Report No. FAA-RD-72-8

AD 741555

JY.

and developed and the second second second in an antice with the second second second as the second second second

# FAILURE MODES, EFFECTS AND CRITICALITY ANALYSIS (FMECA) OF CATEGORY III INSTRUMENT LANDING SYSTEM

Peter Dvoracek

Texas Instruments Incorporated P.O. Box 2909 Austin, Texas 78767





U.S. International Transportation Exposition Dulles International Airport Washington, D.C. May 27-June 4, 1972

# FEBRUARY 1972 INTERIM REPORT

AVAILABILITY IS UNLIMITED, DUCUMEN" MAY BE RELEASED TO THE NATIONAL TECHNICAL INFOR" MATION SERVICE, SPRINGFIELD VIRGINIA 22151, FOR SALE TO THE PUBLIC.

Prepared for DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D.C. 20591

> NATIONAL TECHNIC \*\* 'NFORMATION SERVICE Springe J. 94 22151





THE CONTENTS OF THIS PEPORT REFLECT THE VIEWS OF TEXAS INSTRUMENTS INCORPORATED WHICH IS RESPONSIBLE FOR THE FACTS AND THE ACCURACY OF THE DATA PRESENTED HEREIN. THE CONTENTS DO NOT NECESSARILY REFLECT THE OFFICIAL VIEWS OR POLICY OF THE DEPART -MENT OF TRANSPORTATION THIS REPORT DOES NOT CONSTITUTE & STANDARD SPECIFICATION OR REGULATION.

> REPORT NO. U1-540915-1 PRINTED IN U.S.A.

TECHNICAL REPORT STANDARD TITLE PAGE

| 1. Report No.                                                      | 2. Government Accession No. | 3. Recipient's Catalog No.               |
|--------------------------------------------------------------------|-----------------------------|------------------------------------------|
| FAA-RD-72-8                                                        |                             |                                          |
| 4. Title and Subtitle                                              | <b>.</b>                    | 5. Report Date                           |
| Failure Modes, Effects an                                          | d Criticality Analysis      | February 1972                            |
| (FMECA) of Category III I                                          | nstrument Landing System    | 6. Performing Organization Code<br>96214 |
| 7. Author's)                                                       |                             | 8. Performing Organization Report No.    |
| Peter Dvoracek                                                     |                             | U1-840915-1                              |
| 9. Performing Organ-zation Name and Addre                          | \$3                         | 10. Work Unit No                         |
| Texas Instruments Incorpo                                          | orated                      |                                          |
| P.O. Box 2909                                                      |                             | DOT-FA71WA-2635                          |
| Austin, Texas 78767                                                |                             | 13 Type of Report and Period Covered     |
| 12. Sponsor ng Agency Name and Address<br>Department of Transporta | tion                        | Inter <sup>°</sup> a                     |
| Federal Aviation Administ                                          | ration                      | July 1971 - Feb. 1972                    |
| Systems Research and Dev                                           | elopment Sevvice            | 14. Sponsoring Agency Code               |
| Washington, D.C. 20591                                             |                             |                                          |
| 15. Supplementary Notes                                            |                             |                                          |
|                                                                    |                             |                                          |
| ,                                                                  |                             | •                                        |

#### 16. Abstract

\*A Failure Modes, Effects and Criticality Analysis (FMECA) is used to optimize system performance by identification (and subsequent elimination) of all potentially hazardous failure modes affecting either personnel safety or operational mission success. The in-depth systematic approach of such an analysis provides the quantitative assurance that the system design has achieved the highest standards of system reliability and integrity.

The FMECA performed under contract number DOT-FA71WA-2635 for the FAA on the Texas Instruments Incorporated FAA Mark III ILS identified changes/modifications which were required in order for the system to comply with the quantitative requirements imposed upon the reliability of the system. These changes/modifications have been incorporated into the design and, as a result, the design meets and exceeds the required reliability criteria set for the system. Another major valuable output of the FMECA deals with performance assurance measures (preventive maintenance). All relevant hidden equipment failure modes are identified within the analysis and, based upon allowable probabilities of occurence, their respective preventive maintenance frequencies are specified.

| 17. Key Words                                             |                                 | 18. Distribution Stater                                          | ment                                                                           | alanda ana ana ana ana ana ang manganana ang manganana ang manganana ang manganana ang manganana ang manganana<br>Ng manganana ang manganang manganang manganang manganang manganang manganang manganang manganang manganang mang |
|-----------------------------------------------------------|---------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instrument Landing System<br>ILS<br>Category III<br>FMECA |                                 | Availability i<br>may be relea<br>nical Informa<br>Virginia 2215 | s unlimited. Do<br>sed to the Natio<br>ation Service, Sp<br>of for sale to the | ocument<br>mal ech-<br>pringfield<br>e public.                                                                                                                                                                                    |
| 19 Security Classif (of this report)<br>Unclassified      | 20 Security Clas<br>Unclassifie | eif. (of this page)                                              | 21 No. of Pages<br>187                                                         | 22. Price<br>\$3.00 PC<br>.95 MF                                                                                                                                                                                                  |

Form DOT F 1700.7 (8-69)

# TABLE OF CONTENTS

ď.

| Paragraph                | Title                                            | Page       |
|--------------------------|--------------------------------------------------|------------|
| <b>1.</b> 0 <sup>;</sup> | Introduction ,                                   | 1-1        |
| 2.0                      | Purpose                                          | 2-1        |
| 3.0                      | System Description                               | 3-1        |
| 4.0                      | Procedure                                        | 4-1        |
| 5.0                      | Assumptions/Considerations                       | 5-1        |
| 6.0                      | Functional Block Diagrams                        | 6-1        |
| 7.0                      | Failure Analysis                                 | 7-1        |
| 8.0                      | Math Models ,                                    | 8-1        |
| 9, Ò                     | Preventive Maintenance                           | 9-1        |
| 10.0                     | Remote Control/Status Display                    | 10-1       |
| 11.0                     | Results/Conclusions                              | 11-1       |
| 12.0                     | Refetences                                       | 12-1       |
| APPENDIX A               | Localizer Detailed Functional Block<br>Diagrams  | A-1        |
| APPENDIX B               | Glideslope Detailed Functional Block<br>Diagrams | B-1        |
| APPENDIX C               | Failure Analysis Localizer                       | C-1        |
| APPENDIX D               | Failure Analysis Glideslope                      | D-1        |
| APPENDIX E               | Localizer Math Models                            | E-1        |
| APPENDIX F               | Glideslope Math Models                           | <b>F-1</b> |
| APPENDIX G               | Localizer Preventive Maintenance<br>Check        | G-1        |
| APPENDIX H               | Glideslope Preventive Maintenance<br>Check       | H-1        |

iii

# LIST OF ILLUSTRATIONS

-

|   | Figure     |                                                                                              | Page            |
|---|------------|----------------------------------------------------------------------------------------------|-----------------|
|   | 3-1        | Category III Two-Frequency Localizer<br>Wide Aperture Configuration Block<br>Diagram         | 3-1<br>3-3      |
|   | 3-2        | Gategory III Two-Frequency Glideslope<br>Block Diagram                                       | 3-4             |
|   | 3-3        | Remote Control Unit                                                                          | 3-9             |
|   | 7-1        | Failure Analysis Form                                                                        | 7-2             |
| , | 8-1        | Example of the Graphical Representation<br>of a Probability Math Model                       | 8'-1            |
|   | 10-1       | Remote Control Unit Functional Block<br>Diagram                                              | 1-0-1           |
| - | 11-İ       | Logic Illustrating 2/3 Vote of Monitors<br>for Control Processing with Partial<br>Redundancy | 171 - 5         |
|   | 11-2       | Logic Illustrating 2/3 Vote of Monitors<br>for Control Processing with Optimum<br>Redundancy | 1.1 -6          |
|   | <b>A-1</b> | Localizer Station                                                                            | A-9             |
|   | A-2        | Far Field Monitor Station                                                                    | A-11            |
| - | Ā-3        | Localizer Control Unit                                                                       | A-13            |
|   | A-4        | VHF Transmitter (Course and<br>Člearance)                                                    | A-15            |
|   | A-5        | VHF Modulator                                                                                | A-17            |
|   | A-6        | Sideband Generator                                                                           | . <b>A.</b> -19 |
|   | A-7        | Identification Unit                                                                          | A-19            |
|   | A-8        | VHF Changeover and Test Assembly                                                             | A-20            |
|   | A-9        | VHF Course Distribution Circuits,                                                            | A-21            |
|   | A-10       | VHF Clearance Distribution Circuits                                                          | A-22            |
|   | A-11       | Battery Charger                                                                              | A-23            |
|   | A-12       | DC/DC Converter                                                                              | A-24            |

# LIST OF ILLUSTRATIONS (Continued)

Figure

1

1. 1. 1. 1.

Page

í

. ,

3

| A-13       | 'VHF Peak Detectors',                                           | A-24         |
|------------|-----------------------------------------------------------------|--------------|
| A-14       | Identificatión Monitor Channel                                  | A-25         |
| A-15       | Monitor Channel ,                                               | A-26         |
| A-16       | Far Fiuld Monitor Combining<br>Circuits                         | A-27         |
| A-17       | Far Field Monitor Battery Charger                               | A-28         |
| A-18       | Far Field Monitor DC/DC Converters                              | A-28         |
| A-19       | VHF Receiver                                                    | A-29         |
| B-1        | Glideslope Station                                              | B-9          |
| B-2        | Glideslope Control Unit                                         | B-11         |
| B-3        | JHF Transmitter (Course and Élearance)<br>and 10=Watt Amplifier | <u>B-1</u> 3 |
| B-4        | UHF Modulator                                                   | \B-15        |
| <b>В-5</b> | UHF Changeover and Test Assembly                                | B-17         |
| B-6        | UHF Distribution Circuits                                       | B-18         |
| B-7        | UHF Recombining Circuits and<br>Probes                          | B-19         |
| B-8        | Near Field Antenna and Power<br>Splitter                        | B-19         |
| B-9        | Battery Charger                                                 | B-20         |
| B-10       | DC/DC Converter                                                 | B-21         |
| B-11       | UHF Peak Detectors                                              | B-21         |
| B-12       | Monitor Channel                                                 | B-22         |
| B-13       | Misalignment Detector                                           | B-23         |
|            |                                                                 |              |

v

# LIST OF TABLES

| - | Ţable <sup>,</sup> | Îtitle                                                              | Page |
|---|--------------------|---------------------------------------------------------------------|------|
| - | 7-Î                | Failure Mode Failure Rate Calculations                              | 7-4  |
|   | 11-1               | Total Localizer Hazardous Signal<br>Probability                     | 11-1 |
|   | 11-2               | Total Glideslope Hazardous Signal<br>Probability                    | 11-2 |
| - | 11-3               | Probability Summárŷ                                                 | 11-3 |
|   | <b>A-1</b>         | Definition of Signal Names (Localizer<br>Control Unit, Figure A-3). |      |
|   | , <b>B ⇒ 1</b>     | Definition of Signal Names (Glideslope<br>Control Unit, Figure B-2) | B-2  |
|   | :G=1:              | Localizer Fäilure Añalysis                                          | C-2  |
|   | D-1                | Glideslope Failure Analysis                                         | D÷2  |
|   | E-1                | Localizer Hazardous Signal Radiation<br>Probabilities               | E-2  |
|   | E-2                | Localizer Shutdown Probabilities                                    | E-9  |
|   | F-1                | Glideslope Hazardous Signal Rádiation<br>Probabilities              | F-2  |
|   | F-2                | Glidêslope Shutdown Probabilities                                   | F-8  |
|   | -G-1               | Localizer Preventive Maintenance Checks<br>for Hidden Failures      | G-2  |
|   | H-1                | Glideslope Preventive Maintenance Checks<br>for Hidden Failures     | H-2  |

vi

# 1,0 INTRODUCTION

The increase of aircraft transportation during the last ten years has been nothing less than phenomenal. To accommodate this increase greater demands must be imposed upon aircraft and their associated ground support equipments. Higher equipment reliabilities and extremely low probabilities of mission failure are natural requirements which must be fulfilled in this area with the afg of modern technologies.

An instrument landing system (ILS) is one such ground support equipment which embodies these requirements. The ILS, providing guidance to approaching or landing aircraft under adverse weather conditions, must employ "optimum" design and reliability to ensure personnel safety. This is especially true in the Category III ILS which provides guidance information from the coverage limit of the facility at which it is installed to, and along the surface of the runway. To ensure that the "optimum" in equipment performance is achieved, a qualitative system analysis which stratifies all possible modes of failure, their criticality and effect on mission success must be accomplished. Such an analysis, called a Failure Modes, Effects and Criticality Analysis (FMECA), has been performed by Dexas Instruments Incorporated on its Category III ILS (FAA Mark III ILS) and is the subject of this report.

#### 1.1 Safety Requirement

It is impossible to achieve the implementation of a system with infinite reliability and safety; therefore, it becomes necessary that some safety/reliability goal be established to enable the relative safety of the ILS to be determined. For Category III operations, there is a brief time period during which the safety of the aircraft becomes completely dependent upon the integrity of the electronic system. Failure of certain critical ground based components during this time period could possibly result in a catastrophic event. In an attempt to quantify the safety of the equipment, the figure specified is a probability of 1 failure in ten million landings. This figure was derived by the British Air Registration Board from human mortality data and safety records of aircraft. This requirement indicates that the landing operation under Category III conditions would be safer than a person can predictably expect to be in his normal day-to-day activities. The value, if anything, is on the stringent side, in that it is not possible to categorically state that a given failure will be catastrophic, but only that it will produce a potentially hazardous situation that may be catastrophic if the proper corrective action on the part of the aircraft crew is not taken.

The relationship of mean-time-between-failures (MTBF) to the overall system reliability requirement is as follows:

The predicted localizer hardware MTBF is approximately 1200 hours and that of the glide slope is 1800 hours. Any given failure in the equipment will contribute to a lower MTBF but will not necessarily interrupt the operation or even degrade the operational category status (Category III or II). This is possible through appropriate equipment redundancy so that when individual component failures occur, Continued operation may still be possible. Consequently, it is possible for the probability of operational failure to be far less than a component failure. Given that the ground system is fully operational at the inception of a Category III ILS approach, the probability of malfunction of the radiated signal (both localizer or glide slope) during the critical part of the approach (defined as ten seconds for the localizer and five seconds for the glide slope) should be less than one in ten million which corresponds to an equivalent MTBF of operation in the order of 27,000 hours.

Ē

# 2.0 PURPOSE

The primary purpose of performing an FMECA upon the Category III ILS is to insure that the equipment design is such that the probability of a potentially hazardous failure (loss of signal or radiation of an erroneous signal) during the cruical phase of Category III landing is less than  $1 \times 10^{-4}$ . In addition, a number of secondary objectives exist: (1) to reveal hazardous failure modes jeopardizing personnel safety and/or system performance status; (2) to enumerate all relevant functional failure modes along with their effect and failure rate; (3) to serve as a docuimented aid in the troubleshooting process of field failures in the future; (4) to serve as an objective evaluation of both the equipment specification and its design; and (5) to determine the freguency of preventive maintenance in checking for hidden failures.

# 3.0 SYSTEM DESCRIPTION

A Category III ILS provides aircraft with guidance information from the coverage limit of the facility to, and along, the surface of the runway. The system under analysis has operational performance of Category III, that is, operation with no decision height limitation. Initially the system will be used in Category IIIA operations in which the pilot will make use of external visual references during the final phase of landing and with a runway visual range (RVR) of not less than 700 feet. The ILS must be suitable for eventual use by automatic control system for rollout; which will be used in Category IIIB operations with runway visual ranges down to 150 feet.

The ILS system basically consists of two separate stations - the localizer and the glides lope; depicted in simplified block diagram form by figures 3-4 and 3-2 respectively. In addition to these stations, a central point for station control and the display of station status exists at the control tower. Up to three marker becomes are also utilized in a typical ILS installation. However, my description of the marker beacons will be provided since they will not be considered in this analysis.

### 3.1 General Descriptions

The localizer provides guidance in the horizontal plane to aircraft engaging in approaches to; and landing at, airfields. The localizer antenna group radiates two VHF carriers, each amplitude modulated by 90 and 150 Hz and both carrier frequencies within a particular VHF channel. The radiation field pattern produces a course sector with one tone predominating on one side of the course line (runway center line) and with the other tone predominating on the opposite side. Along the course line, the 90Hz and 150Hz modulations have the same levels. Being a two-frequency, capture effect system, one of the carriers (course) provides a radiation field pattern coverage in the front course sector; the other carrier (clearance) provides a radiation field pattern coverage outside that sector to ±60 degrees from the course line.

The glideslope station provides guidance in the vertical plane. It produces a UHF composite field radiation pattern which is amplitude modulated by 90 and 150 Hz. The pattern provides a straight line descent path in the vertical plane containing the runway center line, with the 150 Hz tone predominating below the path angle and the 90 Hz tone predominating above the path angle. In addition to this course coverage, a clearance UHF carrier is modulated by 150 Hz to provide low angle coverage. Both carriers (course and clearance) are within a particular glideslope UHF channel.

# 3.2 Localizer

Réferring to figure 3-1, there are two transmitter soctions incorporated into the localizer station. One transmitter is designated as the main transmitter and the other, the standby transmitter. Automatic changeover capabilities are provided. While the main transmitter radiates into the antenna system, the standby transmitter will be operating into dummy loads. Whenever the main transmitter shuts down due to some equipment failure, the standby transmitter is transferred immediately to the antenna system.

A brief explanation of each transmitting unit is in order. The course transmitter delivers a VHF carrier (108-112MHz) frequency to the solid state modulator where it is modulated by 90 and 150 Hz tones. Two signals (figure 3-2) are generated by the modulator: carrier plus sidebands (C+SB) and sidebands only (SBO). The modulator also delivers t the clearance transmitter a composite of low frequency 90 and 150 Hz tones to modulate the clearance carrier, génerating the clearance C+SB. In addition, low frequency 90 and 150 Hz tones and clearance carrier are supplied to the sideband generator where the clearance SBO is generated. The identification unit, which provides the pilot identification of the runway and the appror ch direction, generates a 1020 Hz identification signal which modulates both the course and clearance carriers.

The output signals from the main and standby transmitting units are routed to the changeover and test unit where transmitter transfer capabilities are accomplished. Signals received from the control unit determine which transmitter operates into the antennas - main or standby. When the main transmitter is connected to the antenna system, the standby transmitter operates into dummy loads. When the standby unit is connected to the antenna system, the standby unit is connected to the antenna system, the main unit is turned off. Within the changeover and test unit there exists circuitry for use in monitoring standby transmitter parameters.

From the changeover and test unit, the course and clearance transmitter signals (C+SB and SBO) are fed to the course and clearance distribution circuits respectively. Each of the distribution circuits merely distributes the C+SB and SBO signals to the localizer antennas. Phasing relationships and signal combinations are accomplished within the distribution circuits so that the proper field radiation pattern is established via the antennas. The antenna assembly consists of a parabolic reflector with directional exciters and a clearance array. The parabolic reflector with directional exciters (three directional antennas) is used in es-



K

r;

Strate Sugar Cig

a the Benness of the Barton

iv; ;

Ņ

Category III Two-Frequency Localizer Wide Aperture Configuration Block Diagram Figure 3-1.

have a space

ą

ì

3-3



**3-**4

tablishing the course field radiation pattern; however, to establish the clearance field radiation pattern both the clearance array (consisting of 4 antenna elements) and the course antenna system are required.

To provide integral monitoring ability of the radiated signal parameters, proximity detectors are utilized. Each transmitting source is sampled by a proximity probe. The captured signals are then combined (in the distribution circuit cabinets) to provide the proper signals with which system parameters are monitored. The system parameters which are monitored are: course position, displacement sensitivity, carrier power level, percentage modulation, identification signal, and clearance monitoring.

Triplicate monitoring of each of these parameters is incorporated as shown in figure 3-1. When the tolerance limit of any parameter is exceeded, an alarm signal from each of the respective monitor channels is fed to the control unit, from which a transfer to the standby transmitting unit is initiated. The control unit acts upon a 2 of 3 vote to initiate the transfer.

In addition to the integral monitoring of system parameters, near field and far field course position monitoring is also incorporated. The near field monitoring utilizes a single yagi antenna to provide dual monitoring ability. The far field monitoring utilizes three Yagi antennas feeding triplicate VHF receivers and triplicate monitor channels with a 2 of 3 vote. Both near field and far field alarm signals are delayed to prevent disturbances created by aircraft overflights and landings from causing equipment alarm and shutdown.

The same system parameters are monitored for the standby transmitting unit as for the main transmitting unit. However, only single monitoring is incorporated. Upon an alarm from any standby monitor, the standby transmitting unit will be shut down after a nominal 5 second time delay.

The far field monitor has its own alarm processing circuitry to minimize the quantity of telephone lines needed for remote transmission. Each far field monitor channel provides two alarm outputs - a Category III alarm and a Category II alarm. The difference between these two alarm outputs is merely in tolerance limits. A two of three vote is utilized for both the Category II and Category III alarms. Time delays are associated with the final alarm outputs for both categories; however, the Category III alarm time delay is accomplished at the remote control unit in the control tower (the Category III alarm signal is conveyed directly to the tower where performance downgrade is accomplished). Besides a general power/temperature alarm and a far field monitor bypass signal, three signals are sent to the localizer control unit - a monitor mismatch, a shutdown alert, and a shutdown. A monitor mismatch signal indicates that one of the three Category II monitor channel alarms has existed over a definite time period (nominal 120 seconds). A shutdown signal indicates that 2 of 3 Category II monitor channel alarms have existed over a set time period (nominal 70 seconds). When received at the localizer control unit, this shutdown signal will immediately shut down the entire localizer station. The shutdown alert signal precedes the shutdown signal by a nominal 5 seconds. The shutdown alert signal initiates a shutdown warning signal (within the control unit) which is transmitted to the pilot to give him an advance warning of the forthcoming shutdown.

The localizer control unit processes alarm signals received from the monitor channels. If only one alarm is received from any monitor channel set, a MONITOR MISMATCH lamp located on the control unit front panel will illuminate. All integral monitor alarms require a two of three voting to initiate a transfer command. An actual transfer will be accomplished only if the standby transmitting unit is available while the main is operative. If either the standby transmitter is operative (on the air) or if it is shut down, a transfer command leads to a localizer shutdown. If both near field monitors alarm, a direct localizer shutdown will result after the nominal 5 second time delay. A shutdown alert is also initiated prior to the shutdown command of the near field alarms.

In addition to the alarm processing already described, the control unit:

- 1. Provides signals to the remote control unit showing the status of the main and standby transmitting equipment.
- 2. Provides signals to the remote control unit downgrading the facility performance Category III status to Category II if the standby equipment is either not available or is on the air.
- 3. Processes transmitter "cycle" commands received from the remote control unit.
- 4. Visually displays all alarm conditions and transmitter status.
- 5. Provides for the selection of the main transmitting unit.
- 6. Provides for the bypassing of all monitor channels.
- 7. Provides for the memorization or non-memorization of monitor alarms.

- 8. Providés for the selection of command control from either the remote control unit or the localizer control unit.
- 9. Inhibits restoration of radiation for at least 20 seconds after localizer radiation has been shut down.
- 10. Provides for testing the integrity of both abnormal indication and monitor alarm lamps with a bulb test switch.
- Provides signals to the remote control unit showing either
  (1) monitor alarm abnormals or (2) power/environmental abnormals. (Note: power/environmental abnormals downgrade system performance status from Category III to Category II after a preset time delay.)

With regards to system power supplies, redundancy is highly incorporated. The two main battery chargers are connected in parallel, each possessing the capability of independently supplying. the load-current and voltage. Each battery charger has its own respective battery which it keeps fully charged. Two DC/DC converters, receiving their input from the common charger output voltage (+28 volts), produce the remaining system dc voltages. Each converter voltage is virtually in parallel with the other respective converter voltage, thus providing a dual redundancy of all system dc supply-voltages.

## 3.3 Glideslope

The simplified block diagram of the glideslope station is presented in figure 3-1. As is evident the configuration of the station is very similar to that of the localizer. Some of the major differences are: (1) the glideslope does not possess either a far field monitor or an identification unit/monitors (2) the glideslope has an antenna tower misalignment detector (3) triplicate near field monitors are utilized for the glideslope (4) no shutdown alert warning signal is provided.

The transmitter section is also slightly different. The course transmitter delivers a UHF carrier (328.6 - 335.4 MHz) frequency which is amplified by the 10 watt amplifier. This amplified carrier is then delivered to the solid state modulator where, as for the localizer, it is modulated by 90 and 150 Hz tones. The two signals, C+SB and SBO are generated by the modulator. In addition the modulator also provides a low frequency 150Hz signal used for modulating the clearance carrier within the clearance transmitter. The clearance signal is only C+SB 150 Hz. The changeover and test unit provides the same function as that of the localizer - transfer transmitter signals of the main and standby unit either into the antenna system (including distribution circuits) or into dummy loads. Also within the changeover and test unit there exists circuitry for monitoring of the standby transmitter parameters.

From the changeover and test unit, the three signals (course C+SB, course SBO, and clearance C+SB 150) are routed to the distribution circuits where these signals are combined and distributed to the three 2-lambda glideslope antennas. Correct phase relationships are established within the distribution circuits. The three 2-lambda antennas (M-array) are identical and are mounted on the tower at 3 different heights (H, 2H, 3H). H is dependent both upon the radiating frequency and the glide path angle.

Proximity field detectors are employed to provide integral monitoring ability of the radiated signal parameters. The UHF combining-circuits combine the signals provided by the probes so that parameter monitoring can be accomplished. The parameters to be monitored are: path alignment (course position), carrier power level, percentage modulation, path width (displacement sensitivity) and the clearance signal. As in the localizer, triplicate monitoring of all parameters is incorporated.

In addition to integral monitoring, near field monitors are provided to monitor the path angle (course position). The near field monitor antenna couples the appropriate signal to three parallel monitor channels. A two of three vote for monitor channel alarms is utilized. Since aircraft overflights may cauge field disturbances which will create near field alarms, the alarms are delayed a nominal 2 seconds at the control unit. "True" near field alarms lead directly to station shutdown.

As in the case of the localizer, the same standby parameters are monitored for the standby transmitting unit as for the main transmitting unit. Again, only single parameter monitoring is incorporated.

A glide slope antenna tower deformation monitor is employed to verify the integrity of the tower. If misalignment or deformation of the antenna tower persists for a nominal 135 seconds, an alarm is provided to the control unit which will shut down the entire glideslope station. The misalignment detector is mounted at the top of the antenna tower and is nominally set to detect a five inch deflection at the top of the tower.

The glideslope control unit utilizes the same printed wiring boards as the localizer. (Actually there is one less board used in the glideslope). Hence all functional operations and displays of status are identical. For minor differences (such as a misalignment detector alarm versus the far field monitor alarms) strap options are employed.

# 3.4 Remote Control Unit

The remote control unit, figure 3-3, receives inputs from the localizer station, the glideslope station, and each of the marker beacons. It is used for the display of all status information from these stations. It also provides for remote cycling capability of transmitting units for each station (cycle sequence: MAIN-OFF-STANBY-OFF).



.....

Figure 3-3. Remote Control Unit

Two ABNORMAL indications are provided for each station -MONITOR ABNORMAL and POWER/ENVIRONMENTAL ABNOR-MAL. The MONITOR ABNORMAL lamp is illuminated whenever:

- The main transmitter is not operational.
- A mismatch exists on one of the monitor channel sets (i.e. one monitor channel out of three is in alarm).
- A main inhibit is generated (note: a main inhibit inhibits the main monitor channels).

- An alarm has occurréd on the standby monitor channels.
  (the alarm may be due to either a failure in the standby transmitter or in one of the standby monitor channels).
- For the localizer, a far field shutdown alarm has occurred; for the glideslope, a misalignment detector alarm has occurred.

The POWER/ENVIRONMENTAL ABNORMAL is illuminated when ever:

- One of the DC/DC converter voltages fails,
- The temperature limits are exceeded.
- The primary power to either of the two battery chargers fails.
- Either of the battery chargers fail.
- The terminal battery voltages drop below a preset level.
- For the localizer, a power/temperature alarm occurs at the far field monitor.

When either of these abnormals are generated an audible alarm is sounded. By depressing the SILENCE switch, the audible alarm is turned off.

An ILS performance category status is also provided for visual display at the remote control unit. The Category III lamp is illuminated only if all of the conditions listed below are satisfied.

- 1. Localizer main transmitter is on the air.
- 2. Localizer standby transmitter is available.
- 3. Localizer far field course monitors see the course position parameter within Category III tolerance limits (adjustable 20 second time delay available).
- 4. Localizer monitor channel inhibit is not present.
- 5. Localizer terminal battery voltage is above a preset level.
- 6. Glideslope main transmitter is on the air.
- 7. Glideslope standby transmitter is available.
- 8. Glideslope monitor channel inhibit is not present.

Glideslope terminal battery voltage is above preset

10. Outer marker beacon is on with no rf level or identifi-

- 11. Middle marker beacon is on with no rf level or identification alarm.
- 2. Inner marker beacon is on with no rf level or identification alarm.
- 13. Distance measuring equipment (DME) is within tolerance (if applicable).
- 14. The "absence" of localizer POWER/ENVIRONMENTAL ABNORMAL condition. (A time delay of up to 3 hours is used for this condition).
- 15. The absence of glideslope POWER/ENVIRONMENTAL ABNORMÁL condition. (A time delay of up to 3 hours is used for this condition).

The Category II lamp is illuminated only if all of the conditions listed below are satisfied.

- 1. Either the localizer main or standby transmitter is on the air, provided that no monitor channel inhibit exists.
- 2. Either the glideslope main or standby transmitter is on the air, provided that no monitor channel inhibit exists.
- 3. The Category III indicator lamp is off.

- 4. Outer marker beacon is on with no rf level or identification alarm.
- 5. Middle marker beacon is on with no rf level or identification alarm.
- 6. Inner marker beacon is on with no rf.level or identification alarm.

Whenever a change in performance category occurs, a momentary buzzer is triggered.

### 4.0 PROCEDURE

The second se

The following steps briefly summarize the general approach taken in this analysis:

- 1. The functional block diagram of the system is drawn, exhibiting all relevant signal flow paths between the various functional assemblies. In addition to the system block diagram, detailed functional descriptions (such as Boolean algebraic expressions and simplified assembly block diagrams) are provided when signal flow charace terization is not readily attained at the system block diagram level.
- 2. Each functional entity in the system block diagram is then analyzed for all possible failure modes which have a direct effect on the system operational status. It should be noted that each failure mode listed reflects actual piecepart failure effects at the functional block output. The various failure mode effects and system failure indications are then tabulated.
- 3. Upon completion of the tabulation of the failure modes and effects, the failure rate of each failure mode will be calculated. That failure rate is the total failure rate of all the piecepart components which, upon failure, produce that functional failure mode.
- 4. The final step of the FMECA is the verification that system design and reliability such that the probability of a potentially hazardous failure during the critical landing phase of a Category III landing is less than 1 x 10<sup>-7</sup>. This is accomplished by developing mathematical models which entail all conceivable events (or sequence of events) that lead to one of two probabilities of system failure: (1) the loss of signal (station shutdown) or (2) the radiation of a hazardous signal (out of Category III tolerance). The probability math models for each of these conditions are determined by utilizing the failure modes and effects data. The final calculation of the probability of the Category III SSILS mission failure is then performed.

4-1/4-2

#### 5.0 ASSUMPTIONS/CONSIDERATIONS

4

\*

Ŷ

The EMECA was not performed at piecepart level but rather at the functional level, i. e., the level at which one or more distinct circuits serve a separate system operational function. In most cases this functional level neatly coincides with the assembly level of the system. To perform a piecepart analysis on a system as extensive as the SSILS was judged neither necessary nor desirable.

÷

ç

Prior to any failure both the localizer and glideslope are operating on main transmitting units in Category III performance status as indicated by the remote control unit CAT III status indicator. On a per station basis, Category III performance status simply implies that (1) the main transmitter is on the air, operating within Category III tolerance limits; (2) the standby transmitter is available (3) a power or environmental alarm has not existed over some preset interval of time (3 hours maximum). For descriptive purposes within this analysis, transmitting unit number 1 will be considered as main and transmitting unit number 2 as standby.

When the monitoring system of the SSILS is functioning properly (no monitor malfunctions present), radiation pattern degradations beyond the Gategory III tolerance limits are detected. Hence, the criteria for establishing a "true functional (or catastrophic) failure" is that it degrades the radiated signal beyond the alarm limits of the monitors.

Only single piecepart failures (open/short component failures) are considered in the determination of functional failure modes. However, multiple functional failure modes will be considered for the determination of hazardous failure conditions.

The following are excluded from the analysis:

- a. Monitor indicator circulory not affecting operational status (such as alarm memory latches, lamp drivers, bulbs, metering circuitry).
- b. Intercom c/rcuitry not vital for system operation.
- c. Marker beacons not vital for Category III operation.
- d. Heater resistors within the cabinets of the distribution circuits. Since distribution circuitry failures are considered in the analysis, the cause of failure, temperature or otherwise, is immaterial to this analysis.

The analysis of the remote control/status display is given in paragraph 10. With regards to this analysis, it will be assumed

Preceding page blank 5-1

that the operator will check the transmitter status of each stat. on and determine that the CAT III status indicator lamp is lit prior to a Category III landing.

The following failure modes are considered not hazardous:

- a. Loss or degradation of the identification signal.
- b. Loss or degradation of the shutdown alert signal.
- c. Generation of an erroneous shutdown alert signal.
- d. Loss of Category II near field monitoring ability.
- e. Generation of erroneous power/temperature alarms.

The critical landing phase period for the localizer is 10 seconds; for the glideslope 5 seconds.

The probability of failure P(F) is equal to  $\lambda t$ .

Note: The probability of success is given by the expression  $P(S) = e^{-\lambda t}$ 

Utilizing the exponential expansion,

 $P(S) = e^{-\lambda t} = 1 - \lambda t + \left(\frac{\lambda t}{2}\right)^2 - \left(\frac{\lambda t}{6}\right)^3 + \dots$ 

For values of  $\lambda t << 1$ ,

$$P(S) = 1 - \lambda t$$

Therefore the probability of failure is:

 $\mathcal{P}(\mathbf{F}) = 1 - \mathcal{P}(\mathbf{S}) = 1 - (1 - \lambda t) = \lambda t$ 

External runway disturbances such as aircraft overflights and runway activity have an adverse effect on the radiated localizer signal at the far field. The parameter of interest at the far field is the difference in depth of modulation (DDM). This parameter is affected by such disturbances and, hence, is monitored at the far field. The loss of this monitoring can lead to potentially hazardous conditions. An obstruction could exist between the localizer antenna and the far field monitor which would not be detected by the integral monitors or the near field monitors. Hence, to accomplish the primary purpose of the FMECA, the probability of external runway disturbances during the critical landing phase of a Category III landing must be known. However, the calculation of this probability requires a statistical analysis utilizing empirical data. Since such data is presently unavailable, a maximum allowable probability of occurance is established within the analysis of the FMECA and is listed as an assumption. The assumed value of this probability is  $1 \times 10^{-5}$ .

The proper alignment of the glideslope antenna tower is vital for the radiation of correct signals. The alignment is monitored for permanent deformations due to such natural forces as earth demors, strong winds, tower settling, etc. This probability of permanent misalignment (within the preventive maintenance cycle of a one week period) must be known for the accomplishment of the FMECA. Since such a probability is unavailable for this analysis, a maximum allowable value is again assumed. A maximum number for this occurrence is  $1 \times 10^{-5}$ .

Coaxial cables, connectors, antennas and probes will not be treated independently for failure modes and effects, but rather are considered in the analysis as part of the functional block to which they are associated since the analysis is performed at the functional level.

The assignment of a criticality number to each failure mode is the conventional means of performing a criticality analysis. Such an approach, however; tends to be partially subjective due to weighing factors by which the criticality number is established. A more objective approach is: (1) to provide merely the failure rate as a representation of the criticality of each failure mode; and (2) to identify each failure mode as being either hazardous or not hazardous. These two items, moreover, are necessary inputs toward accomplishing the primary purpose of the FMECA as outlined in the procedure. For these reasons this approach will be utilized for the criticality analysis of the FMECA.

The failure rates used in this analysis were derived using the following considerations:

- a, Source of base failure rates was RADC Reliability Notebook, Volume II, dated September 1967. (RADC-TR-67-108)
- b. Equipment ambient temperatures was 25°C. Appropriate temperature rises were used for the part ambients depending upon their location in the equipment.
- c. Environmental factor was 'ground fixed' as defined in the RADC notebook.

### 6.0 FUNCTIONAL BLOCK DIAGRAMS

Appendices A and B contain detailed functional block diagrams of the localizer and glideslope respectively. It is at that functional level the FMECA will be performed. Also contained in the appendices are all the functional block diagrams of each inajor assembly. All the various functional block diagrams may be utilized to obtain a rather detailed understanding of system operation.

Two observations should be made concerning the general station block diagrams. First, all signals which can affect station operational performance are provided in the diagrams. Hence, only the outputs from each functional block need to be considered for analysis. Secondly, each functional block has an identification number by which the results of the tabulated analysis may be brought into system perspective. Additional clarification of the tabulated results of the FMECA can be attained when the functional block is viewed at the system level.

