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PREFACE

Ludwig Prandtl, concerned about the degree of validity of certain
assumptions in his lifting line theory, proposed for W. Kinner (1937) the
problem of the circular wing in itn exact formulation. Kinner determined
overall lift and mument but did not solve the span loading problem; his
results are infinite series which appear to diverge at the wing tips.
Unfortunately, the answer had to lie in the tip solution, since the key
problem is the transition between the lifting line concept (resp. its modern
extension, the standard collocation analysis) and the Max Munk concept of
the slender wing.

The gap remained until Jordan (1971) showed that the apparent diver-
gence can be overcome. It turned out that, contrary to both the lifting
line result and the slender wing result, the correct span loading has a
logarithmic component (which, incidentally, causes a vigorous impulse to the
vortex trail roll-up).

In the present work, the 1971 analysis is clarified, extended, and
brought to its logical conclusion. The complete asymptotic description
of the pressure singularity at the wing tip is constructed.

The wing tip pressure singularity is composed of elements of progres-

sively increasing order. Its leading part is general in the sense that the
amplitude ratios of its components are fixed numbers. Different solutions
are different only in the specific part which consists of components of higher
order. Our solution is complete in the sense that the leading general part
is completely described, and the orders of the leading components of the
specific part also are given. A practical consequence of these analytical
results is the ease with which one may calculate specific numerical solutions
routinely and to very high accuracy; only a few numbers are required to de-
scribe such a solution completely.

Although the main analysis of this paper deals with the circular wing
in iocompressible flow, the form of the general solution for wings of arbi-
trary aspect ratio is deducted readily from the results and allows, for
example, discussion of the transition between the finite aspect ratio wing
and the sltnder wing model.
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I. INTRODUCTION

This paper is concerned with the theory of thin lifting surfaces of
finite span ("wings") in linear subsonic flow. The distribution w( ,y) of
the downwash over the wing surface is given. The given downwash implies a
field of flow disturbances and, consequently, a distribution p(J,y) of
the aerodynamic pressure force which acts on the wing. The spcciflc problem
at hand is to find p(Jy). Because of analytical difficulties which arise
in particular at the wing tips, no complete solution for any problem of
this type had been available.

A specific solution, namely, the solution for the planar circular
wing in incompressible flow, has been presented recently(1). The circular
wing represents a truly three-dimensional (3-D) problem in that it is well
removed from either of the two limit cases for which solutions are known:
the two-dimensional (2-D) case of a uniform wing having infinite aspect
ratio and the slender wing limit (zero aspect ratio). Also, the circular
wing represents a case of a wing having parabolic wing tips. The parabolic
wing tip is of particular interest because it fits the usual assumption
(which stems from lifting line theory as well as from Munk's minimum drag
lemma) that the span loading over any finite wing would be of an elliptic
type (i.e., would fit an ellipse at the wing tips). From a technical
point of view, the fit should minimize the tip drag; also, because of the
fit, one would expect the analyticai problem to be less difficult than for
any other wing tip shape.

Nevertheless there is a reason why the analytical problem of the
parabolic wing tip has remained an intriguing challenge for many years:
the assumed fit does not; in fact exist. The actual span loading is not of
the elliptic type. A corrective (logarithmic) term was derived in Ref, (1).0

In the present paper, the analysis of Ref, (1) is generalized and
is brought to a logical conclusion. Already the corrective term of Ref. (1)
is a general term in the sense that it arises not from the specific downwash
w = const. of the planar wing but from a common property of all technically
meaningful downwash distributions w, A second such general term is derived
in the present paper. Not only do such general terms describe the strut..
ture of the general solution, but to know them reduces the numerical work
required to calculate specific solutions. (It also greatly reduces the
number of numerical values which one has to list to describe a given spe-
cific solution.) On the other hand, no such practical benefits arise from

0The corrective term is in conflict with a standard assumption of collo-
cation analyses. This discrepancy is not of major concern where the goal
is to find the pressure load over the main part of the wing, but it markedly
affects the roll-up mechanism of the vortex trail. (2)

I
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knowing general terms which are of higher order than the differences
between specific solutions. It will be shown that with the determination
of the second corrective general term this practical limit is reached.

A sequence of specific solutions has been calculated. These provide
insights of technical interest into the mechanism of lifting surfaces.

Although the present analysis deals specifically with the circular
wing in incompressible flow, the conclusions regarding the structure of the
general solution can be formulated to apply to arbitrary wing planforms
with parabolic wing tips in subsonic flow. This is briefly discussed.

Mathematically, the analysis deals with a type of infinite series
(a combination of power series and Fourier series) which does not seem to
have been explored extensively before. A by-product of our investigation
are two sets of formulas of general mathematical interest. These formulas
connect the sums of infinite progressions involving the ý-function (and
thus the logarithm) to the Riemann S-function. They are derived in
Appendix B and seem to be the first formulas of this kind.

II. SURVEY OF THE ANALYTICAL PROBLEM FOR THE CIRCULAR WING

In order to be able to give a survey of the analytical problem at
hand, we start this section by describing briefly one aspect of the results
of RefL (1). In the subsequent section, some additional formulas of Ref.
(1) are listed (sometimes in modified form resp. supplemented) for easy
reference. For brevity, we refer to Eq. (n) of Ref. (1) as (l.n). For
further details and for proofs see Ref. (1).

We deal with the circular wing in incompressible flow. It was
assumed in Ref. (1) that the given downwash is synmmetric and does not con-
tain wing camber. Since no essential aspect of the analytical problem
is lost by these restrictions, we retain them here. Thus, using the wing
coordinates Fig. 1, we have (1.4)

w(•y) -=w(y) = w(-y) 1

The pressure distribution p(yy) which arises from w(y) can be described

(see Eqs. (9) and (14) below) by an infinite set of coefficients C2•
it= 0,1,2,3... . These coefficients are Legendre coefficients of the
span load distribution, see Eq. (9a) below. The leading coefficient, CO.,
can be determined from the subset C2A, X= i12,3.., by means of the
condition (1. 15)

C22K = 0 (2)
K =0
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The subset remains to be determined. We call it the "solving set" for the
given downwash w(y).

Ordinarily, the coefficient CO is positive, since it measures the
total lift: CO = CL/8, see (l.6a). Hence the elements of the solving set
are ordinarily negative. They can be written in the form

a2
-C2X 4- R (Kk l) (3)

Here a2 is a constant. The remainder RK has to converge faster than the
leading term:

RVL= 0()2) as X-Pon (3a).

Thus the C2M converge as A-2.

We describe the pressure p(ty) by the non-dimensional pressure
function - (i-Y )'p/q where the factor (1-? )Y eliminates the trivial
singularities of half-orders at the leading edge (i.e.) and the trailing
edge (t.e.). The function p is shown for the planar case (w(y)al) in
Fig. 2. This relief diagram exhibits an interesting type of tip singu-
larity, a singularity which is characteristic for the pressure distribution
near any parabolic wing tip. This singularity is produced by the leading
term of-order X2in Eq. (3); its amiplitude P, (1) is related to the
constant a2 and to the tip value of the loca i1ft t coefficient CA(y) by

l.e. (1) • 8a 2 = 2CA(1) (4)

see (1.34).

The relations Eq. (4) are valid for any arbitranr set of numbers
*23which obey Eqs. (3,3a), resp. for the pressure function which one

wou d calculate from such an arbitrary set. This arbitrary pressure
function 0 is finite everywhere. There is thus a temptation to assume
that any such set C2. would represent the solving set for a technically
meaningful lifting surface problem.* However, this is by no means the case.

I pssure distribution p which belongs to • has a singularity of order

(i+1)ý along the I e . , but this singularity is accepted as "technically
meaningful" in linear theory.

I



4

One recognizes this as one calculates the induced downwash wi(y) of 5 over
the wing surface. One finds that wi(y) will in general diverge toward the
wing tip:

wi(y)-P t 00 as y-l 1-0

Such divergence is not acceptable: the wi(y) of the solving set is supposed
to equal the given downwash w(y), and any technically meaningful given
downwash w(y) is finite everywhere.

In Ref. (1) the fact that wi(y) has to be finite was used to deter-
mine the leading term of the remainder RK. Incorporating this term, and
making use of Eq. (4), we re-write Eq. (3) as

---. +1R( ( el) (5)L2N 2  4)J 47

The new remainder RK here differs, of course, from that of Eq. (3); now
Rvt- o(KC3 ). Referring to Eq. (5), we can now describe the structure of
the solving set as follows: it consists of a known general term (the
term in r J-brackets divided by 4Wr) with an unknown amplitude CA(l), and
a remainder R•.

Between Eq. (3) and Eq. (5), the infinite set K-3 has been trans-
ferred from the remainder into the general term. The first question to
which the present paper is addressed is this: is it possible to continue
this process, transferring step-by-step further infinite sets (hopefully
of successively increasing order of convergence)?

There are indeed further general conditions which are fulfilled, in
practice, by all given downwash distributions w(y). Significant for our
purpose is the fact that all the derivatives of w(y) are finite (or zero)
at the tip. For each successive derivative, this statement translates
into an analytical condition of increasing severity for C2P and should
yield one (or several) additional general sets of successively increasing
order. This expectation is in agreement with the fact that such sets
describe asymptotic properties of the tip singularity in P which are of
increasing order of convergence to zero as the tip is approached (see Ref. 1,
Table I).

