsilon_o E$$

where

 $I_{sc} = \text{the short circuit current}$ $\omega = 2\pi f$ f = frequency $\varepsilon_{o} = \text{vacuum permittivity}$ E = the electric fielda = radius of the sphere.

The probe capacitance, C_a , is found by computing the total charge, Q, on one hemisphere using the model shown in Fig. A-2. The result is

$$C_{a} = \pi \varepsilon_{o} a \sum_{\substack{n \\ n \text{ odd}}} \frac{n+1}{n} P_{n+1}(0) \left[P_{n+1}(x) - P_{n-1}(x) \right]$$

electric field measured

short circuit current

I sc

open circuit voltage

v 00

ں"

Isc = E/eff j'DCa

ഗ്

2

voc ^{= Et}eff

പ്പ

Fig. A - 2 MODEL FOR CALCULATING EXTERNAL CAPACITANCE OF SPHERE

where P_n is the Legendre Function of the first kind,

$$P_{0}(x) = 1$$

$$P_{1}(x) = x$$

$$P_{n+1}(x) = \frac{2n+1}{n+1} \times P_{n}(x) - \frac{n}{n+1} P_{n-1}(x)$$

and

=
$$\sin \theta_0$$

Sample numerical results are:

х

$$\frac{x}{0.01} \frac{C_a/\pi \varepsilon_o a}{3.6}$$
0.025 3.0 (x = 0.025 for the probe described
0.1 2.1

Note that, given I_{sc} and C_{a} , we may compute ℓ_{eff} as follows:

$$j\omega C_{a}E \ell_{eff} = I_{sc}$$

$$j\omega C_{a}E \ell_{eff} = j\omega 3\pi a^{2}\varepsilon_{o}E$$

$$\ell_{eff} = \frac{3\pi a^{2}\varepsilon_{o}}{C_{a}}$$

The capacitance, C_g , is the shunt capacitance. C_g is determined by the packaging of the electronics internal to the sphere and must be obtained experimentally.

IIT RESEARCH INSTITUTE

APPENDIX B

I

ł

1

SPECIFICATIONS FOR THE LIGHT SENSITIVE DIODE

MRD450

PLASTIC NPN SILICON PHOTO TRANSISTOR

... designed for application in industrial inspection, processing and control, counters, sorters, switching and logic circuits or any design requiring radiation sensitivity, and stable characteristics.

- Economical Plastic Package
- Sensitive Throughout Visible and Near Infra-Red Spectral Range for Wide Application
- Minimum Sensitivity (0.2 mA/mW/cm²) for Design Flexibility
- · Unique Molded Lens for High, Uniform Sensitivity
- * Annular¹ Passivated Structure for Stability and Reliability

MAXIMUM BATIN 45

Rating (Note 1)	Symbol	Value	Unit
Collector Emitter Voltage	VCEO	40	Volts
Emitter-Collector Voltage	VECO	6.0	Veas
Total Device Dissipation © T _A = 25 ⁰ C Derate above 25 ⁰ C	09	100 1.3	mW. mW.ºC
Operating Junction Temperature Range Storage Temperature Range	TJ T _{stg}	-40 to +85	°C

20

CASE 171

Collector indicated by square bonding pad on bottom of device

Figure 8(67

MRD450

STATIC ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector Dark Current	ICEO				μA
$T_{A} = 25^{\circ}C$ $T_{A} = 85^{\circ}C$		-	5.0	0.10	
Collector Emitter Breakdown Voltage (I _C = 100 μA; Note 2)	BV _{CEO}	40			Volts
Emitter-Collector Breakdown Voltage (IF = 100 µA; Note 2)	BVECO	6.0			Voits

OPTICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Cinaracteristic	Fig No.	Symbol	Min	Тур	Max	Unit
Collector-Emitter Radiation Sensitivity (V _{CC} = 20 V, R _L = 100 ohms, Note 1)	1	SRCEO	0.2	0.8		mA/mW/cm2
Photo Current Rise Time (Note 3)	2 and 3	tr		1	2.5	μs
Photo Current Fall Time (Note 3)	2 and 3	4	-	-	4.0	μs
Wavelength of Maximum Sensitivity	9	× s		03		μm

NOTES:

 Radiation Flux Density (H) equal to 5.0 mW/cm² sharted from a tungsten source at a color temperature of 2870. K.

2. Measured under dark conditions. (H \approx 0).

FIGURE 2 - PULSE RESPONSE TEST CIRCUIT

FIGURE 3 - PULSE RESPONSE TEST WAVEFORM

AA

MOTOROLA Semiconductor Products Inc. 33

^{3.} For unsaturated response time measurements, radiation is provided by a pulsed GaAs (gallium assenide) inght-emitting diode (A ≈ 0.9 cm) with a pulse width equal to or greater than 10 microseconos (see Figure 2 and Figure 3).

MRD450

3

Ĩ

T

1

1

APPENDIX C

1

.