The detailed diagrams of the control unit for each station should be particularly useful for a thorough understanding of control unit operation. The Boolean expressions provided completely characterize all major logic signals and commands. Hence, these diagrams should be a tremendous aid in troubleshooting control unit failures.

Preceding page blank

## 7.0 FAILURE ANÁLYSIS

ó

\$ \$

3

Ś

ہ : خ

۰,

્ર

50

The heart of the FMECA is the failure analysis. This analysis identifies each failure mode, describes the corresponding failure effects, and lists the failure rate by which its criticality is measured. This failure analysis is performed in the form given in figure 7-1. The following clarification of terms should be made concerning this form.

1. Failure Mode: This is the item (functional block) failure mode. Each failure mode reflects the piecepart failures within the block that can affect the output signals in the prescribed failure mode. Such terms as "loss of signal" are normally applied to any failure condition that totally destroys the characteristics of a "good" signal. Also any radiated signal that is not degraded beyond the Category III alarm limits is not considered to constitute a functional failure.

ę

- 2. <u>Failure Effect</u>: Normally listed under this term are the immediate failure effects upon the system (or station) from an operational standpoint. Effects on radiated signals may also be listed here. Occasionally incorporated within this column are some conditional failure effect comments - the effects upon the system operation if another failure were to occur.
- 3. <u>System Operation After Failure</u>: The system performance category immediately after the failure is revealed in these columns. These indications correspond to the performance indicator lamps at the Remote Control Tower. An "OFF" condition exists if the system is neither in Category II or Category III performance.
- 4. Failure Indications: The abnormal indication lights which should be lighted at the different locations after the failure occurs are presented in these columns. The Remote Control column lists the abnormal indications present at the Remote Control Tower. The Control Unit column is normally used to give the abnormal indications that are displayed on the respective station control unit front panel. The "other" column is normally utilized for any other display of abnormal indications such as the monitor channel alarm lights or the remote far field monitor indications. True monitor channel alarm light indications are revealed only in the monitors locally bypassed (MLB) mode of operation; hence, the monitor alarm light indications presented here are those that will be displayed in the MLB mode of operation. It should be

7-1

SYSTEM.

PAGE OF

| 2         | REMARKS        |  |
|-----------|----------------|--|
| FAILURE   | (\X 10~6)      |  |
| ATIONS    | OTHER          |  |
| URE INDIC | CONTROL        |  |
| , FAIL    | REMOTE         |  |
| ATION     | URE<br>I OFF   |  |
| EMCOPER   | LK FAIL        |  |
| LSYS'     | CAT II         |  |
|           | FAILURE EFFECT |  |
| FAILURE   | MODE           |  |
|           | FUNCTION       |  |
| ATION     | 0.0<br>- V     |  |
| IDENTIFIC | I TEM<br>NAME  |  |

Figure 7-1. Failure Analysis Form

7-2

realized that the MLB mode is utilized during any failure troubleshooting.

Failure Rate: This column lists the total failure rate of 5 the piecepart failures that can produce the respective functional failure mode. The failure rate given in this column is worst case since all component failure rates that can cause the particular failure mode are included regardless of the piecepart failure modes. In essence this number is a representation of the criticality of each failure mode - the larger the failure rate the greater the criticality of the failure mode. The failure rate number given in this column is in terms of failures per million hours. Failure rate identification is accomplished by alpha-numeric-subscripts of  $\lambda_{i}$ . The numeric portion of the subscript applies to the identification of the functional block; the alphabetic portion identifies the specific failure mode. For example,  $\lambda$  1B implies the failure rate of the second (B) failure mode of the control unit (01).

The results of the failure analysis are provided in appendices C and D for localizer and glideslope respectively. The failure rates were determined on separate work sheets which will not be provided within this report. Table 7-1 provides an example of these work sheets, showing the failure rate calculations for two failure modes of the localizer control unit. All failure modes listed in the analysis are considered to be hazardous unless specifically identified to be "not hazardous" in the "remarks" column. Table 7-1. Failure Mode Failure Rats Calculations

1

Î

0

Êŧ

ii T To

11 5

System SSILS Subcret

| STA    |   |
|--------|---|
| ы<br>К |   |
| 9-LI2  | ļ |
| ΰ<br>ο | ľ |
| н<br>Е | l |
| ystei  |   |
| sqn    |   |

|               |             | Failure<br>Rate<br>( <sup>A</sup> m x 10 <sup>6</sup> ) | 1 827            | 1.202.1          | -                  |                  |              |              |                           |                  |                  |                  |                  |          |              |             |             | -           |                   |                   |                   |          | -  | -  |  |
|---------------|-------------|---------------------------------------------------------|------------------|------------------|--------------------|------------------|--------------|--------------|---------------------------|------------------|------------------|------------------|------------------|----------|--------------|-------------|-------------|-------------|-------------------|-------------------|-------------------|----------|----|----|--|
|               | <b>T</b>    | Failure<br>Rate $(\lambda_i \ge 10^6)$                  |                  | +0, 140          | +0.140             | +0.140           | +0.140       | +0,140       | +0.140                    | +0.041           | +0.04]           | +0.041           | +0.041           | +1.144   | $\div 0.140$ | +0.140      | +0.140      | +0.140      | +0.041            | +0.041            | +0.041            | +0.683   | 4  | -  |  |
|               |             | Part/<br>Component                                      | U2 537051-1      | U4 537051-1      | U6 537051-1        | U8 537051-1      | U13 537051-1 | U11 537051-1 | Uj6 537051-1 <sup>°</sup> | CR2 JANTXIN 4148 | CR4 JANTXIN 4148 | CR6 JANTXIN 4148 | CR8 JANTXIN 4148 | Subtotal | U12 537051-1 | U4 537051-1 | U6 537051-1 | U8 537051-1 | CR 9 JANTXIN 4148 | CR11 JANTXIN 4148 | CR13 JANTXIN 4148 | Subtotal | ~  |    |  |
|               |             | Assy/PWB                                                | Alarm PWB        |                  |                    | <u> </u>         |              |              |                           |                  |                  | ,                |                  | ,        | Alarm and    | time delay  | PWB.        |             |                   |                   | 1                 |          | ζ. |    |  |
| LIZER STATION |             | Failure<br>Möde                                         | Generation of an | erronéous trans- | fer signal, due to | alarm processing | cırcuitry.   |              |                           |                  |                  |                  |                  |          |              |             |             |             |                   |                   |                   |          |    | `· |  |
| TOCA          | ion         | I. D.<br>No.                                            | 01               |                  | · · ·              |                  |              |              |                           |                  |                  |                  | 1 11             |          | <u> </u>     |             |             | ,           |                   |                   |                   |          |    |    |  |
| Subsystem     | Identificat | Item Name                                               | Control          | Unit             |                    |                  |              | , 1<br>k     |                           |                  |                  |                  | - 4              |          | <b>-</b> 1   |             |             |             |                   |                   |                   |          |    |    |  |

2

>

Table 7-1. Fäilure Mode Failure Rate Calculations (Continued)

-----

.

÷.

.

System SSILS

| STATION   |  |
|-----------|--|
| LOCALIZER |  |
| Subsystem |  |

| - una leane |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  |                         | 5                               |                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------------|---------------------------------|--------------------|
| Identificat | ioń                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                  | <                       | Failure                         | Failure            |
| tem Name    | I. D.<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Failure<br>Mode  | Assy/PWB         | .Part/<br>Component     | Rate $(\lambda_{i \times 106})$ | Ráté<br>(Àm × 106) |
| Control     | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Generation of an | Alarm and        | ŪZ 537051≃J             | +0.140                          | 3.507              |
| Jnit        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | erroneous shut-  | time delay       | U13 53705121            | +0.140                          | -                  |
| Continued)  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | down signal due  | PWB.             | R25 2K                  | +0.006                          |                    |
| ``          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to alarm proces- |                  | B264.7K                 | +0.006                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sing circuitry.  |                  | R27.0K                  | +0. 006                         |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | R28 4.7K                | +0.006                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | R29 2K                  | +0.006                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | Q9 JANTX2N2907          | +0.102                          | n                  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | Q10 JANTX2N2222A        | +0,:058                         |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | CR3 JANTXIN 4148        | +0.041                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | <b>CR4 JANTXIN 4148</b> | +0.041                          | -                  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | R32 10K                 | +0,006                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | R33 12K                 | +0.006                          | -                  |
|             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                  | R35 4. 75t              | +0,006                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | R36 10K                 | +0.006                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | Q11 JANTX2N 4858        | +0.475                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | Q12 JANTX2N 2222A       | +0.058                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | -<br>-<br>-<br>- | Subtotal                | : +1. I09                       |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Far field/       | 6. 8K                   | +0.006                          |                    |
|             | ) <del>(1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111) (1111)</del> |                  | shutdown         | 680 C                   | +0.006                          |                    |
| _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | alert PWB.       | . 22µf                  | +0.038                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | JANTX2N 2222A           | . <b>∔0. 058</b>                |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | 10K                     | +0.006                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | 537051-1                | +0.140                          | -                  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  | Subtotal                | +0.254                          |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                  |                         | ¢                               |                    |

÷

. . .

ì

١

.

7-5

Table 7-1. Failure Mode Failure Rate Calculations (Continued)

The weather and the second second second second second second second second and the second of the second 
ì

1

System SSILS Subsystem LOCALIZE

| Subsystem   | LOCA       | LIZER STATION    | - ()          | <<br>2<br>7         |                                     | ,<br>,                                       |
|-------------|------------|------------------|---------------|---------------------|-------------------------------------|----------------------------------------------|
| Identifica  | tion       | y                | ;             | 1                   | Failure                             | Failüre                                      |
| Item Name   | No.        | Faïlure<br>Mode  | A'ssy/\PWB    | Paurt/<br>Component | Rafe $(\lambda_{11} \times 10^{6})$ | Rate<br>( <sup>Å</sup> m x 10 <sup>6</sup> ) |
| Control     | 01         | Generation of an | Pwr/ënvir.    | U5 537051-1         | +0.140                              | ***                                          |
| Unit        |            | erroneous shút-  | PWB.          | U3 537051-1         | +0.140                              | <i>v</i>                                     |
| (Continued) |            | down signal due  |               | Subtotal            | +0.280                              |                                              |
|             |            | sing circuitry.  | Alarm PWB     | U11 537051-J        | +0.140                              |                                              |
|             |            | (Continued)      |               | U16 537051-1        | +0.140                              |                                              |
|             |            | 5                |               | U15 537051-1        | +0.140                              | 2                                            |
|             | <u>.</u>   |                  |               | U17 537051-1        | +0.140                              |                                              |
|             | -          |                  |               | Subtotal            | +0.560                              | 1                                            |
|             |            |                  | Control/inhi- | U8 537051-1         | +0.140                              | 7.4                                          |
|             |            |                  | bition PWB.   | UŞ 537051-A         | +0.140                              |                                              |
|             | <b>L</b>   |                  | 1             | R6 IK               | +0,006                              |                                              |
| ¢.          |            |                  |               | UIZ 537051-Î        | +0.140                              |                                              |
| ł           | L          | ,                |               | UI3 537051-1        | +0,140                              | 14                                           |
|             | <b>a</b> - |                  |               | U2 537051-1         | +0,140                              |                                              |
|             |            |                  |               | Ù1 537050-1         | +0.140                              |                                              |
|             |            |                  |               | U4 537051-1         | +0.140                              |                                              |
|             |            |                  |               | <b>R7 10K</b>       | +0.006                              |                                              |
|             |            |                  |               | R5 10K              | +0.006                              |                                              |
|             |            |                  |               | QI JANTX2N 2222A    | +0.058                              |                                              |
|             |            |                  |               | R39 IK              | +0. 006                             |                                              |
|             |            |                  |               | Q11 JANTX2N 2222A   | +0.058                              | 2.4                                          |
|             |            |                  |               | U11 537051-1        | +0,140                              |                                              |
|             |            |                  |               | C11 22µf            | +0.038                              |                                              |
|             |            |                  |               | R38 4.7K            | +0.006                              | 20 M                                         |
|             |            |                  | ć             | Subtotal            | +1.304                              |                                              |
|             |            |                  | 3             |                     |                                     |                                              |

14

1

•

7-6

#### 8.0 MATH MODELS

To fulfill the primary objective of this analysis, it must be verified that the probability of a potentially hazardous failure (a loss of signal or the radiation of a hazardous signal) during the critical landing phase be less than  $1 \times 10^{-7}$ . To achieve this verification, probability math models are utilized.

Figure 8-1 provides an illustration of a typical probability math model. As can be seen, three distinct paths lead to a failure. If the event whose probability is given by  $P_1$  occurs, a failure will result. For a failure to result due to path B events, all three events must occur, the probability of which is given by  $(P_2 \cdot P_3 \cdot P_4)$ . Path C is slightly more complicated. Either event 5 or event 6 must occur, event 7 must occur, and either event 8, 9, or 10 must occur to lead to a failure. Its probability of occurrance is given by  $[(P_5 + P_6) \cdot P_7 \cdot (P_8 + P_9 + P_{10})]$ . The overall total probability of a failure (P(F)) due to all three paths is simply the algebraic sum.

Rather than provide a graphical representation of the probability math models on the ILS system, it is decided to present only the probability equations of the math models. The graphical approach





would be less than meaningful since adequate description of events could not be provided. The equations, of course, provide all the same information as the graphical representation. In addition, each path of failure can be treated independently by a separate probability equation and full description of probability, events can be provided.

All the math model equations for the localizer and glideslope are tabulated in appendices E and F respectively. Each contains two different sections - the "loss of signal" probabilities and the "hazardous signal radiation" probabilities. The probability expressions were formulated by considering each and every hazardous failure mode listed in the failure analysis. Like events (failure mode failure rates of similar failure effects) were grouped together whenever possible. For each separate probability expression listed, all failure modes in the failure analysis can be identified by failure rate subscripts. For some probability calculations, préventive maintenance cycles, which are listed in the "remarks" column, must be assumed. The reason for this is that a failure which does not cause a monitor alarm (a "hidden" failure) can only be located by periodic preventive maintenance procedures. Worst case probabilities are often given whenever the numerical result proves to be negligible. This is done solely for simplification purposes.

#### 9.0 PREVENTIVE MAINTENANCE

One of the secondary objectives of this analysis is to provide a , ecommendation of how often preventive maintenance checks for hidden equipment failures should be performed to ensure a high degree of system integrity. This is a natural output for the FMECA because preventive maintenance frequencies must be utilized in the math models.

To determine the frequency of preventive maintenance checks, two factors (or requirements) must be considered: (1) an allowable probability of failure occurrence; and (2) an allowable frequency of preventive maintenance so that total mean preventive maintenance time (MPMT) does not exceed equipment specification requirements. The recommended frequency then will be a suitable compromise between these two requirements. Whenever such a compromise between these two requirements. Whenever such a compromise cannot be attained (either or both requirements cannot be fulfilled), equipment design changes must be accomplished to reduce the probability of failure.

In practice, a reasonable frequency is actimed in the math models and then the total MPMT is calculated to verify that the requirement is not exceeded. In assuming a preventive maintenance frequency, the time to perform the hidden failure check must also be considered. The charts showing the recommended preventive maintenance task frequencies for the localizer and glideslope are respectively given in appendices G and H. These charts incorporate the assumed frequencies utilized in the math model calculations. In addition to the hazardous failure modes considered in the math models; non-hazardous hidden failures identified in the failure analyses are also presented in the tables so that the overall MPMT can be calculated. A brief description of the preventive maintenance task is also provided in the charts in order to estimate the time required to perform the hidden failure check. Whenever one check can be performed simultaneously with another, its estimated task time is omitted from the table.

The sole purpose of these charts is to provide a listing of the recommended frequencies of preventive maintenance checks for hidden failures and to show that these are consistent with preventive maintenance requirements. They are not intended to be used per se by field technicians. Preventive maintenance procedures that are to be used in the field should be much more detailed. However, the frequencies provided by these charts should be an input for writing the actual field procedures.

# 10.0 REMOTE CONTROL/STATUS DISPLAY

about a star on the star of the star of the star of the start of the

.

The status display unit is similar to the remote control unit except that it does not possess transmitter cycle capabilities and does not have a telephone. Hence, any analysis of the remote control unit services equally well for the status display unit. A simplified functional block diagram of the remote control unit is given in figure 10-1. As seen in the diagram, only one control signal for each station is an output from the unit. All other signals pertain to status only and as such cannot affect the actual radiated signal. The cycle control line failure mode is treated



Figure 10-1. Remote Control Unit

Preceding page blank 10-1
within the framework of control unit failure modes for each station; hence, only an analysis of statissignals is necessary.

A détailed analysis of this unit is not necessary since the FMECA pertains only to a Category III performance status analysis. From an intuitive standpoint, only two revelant failure modes exist for the unit: (1), circuit failures causing the Category III performance lamp to be extinguished; and (2) circuit failures causing the Category III performance lamp to remain "on" continuously, regardless of station performance. The first of these failure modes is not hazardous. If an aircraft is just beginning (or already in) the critical landing phase, a safe Category III landing may be accomplished since the radiated signal is unaffected. Although station failures could conceiveably occur within that same 10 second critical landing phase period, the probability is totally negligible. The maximum probability of this event is given by the expression:

 $P_{MAX} = P_{REQUIREMENT} \cdot (\lambda_{RC1} \cdot 10 \text{ sec})$ 

where  $P_{REQUIREMENT} = 1 \times 10^{-7}$  (specified)

and  $\lambda_{RCI}$  is the failure rate of the remote control unit

circuitry that can cause the lamp to be extinguished.

To simplify matters, let  $\lambda_{RC1} = 100 \times 10^{-6}$  failures per hour as worst case. Then,

 $P_{MAX} = (T \bar{x} 10^{-7}) (100 \times 10^{-6}) (10/3600)$ = 2.777 x 10<sup>-14</sup>

The second failure mode, circuit failures causing the Category III performance lamp to remain lit, is potentially hazardous since the "true" status of the radiated signal is not recognizable. However, if it is assumed that the operator check the transmitter status of each station prior to a Category III landing, the severity of the hazardous condition is greatly reduced. In face, the only potentially hazardous condition that then can exist is that the localizer signal be out of Category III tolerance at the far field. All other potentially hazardous conditions are recognizable through other status indications on the remote control unit. The reason for this is that the far field Category III disable signal affects only category performance status. It is not processed by the localizer station and, hence, there is no redundant status display associated with it. The out-of-Category Ill-tolerance condition at the far field is due screey to external runway and overflight disturbances.

Since an initial evaluation of this potentially hazardous failure mode revealed its probability was too high, design changes were incorporated to provide redundancy and, thus, lower considerably the probability of this potentially hazardous occurrence. The new probability expression is given by:

$$P_{RC2} = (\lambda_{RC2} + 168) (P_{FF}) + (\lambda_{REDUND_{RC}} + 168)$$

where  $\lambda_{RC2} =$  the failure rate of the remote control far field alarm processing circuitry which can cause the Category III performance lamp to remain illuminated, without redundancy.

REDUND RC = the failure rate of the redundancy circuitry that can cause the Category III performance lamp to remain illuminated.

The calculated failure rate figures are given below:

 $\lambda_{RC2} = 1.141 \times 10^{-6}$  failures per hour

<sup>$$\lambda$$</sup>REDUND<sub>BC</sub> = 0.268 x 10<sup>-6</sup> failures per hour

Hence, the new probability is:

$$P_{RC2} = (1.141 \times 10^{-6} \cdot 168) (10^{-3}) (0.268 \times 10^{-6} \cdot 168)$$
  
= 8.636 × 10<sup>-12</sup>

With the redundancy in the design incorporated, the probability of this potentially hazardous failure mode becomes negligible.

10-3/10-4

### 11.0 RESULTS/CONCLUSIONS

AN HOUSE AND

Overall failure probabilities are readily calculated from the math model tables by simple addition. Tables 11-1 and 11-2 enumerate the failure probabilities for the localizer and glideslope respectively. Table 11-3 provides a resultant failure probability summary. As can be seen, the overall probability of mission failure is 0.89345 x  $10^{-7}$  which is less than 1 x 10-7, the specified requirement. Hence, the primary purpose of this analysis has been accomplished.

|           |      |                      | docarrindt frankrig       |    | -Bunt                          |
|-----------|------|----------------------|---------------------------|----|--------------------------------|
| <u>A.</u> | Loca | lizer Shutdown       | Probabilities             |    |                                |
|           | 1.   | P <sub>s</sub> :     | $3.912 \times 10^{-8}$    | =  | 39.120 x $10^{-9}$             |
|           | 2.   | P <sub>AB</sub> ;    | 3.516 s 10 $-14$          | =  | $0.000 \times 10^{-9}$         |
|           | 3.   | P <sub>AC</sub> ;    | 1.227 x 10 - 11           | Ξ  | $0.012 \times 10^{-9}$         |
|           | 4.   | P <sub>AD</sub> :    | 9.226 x 10 <sup>-13</sup> | =  | $0.001 \times 10^{-9}$         |
|           | 5.   | PSTBY CSE            | 1.722 x $10^{-14}$        | =  | $0.000 \times 10^{-9}$         |
|           | 6.   | PSTBY SEN            | 2.982 x $10^{-15}$        | =  | $0.000 \times 10^{-9}$         |
|           | 7.   | PSTBY CL             | $1.802 \times 10^{-14}$   | =  | $0.000 \times 10^{-9}$         |
|           | 8.   | PSTBY ID             | 1.665 $\times 10^{-16}$   | *  | $0.000 \times 10^{-9}$         |
|           | 9.   | P <sub>STBY</sub> :  | 9.837 x $10^{-15}$        | =  | $0.000 \times 10^{-9}$         |
|           | 10.  | PPS/CONV             | 9.906 x 10 <sup>-11</sup> | ÷. | $0.099 \times 10^{-9}$         |
|           | 11.  | PCSE/ID              | 5.106 x 10 <sup>-10</sup> | =  | $0.511 \times 10^{-9}$         |
|           | 12.  | P <sub>SEN</sub> :   | $2.090 \times 10^{-10}$   | =  | $0.209 \times 10^{-9}$         |
|           | 13.  | P <sub>CL</sub> :    | 4.540 x $10^{-10}$        | z  | $0.454 \times 10^{-9}$         |
|           | 14.  | P <sub>NF</sub> :    | 1.422 x $10^{-10}$        | =  | $0.142 \times 10^{-9}$         |
|           | 15.  | P <sub>FF</sub> :    | $6.081 \times 10^{-10}$   | =  | $0.608 \times 10^{-9}$         |
|           | 16.  | P <sub>INHIB</sub> : | 6.822 x $10^{-9}$         | =  | <u>6.822 x 19<sup>-9</sup></u> |
|           |      |                      | P <sub>SD</sub> ≈ ≌A      | =  | $47.978 \times 10^{-9}$        |

Table 11-1. Total Localizer Hazardous Signal Probability

| <u>B.</u> | Loca  | lizer Hažardous S         | Signal Radiation                  | Pro  | babilities                 |
|-----------|-------|---------------------------|-----------------------------------|------|----------------------------|
|           | Ί.    | P(HS) CSE DDM             | $1.287 \times 10^{-15}$           | =    | $0.000 \times 10^{-9}$     |
|           | 2,    | P(HS) <sub>FF</sub> :     | 5.555 $\times 10^{-10}$           | =    | $0.556 \times 10^{-9}$     |
|           | 3.    | P(HS) <sub>CSE</sub> DDM  | $4.971 \times 10^{-10}$           | ų    | $0.497 \times 10^{-9}$     |
|           | 4.    | P(HS) CSE BF              | $1.502 \times 10^{-9}$            | =    | $1.502 \times 10^{-9}$     |
|           | 5.    | P(HS) <sub>SEN</sub> :    | 1. 354 x $10^{-10}$               | =    | 0.135 x 10 <sup>-9</sup>   |
|           | 6.    | P(HS) <sub>CL DDM</sub> : | 3. 584 x $10^{-9}$                | =    | 3. 5.84 x 10 <sup>-9</sup> |
|           |       | •                         | $P_{HS} = \Sigma B$               | =    | $6.274 \times 10^{-9}$     |
| P         | TOT   | AT. =                     | P <sub>SD</sub> + P <sub>HS</sub> | ~~~~ | 54. 252 x 10 <sup>-9</sup> |
|           | - V 1 | LOCALIZER                 |                                   | =    | $0.54252 \times 10^{-7}$   |

Table 11-1. Total Localizer Hazardous Signal Probability (continued)

| Table 11-2. | Total Glidesl | ope Hazardous | Signal | Probability |
|-------------|---------------|---------------|--------|-------------|
|-------------|---------------|---------------|--------|-------------|

| A. Glide | eslope Shutdown         | Probabilities                    |   |                         |
|----------|-------------------------|----------------------------------|---|-------------------------|
| 1.       | P <sub>S</sub> :        | 2.197 $\times 10^{-8}$           | = | $21.970 \times 10^{-9}$ |
| 2.       | P <sub>AB</sub> :       | $2.691 \times 10^{-15}$          | = | $0.000 \times 10^{-9}$  |
| 3.       | P <sub>AC</sub> :       | 5.884 x $10^{-12}$               | = | $0.006 \times 10^{-9}$  |
| 4.       | P <sub>AD</sub> :       | $1.503 \times 10^{-15}$          | = | $0.000 \times 10^{-9}$  |
| 5.       | PSTBY CSE               | 9.045 $\times 10^{-15}$          | = | $0.000 \times 10^{-9}$  |
| А,       | P <sub>STBY SEN</sub> : | $1.648 \times 10^{-15}$          | = | $0.000 \times 10^{-9}$  |
| 7.       | PSTBY CL                | $2.282 \times 10^{-15}$          | = | $0.000 \times 10^{-9}$  |
| 8.       | P <sub>STBY</sub> :     | 2.314 $\times$ 10 <sup>-15</sup> | = | $0.000 \times 10^{-9}$  |
| 9.       | P <sub>CONV</sub> :     | $1.814 \times 10^{-13}$          | = | $0.000 \times 10^{-9}$  |
| 10.      | P <sub>CSE</sub> :      | $1.815 \times 10^{-10}$          | = | $0.182 \times 10^{-9}$  |
| 11.      | P <sub>SEN</sub> :      | $1.035 \times 10^{-10}$          | = | $0.104 \times 10^{-9}$  |
| 12.      | P <sub>CL</sub> :       | $1.908 \times 10^{-10}$          | z | $0.191 \times 10^{-9}$  |
| 13.      | P <sub>NF</sub> :       | $1.403 \times 10^{-10}$          | = | $0.140 \times 10^{-9}$  |
| 14.      | P <sub>INHIB</sub> :    | $3.411 \times 10^{-9}$           | × | $3.411 \times 10^{-9}$  |
|          |                         | P <sub>SD</sub> = SA             | × | $26.044 \times 10^{-9}$ |

| Probability (continued)                               |       |         |                     |                      |                      |    |                |                   |  |
|-------------------------------------------------------|-------|---------|---------------------|----------------------|----------------------|----|----------------|-------------------|--|
| ษ.                                                    | Glide | slope   | İlazardous          | SignaÎ               | Radiation            | Pr | obabilities    | -                 |  |
| · · ·                                                 | 1.    | P(HS)   | CSE DDM             | (8; 989 <sup>°</sup> | $\times 10^{-16}$    | =  | 0; 000 x       | 10 <sup>-9</sup>  |  |
|                                                       | 2.    | P(HS)   | CSE SDM             | 4.558                | $\times 10^{-10}$    | =  | 0.456 x        | 10-9              |  |
|                                                       | 3.    | P(HS)   | CSE RF <sup>i</sup> | 1.248                | x 10 <sup>-9</sup>   | =  | 1.248 x        | .10 <sup>-9</sup> |  |
|                                                       | 4.    | P(HS)   | SEN                 | 1.518                | $x = 10^{-10}$       | =  | 0.152 x        | 10 <sup>-9</sup>  |  |
|                                                       | 5.    | P(HS)   |                     | 4.427                | x '10 <sup>-9</sup>  | Ē  | 1.427 x        | 10 <sup>-9</sup>  |  |
|                                                       | 6.    | P(HS)   | ATM                 | ·5. 806              | x 10 <sup>-9</sup>   | ÷  | <u>5.806 x</u> | 10-9              |  |
|                                                       | -     |         |                     | ]                    | P <sub>HS</sub> = ΣB | =  | 9.089 x        | 10 <sup>-9</sup>  |  |
| $P_{TOTAL} = P_{SD} + P_{HS} = 35.110 \times 10^{-9}$ |       |         |                     |                      |                      |    |                |                   |  |
|                                                       |       | Ć, truć | LIDESLOF            | PE                   |                      | =  | 0.35110 x      | 10 <sup>-7</sup>  |  |

| Table 11-2. | Total Glideslope Hazardous Signal |
|-------------|-----------------------------------|
|             | Probability (continued)           |

|  | Table | 11-3. | Probability | Summary |
|--|-------|-------|-------------|---------|
|--|-------|-------|-------------|---------|

| <u>A.</u> | Local | izer:                              |             |                    |
|-----------|-------|------------------------------------|-------------|--------------------|
|           | (41)  | Shutdown (Loss of Radiated Signal) | • 47.978 x  | 10 <sup>-9</sup> . |
|           | (2)   | Radiation of Hazardous Signal      | 6.274 x     | 10 <sup>-9</sup>   |
| в.        | Glide | slope:                             | 4           |                    |
|           | (1)   | Shutdown (Loss of Radiated Signal) | 26.004 x    | 10 <sup>-9</sup>   |
|           | (2)   | Radiation of Hazardous Signal      | 9.089 x     | 10 <sup>-9</sup>   |
| <u>c.</u> | Total | _                                  | 89.345 x    | 10 <sup>-9</sup>   |
|           |       | 0                                  | r 0.89345 x | 10 <sup>-7</sup>   |

To achieve this primary objective, however, circuit design changes/modifications as dictated by the FMECA had to be accomplished. The following is a listing of these changes/modifications.

1. The SDM strap option will be employed for the localizer near field and far field monitor channels. The SDM alarm limits, however, will not be to Category III limits, but rather to some less stringent value which will provide an alarm output when a total loss of input signal exists. The SDM and DDM alarms will be "or'd" internal to the monitor channel, thus providing one general alarm output for alarm processing in the control

11-3

unit. The SDM strap option will also be utilized for the glideslope near field monitor channels.

2. If a continuous main monitor inhibit is generated in the control unit, a downgrading of category status indication (neither Category III or II) will occur at the remote control unit. In this way total loss of all monitoring due to inhibit circuitry failures will be remotely recognizable.

3. Additional redundancy in the far field monitor combining logic has been employed to reduce the probability of the loss of the far field Category III monitoring capability.

4. Redundancy circuitry has been incorporated in the control unit to provide direct remote status indication (performance category downgrade) whenever a "transfer condition" exists. This redundancy significantly reduces the probability of radiating a hazardous signal due to control unit processing circuit failures.

- 5. Redundancy has been employed in the remote control/ status displays units to extinguish the Category III performance light whenever a far field Category III disable signal occurs.
- 6. An antenna misalignment detector test feature has been incorporated into the design to allow for a "quick and easy" check of its integrity. This was required to comply with preventive maintenance requirements.

'Lo confirm that the preventive maintenance frequencies assumed within this analysis are consistent with the requirements, a quick comparison of the assignments made in appendices G and H with the equipment specification is in order. The equipment specification states that a mean preventive maintenance time (MPMT) of one hour in 336 hours of equipment operation for any station is allowable. The total MPMT estimated for localizer hidden failures is 21.9 minutes in 336 hours of equipment operation; the total MPMT for the glideslope hidden failures is 14.0 minutes in 336 hours of equipment operation.

As another outgrowth of the FMECA the following general discussion on redundancy has evolved:

• In the general design of electronic equipment, standard design procedures such as use of high reliability parts and minimization of circuit components do not necessarily ensure that system design is optimum from a performance standpoint. To obtain a high degree of system perfor-

mance, redundancy of equipment hardware has often been employed in design. This is a very effective means when utilized correctly. Unfortunately the full advanages of redundancy are often overlooked.

To exhibit the optimum use of redundancy in equipment design, the examples of figures 11-1 and 11-2 are provided. Assume that each of the monitor channels. monitors the same system parameter. Triplicate redundancy has been incorporated in the monitoring circuitry, requiring a 2 of 3 vote for monitor alarm processing in the control logic, Figure 11-1 illustrates the typical approach (minimum circuit complexity) utilized in circuit design (redundant control logic excluded). However, when calculating the probability of loss of the parameter monitoring ability  $(P(F)_{NR})$ , an interesting observation results. The desirable features of triplicate monitoring are partially lost due to the control logic and "OR" gate ( $P_{CL}$  and  $P_{OR}$  respectively). It is these circuit components that limit the reduction of the probability of failure. Hence, all the additional circuitry incorporated for triplicate monitoring is rendered partially useless in minimizing the probability of failure.



Figure 11-1. Logic Illustrating 2 of 3 Vote of Monitors for Control Processing (dashed lines illustrates partial redundancy).

An improvement of the original design results with the additional redundant control logic (dashed lines): The new probability  $(P(F)_R)$  calculation shows that there is roughly an improvement by one order of magnitude, utilizing typical values. However, as the new calculation illustrates, the true advantageous features of triplicate monitoring are still not attained. A "bottleneck" limiting factor is still present - the "OR" gate  $(P_{OR})$ .



(A) 105706

and the second second second second second second second second second second second second second second second

Ligure 11-2. Logic Illustrating 2 of 3 Vote of Monitors for Control Processing with Optimum Redundancy

• Figure 11-2 is an illustration of the optimum design, utilizing redundancy. With the additional "OR" gate included, the full advantages of redundancy are attained since the limiting factor is now the monitor channels. One final observation should be pointed out concerning this matter - the addition of a single redundant gate has decreased the probability of failure two orders of magnitude, utilizing typical values. In summary then, it is vitally important to incorporate redundancy correctly if redundancy is to be incorporated at all. The following enumerates the general conclusions resulting from the FMECA:

- If the assumptions made within this analysis prove to be reasonably valid, the probability of either (1) a loss of signal or (2) the radiation of a potentially hazardous signal during the critical landing phase of a Category III landing is less than 1 x 10<sup>-7</sup> for Texas Instruments Incorporated Category III ILS system. The validity of the result of the overall hazardous failure probability is enhanced since worst case analysis were often employed.
- 2. Single equipment failures which can lead directly to station shutdown are the major contributors which limit the reduction of the probability of a hazardous failure. Hence, to achieve further improvement of equipment design and reliability, additional redundancy in major non-redundant circuits such as the control unit is required.
- 3. Due particularly to the redundancy that has been incorporated into the design as a result of the FMECA, the probability of the radiation of a potentially hazardous signal has become insignificant compared to shutdown probabilities. The design modifications have made the triplicate monitoring utilized in the Category III system optimum since the "bottleneck" factor is the monitor channels themselves.
- 4. Since all hidden failure modes are identified in the FMECA, the results of the analysis serve as an excellent input for the writing of preventive maintenance procedures. The frequencies of these preventive maintenance checks stratified within this report are based upon allowable probabilities of occurrence and, hence, should be followed very closely in field performance.
- 5. Troubleshooting system failures should be greatly facilitated by utilizing both the functional block diagrams and the failure mode and effects analysis data.

11-7/11-8

#### 12.0 REFERENCES

The references used in development of this analysis are listed below:

"Aerospace Recommended Practice 926", Society of Automotive Engineers, Inc., New York, New York, September 15, 1967.

"Annex 10 - Aeronautical Telecommunications, Volume I", International Civil Aviation Organization, 2nd Edition, April 1968.

"RADC Reliability Notebook, Volume II", Technical Report No. RADC-TR-67-108, September 1967.

"Reliability Engineering", ARINC Research Corporation, Prentice Hall, 1964.

"Reliability Requirements for Safe All Weather Landings"; Adkins, L. A.; Thatro, M. C.; Proceedings of the 7th Reliability and Maintainability Conference, San Francisco, California, July 14-17, 1968.