One is interested to learn more details of the general term because
this should reduce the numerical work involved in calculating, for a
given downwash w(y), the remainder set RL and the amplitude C,(1). On the
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other hand, one has to expect to reach a point beyond which to proceed
would have little practical purpose. Namely, RL must contain, in addition
to all the identifiable general sets, a specific signature which describes
the given downwash. Fram the expectation that this specific signature will
describe the overall span load distribution rather than its asymptotic tip
behavior, one concludes that it will be expressed more by the leading
elements (X - 1,2,3...) of the set R. rather than by its tail behavior (the
behavior of R as goo). Nevertheless, the specific signature has to con-
verge to some order, say to the order O, as )(-& o. There would be little
advantage in knowing details of the general term which converge more rapidly
than 0s.

The second problem which has to be addressed thus is to determine

the order 0s. The specific signature we define as follows: we select as
reference downwash the planar downwash we(y) a 1. For a given downwash
w(y) 0 we(y), we define its "void" downwash wv(y) by

wv(Y) = w(y) - Xwo(y) (6)

with the factor X defined by the condition that the tip value C ,(1) of
the "void" span loading becomes zero:

CAV(1) = Cx(l) - XC,(1) = 0 (6a)

The solving set for wV(y) is then, due to Eq. (5),

- c 2 v RK-XRK,o 0RX,v (7)

This solving set, which is by definition void of all identifiable general
terms, we use as the specific signature of w(y).

We anticipate here briefly the answers to both questions. In (1.18)
it had been assumed tentatively that the remainder RK of Eq. (5) could be
written in the "rational" form

00

oo(ar/r) (8)
rw4

However, later numerical evaiuation of the planar solution, Fig. 2, indicated
that Eq. (8) was incomplete: step-by-step determination of the constants ar

I



61

did not converge in a satisfactory manner. Indeed, a review of the analysis
confirmed that at least one "missing set" has to be added to Eq. (8). In
the analvis of the present paper this missing set is determined. It is
O(•-41og ) and is the third general set (it follows the two general sets
which are given in Eq. (5)). To proceed further with this analysis would
entail increasing difficultlen. Fortunately, the limit of practical
interest has already been reached: the order of the fourth general set
(appears to be K-5log 2 K and) is higher than the order 0. of void sets which,
from numerical results, appears to be K-4logL.

The span loading distribut-oh• which belong to the elementary sets
mentiornd in the preceding discussion are illustrated in Appendix A.

A third aspect of the problem, also discussed in tbis paper, are
the numerical methods required to obtain a specific solution. For the
reference downwash we(Y), one determines C0(1) by truncating the given
infinite linear system to N equations, matching the solution with the known
general terms, and extrapolating to (1/N) 0 0. For addit4onal solutions,
one determines X (rather than CA(M)) in a simpler process. After the re-
mainder R*has been determined, its leading termLs are extracted; one is I
then left with a final remainder sct RA which converges very rapidly. The
numerical procedure is self-checking since the leading coefficient CO is
calculated directly and the result must fulfill Eq. (2).

In the present paper, three additional solutions are presented

numerically. Thus one has available a three-fold variety of solutions by
linear superposition.

III. REFERENCE FORMULAS

The formula for the non-dimensional pressure function p (l-_2)1p/qis (1.5)

[ 2K + C2A +lsin(2h+l) 0 1 (9)
(- [K0 A =0

The local lift coefficient is (1.6)

2? 00
A•y X C2kP2K(y) (9a)

(l-y )2 i-o
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and the position of the local center of pressure is (1.7)

Sy) 0 11Y -00 (9b)

The P2 ,(y) and P.,(y) are systems of orthogonal polynomials. Thc furmer
are the LegendrL polynomials, the latter their derivatives (Gegenbauer or
ultraspherical polynomials), normalized such that

P2K(tl) = ý2A(+) 1 1 (all X,A) (10)

Thus

1 d
P21(Y) d.1 (P 2) , 1(1

+l) +l) dy(1)

The two sets of unknown coefficients in Eq. (9), the C2X and the
C2.+l, are fully interdependent. We introduce the abbreviation

S= A+(12)

Then (1.13) reads

C o A 2M#o 2 (13)A-o 9 - X-

We have available also the reversed form (1.19) of Eq. (13):

(Note that the system Eqs. (13) fulfills Eq. (2) for any arbitrary set

2A+1')

4
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Usually, the span loading CX(y) is of more immediate concern than
the center of pressure t (y) or the complete pressure function P. Hence
the set C2 %, would appear to be of more iumediate interest than the act
C2A+I, However, Eq. (9a) takes the form (0/0) as y-9.l; the important
tip value C',(l) is thus not immediately given by the set C2,.

For this tip value we have the formula (1.22b)

CA,(1) 8- Z C2 A+l
A =0

This formula has two interesting consequences. One, consider an arbit-.ary
set R% which obeys Eq. (3a) (for instance, any finite set Rx is eligible).
According to Eq. (4), this set RI( does not contribute to CA(M) (i.e., the
tip value of its pressure function P is zero). From RI, calculate the set
RA which corresponds to R& by means of Eq. (14). From Eq. (15) follows

oARA M 0 (15a)
)=0

for all such sets R'.

Two, using Eq. (15) in Eq. (9b) to determine the tip value of the
pressure center function, we obtain, noting Eq. (10)

I t (1) =-- It/4 (16)

for any pressure distribution (at least so if CA(1) 0 0). This result is
in agreement with the prediction of slender wing theory for the planar
elliptic wing. As an illustration, the pressure center function Y,(y) for
the planar circular wing is shown in Fig. 3. (The planar span loading is
shown in Fig. A3).

The given downwash w(y) entera the analysis in the form of its set
of Gegenbauer coefficients w. ( 1 . 3 9 )W

00

w(y) = : (s+l)(2s+l)wSP 2 s(y) (17)

0 We use here the notation w. in place of the notation Ws of Ref. I. I
I

4
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For example, for the planar wing (i.e., for our reference downwash w(y))
we have

w- ; wsO0 0 if w(y) : Wo(Y) 2 1 (17a)

The set of given downmwash coefficients w. and the unknown set C.are inter-
related by the infinite linear system

Ws = 21 [0 +4 1 -2 CDC (18)

see (1.12) with (1.37). The notation

is here used. It corresponds to the notation I, Eq. (12); in fact, the two
indices, s and A, play rather similar roles in the analysis (as we will see
shortly).

The system Eq. (18) is a convenient basis for our analysis because
of the relative simplicity of its matrix. It is directly equivalent to the
(less convenient) original Kinner system, Eq. (60) of Ref. 3. The alternate
system

00

Ws F cSC 2 + (19)

see (1.14), relates the given set w to the unknown set C2A+.' This system
is preferable for numerical work. It converges well because its matrix cl
differs little from the unit matrix (see Table 11Tb of Ref. 1); on the
other hand, the cA are too complicated for convenient analytical treatment
(see Table II of Ref. 1).

A
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IV. THE OPERATOR So

Using operator notation, we can write Eq. (18) as

ws S (C2V)' C2 '(ws) (20)

Our problem would be solved if we could find an explicit form for the
reversed operator S-1 . Realistically, we cannot expect to find this explicit
form in spite of the relatively simple form of S. However, we can determine
the salient features of S"1.

The operator G would be still simpler if the summand ½ in the denomi-
nator of the second term of its matrix would be zero. Indeed, when CK+s)
is large, this ' would appear to be negligible. Actually, as we will see,
all the complications which make our analytical problem so interesting are
caused by this ½.

Separating out the complication we have for Eq. (18) the form

0 C 100 1 12i 0 2K + C2
2(21It 0IL- =o K++ s-•+

S S0 (C 2X) + S 1 (C2A) (21)

Elimination of C0 by means of Eq. (2) yields

So(C 2 A) - (2/9) -K C 21- (21a)

S 1 (C 2•)~ = - l0C2K (21b)

2 k-l (K+;) (i+9 Qt+;+ý)

Of these two operators, So is dominant in Eq. (21); S1 is of higher order.
With So we re already familiar, and we also know already its reversed
operator So: we can write Eq. (14) as

C2+1 = (1/lr)SO(C 2X) ; C2X = rISO1 (C24 +l) (22) j]
and can read So1 directly by comparing Eq. (22) with Eq. (13).

!
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It follows that we possess already a first order approximate

solution, namely, the solution which arises when we set S1 - 0. The set
C2. can then be calculated from the given set w. by means of Eq. (20),
and the set C2,+I is equivalent with the set wr since both sets arise from
C2X by means of the same operator (setting S1 a 0 is equivalent with
replacing the matrix cR in Eq. (19) by the unit matrix from which, in fact,
cK does not differ much). The brief table which follows illustrates the
degree of approximation which is reached in this manner for our reference
case, Eq. (17a). The first line of the table gives the formula for each
coefficient, the second and third lines give the (rounded-off) numerical
values, approximative and correct:

coefficient C0  C1  -C2  C3  -C4  C5  -C6

2/12 1/4 4/3012 0 4/15102 0 4/35yt2

approx.
0.2026 0.3183 0.1351 0 0.0270 0 0.0116

correct 0.2238 0.3496 0.1446 0.0041 0.0307 0.0014 0.0135 (23)

One sees that the error made by setting S1 a 0 is of the order 10%.0

Because of the thus illustrated importance of the operator So, we
set out to investigate its properties in some detail. Since our results
will be accurate relations between the sets C2A+, and C2)t but only approxi-
mate relations between ws and C2 ,, we will write our analysis in terms of
C2A+l (however we will later use these results in discussing the relations
between w. and C29).