ł

SPECIFICATIONS FOR THE RUCCIVER AMPLIFIER

$Z_{in} \ge 10^{11} \Omega$ ±2 V to ±16 V Supply Range

FEATURIS

- Designed for ± 2 to + 16V supplies
- FET input stage gives high input impedance of 10¹⁴ Ohms
- No-signal supply current, 150 µA typical
- ▶ Bias current, 10 pA
- ▷ Slew rate of 0.7V/µsec
- ▶ Wideband noise, 2 µV rms (max)
- Overload recovery in 15 µsec (max)
- Small signal bandwidth of from 0.6 MHz to 1 MHz
- Ideal for portable batterypowered instruments

DESCRIPTION

The Philbrick/Nexus type 1006 Micropower FET operational amplifier is designed for operation over a wide range of power supply voltages, from as low as $\pm 2V$ up to $\pm 16V$, with a maximum quiescent current of 200 μ A. These unique provisions allow long battery life in portable instrumentation, with no compromise in specifications.

The F1 I input circuity provides a high input impedance of 10¹¹ ohms, low bias currents of 10 pA, and low wideband noise for both voltage and current These characteristics, along with a very low power supply drain, makes this amplifier especially attractive for use in medical electronics and other high impedance applications.

Since the 1006 is internally trimmed to less than 1 millivolt of voltage offset, the amplifier may be used without the need for zeroing potentiometers in most applications.

Other features which show the versatility of the 1006 are (1) full output power to above 50 kHz, (2) overload recovery within 15 μ sec. (3) settling time of 6 μ sec. This combination of features show that the 1006 may be used in high-speed applications which up to now have been impractical for a low-voltage operational amplifier.

TYPICAL OPERATION

Supply Volts #	2.7 V nominal, ±2 V min, ±16V max
Supply Corrent	150 μ A quiescent
Gain	15,000 at 2.7V supply
Offset Voltage TC	15 µV/°C
Bias Current	10 p.A
CMRR	66 dB
Bandwidth	Small-signal bandwidth rom 0.6 MHz to 1 MHz
Input	
Impedance	5 x 10 ^{1 1} Ohms
Output	+ 2 V. + 2.5 mA
* +25°C. + 2.7	7 Volt unless noted

PHILBRICK/NEXUS MODEL 1006

OPERATION

CONSTRUCTION

Type 1006 is fully encapsulated as a solid epoxy block, for complete mechanical protection under the most adverse conditions of vibration, acceleration, and other environmental hazards. This also insures almost completely isothermal operation of the internal components, as a further aid toward superior stability.

CONNECTIONS

Pin spacing is laid out for standard 0.1" printed circuit board hole spacing. Pin connections are as shown above, looking toward the pins.

BIAS CURRENT

The low 50 pA max bias current rating makes bias current correction unnecessary for most practical applications. Use of a FET transistor input circuit not only provides a low bias current, but also contributes a high input impedance, rated at $10^{11} \Omega$ for both common-mode and differential input circuits.

OFFSET VOL FAGE

Offset voltage is rated at 1 mV max, with a temperature coefficient of $50 \,\mu V/^{0}$ C max. This voltage may be nulled with an external 1,000 Ω potentiometer connected to trim terminals provided on the amplifier.

This potentiometer trim is optional for many applications, when the small offset voltage may be neglected. No external short is required when omitting the external trim circuit.

SUPPLY POWER

Type 1006 will operate normally at any supply voltage in the range from \pm 2V to \pm 16V. A power supply of \pm 2.7V is recommended for micropower applications. At this supply voltage, the no-signal current is not more than 200 μ A.

SUPPLY VOLTAGE REJECTION

The curves shown on these pages illustrate the performance of Type 1006 over the supply voltage range. These curves show the variation in five important parameters as the supply voltage varies from ± 2 to ± 16 Volts:

... Output Voltage

- ... Open Loop Gain
- ... Common-mode voltage range
- ... Common-mode rejection (dB)
- ... Bias Current

SPECIFICATIONS

outeur	Typical	Guaranteed
Full Load Output Voltage (1) Output current Maximum Capacitive Load (2) Output Impedance Open Loop	$\frac{\frac{\pm 2V}{2.5 \text{ mA}}}{\frac{1 \text{ k}}{1 \text{ k}}}$	±1.5 V min 1 mA min 0,005 μF max 1.5 kΩ min.
INPU I		
Common Mode Rejection Ratio(1) Common Mode Voltage Range Input Impedance, Common Mode Input Impedance, Differential Voltage Offset Voltage offset vs supply volts Voltage offset vs Common Mode Voltage offset vs temperature Bias Current	66 dB 10 ¹¹ Ω 10 ¹¹ Ω 300 μV 400 μV/V 500 μV/V 15 μV/°C 10 pA	60 dB min <u>+</u> 0.5 V min <u></u> 1 mV max <u></u>
OPERATION		
Gain, full load (1) Frequency for unity gain (1) Maximum full-output frequency (1) Slewing Rate, Full Load (1) Overload Recovery Time Wideband Noise (3) Operating Temperature Storage Temperature	15,000 0.6 MHz 75 kHz 0.7 V/ μsec 1.3 μV rms	10,000 min 50 kHz min 0.5 V/µsec min 15 µsec max 2 µV mis max -25°C to +85°C -55°C to + 125°C
POWER		S. 8 1. 196. 1
Supply Voltage No-load current Full-output current * At +25°C, ± 2.7V supply, except when	$150 \mu A$ re indicated	± 2V to ± 16V 200 μA max 1.2 mA max
 (1) 1.5 k load, including feedback resista (2) Without instability; (3) 0.16 kHz to 	ance o 1.6 kHz; (4)	-25°C to +85°C
HOUS CMR V. V.C.		