## Appendix A

S

## Localizer Detailed Functional Block Diagrams

#### Appendix A

#### Localizer Detailed Functional Block Diagrams

This appendix consists of detailed functional block diagrams for the localizer. Figures A-4 through A-19 cover the numbered blocks in figures A-1 and A-2 (localizer and localizer far field monitor). Figure A-3 and the accompanying table A-1 detail the localizer control unit.

| Name                           | Definition                                                         |
|--------------------------------|--------------------------------------------------------------------|
| A <sub>BAT</sub> :             | Alarm due to a drop-in the main battery voltage.                   |
| A <sub>CON</sub> V:            | Alarmon one of the DC/DC converter voltages.                       |
| A <sub>FË</sub> :<br>S         | Far field shutdown alarm.                                          |
| A <sub>PE</sub> :              | Power/environmental alàrm sent to remote contròl.                  |
| A <sub>S</sub> :               | Alarm due to standby monitors.                                     |
| <sup>A</sup> S(D) <sup>:</sup> | Alarm due to standby monitors, delayed.                            |
| A <sub>SM</sub> :              | Alarm due to standby monitors, memorized.                          |
| AB:                            | Abnormal condition signal.                                         |
| AB MON:                        | Abnormal condition signal due to monitor channel alàrm.            |
| AB MON RC                      | Monitor alarm sent to remote control.                              |
| AC:                            | AC power alarm from one of the two battery charg-<br>ers.          |
| BC:                            | Battery charger alarm from one of the two chargers.                |
| BLINK:                         | Blinker output signal, a square wave oscillator.                   |
| C:                             | Cycling command signal for transmitters.                           |
| C <sub>ANT</sub> :             | Command to have transmitter no: 1 connected to the antenna.        |
| C <sub>ANT</sub> :             | Command to have transmittër no. 2 connected to the antenna.        |
| c <sub>1</sub> :               | Command to turn on transmitter no. 1.                              |
| с <sub>2</sub> :               | Command to turn on transmitter no. 2.                              |
| CAT II <sub>RC</sub> :         | Signal to remote control used to determine Category<br>II status.  |
| CAT III RC:                    | Signal to remote control used to determine Category<br>III status. |

## Table A-1. Definițion of Signal Names (Localizer Control Unit, Figure A-3)

ند داند بند داند ا

Burnersting

ande Artes

í.,

| Table A-1. | Definition of Signal Names (Localizer Control |
|------------|-----------------------------------------------|
|            | Unit, Figure A-3) (Continued)                 |

¢

9

\$

1

57 11

| Name                | Definition                                       |
|---------------------|--------------------------------------------------|
| CONTROL:            | Cycle command (MAIN, STBY, or CFF).              |
| CL <sub>11</sub> :  | Category III DDM clearance alarm, monitor no. 1. |
| CL <sub>12</sub> :  | Category III DDM clearance alarm, monitor no. 2. |
| CL <sub>13</sub> :  | Category III DDM clearance alarm, monitor no. 3. |
| CL <sub>21</sub> :  | Category III SDM clearance alarm, monitor no. 1. |
| <sup>ÇL</sup> 22:   | Category III SDM clearance alarm, monitor no. 2. |
| CL <sub>23</sub> :  | Category III SDM clearance alarm, monitor no. 3. |
| CL <sub>31</sub> :  | Catégory III RF cléarance alarm, monitor no. 1.  |
| CL <sub>32</sub> ;  | Category III RF clearance alarm, monitor no. 2.  |
| CL <sub>33</sub> :  | Category III RF clearance alarm, monitor no. 3.  |
| CSE <sub>11</sub> : | Category III DDM course alarm, monitor no. 1.    |
| CSE <sub>12</sub> : | Category III DDM course alarm, monitor no. 2.    |
| CSE <sub>13</sub> : | Câtegory III DDM course alarm, monitor no. 3.    |
| CSE21:              | Category III SDM course alarm, monitor no. 1.    |
| CSE <sub>22</sub> : | Category III SDM course alarm, monitor no. 2.    |
| CSE <sub>23</sub> : | Category III SDM course alarm, monitor no. 3.    |
| CSE <sub>31</sub> : | Category III RF course alarm, monitor no. 1.     |
| CSE <sub>32</sub> : | Category III RF course alarm, monitor no. 2.     |
| CSE <sub>33</sub> : | Category III RF course alarm, monitor no. 3.     |
| CSE 111:            | Category II DDM course alarm, monitor no. 1.     |
| CSE 112:            | Category II DDM course alarm, monitor no. 2.     |
| CSE 113:            | Category II DDM course alarm, monitor no. 3.     |

| Name                         | Definition                                                      |
|------------------------------|-----------------------------------------------------------------|
| FF <sub>BY</sub> :           | Far field bypass local.                                         |
| FFBYR:                       | Far field bypass remote.                                        |
| FF <sub>MM</sub> :           | Far field mismatch.                                             |
| FF <sub>PE</sub> :           | Far field power/environmental alarm.                            |
| FF <sub>S</sub> :            | Far field shutdown.                                             |
| FF <sub>SA</sub> :           | Far field shutdown alert.                                       |
| <sup>4</sup> C <sup>i</sup>  | Inhibit signal to inhibit transmitter cycling cap-<br>ability.  |
| I <sub>MAIN</sub> :          | Main inhibit to main monitor channels.                          |
| <sup>I</sup> ON <sup>:</sup> | Inhibit signal due to power turn-on.                            |
| <sup>L</sup> T:              | Inhibit signal due tò transfer commands, either auto or manual. |
| <sup>I</sup> s:              | Inhibit signal due to shutdown commands, either auto or manual, |
| <sup>I</sup> STBY            | Standby inhibit to standby monitor channels.                    |
| ID No. 1 (tone):             | ID tone from ID unit no. 1.                                     |
| ID No. 2 (tone):             | ID tone from ID unit no. 2,                                     |
| L <sub>AB</sub> :            | Abnormal status lamp signal.                                    |
| L'AC:                        | AC power alarm status lamp signal.                              |
| L <sub>BAT</sub> :           | Battery alarm status lamp signal.                               |
| L <sub>BC</sub> :            | Battery charger alarm status lamp signal.                       |
| L <sub>C</sub> :             | DC/DC converter alarm status lamp signal.                       |
| L <sub>FFBY</sub> :          | Far field bypass status lamp signal.                            |

## Table A-1. Définition of Signal Names (Localizer ControlUnit, Figure A-3)Continued)

-

| Name                          | Definition                                                 |
|-------------------------------|------------------------------------------------------------|
| L <sub>FF</sub> :<br>GO       | Far field "good condition" status lamp signal.             |
| L <sub>FFMM</sub> :           | Far field monitor mismatch status lamp signal.             |
| L <sub>FF</sub> :<br>PE       | Far field power/environmental status lamp signal.          |
| L <sub>FF</sub> :<br>S        | Far field shutdown status lamp signal.                     |
| L <sub>N</sub> :              | Normal status lamp signal.                                 |
| L <sub>TEMP</sub> :           | Temperature alărm status lamp signal.                      |
| L <sub>MLB</sub> :            | Monitors locally bypassed status lamp signal.              |
| Ĺ <sub>ŇM</sub> :             | Monitor mismatch status lamp signal.                       |
| <sup>L</sup> s:               | Shutdown status lamp signal.                               |
| <sup>L</sup> x <sub>1</sub> : | Transmitter no. 1 connected to antenna status lamp signal. |
| <sup>L</sup> x <sub>2</sub> : | Transmitter no. 2 connected to antenna status lamp signal. |
| LOC:                          | Local control of transmitting unit.                        |
| LT:                           | Transfer signal memorized.                                 |
| MACL:                         | Clearance monitor alarm.                                   |
| MACSE111                      | Course monitor alarm, Category II alarm limits.            |
| MACSE                         | Course monitor alarm, Category III alarm limits.           |
| MA <sub>ID</sub> :            | Monitor alarm, 2 of 3 ID monitors.                         |
| MA <sub>NF(D)</sub> :         | Near field monitor alarm which is delayed.                 |
| MA <sub>S</sub> :             | Shutdown command from monitor alarms.                      |

#### Table A-1, Definițion of Signal Names (Localizer Control Unit, Figure A-3) (Continued):

ě.

¢

۵. ۱

| Name                               | Definition                                                                 |
|------------------------------------|----------------------------------------------------------------------------|
| MA <sub>SEN</sub> :                | Sensitivity monitor alarm.                                                 |
| MA <sub>T</sub> :                  | Transfer command from monitor alarms.                                      |
| MAIN:                              | Main transmitter "on" status signal.                                       |
| MAIN <sub>RC</sub> :               | Signal to remote control used to determine MAIN status.                    |
| MLB:                               | Monitors locally bypassed.                                                 |
| MM <sub>CL</sub> :                 | Clearance monitor mismatch.                                                |
| MMCL/NF:                           | Clearance or neär field monitor mismatch.                                  |
| <sup>MM</sup> cse <sub>111</sub> : | Course monitõr mismatch, Category III alarm<br>limits.                     |
| MM <sub>FF</sub> :                 | Far field monitor mismatch.                                                |
| MM <sub>1D</sub> :                 | Monitor mismatch, 1 of 3 I D monitors.                                     |
| MM <sub>NF(D)</sub> :              | Near field monitor mismatch which is delayed.                              |
| MM <sub>SEN</sub> :                | Sensitivity monitor mismatch, Category III alarm limits.                   |
| NF 1:                              | Category II DDM near field alarm, monitor no. 1.                           |
| NF 2:                              | Category II DDM mear field alarm, monitor no. 2.                           |
| OFF:                               | Both transmitters "off" status signal.                                     |
| OFF <sub>RC</sub> :                | Signal to remote control used to determine OFF status.                     |
| ON/OFF:                            | Front panel control unit power supply control.                             |
| REM:                               | Remote control of transmitting unit.                                       |
| RESET:                             | Signal to reset alarm memory latches.                                      |
| <sup>S</sup> cl <sup>:</sup>       | Standby clearance monitor alarm - DDM, SDM or RF with Category III limits. |
| <sup>S</sup> cse <sup>:</sup>      | Standby course monitor alarm - DDM, SDM, or RF with Category III limits.   |

# Table A-1.Definition of Signal Names (Localizer Control<br/>Unit, Figure A-3) (Continued)

A--6

| Name                                                         | Definition                                                                    |
|--------------------------------------------------------------|-------------------------------------------------------------------------------|
| Ś <sub>ID</sub> :                                            | Standby identification monitor alarm - Category III limits.                   |
| s <sub>M</sub> :                                             | Shutdown signal memorized.                                                    |
| S <sub>SEN</sub> :                                           | Standby sensitivity monitor alarm - DDM with<br>Category III limits.          |
| s <sub>0</sub> :                                             | Both transmitter are selected to be off.                                      |
| s <sub>l</sub> :                                             | Transmitter no. 1 is selected as main.                                        |
| s <sub>2</sub> :                                             | Transmitter no. 2 is selected as main.                                        |
| <u>s</u> <sub>12</sub> :                                     | Selection of transmitter no. 1 memorized.                                     |
| s <sub>12</sub> :                                            | Selection of transmitter no. 2 memorized.                                     |
| SA <sub>NF</sub> :                                           | Shutdown alert signal due to near field monitors.                             |
| sen <sub>li</sub> :                                          | Category III DDM sensitivity alarm, monitor no. 1.                            |
| SEN <sub>12</sub> :                                          | Category III DDM sensitivity alarm, monitor no. 2.                            |
| SEN <sub>13</sub> :                                          | Category III DDM sensitivity alarm, monitor no. 3.                            |
| STBY:                                                        | Standby transmitter "on" status signal.                                       |
| STBY <sub>RC</sub> :                                         | Signal to remote control used to determine STAND-<br>BY status.               |
| TEMP:                                                        | Temperature alarm inside main cabinet.                                        |
| XFR:                                                         | Transfer command due to XFR1 or XFR2 (redun-<br>dant for remote recognition). |
| XFR1:                                                        | Transfer command due to course and sensitivity (redundant).                   |
| XFR2:                                                        | Transfer command due to clearance and near field (redundant).                 |
| XMTR <sup>I</sup> No. 1<br>(shutdown warn-<br>ing/ID no. 1): | Sum of shutdown alert and 1D tone no. 1.                                      |

# Table A-1.Definition of Signal Names (Localizer Control<br/>Unit, Figure A-3) (Continued)

and the second

1411

## Table A-1. Definition of Signal Names (Localizer Control Unit, Figure A-3) (Continued)

| Name                                            | Definition                                   |
|-------------------------------------------------|----------------------------------------------|
| XMTR No. 2<br>(shutdown warn;<br>ing/ID no. 2): | Sum of shutdown alert and ID tone no, 2:     |
| +12V ĈONTRÔL:                                   | Control signal to turn on raonitor channels. |
| -18V:                                           | A common -18v from the two DC/DC converters. |
| -18 <sub>1</sub> :                              | -18 volts from converter no. 1.              |
| - <sup>18</sup> 2:                              | -18 volts from converter no. 2.              |
| +28V BATT:                                      | The voltage of the main batteries.           |
| +5 <sub>.1</sub> :                              | +5 volts from converter no. 1.               |
| +5 <sub>2</sub> ;                               | +5 volts from converter no. 2.               |
| -50 <sub>1</sub> :                              | -50 volts from converter no. 1.              |
| -5 <sup>0</sup> 2:                              | -50 volts from converter no. 2.              |

2

Tradition of the second of the second second second second second second second second second second second se



 $\wedge$ 

the state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

1.11



5

Figure A-1. Localizer Station

A-9/A-10



A

\_\_\_\_\_



a alteria

and the second second

Figure A-2. Far Field Monitor

A-11/A-12



Q 1 (A) chinal . 100

5

le.

r

(R) 105707



- Figure A-3. Localizer Control Unit
  - A-13/A-14





NOTE: SEE BLOCK 03 AND 08 OF LOCALIZER FUNCTIONAL BLOCK DIAGRAM. (B) 105709

Preceding page blank

networks also services from the object of the state of the state of the state of the state of the state of the

Statistic and an and a state of the

South and the second second

16.13



Figure A-5. VHF Modulator

A-17/A-18



Store - man

NOTE: SEE BLOCKS 05 AND 10, OF LOCALIZER' FUNCTIONAL BLOCK DIAGRAM.





Figure A-7. Identification Unit



¢

ł

5

;

`



ALC: NO.

-4



ł

;

Starbit, . Bit on the strength of the strength

And Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Address of the Ad



A-23

and the state of the second second second second second second second second second second second second second

ระ มีระหม่านระบบสามาระหม่านสามาระหม่านระหม่านระหม่านระหม่านระหม่านระหม่านระหม่านระหม่านระหม่านระหม่านระหม่านระ

Steel hitseys you

Figure A-11. Battery Charger

..

ŕ

ć



Statistic of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

٢,





Figure A-13. VHF Peak Detectors



2

ş

1

ś

.

and the state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the secon

A STATE AND A DOT OF A STATE A

i

84

Í






Section 2

and the second second second

Figure A-16. Far Field Monitor Combining Circuits

The SAME PROPERTY AND A SERVICE AND A PROPERTY AND A PROPERTY AND

3



**Series Internet State** 

all the Market

Figure A-17. Far Field Monitor Battery Charger



Figure A-18. Far Field Monitor Dc/Dc Converter

A-28



₩ s

1. 11. martin

-----

;

•

ł

> ` ` `

}

۰,

.

) , , , , , , , , , , ,

ŗ

ç

A-29/A-30

\_\_\_\_\_



Salar Strange and Barris Strange Bar

#### Appendix B

#### Glideslope Detailed Functional Block Diagrams

This appendix consists of detailed functional block diagrams for the glideslope, Figures B-3 through B-13 cover the numbered blocks for figure B-1. Figure B-2 and the accompanying table B-1 detail the glideslope control unit.

### Table B-1. Definition of Signal Names (Glideslope Control Unit, Figure B-2)

| Namè                            | Definition                                                         |
|---------------------------------|--------------------------------------------------------------------|
| A <sub>BAT</sub> :              | Alarm due to a drop in the main battery voltage.                   |
| ACONV:                          | Alarm on one of the DC/DC converter voltages.                      |
| A <sub>MD</sub> :               | Misalignment detector alarm with inhibit.                          |
| A <sub>PE</sub> :               | Power/environmental alarm sent to remote control.                  |
| A <sub>s</sub> :                | Alarm due to standby monitors.                                     |
| A <sub>S(D)</sub> ;             | Alarm due to standby monitors, delayed.                            |
| A <sub>SM</sub> :               | Alarm due to standby monitors, memorized.                          |
| AB:                             | Abnormal condition signal.                                         |
| AB <sub>MON</sub> :             | Abnormal condition signal due to monitor channel alarm.            |
| AB <sub>MON<sub>RC</sub>:</sub> | Monitor alarm sent to remote control.                              |
| AC:                             | AC power alarm from one of the two battery charg-<br>ers.          |
| BC:                             | Battery charger alarm from one of the two chargers.                |
| BLINK:                          | Blinker output signal, a square wave oscillator.                   |
| <u>(</u> <b>C</b> :             | Cycling command signal for transmitters.                           |
| C <sub>ANT</sub> :              | Command to have transmitter no. 1 connected to the antenna.        |
| $\overline{c}_{ANT}$ :          | Command to have transmitter no. 2 connected to the antenna.        |
| ·C <sub>1</sub> :               | Command to turn on transmitter no. 1.                              |
| с <sub>2</sub> :                | Command to turn on transmitter no. 2.                              |
| CAT II <sub>RC</sub> :          | Signal to remote control used to determine Category<br>Il status.  |
| CAT III <sub>RC</sub> :         | Signal to remote control used to determine Category<br>III status. |

| Table B-1. | Definition of Signal Names (Glideslope Control |
|------------|------------------------------------------------|
|            | Unit, Figure B-2) (Continued)                  |

| Name                | Definition                                        |
|---------------------|---------------------------------------------------|
| CONTROL:            | Cycle command (MAIN, STBY, or OFF).               |
| CL <sub>11</sub> :  | Category III DDM clearance alarm, monitor no. 1.  |
| CL <sub>12</sub> :  | Category III DDM clearance alarm, monitor no. 2.  |
| CL <sub>13</sub> :  | Category III DDM clearance alarm, monitor no. 3.  |
| CL <sub>21</sub> :  | Category III SDM clearance alarm, monitor no. 1.  |
| CL <sub>22</sub> :  | Category III SDM clearance alarm, monitor no. 2.  |
| CL <sub>23</sub> :  | Category III SDM cler rance alarm, monitor no. 3. |
| CL <sub>31</sub> :  | Category III RF clearance alarm, monitor no. 1.   |
| CL <sub>32</sub> :  | Category III RF clearance alarm, monitor no: 2.   |
| CL <sub>33</sub> :  | Category III RF clearance alarm, monitor no. 3.   |
| CSE <sub>11</sub> : | Category III DDM course alarm, monitor no. 1.     |
| CSE <sub>12</sub> : | Category III DDM course alarm, monitor no. 2.     |
| CSE <sub>13</sub> : | Category III DDM course alarm, monitor no. 3.     |
| CSE <sub>21</sub> : | Category III SDM course alarm, monitor no. 1.     |
| CSE22:              | Category III SDM course alarm, monitor no. 2.     |
| CSE <sub>23</sub> : | Category III SDM course alarm, monitor no. 3.     |
| CSE <sub>31</sub> : | Category III RF course alarm, monitor no. 1.      |
| CSE <sub>32</sub> : | Category III RF course alarm, monitor no. 2.      |
| CSE <sub>33</sub> : | Category III RF course alarm, monitor no. 3.      |
| CSE 111:            | Category III DDM course alarm, monitor no. 1.     |
| CSE 112:            | Category III DDM course alarm, monitor no. 2.     |
| CSE 113:            | Category III DDM course alarm, monitor no. 3.     |

ø

| Name                           | Definition                                                        |
|--------------------------------|-------------------------------------------------------------------|
| <sup>I</sup> C:                | Inhibit signal to inhibit transmitter cycling capabil-<br>ity.    |
| <sup>L</sup> MAIN <sup>:</sup> | Main inhibit to main monitor channels.                            |
| I'ON:                          | inhibit signal due to power turn-on.                              |
| <sup>I</sup> T:                | Inhibit signal due to transfer commands either auto<br>or manual. |
| <sup>I</sup> s <sup>:</sup>    | Inhibit signal due to shutdown commands, either auto or manual.   |
| ISTBY:                         | Standby inhibit to standby monitor channels.                      |
| L <sub>AB</sub> :              | Abnormal status lamp signal.                                      |
| L <sub>AC</sub> :              | AC power alarm status lamp signal.                                |
| L <sub>BAT</sub> :             | Battery alarm status lamp signal.                                 |
| L <sub>BC</sub> :              | Battery charger alarm status lamp signal.                         |
| <sup>L</sup> c <sup>:</sup>    | DC/DC converter alarm status lamp signal.                         |
| <sup>L</sup> MD A:             | Misalignment detector alarm lamp.                                 |
| L <sub>MD BY</sub> :           | Misalignment detector bypass lanıp.                               |
| L <sub>MLB</sub> :             | Misalignment detector bypass lamp.                                |
| L <sub>MM</sub> :              | Monitor mismatch status lamp signal.                              |
| L <sub>N</sub> :               | Normal status lamp signal.                                        |
| L <sub>S</sub> :               | Shutdown status lamp signal.                                      |
| L <sub>TEMP</sub> :            | Temperature alarm status lamp signal.                             |
| L <sub>X1</sub> :              | Transmitter no. 1 connected to antenna status lamp signal.        |
| <sup>L</sup> X2 <sup>:</sup>   | Transmitter no. 2 connected to antenna status lamp signal.        |

# Table B-1.Definition of Signal Names (Glideslope Control<br/>Unit, Figure B-2) (Continued)

and a short of the state of the second

Contraction of the Party of

| Table B-1. | Definition of Signal Names (Glideslope Control |
|------------|------------------------------------------------|
|            | Unit, Figure B-2) (Continued)                  |

| Name                  | Definition                                                  |
|-----------------------|-------------------------------------------------------------|
| LOC:                  | Local control of transmitting unit.                         |
| LT:                   | Transfer signal memorized.                                  |
| MA <sub>CL</sub> :    | Clearance monitor alarm.                                    |
| MACSE11               | Course monitor alarm, Category II alarm limits.             |
| MA <sub>CSE</sub> :   | Course monitor alarm, Category III alarm limits.            |
| MA <sub>NF(D)</sub> : | Near field monitor alarm which is delayed.                  |
| MA <sub>s</sub> :     | Shutdown command from moniter alarms.                       |
| MA <sub>SEN</sub> :   | Sensitivity monitor alarm.                                  |
| MA <sub>T</sub> :     | Transfer command from monitor alarms.                       |
| MAIN:                 | Main transmitter "on" status signal.                        |
| MAIN <sub>RC</sub> :  | Signal to remote control used to determine MAIN status.     |
| MDA:                  | Misalignment detector alarm without inhibit.                |
| MD <sub>BYL</sub> :   | Misalignment detector bypassed locally.                     |
| MLB:                  | Monitors .ocally bypassed.                                  |
| MM <sub>CL</sub> :    | Clearance monitor mismatch.                                 |
| MM <sub>CL/NF</sub> : | Clearance or near field monitor mismatch.                   |
| MMCSE111              | Course monitor mismatch, Category III alarm<br>limits.      |
| MM <sub>NF(D)</sub> : | Near field monitor mismatch which is delayed.               |
| MM <sub>SEN</sub> :   | Sensitivity monitor mismatch, Category III alaım<br>limits. |
| NF 1:                 | Category III DDM near field alarm, monitor no. 1.           |
| NF 2:                 | Category III DDM near field alarm, monitor no. 2.           |

and farmers work

6

j

# Table B-1.Definition of Signal Names (Glideslope ControlUnit, Figure B-2) (Continued)

:

ξ,

:

a

| Name                         | Definition                                                                     |  |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| NF 3:                        | Category III DDM near field alarm, monitor no. 3.                              |  |  |  |  |  |
| OFF:                         | Both transmitters ''off'' status signal.                                       |  |  |  |  |  |
| off <sub>rc</sub> :          | Signal to remote control used to determine OFF status.                         |  |  |  |  |  |
| ON/OFF:                      | Front panel control unit power supply control.                                 |  |  |  |  |  |
| REM:                         | Remote control of transmitting unit.                                           |  |  |  |  |  |
| RESET:                       | Signal to reset alarm memory latches.                                          |  |  |  |  |  |
| <sup>S</sup> ÇL <sup>∶</sup> | Standby clearance monitor alarm - DDM, SDM, or<br>RF with Category III limits. |  |  |  |  |  |
| S <sub>CSE</sub> :           | Standby course monitor alarm - DDM, SDM, or<br>RF with Category III limits.    |  |  |  |  |  |
| s <sub>M</sub> :             | Shutdown signal memorized.                                                     |  |  |  |  |  |
| S <sub>SEN</sub> "           | Standby sensitivity monitor alarm - DDM with Cat-<br>egory III limits.         |  |  |  |  |  |
| s <sub>0</sub> :             | Both transmitter are selected to be off.                                       |  |  |  |  |  |
| s <sub>1</sub> :             | Transmitter no. 1 is selected as main.                                         |  |  |  |  |  |
| s <sub>2</sub> :             | Transmitter no. 2 is selected as main.                                         |  |  |  |  |  |
| <u>s</u> <sub>12</sub> :     | Selection of transmitter no. 1 memorized.                                      |  |  |  |  |  |
| s <sub>12</sub> :            | Selection of transmitter no. 2 memorized.                                      |  |  |  |  |  |
| SEN <sub>11</sub> :          | Category III DDM sensitivity alarm, monitor no. 1.                             |  |  |  |  |  |
| SEN <sub>12</sub> :          | Category III DDM sensitivity alarm, monitor no. 2.                             |  |  |  |  |  |
| SEN <sub>13</sub> :          | Category III DDM scnsitivity alarm, monitor no. 3.                             |  |  |  |  |  |
| STBY:                        | Standby transmitter "on" status signal.                                        |  |  |  |  |  |
| STBY <sub>RC</sub> :         | Signal to remote control used to determine STAND-<br>BY status.                |  |  |  |  |  |
| TEMP:                        | Temperature alarm inside main cabinet.                                         |  |  |  |  |  |

# Table B-1.Definition of Signal Names (Glideslope Control<br/>Unit, Figure B-2) (Continued)

; . .

1

| Name               | Definition                                                                    |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
| XF/Ż:              | Transfer command due to XFR1 or XFR2 (redun-<br>dant for remote recognition). |  |  |  |  |  |  |
| XFR1:              | Transfer command due to course and sensitivity<br>(redundant).                |  |  |  |  |  |  |
| XFR2:              | Transfer command due to clearance and near field (redundant).                 |  |  |  |  |  |  |
| +12V CONTROL:      | Control signal to turn on monitor channels.                                   |  |  |  |  |  |  |
| -18V:              | A common-1.8v from the two DC/DC converters.                                  |  |  |  |  |  |  |
| -18 <sub>1</sub> : | -18 volts from converter no. 1.                                               |  |  |  |  |  |  |
| -18 <sub>2</sub> : | -le volts from converter no. 2.                                               |  |  |  |  |  |  |
| +28V BAIT:         | The voltage of the main batteries.                                            |  |  |  |  |  |  |
| +5 <sub>1</sub> :  | +5 volts from converter no. 1.                                                |  |  |  |  |  |  |
| +5 <sub>2</sub> :  | +5 volts from converter no. ?.                                                |  |  |  |  |  |  |
| -50 <sub>1</sub> : | -50 volts from converter no: 1.                                               |  |  |  |  |  |  |
| -50/2:             | -50 volts from converter no. 2.                                               |  |  |  |  |  |  |
|                    |                                                                               |  |  |  |  |  |  |
|                    |                                                                               |  |  |  |  |  |  |

B-7/B-8

ž



5.

.

,

٦,

. . .

12 - -

·.~

.

÷,

.

(R) 1 05 72"

. .

~ nr.

A Sebustice and a second

, ..**.** .



i.

Figure B-1. Glideslope Station





• /-

ŗ,

(11)105725

¢τ

.



No. of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of the other states of

Figure B-2. Glideslope Control Unit

#### B-11/B-12



ł

۲,

B-13/B-14

i.



NOTE: SEE BLOCKS 03 AND 07 OF GLIDESLOPE FUNCTIONAL BLOCK DIAGRAM.

(B) 105727

ý.

 $\mathbb{N}$ 



Figure B-4. UHF Modulator

B-15/B-16



South States

٤٠

ノルモーを

è

< ۲ ب

~ ~

State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state

Figure B-5. UHF Changeover and Test Assembly

• :

\*\*\*\*

· • • · ·



-

ţ



Carrie Sectorer Constanting of the sectorer

......

1

•

;

ł

1

1 1

,

Figure B-9. Battery Charger

107701

ŝ



A STATE OF STATE

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

1

1 . 9

.\*

Figure B-10. Dc/Dc Converter



Figure B-11. UHF Peak Detectors



Figure B-12. Monitor Channel

Constant in



i

;

;

ing Tané

an and a state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the seco

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

\*\*\*

ž.

รางกระที่สามารถหมายสมมาร์สามารถสามารถสามารถสามารถมาก จากร้างสามารถสามาร์ เกิดสามารถสามารถสามารถสามารถสามารถสาม สำนักขณามีสมมาร์สามารถสามารถสามารถสามารถสามารถมาก จากร้างสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถ

· · · · · · · · · ·

B-23/B-24

Appendix C Localizer Failure Analysis

## Appendix C

14 62

~

### Localizer Failure Analysis

This appendix, referred to in section 7.0, consists to the failure analysis for the localizer, as shown in table C-1. Table C-1. Localizer Failure Analysis

| ter lo<br>ter lo<br>tar-<br>dar-<br>al-o<br>tar-<br>tar-<br>tar-<br>tar-<br>tar-<br>tar-<br>tar-<br>tar-                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                               |
| dula<br>rico                                                                                                                                                  |
| 10 a                                                                                                                                                          |
| ,                                                                                                                                                             |
| , yqo                                                                                                                                                         |
| lle jo ev<br>dulation.                                                                                                                                        |
| ster.                                                                                                                                                         |
| s of out-                                                                                                                                                     |
| 4 of loy)<br>9. ostil-<br>21. retult-<br>21. retult-<br>21. retult-<br>21. retult-<br>20. Hz<br>11. 90 Hz<br>11. 90 Hz<br>11. 90 Hz<br>11. 91 Hz<br>41 atton. |

|                    |               |                   | <b>،</b>                                                                                                                    | -                                                                                                              | I                                                                                                 |                                                                                                                  |                                                                                                                                                             |
|--------------------|---------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pare 2 of 27       |               | الم وجود الم والم |                                                                                                                             |                                                                                                                | Net hažardoos - sıgali fill<br>within Cat. III toldeşance.                                        | Ne hazardous - signal still<br>within Cot. III tolerance.                                                        | -                                                                                                                                                           |
|                    | Failure       | Pares 10'1        | 0.415<br>1NB                                                                                                                | 1.453<br>ÅNC                                                                                                   | 2. 426<br>MD                                                                                      | 2.426,<br>ÅNE                                                                                                    | 12. <b>832</b> .<br>Ant                                                                                                                                     |
| ļ                  |               | Qeher<br>Q        | Alarma on<br>all course,<br>senattivi-<br>ty, and<br>near field<br>monitors.                                                | Alarma on<br>all course.<br>sencitivi-<br>ty, near<br>field and<br>clearance<br>monitors:                      | 2                                                                                                 |                                                                                                                  | Alarma on<br>all course.<br>scasitivi-<br>ty, and<br>near field<br>monitors                                                                                 |
|                    | lure Indicati | Control<br>I'nit  | TABN''<br>and<br>"TRANS-<br>FER"                                                                                            | "ABN"<br>and<br>"TRANS-<br>FER"                                                                                | NONE                                                                                              | S .                                                                                                              | NABN"<br>And<br>UTRANS-<br>F. 291,                                                                                                                          |
| -                  | , Fall        | Pemáte<br>Cantral | "MON"<br>ABN"<br>and<br>"STBY"                                                                                              | "MON<br>ABN"<br>and<br>"STBY"                                                                                  | NON                                                                                               | NONE                                                                                                             | NGN<br>ABN"<br>STBY"                                                                                                                                        |
|                    | د ب           | , ž               |                                                                                                                             | , i                                                                                                            |                                                                                                   |                                                                                                                  | <u> </u>                                                                                                                                                    |
| ĺ                  | System Opera  | 11 H. J.          | ×                                                                                                                           | ×                                                                                                              |                                                                                                   |                                                                                                                  | ×                                                                                                                                                           |
| •                  |               | Alter<br>Alter    |                                                                                                                             |                                                                                                                | ×                                                                                                 | *                                                                                                                |                                                                                                                                                             |
|                    |               | Fallure Effret    | Loss of SB in course<br>C-SB janal and<br>course SBO signal.                                                                | Out of tolerance<br>course and clear-<br>ance C45B and<br>SBO signals.                                         | Silght disfortion of<br>the course C+SB<br>sin SBO signals.                                       | Distortion some-<br>what more than 1/32<br>of the CC.ree CoSB<br>and SBO signals.                                | Out of tolerance<br>course C+5B and<br>SED algrada.                                                                                                         |
|                    |               | Fallure<br>Mode   | Loss (of V215<br>carrier to<br>Jigtal phas-<br>Jig cuts to<br>atther or<br>both of the<br>90 and 150<br>90 and 150<br>eral? | Loss of 90<br>or 150 di-<br>viders. syn-<br>chronization<br>circuitry or<br>gn/153 Hz<br>shift reg-<br>isters. | Lose of A/32<br>driving oig-<br>mal to delay<br>line (either<br>the 90 Hz<br>phase shift-<br>er). | Loss of A/15<br>driving eig-<br>mal to the<br>delay lines<br>(either the<br>90He or 150<br>Hz phase<br>shifter). | Lose of A/8.<br>X/4. X/4.<br>X/2 or X/2<br>v/2 or T/2<br>Jaby line.<br>(sibby line.<br>(sibby line.<br>(sibber be<br>90 Hs or 150<br>Zis phase<br>ebifie?). |
| ZER STATION        |               | function          |                                                                                                                             |                                                                                                                |                                                                                                   |                                                                                                                  |                                                                                                                                                             |
| SILS<br>OCALI      | ş             | с. ч.             | 5 5 5                                                                                                                       |                                                                                                                | , managana ang pang pang pang pang pang pan                                                       |                                                                                                                  |                                                                                                                                                             |
| System Subaystem L | Identificat   | ltern<br>Kanne    | Modulator<br>(Continued)                                                                                                    | 99999999999999999999999999999999999999                                                                         |                                                                                                   |                                                                                                                  |                                                                                                                                                             |

2

C+3

and the second second second second second second second second second second second second second second second

"It sinthar corrienting many thei alarm fallare occured in "and the complete two size-tions of the complete boulder" their, themselate boulder buildown will result. Pare 1 of 22 Semarks. Rate (Ax 106) Failure Alarma cn 1.552 all clear-> ANH ance mon-13.310 0. 388 ANI 5. 390 Mil 1.302 0.756 Alarma 13.31 UN X Z all course. > Alarma on all clear-ance montý, and sear field monitore. Alarma on all clear-Alárme on ance monmonitor. channel. Other tore. itore. Failure Indications TOR MIS-NATCH" "ABN" and "TRANS-FER" "ABN" abd "TRANS-FER" "ABN" and "TRANS-FER" TRANS-Control Unit "ABN" NONE ABN" ABN" ABN" And "STBY", NON" ABN" ABN" NC22' NOW" ABN" ABV" NOM" ABN" Pare NALN" Remote Control NONE Cat III Cat II OII System Operation After Failure × × × × × × Loss of 2 of 3 mon-lor voits cipabil-ity. Now dependent on 1 of 2 remaining control (resamiltor transfer exchility). Lose of modulation for clearance trans-mitter resulting in SB lose of clearance C+SB. Loss of 2 of 3 mm-ttor voting calu-bility. Now de-pendent upon 2 of 2 remaining moni-tors for system con-trol Out of tolerance clearance C+SB and SBO aignals. Out of tolerance course C+SB and SBO signals. Loss of clearance SBO eignal. Fallure-Fllect Loss of either the 90 Hz or 150 91 signal dat signal for clear-Loss of 90-150 Hz sig-nel. Logs of 490. -90. +150. or -150 Hz phase shift-er RF sig-zel. Loss of 90+ 150 Hz sig-Loss of menitoring ablity. producing alarms. Loss of mozitoring ability. producing no alarma. ance trans-Failure Mode mussion. Ъ. Providě monitoring of the providě monitor (DDM), the source position (DDM), the 5 modulation (SDM), a sud the course RF power prover. Function System SSUS Subsystem LOCALIZER STATION 30.35 . D. 5 5 8 **Edentification** CONTRE MON-ILOT CHAN-NELS (1, 2, or 3) (MAIN) ltern Name Kodulátor (Continued)

2

2

: ;