We use the notation El for any one of the elementary sets of wh.
the solving set -C2A may be composed. We do not stipulate that EX has to
be a rational set (i.e., Eb. = 4-r) but assume, on the basis of Eq. (3)
and of numerical experience, that E1 is a progression in K which converges
to zero smoothly as K-boo. We use the integer r to describe the range of
convergence between A-r (included) and 1-r+l (excluded), writing

EB= _-rg) (r h 2) (24)

with g,= o0() but not o(1). If EbL is a ratfonal set we have gX-z 1; we may
also have, for example, gK = lognft or gv = W2.

The contribution to C2A+I which arises from EK by means of Eq. (14)
we d.note by C2A+lE; thus

0See also Appendix D.
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c2A+1,E (2/1) Z 2- r (25)K-1 (a•)Vtt-

The stun on the right we take apart by means of the identity

(2/4) r-2 (_)r-u _

(t2-2),4r-2 :- ( 2
9 -2

+ (+/•rY{_l- - )r - (26)

Terms with 0 arise •f r a 4. Summation of these terms in Eq. (25) does not
pose any difficulty and leads to rational elementary sets A-(r-F+l) in
C2A+l, with (r-#+l) odd and k 3. More interesting Is the final term on
the right of Eq. (26). For its contribution we use the following abbreviation,

SC2A+I,E -... + ( 1 /1r) o., 1 (got)

Thus

,.-[ iT ( r++ l" SM (27)

From the point of view of analytical difficulties, the operator 0 O, (g.)
forms the nucleus of the operator So.

The details of the reversed operator S6 1 are similar to those of S0 .
Corresponding to Eq. (24), we write EA for the elementary sets of C2A+l and

E) tgA (t k] 3) (28)

0 If g,, a 1, summation leads to the Riemann Y-function. If g is more
complicated, it may be necessary to use Eq. (B2).

LI
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From Eqs. (13) and (22)

-7JC2KE 2 21 (29)A -0 (K 2-•2 ' &@O (29

An identity similar to Eq. (26) is used to transform this sum. Its terms
with 0 produce ra•ional elementary sets in C2U. There remains a final
operator which is rimilar to the operator O00:

- ""C 2 ,,E = .... + (1/fat)O•(gA)

with

0 a M -I-+ (.)t -A (30)

The two O-operators, Eqs. (27) and (30), are readily executed inthe case of rational elementary sets (i.e., g, m I resp. gA 1 i). They
then lead into the reailm of the psi (digamma) function. One finds

0 =•(1) = if t is even (31)
0 todd

with

LU = I + +1 + .. iI(+) )

3 5 2x-l 2L .

--0 ½(logk.+4,) + log 2 + 1/48K2 + .... (31a)

and

0, (1) 1 A4 I if r is odd (32)

where

x = Lk + (1/41) - log 2 (32a)
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The significant observazion here is that the 0-operators can produce
logarithmic elements from rational elements Ea reap. EX.

If we apply the preceding results to the tentative assumption, Eq. (8),
that only rational elements x-r occur in C2U we find that the corresponding
elementary contributions C2A+IE have the following form:

VC +1,E - (A /X3 ) + (A•/A 5) + (Ar/A 7 ) + ... (33)

The factors A4 are given by the following matrix:

t4

r-2 1. 0 0 0
i3 4L0 0 0

4 ,21(2) 1 0 0
5 -2y(3) -4Lt 0 0
6 -2r(4) -21(2) 1 0
7 -21(5) -2Y(3) 04 0 (33a)

As expected, this matrix contains logarithmic elements. It follows a simple
law and is easily extended; also, it is easily reversed.

Conversely, no logarfchlmic elements can arise if the operator S0

is applied to Eq. (33) to regain the elements of C2 This explains, see
Eq. (31), why only terms with t odd occur in Eq. (33). Interesting is
the observation that the operator 01 ,(gk) even eliminates the logarithm
from the elements with Lj . To this observation we will return later.

Th_ main result of the preceding investigation of the operators

So and So is that their nuclei are the two 0-operators. A stimulus for
investigating the latter further will arise when we consider the complete
relations between the sets C2. and ws. Before we turn to this task, let
us utilize Eq. (33a) to take a look at the actual solutions, the sets
C21t and C2A+l, for our reference case Eq. (17a).

Let GX be the negative of the general term in the C)-bracket of
Eq. (5):

Go- + [1(2) -1(3)/43

Ga. -_ [2--2 p 3 /4 (19#0) (34a)
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In Fig. 4, the ratio C2A/G is plotted over x. For X-. co, this ratio
should converge towards C1l) /4tr 0.12677. Indeed, after an initial
disturbance around bi-, convergence is both rapid and smooth..

From Eq. (33), the set GA which arises from Gg is

Li+L*j/IX (all A (34b)

The ratio C2.I../GA is also plotted in Fig. 4. There is again smooth con-
vergence, but convergence is now slow. Indeed, all the elemenLns K-r con-
tribute elements O(A" 3 ) to C +i, see Eq. (33a). Thus, while the components
Ak31og& should have corresponling amplitudes in C2A+l and GA, already the
components O(A" 3 ) are likely to be different. Slowness of convergence is
an obvious consequence.

A final remark: the formulas of this section can be used to derive
certain summation formulas of mathematical interest. This is discussedin Appendin• B.

V. THE DOWNWASH CONDITIONS

In view of the normalization Eq. (10), it follows from Eq. (17) that
the downwash coefficients w. must converge o(s" 3 ) if the tip value w(l) is
to be finite. If one differentiates Eq. (17) once, one finds that the
derivatives of the P25 are of order s2 at the tip; hence in order 'hat w'(1)
be finite, the w. must converge o(s-5). Further differentiations impose
further convergence conditions of increasing severity. However, as alreadyS0indicated, there will be no need for us to drive our analysis beyond

We have to use Eq. (20) in order to translate the convergence con-
ditions for w. lIto conditions for C2 9. At first, we make again the
tentative assuraption that C2 • is composed of rational sets EM, Eqs. (6),
(8). For these sets, we know already approximate elements w E, namely,
the elements WrC2A+IE of Eqs. (33), (33a). (We have to replaceA by s,
of course.) To these we have to add as corrections the contributions of
the operator S1 . As we do this, the regular form of Eq. (.33a) is lost,
and there is then no longer an advantage in using the abbreviations 3 and
L*. Therefore we write our results in terms of s and log s:

00 s
Ws,= i X log s /s (s # 0) (35)S E 2 0=3
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It turns out that the matrix of coefficients Br is (about) a tri-
angular matrix, with zeros below a zigzag line along its diagonal. The
matrix Cr is a full matrix. Of the two, we will use explicitly only the
following coefficients:

Brr Br
3 C3

r-2 -1 +2.5 2.25

r--3 -4 -1(2) 7.5

rt4 0 -[41(r-2) + j(r-l)J 0 (35a)

Both matrices, Br and Cr must have their basis in the matrix A,
Eq. (33a). Specifically the mechanism which produces Br is as follows:
this matrix must arise from the log-terms -4L* in E . (33a). For
example, the coefficient B3 corresponds directly to Al. From this, contri-
butions to B.,B3, .i. arise in two ways. One, from developing the factor,
1,3 in Eq. (13), V in the case of ws E, in terms of powers s'3,s 4,...
Two, from the operator S .

The mechanism is the same. if r=2, in principle at least, even though
there is no log-term for r=2 in Eq. (33a). The point is that in principle
there is a log-term Ai. Its factor is zero because now r is even in Eq. (32).
But Eq. (32) does not apply to the operator S1 . In consequence, S1 creates
non-zero higher order coefficients B3o B .

The mechanism for all r odd is similar to that for r=3, and for r
even similar to that for r=2. The result is an almost triangular matrix Br.The f rst non-zero coefficients on successive lines r are B3,B3,B 4 ,B5 ,B6

3 5' 5' 7

r

By a similar mechanism, a full matrix Cb arises from the constant
coefficients in Eq. (33a). Because of this, it is readily possible to
fulfill successively the conditions that the rational terms s-3,s-4
in ws should have the factor zero. Combine Eqs. (5), (8) to read

" "r2V (ar/gr) so that ws = r E (36)
r=2 r=2 I

0This is as described in the text which precedes (1.42). Regrettably, 1
th manner in which the order of the remainder terms are written in both
(1.42) and (2.21) is incorrect. Both equations should be corrected to
agree with Eq. (35a). I

A
_-Mai
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One simply has to use a sufficient number of elementary sets C-r and has
to determine their amplitudes a such that the conditions

ra aCr 0 (36a)

are fulfilled for all required values b7.

Conversely, it is not possible to extract more detailed conditions
for the ar from Eq. (36a). Hence, in what follows we can disregard the
rational terms as neither causing complications nor providing useful informa-
tion.