IIT RESEARCH INSTITUTE

39

SURVEY OF ELECTRIC FIELDS IN AND NEAR A PRIVATE DWELLING

APPENDIX D

1

ļ

l

1

6 March 1972 DATE:

PME 117-21 **TO**:

1

A. R. Valentino Il Valintinu FROM:

SUBJECT: Survey of Electric Fields In and Near a Private Dwelling

(a) IITRI Memorandum to PME 117-21, "A Comparison of SANGUINE Electric and Magnetic Fields to Those **REFERENCES**: Due to an Electric Blanket," 9 February 1972.

(b) IITRI Memorandum to PME 117-21, "Estimate of Body Current Flow Due to Exposure to SANGUINE Electric Field," 8 February 1972.

A survey was made of the 60-Hz electric field in and near a private dwelling. This survey was made to provide some indication of the electric field environment which exists in the average home for comparison with the electric field which would be due to a SANGUINE system. A small, spherical (6 cm diameter) probe which is isolated from ground was used to make these measurements. The probe uses a fiber optic light guide to carry the measured signal so that the measured field is not distorted by metallic cables.

The first The data obtained is separated into three categories. is a collection of measurements of the electric field near appliances and directly attributed to their operation. The second is an indication of the ambient electric field level in a home as represented by the field measured at the center of rooms in the home and remote for operating electrical appliances. The third is a set of measurements made under power lines.

6 March 1972 To: PME 117-21

i

Table 1 presents the measurements made near appliances. The electric field in the vicinity of an electrical appliance depends upon a number of factors. Among them are: the size and shape of the appliance, the manner in which it is wired, the metallic structures surrounding it, which of the two possible ways the plug is inserted into the power outlet, and whether the appliance is switched on or off. The measurements were made with the appliance in its normal operating location and, when appropriate, measurements were made for the four combinations of on-off switch and plug reversal. The numbers presented in Table 1 represent the maximum measurement made for these four conditions. Table 1 presents a measurement of the electric field at a distance of 30 cm from the appliance.

The electric field was measured at the center of each room in the home and remote from electric appliances to provide a measure of the ambient field. The results are listed in Table 2.

Measurements of the vertical electric fields under power lines are listed in Table 3.

There is an important difference between the high impedance electric fields measured in this survey and that which would be produced by a SANGUINE system. That is, the SANGUINE field (0.07 volts/meter nominal maximum) will exist within the conductive earth. A person making good contact with the earth could experience more body current flow, for a given electric field, in the case where the field exists in the earth and provides a potential difference between his two feet. Discussions of this effect may be found in References (a) and (b). However, it has been estimated (Ref. (a) and (b)) that the body currents for a person in a high impedance electric field of about 100 volts/meter may be comparable to or even greater than those for a person standing near a SANGUINE antenna installation.

DISTRIBUTION: DAMiller MMAbromavage

INDIC I			
	(The measurements were made at a distance of 30 cm from the appliance)		
	APPLIANCE	ELECTRIC FIELD (volts/meter)	
	Electric Range	4	
	Toaster	40	
	Electric Blanket	250	
	Iron	60	
	Broiler	130	
	Hair Dryer	40	
	Vaporizer	40	
	Refrigerator	60	
	Color TV	30	
	Stereo	90	
	Coffee Pot	30	
	Vacuum Cleaner	16	
	Clock Radio	15	
	Hand Mixer	50	
	Incandescent Light Bulb	2	

Table 1 60-Hz Electric Fields in the Vicinity of Electrical Appliances

.

Table 2 60-Hz Electric Fields at the Center of Various Rooms in a Typical Home

I

İ

j

.

.

ROOM	E-FIELD (volts/meter)
Living Room	3.3
Kitchen	2.6
Redroom	7.8
Bedroom	5.5
Bedroom	2.4
Bearoom	0,9
	1.5
Bathroom	1.2
Bathroom	0.8
Laundry Room	13.0
H a llway	19:0

Table 3	60-Hz Vertical	Electric	Fields	under	Power	Lines
	(Fields measu	ared four	feet f	rom gro	ound le	evel)

POWER LINE	ELECTRIC FIELD (volts/meter)
33 kv high-voltage line	140
7.2 kv single-phase distribution line	80
7.2 kv two-phase distribution line	21
Home service drop	11

....