ſ

-

and the second second

C-4

¢

Svatem SSILS

| v Iv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LIZER STATION                                                   |                                                               |                                                                                                                                 | Svetem          | Oneratio                      | Ļ       | (Tat)                       | an Indicatio                        |                                                              | ļ                          | Pare 4 of 27                                                                                                                                           |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|---------|-----------------------------|-------------------------------------|--------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | Fallure                                                       |                                                                                                                                 | oyatem<br>Aftef | Failure                       | <br>    |                             | Tre Indicatio                       |                                                              | Failure                    |                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | unction                                                         | Made                                                          | Failure,Effect                                                                                                                  | Cat III         | Cat II 0                      | SII C   | ontrol                      | Unit                                | Other                                                        | (30 <sup>6</sup> )         |                                                                                                                                                        |    |
| Same as monitor of monitors of monitors of meters of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | mun course<br>hannels except<br>rourse para-<br>f standby unit. | Loss of<br>mónit ving<br>ability.<br>producing<br>alàrme.     | Shutdown of standby transmittor                                                                                                 |                 | ×                             | e < 4 e | MON<br>Bu"<br>MAIN"         |                                     | Alarm<br>light(s) on<br>standby<br>course<br>monitor.        | 13.310<br><sup>1</sup> 46A |                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | Loss of<br>monitoring<br>ability.<br>producing<br>no alarnis. | Lose of standby '<br>course monitoring.                                                                                         | ×               |                               | Ž       | ONE                         | NONE                                | ,                                                            | 5. 390<br>Méě              |                                                                                                                                                        |    |
| Provide<br>the cour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mont fing of                                                    | Loss of<br>monitoring<br>abîlity<br>producing<br>akarms.      | Loss of 2 of 3 mon-<br>itor voting capabil-<br>ity. Now dependent<br>upon 1 of 2 remain-<br>ing monitors for<br>system control. | ×               |                               | F < 5 F | MON<br>BN''<br>hd<br>MAIN'' | MONI-<br>TOR MIS-<br>MATCH"<br>ABN" | Alarm<br>Lightts) on<br>defective<br>monitor<br>channel.     | 736.9                      | If another corresponding mon-<br>itor DDM failure occurred in<br>one of the remaining two mon-<br>itors, fimmediate localizer<br>shutdgry will result. | ** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | Loss of<br>monitoring<br>ability<br>producing<br>no alarma.   | Loss of 2 of 3 mon-<br>itor voing capabil-<br>ity. Now dependent<br>upon 2 of 2 remain-<br>ing monices for<br>system control.   | ×               |                               | 2       | ONE                         | NONE                                |                                                              | 2 892<br><sup>3</sup> NB   | Only DDM monitoring circuitry<br>is critical.                                                                                                          | -  |
| Provide<br>the star<br>(DDM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e monitoring of<br>adby course widtl                            | Loss of<br>mon'toring<br>ability<br>producing<br>alarme.      | Shutdown of the<br>standby transmitter.                                                                                         |                 | ×                             | 1441    | MON<br>BN"<br>MAIN"         | ABN''                               | Alarm<br>light(s) on<br>standby<br>sensitivity<br>monitor.   | 9.367<br><sup>5</sup> 47A  | Only DDM monitoring circuitry<br>is critical.                                                                                                          | 12 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | Loss of<br>monitoring<br>ability<br>producing<br>no alarms    | Loss of standby course monitoring.                                                                                              | ×               | ی <mark>ہ جب</mark><br>۱<br>۱ | 7.      | ONE                         | NONE                                |                                                              | 2.892<br>147B              |                                                                                                                                                        | 1  |
| Provie<br>the ne<br>positio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | de monitoring af<br>ar field course<br>on (DDM),                | Loss of<br>monitoring<br>ability<br>producing<br>alarms.      | Loss of 2 of 2 mon-<br>tior capability. Sow<br>depradent upon fe-<br>my inthe monitor for<br>system control.                    | ×               |                               | FKRE    | MON<br>BN"<br>MAIN"         | TCL:/IIS-<br>TCL:/IIS-<br>NATCH     | Alarm<br>light(s) ion<br>defective<br>near field<br>monitor. | 11. 099<br>1. 099          | SDM and DDM are attapped<br>to provide one general alarm<br>output.                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                               |                                                                                                                                 |                 |                               |         |                             |                                     |                                                              | •                          |                                                                                                                                                        |    |

A PARTICULAR A

| Page 5 of 27       | Pare 5 of 27         |                   | Non-hazardous - near field<br>momtoring considered not<br>essential for Cat III operation. | If another corresponding moni-<br>tor alarm failure occurred in<br>one of the termaining two moni-<br>tors, immediate localizer shut-<br>tors. immediate. |                                                                                                                                  |                                                                                                            |                                                            | "Transfer" would not occurrou<br>failure of standby unit: Lossy of<br>Cat. 111 status would occur even<br>though "MAIN" is still operation- | <b>i</b>                                  |
|--------------------|----------------------|-------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                    | Failure              | Kate ()           | 3. 822<br><sup>1</sup> 7\B                                                                 | 14. 280<br><sup>X</sup> NA                                                                                                                                | 8% <sup>5</sup>                                                                                                                  | 14.280<br><sup>3</sup> 48 <b>A</b>                                                                         | 5.551<br>Å4rja-                                            | 3. 949.<br><sup>1</sup> N.A                                                                                                                 | 13. 134<br><sup>ANB</sup>                 |
|                    | 018                  | Other             |                                                                                            | Alarm<br>Light(a) on<br>defective<br>clearance<br>monitor.                                                                                                |                                                                                                                                  | Alarm<br>light(s) on<br>standby<br>clearance<br>monitor.                                                   |                                                            | Alarms on<br>ID moni-<br>tors.                                                                                                              | Alarme on<br>L. D. mone,<br>itors.        |
|                    | lure Indication      | Control<br>Unit   | NONE                                                                                       | "WONI-<br>TOR MIS-<br>MATCH"<br>And<br>"ARN"                                                                                                              | NONE                                                                                                                             | "ABN"                                                                                                      | NONE                                                       | "ABN"<br>and<br>"TRANS-<br>FER"                                                                                                             | TABN<br>TANS-<br>FER                      |
|                    | Ē                    | Remote<br>Control | NCYE                                                                                       | "MON<br>ABN"<br>and<br>"MAIN'                                                                                                                             | NONE                                                                                                                             | "NOK"<br>ABN"<br>and<br>MAIN"                                                                              | NONE                                                       | Yary<br>Mow.                                                                                                                                | WON<br>ARN'i<br>Lan<br>Arn<br>N'i<br>STBY |
|                    | ration               | лò п              |                                                                                            | ·····                                                                                                                                                     |                                                                                                                                  |                                                                                                            |                                                            |                                                                                                                                             | ·                                         |
|                    | tern Ope<br>fter Fai | III Cat           |                                                                                            |                                                                                                                                                           |                                                                                                                                  | ×                                                                                                          | <u>`</u>                                                   | ×                                                                                                                                           | ×                                         |
|                    | Sys                  | C.a.              | ×                                                                                          | ×                                                                                                                                                         | ×                                                                                                                                |                                                                                                            | ×                                                          |                                                                                                                                             | <u></u>                                   |
|                    |                      | Failure Fifect    | pas of near field<br>nonitoring.                                                           | Loss of 2 of 3 mon-<br>ttor veturk capabil-<br>ity. Now dependent<br>upon 1 of 2 remain-<br>itsk montors for<br>system control.                           | Loss of 2 of 3 mon-<br>ttor voting capabil-<br>ity. Now dependent<br>upon 2 of 2 remain-<br>ing monitors for<br>system, control. | Shutdown of stand-<br>by transmitter.                                                                      | Loss of standby<br>clearance monitor-<br>ing.              | I ransfer 'miland-<br>by unit.                                                                                                              | Transfer to stand-<br>by unit.            |
|                    | Function Kode        |                   | Loss of<br>monitoring<br>ability<br>producing<br>no alarms.                                | Loss of<br>monitorink<br>ability<br>producink<br>alarm.                                                                                                   | Loss of<br>monitoring<br>ability<br>producing<br>no alarm.                                                                       | Luss of<br>runitoring<br>ability<br>producing<br>alarm.                                                    | Lass of<br>monitoring<br>ability<br>producing<br>no alarm. | Loss of<br>ID signal<br>iaudiol.                                                                                                            | Loss of                                   |
| ZER STATION        |                      |                   |                                                                                            | Provide monitoring of<br>the clearance DJM, "<br>m-dulation and clear-<br>ance RF piwer level                                                             |                                                                                                                                  | Same as muin clearancé<br>montor channels except<br>munitors clearance pas<br>rameters of standby<br>unit. |                                                            | Provides a beyed 1220<br>"Is audio signal (1)<br>TONE) to aircraft for<br>runway and approach                                               | identific stron.                          |
| LOCALI             | 101                  | i i               | 1 - 2 - 5<br>- 2 - 5                                                                       | म स ह त<br>मैं कु स इ<br>के के टे क                                                                                                                       |                                                                                                                                  | 4                                                                                                          |                                                            | * # =                                                                                                                                       |                                           |
| Syntem Subayatem 1 | Identifica           | lter.<br>Vame     | Near Field<br>Monitor<br>CHANNELS<br>Continued                                             | Clearance<br>Wertor<br>CHANSELS<br>No. 1, 2, cr 3<br>MANN                                                                                                 |                                                                                                                                  | Clearant e<br>Munitor<br>Channel<br>IST ANDBY)                                                             |                                                            | E D I fait<br>MAIN of<br>STANDBY                                                                                                            |                                           |
|                    |                      | ٢                 | Reproduce<br>besi ava                                                                      | ed from<br>lable copy.                                                                                                                                    | <b>9</b>                                                                                                                         | 6                                                                                                          |                                                            |                                                                                                                                             |                                           |

--

• - ----

~~ ~

**C-**6

••••••

HI NO

Alconest Report

.....

S1182 Svatam

| •ر           | 1             |                                                                                                                                                                                |                                                                                                                                                         | ,                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 | T.                                                                                                   |
|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Page 6 of 27 |               | Kertarba                                                                                                                                                                       | After a nominal 70 second<br>dalay, the "Far Field GO"<br>light will go "off" and the<br>"FF SHUT DOWN" light will<br>come "on" at the control<br>unit. |                                                                                                                                                                                              | Oziy input gating circuitry<br>may be basardous. (Etlecta<br>monitoring circuitry).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reduzdascy has been lacory-<br>orated ao that performance<br>dorrgrade is achieved in the<br>even of a "True Cat III Alary<br>condition." NOTE<br>Lose of I.D. monitoring is<br>not hashirdoun. | Not batarrdoue - Cut III integr<br>and for field monitoring atill<br>effoctive.                      |
|              |               | R.)00                                                                                                                                                                          | 1.827<br><sup>3</sup> 1A                                                                                                                                | 3.507<br>11B                                                                                                                                                                                 | 2. 88<br>0. 421<br>0. 421<br>0. 142<br>0. 145<br>0. | 3.470<br>1.249<br>1.249<br>(redund)<br>1.249<br>0.140<br>0.140<br>(gate)<br>1.02 =<br>0.700<br>(logic)                                                                                          | 2.256<br><sup>3</sup> 1E                                                                             |
|              | *uc           | Other                                                                                                                                                                          | The FFM<br>processes<br>the "no<br>signal"<br>condition.                                                                                                | The FFM<br>processes<br>the 'no<br>signal'<br>condition.                                                                                                                                     | No mis-<br>match on<br>monitor<br>channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                           |                                                                                                      |
|              | iure Indicaîî | <sup>6</sup> Contrôl<br>Enit                                                                                                                                                   | "TRANS-<br>FER."<br>"SHUT-<br>DOWN"<br>and<br>"ABNOR-<br>MAL"                                                                                           | "SHUT-<br>DOWN"<br>and<br>"ABNOR-<br>MAL"                                                                                                                                                    | "MIS-<br>MATCH"<br>ars<br>MAL"<br>MAL"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (NONE)                                                                                                                                                                                          | ISNON                                                                                                |
|              | Fail          | Remote                                                                                                                                                                         | MON<br>ABN"<br>and<br>ard                                                                                                                               | ABN"<br>ABN"<br>and<br>"OFF"                                                                                                                                                                 | MON"<br>ABN"<br>Bab<br>MAIN"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (WOKE)                                                                                                                                                                                          | (NONE)                                                                                               |
|              | at inn        | 2<br>S                                                                                                                                                                         | ×                                                                                                                                                       | ×                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                                                                                      |
|              | Oper          | nie<br>Je E                                                                                                                                                                    |                                                                                                                                                         | *                                                                                                                                                                                            | ,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                      |
|              | Syatem        | Cat III                                                                                                                                                                        |                                                                                                                                                         |                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                                                                                                                                               | ×                                                                                                    |
|              |               | Failure Fliers                                                                                                                                                                 | Guese both the<br>main and the stand-<br>by framitter to<br>shudown immed-<br>iaraly after the<br>transfer.                                             | Causes both the<br>main and the stand-<br>by tranamitter to<br>sbutdom immed-<br>istely.                                                                                                     | Mismatch conditions<br>do noi effect cate-<br>gory partormance:<br>bowever. failure of<br>input gates may be<br>hazardous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cat III parameter<br>monitoria of the<br>integral courae,<br>ensitivity. I. D.,<br>ensitivity I. D.,<br>la virtuolly render-<br>ed useless.                                                     | Results in Éless of<br>ness field and/or<br>far field Cat II<br>monitoring capabil-<br>ity.          |
|              |               | Fallure<br>Elnde                                                                                                                                                               | Gencration<br>of an erro-<br>neous trans-<br>fei Vignal.<br>dud W alarm<br>processing<br>circuitry.                                                     | Ceneration<br>of an erro-<br>neous shut-<br>down signal<br>due to alarm<br>processing<br>circutry.                                                                                           | Conseration<br>of an erro-<br>neous mis-<br>natch aig-<br>nal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Imability to<br>process a<br>signal from<br>the integral<br>course sen-<br>stitutity.<br>I. D and/<br>or clearance<br>monitore.                                                                 | Inability to<br>process a<br>sprocess a<br>signal, in-<br>itiated by<br>d/or Cat<br>d/or Cat<br>DDM. |
| ZER STATION  |               | Function<br>The control unit process<br>as alarma received from<br>as monitor chambels.<br>Providing signals to obtu-<br>down the standby trans-<br>mitter, to transfer min to |                                                                                                                                                         | deale a montrof, mia-<br>ranto, in addition, the<br>control unit generates in-<br>hibit útgalls. diaplays<br>both locally and remotély<br>transmiter and category<br>transmiter and category | ous power/temperature<br>alarm conditions for both<br>alarm schelter and far<br>field monitor operational<br>features. such as bypass<br>of monitors, main unit<br>select, memorization of<br>select, memorization of<br>select, memorization of<br>starmt, are also associ-<br>sted with the scontrol unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                 |                                                                                                      |
| OCAL         | Ę             |                                                                                                                                                                                | 5                                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                                                                                      |
| Subiyatein L | Identificat   | liem<br>Name                                                                                                                                                                   | Control Unit                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                                                                                      |

C-7

, **:** 

::

Ş

-1----

--1

Man Barran Barran - Stranger - Stranger - Stranger

System SSILS

| ĩ             | -             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                         |                                                                                                       |                                                                                                         |                                                                                                                                                            |
|---------------|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page 7 of 21  |               | Remarks          | Not harardoue - Cat III par-<br>formance and monitoring is<br>unstituted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not basardous - mismatch<br>conditions do not effect Cat<br>111 performance.                                                                                                              | If a standby transmitter fall-<br>urs also occurs, immedias<br>abuidoes upon transfor will<br>result. |                                                                                                         | Not haumerburs - prover/en-<br>vircommonical alarzas mairely<br>dormigrado performatione alles<br>dorma doidy yer do trans-<br>zudithere are et available. |
|               |               | 1. 10<br>1. 10   | A1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3. 746<br>11G                                                                                                                                                                             | 656.11                                                                                                |                                                                                                         | A13 2.367                                                                                                                                                  |
| •             | onè           | Öther            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$                                                                                                                                                                                        |                                                                                                       | No alarme<br>en stir<br>monitori.                                                                       |                                                                                                                                                            |
|               | wresindicatio | Control.<br>Unit | INONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (NONE)                                                                                                                                                                                    | (NONE)                                                                                                | MAL"                                                                                                    | เสพอพ                                                                                                                                                      |
|               | ; Fell        | Remote           | ENON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (IVONE)                                                                                                                                                                                   | (NONE)                                                                                                | NDN:                                                                                                    | SNON                                                                                                                                                       |
|               | tián          | 2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                       |                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                      |
|               | 2<br>9<br>0   | Cat II           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                       | ×                                                                                                       |                                                                                                                                                            |
|               | Syatem        | Cat III          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                                                                                                                                         | ×                                                                                                     |                                                                                                         | ×                                                                                                                                                          |
|               |               | Failure Fifeet   | System will continue<br>to radiate a signal<br>ipoasibly faulty)<br>during a shuidown<br>atatus-oniy Cat II<br>perfurmance effect-<br>ed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No serious extern<br>on system opera-<br>tion. Monitor mis-<br>matches may not be<br>recognized but<br>parameter "out of<br>tolerance" condi-<br>tions are still pro-<br>cessed normally- | ctandby unit mon-<br>tioring is rendered<br>useless.                                                  | Causes the standby<br>transmitter to shut-<br>down. Main con-<br>timues to operate in<br>Cat II status. | Loss of timote<br>recognition of re-<br>conditions: loss of<br>domgrads sapabil-<br>ity due to prover/<br>environmental<br>elarma.                         |
|               |               | f'allure<br>Modê | Inability to<br>process a<br>shutdown<br>signal, in-<br>tiated by<br>double<br>transfer or<br>transfer or transfer or<br>transfer or transfer or<br>transfer or transfer or<br>transfer or transfer or trans | Inability (o<br>process a<br>miarratch<br>condision of<br>any or all<br>monitor<br>sets.                                                                                                  | Inabli, v to<br>process a<br>standby<br>alarm.                                                        | Generation<br>of an errou-<br>neous stand-<br>by alarm.                                                 | Inability to<br>process<br>any or all<br>power/er-<br>virozmental<br>alarma.                                                                               |
| ER STATION    |               | Function         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                       |                                                                                                         |                                                                                                                                                            |
| X ALIY        | ,<br>E        | ÷.;              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           |                                                                                                       |                                                                                                         |                                                                                                                                                            |
| Subsysten, 14 | ldrain.ai     | lten.<br>Vame    | Control Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                       |                                                                                                         |                                                                                                                                                            |

. .

....

1 --

Ì

:

SSILS LOCALIZER STATION System Subayatem

7 1

|      | ۰. |
|------|----|
| à    | ļ  |
|      | ļ  |
| •    |    |
| - 84 | r  |
| đ    |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |

|                            |              |          |                                                                                                                           |                                                                                                                                                                                                                    |                  | ,<br>1                                                  |                | ,                                  |                                                                                                             |                                                                                             |                | Page B. of 27                                                                                                                                                         |
|----------------------------|--------------|----------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|----------------|------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ldentificat                | tion         |          |                                                                                                                           |                                                                                                                                                                                                                    | Syafer           | 1 5 C 1 1                                               | ion (          | Fail                               | ure Indicate                                                                                                | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | -              |                                                                                                                                                                       |
| ltern<br>Name              | 1. D.<br>No. | Function | Fallure<br>Mode                                                                                                           | Fallure Ellect                                                                                                                                                                                                     | After<br>Cat III | - 62 11.  <br>Cat 11.                                   |                | ternote<br>Jontrol                 | Control<br>Unit                                                                                             | Other                                                                                       | Falure<br>Rate | Remarijs.                                                                                                                                                             |
| control Unit<br>Continued) | 5            |          | Generation<br>of an erro-<br>neous bat-<br>tery alarm.                                                                    | No effect other than<br>erroneoualy down-<br>grading the system<br>to Cat II atatus.                                                                                                                               |                  |                                                         |                | POW/<br>NVIR<br>BN"<br>nd<br>MAIN" | "ABNOR-<br>MAL"<br>and<br>"BATT<br>FMIL"                                                                    |                                                                                             | 0.415<br>NrK   | NC hazardous ystem still<br>has the ability to operate on<br>both transmitting units.                                                                                 |
|                            |              |          | Generation<br>of any erro-<br>power/en-<br>vironmental<br>alarm ex-<br>cept a bat-<br>tery alarm.                         | No effect other than<br>an erroneous abnor-<br>mal indication.                                                                                                                                                     | ×                | Down-<br>grade<br>to Cat<br>II af-<br>ter<br>ter<br>ter | (± / ₩ ≪V₩ ±"  | POW/<br>NVIX<br>Ba<br>MAIN"        | "YIBNOR"<br>MAL<br>aid<br>peasibly<br>bis re-<br>pover or<br>terr peas-<br>terr peas-<br>tur alarm<br>(ight |                                                                                             | 2.029<br>7.1L  | Not hazardous                                                                                                                                                         |
|                            |              |          | Generation<br>of an erro-<br>neous con-<br>trol signal<br>that shuts<br>down the<br>main trans-<br>mitting unit.          | After the main<br>down, the loss of<br>radiation is detect-<br>ed by the monitor<br>far is and trans-<br>fer is initiated to<br>the standby unit.                                                                  | 1                | ×                                                       | 11 < 7 I<br>   | MON<br>Bu<br>TBY:                  | FEV"<br>FEV"<br>ABN                                                                                         | Alarms on<br>some mon-<br>tor.chan-<br>neis.                                                | 1.420<br>1.420 | Montor chame! a larm lighta<br>are unpredictable due to a race<br>condition between the generated<br>inbitit signal and the "bo arg-<br>nal" input a larm processing. |
|                            |              |          | Generation<br>of an erro-<br>neous con-<br>troi nignal<br>that/shut<br>doym the<br>training<br>unit.                      | After the standby<br>transmitter shura<br>down, the loss of<br>input signals to the<br>standby monitor<br>channels createn<br>ditions which are<br>gitions which are<br>processed normally<br>in the control unit. |                  | ×                                                       |                | NOW<br>N NBA                       |                                                                                                             | Alarms on<br>some<br>standby<br>montor<br>channels.                                         | , 11N,         | This failure mode is not gen-<br>erated by monitoring circuitry:<br>bence, it may occur after a<br>transfer to standby has occurred.                                  |
|                            |              |          | Ceneration<br>of an erro-<br>neous con-<br>trol aignat<br>that shuts<br>that shuts<br>down both<br>transmitting<br>units. | After a total shut<br>down as initiated,<br>the loss of input<br>signals to all mom-<br>tor channels re-<br>utar in both a si-<br>ing of a transfer and<br>a butdown condition                                     |                  | <i>V</i>                                                | ा <u>र</u> आता | MON<br>Bd<br>OFF"                  | "TRANS"<br>FER",<br>"SHUT -<br>DOWN",<br>and<br>"ABN"                                                       | Alarms on<br>some mon-<br>itor chan-<br>nels.                                               | 110            |                                                                                                                                                                       |

101 `

•

C-9

SILS System

|              |              |                   |                                                                                                                                                                                                                                                                       | ]                                                                                                                                                          | ]                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                          |
|--------------|--------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pare 9 of 27 | Remarka      |                   | Not hazardous - performance<br>category downgrade still poè-<br>category downgrade still poè-<br>capbulity still exista, bence.<br>Cai III performance is not ef-<br>fected.                                                                                          | Essentially renders the stand-<br>by transmitter useless.                                                                                                  | Essentially renders either<br>the main or standby trans-<br>mitter uselers.                                                                                      | Upon the generation of a con-<br>modifications have been the<br>corporated to take away Cat<br>in and Cat III statum. Although<br>both transmuters may still be<br>"GOOD", all monitoring is<br>lost.<br>'ISI is similar to 'IH-                                                                                           |
|              | Failure      | Rate 61           | 1, 782<br>1,1 P                                                                                                                                                                                                                                                       | 0. 844<br><sup>1</sup> 10                                                                                                                                  | 0,960<br>'1R                                                                                                                                                     | 2. 514<br>151<br>151, -<br>0. 198<br>(etby<br>152 =<br>2. 316<br>(main<br>hinbiti                                                                                                                                                                                                                                          |
|              | e ne         | Other             |                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                      | Alarma on<br>some<br>monitor<br>channels.                                                                                                                        | •                                                                                                                                                                                                                                                                                                                          |
|              | ure Indicati | Control<br>Unit   | (NONE)                                                                                                                                                                                                                                                                | (WONE)                                                                                                                                                     | "TRANS-<br>FER"<br>and<br>"Abn"                                                                                                                                  | "ABNOR-<br>MAL"                                                                                                                                                                                                                                                                                                            |
|              | Fall         | Remote<br>Control | (NONE)                                                                                                                                                                                                                                                                | INONE                                                                                                                                                      | "MON<br>ABN'<br>and<br>STBY''                                                                                                                                    | NON:<br>NGA<br>NAIN''                                                                                                                                                                                                                                                                                                      |
|              | l noi        | ŏ                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                  | ×                                                                                                                                                                                                                                                                                                                          |
|              | 1 Operat     | Cat II            |                                                                                                                                                                                                                                                                       |                                                                                                                                                            | X<br>tar-<br>tar-<br>tatus)<br>fatus)                                                                                                                            |                                                                                                                                                                                                                                                                                                                            |
|              | System       | After<br>Cat III  | ×                                                                                                                                                                                                                                                                     | ×                                                                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                            |
| ZER STATION  |              | Failure Elfect    | Yo failure effect or<br>indication unit an-<br>other failure oc-<br>curred in the main<br>or standby urdt. At<br>that time all control<br>estrals would be<br>processed normally.<br>except the respec-<br>tive transmitting<br>unit would not cesse<br>transmission. | No failure effect or<br>indication until a<br>transfer command<br>is received foue to<br>some other failurel.<br>At that time all<br>radiation will cease. | If in MAIN, a trans-<br>fer to STANDBY<br>will occur, if in<br>STANDBY, a trans-<br>fer to OFF will oc-<br>cur. This is due to<br>a momentary loss<br>of aignal. | The respective main<br>and/or standby moin-<br>tron channels are<br>inhibited and, hence,<br>rendered totally<br>useitss. Atthough<br>the inhibit does not<br>cflect the far field<br>monitor channels<br>from alarming, the<br>main inhibit does<br>prevent the alarm<br>from being process-<br>ed in the control<br>unit |
|              |              | Failure<br>Mode   | faability to<br>ahutdown<br>ather the<br>main or the<br>standby<br>transmitting<br>init,                                                                                                                                                                              | Inability to<br>sirect a<br>chanke of<br>units feed-<br>ink the an-<br>ternas.                                                                             | Pre-mature<br>change of<br>units feed-<br>ink the an-<br>tennas.                                                                                                 | Seneration<br>tanuou, main<br>and/or<br>haito the<br>haito the<br>monitor<br>channela.                                                                                                                                                                                                                                     |
|              |              | Function          |                                                                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                            |
| CALL         | ç            | d e               | 10                                                                                                                                                                                                                                                                    |                                                                                                                                                            | ,                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |
| ۲II          | licaru       |                   | ¥.                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                            |
| Subayetem    | Identi       | ltes:<br>Name     | Continued:<br>Continued:                                                                                                                                                                                                                                              |                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                            |

. . . . ..

>

. . .

>

÷

റ

System STILS Subayatem LOCALIZER STATI

|               |                 |                      | •                                                                                                                                                                                | 1                                                                                                                                                                            | 1                                                                                                                                                    | ,<br>,                                                                                                          |                                                                              |
|---------------|-----------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Vare 10 of 27 |                 | Renarts              | Failure mode virtually rendera<br>the standby, truñamitter uselise.                                                                                                              | Not hazardous - atmüby mon-<br>ttoring ia meaningleas after<br>a transfer.                                                                                                   | Cat III and Cat II status taken<br>away although both transmittors<br>are still operational.                                                         | Nor baža tdous - only paycho-<br>logical'implicationa.                                                          | Not hatardous - abutdown warm-<br>ing not vital to system operation.         |
|               | Laibre          | Hate<br>A 10'        | 2.658<br>11                                                                                                                                                                      | 0.370<br>ÅIC                                                                                                                                                                 | 0.140<br>Alw                                                                                                                                         | 2."52<br>Å1X                                                                                                    | 2.693                                                                        |
|               | òns.            | Ckher                |                                                                                                                                                                                  |                                                                                                                                                                              | c.                                                                                                                                                   |                                                                                                                 |                                                                              |
|               | luré Indicati   | Control<br>I'nit     | , Ianoni                                                                                                                                                                         | (NONE)                                                                                                                                                                       | "MON<br>LOC<br>BYPASS"<br>and<br>"NOR-<br>MAL"                                                                                                       | (NONE)                                                                                                          | (KONE)                                                                       |
|               | () <b>F</b> . ( | الديبيوند<br>Control | INONE                                                                                                                                                                            | (NONE)                                                                                                                                                                       | "ABNOR-<br>MAL"<br>Maling"<br>and<br>"MAIN"                                                                                                          | (NONE)                                                                                                          | (INONE)                                                                      |
|               | l i n           | JO                   |                                                                                                                                                                                  |                                                                                                                                                                              | ×                                                                                                                                                    | ~                                                                                                               |                                                                              |
|               | Opera           | in II is             | ~                                                                                                                                                                                | i<br>I<br>I                                                                                                                                                                  |                                                                                                                                                      |                                                                                                                 | ~                                                                            |
|               | System          | Cat III              | ×                                                                                                                                                                                | ×                                                                                                                                                                            |                                                                                                                                                      | ×.                                                                                                              | ×                                                                            |
| ZER STATION   |                 | Faibure Filess       | If another failure<br>course which miti-<br>ates a tranefer, an<br>immadiate shutdown<br>will uccur since fb .<br>monitors are not<br>inhibited during the<br>transition period. | No effect on ayatem<br>operation - merely<br>produce - alarma on<br>all standby monitor<br>channels after a<br>transfer has already<br>occurred due to an-<br>other fallure. | The control unit can-<br>not process trans-<br>fer and shutdown<br>command signals<br>and, hence. the en-<br>tive monitoring is<br>rendered vaeless. | No effect on ayatem<br>operation - only<br>causes the trana-<br>mised of a false<br>abutdown warning<br>eignal. | System may shuck<br>down instantancousty<br>without any warning<br>to pilot. |
|               |                 | Fallure<br>Nõtte     | Inability to<br>process a<br>main inhibit<br>to the mon-<br>itor chan-<br>nele.                                                                                                  | Inability to<br>process a<br>standby in-<br>hibit to the<br>hibit to the<br>monitor<br>channels.                                                                             | Generation<br>of an erro-<br>neous mon-<br>itors locally<br>typassed<br>signal:                                                                      | Generation<br>of an erro-<br>neous shut-<br>down alert<br>signăl.                                               | Inobility to<br>generate a<br>correct<br>obstdown<br>cjert signal.           |
|               |                 | Function             |                                                                                                                                                                                  |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                 |                                                                              |
| <b>TIVOO</b>  | tin             | ι. ŋ.<br>'śי.        | 5                                                                                                                                                                                |                                                                                                                                                                              | , , , , , , , , , , , , , , , , , , ,                                                                                                                |                                                                                                                 |                                                                              |
| Subavotem 1.  | ldentificat     | ltern<br>Name        | Control l'nit<br>(Continued)                                                                                                                                                     |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                 |                                                                              |

.
| (Cont'd)   |
|------------|
| Analysis   |
| Failure    |
| Localizer  |
| Table C-1. |

ĺ

12. 1

SIISS

| .1                 |               | ļ                |                                                                         |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                          |
|--------------------|---------------|------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fare 12 of 27      | -             | Hermarks         |                                                                         |                                                                                                                                                                                                                                                                             | Note that although both the re<br>ranning two reads deactors/<br>monitors monitor inagrash con<br>poeition, only An alarm oa oa<br>oe them is required to inithite<br>a transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                          |
|                    | I ather       | Rate<br>12x1061  |                                                                         | 0, 386<br>NB                                                                                                                                                                                                                                                                | 0.789<br>ANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 986-0                                                                                                                                                                                                                    |
|                    | 100           | Caher            |                                                                         | RF and<br>SUM lights<br>"on" on<br>the cor-<br>reaponding<br>near field<br>monitor<br>channel.                                                                                                                                                                              | RF, and<br>SNM lights<br>"OSN" of the<br>"OSN" of the<br>"OSN" of the<br>sponding<br>the<br>monitor<br>the<br>monitor<br>the<br>monitor<br>the<br>monitor<br>the<br>short<br>the<br>corre-<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>short<br>the<br>shorthe<br>short<br>the<br>shorthe<br>shorthe<br>shorthe<br>sho | ITF and<br>SDM lights<br>"ON" on y<br>côrte-<br>côrte<br>roading<br>course<br>monitor<br>channel.                                                                                                                        |
|                    | lure Indicati | Control<br>1'nit |                                                                         | ABN"<br>and<br>"MIS-<br>MATCH"                                                                                                                                                                                                                                              | ABN"<br>and<br>"MATCH"<br>MATCH"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MATCH"                                                                                                                                                                                                                   |
|                    | i.e.          | Renote           | •                                                                       | "NOM"<br>abn"<br>and                                                                                                                                                                                                                                                        | NOW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N(VX<br>pare<br>NqV                                                                                                                                                                                                      |
|                    | A1-05         | CIL              |                                                                         | ·                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                                                                                                                                                                                                        |
|                    | 0.0           | 11 10            |                                                                         |                                                                                                                                                                                                                                                                             | ,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |
|                    | Svaten        | ניו ווו          |                                                                         | ×                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                        |
|                    |               | i'ailure Effect  | will result if re-<br>maining peak detect-<br>or/monitor also<br>fails. | The corresponding<br>monitor channel<br>processes the fail-<br>ure as being a drop<br>in course RF pow-<br>is course RF pow-<br>er and an increase<br>in modulation per-<br>centage. Now de-<br>centage. Now de-<br>pendent upon 1 of 1<br>"for near field mon-<br>ivaring. | Loss of vrput ssg-<br>nal to correspond-<br>ing monitor, cus-<br>ing a mexitor mis-<br>ing a mexitor mis-<br>ing a mexitor mis-<br>upon remaining two<br>pask detectors /mon-<br>tiors for justers/<br>tors for justers/<br>tors for justers/<br>tors for justers/<br>tors for justers/<br>tors for monitors for<br>system control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The corresponding<br>momion channal<br>processes the fall-<br>ure as being a drop<br>in course RF por-<br>er and an increase<br>in modulation per-<br>pendent upon 1 of 2<br>for integral course<br>position monitoring. |
|                    |               | Failur<br>Mode   |                                                                         | Incorrect<br>(low) DC<br>output eig-<br>nal.                                                                                                                                                                                                                                | Total load<br>of output<br>a Gand (both<br>A C and DCI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Incerrect<br>output sig-<br>pal.                                                                                                                                                                                         |
| LER STATION        |               | Punction         |                                                                         |                                                                                                                                                                                                                                                                             | Each of the course peak<br>detectors receives a sum-<br>ultated course position un-<br>put signal. This input<br>signal is obtained by a<br>combination of signals<br>obtained by 7 voximity<br>probes at the radiating<br>recore then converte the<br>RF signal into a low fre-<br>quency signal. both DC<br>areasably of the RF<br>researably of the RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | preder the AL of the de-<br>He eignel.<br>He signel.                                                                                                                                                                     |
| 511.S<br>OC.AL.I   | ucj           | . D.             | 2 2 2                                                                   | <u></u>                                                                                                                                                                                                                                                                     | 27.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |
| System Subsystem L | Idontificat   | ltern<br>Name    | Near Field<br>Peak Drtei -<br>tor (cuntinued)                           |                                                                                                                                                                                                                                                                             | Course Peak<br>Drestors<br>No. 1, No. 2,<br>IMAIN)<br>IMAIN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |

No. States

:

|                                    | 1:            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>.</b> .                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pare_13_0[_27                      |               | Remarks           | Atthough the remaining two<br>peak detectors /monitore mon<br>itor the daregrad monitor and<br>parameter, only alfourned<br>one of them is required to jui<br>tisse a transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Atthough there sull also be<br>a los of algual to the standby<br>I. D. montor, the standby lab<br>hibit signal will preveat the<br>alarm from being processed.                                                                                                                                                                                                                                         |
| ,                                  | Fallure       | Rate (A 10%)      | 2,789<br>2,786<br>0. 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0. 789                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | óns 👘         | Other :           | RF, SDM,<br>and DDM<br>(18ths<br>"ON" on<br>corre-<br>ponding<br>senativity<br>monutor<br>channel.<br>(18ths<br>and DDM<br>lights<br>and DDM<br>lights<br>and DDM<br>neurer<br>sponding<br>corre-<br>sponding<br>corre-<br>channel.                                                                                                                                                                                                                                                                                                                                                                                                    | RF and<br>SDM lights<br>•ON* on<br>corre-<br>corre-<br>standby<br>course<br>moritor<br>channel.                                                                                                                                                                                                                                                                                                        |
| 5                                  | lure Indicati | Control C<br>Unit | "ABN"<br>and<br>"MAS"<br>"MAS"<br>"MIS-<br>MATCH"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - NRV.                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | Fall          | Remote<br>Control | "NUAN"<br>"NUAN"<br>"NUAN"<br>"NUAN"<br>"NUAN"<br>"NUAN"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOM"<br>ABN"<br>"NAIN"                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | u u           | or                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | Operal        |                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                    | System        | Cat III 0         | ××××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    |               | failure Fffect    | Lusa of input signal<br>to corresponding<br>emaitvily monitor<br>channel, causing a<br>mionitor mismatch.<br>Dispendence upon re-<br>maining two peab<br>ditectora/monitors<br>directora/monitor<br>directora/monitor<br>directora/monitor<br>signal<br>signal monitor<br>for system<br>monitor channel<br>monitor channel<br>an increase the signal<br>a decrease the<br>ulation percentage<br>and a decrease in<br>ulation percentage<br>and a decrease in<br>course width mon-<br>ent upon 1 of 2 for<br>corresponding<br>monitor channel).                                                                                         | Loss of input signal<br>to the standby<br>course monitor.<br>This, in turn, is<br>proceased as a fail-<br>ure in the standby<br>transmitting unit,<br>causing the standby<br>unit to be shut do a.                                                                                                                                                                                                     |
|                                    | ,             | Failure<br>Mode   | Total Jone of<br>output signal<br>houth AC and<br>NCJ. A<br>hour JK<br>output suc-<br>nal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total loss of<br>output signal<br>tooth AC and<br>DCI.                                                                                                                                                                                                                                                                                                                                                 |
| ZER STATION                        |               | t unclos          | Fach of the senativity<br>predict of a receives<br>a simulated input aircal,<br>course width idiaplas e-<br>ment senatively? This<br>miput signal is obtained by<br>a combination of signal by<br>obtained by proven at the radiating<br>anterimas. Each pead de-<br>tector - converts the RF<br>anterimas. Each pead de-<br>guent, signal both 1%<br>and AC. The DC is the<br>quent, signal both 1%<br>and AC. The DC is the<br>quent, signal both 1%<br>and AC. The DC is the de-<br>modulated "0, 130 1% signal<br>power the AC is the de-<br>modulated "0, 130 1% signal<br>power the AC is the de-<br>modulated "0, 130 1% signal | The peak detector re-<br>cerves its input signal<br>directly from the signaly<br>transmitting unit after<br>proper attenuation. It<br>proper attenuation. It<br>essentially converts the<br>standby C-SB signal into<br>a low frequency signal.<br>Doth AC and DC. The DC<br>component represents the<br>standby RF power level:<br>the AC component is the<br>demodulated 90/150/1020<br>Hiz signals. |
| DCALL                              | Ę             | 9                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |
| System St<br>Subayaten <u>1.</u> 1 | Identificati  | lten<br>Kame      | Sensitivity<br>Peak Detro-<br>Sor No. 1.<br>N. ISAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Standby<br>Course Peak<br>Detuctor                                                                                                                                                                                                                                                                                                                                                                     |