Specific conditions arise froR the log-terms, however. First, the
factor to the terms 6- 3 1og s is zero , from Eq. (35a), if and only if

a 3 = -a 2 /4 (37)

This result is already incorporated into Eq. (5).

In order to proceed beyond this result of Ref. 1, we have to eliminate
next the term s'41og s. Here we encounter an obstacle. Because of Eq. (37)
we have now, due to Eq. (35a),

ws = (3/16) a 2 s'41og s +... (S 0) (38)

This term is different from zero because, in general, a2 - C•.(l)/4T•' 0. No
further set is available in Eq. (35a) to cancel this term.

The inescapable conclusion is that Eq. (38) requires an additional
elementary set in C2t, a set that is "foreign" to the rational sets X-r
which are represented in Eq. (35a). Applied to this "missing" set, the
operator S must produce a contribution which cancels the leading term in
Eq. (38) but must not contain lower order terms (disregarding lower order
rational terms).

0 We omit theo' of Eq. (35) for simplicity. If we wish, we may considerr e
as part of the rational term.

I
liu
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VI. THE MISSING SET E*

The task of finding the missing elementary set would appear to
imply that one has to try various likely sets, apply the operator S, and
hope to obtain a result suitable to cancel the term Eq. (38). Since for
transcendental sets the required summation formulas are not usually
available, the task as thus described would appear to be formidable.
Fortunately, we have available an argument that reduces the same task to
a direct form which, furthermore, requires only the performance of analyti-
cal integrations.

In view of Eqs. (26/7), we write the missing set as

AL - 4 go (39)

The operator So produces the following contribution to C2A+l

c2' C F, " -21g(2)/A 3 + 0, (g.d/A (39a)

where

00S'g(r) "b ¥

Assume that we can find g. such that the result of the 0-operator in Eq.
(39) produces logA as leading term.ý Then the corresponding contribution
of the operator S1 will be of the general order A 5 ; this contribution
is thus not here of interest. Hence we can use the same O-operator for w.;
the leading terms here are thus found to be

WsE, - -2f[g(2) + k %g(3)J /g3 + s-41og a + ... (39b)

0The logarithmic sets L and LV which w$ used earlier were defined for
allo and allh ; in particular, LO-O and L0=½ - log 2. Just as we used
log s instead already in Eq. (35), we use henceforth also logA even though
log 0 does not exist. This formal procedure simplifies the analysis, and
it is justified because we are concerned only with the asymptotic behavior
as s resp.9 resp.A u..oo. It is readily shown that in this respect the
formal analysis leads to the correct result.



The log-term in Eq. (39b) can be used to cancel the term Eq. (38).

Further, since we had to use only the 0-operator of So, not of S!,
we can reverse the process. Again disregarding rational sets, we have for
the missing set from Eq. (30), since gs

gK = Og,•(log s)/lr2 (t - 4) (40)

Equation (40) puts the task of finding the missing set into a direct
form. This form still involves inconvenient infinite summations over pro-
gressions which involve log s. However, again because we are only inter-
ested in the leading term, we can deal with these summations by the method
of corresponding integrals. (Essentially, this means using only the lead-
ing term on the right of Eq. (B2).)

With t-4, we have from Eqs. (30), (40) formally

00

r 2 gsL = ( - _L- __L_)log, s (41)
s=0 9 s-K 9+K.

This sum, after some rearrangement, including folding of its middle term,
bec.omes

W-J. M-l so 2

2 l. -' -- log .+s - - log (1-(./s) )
s+0 l *-s- Is=O 8+k SOO+ s=IL0

The corresponding integral of the second of these three sums is

1 2log A d = J log l+u du . Tr + 0(-1) (42a)

4 x--x x (2x.I)- l-u u 4

The integral which corresponds to the last sum is

To _

d log(l-(x/x) ) x log(l-u ) du -- - - + O(-i) (42b)
" X+ 0 u(l+u/2.) 12
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Neither contribution is here of interest. The leading contribution arises
from the first sum:

21 1o1 x dx - 21 log(u-t) - = log2J&+ 0(1) (42c)
0 x+4- u

As we had to expect, the leading c-ontribution is not a rational set. Also,
note that this contribution arises as s-*J.; clearly our formal procedure
was justified.

We can now list the sets (leading terms only) which belong to E* in
ws (from Eq. (39b)), C24 and C24+1:

WsE* I "C2,E* C2A+I,E*

__ 21
1oz s log LO2A

s4 I2X4 JrA 4 (43)

This list completes the task which was set by Eq. (39). We use ws E* to
cancel the undesirable term on the right of Eq. (38) and arrive at a more
detailed form of Eq. (5):

1 _ 3 2 K AM + Rb (041) (44)
4K3 6112 4

To the new set E* in Eq. (44.) belongs, because of Eq. (43), a set
in C2A+. which is not contained in Eq. (33a). This term was indeed found
in a numerical analysis of the set C2A+I, Fig. 4.

Equation (44) essentially completes the task of describing Lhe struc-
ture of the solving set C2X. It disproves the tentative assumption Eq. (8)
and implies that to proceed beyond Eq. (44) would require a more involved
analysis. In particular, in using the method of corresponding integrals
for E* we neglected the higher order terms which we would then nrred.
Fortunately, as already mentioned, there is no practical need to drive the
analysis any further.

We round off this discussion of the sets E* i showing that the
relation between them, Eq. (43), can also be derived by applying the method
of corresponding integrals in reversed order.
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II

From Eqs. (27) and (43)

. 2W .. + (i/84) . , <4(5)

By rearrangement, the sum becomes

.i-2(2iD.+ 1 rlOE2(O+.) - og2(8_lt+l)]i 3.-i

+ • --. og2(k+s) - log2()t-6-l)j

4,=s+2 J-%

The single term is of no interest and can be dropped. The corresponding
integrals for the sums are

[.og2(+x) - log 2(5-x)J d + J Iog2(x+i) - log2 (x-j) I d-

4 Y. x

Setting x=us in the first, ux=s in the second and combining, we arrive at
the following integral

2J [2 log • + log(l - u)] log 1+u du

after the limits of the two integrals have been replaced by their values
for s-poo. We have here the integral Eq. (42a), multiplied by 4 log i,
and a further integral which is 0(l) and not here of interest. Inserting
in Eq. (45), we confirm Eq. (43).

II
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VII. INTERPRETATIOW

Since the solving sets C2k converge with increasing slowness as x
increases, a lengthy tabulation would be required should one wish to com-
municate a given numerical solution without knowing the structure of C2k,
Eq. (44). Be:ause of Eq, (44), one has to list only the number CL(l)
plus the much faster converging set RX. We refer to the problem of deter-
mining the structure as the "inner problem" and to the problem of calculat-
ing CA(1) as the "outer problem". With the latter we will deal in the
next section and conclude the discussion of the former in the present
section.

First we collate our results, Eqs. (31), (33a) reversed, (43) for
the operator Oj• .For this purpose let

w gs and -C2 K - - /

Again only the leading terms of each set are listed:

8s get even go t odd

1 2 log X 0

log s log2 X -1/2 (46)

In general, the gL are O(lognK) and are thus within the convergence range
defined for g-sets. In all these cases, neither 0-operator alters the
general order of convergence, i.e., r-t. The two exceptions are borderline
cases, gs5 l with t odd, and gK=1 with r even, see Eq. (32).

The operator OS $ increases the power of the log-function by one if
t is even and decreases it by one if t is odd. Its reversed operator
0,,g increases the power when r is odd and decreases it when r is even.

This observation we extrapolate to speculate, in a heuristic manner,
about further st-uctural details beyond those given in Eq. (44). Sets

'4 logK and %-4 produce only rational sets s- (if we disregard t h 5).
There is thus no obvious reason to expect these sets in the general term
of C2,. Rather, if we accet the scheme Eq. (35a) up to O(s'4), then
(again because the matrix CO is a full matrix) these two sets are the first
sets for which there is no detailed general condition for their amplitudes,
To this observation corresponds the (numerical) result that these two sets
are the leading sets in the remainder RX of Eq. (44).
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It follows that the next general term should be of the general order
r=5. Note that E* produces besides sa 4 1og s, also a potential term
(having the factor zero) s-4 log3s. The latter spawns a term s51og 3 s via
the operator S1 ; to cancel this term, a term K' 5 log 2  is required. This

then would appear to be the fourth general term.

Whether or not this speculative result is correct, the point is clear
that complications would increase rapidly. With these we are not going to
involve ourselves any further. Instead we rewrite Eq. (44) somewhat for
the purpose of representing numerical solutions.

A modification is that we combine the first two general terms in a
manner which producep a simpler contribution to w

C2),E 8ws,E

1 _1 0+ (2) s-3 + 1.5 s' 4log s ...

X 2  4M3

4 10 s- 3  + 1.5 s-41og s ...X(4K+l)

The difference between the two forms of 0 2kE is O(C"4) and is thus not of
concern in the general term (it does of course affect Rk).

From the remainder R~we split off its two leading termns. Thus

c__4 3 iog2p I YC(1) LXJ k42•.~ + i, (47)

To represent a given numerical solution, we= have to list the three constants
CA(l), b4 and c4 plus the final remainder RM We will find that the latter
converges very rapidly.
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VIII. THE OUTER PROBLEM

Even though Eq. (47) gives more details of the structure of the
general term than Eq. (5), it would still be difficult to extract its
amplitude CA(l) from a given (and necessarily truncated) numerical set C2.
The use of Eq. (15) and thus of the set C24+ 1 appears preferable.