^

| (Cont'd)  |
|-----------|
| Analysis  |
| Failure   |
| Localizer |
| C-1.      |
| Table     |

Sternet.

and a state of the state

and the state of the

55

4

5 81

1 Although the reraining two peak detector/monitors mon-tion the clastance signal parameters, only an alarm on one of them is required to initiate a transfer. Page 14 of: 27 Reciards Rate 61 i ailire 0.386 0.789 0.789 0.386 118 A32A A32B ×NA RF and SDM lights 1 "ON" on respoilding standby course R.F., SDM., and DDM lighte "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX" on "OX lights ON" on the corre-sponding standby sensitivity monifory ligkta "ON" on corre-syinding standby. sensitivity monitor. RF, SDM. and DDM RF, SDM. monitor channels. Chher the cor-Failure Indications, "ABN" abd "MIS-MATCH" rinit 1.nit "ABN" .VB: "ABN" NOM" NOM" "MON" ABN" and MAIN" Remote Control "NIAM" "Nak "Nak "MON" ABN" and "MAIN" Car' III Car II OU Svatem Operation After Failure × × × × DDM causes an alarni which, in turn, shuts down tha chamel, causing a monitor misser h. Dependence upon re-maining two peak detectors/monitors Loss of input signal to the standby sen-sitivity monitor, This, in turn, is monitor recognizes this as being a fall-ure in the standby transmitting unit and hence, causes the standby unit to be shut down. The standby sensi-tivity monitor re-cognizes this as being a drop in RF power. an increasion SDM, and a deprocessed as a fail-ure in the standby standby transmitting causing the standby unit to be shut down. Loss of input signal to corresponding The standby cours? clearance monitor for clearance pa-rameter monitransmitting unit. crease in DDM. The decrease in Failure Fffeit toring. unit. Total loss of output signal fboth AC and DC) Total loss of output aignal (both AC and DC1 In-orrect (low) DC output aig-nal. Incorrect (low) DC output sig-Failure Mode nal. Each of the clearance peak detectors receives a simulated clearance in-put signal. This input signal is obtained by a combination of signal by obtained by a combination both prosimity probe both prosimity probe into a low frequency sig-mal, both AC and DC. The DC component repre-sents the course RF pow-nent is demodulated 90/ 150 Hz signal. mitting unit. After proper atteauation, the linput signal in a combina-trandy course CoSB and SBO. This RF input signal is converted This peak detector re-ceives its input signal from the standby trans-Function System SSILS Subsystem LOCALIZER STATION t. D. `n. 22 2 Identification Clearance Peak Detec-tors No. 1, No. 2, or No. 3 (MAIN) Standby Courae Peak Detector (Continued) Standby Sen-sitivity Peak Detector lten Name

2

4 1

5511.5 Syaten

|              | _                          |                  |                                                                                                                                                                                                                                                    | Í                                                                                                                                                                                                                                                                 | Ι.                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |
|--------------|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>12 %</u>  | -                          |                  | ?                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |
| l'art 15     |                            | Restarba         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |
|              | Failure .                  | Rate (           |                                                                                                                                                                                                                                                    | 0.386                                                                                                                                                                                                                                                             | 0.789<br>A33A                                                                                                                                                                                                                                                              | 386.0.<br>866'<br>                                                                                                                                                                                        |
| 8            | ione de                    | Cabler           | 2                                                                                                                                                                                                                                                  | RF. SDM.<br>and DDM<br>lights<br>"ON" cn<br>the corre-<br>sponding<br>clearance<br>montor<br>channel.                                                                                                                                                             | RF. SDM.<br>and DIDM<br>lighte:<br>ON' on<br>the corre-<br>sponding<br>clearance<br>monitor.                                                                                                                                                                               | RF. SDM.<br>ights<br>'ON''<br>'ON''<br>'ON''<br>the corre-<br>sponding<br>standby<br>citaarance<br>monitor.                                                                                               |
| -            | lúre <sup>2</sup> Indicati | Control<br>Main  |                                                                                                                                                                                                                                                    | "ABN"<br>and<br>"MIS-<br>MATCH"                                                                                                                                                                                                                                   | "NBA"                                                                                                                                                                                                                                                                      | "XBA"                                                                                                                                                                                                     |
|              | ie'i                       | Remote           |                                                                                                                                                                                                                                                    | "MON"<br>ABN"<br>and<br>"MAIN"                                                                                                                                                                                                                                    | "MON"<br>ABN"<br>and<br>"MAIN"                                                                                                                                                                                                                                             | "NIA"<br>"NIA"<br>"NIA"<br>"NIA"                                                                                                                                                                          |
| ~ ~          | • u ••                     | ór               | -                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |
|              | , Operal                   | Cat II           | ·                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                   | ×.                                                                                                                                                                                                                                                                         | x                                                                                                                                                                                                         |
|              | Systen                     | Cat III          |                                                                                                                                                                                                                                                    | x                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |
|              |                            | Failure Fffect   | Now de pendent upon<br>1 of 2- learan e<br>muniter for Ayatem<br>control.                                                                                                                                                                          | The cuitesponding<br>monitor channel<br>processes the fai-<br>ure as being a drop<br>in clearance RF<br>power, an increase<br>power, an increase<br>in SDM, and a de-<br>crease in DDM,<br>Now dependent upon<br>10 2 clearance<br>monitor for system<br>control. | Loss of the input<br>signal to the stand-<br>signal to the stand-<br>fror. This in turn<br>is processed as a<br>failure in the stand-<br>by transmiting unit,<br>cousing the shut down.                                                                                    | The standby clear-<br>parce munitur rec-<br>openizes this as he-<br>ing a failure in the<br>standby clearance<br>transmitter and,<br>hence, causes the<br>entire standby unit<br>to be shut down.         |
|              |                            | l ailurr<br>Möde |                                                                                                                                                                                                                                                    | in orrect<br>liow. DC<br>output arg-<br>nal.                                                                                                                                                                                                                      | Total loss of<br>output signal<br>rboth AC and<br>DCi                                                                                                                                                                                                                      | Incorrect<br>output sig-<br>nal,                                                                                                                                                                          |
| ER STATION   |                            | Function         | tlearance C-SB and SBO.<br>Thus RF roput extral to<br>converted to a low fre-<br>query a signal. both AC<br>and D.C. The D.C. is rep-<br>re-extitive if the ilear-<br>and B.C. The D.C. is rep-<br>to the demodiated '0/150<br>IV elearance signal | ed from<br>able copy.                                                                                                                                                                                                                                             | This peak detector re-<br>ceives its input aignal<br>from the standby trans-<br>miting unit. After<br>proper altenuation, this<br>input signal is a com-<br>bination of standby clear-<br>bination of standby clear-<br>bination of standby its<br>This RF input signal is | concreted into a low fre-<br>quency strat, both AT<br>and DC. The IXC com-<br>proment represents the<br>learante RF power fevel.<br>the AC component is the<br>demodulated 90/150 Hz<br>clearance signal. |
| SCAL         | Ę                          |                  | 22.22                                                                                                                                                                                                                                              | oduc<br>evair                                                                                                                                                                                                                                                     | <u>۳</u>                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
| Subayatem Lo | Identificati               | lten.<br>Name    | Clearan e<br>Peak Drier -<br>tura<br>(Continued)                                                                                                                                                                                                   | Repr.                                                                                                                                                                                                                                                             | Standby<br>Clearance<br>Peak Detector                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |

| Pare 16 of 27               |                                            | Renates         | ther such failure occurs<br>other 1. D. monicar, the<br>in will limmediately trans-<br>ad then shut doen.                                                                                                              | azardous - the I. D. aig-<br>s asoumed non-essential<br>at 111 operation.                                                                       |                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|--------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | ailure                                     | Rate Ax 106)    | .742 " [f mo<br>mail] in any<br>34A1 = syute<br>34A2 = fer a<br>34A3 = fer a                                                                                                                                           | . 050 Not b<br>34 B mal if<br>34 Cor C                                                                                                          | - 914<br>34 C                                                                                          | 9 A                                                                                                                                                                                                                                                                                                                                    |
|                             | 0.01 · · · · · · · · · · · · · · · · · · · | Öller           | L. D. J. Mon-5<br>itor alarm (1<br>light "ON", A                                                                                                                                                                       |                                                                                                                                                 | Alarm on 1<br>standby 1. P.<br>Monitor.                                                                | 04                                                                                                                                                                                                                                                                                                                                     |
|                             | lure Indicati                              | Control         | "ABN"<br>and<br>VMIS-<br>MATCH"                                                                                                                                                                                        | (NONE)                                                                                                                                          | "NBV"                                                                                                  | (a)<br>(a)<br>(a)<br>(a)<br>(a)<br>(a)<br>(a)<br>(a)<br>(a)<br>(a)                                                                                                                                                                                                                                                                     |
|                             | Fail                                       | Remain          | "NOM"<br>Put<br>"NALN"                                                                                                                                                                                                 | (NONE)                                                                                                                                          | "MON"<br>ABN"<br>ABN"<br>MAIN"                                                                         | INONE                                                                                                                                                                                                                                                                                                                                  |
|                             | f                                          | हि              |                                                                                                                                                                                                                        |                                                                                                                                                 | ,                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                  |
|                             | Operat                                     |                 | ;                                                                                                                                                                                                                      | ^                                                                                                                                               | ×                                                                                                      |                                                                                                                                                                                                                                                                                                                                        |
|                             | Syatem                                     | Cat III o       | ×                                                                                                                                                                                                                      | ×                                                                                                                                               |                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                      |
|                             | ,<br>,                                     | Failure Fffect  | Loss of 2 of 3 1, D.<br>monitor voting ca-<br>pability. Now de-<br>penden, upon 1 of 2.<br>remaining 1, D.<br>monitors for system<br>control.                                                                          | Loss of 2 of 3 1. D.<br>monitor voting ca-<br>pability. Now de-<br>pendent upon 2 of 2<br>remaining monitors<br>for systern control.            | Causes the standby<br>transmitting unit to<br>shu down after a<br>2-5 sec time delay.                  | Loss of stardby<br>L.D. signal mosi-<br>toring. Abbough<br>the I.D. signal is<br>not essential for<br>Cat III operation.<br>this failure mode<br>this failure mode<br>and occurs on thoi<br>and occurs on thoi<br>the failure mode.<br>the failure mode.<br>the failure mode.<br>the remunant an<br>immediate abuidown<br>will result. |
|                             |                                            | Fàilure<br>Mode | Loss of<br>monitoring<br>chility of<br>one of the<br>main I. D.<br>monitors:<br>producing<br>an alarm.                                                                                                                 | Loss of<br>monitoring<br>ability of<br>one of the<br>monitors,<br>producing<br>no alarm.                                                        | Loss of<br>standby<br>I. D. mon-<br>itoring<br>ability pro-<br>ducing an<br>alarm.                     | Loss of<br>Loss of<br>I.D. mon-<br>ttoring po-<br>ducing po<br>alarm.                                                                                                                                                                                                                                                                  |
| ZER STATION                 |                                            | Function        | Each I. D. monitor re-<br>ceives its respective in-<br>put from the ACC ourputs<br>of the tistegral cource<br>position musitor channels<br>Each I. D. manior checks<br>its input eigual for the<br>presence of a keyed | (coded) audio (1020 Hz)<br>tone. An alun m is pro-<br>duced whenever a losa of<br>audio or keying exists<br>over a definite time in-<br>terval. | Same as main 1. D. mon-<br>itors except it monitore<br>the 1. D. signal of the<br>standby transmitter. |                                                                                                                                                                                                                                                                                                                                        |
| SAL                         | Ę                                          | Ċġ              | *                                                                                                                                                                                                                      |                                                                                                                                                 | X                                                                                                      |                                                                                                                                                                                                                                                                                                                                        |
| System 551<br>Subsystem 1.0 | Identificath                               | Item<br>Name    | Idamitic fidentian Manuar Assembly Assembly (I. D. MONI-<br>TORS No. 1. NO. 2. or No. 3)                                                                                                                               |                                                                                                                                                 | Identification<br>Moutor<br>Assembly<br>(Sta Aby L. D.<br>Mouttor)                                     |                                                                                                                                                                                                                                                                                                                                        |

o

| NOIL |                                                       |                                                                                                                                                                                                                            |         |                                       | -                                                                                                | 5                      | ,                                                    |                                                                                                                        |                           | 17 10 11 11 01 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------|--------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                       |                                                                                                                                                                                                                            | System  | Operatin<br>Failure                   | 5                                                                                                | Faire                  | re Indicati                                          | 07.8                                                                                                                   | Failure,                  | Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Persona<br>Personal Personal Pe<br>Personal Personal P |
|      | Móde                                                  | Fallure Effect                                                                                                                                                                                                             | Cat III | Cat II C                              | U<br>U<br>U                                                                                      | ntrol                  | Unit                                                 | Other                                                                                                                  | ( <sup>م</sup> ة آمار     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Loss of +12<br>volta of reg-<br>ulator.               | All I. D. monitors<br>(both main and<br>atmidbyl ar render-<br>ed useless. No<br>alarm'are produced<br>and, hence, Cat III<br>and, hence, Cat III<br>operation continues.<br>J. D. signal monitor-<br>ing is totally lost. | ×       |                                       | Ž                                                                                                | ONE                    | NONE                                                 | , ,                                                                                                                    | 57 53<br>1996             | Not hasarious - 1. D. signat<br>asumed not critical for Cat<br>III operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Loss of •5<br>volts of reg-<br>ulator.                | 1. D. alarm outpute<br>(both main and<br>atandby) go to a<br>"high" logic level.<br>The control unit<br>processes this as an<br>frommediate transfer<br>and then a shutdown.                                               |         | · · · · · · · · · · · · · · · · · · · | X<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | 10N<br>10N<br>10N      | ABN".<br>TRANS-<br>FER".<br>Bad<br>"SHUT -<br>DOWN"  | I. D. Moo-<br>itor Ala <sup>5</sup> m<br>lights will<br>not be lit.                                                    | 0.137<br>34F              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Loss of -12<br>volts of ref-<br>ulator.               | Alarms on all J. D.<br>monitors (both main<br>and standy) caue-<br>ing an immedite<br>transfer and then a<br>shutdown.                                                                                                     |         |                                       | X                                                                                                | d<br>d<br>dFF"         | "ABN",<br>"TRANS-<br>FER",<br>"SHUT-<br>DOWN"        | Alarm<br>Lights<br>"ON", on<br>"ON", on<br>"ON", on<br>1. D. No.<br>2, No.<br>2, and<br>standby<br>1. D. mon-<br>itor. | 0.290<br>Å34G             | -<br>-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1    | Alarm logi<br>causing a<br>main 1. D.<br>alarm.       | The control unit<br>processes this as<br>an immediate it ans-<br>fer and then a'shut-<br>down.                                                                                                                             |         | -                                     | X                                                                                                | AON<br>3N"<br>d<br>FF" | "ABN",<br>TRANS-<br>FER",<br>FER",<br>SHUT-<br>DOWN" | I. D.<br>aîsrm<br>lights will<br>not be lit.                                                                           | 0.262<br><sup>3</sup> 34H | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P 4  | Alarm logic<br>finibuting<br>the main<br>I. D. alarm. | Loss of main I. D.<br>monitoring ability.                                                                                                                                                                                  | ×       |                                       | Ž                                                                                                | (ZNO                   | NONE                                                 |                                                                                                                        | 0.437<br>341              | Noțhamardous 1: D. signal<br>aspumed noț critical for<br>Cat 111 operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

۰.

**C-18** 

System SSIIS

|               | _                        |                    | *                                                                     |                                                          | 1                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------|--------------------------|--------------------|-----------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pare 10 of 27 |                          | Kentra             |                                                                       | Hazardous - hják is similar<br>to Njáp                   | Not hazardous.                                                                                        | Essentially renders the stand-<br>by util uncless.<br>Essentially renders the<br>main of standing transmitter<br>useless.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | 'F'ailure'               | Rate A             | 0. 172<br>134J                                                        | 0. 242<br><sup>1,</sup> 34K                              | 0.160<br>×34L                                                                                         | 112A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | inne i i                 | Other              | Stby I. D.<br>alarm<br>light may<br>or may not<br>be lift.            |                                                          | No mis-<br>match on<br>monitor<br>chaméis                                                             | Alarma est<br>Marma est<br>montiór<br>chamièn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,             | lure Indicati            | Control<br>Usée    |                                                                       | , (SNONE)                                                | "NUS-<br>MATCH"<br>and<br>"ABN"                                                                       | (NONE)<br>ABN<br>TRANS-<br>FER"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | î <sup>1</sup> a:        | Renute<br>Control  | "NOM"<br>NOM"                                                         | (NONE)                                                   | NIVM                                                                                                  | Nower<br>Now<br>Now<br>Now<br>Now<br>Now<br>Now<br>Now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -             | n Operation<br>r Pailure | Ĵ                  | ÷                                                                     | e.                                                       |                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                          | r Failur<br>Cat II | ×                                                                     |                                                          |                                                                                                       | X<br>x<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>team-<br>tea                                                                                          |
|               | System                   | Cat III            | 4                                                                     | ×                                                        | ×                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | 2                        | Failure Effect     | Shutdow. of stand-<br>by transmitting unit                            | Loss of standby I. D.<br>monitoring ability.             | No serious effection<br>system since a mon-<br>itor mismatch does<br>not effect Cat III<br>operation. | Aithough this fail-<br>ure mode does nis<br>immediately effect<br>interdiately effect<br>the does isoparciate<br>CALIII status. This<br>is due to the fact<br>that any failure on<br>the main unit, which<br>that any failure on<br>the main unit, which<br>that any failure on<br>the main unit, which<br>is due to the fact<br>of STANDA<br>down.<br>If in STANDA<br>down.<br>If in STANDA<br>down.<br>Court: If in STAND-<br>BY, a transitive to<br>OFF will occur.<br>This is due to a<br>momentary lose of<br>signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                          | · Failure<br>Mode  | Alarm logic<br>unhibiting<br>the main<br>I. D. alarm.                 | Alarm logic<br>inhibiting<br>the standby<br>I. D. alarm. | Alarm logic<br>causing a<br>mismatch.                                                                 | fraability to<br>traansurver<br>traansurting<br>awtiching<br>circuitry.<br>Fremature<br>traansfer of<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>traanser<br>t |
| ER STATION    | 4                        | Function           |                                                                       |                                                          |                                                                                                       | The chargeover and test<br>circults provide the auto-<br>matic chargeover capa-<br>bility for the redundant<br>transmiting units. It<br>selects upon command<br>from the control unit<br>voich transmitting unit<br>stadiates into the arternas<br>stadiates that the arternas<br>stadiates that the arternas<br>iso dummy loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VCAL          | Ę                        | . n.<br>           | *                                                                     |                                                          |                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Subsystem 14  | Uentificati              | ltem<br>Name       | Idervilication<br>Monitor<br>Assembly<br>(Regulator/<br>Alarns Logic) | Continued                                                |                                                                                                       | Changeover<br>cuita Paak<br>Derectors<br>Excluded)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

¢

)

1. A.

ς.

1

Ľ

311SS System

| . I           |               | i                             | F                                                                                                                                               |                                                                                                           | ~                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | any<br>too<br>I on<br>tud-                                                                                                                                                                                                                                                                                                 |
|---------------|---------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page 13.01 22 |               | Remarks                       | A stardby montoring circuit<br>faibure.                                                                                                         |                                                                                                           | . •                                                                                                              | A 2% Include bith the course and and the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the course of the cou | It should be need that since<br>signal degradation sufficient<br>be 'our of Cat III to arsince''<br>the 'Noue net effoct, all post<br>failu,'s modes may be treated<br>an agregate basis.<br>'ij3A'la the failure state of th<br>'ij3A'la the failure's rate of th<br>'ijadition'si.e., up to and ind<br>ing the anternas. |
|               | Fallure       | Rate<br>(Ax 10 <sup>6</sup> ) | 0. 782<br>Å12Ĉ                                                                                                                                  | 0. 070<br>Å12D                                                                                            | 0.070<br>Å12E                                                                                                    | 7:417<br>1:25<br>(Total)<br>AI2F1<br>AI2F<br>A12F<br>a 1.209<br>= 1.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.859<br>113 -<br>0.509                                                                                                                                                                                                                                                                                                    |
|               | ene           | Othes,                        | Alp rm(s)<br>on respec-<br>tive stand-<br>by monitor<br>channel.                                                                                | Alarms on<br>sensitivity<br>monitor<br>channels.                                                          | Alarms on<br>clearance<br>monitor<br>channels.                                                                   | Alarma cu<br>édine szada<br>livr cháné<br>nels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alarma on<br>the sensi-<br>crycty and/<br>crycty and/<br>mrynitor<br>channels.                                                                                                                                                                                                                                             |
|               | lure Indicati | Control<br>Unit               | "NBA"                                                                                                                                           | "ABN"<br>and<br>"TRANS-<br>FER"                                                                           | FER "                                                                                                            | "ABN"?<br>"ThANS-<br>FER"<br>and<br>"SHUT-<br>DOWN"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "ABN",<br>and<br>"SHUT-<br>"DOWN",<br>and<br>"TRANS-<br>FER"                                                                                                                                                                                                                                                               |
|               | Fai           | Rèmote<br>Control             | "NIAM"<br>Nok"<br>"Nak<br>"Nak                                                                                                                  | "MON"<br>ABN"<br>and<br>"STBY"                                                                            | NOM"<br>NBV"<br>ABV"<br>STBY"                                                                                    | ABN"<br>ABN"<br>ABN"<br>OFF"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NOM"                                                                                                                                                                                                                                                                                                                       |
|               | tion          | 2                             |                                                                                                                                                 |                                                                                                           | ·                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                                                                          |
|               | Oper          | Fallu<br>Cat II               | ×                                                                                                                                               | ×                                                                                                         | ×                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                          |
| ł             | System        | Cat III                       |                                                                                                                                                 |                                                                                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |
|               |               | Failure F'fect                | The alarm on the<br>standb' monitor will<br>shudoen the stand-<br>by transmitting unit-<br>the main unit con-<br>tinues to operate<br>cormally. | Alarms on monitor<br>channels initiate a<br>transfer to standby<br>and system operates<br>on standby.     | Alarms on the<br>clearance monitors<br>initiate a transfer<br>to standby and sys-<br>tem operates on<br>chardby. | Immediate ahutdown<br>after an automatic<br>transfor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Since a failure of<br>this type is inde-<br>penden to the trans-<br>mitting unit. An im-<br>médiate shutdown<br>after an autornatic<br>transfer will result.                                                                                                                                                               |
| CK ST AT 10N  |               | Fallure<br>Mode               | Failure<br>causing a<br>loss (or in-<br>correct)<br>signal to one<br>of the stand-<br>by monitors.                                              | Total loss<br>for incorrect<br>phasing) of<br>course SBO<br>signal of the<br>main trans-<br>mitting unit. | Total loss<br>for incorrect<br>phasing) of<br>clearance<br>SBO signal<br>of the riain<br>transmitting<br>unit.   | Lose of any<br>one or all of.<br>CSE CoSB.<br>CCE SBO.<br>CL CoSB.<br>CL SBO.<br>(to main<br>transmitter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A total loss<br>any signal<br>path; incor-<br>rect phasing<br>radiated sig-<br>nals or the<br>adjected sig-<br>nal: distor-<br>tion suffic-<br>cient to                                                                                                                                                                    |
|               |               | Function                      |                                                                                                                                                 |                                                                                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The course distribution<br>circuits serve two pri-<br>mary functions: (1) to<br>route and distribute the<br>course C4SB and SBO<br>signals to the antennas:<br>(2) to construct by use<br>of proximity probes,<br>bridge networks and<br>phase shifters the sig-<br>nals used for monitor-<br>ing course position.         |
| OCAL          | lon           | 1. D.<br>No.                  | 21                                                                                                                                              |                                                                                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                          |
| Subsystem     | ldentificat   | ltem<br>Name                  | Changeover<br>and Test<br>Circuita<br>(Continue1)                                                                                               |                                                                                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Course Dis-<br>tribution Cita<br>(Peak Detec-<br>tora,Excluded)                                                                                                                                                                                                                                                            |

•

Table C-1. Localizer Failure Analysis (Cont'd)

System SSILS Subayatem LOCALIZER ST

| ent                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| or alarms,<br>.e., aut of<br>Cat. III tol-<br>trance.                                                                                                                                              |
|                                                                                                                                                                                                    |
| A Joys for Upon fa<br>major dis- immedia<br>cortical of follows<br>ignal for media:<br>ny clear- will oc<br>anto eignal due to to<br>path. the common<br>transm                                    |
| A loss of Since U<br>ignal (y/a) arappu<br>or p( (a) albut to<br>or p( (a) albut to<br>field peak will re-<br>field peak normina<br>detectors. Note th<br>alert w                                  |
| Loss of Mar<br>Aarger out-<br>farger out-<br>bour the rempu-<br>put voltage and out-<br>aryout<br>bot voltage and out-<br>aryout<br>bot voltage and out-<br>aryout<br>that<br>the rempu-<br>terise |

÷.,

20

-----

i

SSILS System \_\_\_\_

| Page 21 of 27 |               | Remarka                    | Not hazardové - bodh trans-<br>mittere still available after<br>downgrade.                                                                          | Not hazardous - a total die-<br>charge of the hattaries can<br>cour only After the system<br>is operated on battaries for<br>some astranded period of time<br>(greater than 3 bours). Sys-<br>tem operation on battaries is<br>a result of ether primary or<br>a failure of both chargers -<br>both of which would downgrade<br>performance to Carli. | To result in a station shutdown<br>both convertors must fall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not basardous - both trans-<br>mitters still available after<br>downgrade.                                                                                                                         |
|---------------|---------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |               | Rate (Ax 10 <sup>6</sup> ) | 0.801<br>AN <sup>A</sup>                                                                                                                            | 6. 436<br>ANC                                                                                                                                                                                                                                                                                                                                         | 6: 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۷¢۱۷<br>۵01 .0                                                                                                                                                                                     |
|               | one           | Other                      | "Charger<br>fall" and/<br>or "ac<br>or "ac<br>light "on"<br>on respec-<br>tive charg-<br>er.                                                        |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                                                                                                                                                                                                  |
|               | lure Indicati | Control<br>Unit            | "ABN"<br>and<br>"CHARG-<br>ER FAIL"<br>and/or<br>"AC POW-<br>ER FAIL"                                                                               | (NONE)                                                                                                                                                                                                                                                                                                                                                | "ABN"<br>and<br>"CON-<br>VERTER<br>FAIL"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "ABN"<br>and<br>"TEMP"                                                                                                                                                                             |
|               | Fail          | Remote<br>Control          | "PWR/<br>ENVIR<br>ABN"<br>anù.<br>"MAIN"                                                                                                            | (NONE)                                                                                                                                                                                                                                                                                                                                                | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | "PWR/<br>ENVIR<br>ABN"<br>and<br>"MAIN"                                                                                                                                                            |
|               | nci           | J                          |                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |
|               | Operat        | Sallur<br>Cat II           | Down-<br>grade<br>to Cat<br>II af-<br>ter<br>delay.                                                                                                 |                                                                                                                                                                                                                                                                                                                                                       | Down-<br>grade<br>to Cat<br>il af-<br>ter<br>delay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Down-<br>grade<br>to Cat<br>il af-<br>ter<br>time<br>delay.                                                                                                                                        |
|               | System        | Alter<br>Cat III           | ×                                                                                                                                                   | ×                                                                                                                                                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                                                                                                  |
|               |               | Failure Evect              | No immadiate effect<br>on system opera-<br>tion - after the pre-<br>set time delay the<br>system will be<br>falssly downgraded<br>to Cat II status. | With the loss at the<br>qualitie capability<br>on one charger, the<br>remaining charger<br>can still provide the<br>equalitie capability<br>as long as the bar-<br>teries are not tecally<br>discharged.                                                                                                                                              | Station maintains<br>normal operation<br>or remaining con-<br>verter voltages.<br>Each of the con-<br>recter voltages is<br>recter voltages is<br>returned in the con-<br>trol unit for abnor-<br>mal tolerartes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | System maintains<br>normal operation -<br>only an erroneous<br>failure indication.                                                                                                                 |
|               |               | Fallure<br>Mode            | Charger<br>failure in-<br>dication only<br>while output<br>voltage is<br>atill main-<br>tained on<br>tained on<br>tained on                         | Loss of<br>cualize<br>voltage ca-<br>pability -<br>ual and/or<br>au/omatic.<br>au/omatic<br>acqualize<br>voltage is<br>voltage is<br>voltage is<br>thus provid-<br>thus provid-<br>the batteries                                                                                                                                                      | Loss of any<br>one of all of<br>the folloming<br>volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Failure<br>producing<br>an alarm<br>indication.                                                                                                                                                    |
| ER STATION    | -             | Function                   | In the event of a primary<br>power failure the two bat-<br>teries (in parallel) sup-<br>ply the necessary de<br>power.                              |                                                                                                                                                                                                                                                                                                                                                       | Each of the DC/DC con-<br>verters transfrom the<br>+30 volts normal input<br>voltage to three different<br>output voltages - 95, 5v,<br>-18v, and -50, The out-<br>put voltages - 00 each con-<br>verter are respectively<br>used in parallel and feed<br>bystem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The temperature at moors<br>provide alarm inducations<br>whenever the temperature<br>exceeds or drops below<br>preset timits. These tim-<br>its are set to give indica-<br>ion of air conditioner/ |
| OCAL          | lon           | t. D.<br>Xa.               | 2 1 2                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       | 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £                                                                                                                                                                                                  |
| Subsystem L   | Identificat   | liem<br>Name               | Battery<br>Charger<br>No. 1 or<br>No. 2<br>(Continued)                                                                                              |                                                                                                                                                                                                                                                                                                                                                       | DC/DC<br>Converter<br>No. 2<br>No. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temp<br>Sensors                                                                                                                                                                                    |

¢

SILS System \_\_\_\_\_

そうち ちだちい 著

そう ショネ

1.

State State

÷ ؛

à.

|                                                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                                  | :        |                                                                                                                                                                                                                                                                                                                                            | System | Operati<br>Failure                                |          | Fally             | re Indicatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2     | Failure                                                                                  | Pare 22 01 21                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------|----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Function Fallure<br>Mode                                                                                                                                                                                                 | Function Fallure<br>Made                                                                                                                                                                               | Fallure<br>Mode                                                  | <u> </u> | Fallure Effect                                                                                                                                                                                                                                                                                                                             | 111 V  | 11 100                                            | ž        | Remote<br>Ceatrol | Control<br>Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other | Rate f                                                                                   | Renarka                                                                                                          |
| Failures.<br>Producing n<br>alarm in-<br>dication.                                                                                                                                                                       | Failure<br>producing n<br>alarm in-<br>dication.                                                                                                                                                       | Failure<br>Producing n<br>a larm in-<br>dication.<br>dication.   | Q        | There are two sen-<br>there are two sen-<br>one for high temp-<br>eratures and one for<br>low temperatures.<br>A fallure of the stype<br>in one of the sensors<br>operation of the<br>other. Heade, the<br>other. Heade, the<br>other. Heade, the<br>low of temp. mon-<br>itoring ability for<br>itoring ability for<br>or low.<br>or low. | ×      |                                                   |          | , NONE)           | 13 NOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 001 0<br>001 0                                                                           | Not hazardous - li tamperatura<br>elfecta systém operation, other<br>alarma will occur.                          |
| he combining circuits Generation<br>esembly of the far field of an erro-<br>outior processes the neous Cat<br>larms of the monitor III diable<br>larms i, the bot/bC<br>onvertors, the battery<br>barger, and a tempera- | combining circuits Generation<br>mbly of the far field of an erro-<br>lior processes the mous Cat<br>ms of the monitor lif disable<br>meta, the battery<br>servers, the battery<br>ger, and a tempera- | Generation<br>of an erro-<br>neous Cat<br>III disable<br>signal. |          | No effect other than<br>Safety disabiling<br>Cat III status at the<br>remote control tow-<br>ez.                                                                                                                                                                                                                                           | ×      | Down-<br>grade<br>to Cat<br>ter<br>time<br>delay. |          | Vone ex)          | NONE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 0.676<br>                                                                                | Not basardous - both trans-<br>mitters still avaltable after<br>downgrade.                                       |
| are sharm. I have yoo-<br>laability to<br>me delays mecesary for Cat III dis-<br>r field monitor champel<br>harme.                                                                                                       | tag include 200-<br>tag include 200-<br>dataya mecasary for Cat III dis-<br>field monitor champel<br>me.                                                                                               | Inability to<br>generate a<br>Cat III dis-<br>able signal.       |          | Inability to recog-<br>use far field Cat<br>III "out of tolorance"<br>conditions.                                                                                                                                                                                                                                                          | ×      |                                                   | <u> </u> | NONE              | NONE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 0.874<br>1.498<br>1.498<br>0.102<br>1.4982<br>0.102<br>1.4982<br>0.530<br>0.530<br>0.242 | Redundancy/as bean incor-<br>porated in the design to<br>minimize the failure mode<br>propability of occurrence. |
| Generation<br>da a cro-<br>neous ca fi<br>monitor<br>alarm.                                                                                                                                                              | Generation<br>of an erro-<br>monitor<br>alarm.                                                                                                                                                         | Generation<br>Botan erró-<br>monitor<br>alarm.                   |          | After a nominal 70<br>accord time delay.<br>the emite localiser<br>etation will abut<br>down. Five accords<br>down. Five accords<br>the soundown.<br>the soundown.                                                                                                                                                                         |        |                                                   | ×        |                   | "NANOC<br>- LOHS<br>- |       | 0.512<br>249C                                                                            | Siace this failure mode' can<br>lead directly to a shutdown<br>withour a Cat III disable. It<br>is basardous.    |

5

SILS System

| 12 10 27              |              | ×.                         | only paycho-                                                                                       |                                                                                                                            | Cat III far<br>stift avail-                                                                                 | to system                                                                                                     | r gates) effect<br>1 circultry<br>ardoue.                                                                 | affect Cat,                                                                                      |
|-----------------------|--------------|----------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| e d                   |              | Remar                      | Not hazardous<br>logical implicatio                                                                |                                                                                                                            | Not hazardous                                                                                               | Not hazardous<br>warning née vital<br>operation.                                                              | Only 49HI (inpu<br>actual monitoring<br>which can be hau                                                  | Not hasardous - 1<br>conditions do not<br>III performance.                                       |
|                       |              | Rate (Ax 10 <sup>6</sup> ) | 0.514<br>Å9E                                                                                       | 0.525<br><sup>3</sup> 49E                                                                                                  | 3.986<br>19F                                                                                                | 1.214<br>1.214                                                                                                | 0. 621<br><sup>349H</sup><br>(rotal)<br><sup>3</sup> 49H1 =<br>0. 213                                     | 1.476 <sup>.</sup>                                                                               |
|                       | <b>s</b> uc  | Other                      |                                                                                                    |                                                                                                                            |                                                                                                             |                                                                                                               |                                                                                                           |                                                                                                  |
|                       | ure Indicati | Control<br>Unit            | (NONE)                                                                                             | ABN",<br>SHUT-<br>LOWN"<br>and<br>FIELD<br>SHUT-<br>DOWN"                                                                  | (NONE)                                                                                                      | (NONE)                                                                                                        | "ABN"<br>*nd<br>"FAR<br>FIELD<br>MONITOR<br>XIS-<br>MATCH"                                                | (NONE)                                                                                           |
| 1                     | Fall         | Remote                     | (NONE)                                                                                             | "MON<br>ABN"<br>and<br>OFF"                                                                                                | (NONE)                                                                                                      | (NONE)                                                                                                        | NON<br>AEN"<br>and<br>"MAIN"                                                                              | (NONE)                                                                                           |
|                       | r.           | Ĭ                          |                                                                                                    | ×                                                                                                                          |                                                                                                             |                                                                                                               |                                                                                                           |                                                                                                  |
|                       | Operat       | Futur<br>Cat II            |                                                                                                    |                                                                                                                            |                                                                                                             |                                                                                                               |                                                                                                           |                                                                                                  |
|                       | Sy atem      | After<br>Cat III           | ×                                                                                                  | ,                                                                                                                          | ×                                                                                                           | ×                                                                                                             | ×                                                                                                         | ×                                                                                                |
|                       |              | Failure Effect             | No effect on ayatem<br>operation - only a<br>false shutdown warn-<br>ing signal is gener-<br>ated. | Jmmediate shutdown<br>of the emite local-<br>iter atation with no<br>warning signal gen-<br>erated prior to shut-<br>down. | Loss of Cat II far<br>field monitoring<br>capability. Cat III<br>diable signal still<br>processed normally. | Loss of shutdown<br>warning capability<br>to pilot priar to<br>shutdon priar to<br>"true" far field<br>alarm. | Only the input gat-<br>ing circultry may<br>be basardous<br>match conditions<br>in themselves are<br>not. | No asrious effect<br>on aystern - alarm<br>status conditions<br>are still processed<br>normally. |
|                       |              | Fallure<br>Mode            | Gencration<br>of a shut-<br>down alert<br>only.                                                    | Generation<br>cf a shut-<br>down signal.<br>(No warning)                                                                   | Inability to<br>process a<br>Cat II mon-<br>itor alarm.                                                     | Inability to<br>process a<br>shutdown<br>alert.                                                               | Generation<br>of an erro-<br>neous mis-<br>match sig-<br>nal.                                             | Inability to<br>process a<br>milamatch<br>condition at<br>the FFM.                               |
| K F AK F IELU MUNITUK |              | Function                   |                                                                                                    |                                                                                                                            |                                                                                                             |                                                                                                               |                                                                                                           |                                                                                                  |
|                       | ton          | t. D.<br>No.               | 6                                                                                                  |                                                                                                                            |                                                                                                             |                                                                                                               |                                                                                                           |                                                                                                  |
| Subsystem LOC         | [dentificat  | ltem<br>Name               | Jombining<br>Circuita<br>Continued                                                                 |                                                                                                                            |                                                                                                             |                                                                                                               |                                                                                                           |                                                                                                  |

and the second second

System SSILS Subvision 1 OCAT 17 FB FAB FIFT D V

| Page 24 of 27       |               | Remarks                     | ardora wilden<br>stil avallably after<br>ada.                                 | ardous;                                                                                                             | ardous - if power of<br>effect far field monitor<br>nance, the monitors will<br>nance, the monitors will        | 4.<br>                                                                                                                                            |
|---------------------|---------------|-----------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |               |                             | Not has<br>mitter<br>downgy                                                   | Not bas                                                                                                             | Not has<br>temp dr<br>perform<br>alarm.                                                                         |                                                                                                                                                   |
|                     | Fullers       | Rate<br>fAx 10 <sup>6</sup> | 0. 357<br>1491                                                                | 0. 436<br><sup>3</sup> 49K                                                                                          | 0. 852<br><sup>14</sup> 9L                                                                                      | <b>269</b> 0                                                                                                                                      |
|                     | suc           | Other                       | A power or<br>temp light<br>may or by<br>"on" at<br>fifm,                     | "pwr" on<br>"temp"<br>light at the<br>fim.                                                                          |                                                                                                                 | AL FFM no<br>power or<br>temp<br>alarma<br>displayed.<br>displayed.<br>channels<br>relit alarm<br>after shut-<br>down.                            |
|                     | lure(Indicati | Control<br>Unit             | "ABN"<br>"FAR<br>"FIELD<br>PWR/<br>TEMP"                                      | (NONE)                                                                                                              | (NONE)                                                                                                          | "ADR"<br>"SHUT-<br>"SHUT-<br>"FAR"<br>"FAR"<br>"FAR"<br>"FAR"<br>TELD<br>MIS-<br>MATCH",<br>TEAP"<br>TEAP"                                        |
|                     | Fai           | Remate<br>Col. Jol          | "POW -<br>ER/<br>ENVIR<br>ABN"<br>ABN"<br>. MAIN"                             | (NONE)                                                                                                              | (NONE)                                                                                                          | NBN",<br>ABN",<br>ABN"<br>ABN"<br>OFF.                                                                                                            |
|                     | Ę             | , ž                         |                                                                               |                                                                                                                     |                                                                                                                 | ×                                                                                                                                                 |
|                     | oper-         | Cat II                      | Down<br>Brade<br>II af-<br>ter<br>driay                                       |                                                                                                                     |                                                                                                                 |                                                                                                                                                   |
|                     | System        | After<br>Cat 15             | ×                                                                             | ×                                                                                                                   | ×                                                                                                               |                                                                                                                                                   |
|                     | ,             | Failure Effect              | System falsely down-<br>graded to Cat II<br>status after a set<br>time dulay. | No effect on system<br>appration whatsoo<br>ever - only a filse<br>light "on" at far<br>field monitor sta-<br>tion. | Loss of pur/temp<br>monitoring ability<br>of the far field<br>monitor;                                          | Immediate shutdown<br>of the emire local-<br>laser station, coused<br>by the generation of<br>a shutdown signal<br>from the far field<br>monitor. |
|                     |               | Fallure<br>Mode             | Generation<br>of an erro-<br>usous per/<br>temy alarm.                        | Generation<br>of an erro-<br>neous pers/<br>temp alarm<br>that is dia-<br>played only<br>locally.                   | Inability to<br>process a<br>pyritemp<br>atarm for<br>atarm for<br>either re-<br>mote or<br>local dis-<br>play. | Loss of dc<br>output volt-<br>age on +5v<br>regulator.                                                                                            |
| R FAR FIELD MONITOP |               | Function                    |                                                                               |                                                                                                                     |                                                                                                                 |                                                                                                                                                   |
| IJZTIV:             | uo            | Υ. D.                       | 49                                                                            |                                                                                                                     |                                                                                                                 |                                                                                                                                                   |
| Subeyatem LOC       | Identificati  | ftem<br>Name                | Corry aing<br>Circuite<br>(Continued)                                         |                                                                                                                     |                                                                                                                 |                                                                                                                                                   |

Localizer Failure Analysis (Cont'd) Table C.I.

A STATE

Not hazardous - both converters still operational after downgrade. Note failure mode, has the same effect as an fim hattery failure. Design changes provided down-grade capability. Page.25 of 21 Not bazardous - ( oth traca-mitters still available after downgrade. Remarko NOTE Failure Fate (Ax 10<sup>6</sup>) 0. 095 Å9N 2.412 0.050 Å 5.790 0.519 <sup>3</sup>50B ¥50A ΥNΥ light "on" at FFM. "Charger FAIU" light "on" at FFM "CONV FALL" light "on" at FFM. Other FALL" Fallure Indications Control Unit "ABN" and "FAR FIELD PWR/ TEMP" "ABN" and "FAR FIELD PWR/ TEMP" TEMP (NONE) (NONE) "NBA' None ex-cept "Cat II" after tims de-lay. "PWR/ ENVIR ABN" and "MAIN" Remote Control "NIAN" "MAIN" (NONE) "PWR/ ENVIR ABN" and "PWR/ ENVIR ABN" AbN" Cat III Cat II OII System Operation After Failure Down-grade to Cat II af-Down-grade to Cat II af-Down-grade to Cat 21 af-Down-grade to Cat ter time delay. delay. delaý. time delay. ter time time ter л Ц × ×. × × × If the remaining con-verter also fails, the localizer station will be shut down, due to channels, hence, losing al: far field monitoring capabil-System falsely downgraded to Cat II status after a set If another failure of the battery charg-er causing loss of +24v occura, im-mediate shutdown of the localizer station will result. Insbility to turn on far fleic monitor maining converter. System maintains operation on far field monitor bat-System maintair operation on remonitor channel Fallure Effect time delay. alarms. tery. Γζ. "Low volt-age" battery disconnect circuit fail-ure, discon-ure, discon-battery from the load. Loss of -18 volts output. Loss of +24 volts output. Loss of monitor en-able signal. Generation of an erro-neous con-verter fail alarm. Fallure Mode The battery charger aup-plies +24 volts to each of the units at the fin field monitor - the two con-verters. the three re-ceivers and their respect-ive monitor channels, and the combining circuits assembly. The battery assembly. The battery assembly and battery at the combine charger and battery and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the combine charger and the charger and the combine charger and the charger and the combine charger and the c Each of the DC/DC con-verters of the fir field monitor provides -18v. used in the monitor chan-nels and the receivers. They are in parallel and lsohated by diodes. System SSIIS Subsystein LOCALIZER FAR FIELD MONITOR Function 20 ş 2 2 3 Identification Circuite (Ccatinued) Item Combining DC/DC Converter Name No. 1 or No. 2 (FFM) Battery Charger

٢,

4

ť

1.1.1

| Fage 26-of 27      | Svaterie Operations Failure Indications | After Failure Remain Control Control Cabor Patience Pernarba | - X (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE) (NONE | X     Journ-     'PWR/     "ABN"     "Charger     0' 126     Not harardoun - far field       II     X     X and     FAIL"     No     No     harardoun - far field       II     Kodz     ENVIR     FAIL"     NO     No     harardoun - far field       II     ABN"     'FAR     Italt     NO     No     harardoun - far field       II al.     ABN"     'FAR     Italt     NO     no     harardoun - far field       II al.     ABN"     'FAR     Italt     on     harardoun - far field       II al.     ABN"     'FAR     Italt     on     harardoun - far field       II al.     MAN"     'FAR     Italt     on     harardoun - far field       tore     TEMP     at FFM.     tore     tore     harardoun - far field       time     'MAN"     TEMP     tore     tore     harardoun - far field | X ISONEJ (NONE) 7.656 Not basardous - preventive<br>Soft maintenance required for<br>Extremy chech.  | X NAON "ABN" RF, Cad bo 879 The SDM strap option provided<br>ABN" and SDM ights NN remote reception of failure.<br>"WAIN" FIELD the control of failure.<br>"WAIN" FIELD respecting<br>MIS- monitor<br>MIS- monitor<br>MIS- monitor<br>MIS- monitor                                   | - X (INONE) (NONE) 0.825 Not hazardous - far field Cat<br>NA 111 monitoring cannot laad to<br>a abutdown, only a performance<br>degradation.                                         |
|--------------------|-----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                         | r Failure Ff                                                 | Does not eff.<br>tem operation<br>trickic chart<br>af-<br>still be appli<br>ver the battery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on System false<br>co- downgraded<br>arg. sistus after<br>sistus after<br>sistos delay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | us Far field me<br>maintain ne<br>maintain at<br>anly. operation at<br>slightly high<br>ply woltage. | <ul> <li>Loss of the<br/>signal to the<br/>rearry responding 1<br/>will produce<br/>monitor mis<br/>nonitor wit<br/>pablity. Nor<br/>product upon<br/>for system of<br/>for system of<br/>for system of</li> </ul>                                                                   | Loan of 2-of<br>ag itor voting co<br>for the Cati<br>Cat dent upon 1.<br>for Cat III pr<br>for Cat III pr<br>for Cat III pr                                                          |
| TOR                |                                         | 'Failur<br>Mode                                              | Loss of<br>equalize<br>charge c<br>publity (<br>ter a pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Generiju<br>of an e'r<br>neous ch<br>er fai<br>alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conticio<br>equalize<br>voltage o                                                                    | rion Total loi<br>ree of output<br>ig- signal or<br>the major si<br>al distortio<br>re<br>t to<br>t the<br>eld                                                                                                                                                                       | Loss of monitori<br>a monitori<br>s of shifty - 1<br>s of ducing a<br>t = 111 DDM<br>ag. alarm.                                                                                      |
| ER FAR FIELD MONE  |                                         | Function                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | Zach of the far field i<br>fior receivers receive<br>a low level of topus ai<br>wal and converts it to<br>it.S audo and dc aign<br>which is then the upu<br>tha respective mention<br>tha respective mention.<br>auduo of gail or opus<br>estative of the far fi<br>course position. | To provide monitorin,<br>of the course position<br>in the far field region<br>the nursery. It provid<br>both Cai III and Cai II<br>both Cai III and Cai II<br>alarm librit monitoric |
| SILS<br>CALLZI     | lin<br>I                                | . n.<br>. v.                                                 | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | នឺភឺ៖ន                                                                                                                                                                                                                                                                               | 35.25                                                                                                                                                                                |
| Syatem System 1.00 | Identificat                             | ltem<br>Name                                                 | Battery<br>Charger<br>(Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | Receiver<br>No. 1, No. 2,<br>or No. 3                                                                                                                                                                                                                                                | Monattor<br>Clarmels<br>No. 1. No. 2.<br>or No. 3                                                                                                                                    |

C-27

| (Cont'd)     |
|--------------|
| Analysis     |
| Failure      |
| Localizer    |
| C-1.         |
| <b>Fable</b> |

SSILS System \_

| Pare 27 of 27        | Indications Failure | ntrol Other Rate Rate init. Other (Ax 106) | N" DDM light 11.099 A Category III DDM alarm<br>.on" at ANB may or may not be produced.<br>ILD NITOR<br>NITOR FFM.                | NE) 4.422 Note that this failure mode<br><sup>A</sup> NC applies to either or both<br>Cat III or Cat II DDM alarma.                  | IN" Temp 0.050 Not baraıdous - far field<br>a larm lighd <sup>3</sup> 59A monitorna, etill avállablo<br>LÖ FFM. after downgrivde.<br>AP. | NE) 0.050 Not hazardous - if temperature<br>A59B effect monitoring, alarre, will<br>occur. |
|----------------------|---------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                      | Failu               | Remote<br>Control                          | NOW.<br>NBN.<br>NALN.                                                                                                             | (NONE)                                                                                                                               | "POW- "POW- "FR/ "FR/ "FR/ "FR/ "FR/ "FR/ "FR/ "FR/                                                                                      | (G<br>NON)                                                                                 |
| <u> </u>             | ration .            | ure<br>II Oti                              |                                                                                                                                   |                                                                                                                                      | 1                                                                                                                                        | ·                                                                                          |
|                      | in Ope              | r Fail                                     |                                                                                                                                   |                                                                                                                                      | Dows<br>grad<br>to Cd<br>ter<br>délay                                                                                                    |                                                                                            |
|                      | Syate               | Cat III                                    | ×                                                                                                                                 | ×                                                                                                                                    | ×                                                                                                                                        | ×                                                                                          |
|                      |                     | Failure Flfect                             | Loss of 2 of 3 mon-<br>itor voting capabil-<br>ity. Now dependent<br>upon 1 of 2 remain-<br>ing monitors for<br>system operation. | Loss of 2 of 3 mon-<br>itor voting capabil-<br>ity. Now dependent<br>upon 2 of 2 remain-<br>ing monitor for far<br>field monitoring. | System falsely<br>downgraded to Cat<br>II status after a set<br>time delay                                                               | Loss of temperature<br>monitoring ability<br>without recognition.                          |
|                      |                     | Failure<br>Mode                            | Loss of<br>monitoring<br>ability pro-<br>ducing Cat<br>II DDM<br>alarrn.                                                          | Loss of<br>monitoring<br>ability<br>producing<br>no alarme.                                                                          | Generation<br>of an erro-<br>neous temp.<br>alarm.                                                                                       | Inability to<br>Produce a<br>temp.<br>alarm.                                               |
| ER FAR FIELD MONITOR |                     | Function                                   |                                                                                                                                   |                                                                                                                                      | Monitors the tomperature<br>of the FFM for out of<br>tolerance conditions.                                                               |                                                                                            |
| CALIZ                | tion                | I. D.<br>No.                               | 56,<br>57,<br>58<br>58                                                                                                            |                                                                                                                                      | 65                                                                                                                                       |                                                                                            |
| Subeyetem LO         | Identifica          | ltem<br>Name                               | Monitor<br>Chemiele<br>(Continued)                                                                                                |                                                                                                                                      | Temp.<br>Sensor                                                                                                                          |                                                                                            |

Appendix D Glideslope Failure Analysis

## Appendix D

## Glideslope Failure Analysis

This appendix, referred to in section 7.0, consists of the failure analysis for the glideslope, as shown in table D-1.

5.5

| Svetem St<br>Subsveteni G                        | SILS<br>LIDESI | LOPF STATION                                                                                                                                                                                   |                                                                                                                                          |                                                                                                                                   |          |          |                                                                                              |                                          |                                                                                                                                                        |                                                                            | ['asseo[_] <u>8</u>                                                                                                                                                                                                             |
|--------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ldentificat                                      | Ľ              |                                                                                                                                                                                                |                                                                                                                                          | 1                                                                                                                                 | System C | peration |                                                                                              | Failure Ind                              | ications                                                                                                                                               | P'ailu                                                                     | ې<br>•                                                                                                                                                                                                                          |
| lten:<br>Name                                    |                | Function                                                                                                                                                                                       | l ailure<br>Mode                                                                                                                         | Failure Flicet                                                                                                                    |          | •1 II 0  | Rent<br>Cunti                                                                                | ste Contre<br>rol Whit                   | other Other                                                                                                                                            | Rair<br>IAX J                                                              | 16) Remarks.                                                                                                                                                                                                                    |
| Course Transe<br>mitter (MAIN<br>or STANDRY)     | 5225           | The course transmitter<br>in contunction with the<br>10 watt amplifier de-<br>livers a l'111° carrier to<br>the modulator.                                                                     | Inss or de-<br>gradation of<br>l'HF carrier.                                                                                             | Loss of all course<br>signal radiation.<br>effecting the entire<br>glidepath angle and<br>width.                                  |          | ×        | AB AB                                                                                        | NN NN NN NN NN NN NN NN NN NN NN NN NN   | Alarme<br>course.<br>NS- sensitiv<br>and nea<br>field m<br>tors.                                                                                       | on 6.73                                                                    | <ul> <li>Failure of standby unit keeps</li> <li>"main" operational and shuts<br/>standby down.</li> <li>NOTE</li> <li>Although mear field monitor</li> <li>lights are "on", their alarms</li> <li>are not processed.</li> </ul> |
| Clearance<br>Transmitter<br>(MAIN or<br>STANDBY) | 2 2 2          | The clearance trans-<br>mutter supplies a l'HF<br>carrier modulated at<br>15012 which is used to<br>ensure low approach<br>angle coverace.                                                     | Loss or de-<br>kradation of<br>the 150112<br>modulation.                                                                                 | Loss of clearance<br>coverage of approach<br>angle. (Pure carrier<br>radiated)                                                    |          | )<br>¥   | MC<br>AB<br>XII<br>ST                                                                        | NN ABN<br>N and<br>A TRA<br>BY FER       | <ul> <li>"SDM A<br/>DDM"</li> <li>NS- lights of<br/>clearant<br/>monitor</li> </ul>                                                                    | 16-1 UN                                                                    | <ul> <li>Failure of standby unit keeps</li> <li>'main" operational and shute</li> <li>standby down.</li> </ul>                                                                                                                  |
|                                                  |                |                                                                                                                                                                                                | loss or de-<br>cradation of<br>UHF carrier                                                                                               | Loss of clearance<br>coverage of<br>approach angle.                                                                               |          | ×        | AB<br>AB<br>ST                                                                               | NN ABN<br>N and<br>BY FER                | <ul> <li>SDM"</li> <li>DDM"</li> <li>DDM"</li> <li>ND- RND - R</li> <li>NNS- AND - R</li> <li>Ilights or</li> <li>Clearant</li> <li>monitor</li> </ul> | 6.73                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                           |
| 10 Watt Ampli-<br>fier (MAIN or<br>STANDBY)      | 03 C           | The 10 watt amplifier<br>merely amplifies the<br>course UHF carrier.                                                                                                                           | Loss or de-<br>gradation of<br>UHF carrier.                                                                                              | Loss of all course<br>signal radiation.                                                                                           |          | ×        | ABN<br>ABA<br>ABA<br>ABA<br>ABA                                                              | NN "ABN"<br>F and<br>A "TRA<br>BY" FER   | " Alarma<br>course.<br>NS- sensitiv<br>" and near<br>field mo<br>tors.                                                                                 | on 0.68<br>lty, <sup>Å</sup> N<br>ni-                                      | <ul> <li>Evaluate of standby unit keeps</li> <li>"main" operational and ohute<br/>standby down.</li> </ul>                                                                                                                      |
| Modulator<br>(MAIN or<br>STANDBY)                | 0.03           | Provides course liff<br>carrier amplitude modu-<br>lated by a OHY and 150<br>late and CSE C+SB. 150<br>late at CSE C+SB. 150<br>signal: a low frequency<br>iSOH2 signal which feeda<br>mitter. | Inse of low<br>frequency os-<br>cillator (14.4<br>kHz) reult-<br>ing in loss of<br>all 90Hz and<br>150Hz modu-<br>150Hz modu-<br>lation. | Loss of the follow-<br>(rg system signals:<br>L. LF 150<br>2. SB in clearance<br>C-SB<br>3. Course SBO<br>4. SB in course<br>C+SB |          | ×        | AB<br>AB<br>ST<br>ST                                                                         | NU "ANN "ANN "ANN "ANN "ANN "ANN "ANN "A |                                                                                                                                                        | on 2.61<br>ity. <sup>A</sup> N <sup>2</sup><br>ity. <sup>a</sup> e.<br>Id. | <ol> <li>"Transfer" would not occur<br/>on failure of tandby unit.<br/>Loss of Cat. III status would<br/>occur even though "main"<br/>is still operational.</li> </ol>                                                          |
|                                                  |                |                                                                                                                                                                                                | Loss of UHF<br>carrier to<br>digital phas-<br>ing chts. (to<br>either or<br>both of the<br>both of the<br>bhase shifter                  | Loss of SB in course<br>C-SB signal and<br>course SBO signal,                                                                     |          | ×        | AB<br>AB<br>AT<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB | NU "ABN<br>Nu" and<br>BY" FER<br>BY"     | " Alarma<br>all cour<br>NS- sensitiv<br>and near<br>field mo<br>tora.                                                                                  | on 0.42<br>He <sup>A</sup> N1<br>Ity, <sup>n</sup> i-                      |                                                                                                                                                                                                                                 |

Table D-1. Glideslope Failure Analysis

ŧ

1

¥

sensitive a series and some produced as the series and sensitive and the series of the

.

A. Martin

and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

The Work of the owner of the second

SSILC Svetem

| Subsystem                                        | 1011         | ILOPE STATION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                            |                  |                        |                 |                            |                                                                                                |                           | Page 2 of 18                                             |
|--------------------------------------------------|--------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|------------------------|-----------------|----------------------------|------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------|
| Identifica                                       | tion         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                            | Syatem           | Operation              |                 | Fallure Indic              | ations                                                                                         |                           |                                                          |
| ltern<br>Name                                    | 1. D.<br>No. | Function      | Failure<br>Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fallure Effect                                                                             | After<br>Cat III | Failure<br>Cat II   01 | Contr           | te Control<br>ol Unit      | Other                                                                                          | Rate ()                   | Remarks                                                  |
| Modulator<br>(MAR) or<br>STANDBY)<br>(continued) | 3 7 9        |               | Less of 90 or<br>150 Hz div-<br>iders. syn-<br>chronization<br>chronization<br>of SoHz<br>shift regis-<br>ters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Out of tolerance<br>course C45B and<br>SBO and clearance<br>C45B signals.                  | -/// ·····       | ×                      | 10W.<br>14V     | N XABNT<br>Pad<br>TRAN     | Alarmo on<br>all courses.<br>. sernitivity.<br>near field<br>and clear-<br>ance moni-<br>tors. | 1.453<br><sup>1</sup> .NC |                                                          |
|                                                  |              |               | Loas of <sup>3</sup> 2<br>driving signal<br>to delay linc<br>feither the<br>90Hz or 150<br>Hz phase<br>shifter1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Silght diatortion of<br>the course C4SB and<br>S90 aignals.                                | ×                |                        | NON<br>I        | E NONE                     |                                                                                                | 2.426<br>DN/              | Not-hazardous-signal atili<br>within Cat. 111 tolerance. |
|                                                  |              |               | Loss of V <sub>16</sub><br>driving signal<br>to the delay<br>Unes (either<br>the 90Kz or<br>150Kz phase<br>shifters).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distortion somewhat<br>more than A <sub>32</sub> of the<br>course C+SB and<br>SBO signals. | ×                | <u> </u>               | NON             | NONE                       |                                                                                                | 2.426<br><sup>A</sup> NE  | Not-hazardous-signal still<br>within Cat. III tolerance. |
|                                                  |              |               | Loss of A <sub>8</sub> .<br><sup>1</sup> <sup>1</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup><br><sup>1</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup><br><sup>1</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup><br><sup>1</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup><br><sup>1</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup><br><sup>1</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup><br><sup>1</sup> <sup>2</sup> <sup>2</sup><br><sup>1</sup> <sup>2</sup> <sup>2</sup><br><sup>1</sup> <sup>2</sup> <sup>2</sup><br><sup>1</sup> | Out of tolerance<br>course C45B and<br>SBO eignals.                                        |                  | ×                      | BLS.            | NR ABN<br>Ara and<br>Y FER | Alarms on<br>all course,<br>sensitivity,<br>and near<br>fiel' moni-<br>tors.                   | <sup>12.632</sup>         |                                                          |
|                                                  |              |               | Lous of +90.<br>-90. +150. or<br>-150Hz phace<br>shifter RF<br>signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Our of tolerance<br>C45B aigcal,                                                           |                  | × <sup>.</sup>         | DATE CONTRACTOR | NN                         | Alarms on<br>all course.<br>sensitivity<br>and near<br>fors.                                   | 1.302<br>NG               |                                                          |

5

~

System SSIIS Subsystem GIJDESLOPE STATION

Service and

· · · · · 2

1.2.25

| Subsystem G                                                | - IOLI  | TOPE STATION                                                                                                                        |                                                                                |                                                                                                                                                     |                  |                   |    |                                  |                                                       | ٢                                                        |                             | Page 3 of 18                                                                                                                                               |
|------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|----|----------------------------------|-------------------------------------------------------|----------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identificat                                                | nai     |                                                                                                                                     |                                                                                |                                                                                                                                                     | System           | Operativ          | ╞  | Fallu                            | re Indicatic                                          | 500                                                      | Failure                     |                                                                                                                                                            |
| Item<br>Name                                               |         | Function                                                                                                                            | Failure<br>Mode                                                                | Failure Effec                                                                                                                                       | After<br>Gat III | Failure<br>Cat II | 10 | termate<br>"antrol               | Control<br>Unit                                       | Other                                                    | Rate (IXX 10 <sup>6</sup> ) | Remarks .                                                                                                                                                  |
| Modulator<br>Icontinued                                    |         |                                                                                                                                     | Less of the<br>15011 sinu-<br>sridal signal<br>for clearance<br>transriission- | Out of tolerance<br>clearance C*SB<br>signal.                                                                                                       | ,<br>,           | ×                 | ;  | MON<br>ABN'<br>and<br>STBY''     | "ABN"<br>and<br>"TRAKS-<br>FER"                       | Alarme on<br>all čicar-<br>ance moni-<br>tore.           | HN.                         | ×                                                                                                                                                          |
| Course Noni-<br>tor Channels<br>11.2. or 31<br>MARN        | ## ##   | Pr v ide monitoring of the<br>course position path<br>angle (2)231, the<br>modulation (SDMI) and<br>the course TTHP power<br>level. | Loss of noni-<br>torine ability-<br>producine<br>alarma.                       | Loss of 2 of 3 moni-<br>tor voing tapabilitu.<br>Now diperdent on 1<br>No 2 remaining moni-<br>tors for avatem<br>control.                          | ×                | ·- <u>`</u> ,     |    | MON<br>ARN<br>ARN<br>And<br>MAIN | MONI-<br>TOR MIS-<br>MATCH<br>and<br>ABN              | Alarm<br>light(s)'u.<br>defective<br>monitor<br>channel. | 12.689<br><sup>X</sup> :XA  | If another corresponding moni-<br>tor alarm failure occurred in<br>one of the remaining two moni-<br>tors, immediate glidestope shut-<br>down will result. |
|                                                            |         |                                                                                                                                     | Lots of moni-<br>toring ability,<br>producing no<br>alarms.                    | Loss of 2 of 3 moni-<br>tor voting capability.<br>Now dependent upon<br>2 of 2 remaining<br>monators for evetent<br>control.                        | ¢<br>X           | 1                 |    | NONE                             | NONE                                                  |                                                          | 4.836<br>\`xB               | <b>,</b>                                                                                                                                                   |
| Course Moni-<br>tor Channel<br>(STANDBY)                   | 4       | Same as main course<br>monitor channels except<br>moditors course para-<br>meters of standby unit.                                  | Loss of moni-<br>toring ability.<br>producing<br>alarms.                       | Shutdow n of standby<br>transmitter.                                                                                                                |                  | x                 |    | MON<br>ABN<br>and<br>MAIN        | ABN                                                   | Alarm<br>líght(s) on<br>standby<br>course<br>monitor.    | 12.689<br>46A               |                                                                                                                                                            |
|                                                            |         |                                                                                                                                     | Loss of moni-<br>torine ability.<br>prodecine no<br>alarms.                    | Lots of standby<br>course nonitoring.                                                                                                               | ×                |                   |    | NONE                             | NCYE                                                  |                                                          | 4.836<br>\46B               |                                                                                                                                                            |
| Senaitivity<br>Monstor<br>Channels 1, 2,<br>or 3<br>(MATV) | 3 4 2 6 | Provide monitorine of the<br>the course width (DDVI)                                                                                | Loss of noni-<br>toring ability.<br>producing<br>alarnis.                      | Loss of 2 al. 3 moni-<br>tor votine capability.<br>Now dependent upon<br>Now dependent upon<br>a d 2 . emiainine<br>nonitors for system<br>control. | ×                |                   |    | MON<br>ABN<br>and<br>MAIN        | MONI-<br>TOR MIS-<br>MATCH <sup>-</sup><br>and<br>ABN | Alarm<br>light(s) on<br>defective<br>monitor<br>channel. | 1.367<br>`.XA               | If another corresponding moni-<br>tor DDM failure occur red in<br>one of the remaining two moni-<br>tors. innrediate glideslope<br>shújdown.will result.   |
|                                                            |         |                                                                                                                                     | Loss of rroni-<br>toring ability-<br>producing no<br>(larms.                   | Loss of 2 of 3 moni-<br>tor voting capability.<br>Now dependent upon v<br>2 of 2 remaining<br>monitors for system<br>control.                       | ×                |                   |    | NOXE                             | NONE                                                  |                                                          | 2.802<br>\.xr               | 'unly DDM monttorink circuitry<br>is critical.                                                                                                             |
|                                                            |         |                                                                                                                                     | a.s                                                                            | aproduced from<br>est available cop                                                                                                                 |                  |                   |    |                                  | <u> </u>                                              |                                                          |                             |                                                                                                                                                            |

ŧ

| (Cont'd)   |
|------------|
| Analysis   |
| Failure    |
| Glideslope |
| Table D-1. |

| vatem ClJD                                                         |                    | OPE STATION                                                                                             |                                                            |                                                                                                                                                   |         |         |          |                                |                                              |                                                             |                           | Pare 4 of 18                                                                                                                                           |
|--------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|--------------------------------|----------------------------------------------|-------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| lification                                                         | Ţ                  |                                                                                                         |                                                            |                                                                                                                                                   | System  | Operati | Ę        | 315                            | ure Indicati                                 | a u c                                                       | Failure                   |                                                                                                                                                        |
| <u>- ș</u>                                                         | ċ ċ                | Function                                                                                                | Fallure<br>Mode                                            | Failure Effect                                                                                                                                    | Cat III | 11 10   | ž        | Penule<br>Control              | Control<br>Unit                              | Other                                                       | RAIC 6                    | Remarks                                                                                                                                                |
| enst- 47<br>Attor                                                  | 5                  | Provide monitoring of the<br>standby course width<br>(DDM).                                             | late af moni-<br>taring ability<br>producing<br>alarma.    | Shutdown of the<br>standby transmitter.                                                                                                           |         | ×       |          | "MON"<br>ABN"<br>and<br>"MAIN" | ABN                                          | Alarm<br>Light(a) on<br>standby<br>sensitivity<br>monitor.  | 9.367<br>Å 47Å            | Only DJJM monitoring circuitry<br>is critical.                                                                                                         |
|                                                                    |                    |                                                                                                         | Loss of moni-<br>toring ability<br>producing no<br>alarms. | Loss of standby<br>course monitoring.                                                                                                             | ×       | Ţ       | 4        | NONE                           | NONE                                         |                                                             | 2.802<br><sup>1</sup> 47B | ,<br>,<br>,<br>,                                                                                                                                       |
| 1, 2, 41                                                           | 2.2.7.2<br>2.2.7.2 | Provide monitoring of the<br>near field cnurse posi-<br>tion path angle (DDNI)                          | Loss of moni-<br>toring ability<br>producing<br>alarms.    | Losa of 2 of 3 moni-<br>tor voting capability.<br>Sow dependent upon<br>1 of 2 remaining<br>monitors for system<br>control.                       | ×       | k       |          | -MON-<br>ADN<br>and<br>MAIN-   | "MONI-<br>TOR MIS-<br>MATCH"<br>and<br>"ABN" | Alarm<br>light(s) on<br>defective<br>near field<br>monitor. | \$20.11                   | SDM and DDM are strapped to<br>provide one general alarm<br>output.                                                                                    |
|                                                                    |                    |                                                                                                         | Loss of moni-<br>toring ability<br>producing no<br>alarma. | Loss of 2 of 3 moni-<br>tor voting capability.<br>Novi dependent upon<br>2 / 2 remaining<br>montors for system<br>control.                        | ×       |         |          | NONE                           | '<br>NONE                                    | -<br>-                                                      | 3,872<br>- ÅNB            |                                                                                                                                                        |
| * 44<br>11,2<br>11,2<br>12,1<br>12,1<br>12,1<br>12,1<br>12,1<br>12 | 2                  | Provide monitoring of the<br>clearance DDM. & mod-<br>ulation, and clearance<br>UVIF power level.       | Lous of moni-<br>toring ability<br>producing<br>alarm.     | Loss of 2 of 3 mont-<br>tor voting čapability.<br>Now dependent upon<br>1 of 2 remaining<br>monitors för system<br>control.                       | ×       |         |          | NOW.                           | WMONT-<br>TOR MIS-<br>MATCH"<br>and<br>"ABN" | Alarm<br>Maht(e) on<br>defective<br>clearance<br>montror.   | 13.044                    | If another corrisponding membor<br>a larm failure eccurried to each<br>of the remaining two members,<br>timmediate glideslope shutdewn<br>will result. |
|                                                                    |                    | <b></b>                                                                                                 | Loss of moni-<br>toring ability<br>producing<br>no alarm.  | Loss of 2 of 3 mont-<br>tor voting capability.<br>Now dependent upon<br>Not dependent upon<br>2 of 2 gemaining<br>monitors for system<br>control. | ×       |         |          | NONE                           | NON                                          | ,                                                           | 4.848<br>, MB             |                                                                                                                                                        |
| ¥<br>• E                                                           |                    | Same a Main Cloarance<br>Monitor Channels except<br>mostrar clearance<br>partmeters of standby<br>unit. | Love of moni-<br>toring ability<br>producing<br>alarm.     | Shutdown of standby<br>ti namitter.                                                                                                               |         | ×       | <u> </u> | NOW.                           | "ABN"                                        | Alarm<br>Alarm<br>etandby<br>clearance                      | 13.044<br>Å48Å            |                                                                                                                                                        |

200

••

Pare 5 of 18 Remarke Failure Rate Ax 10<sup>6</sup>) 4. R48 1 • Other Failuse Indications Control Unit NONE System Operation Fail After Failure Remote Cat III Cat II Off Control NONE × Loss of Soont- Loss of standby toring shility clastance monitor-producing not ing. Jarm. Fallure Eifect Fallure Mode Function System SSIIS Subeystem <u>GIJDFSI,OPF</u> STATION ċġ Identification Monitor Channel ISTANDRY<sup>5</sup> Icontinue J ltern Name Clearance

٢

414

2

気で

AN AN

the sea of states and

1 1 .