We mentioned already above at the end of Section II that for a given
wing one has to determine C4,(l) only for the reference downwash w0 (y) - 1.
In Ref. 1 the extrapolation formula (1.52) was used for this purpose and
led to the approximate amplitude

C (1) -, 1.5931 (48)4I
We show in this section how this value can be improved by utilizing our
newly derived knowledge about the structure of the set O2h~l,

Write Eq. (15) in the form

N 0o

C (1) - S(N) + &(N) -- 4Z (2A+I)C2A+I + 4 Z (2A+I)C 2 \+l
0 N+3i

For a given (truncated) numerical set C 2A+, the sum S(N) is readily calcu-
lated. To explore the structure of A(N)f7 write

(+)2+1 DologA + DI1 D 210og) + D 3+
2A+)C - + . (49)(2A+1)2 (2,k+,) 3

in agreement with our earlier results. Using Eq. (B2), then

L(N) - 1 + log N)D0 + D (21 +

This shows that the curve S(N), plotted over u - (I/N), has a vertical
tangent at u-0. Its extrapolation to u=O (in order to obtain C1(1) - S(0o))
would be rather unreliable.

The vertical tangent is eliminated if one uses the method of Ref. 1,
writing

C 4(l) - S*(N) + •*(N) (50)

I
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with

S*(N) 3(N) + 4N(2N+l)C 2N~ (50a)

Then

- 4N+3 D log N - 4)D2 +D 3 J (2N+()3
(2N4-) 2 0 E (2Nb)

The curve A*(N) has the form O(u), and the curve S*(N) therefore has the
form CAl) M0(u). Extrapolation has now become much more reliable.

To improve the procedure of Ref. 1, we make use of the fact that the
constants Do and D2 in Eq. (49) are directly related to the unknown C1(1):

0 =C4(l)/7r2  ; D2 = -3C (1)/47" 2  (51)

from Eqs. (33),(37) and (4) for DO, Eqs. (43), (44) for D2 . In other words,

we match our extrapolation procedure to the known structure of the set

C2+1. (The constants D1 and D3 are related to the remainder R. rather than
to the general term and are hence unknowns; note, however, that D1 does not
appear in the leading terms of Eq. (50b).)

Inserting first only Do, we write

S= S*(N)/ rl 4N+3 1 a log N - b + ... (52)
1,. T 2 (2N+1) 2 1 (2N+1) 2

We. can plot the first term on the right, S*/L], and know that its curve,
extrapolated to u-0, has to have a horizontal tangent at its end point C4(l).

The steps which we discussed so far are illustrated in Fig. 5. The
almost vertical line S* at the left is the interpolation curve of Ref. 1.
There are two curved marked S*/CE; these illustrate the remarkable increase
in reliability and accuracy that is achieved by inserting the relation
between CA(l) and Do. The lower of the two curves is constructed using the
values CN +I the results of solving the reversed system Eq. (19), truncated
at Xf N. The curve through the points which have thus been calculated for
a number of values N must reach CA(l) at u-0, but we do not know its shape
near its end point.

NTo obtain the final (upper) curve, the values Cn+ 1 were extrapolated
to N oo for each A. Through a remarkable coincidence, it was possible to
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construct a curve, through the thus calculated points, using only the last
written out term on the right of Eq. (52), without allowing for any addi-
tional terms, and using constant numbers a and b. This curve is shown in
Fig. 5. It connects all calculated points to within drawing accuracy (no
points were calculated beyond N - 40) even though the vertical scale of
Fig. 5 is highly stretched. The first noticeable deviation between points
and curve occurs to the right outside Fig. 5, at N - 10.

The end value of the new curve is C4,(1) a 1.5930904. It confirms
the result., Eq. (48), of the less sophisticated extrapolation of Ref. 1.
However, it is clear that the new value cannot be quite accurate. One, we
cannot expect that the higher terms in Eq. (52) are entirely negligible;
two, the number a in Eq. (52) should be related to the end result CA(M)
via Eq. (51). Making use of point two and allowing for point one we found
C4(l) • 1.5930884. The sn'allness of the difference between the two new

values indicates the order of accuracy which one achieves with this extrapo-
lative method. The last decimal of the last value is to be considered
uncertain.

In the tabulation of the planar solution, Table I, we will use the
amplitude number

a 2 = 0.1267740 (Table I) (53)

From it follows Ct(l) - 4r#a2 = 1.5930890.. . This number a 2 is treated
in Table I as an exact number. It allows to construct C to 8 decimals
even though a 2 itself is given only to 7 decimals. To this point we will
return later.

IX. THE PLANAR SOLUTION

In the last section we used the truncated set C2A+l which was obtained
by solving the truncated linear system Eq. (19). The corresponding
set CN is calculated by means of Eq. (13). Again the final solution C2Xhas
to be-obtained by extrapolation. However, convergence as N-Poo is con-
siderably slower in the case of Ck than in the case of C2A+I, and the re-
quired extrapolative procedure deserves a brief description.

TWO successive r, and c, differ because of two independenti adddNIq. i calulaed
reasons. One, corresponding elements C, and CN differ. Two, the
new term CN+' is added in Eq. (13) when C& is calculated. The
second cause has by far the larger effect. Taking this into account, we write
for N large on the basis of Eq. (13)0

0 A factor k has to be added when X = 0. However, the extr;upolative pro-
cedure is the same for all N.
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N
N+ c 1  AN 2 NC2 N+l (1 (54)

?N2 2

The number 6 is introduced here to cater for the first effect. Numerical
testing shows that & is small compared with 1.

To simplify further, we replaced C2NN+ in Eq. (54) by C2 N+l from Eq.
(49) with the higher constants D2 , D3 , ... all set equal to zero. Using
this simplified form, we calculated 6 for N m 37,38,39,40. We found that i
changed little with Kt, and changed even less with N.

If one assiums that 6 is sufficiently independent of N, one can,
using Eq. (B2), sum for each k the AN to N-oo and obtain a tentaLive final

solution C2x. To check the result, we repeated the procedure using N - 60.
Since, within our accuracy requirement, the result was the sane, we accepted
it as the final result.

We calculated the A to 12 decimals. About 2 decimals are lost in
the summation. The further calculation was done carrying 10 decimals. The
final result, Rk, is tabulated to 8 decimals in Table 1.

In Table I, the planar solution, pres~ented in the form of Eq. (47),
is denoted by C2M, 0 to distinguish it from the other solutions, Tables II to
IV. The set C2 , 0 is tabulated to 9 = 15, and the remainder RK (which is
C2 4,O plus the general part) is tabulated in the second column.0

To split off the leading terms of RX, see Eq. (47), one proceeds as
follows. One chooses a tentative pivot point K = p. The amplitudes b4 and
04 are determined from the two conditions

P_
a) = 0 ; b) MRM 0 (55)

0

Condition b) arises from Eq. (2) due to the fact that all the vets in the
general part as well as the two leading sets of R fulfill Eq. (2) individ-
ually.

Of course, the goal is that RK= 0 for all Xk p. If p was chosen
too small, then this will not be the case. The tail sum of RX will
still be zero, but the values fL beyond X = p will describe a wavy curve
around the zero line. On the other hand, if p was chosen unnecessarily
large, significant decimals will have been lost, and the constants b4 and
c4 will be ill-defined.

In Table I, RX < 0.5x10 - already when K = 15. Thus knowledge of the
structure of C2 X, Eq. (47), has enabled us to represent the slowly converging
set C2R in a relatively very brief table to very high accuracy.

0The leading constants CO,E of the here required sets C2wE are given in
Appendix C.

l iIII
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Table I can be used to reconstruct C2& to about the accuracy of i16
that is, to about 8 decimals. It doing this, one has to treat the constants

a2) b4 and c 4 as exact numbers, even though these constants are given to 7
decimals only and are only approximations of their mathematically defined
counterparts.

The inaccuracy just mentioned, the differences between the listed
constants and their mathematically defined values, interferes, to the
accuracy of Table I, neither with the validity of Eq. (2) nor with the
manner in which Kdoes converge. Namely, these inaccuracies affeu6 columns
2 and 3 only as fAr as the first few values (for X - 0,1,2..) are concerned,
and the sum of these values is zero, for each column, closely enough to
cancel out the discrepancies.

The first few values R in Table I are not claimed to represent their
mathematically exact images accurately to 8 decimals, but they are accurate
to 8 decimals if the purpose is to reconstruct C2). (At the higher values
of Jk, of course, the inaccuracies in question affect only decimals beyond
those listed.)

In the process of calculating the set C2 ,t, including CO, no explicit
use was made of Eq. (2). The fait that it was possible to extract after-
wards a smoothly converging set RX which satisfies Eq. (2) serves as an
overall confirmation of the numerical procedure.