1

1. e. t

}

1

\$21155 Svatem

|              |                 |                  |                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                       | i                                                                                                                                          |
|--------------|-----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Pare & of 18 |                 | Remarka          |                                                                                                                                                                                              |                                                                                                                                                                                                                               | Only Input gating circuit-RY<br>may be hazardous. (Elfecta<br>monitoring circuitry)                                                                                                                   | Redundancy has been lacor-<br>ported so that performance<br>downgrade is achieved in the<br>event of a "true Cat. III<br>alarm condition." |
|              | Failure         | Rate (10')       | 12.805<br>11                                                                                                                                                                                 | 2.004<br><sup>1</sup> .1B                                                                                                                                                                                                     | 2. R46<br>(1, 1C)<br>0.42)<br>(3, 1C2<br>(1, 1C2<br>0.14)<br>(3, 1C3<br>(3, 1C4<br>(3, 1C4<br>(3, 1C4)<br>0.42)                                                                                       | 3.470<br>1.249<br>1.249<br>1.249<br>1.249<br>0.140<br>0.140<br>0.700<br>(logic)                                                            |
|              | ane             | Other            |                                                                                                                                                                                              |                                                                                                                                                                                                                               | %5 mis-<br>match on<br>monitor<br>channels.                                                                                                                                                           |                                                                                                                                            |
|              | ure Indicati    | Control<br>Unit  | TRANS-<br>TFER<br>SHITT-<br>DOWN-<br>and<br>ABKOR-<br>MAL"                                                                                                                                   | "SHUT-<br>DOWN"<br>and<br>`ABNOR-<br>MAL                                                                                                                                                                                      | MIS-<br>MATCH<br>and<br>"ABNOR-<br>MAL"                                                                                                                                                               | ANON                                                                                                                                       |
|              | Failt           | Remote           | NOW.                                                                                                                                                                                         |                                                                                                                                                                                                                               | SIVM.<br>Put<br>SOK.                                                                                                                                                                                  | A NON                                                                                                                                      |
|              | ation           | ğ                | ×                                                                                                                                                                                            | ×                                                                                                                                                                                                                             |                                                                                                                                                                                                       |                                                                                                                                            |
|              | 1 Operal        | Cat ff           |                                                                                                                                                                                              |                                                                                                                                                                                                                               | 、<br>、                                                                                                                                                                                                |                                                                                                                                            |
|              | Syaten          | After<br>Cat III |                                                                                                                                                                                              |                                                                                                                                                                                                                               | ×                                                                                                                                                                                                     | ×                                                                                                                                          |
|              |                 | Fallure File 1   | Causes both the main<br>and the standby trans-<br>mitter to shutdow n<br>immediately after<br>the transfer.                                                                                  | Gauses both the main<br>mat the standby trans<br>mitter to shuidown<br>immediately.                                                                                                                                           | Miematch conditions<br>do not effect category<br>do formance: how-<br>ever, failure of in-<br>put gates may be<br>hazardous.                                                                          | Cat. Iff parameter<br>monitoring of the<br>finegral course.<br>sensitivity, and/or<br>clearance is vir-<br>tually rendered<br>useless.     |
|              | Fallure<br>Mode |                  | Generation of<br>an erroreous<br>transfer sig-<br>nal, due to<br>alsym prn-<br>cessing cir-<br>cuitry.                                                                                       | Generation of<br>an erroneous<br>shut-down<br>signal due to<br>alarm pro-<br>cealing cir-<br>cuitry.                                                                                                                          | Generation of<br>marroseous<br>mismatch<br>signsi.                                                                                                                                                    | Inability to<br>transfer a<br>nal from the<br>ntegral<br>course, and<br>or clearance<br>monitors.                                          |
| LOPE STATION |                 | Function         | The control unit process.<br>es alarms received from<br>the montior channels,<br>providing signals to shut-<br>down the signaby trans-<br>mitter, to transfer main<br>to standy, to shutdown | book in transmitters. At for<br>indicate a monitor mis-<br>match. In addition, the<br>control unit experates<br>timbibit signals, displays<br>both locally and remotely<br>transmitter and cateory<br>transmitter and cateory | various power femper-<br>aure alarm conditions<br>operational features.<br>such as bypass of moni-<br>tors, main unit select,<br>memorization alarms<br>are also associated with<br>the control unit. |                                                                                                                                            |
| Sig          | 8               | ů;               | 5                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                            |
| Subsystem G  | Identificati    | ltern<br>Name    | Control Unit                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                            |

ì

÷.

| Pare 2 of 18              |              | Remarka           |                                                                                                  | Redundancy has been incorporated<br>so that performance down grade is<br>achieved in the event of a "true<br>near field alarm condition". | Not hazardous_mismatch condi-<br>tions do not el uct Cat. III per-<br>formance.                                                                                                         | If a standby transmitter failure<br>also occurs, immediate shut-<br>down upon transfer will result. | 0                                                                                  |
|---------------------------|--------------|-------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 2                         | Failure      | Rate 61           | 1.107<br><sup>1</sup> 1E                                                                         | 1.737<br><sup>1</sup> 1F                                                                                                                  | 2.146<br>1.0<br>1.0                                                                                                                                                                     | 1. 300<br>1. 1<br>1. 1                                                                              | <b>1</b><br>1<br>1                                                                 |
|                           | 200          | Other             |                                                                                                  |                                                                                                                                           | <pre></pre>                                                                                                                                                                             | Í.                                                                                                  | Xo alarma<br>on aby.<br>monitors.                                                  |
|                           | re Indicatio | Control<br>1'nit  | NONE                                                                                             | NOXE                                                                                                                                      | NONE                                                                                                                                                                                    | XONF                                                                                                | WAL.                                                                               |
| -                         | Failu        | Remot:<br>Control | XOXE                                                                                             | 1<br>NON<br>NON                                                                                                                           | NONF                                                                                                                                                                                    | NONE                                                                                                | NOW.<br>NRV<br>NIVY                                                                |
|                           | tion         | or.               |                                                                                                  |                                                                                                                                           | ······································                                                                                                                                                  |                                                                                                     |                                                                                    |
| !                         | 0<br>Der     | Patlu<br>Pat II   |                                                                                                  |                                                                                                                                           |                                                                                                                                                                                         |                                                                                                     | ×                                                                                  |
|                           | Syater       | Alter<br>Cat III  | ×                                                                                                | ×                                                                                                                                         | ×                                                                                                                                                                                       | x                                                                                                   | ¥-                                                                                 |
|                           |              | Failure Filer     | Results in a loss of<br>tower alignment<br>monitoring.                                           | System will continue<br>to radiate a suchal<br>for subby faulty<br>durine a shutdor in<br>status.                                         | Xo serious effects<br>on svaten opera-<br>tion. Monitor mis-<br>natches may poi be<br>recognized, but<br>parameter out of<br>parameter out of<br>tions are still<br>processed mernally. | Standby unit moni-<br>torix is rendered<br>useless.                                                 | Causes the standby<br>shutdown. Main<br>continues to gperate<br>in Cat. 12 status. |
|                           |              | Failure .<br>Mode | bility to<br>ceas a<br>chutdown sig-<br>nal, initiated<br>by the mis-<br>alignow at<br>detector. | Irability to<br>process a<br>abilitydwo ale-<br>abilitydwo ale-<br>by cuther a<br>double trans-<br>fer or the<br>orar 'self<br>alarnus.   | Inability to<br>process a<br>ruisnatch<br>condition of<br>any or all<br>noming sets.                                                                                                    | Inability to<br>process a<br>standby<br>alarm                                                       | Generation of<br>an erroneous<br>standuy<br>alarm.                                 |
| <b>OPF: STATION</b>       |              | t unction         |                                                                                                  | Reproduced<br>best availab                                                                                                                | from<br>ole copy.                                                                                                                                                                       |                                                                                                     |                                                                                    |
| LINESI                    | E C          | 1. D.<br>No.      | 10                                                                                               |                                                                                                                                           |                                                                                                                                                                                         |                                                                                                     |                                                                                    |
| System S.<br>Suhayateni G | ldentificat  | ltem<br>Name      | Control Unit<br>(continued)                                                                      |                                                                                                                                           |                                                                                                                                                                                         |                                                                                                     |                                                                                    |

5

с

•

<u>، ج</u> 1.1

-----

Ł

\* ;

, ,

ŀr £.

Ķ

\* .

•

The south of the

Ŕ

10-100 AP

|               |               | ,                 |                                                                                                                                                      | 1                                                                                       | 1                                                                                                          | 1.                                                                                                                                                                       | I_                                                                                                                                                                                                                  |
|---------------|---------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12889 3 01 18 |               | Ker.ach s         | Not hazardoua-power/environ-<br>mental alarms merely down-<br>grade performance after a time<br>delay yet buth transmitter are<br>still available.   | Not hizardous-system still has<br>the ability to operate on both<br>transmitting units. | Yor Yuxardous.                                                                                             | Monitor channel a larm lights are<br>unpredictable due to a race condi-<br>tion between the generated<br>inhibit eignal and the "no signal"<br>fingut a larm processing. | This failure mode is not generated<br>by monitoring circuitry; hence,<br>it may occur.after a transfer to<br>standby has occurred.                                                                                  |
|               |               | Rate (            | 2.364                                                                                                                                                | 0.415<br>1K                                                                             | 1.775<br>\1<br>L                                                                                           | 0.420<br><sup>1</sup> 1M                                                                                                                                                 | 0.286<br><sup>1</sup> 1N                                                                                                                                                                                            |
|               | 28.           | Chher             |                                                                                                                                                      |                                                                                         | ,                                                                                                          | Alarms on<br>some<br>monitor<br>chamels.                                                                                                                                 | Alarma cá<br>some<br>standby<br>monitor<br>channels.                                                                                                                                                                |
|               | lure Indicati | Control           | NONF                                                                                                                                                 | ABNORS<br>MAL<br>ANL<br>And<br>BATT<br>FAIL.                                            | "A3NOR-<br>MA".<br>MA".<br>and<br>possibly<br>the re-<br>spective<br>power or<br>temp-<br>erature<br>alarm | "TRANS.<br>FER"<br>and<br>"Abn"                                                                                                                                          | .Na%.                                                                                                                                                                                                               |
|               |               | Renute<br>Control | NONE                                                                                                                                                 | POW/<br>F.VVIR<br>ABN<br>ABN<br>and<br>MAIN                                             | "POW /<br>ENVIR"<br>ABN"<br>"MAIN"                                                                         | NOM"<br>NOM"                                                                                                                                                             | NOM"                                                                                                                                                                                                                |
|               | L I           | 10                |                                                                                                                                                      |                                                                                         |                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                     |
|               | Operation     |                   |                                                                                                                                                      | ×                                                                                       | Down-<br>grade<br>to Cat.<br>If af<br>after<br>time<br>delay.                                              | ×                                                                                                                                                                        | <b>x</b>                                                                                                                                                                                                            |
|               | Synten        | Cat III           | ×                                                                                                                                                    |                                                                                         | ×                                                                                                          |                                                                                                                                                                          |                                                                                                                                                                                                                     |
|               |               | Failure Filect    | Lass of remote<br>recognition of re-<br>spective alarm<br>condutions loss of<br>downgrade capability<br>downgrade capability<br>downental<br>alarma. | No effect other than<br>erroneously down-<br>grading the system<br>to Cat. Il status,   | No effect other than<br>an erroncous ab-<br>normal indication.                                             | After the main<br>down, the lose of<br>tadation is detected<br>by the monitor<br>channels and trans-<br>channels and trans-<br>et a initiated to the<br>standy unit.     | After the standby<br>transmitter shutc<br>down, the lose of<br>input signals to the<br>standby monitor<br>channels creates<br>standby alarm condi-<br>tions which are<br>processed normally<br>in the control unit. |
|               |               | t ailure<br>Mode  | lability in<br>process any<br>or all pracer'<br>environ-<br>niental<br>alarms.                                                                       | Generation of<br>an erroneous<br>battery alarm                                          | Generation of<br>cous power/<br>rous power/<br>environ-<br>mental<br>marm except<br>a battery<br>alarm.    | Generation of<br>an errone-<br>oue control<br>elenal that<br>signal that<br>signal that<br>the main<br>the main<br>transmitting<br>unit.                                 | Genervation of<br>an errone-<br>ous centrol<br>signal that<br>shutdown the<br>standoy<br>transmitting<br>unit                                                                                                       |
| ATTON         |               | + 1nct 100        |                                                                                                                                                      |                                                                                         |                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                     |
| 11S<br>TDFS   | ę             | ÷.;               | 6                                                                                                                                                    |                                                                                         |                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                     |
| Suhavatem C   | Identificati  | Iten.<br>Name     | Control Units<br>Continueds                                                                                                                          |                                                                                         |                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                     |

, ,

| 5115   |
|--------|
|        |
| Evalem |

A APART - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa - Santa

the second second second second second second second second second second second second second second second s

|         | Failure                                                                                             |                                                                                                                                                                                                                                                                                        | System<br>After | n Operat<br>r Failur                                | Ę | Failt                           | Control                               |                                           | Failure<br>Rate | Remarka                                                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------|---|---------------------------------|---------------------------------------|-------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | r allure<br>Made                                                                                    | Failure Fife 1                                                                                                                                                                                                                                                                         | Cát III         | 7at 11                                              | ž | Control                         | r ontrol                              | Other                                     | 14 106          | Nemarka                                                                                                                                                                            |
|         | Teneration of<br>In erroneous<br>control ers-<br>libat abute<br>for n both<br>ramemitting<br>inits. | After a total shut-<br>down is initilated, the<br>loss of input argals<br>to all montlor char-<br>nels results in both<br>a simultaneous pro-<br>cessurs of transfer<br>cessurs of transfer<br>tion in the é utrol                                                                     |                 |                                                     | × | MON<br>ABN<br>ABN<br>OrF<br>OrF | TRANS-<br>FER<br>SHUT-<br>DOWN<br>ABN | Alarma on<br>some<br>monitor<br>channele. | 5.5             | ,<br>,<br>,                                                                                                                                                                        |
| 1277272 | ubility to<br>autown<br>autow the<br>ann or the<br>annthy trans-<br>itting unit-<br>itting unit-    | Yo failure offect or<br>inducation until<br>conder tabure oc-<br>curred in the main<br>or standby unit. At<br>that time all control<br>signals would be<br>signals would be<br>processed normally.<br>except the respec-<br>tive transmitting<br>unit would not cease<br>transmission. | 2               |                                                     |   | NOXE -                          | HOX                                   | -                                         | 1.782<br>1.1P   | Not hazardous-performance<br>category downgrade also that trans-<br>possible. Note also that trans-<br>fer capability still catists, hore.<br>Cat.III performance is not effected. |
| 22525   | ability to<br>fect <sup>2</sup><br>ance of<br>its feeding<br>r antennas.                            | No failure effect or<br>indication until a<br>transfer command is<br>received fdue to<br>some other failure).<br>At that time all<br>radiation will cease.                                                                                                                             | ×               | 5                                                   |   | NONF                            | NOVE                                  |                                           | 10              | Essentially renders the stand'y<br>transmitter useless.                                                                                                                            |
| 4 4 5 2 | e-mature<br>ance of<br>its feeding<br>Antennas.                                                     | If in MAIN, a trans-<br>fer to STANDBY will<br>occurr if in STAND-<br>BY, a transfer to<br>OFF will occur. This<br>is due to a momen-<br>tary loss of signal.<br>tary loss of signal.                                                                                                  |                 | X<br>fas-<br>sum-<br>int<br>ini-<br>mAIN<br>status) |   | MON<br>ABN<br>And<br>ATRY       | TRANS-<br>FER<br>ABN<br>ABN           | Alarms on<br>some<br>monitor<br>channels. | 0.960<br>JR     | Esentially renders either the main or standby transmitter useless.                                                                                                                 |

| (Cont'ả)   |
|------------|
| Analysis   |
| Failure    |
| Glidëslope |
| D-1.       |
| Table      |

4

and the first street

System SSILS Subsystem GLIDESLOPF, STATIO

| 1.ase 10 of 18                          |               | Remarks            | Upon the generation of a continuous<br>main inhibit. design modifications<br>have been incorporated to take<br>away Car. III and Cat. II status.<br>Althouch both transmitters may<br>still be good . all monitoring is<br>lost.<br><sup>A</sup> IS1 is similar to 'IH | Fallure mode virtually rendere the<br>standby transmitter useles.                                                                                                                      | Not hazardous-standby monitoriag<br>is meaningless after a transfer.                                                | Cat.III and Cat. II status taken<br>way although both transmitters<br>are still operational.                                                       |
|-----------------------------------------|---------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | F. 2.1        | 1 U X 1            | 2.514<br><sup>1</sup> 15<br><sup>1</sup> 151<br>*151<br>=0.198<br>(atby.<br>[atby.<br>[abibit]<br>*2.316<br>(main<br>[abibit]                                                                                                                                          | 2.658<br>\1T                                                                                                                                                                           | 0.370<br>گال                                                                                                        | 0.140<br>W 1 <sup>K</sup>                                                                                                                          |
|                                         | 8 U C         | Other              |                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                      |                                                                                                                     |                                                                                                                                                    |
|                                         | lure Indicati | Control<br>T'nit   | ABNOR-<br>MAL                                                                                                                                                                                                                                                          | NONE                                                                                                                                                                                   | NONE                                                                                                                | LOC<br>BYPASS"<br>End<br>NORMALE                                                                                                                   |
|                                         | Fail          | Permote<br>Control | MON<br>ABN<br>And<br>Main                                                                                                                                                                                                                                              | Jinox                                                                                                                                                                                  | NONE                                                                                                                | "ABNOR<br>MAL"<br>Adha<br>and<br>and<br>"MAIN"                                                                                                     |
|                                         | tion          | orí                | ×                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                     | ×                                                                                                                                                  |
|                                         | Operativ      | r Failur<br>Cat II | <b>~</b>                                                                                                                                                                                                                                                               |                                                                                                                                                                                        |                                                                                                                     |                                                                                                                                                    |
|                                         | System        | After<br>Cat III   |                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                      | ×                                                                                                                   | •                                                                                                                                                  |
|                                         |               | Failure Fllect     | The respective main<br>and/or standby moni-<br>tor channels are in-<br>hibited and hence.<br>rendered totally<br>useless.                                                                                                                                              | If another failure oc-<br>curs which initiates<br>a transfer, an im-<br>mediate shutdown<br>will occur since the<br>will occur since the<br>inhibited during the<br>transition period. | No effect on system -<br>produces alarms on<br>all standby monitor<br>chamels after a<br>occurred due to<br>amother | The control unit can-<br>not process transfer<br>and shutdown com-<br>mand signals and,<br>bence, the entire<br>monitoring is<br>rendered uselsas. |
|                                         |               | Failure<br>Mode    | Generation of<br>main and/or<br>standby in-<br>hibit to the<br>monitor<br>channels.                                                                                                                                                                                    | Inability to<br>process a<br>main inhibit<br>to the moni-<br>tor charmels.                                                                                                             | Inability to<br>process a<br>standby in-<br>hibit' to the<br>standby moni-<br>standby moni-<br>tor channels.        | Ceneration of<br>monitors<br>locally by-<br>passed<br>ignal.                                                                                       |
| OPE STATION                             |               | Function           | •                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                     |                                                                                                                                                    |
| Sun Sun Sun Sun Sun Sun Sun Sun Sun Sun | Ę             | ė į                |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        |                                                                                                                     |                                                                                                                                                    |
| Subayatem G                             | ldentificati  | ltern<br>Name      | Control Unit<br>(continued)                                                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                                                     |                                                                                                                                                    |

| 11 of 18         |                                                                                                                 |                   | · ·                                                                                                                                                                                                                             |                                                                                                                                           | SDM alarma<br>detect "no<br>ons.                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page             |                                                                                                                 | Remarks           |                                                                                                                                                                                                                                 |                                                                                                                                           | The atrap option for<br>will be employed to<br>algual" input conditi                                                                                                                                                                                                                                                                                                                                                     |
|                  | Failure                                                                                                         | Rate (1) A 106    | 0.339 <sup>°</sup><br>2. <sup>X</sup> IX                                                                                                                                                                                        | 1-464<br>1.464                                                                                                                            | S11.2<br>2                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | an                                                                                                              | Other             | No alarms<br>present on<br>main cabi-<br>net due to<br>inhibit.                                                                                                                                                                 |                                                                                                                                           | RF and<br>SDM lighta<br>the cor-<br>ing near-<br>field moni-<br>tor channel                                                                                                                                                                                                                                                                                                                                              |
| ,                | are Indicatio                                                                                                   | Control<br>Unit   | FER".<br>FER".<br>"SHUT-<br>DOWN".<br>ABNOR-<br>MAL"                                                                                                                                                                            | ALL<br>FRONT<br>PANEL<br>LIGHTS<br>OFF.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | Fallur                                                                                                          | Remate<br>Cantral | "MON"<br>ABN"<br>and<br>"OFF"                                                                                                                                                                                                   | "POW/<br>"ENVIR"<br>ABN"<br>ABN"<br>and<br>"OFF"                                                                                          | NDN<br>ABN<br>Ard<br>NAIN                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | ation                                                                                                           | , ŭ               | ×                                                                                                                                                                                                                               | ×                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | oper-                                                                                                           | Cat II            |                                                                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | System                                                                                                          | Cat III           |                                                                                                                                                                                                                                 |                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                                                                                                 | Failure Effect    | All delay circuits<br>produce an alarm<br>output; both a con-<br>tinuous main and<br>tinuous main and<br>tiandby inhibit are<br>generated. An im-<br>mediate shutdown<br>will reaul due to the<br>near field delay<br>circuits. | All control logic is<br>rendered uselesa.<br>Both transmitters<br>shuddown: monitors<br>channels. however<br>are inhibited and.<br>alarm. | Loss of the input<br>responding near<br>field monitor chan-<br>neal, causing a moni-<br>tor mismatch. De-<br>pendence upon re-<br>maining two peak<br>detectors/monitor<br>for near field moni-<br>toring now depen-<br>toring now depen-<br>toring now depen-<br>toring now depen-<br>toring now depen-<br>toring now depen-<br>toring result if one of<br>the remaining two<br>peak detector/moni-<br>tors also fails. |
| ~                | in the second second second second second second second second second second second second second second second | Fallure<br>Mode   | Loss of -12.<br>volts in con-<br>trol unit<br>power supply                                                                                                                                                                      | Loss of +12<br>volts in cor-<br>trol unit<br>power supply<br>force: loss<br>of suitched<br>28 u is also<br>included. J                    | Loss of de-<br>tected out-<br>put signal.                                                                                                                                                                                                                                                                                                                                                                                |
| OPE STATION      | 3                                                                                                               | Function          |                                                                                                                                                                                                                                 |                                                                                                                                           | Each of the near field<br>peak detectors receives<br>near field anterna. The<br>received RF agaal is<br>representative of the<br>course path alignment<br>converts the RF signal<br>into a low frequency sig-<br>nal to be processed by<br>its respective monitor.                                                                                                                                                       |
|                  | L.                                                                                                              | r. D.<br>No.      | **                                                                                                                                                                                                                              | ······                                                                                                                                    | 28.<br>307<br>307                                                                                                                                                                                                                                                                                                                                                                                                        |
| System System GL | Identificati                                                                                                    | ltem<br>Name      | Control Unit<br>(continued)                                                                                                                                                                                                     |                                                                                                                                           | Near Field<br>Peak<br>Detector<br>al. a2. or<br>a3. a2. or                                                                                                                                                                                                                                                                                                                                                               |

Page 12 of 16

E

1

.

| System                                             | SSILS             |                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                                 |         |                                        |    |                                 |                                 |
|----------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------|----|---------------------------------|---------------------------------|
| Subeystem                                          | CLIDES            | LOPE STATION                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                 |         |                                        |    | ·                               |                                 |
| Identific                                          | atton             |                                                                                                                                                                                                                                                                                                  |                                         | Ĩ                                                                                                                                                                                                                                                                                               | System  | Operat                                 | ľ  | Fall                            | ure Indicat                     |
| líem                                               | L.D.              | !                                                                                                                                                                                                                                                                                                | Fallure                                 | :                                                                                                                                                                                                                                                                                               | After   | Failure                                |    | Remote                          | 101100                          |
| Name                                               | хо.<br>Х          | Function                                                                                                                                                                                                                                                                                         | Mode                                    | Fallure Effect                                                                                                                                                                                                                                                                                  | Cat III | Cat II                                 | ЭĽ | Control                         | Unit                            |
| Course Peak<br>Detectors 81,<br>82, or 83<br>(MAR) | \$ \$ \$ <b>5</b> | Each of the course peak<br>detectors receives a<br>simulated course posi-<br>imput signal is obtained<br>by a combination of sig-<br>mile obtained by prox-<br>imity probes at the<br>radiating antennas. Each<br>peak detector then con-<br>verts the RF signal into<br>a low frequency signal. | Loss of de-<br>tected output<br>signal, | Loss of input signal<br>to corresponding<br>monitor, causing a<br>monitor miarnatch.<br>Dependence upon re-<br>maining two peak<br>maining two peak<br>for integral course<br>position (path angle)<br>monitoring. Now de-<br>position (path angle)<br>course parameter<br>munitors (* s system | ×       | ······································ |    | -MCN<br>ABN"<br>and C<br>"MAIN" | "ABN"<br>and<br>"MIS-<br>MATCH" |

| 、            |                   |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E                                                                                                                                                                                               |
|--------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Remarko .         | Note that although both the<br>remaining two paak detectors/<br>monitors monitor integral court<br>position, only an alarm on one of<br>them is required to initiate a<br>transfer.                                                                                                                                         | Although the remaining two peal detectors incontors the detectors incontors monitor the largest course with parameter only an alarm on one of them is vequired to faitiate a treasfer-                                                                                                                                                                                                                                                                                                                           | Although there will also be a los<br>cignal will prevent the alarm fr<br>signal will prevent the alarm fr<br>being processed.                                                                   |
| Failure?     | Rate<br>N× 10     | 1.115<br>N                                                                                                                                                                                                                                                                                                                  | 11.11<br>N <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.1<br>الأ <sup>ل</sup>                                                                                                                                                                        |
| suo          | Other             | RF and<br>SDM 11ghts<br>correspond-<br>ing course<br>monitor<br>channel.                                                                                                                                                                                                                                                    | RF. SDM.<br>and DDM<br>lights "on"<br>on corre-<br>sponding<br>seastithtly<br>monitor<br>channel.                                                                                                                                                                                                                                                                                                                                                                                                                | RF and<br>"on" on<br>"the cor-<br>treponding<br>that<br>reauthy<br>course<br>monitor<br>channel.                                                                                                |
| ure Indicati | Control<br>Unit   | and<br>and<br>"MATCH"<br>MATCH"                                                                                                                                                                                                                                                                                             | ABN"<br>and<br>"MIS-<br>MATCH"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NBV.                                                                                                                                                                                            |
| Fail         | Remote<br>Control | MCN<br>ABN"<br>and<br>MAIN"                                                                                                                                                                                                                                                                                                 | NMAN<br>Naba<br>Nalain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |
| Operation    | ĕ                 |                                                                                                                                                                                                                                                                                                                             | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                               |
|              | Cat II            |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                                                                                                                               |
| System       | After<br>Cat III  | ×                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 |
| 1            | Fallure Effect    | Loss of input signal<br>to corresponding<br>monitor causing a<br>monitor mismatch.<br>Dependence upon re-<br>aning two peak<br>detectors/monitors<br>for integral course<br>for integral course<br>monitoring. Now de-<br>pendent upon 1 of 2<br>pendent upon 1 of 2<br>course parameter<br>munitors for system<br>control. | Loss of imput signal<br>to corresponding<br>to corresponding<br>to corresponding<br>to anomitor manusch.<br>Dependence upon<br>remaining two peak<br>for the system control.<br>Now dependent upon<br>1 of 2 monitoring<br>for system control.                                                                                                                                                                                                                                                                   | Lose of imput signal<br>monitor. This, in<br>turn, is processed<br>a sishure in the<br>standby transmitting<br>unit, ceusing the<br>standby unit to be<br>shut down.                            |
|              | Fallure<br>Mode   | Loss of de-<br>tected output<br>signal.                                                                                                                                                                                                                                                                                     | Loss of de-<br>tected output<br>signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Loss of de-<br>tected output<br>signal.                                                                                                                                                         |
|              | Function          | Each of the course peak<br>detectors receives a<br>thom input signal. This<br>input signal is obtained<br>by a combination of sig-<br>mais obtained by prox-<br>fimity probes at the<br>redisting attomas. Each<br>peak detector then con-<br>verts the RF signal into<br>a low frequency signal.                           | Each of the sensitivity<br>pask detectors receives<br>a simulative disput signal,<br>representative of the<br>course width, This input signal<br>is obtained by a com-<br>bination of signals ob-<br>bination of signal ob-<br>priobes at the radiating<br>asternase. Each pack<br>detector converts the<br>detector converts the | This peak detector re-<br>circle from the stand-<br>by traxemitting unit<br>by traxemitting unit<br>be essentially convertion.<br>Research CSE C45B<br>signal into a low fre-<br>queery signal. |
| ton          | 1. D.<br>No.      | 20,<br>21,<br>21,                                                                                                                                                                                                                                                                                                           | x x * x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ā                                                                                                                                                                                               |
| Identificat  | líem<br>Name      | Course Peak<br>Detectors 81,<br>82, or 83<br>(MARN)                                                                                                                                                                                                                                                                         | Santity ity<br>Feak<br>Feats<br>12. or 13<br>(MAD)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sitaedby<br>Course Peak<br>Detector                                                                                                                                                             |

| Page 13 of 18       |              | Remarks .                  |                                                                                                                                                                                                                                                                                   | Although the remaining two peak detector /monitors monitor the clearance signal parameters only an alarm on one of them is required to initiate a transfer.                                                                                                                       | •                                                                                                                                                                                                                                                                                    |
|---------------------|--------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Fallure      | Rate (Ax 1C <sup>6</sup> ) | 1,115<br>Å32                                                                                                                                                                                                                                                                      | л. 1<br>М                                                                                                                                                                                                                                                                         | 811-1<br>66,                                                                                                                                                                                                                                                                         |
|                     | one          | Other                      | RF.SDM,<br>and DDM<br>Itgha "on"<br>on the cor-<br>creporting<br>standby<br>sensitivity<br>monitor.                                                                                                                                                                               | RF. SDM.<br>Ilghts "on"<br>on corres-<br>ponding<br>clearance<br>monitor<br>channel.                                                                                                                                                                                              | RF. SDM,<br>and DDM<br>(Ighis 'oon'<br>on the cor-<br>responding<br>clastance<br>monitor.                                                                                                                                                                                            |
|                     | are Indicati | Control<br>Unit            |                                                                                                                                                                                                                                                                                   | "ABN"<br>and<br>"MATCH"<br>MATCH"                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |
|                     | . Fall       | Remote<br>Control          | NOM"<br>bra<br>"NIAX"                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   | "MON"<br>ABN"<br>And<br>MAIN"                                                                                                                                                                                                                                                        |
|                     | tion         | ŏ                          |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                      |
|                     | Opera        | Fallur<br>Cat II           | ×                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   | ×                                                                                                                                                                                                                                                                                    |
|                     | System       | After<br>Cat III           | ·                                                                                                                                                                                                                                                                                 | ×                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |
|                     |              | Failure Effect             | Lose of input signal<br>to the standby sen-<br>stitivity monitor.<br>This. in turn, is<br>processed as a<br>failure in the stand-<br>by transmitting unit<br>causing the standby<br>unit to be shut<br>down.                                                                      | Loss of input/signal<br>to corresponding<br>clearance monitor<br>channel, causing a<br>monitor miarnatch.<br>Dependene upon re-<br>maining two peak<br>detectors/monitors<br>detectors/monitors<br>for clearance para-<br>monitors for system<br>nonitors for system              | Loss of the input<br>signal to the standby<br>clearance monitor.<br>This, in turn, is<br>processed as a<br>failure in the standby<br>by transmitting unit<br>causing the standby<br>unit to be shut down.                                                                            |
|                     |              | Fallure<br>Mode            | Loss of de-<br>tected output<br>signal.                                                                                                                                                                                                                                           | Loss of de-<br>tected output<br>signal,                                                                                                                                                                                                                                           | Loss of de-<br>tected output<br>signal.                                                                                                                                                                                                                                              |
| OPE STATION         |              | Function                   | This peak detector re-<br>ceives its input signal<br>from the standby trans-<br>mitting unit. After pro-<br>per attenuation, the<br>input signal is a com-<br>bination of standby<br>course C4SB and SBO.<br>This RF input signal is<br>converted into a low<br>frequency signal. | Each of the clearance<br>peak detectors receives<br>a simulated clearance<br>and signal. This unput<br>signal is obtained by a<br>combination of signal<br>botained from both proz-<br>imity probes. This RF<br>input signal is then<br>converted to a low fre-<br>quency signal. | This peak detector re-<br>ceives its input signal<br>frem the standby trans-<br>mitting unit. After pro-<br>per axtenuation, this<br>thou signal is simply<br>the standby clearance<br>C4SB signal. This RF<br>input signal is then con-<br>verted into a low fre-<br>quency signal. |
| TLS<br>DESI         | E            | К. D.<br>Хо.               | 25                                                                                                                                                                                                                                                                                | 25.<br>26.<br>27                                                                                                                                                                                                                                                                  | £                                                                                                                                                                                                                                                                                    |
| System Subsystem CI | Identificati | ltern<br>Name              | Standby<br>Sanaltivity<br>Feak De-<br>tector                                                                                                                                                                                                                                      | Clearance<br>Feak Do-<br>tectora 11, 12,<br>(MAIN)<br>(MAIN)                                                                                                                                                                                                                      | Standby<br>Clearance<br>Peak<br>Detector                                                                                                                                                                                                                                             |

4

|                    | 1             |                              | <b> </b>                                                                                                                                                                                                                                                                                            | •                                                                                                                                    | e.                                                                                                                                               |                                                                                                      |
|--------------------|---------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Pare 14 of 18      |               | Remarks ,                    | Essentially renders the standby<br>unit useless.                                                                                                                                                                                                                                                    | Eacritially render a either the<br>math or standby transmitter<br>useless.                                                           | A staadby monitoring circuitry<br>failure.                                                                                                       |                                                                                                      |
|                    | Failure       | Rate 61                      | 0.221<br><sup>A</sup> 10A <sup>A</sup>                                                                                                                                                                                                                                                              | 0.134<br><sup>1</sup> 10B                                                                                                            | 0.572<br><sup>, 1</sup> 10C                                                                                                                      | 00. 070<br>کا الڈ                                                                                    |
|                    | 200           | Other                        | 2                                                                                                                                                                                                                                                                                                   | Alarma<br>on some<br>monitor<br>channels.                                                                                            | Alarm(s)<br>on rsé-<br>pective<br>standby<br>monitor<br>channel.                                                                                 | Alarme on<br>sensitivity<br>monitor<br>channels.                                                     |
| ,                  | lure Indicati | Control<br>Ur <sub>j</sub> i | NONE                                                                                                                                                                                                                                                                                                | "ABN"<br>and<br>"TRANS-<br>FER"                                                                                                      | ,                                                                                                                                                |                                                                                                      |
|                    | Fai           | Remate<br>Cantroj            | JNON                                                                                                                                                                                                                                                                                                | NOW.                                                                                                                                 | "MON"<br>ABN"<br>abad<br>"MAIN"                                                                                                                  | NBN:<br>Pas<br>TBY:                                                                                  |
|                    | tion          | r ye                         | ,                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                                                                                                  |                                                                                                      |
|                    | n Operat      | Cat II                       |                                                                                                                                                                                                                                                                                                     | X<br>fassur<br>ing ini<br>tial<br>MAIN<br>status                                                                                     | ×                                                                                                                                                | ×                                                                                                    |
|                    | System        | Cat III                      | ×                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                                                                                                  |                                                                                                      |
|                    |               | Failure Effect               | Although this tailure<br>mode does not im-<br>mediately effect<br>system operation, it<br>does jeopardize Cat.<br>III atatus. This is<br>due to the fact that<br>any failure on the<br>and only ženerate<br>should only ženerate<br>a changeover to<br>a changeover to<br>tha system shut-<br>down. | If in MAIN, a trans-<br>fer to STANDBY will<br>by a transfer to<br>OFF will occur. This<br>a due to a momen-<br>tary lose of Aignal. | The alarm on the<br>standby monitor will<br>shut down the standby<br>transmitting unit -<br>the main unit con-<br>tinues to operate<br>normally. | Alarms on monitors<br>channels initiate u<br>trasfer o standby<br>and system operates<br>on standby. |
|                    |               | Failure<br>Mode              | Inability to<br>transmitting<br>units by<br>switching<br>circuitry.                                                                                                                                                                                                                                 | Pre-mature<br>transfer of<br>transmitting<br>units to an-<br>tennas by<br>switching.<br>circuitry.                                   | Fallure caus-<br>ing a loss (or<br>incorrect)<br>signal to one<br>of the standby<br>monitors.                                                    | Total loss (or<br>phasing) of<br>course SBO<br>signal of the<br>main trans-<br>mitting unit.         |
| OPT STATION        |               | Function                     | The changeover and test<br>circuls provide the auto-<br>matic changeover capa-<br>bility for the redundant<br>transmitting units. It<br>transmitting units<br>from the control unit<br>which transmitting unit<br>radiates into the anternas<br>into dummy foads.                                   |                                                                                                                                      |                                                                                                                                                  |                                                                                                      |
| s115               | lion          | 1. D.<br>No.                 | <u>0</u>                                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                  |                                                                                                      |
| System Subsystem C | Identificat   | ltem<br>Name                 | Changeover<br>and Test Cir-<br>Delactor<br>Delactor<br>Excluded)                                                                                                                                                                                                                                    |                                                                                                                                      |                                                                                                                                                  |                                                                                                      |