It might seem contradictory that, while it is relatively easy to
determine the set C2 W to very high accuracy, it is considerably more diffi-
cult to determine CC(l). The point, already mentioned, is that C2K defines
the span loading CA(y) well enough over the inner part of the wing but not
near the wing tip. An illustration of the tip region is Fig. 6. Curves
CA4(y) are shown which have been calculated with Eq. (9a) truncated at
N = 20,25,30,35,40. All these curves turn to + oo as y-el, where cor-
rectly, from Eqs. (5) and (A4), (see (1.47a))

C y rl + --i (1-y 2 )½ log 4 C(...J G(l>) (56)
C 16 1r.yA

To obtain the curve CA(y), one has to fair the curve Eq. (56) into the curve
for N-40, say, at about y-0.98. The result is shown in Fig. A3.

Note that the key which makes this matching process possible lies
in the fact that certain analytical functions, Eq. (A2), have Legendre
coefficients which behave asymptotically like the rational sets K-r.
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X. ADDITIONAL SOLUTIONS

The principle which allows to calculate additional solutions quickly
once a reference solution has been determined was already indicated in Eqs.
(6) and (7). We have used this principle to calculate the three solutions
C23,t for the downwash distributions

wi(y) = p2i(Y) (i - 1,2,3) (57)

Together with the reference planar solution C29 O0 these solutions form a
set of four independent solutions (and thus repiesent, by linear super-
position, a three-fold multitude of solutions).

NJhe sets C2, i were Ncalculated for N 60. By comparing the tail of

a Get C2A i with that of C 2bt O0 a preliminary value X was obtained and, using
this value, a preliminary voiA set cNK,iv was calculated. Since for this set
the constant Do in C2A4 1 is (almost) zero by definition, extrapolation to
Nwoo is simplified. The resulting set is treated essentially like the set
Rp in the reference case, except that now there is, in addition to b4 and c4,
a third parameternamely, a small adjustment AX to X. This parameter is
necessary to make the final remainder R4converge towards zero without waviness.
In this numerical step, we again carried 10 decimals. No difficulty was
encountered when p = 25 was chosen as the pivot point. The results, again
rounded to 8 decimals, are listed in Tables II to IV.

A graphical presentation of the four solutions Ct,i and their respective
downwash distributions w is Fig. 7. All curves Cii form a downwash hook
near the tip with a vertical tangent at the tip itself; however, in the pre-
sentation of Fig. 7 this hook is too small to be recognizable when 13 or
i-4. The corresponding void curves CA) iv are shown in Fig. 8.

The relative scales of CA i and wi are chosen in Fig. 7 such that
C 0 and w0 have about the same aplitude. For 10, the amplitudes of the
waves in CC i are much smaller than the amplitudes of the corresponding weves
in wi. The'amplitude ratios correspond roughly to the ratio between half-
wave length and wing span (this is what one would expect from slender wing
theory).

An interesting observation is the following: one may form the ratio
between two integrals over the wing area, the lift integral and the downwash
momentum integral. For a planar wing this ratio is ½CL. For the void parts
of the solutions i = 1,2 and 3, this ratio is found to differ from that for
the planar wing by less than 1%. As one calculates the same ratio for the
complete solutions, Fig. 7, small differences between large figures have to
be formed, and the resulting ratio varies somewhat more, between 0.895 for
10 and 0.821 for i=3. The indication remains that, as far as the total
lift of a given wing is concerned, the details of how the total downwash is
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distributed over the wing span are of relatively little relevance. The
details of this distribution tend to have negligible effect on the outer flow.

We have discussed in this section only the span loading functions
C, i(y). The complete pressure distributions p(t,y) of closely related
solutions are discussed in Appendix D. These provide further interesting
insight into the mechanism of lifting surfaces.

XI. GENERALIZATION OF THE SOLUTION

Pressure singularities of orders -½ (l.e.) and +½ (t.e.) arise due
to linearization at those wing edges which cross the direction of the undis-
turbed flow. These singularities are well understood. The wing tip problem
is the problem of the transition, between the two types of singularities,
where the wing edge becomes parallel to the flow. This problem is consider-
ably more involved. We were able to resolve it for the specific case of the
circular wing because here a complete set of analytical relations of relative
simplicity are available: the elementary pressure solutions in Eq. (9); the
reversible relation between the two sets of coefficients, those for the span
loading and those for the chordwise moments, Eqs. (13) & (14); the relation
between amplitude coefficients and downwash coefficients, Eq. (18).

Corresponding analytical tools are not available for wings of arbi-
trary planform, and it will not readily be possible to determine the details
of the solutions for such wings to the extent that we did in Eq. (47) for
the circular wing. On the other hand, it is in the nature of the lifting
surface mechanism that the type of pressure singularity which arises at a
local wing singularity is not affected by the far field from other parts of
the wing. For the circular wing, we- found that the leading part of the
pressure singularity is independent even of the slope of the downwash dis-
tribution at the tip and is determined solely by the geometric tip shape;
the remainder part which describes a particular solution goes to zero and
does so of higher order as the tip is approached. The essence of this
observation must be valid for all wings having parabolic wing tips, and the
reference length for the coordinates which describe the tip singularity must
be the wing tip radius RT.

Since to bring this qualitative statement into a detailed quantita-
tive form would require extensive further investigations, we confine our
present observations to a few main points. In particular, we do not concern
ourselves with details of the pressure distribution (which we did not discuss,
beyond Fig. 2 and Appendix D, even for the circular wing). The span loading
distribution is more readily discussed since here we have available certain
analytical functions which conveniently describe the leading terms of the
limit behavior at the tip.
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The analytical functions in question are those whose sets Fr of
Legendre coefficients converge like the rational sets EX, see Eqs. (A2,2a).
Hence we can represent the first two general sets of Eq. (44) as already
shown in Eq. (56) where, on the right, we should add a remainder function
R(y). Howlver, we do not have a corresponding analytical function for the
set VC4 log'n.. A further difficulty, discussed in Appendix A, is that already
a set O(b.-4) might have a finite tangent at the tip, Fig. Al, or a vertical
tangent, Fig. A2. To decide on this point one has to review the complete
set, not only its rate of tail convergence0 . To avoid further discussion of
such higher order details we confine our further attention to the two terms
already given in Eq. (56).

Let b be the wing span, so that u = (l-y)b/2RT is the proper spanwise
coordinate for describing the wing tip singularity asymptotically near the
tip y--+l. Here (l-y 2 )• 2u for the circular wing. For general wing plan-
forms, we can hence write the local lift f(y) as

+1, 16 _y2)b/21bT)2log ' ]) CZ(l) + R(y) c(y)q (58)

We use the wing chord c(y) since the curveot(y) tends, to a degree, to
imitate c(y) over the inner part of the wing. Considering two wings having
the same tip radius, the difference between the two chords is 0(uc(y)) near
the tip and is hence of higher order.

The complete lift fupction .4(y) has a vertical tangent, but it differs
from the parabolic type O(u-2) of c(y) by the log-term. The remainder
function R(y) of Eq. (58), taken by itself, may be expected to go to zero
about like O(u½).

The generalized form of the solution, Eq. (58), is valid for any
aspect ratio and thus in particular for the slender wing. For the elliptic
wing, slender wing theory predicts an elliptic span loading, that is, Eq.
(58) without the log-term and without R(y). The log-term is of the order
u(AR) log u if AR the aspect ratio. It follows, as a sample application of
Eq. (58), that slender wing theory is valid strictly only in the limit AR-0.

0 The void span loading curves Fig. 8 represent void functions R(y) and
appear to have finite tangents. However, it might be that the small com-
ponent O(-41og"O in RKenforces a vertical tangent; this detail would not
be visible in the scale of Fig. 8.
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XII. CONCLUSIONS
In .he earlier paper(l) we had shown that the apparent divergence of

the Kinner3) series is eliminated by the physically necessary condition that
the infinite set of span loading coefficients C2x has a zero sum, and that
the properties of the sum of the Kinner series can be investigated by means
of the sets of Legendre coefficients of certain anlalytical functions. We had
further shown that, in order to have a finite downwash inside the tip, the span
loading function must have a logarithmic component.

This earlier analysis is pursued further in the present paper and is
brought to its logical conclusion. The duality between the set C2g and the
set C2ý+, of moment coefficients is worked out, and the close relationship
between the C2A+I and the downwash coefficients wr is formulated and is
utilized.

It is shown that either C-set has to contain logarithmic elementary
sets in addition to rational sets, and the asymptotic description cf the
pressure singularity at the wing tip is constructed. Its elementary sets I
are identified up to the order of the "void" part of the solution, the

latter being that part of a specific solution which distinguishes it from
a reference solution. The void part converges to zero at the tip, essen-
tially like u312 if u is the distance from the tip referred to the tip
planform radius RT.

With the structure of the solutions thus identified, it becomes
relatively easy to calculate numerical solutions to very high accuracy, in
particular once a reference solution has been determined. Furthermore,
only a short tabulation is required to fully describe such a solution.

The main analysis of this paper deals specifically with the circular
wing in incompressible flow. The form of the general solution for arbi-
trary wings with parabolic wing tips is briefly discussed. This form shows
in particular that the result of slender wing theory is valid strictly only
in the limit of zero aspect ratio.

Certain conclusions of direct engineering interest can be drawn from
the calculated sample solutions for the circular wing. One, the details
of how the total given downwash is distributed over the wing span affects
the total lift relatively little. Two, a spanwise wavy incidence distribu-
tion is well reproduced by corresponding waves in the pressure distribution
along the wing leading edge, but over the rear part of the wing no visible
waviness in the pressure remains (assuming, of course, that the wavelength
is relatively short).

A by-product of the analysis are two sets of formulas of general
mathematical interest. These formulas connect the sums of infinite pro-
gressions involving the ¶-function (and thus the logarithm) to the Riemann

-function and seem to be the first formulas of this kind.
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Itc2m, 0 c 240 + [-]a 21
0 +.22375288 +.04654659 IK,,O184543
1 -. 14455778 -. 04313858 -. 00148142
S -.0326501 -.01255012 -.00537011
S - 12902 -. 52375 - 4664

4 - 76105 0 -. 1708 115
5 - 4908 -. 7158 355
16 - 340778 -. 3510 134S7 - 251341 -. 1919 57

8 - 192964 -. 1137 27
S9 - 152820 -. 716 13

10 ,,- 124027 -. 473 7
11 102674 -. 35 -4

12 - 86400 -. 231 2
13 - 73712 -. 168 - 1
14 - 63628 -. 125 1
15 55481 -. 96 (s.i.15) 0

C29,0 +[W4Xl - ;12ý1]2 X4 (b4 L,,+ c4) + Ryt 0

Sa 2 = 0.1267740
b4 = 0.0029655

i4 = 0.0416545

Table I. Planar Solution CK
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*~x Iv R
0 .- 08355512 +.20721931
1 +.10240765 -,.21639945
2 -. 01601144 +.00870664
3 -,00186437 +. 40008
4 ... 52361 +. 5546
5 i 20553 +. 1224
6 -. 9737 +. 355
7 -. 5216 +. 124
8 -. '3048 +. 49
9 -. 1902 +. 22

10 -. 1248 +. 10
11 . 854 +. 5
12 -. 604 +. 3
13 . 439 +. 2
14 -. 327 +. 1
15 . 249 .. 1
16 -. 192 (K ý16) 0

C + t,(b4 Li+ c 4 ) R. = 0

a2 = 0

b4 = 0.0086540
c4 = 0.1053370

Wl,v(y) P2(y) - X (5yy2 - 1)/4 - 0.4324159

Table II. Solution C291Iv



K c2K, 2v R

0 -. 05930407 _+.3077660j4
1 +.04670161 -. 27618971
2 +.02349934 -. 03789344
3 -. 00856274 +.00571340
4 -. 137425 + 47133
5 46234 + 9207

6 -. 20422 + 2548
7 -. 10521 + 865
8 -. 6001 + 337
9 -. 3683 + 145
0 -. 2389 + 67

11 -. 1620 + 33
12 -. 1138 + 17
13 -. 823 4 9
14 .. 610 + 5
15 4 + 3
16 -. 357 + 1
17 -. 280 + 1
18 -. 222 (Xk18) 0

C2 P, 2v + 4(bLX+ c4 ) 0

a ~0
2

b4= 0.0024522

C4 =0.2270359

W2 ,v(y) P4(y) - X - (21y 4 - 14y 2 + 1)18 - 0.2795066

Table III. Solution C2422W,2v
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0 -. 04502880 +.43750001
1 +.03210567 -. 39520727
2 +.00938151 -. 3174875
3 +.01056414 -. 1494365
4 -. 00919578 +. 381883
5 -. 98681 +. 42559
6 -, 37073 +. 10118
7 -. 17716 +. 3217
8 -. 9684 +. 1211
9 -. 5786 +. 510

10 -. 3686 +. 233
11 - 2466 +. 113
12 - 1716 +. 57
13 - 1232 +. 30
14 908 +. 16
15 -. 685 +. 9
16 - 526 +. 517 - 411 +. 3
18 326 1. 1
19 262 1.20 - 213 ORLL20) 0

C2PL, 3v + 1i-(b4L+ c4 ) +CO 0

a 2 =0

b4 = -0.0156775

c 4 = 0.3787791

w3,v(y) = P 6 (y) - x

= (429y 6 - 495y 4 + 135y 2 
- 5)/64 - 0.2068387

Table IV. Solution C2x3
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APPENDIX A

ELEMENTARY SPAN LOADING FUNCTIONS

In the analysis of this paper the solving set C forms an inter-
mediary between 3iven downwash w and required pressure *istribution p.
The critical analytical problem arises in the relation between w and C2K,
and the elementary sets EX which are used to build up C2 p are taylored

for this critical problem. Comparatively, the relation between C2K and,
say, the span loading CA(y) is a simple mathematical formula, Eq. (9a).
Nevertheless, this formula does not give the reader an immediate illustra-
tion of the contributions of the sets EX to CG(y). The purpose of this
Appendix is to provide this illustration.

If Ep occurs in the general term of Eq. (6), then its contribution
to CA(y) is

Cj(Y) la. ~ 2v.(Y) (Al)Y2) ?,Y
2(-y 2 ) o P2 )(

if the normalization CL(l) I is made. We use Eq. (Al) as otir definition
of elementary span loading functions.

In Ref. 1 elementary sets F2 were considered whose span loading
functions are simple analytical fuPctions, see Table I of Ref. 1.
Abbreviate by writing 9 for (l-y2)ý; then' for r 4 2,

2 -r'2 if r is even

2 (Y)E=Fz { 2 log(2/ý) if r is odd (A2)

The first six of these functions are plotted in Fig. Al. In standard
collocation analyses, only the functions with r=2,4,6.. are used. Of these,
r-2 denotes the strictly elliptic distribution (a straight horizontal line
in Fig. Al). The curve r-4 has a finite tangent at the tip; the subsequent
curves r=6,8.. have zero tangents. On the other hand, the correct curve
CX(y) has a vertical tangent at the tip. Clearly, one has to include the
function r=3 if one wants to properly represent this fact.

The curves for the sets X4-r, Fig. A2, have a different tip behavior;
they converge toward a finite limit curve which has a vertical tip tangent.
This limit function is determined by the initial coefficients of the limit
set. Namely, for r-Poo
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A2

C 0-1; C2 - -1; C21-pO if X.k2 (A3)

The limit function in Fig. A2 is hence

C;(y) 3(1-y2)A4 (r-*- oo) (A3a)

On the other hand, the tip behavior of the curves in Fig. Al is produced
by the tail behavior of the sets Fjo:

0ZF " 23 C Or/X9 (A2a)

maz r

We can use i-h.s fact to determine, by means of Eq. (A2), the tip behavior

of the curves for X72 and §-3 in Fig. A2. The result is

C(y)E=-2 E 1 +ylog(2/5) + ..

CE y)= •-3
E ( 3 = ýlog(2/ý) + ... (A4)

see (1.33). There would be no point in pursuing this comparative procedure
further. Already for r-4 it yields a leading term, 0(9 2 ) , which is over-
shadowed by the limit function, Eq. (A3)1 ... Th n u

Also plotted in Fig. A2 are the curves for the logarithmic setsbC'4Lj, and OC•log2K. The former has C2 = -1 and CO Z. 1. The contributions

of the first two Legendre polynomials to its function C8(y) thus correspond
to those of the sets K-r, Accordingly, its curve fits well between those
for K- 3 and K-4. On the other hand in the case of the set .- 41og 2 4.,we have
C = 0 and CO small. Therefore, its curve remains close to the zero line
aiso over the main part of the wing span.

By combining the curves for K-, X-3 and X.'41og 2 X of Fig. A2, we can
form the curve for the span loading due to the general term of E 4 . (44).
However, taken by itself this span loading would not be very meaningful.
Of the three conditions that the terms of orders s-31og s, s"3 and s- 4 log s
in ws must be zero, it does fulfill the first and the lasL but not the
second. To fulfill the second condition also, we add the set )-4 (other
sets could be used instead, e.g. the set Eq. (A3)). We then get a refined
form of the "basic solution" (1.48).

t
4!
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First, we reformulate Lhe latter to conform to the modification
Eq. (4'). 1hus

EXbasi* 4 + ZL 4/ (A5)E~tbasi* 9 (4#L+I),.

The second condition ir fulfilled by setting

A4 0 5/[ 8(2) + 21(3)] = 0.3212627..

To fulfill also the third condition, we have to add, the third general term:

4 3log 2 bL - 4E ,ba z* 4 + 541/K (A6)

Xt(4A+l) lý61K 4  a/e

For this the second condition yields

5 + 3 L4 ý,"2)+ ra(3)J/8Tr2

-4 -- 81(2) + 2'(3) 3412738..

where

a.i specifically

A'C4(2) 1.989280. I t,(3) 0.239747..

The span loading curves for these two basic sets are shown in Fig. A3.
'The vertical scale of this figure is stretched. Repeated for comparison is
the curve r=2 from Fig. A2; this curve cuts over the basic curves near.the
tip (compare Fig. 4 of Ref. 1) because its log term in Eq. (A5) is too large
by a factor 2 for the first of the above three conditions to be fulfilled.

Also shown in Fig. A3 is the planar solution; it also is here nor-
malized to CA(1) = 1. This solution approaches the basic solutions asymptot-
ically at the tip, as, indeed, must any solution (for any downwash w(y)i,.
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That tVi planar solution agrees well with the basic solutions over the inner
part of the wing span also is fortuitous. In this latter respect other
solutions are quite different, see Fig. 7.

To the illustrations of elementary span loadings, Figs. Al to A3,
Fig. A4 adds a few illustrations of corresponding elementary downwash dis-
t-rihutions. Denoted by w2 is ý.he curve due to K-2 alone; this curve does
not fulfill any one of the three conditions and goes to -- oo at the tip.
The curve w2 - w3/4, due to XL- 2 _ X-3 /4, fulfills the first condition and
hence approaches the tip more smoothly than the first. For the last two
curves, a third term is added to fulfill the second condition also; thus
here w(l) is finite (but w'(1) is infinite). In one of the two curves the
added set is the infinite set a- 4 (that is, this is the "basic solution"
(1.48)); in the case of the other curve, the finite set Eq. (A3) is added. One
sees that the "basic solution" approaches the case of a constant downwash
reasonably well. On the other hand, the use of the set Eq. (A3) introduces a
curvature corresponding to that of the limit function Eq. (A3a).

I
!
I
I
!
!
I
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APPENDIX B

SUMMATION FORMULAS

In the analysis of this paper the sum

SE ::t E (BI)
k =i

of an infinite set Ex is frequently required. For example, one needs SE to
determine the leading coefficient E0 by means of Eq. (2). Since the EX
are progressions, term-by-term summation is not a practical proposition
(the rate of convergence slows down indefinitely as the summation proceeds).

Numerical tables (e.g., of the I -function or the t-function) are
sometimes available from which SE can be read either directly or after some
transformation. This is not the case, for example, if EK contains lugt,
Still, high numerical accuracy is obtained by means of the fornmula, obtained
from 25.4.1 of Ref. (4)

00 00 1

E)t = E(x)dx - -• (dEx) +... (B2)
N+1 N 2 N 12LdxCxcN

The only requirement here is that the function E(x) which interpolates EX
can be integrated, either analytically, or numerically after transformation
of the integral onto a finite range.

Because Eq. (B2) is available, there is no absolute need for the
closed form sumnnation formulas which we will derive next. These formulas
are of considerable mathematical interest, however, because they appear to
be the first of their kind, namely, the first to involve the logarithm.

Consider the sets C2n+lE which are given in Eqs. (33, 33a). From
Eq. (15a) follows

co

S-AC2A+IE = 0 (B3)
A =0

except if r=2. Performing this summation for r even, one obtains the
familiar closed form expression for 3(2n), see 23.2.16 of Ref. (4 ). No
corresponding expression for '(2n+l) seems to exist.
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Performing the summation Eq. (B3) for r odd, we obtain a new kind
of result. Making use of 23.2.20 of Ref. (4 ) and of some simple trans-
fornations, we find for L`3

00 Ln
(21l) n [7y(3) + l21(2)log 2]/16 (B4a)

.(2n-1)2

Correspondingly for r-5

Ln [ r311(5) - 6Y(2)Y(3) + 60O( 4 )log 2]/64 (B4b)
n-l (2n-1)4

The set Ln here is given by Eq. (31a). It contains log n and is closely
related to thcý-function.

The procedure is readily continued for r-7, 9.. . Note that the
resulting formulas, Eqs. (B4), are homogeneous of order r if one counts as
follows: one counts the arguments of the -functions, counts the power of
the denominator on the left, counts Ln as 1, and notices that log 2 - • (1),
see 23.2.19 of Ref. (4).

The formulas Eqs. (34) are related to the sets C2A+l E through the
form of the denominator on the left. In order to obtain fo=nulas which are
related to the elements Mr of C2W one reverses the process, setting
EA a ( 1 /jt), applies S6 1 to obtain the corresponding sets C2K E, and makes
use of Eq. (2). For t odd this leads again to the familiar expression for
7(2n). For t=4 and t-=6 one finds

Ln

- 14Y(2)Y(3)]/4 (B5)

Again the process can be continued ad libitum.

Particularly interesting because of its simplicity is the first
formula of Eq. (B5)• This formula relates directly 0(3), the sum over n-3,
and the sum over n- Ln.
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The second formula of Eq. (B5) is used in this paper to calculate
the coefficient E0 of its set El, see Eq. (C3). For this purpose it is very
convenient. On the other hand, our new formulas may not be more convenient
than the numerical approach Eq. (B2) if the given set Ek contain log M
directly. An example would be the slowly converging sum

Slogo--n = 0.9375482..

n=2 n

which one may calculate either way.

Note that the two sequences of new summation formulas, Eqs. (B4,5),
arise solely from the series presentation Eq. (9) for the pressure function
P. No statement about the downwash w is involved, not even a statement that
w should be physically meaningful. Rather, the Kutta condition Pt.e.=O in
Eq. (9) leads directly to Eqs. (2),(13),(14) and (15) and thence to Eqs.
(B4,5). The salient fact is that the Kutta condition enforces duality
between the two sets C2M and C2 4+1.
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APPENDIX C

ELEMENTARY SUMS C0 ,E

We have

00
C0)E = . E

for the leading constant of the elementary set Ei because of Eq. (2).
Thus C0 - r(r) for the elementary sets -C2 K - st-r, with Y the Riemann
function, Table 2.3. of Ref. (4). For the remaining sets E which are
used to construct Tablea I to VI, we have

00 4

1 (+) I V ) + f 1.39908526.. (Cl)

from 6.3.16, Ref. (4);

0 "4 0.06505816.. (C2)

by means of Eq. (B2);

oo L•

S- = 1.115624875.. (03)

from Eq. (B5).
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APPENDIX D

PRESSURE DISTRIBUTIONS

The solutions CA i, Fig. 7, can be considered as elementary solutions,
defined by their downwash coefficients

f /(s+l) (2s+1) for s=i
Ws'i- f 0 o" s~i (DI)

see Eqs. (57)and (17). A given downwash w(y) and its solution can be built
up from a sufficient number of such elements.

If we disregard the operator Sl (as in Eq. (23)) we have ws -VC2A+1
for A=s. Hence, if we define

-l(A+l)(2A+l) for A= A*
2 + 1 0 " if (D 2)

we have alternate elements A* (= 0,1,2...) which are somewhat related to the
elements i. They also can be used to build up any desired solution. It is
of some interest to compare the two types of elements.

The downwash distributions wi(y) were shown in Fig. 7; Fig. D1 shows
the wA,(y). The major difference is that the latter all turn down to - 00
at the tip. The reason for this is clear from Eq. (13): the .. &Iving set
C2X of w4* contains only even-numbered rational elementary se' = _ - 2 r&
It is evident from Fig. Dl that, by superposing a sufficient zuzner 0 of
elements A*, one can approximate a given w(y) closely enough within any
given inner rangejyj(yC1. However, in order to achieve w(l) finite, one
has to represent the' set EA = N).3 and this requires an infinite number of
elements k*.

The purpose of the present appendix is to discuss pressure functions
•. We are interested in cases where w(y) is wavy, and are interested in
the nature of the pressure distribution over the inner part of the wing span.

0LI some respect, this corresponds to the procedure of collocation analyses.
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From this point of view, the elements i andA* are equivalent. Figures
D2 and D3 show the cases k* 1 and A* 3 (instead of the corresponding
cases i - 1,3 simply because the present figures had already been prepared).

Like Fig. 2, Figs. D2 and D3 are relief diagrams, however, the right
half-wing is stretched into a rectangle; furthermore, the rectangle is cut
at y = 0.9 for beLier visibility of P. (The wing tip point is stretched
into a straight line, a "chord" y = 1.0; thus the linear distribution of
over the front part of this "chord" is shown.) A vertical plane through
the leading edge of the rectangle is drawn; it shows horizontal lines of
constant P (the scale of P is arbitrary) and vertical lines of constant y.

The left half-wing is not shown in Fig. D2. It is shown, unatretched,
in Fig. D3, and over it the wavy incidence distribution w(y) is indicated.

The pressure distributions Figs. D2,3 lead to a somewhat unexpected
observation of technical interest: while the waviness of the incidence
distribution is well reflected in p along the leading edge, this waviness
is rapidly damped out along the chord and already at midchord is no longer
recognizable. Over the rear part of the wing, the pressure distribution
Sno longer reflects the waviness of w(y). This stabilizing effect (shown
here on an idealized model) must be generally significant for the influence
of disturbances of short characteristic spanwise extension. It is, of
course, also the mechanism which makes the wave amplitudes in Cf,i of Fig. 7
smaller than the corresponding amplitudes in wi.

Another way of describing the mechanism which leads to Fig. D3 in
particular is to say that already the vortices which are shed by the front
wing create. a downwash field which is almost identical with that of the back
part of the wing, such that at the back part almost no new vorticity is
created. This mechanism, respectively the chordwise distributions of the
lift which are shown ir Fig. D3, are distinctly different from the assumptions
of lifting line theory. Accordingly, lifting line theory cannot be expected
co perform adequately for the downwash wi. In Fig. D4, the curve C,3 of
Fig. 7 is repeated (one half-wing only, larger vertical scale), and the

result of lifting linzr theory is also shown. Comparison of Lhe two results
reminds one of the fact that lifting line predicts the lift coefficient of
the planar slender elliptic wing too large by the factor 2. According to
Figw D4i this amplification factor 2 applies also to wings which have a
wavy distribution of the a wing incidence, supposing of course that the wave
lengths are sufficiently small.
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