5

ş

| Page 15 of 18       |               | Remarks                       |                                                                                                  | It should be noted that since any<br>signal degradation sufficient to<br>be "out of Cat. III "olerance" has<br>the same net effect, all "possible<br>failure modes may be treated on<br>an aggregute basis. | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |
|---------------------|---------------|-------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Fallure       | Rate<br>(Ax 10 <sup>6</sup> ) | 1.951<br>Å10E<br>10E1<br>10E1<br>0.466<br>(each<br>pin<br>ewiich<br>circuit)                     | 11.11                                                                                                                                                                                                       | 0.778<br><sup>1</sup> 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.098<br>18                                                                                                                                  |
|                     | 840           | Other                         | Alarma on<br>some mont<br>tor chan-<br>nels.                                                     | Alarms on<br>any or all<br>of the<br>monitor<br>channels.                                                                                                                                                   | Alarms on<br>any or all<br>monitor<br>channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Alarms on<br>near field<br>monitors.                                                                                                         |
|                     | lure Indicati | Control<br>Unit               | "A SN".<br>"TRANS-<br>FER"<br>and<br>"SHUT-<br>DOWN"                                             | "ABN"<br>and<br>"TRANS-<br>FER"<br>and<br>"SHUT-<br>DOWN"                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "ABN"<br>and<br>"TRANS-<br>FER"<br>and<br>SHUT-<br>DOWN"                                                                                     |
| ;                   | Fall          | Remote<br>Control             | NGK<br>ABN"<br>ABN"<br>ABN"<br>ABN"                                                              | ABN".<br>ABN"<br>And<br>Ard<br>OFF                                                                                                                                                                          | MON<br>ABN<br>Abnd<br>Of F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ABN"<br>ABN"<br>ABN"                                                                                                                         |
|                     | Ę             | 18                            | ×                                                                                                | ×                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                                                                                                            |
|                     | Dera          |                               |                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |
| OPE STATION         | System        | Cat IT' C                     |                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |
|                     | ۲.<br>۲.      | Fallure Effert                | Immediate shuidown<br>after an automatic<br>transfêr                                             | Since a failure of thin<br>type is independent<br>of the transmitting<br>unit (signal paths<br>common to both<br>transmitters), an<br>immediate shutdown<br>after an automatic<br>transfer will result.     | The actual field ra-<br>diasion is uneffected.<br>However, the moni-<br>tor channels believe<br>an "out of tolerance"<br>condition exists and<br>initiate a transfer,<br>since the circuitry<br>is common to both<br>transmitting unit, the<br>monitors will again<br>nolerance" condition<br>down.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The erroncous for<br>total foss off signal<br>is processed as a<br>near field alarm.<br>fer and a shudown<br>after the nominal<br>time delay |
|                     |               | Fallure<br>Mode               | Loss of any<br>one or all of:<br>CSE C+SB,<br>CSE S30,<br>CLC C+SB, to<br>main trans-<br>mitter) | A loss, de-<br>gradation, or<br>incorrect<br>phasing of<br>any signal<br>freding any<br>one of the<br>anternas.                                                                                             | A loss, de-<br>gradation, or<br>ghosorret<br>phase of any<br>signal feed-<br>ing any of the<br>monitors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A loss of de-<br>gradation of<br>ignal feed-<br>ing the moni-<br>tors.                                                                       |
|                     |               | Fraction                      |                                                                                                  | The CHF distribution<br>circuits combine and<br>distribute the CSF C+SB.<br>CSF SBQ, and CL C+SB<br>signals to the three 2-<br>lambda antennas.                                                             | The UHF recombining<br>circuits, receiving in-<br>puts from prodes, com-<br>detector probes, com-<br>bine the CSE C+SB, CSE<br>SBD and CLC+SB to<br>provide inputs to moni-<br>provide inputs to moni-<br>to mo | Provides the input for<br>the three near field<br>monitors.                                                                                  |
| ILS                 | ő             | 1. D.<br>No.                  | 2                                                                                                | =                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                            |
| System Subayatem GI | Identificati  | ltern<br>Name                 | Changeover<br>and Teat<br>Circu'is<br>(continued)                                                | Distribution<br>Ciccuita<br>(Antennaa<br>included)                                                                                                                                                          | UHF Recombi-<br>ning Circuite<br>and Probes<br>(pask detectors<br>ercluded)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Near Field<br>Anterna and<br>Power<br>Spitter (peak<br>Gspitter (peak<br>cluded)                                                             |

į

SSILS System \_

| Pare 16 of 18 |                | Remarke,          | Not hazardous-redundancy of<br>rémuing chaiger and the two,<br>batteries provide negligible<br>probability of station shutdown.                                                                                                                                           | Not hazardous-both transmitters<br>still available after downgrade.                                                                               | Not hazardous-a total diacharge<br>of the bathrias can occur only<br>after the system is operated an<br>batterles for some artended<br>batterles is a realt of either<br>baurs). System operation on<br>batterles is a realt of either<br>failure of both chargers - bedy of<br>thick would downgrade performance<br>to Cat. IL. |
|---------------|----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Failure        |                   | 10.477<br>ÅNÅ                                                                                                                                                                                                                                                             | 0.801<br>ÅNB                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                  |
|               | ano            | Other             | charger<br>fau" light<br>"on" on<br>charger.                                                                                                                                                                                                                              | "charger<br>fail" and/<br>or "AC<br>or "Ight<br>fail" light<br>"on" on re-<br>specive<br>charger.                                                 | ·                                                                                                                                                                                                                                                                                                                                |
|               | lure Indicati  | Control<br>Unit   | TABN"<br>and<br>CHARGER<br>FAILURE"                                                                                                                                                                                                                                       | "ABN"<br>and<br>"CHARGER<br>FAILURE"<br>and /or<br>"AC POW-<br>ER FAIL"                                                                           | NONE                                                                                                                                                                                                                                                                                                                             |
|               | Fal            | Remate<br>Cantrol |                                                                                                                                                                                                                                                                           | -PWR/<br>ENVIR<br>ABN"<br>and<br>"MAIN"                                                                                                           | NON                                                                                                                                                                                                                                                                                                                              |
|               | tion           | ,<br>Sir          |                                                                                                                                                                                                                                                                           | ,                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                  |
|               | Opera          | Cat II            | Cown-<br>rrade<br>(a Cat.<br>(a Iter<br>felaý.<br>felaý.                                                                                                                                                                                                                  | Down-<br>Frade<br>Cat.<br>So Cat.<br>Jelay.                                                                                                       |                                                                                                                                                                                                                                                                                                                                  |
|               | Syatem         | Alter<br>Cat III  | ×                                                                                                                                                                                                                                                                         | ×                                                                                                                                                 | x                                                                                                                                                                                                                                                                                                                                |
|               | Fallure Fflect |                   | When one charger<br>fails (total loss of<br>output voltage), the<br>remaining charger<br>aupplies the necec-<br>aryphies the necec-<br>current to continue<br>normal operation. It<br>also still supplies the<br>voltage to maintain<br>fail charge on both<br>batteries. | No immediate effect<br>on system operation-<br>after the pre-set<br>time daixy the ys-<br>tem will be falsely<br>downgraded to Cat.<br>If status. | With the loss of the<br>equalize capability<br>on one clarger, the<br>remaining charger<br>can still provide the<br>equalize capability<br>as long as the<br>battories are not<br>totally discharged.                                                                                                                            |
|               |                | Failure<br>Mode   | Loss of<br>charger out-<br>put voltage<br>norminal out-<br>put voltage is<br>30 volta DC)                                                                                                                                                                                 | Charger<br>(ailure indi-<br>cation only<br>while ocipit<br>voltage is<br>still main-<br>tained on<br>both<br>chargers.                            | Loss of<br>equalize espa-<br>vojtage espa-<br>bility-stiber<br>manual and/<br>or automatic.<br>Nore: the<br>équalize<br>evolta DC.<br>voltage i a<br>appendad 33<br>voltage i a<br>tag 4 "bard<br>charge" to<br>the batteriet.                                                                                                   |
| SLOPE STATION |                | Function          | The two bittery chargers<br>which are supply all the<br>parallel, supply all the<br>equipment of the glide-<br>slope station. In addition<br>to supplying the power to<br>the electronic equipment,<br>each battery charger<br>charge is constantly<br>maintained on both | batterice.<br>In the event of a primary<br>power (alure the two<br>batteries (in parallel)<br>aupply the necessary DC<br>power.                   |                                                                                                                                                                                                                                                                                                                                  |
| 1102          | E G            | 1. D.             | 2 2 4                                                                                                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                  |
| Subvyetem G   | Identificat    | lten<br>Name      | Batter's<br>Charler #1 or<br>#2                                                                                                                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                  |

| Pare 17 of 18      | System Operation Failure Indications Failure                                                                                                                                                                                                                              | Failure Filere Cat III Cat II Cot 1 Control Control Other Rate Remarks | Insert of Say     Station maintains     X     Down     "PWR/     ABN"     6.598     To result in a station shutdom       one or all of mormal operation on the frace     EXVIR     and     N     6.598     To result in a station shutdom       the four all of mormal operation on the frace     EXVIR     and     N     N     both converters     must fail.       the following     remaining     To result in a station shutdom     N     N     both converters     must fail.       the following     remaining     To result in a station shutdom     ASN"     CON.     N     both converters     must fail.       the observation     If after     ASN"     To result in a station shutdom     N     N     both converters     must fail.       s5.5V.     converter     time     ''MAIN"     'FAIL"     ''N     ''N     both converters     must fail.       s5.5V.     unit for abnormal     time     ''MAIN"     'FAIL"     ''N     ''N     both converters     must fail.       s50V.     unit for abnormal     to result     ''N     ''N     ''N     ''N     ''N | Failure pro-<br>ducing an<br>ducing an<br>only an erroneous     X     Down-<br>Furde     "PWR/     "ABN"     0.100     Not harardous - both transmitters       ducing an<br>ducing an<br>only an erroneous     normal operation -<br>to Cat.     ENVIR     and<br>ABN" $\lambda_{ITA}$ still available after downgrade.       alarm     only an erroneous     to Cat.     ABN"     TEMP"     and $\lambda_{ITA}$ still available after downgrade.       indication.     failure indication.     filer     and $\lambda_{ITA}$ still available after downgrade.       indication.     failure indication.     filer     and $\lambda_{ITA}$ still available after downgrade. | Failure pro-<br>ducing no area two sen-<br>ducing no area (thermocouples)<br>ducing no area (thermocouples)<br>alarma will accur.<br>indication. the ad one for low<br>temperatures. A<br>time of the the<br>does not effect in the<br>one of the<br>onty effect is the low<br>of temp. monitoring<br>of temp. monitoring<br>temperature extreme<br>fully for only one<br>femperature currents | Loss of Erroneous shutdown X "MON "ABN" ABN" ABN" As 4.915<br>alignment of the glideslope and "SHUT. ABN" AgA<br>detection, station |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                    | Failure Ind                                                                                                                                                                                                                                                               | note Contr<br>itrol Unit                                               | WR/ "ABN<br>VIR and<br>BN" "CON<br>NG<br>VERT<br>AIN" "FAIL"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WR/ "ABN"<br>VIR "ABN"<br>BN" "TEM<br>AIN"<br>AIN"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NON                                                                                                                                                                                                                                                                                                                                                                                            | INIT ALL ALL ALL ALL ALL ALL ALL ALL ALL AL                                                                                         |
|                    | u c                                                                                                                                                                                                                                                                       | 0.1 Part                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                              | × * •                                                                                                                               |
|                    | Operati                                                                                                                                                                                                                                                                   | Failure                                                                | Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Down-<br>crade<br>o Cat.<br>1 after<br>ime<br>elay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
|                    | System                                                                                                                                                                                                                                                                    | Cat III                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     |
|                    |                                                                                                                                                                                                                                                                           | Fallure Fllect                                                         | Station maintai 18<br>wormal operation on<br>wormal operation on<br>voltages. Fach of the<br>converter voltages is<br>converter voltages is<br>unit for abnormal<br>unit for abnormal<br>tolerances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | System maintains<br>normal operation -<br>only an erroneous<br>failure Indication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | There are two sen-<br>one for high tempera-<br>one for high tempera-<br>tures and one for low<br>temperatures. A<br>temperatures. A<br>detainter of this type in<br>one of the sensors<br>does not effect the<br>only effect is the loss<br>of temp. monitering<br>a temperature extreme<br>thigh or low).                                                                                     | Erroneous shutdown<br>of the glideslope<br>station.                                                                                 |
|                    |                                                                                                                                                                                                                                                                           | Failure<br>Mode                                                        | 1.028 of Sny<br>one or all of<br>the following<br>the following<br>+5.5V<br>-18V.<br>-50V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fallure pro-<br>ducing an<br>alarm<br>indication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Failure provident no ducing no ducing no indication.                                                                                                                                                                                                                                                                                                                                           | Loss of<br>alignment<br>detection,<br>producing<br>an alarm.                                                                        |
| OPF STATION        | Function<br>Fach of the DC /DC con-<br>verters transforms the<br>+10 volts normal input<br>voltage to three different<br>output voltages 0 +5.5V,<br>-18V, and -50V, The<br>converter are respec-<br>tively used in parallel<br>and fed both modulators<br>in the system. |                                                                        | The temperature armoors<br>provide alarm indications<br>whenever the temperature<br>exceeds or drops below<br>pre-set limits. These<br>limits are set to give<br>indication of air-condi-<br>tioner/heater failures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The misalignment de-<br>tector detects perma-<br>nent misalignment or<br>deformation of the<br>glidealope antenna<br>tower. A nominal 135<br>seconds de lay is pro-<br>vided to process alarma.                                                                                                                                                                                                |                                                                                                                                     |
| ISTUS              | tìon                                                                                                                                                                                                                                                                      | 1. D.<br>No.                                                           | 15<br>15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                | ç                                                                                                                                   |
| System Subaystem C | Identifica                                                                                                                                                                                                                                                                | ltern<br>Name                                                          | DC/DC Con-<br>verter #1 or #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp Sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                | Misalignment<br>Detector                                                                                                            |

A Contract State

and the second second

×

D-18

\_\_\_\_
Page 10 of 48 Design modifications have incorporated a "quick test functional check. Remarka Failure Rate (Ax 10<sup>6</sup>) 2.354 29B Other Failuré) Indications Control Unit NONE Remote Control NONE Cat III Cat II Off System Operation After Failure × Although the near field monitors de-field rudiarion. an erroneous signal radiation can still radiation can still mialignment in the horizontal plane chiefly effects the width of the glide path angle and the clearance radiation. Fallure Effect Lces of alignment detection. producing no alarm. Fallure Mode Function System SSILS Subeystem <u>GLIDESLOPE STATION</u> . Identification Misalignment Dytector (continued) lten Name

<

ć

Table D-1. Glidesløpe Failure Analysis (Cont'd)

1

]

ţ

ť

-----

1

D-19/D-20

Appendix E Localizer Math Models

# Appendix E

# Localizer Math Models

This appendix consists of tables E-1 and E-2, referred to in section 8.0, which give, respectively, probability math models for localizer hazardous signal radiation and shutdown.

| Pare Lol Z | Remarks                     | Note: The failure rate for A MON<br>s worst case since no discrimination<br>is mide with regards to RF, SDM,<br>and DDM alarms. The failure rate<br>for MON<br>FF worst case alato.<br>Worst case lailure rates are again<br>used for A XMTR<br>SEDDM<br>sible failure mode failure rates have<br>been included which can produce a<br>Cat. III course position DDA out of<br>to toter analysis. Hence,<br>a worst case analysis. Hence,<br>a worst case analysis. Hence,<br>a worst case analysis. However,<br>the calculation is extremely simpli-<br>fied by a worst case analysis.<br>A weekly monitor and control logic<br>preventive maintenance, cycle is as-<br>which result in a loss of mönitoring<br>which result in a loss of mönitoring<br>which result in a loss of mönitoring<br>ability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | l'aflure Rate<br>Data       | MONCSE '3511 3.11<br>MONCSE' '3511 3.11<br>CATE '111 0.140 × 10 <sup>-6</sup><br>1.0010 112 0.700 × 10 <sup>-6</sup><br>1.0010 112 0.700 × 10 <sup>-6</sup><br>NONF 5.00 500 × 10 <sup>-6</sup><br>AONFF 5.00 500 × 10 <sup>-6</sup><br>2.800 4.122 × 10 <sup>-6</sup><br>2.810 1.222 × 10 <sup>-6</sup><br>2.810 1.221 2.832 × 10 <sup>-6</sup><br>3.000 4.13 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × 10 <sup>-6</sup><br>3.000 × |
|            | Probability<br>Calculation  | $P^{\text{MIN}}_{\text{F}}(\text{csr}_{\text{DDM}} + P^{\text{MIN}}_{\text{F}}(\text{csr}_{\text{DDM}} + P^{\text{MIN}}_{\text{F}}(\text{csr}_{\text{DDM}} + P^{\text{MON}}_{\text{F}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{DDM}} + P^{\text{MON}}_{\text{Csr}}) + P^{\text{MON}}_{\text{Csr}}(\text{csr}_{\text{DDM}} + P^{\text{MON}}_{\text{Csr}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{DM}} + P^{\text{MON}}_{\text{F}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{DM}} + P^{\text{MON}}_{\text{F}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{F}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{F}}) + P^{\text{MON}}_{\text{F}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{F}}) + P^{\text{MON}}_{\text{F}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{F}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{DDM}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{DDM}}) + P^{\text{MON}}_{\text{F}}(\text{csr}_{\text{DDM}}) + P^{\text{MON}}_{\text{F}}) + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}}_{\text{F}} + P^{\text{MON}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Probabilitiv<br>Description | Probability of the radiation of a hazardous course position Cat.<br>III DDM signal due to equip-<br>note. Far field hazardous DDM signal due to external runway disturbances is not included in this calculation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table E-1. Localizer Hazardous Signal Radiation Probabilities

E-2

t'"

Table E-1. Localizer Hazardous Signal Radiation Probabilities (Cont'd)

Page 2 of 1

≈; (<

1. N. S.

**Eller** 

¢

•

:

| Remarks                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | For the probability PFCSEDDM<br>some number must be assumed since<br>this number is unpredictable, being a<br>function of runway activity.<br>For convenience, let<br>PFCSEDDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fatlure Rate<br>Data       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{2} MON_{FF} = ^{3}5LC = ^{4}57C$ $= ^{5}8C = 4.422 \times 10^{-6}$ $\frac{1}{CATE_{FF}} = ^{4}981 = 0.102 \times 10^{-6}$ $\frac{1}{1} LOCIC_{FF} = ^{4}982 = 0.530 \times 10^{-6}$ $\frac{1}{1} REDUND_{FF} = ^{4}983 = 0.242 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Probability<br>Calculation | $P_{XMTR}CSE_{DDM}$ The probability that an actual hazard<br>oue Cat. III course DDM will be<br>radiated, with no other parameters<br>being effected.<br>$P_{INT}CSE_{DDM} = 8,200 \times 10^{-7}$ $P_{INT}CSE_{DDM} = 1.301 \times 10^{-14}$ $+ 0.247 \times 10^{-7}$ $+ 0.247 \times 10^{-7}$ $+ 0.247 \times 10^{-7}$ $P_{MON} = 5,519 \times 10^{-7}$ $P_{MON} = 5,519 \times 10^{-7}$ $+ 5,013 \times 10^{-7}$ $+ 5,032 \times 10^{-7}$ $+ 5,032 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ $+ 5,555 \times 10^{-7}$ | $P(HS)_{FF} - P_{MON}_{FF} \cdot P_{FF}_{CSE} CSE_{DDM}$ $P_{MON}_{FF} + (^{MON}_{FF} + 168)^{3} + (^{CATE}_{FF} + 168)^{3} + (^{LOCIC}_{FF} + 16$ |
| Probability<br>Description | Probability of the radiation of<br>a hazardous course position<br>Cat. III DDM signal due to<br>equipment failure.<br>(continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probability of the radiation of a<br>hazardous signal that is out of<br>Cat. Ill course position toler-<br>ance at the far field only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

ç

ç

| Page 1 of 1 | Remarka                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Note: Since the proceesing for any<br>parameter is virtually identical in the<br>control unit, the same failure rates for<br>AGTE' LOGIC' 201 Are<br>utilised. By employing ANON in<br>the calculation of PiNT CSE SDM<br>worst case analysis again recults.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Failure Rate<br>Dáta       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\lambda_{MON}_{CSE} = \lambda_{35B} = \lambda_{36B}$ $= \lambda_{37B} = 5.390 \times 10^{-6}$ $\lambda_{GATE} = \lambda_{1D1} = 0.1402.6 \cdot 0^{-6}$ $\lambda_{LOGIC} = \lambda_{1D2} = 0.700 \times 10^{-6}$ $\lambda_{REDUND} = \lambda_{1D3} = 1.249 \times 10^{-6}$ $\lambda_{3B} = 0.413 \times 10^{-6}$ $\lambda_{3B} = 0.413 \times 10^{-6}$ $\lambda_{3G} = 1.302 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12D} = 0.070 \times 10^{-6}$ $\lambda_{12} = 0.070 \times 10^{-6}$ |
|             | Probability<br>Calculation | $P_{MON_{FF}}$ =<br>The probability of a hidden failure in<br>the far field Cat. III DDM monitoring<br>circuitry.<br>$P_{MON_{FF}}$ = 5,555 x 10 <sup>-7</sup><br>$P_{MON_{FF}}$ = 5,555 x 10 <sup>-7</sup><br>$P_{FCSE}$<br>$P_{FCSE}$<br>The probability that the ILS signal<br>will be out of Cat. III DDM toler-<br>ance at the far field due to external<br>runway disturbances during the crit-<br>ical landing phase of a Cat. III land-<br>ing.<br>P(HS)_{FF} = 5,555 x 10 <sup>-10</sup> | P(HS)_CSE_SDM * PINT_CSE_SDM<br>* PXMTR_CSE_SDM<br>* CSE_SDM<br>* (1, DOSLCS * 168)<br>* (1, LOGIC * 168)<br>* (1, LOGIC * 168)<br>* (1, LOGIC * 168)<br>* (1, LOGIC * 168)<br>* (1, LOGIC * 168)<br>* (1, LOGIC * 168)<br>* (1, SE_SDM<br>* (1, XMTR_CSE_SDM<br>* 168)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | Probability<br>Description | Probability of the radiation of a hazardous aignal that is out of Cat. III course position toler-<br>ance at the far field only.<br>(continued)                                                                                                                                                                                                                                                                                                                                                   | Probability of the radiation of a hazardous course position Cat.<br>III SDM signal, i.e., incorrect percentage modulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

, .

Table E-1. Localizer Hazardous Signal Radiation Probabilities (Cont'd)

2

ſ

| Remarks                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Worst case analysiy performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Pute<br>Data       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Utilisation of $\lambda_{MON}_{CSE}$ is general<br>and worst case; hence. $P_{INT}_{CSE}_{RF}$<br>= $P_{INT}_{CSE}_{DDM}$ int $CSE_{SDM}$<br>$\lambda_{XMTR}_{CSE_{RF}}$ ;<br>$\lambda_{2B} = 7.150 \times 10^{-6}$<br>$\lambda_{3B} = 0.413 \times 10^{-6}$<br>$\lambda_{3B} = 0.413 \times 10^{-6}$<br>$\lambda_{12F1} = 1.209 \times 10^{-6}$<br>$\lambda_{12F1} = 1.209 \times 10^{-6}$<br>$\lambda_{12F1} = 1.209 \times 10^{-6}$<br>$\lambda_{13A} = 0.509 \times 10^{-6}$<br>$\lambda_{MTR}_{CSE}$ |
| Prohability<br>Calculation | PINT CSE <sub>SDM</sub><br>The probability of a 'f. flure of the<br>course Cat. 111 SDM integral moni-<br>toring circuitry, (hidden)<br>PXMTR CSE SDM<br>The probability that an actual harard<br>our Cat. 111 SDM will be radiated,<br>with no other parameters effected.<br>"It'T GSE SDM<br>The probability that an actual harard<br>our Cat. 111 SDM will be radiated,<br>with no other parameters effected.<br>"It'T GSE SDM<br>P (HS) CSE SDM<br>P(HS) CSE SDM | $P_{IHS})_{CSE}_{RF} = P_{IMT}_{CSE}_{RF}$ $= P_{XMTR}_{CSE}_{RF} = (\frac{1}{2}MON_{CSE} - 168)^{2}$ $= (1 - \frac{1}{2}MON_{CSE} - 168)^{2}$ $= (1 - \frac{1}{2}MON_{CSE} - 168)^{2}$ $= (1 - \frac{1}{2}MON_{CSE} - 168)^{2}$ $= (\frac{1}{2}MTR_{CSE}_{RF} - 168)^{2}$ $= (\frac{1}{2}MTR_{CSE}_{RF} - 168)^{2}$                                                                                                                                                                                      |
| Probability<br>Description | Probability of the radiation of a haardore course position Cat.<br>III SDM signal, i.e., incorrect percentage modulation.<br>(continued)                                                                                                                                                                                                                                                                                                                             | Frobability of the radiation of a signal that is cut of Cat. III.<br>limit with respect to course RF power.                                                                                                                                                                                                                                                                                                                                                                                               |

Table E-1. Localizer Hazardous Signal Radiation Probabilities (Cont'd)

r

3

0

<u>م</u>تر

Sec. 2. 2

0

夏素

書いてい

**4** + 1

3

| Pake 5 of 7 | Remarks -                  | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Worst case analysis performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Failure Rote<br>Data       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\lambda_{MON_{SEN}} = ^{38B} = ^{39B}$ $= ^{40B} = 2.892 \times 10^{-6}$ $\lambda_{GATE} = ^{101} = 0.140 \times 10^{-6}$ $\lambda_{GATE} = ^{101} = 0.700 \times 10^{-6}$ $\lambda_{EDUHD} = ^{103} = 1.249 \times 10^{-6}$ $\lambda_{SEN}$ |
|             | :<br>Calculation           | $P_{INT}^{F} CSE_{R}^{F}$ The probability of a failure of the course Cat. III RF intragral monitor-ing circuitry. (hidden)<br>$P_{XMTR}^{F} CSE_{R}^{F}$ The probability that an actual harard-ous signal outside of Cat. III power limit will be radiated, with no other parameters effected.<br>$P_{INT}^{F} CSE_{R}^{F} P_{INT}^{F} CSE_{DDM}^{F}$ $= 8.447 \times 10^{-7}$ $= 8.447 \times 10^{-7}$ $= 8.447 \times 10^{-7}$ $= 1.778 \times 10^{-3}$ $P_{(HS)}^{F} CSE_{R}^{F} = 1.778 \times 10^{-3}$ | P(H5) <sub>SEN</sub> = P <sub>INT<sub>SEN</sub> · P<sub>XMTR<sub>SEN</sub></sub><br/>P<sub>INT<sub>SEN</sub> = (<sup>A</sup>MON<sub>SEN</sub> · 168)<sup>2</sup><br/>+ (A<sub>GATE</sub> · 168)<sup>3</sup><br/>+ [(A<sub>LOGIC</sub> · 168)<br/>* · <sup>T</sup>A<sub>LOGIC</sub> · 168)<br/>* · <sup>T</sup>ATTR<sub>SEN</sub> · <sup>163</sup></sub></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | Prohability<br>Description | Probability of the radiation of a signal that is out of Cat. III limit with respect to course RF powers.<br>(continued)                                                                                                                                                                                                                                                                                                                                                                                     | Probability of the radiation of a signal the is out of Cat. III limit with respect to course width-sensitivity. DDM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

----

Table E-1. Localizer Hazardous Signal Radiation Probabilities (Cont'd)

4

.

| Remarko                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | As in the case of the course param-<br>eters, a general failure rate<br>( $\lambda_{MON}$ ) of the hidden failures<br>within the clearance monitor chan-<br>nels will be utilized, leading to a<br>worst case analysis.<br>Note: Probabilities of the radi-<br>ation of a harardous signal that is<br>out of clearance Cat.JIII SDM or RF<br>tolerances are virtually zero. This<br>is due to the fact that any change in<br>the percentage of modulation or RF<br>power simultaneously effect the clear<br>ance DDM. No isolated failure rates<br>for these two parameters exists.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $MON_{CL} = \frac{1}{43B} = \frac{1}{44B}$ $= \frac{1}{45B} = 5.551 \times 10^{-6}$ $CATE = ^{1}D1 = 0.140 \times 10^{-6}$ $COCIC = ^{1}D2 = 0.700 \times 10^{-6}$ $REDUND = ^{1}D3 = 1.249 \times 10^{-6}$ $REDUND = ^{1}D3 = 1.249 \times 10^{-6}$ $= \frac{1}{4A} = 1.446 \times 10^{-6}$ $= \frac{1}{4A} = 7.150 \times 10^{-6}$ $= \frac{1}{4B} = 7.150 \times 10^{-6}$ $= \frac{1}{3} = 0.250 \times 10^{-6}$ $= \frac{1}{3} = 0.388 \times 10^{-6}$ $= \frac{1}{3} = 0.388 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P <sub>5</sub> obability<br>Calculation | PINTSEN<br>INTSEN<br>Tra probability of a failure of the<br>sensitivity Cat. III DDM integral<br>monitoring circuitry. (hidden)<br>"ZMTRSEN<br>The probability that a signal that is<br>out of Cat. III tolerance for course<br>width be radiated, with no other<br>parameters effected.<br>PINTSEN + 1, 301 × 10 <sup>-7</sup><br>1NTSEN + 1, 301 × 10 <sup>-7</sup><br>+ 0:247 × 10 <sup>-7</sup><br>2, 605 × 10 <sup>-7</sup><br>2, 205 × 10 <sup></sup> | $P(BS) = PINT CL_{DDM} = PINT CL_{DDM}$ $PXMTR CL_{DDM}$ $PINT CL_{DDM} = (A_{MON}CL = 168)^3 + (A_{CATE} = 168)^3 + (A_{CATE} = 168)^3 + (A_{LOCIC} = 168)^3 + (A_{LOCIC} = 168)^3 + (A_{TCIC} = (A_{TT} R_{CL} = (A_{TT} R_{CL} = A_{TT} R_{CL} = A_{TT} R_{CL} + A_{TT} R_{CL} + A_{TT} R_{CL} + A_{TT} R_{CL} + A_{TT} R_{CL} + A_{TT} R_{CL} + A_{TT} R_{TT} R_{TT} + A_{TT} + A_{TT} R_{TT} + A_{TT} + A$ |
| Probibility<br>Desci-iption             | Probability of the radiation of a signal that is out of Cat. III<br>limit with respect to course<br>width-sensitivity DDM.<br>(continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frobability of the radiation of a hararatdous signal that is out of clearance Cat. III DDM tolerance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

į

Table E-1. Localizer Hazardous Signal Radiation Probabilities (Cont'd)

Page 6 of 2

and the second second second second

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

BOD TUNE

States and a

そうへの 清朝長

and the property of the second

A. S. S. S.

1

Table E-1. Localizer Hazardous Signal Radiation Probabilities (Cont'd)

Page 7 of 7

| Remarks                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $\frac{x_{12F}}{x_{12F}} = 1.209 \times 10^{-6}$ $\frac{x_{12F}}{x_{12F}} = 0.070 \times 10^{-6}$ $\frac{x_{14A}}{x_{MTR}} = 1.032 \times 10^{-6}$ $\frac{x_{MTR}}{CL_{DDM}} = 23.853 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Probability<br>Calculation | PINT $CL_{DDM}$<br>The probability of failure of the clearance Cat. III DDM integral monitoring circuitry. (hidden)<br>PXMTR $CL_{DDM}$<br>The probability that the radiation of the clearance signal will be out of Cat. III tolerance for DDM, with no other parameters effected.<br>FINT $CL_{DDM}$<br>$T_{11} CL_{DDM}$ $10^{-7}$<br>$R_{11} CL_{DDM}$ $10^{-7}$<br>$= 8.944 \pm 10^{-7}$<br>$= 8.944 \pm 10^{-7}$ |
| Prchability<br>Description | Probability of the radiation of a basardous signal that is out of clearance Cat. III DDM toler-<br>ance.<br>(continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Page 1 of 14

Table E-2. Localizer Shutdown Probabilities

ŕ

Q

| Remarke                    | The subscript on A refers to the<br>failure mode: hence, failure rate<br>identification is readily accomplish-<br>ed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failuro Rate<br>Data       | $\begin{aligned} \lambda_{1} = 3.507 \pm 10^{\circ} \\ \lambda_{1} = 3.507 \pm 10^{\circ} \\ \lambda_{1} = 0.140 \pm 10^{-6} \\ \lambda_{1} = 0.339 \pm 10^{-6} \\ \lambda_{1} = 1.506 \pm 10^{-6} \\ \lambda_{1} = 0.859 \pm 0^{\circ} 0^{-6} \\ 13.6 = 0.397 \pm 10^{-6} \\ \lambda_{2} = 0.060 \pm 10^{-6} \\ \lambda_{3} = 0.000 \pm 10^{-6} \\ \lambda_{4} = 0.000 \pm 10^{-6} \\ \lambda_{4} = 0.252 \pm 10^{-6} \\ \lambda_{4} = 0.252 \pm 10^{-6} \\ \lambda_{4} = 0.525 \pm 10^{-6} \\ \lambda_{4} = 0.525 \pm 10^{-6} \\ \lambda_{4} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.690 \pm 10^{-6} \\ \lambda_{1} = 0.610 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.512 \pm 10^{-6} \\ \lambda_{1} = 0.512 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.525 \pm 10^{-6} \\ \lambda_{1} = 0.52$ |
| Probability<br>Calculation | F = E <sup>3</sup> . Single Fallures : 10 SEC<br>P <sub>S</sub> = (14.083 × 10 <sup>-6</sup> ) × 10/3600<br>P <sub>S</sub> = 3.912 × 10 <sup>-8</sup><br>P <sub>S</sub> = 3.912 × 10 <sup>-8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Probability<br>Description | Single failures in the localizer<br>equipment that cause immediate<br>localizer ahudown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| e Remarks                  | Any failure mode of $\lambda_{B}$ will abut down the<br>failure mode of $\lambda_{B}$ will abut down the<br>localizer station.<br>Note that all failure modes considered<br>in $\lambda_{A}$ and $\lambda_{B}$ are free of hidden fail-<br>ures: hence, the IO second time inter-<br>val for probability calculations is<br>common to all failure modes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rafe<br>Data       | A: $\frac{1}{2}$ A = 1.446 × 10^{-6}<br>$\frac{1}{2}$ B = 7.150 × 10^{-6}<br>$\frac{1}{2}$ A = 1.446 × 10^{-6}<br>$\frac{1}{3}$ A = 2.413 × 10^{-6}<br>$\frac{1}{3}$ A = 2.413 × 10^{-6}<br>$\frac{1}{3}$ A = 2.413 × 10^{-6}<br>$\frac{1}{3}$ A = 1.453 × 10^{-6}<br>$\frac{1}{3}$ A = 1.2.832 × 10^{-6}<br>$\frac{1}{3}$ A = 1.322 × 10^{-6}<br>$\frac{1}{3}$ A = 1.368 × 10^{-6}<br>$\frac{1}{3}$ B = 1.3134 × 10^{-6}<br>$\frac{1}{3}$ B = 1.3134 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.338 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 × 10^{-6}<br>$\frac{1}{3}$ B = 0.050 ×                                                        |
| Probability<br>Calculation | $P_{AB} = P_A \cdot P_B$ $P_A =$ $P_A =$ $P_B =$ The probability of loss of the main transmitting unit.<br>$P_B = (A_A \cdot 10 \text{ SEC})A_B \cdot 10 \text{ SEC};$ $P_{AB} = (A_A \cdot 10 \text{ SEC})A_B \cdot 10 \text{ SEC};$ $P_A = 7.626 \times 10^{-6} \cdot 10 \text{ SEC};$ $P_A : 1.879 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ $P_A : (1.871 \times 10^{-7};$ |
| Probability<br>Deacription | Failure in the main transmit-<br>ting unit and a failure in the<br>standby transmitting unit. Both<br>failures occur within the critical<br>phase of the Cat. III landing (10<br>seconds) and it is immaterial of<br>which failure occurs first.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

•

ļ

ŝ

-

ł

Table E-2. Localizer Shutdown Probabilițies (Cont'd)

Page 2 of 14

| Remarks                    |                                                      |  |
|----------------------------|------------------------------------------------------|--|
| Failure Rate<br>Data       | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |  |
| Probability<br>Calculation |                                                      |  |
| Probability<br>Description |                                                      |  |

?

ì

Pare 2 nd 14

Table E-2. Localizer Shutdown Probabilities (Cont'd)

the shear

CONCENT.

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

have a strain the second strain and the second strain second strain second strain second strain second strain s

At the second second second second

| Fage 4 of 14 | Remarks                    | The factor $\left(\frac{\lambda_{C}}{\lambda_{A}+\lambda_{C}}\right)$ is the conditional probability that the hidden failure modes $(\lambda_{C})$ will occur prior to a main transmitting unit failure that initiates a transfer $(\lambda_{A})$ .<br>A two weak preventive maintenance cycle is assumed to check the transfer force the transfer explisity of the localitare station. | The factor, $\left(\frac{\lambda_D}{\lambda + \lambda_D}\right)$ ,<br>is the conditional probability that a<br>failure of $\lambda_D$ will occur prior to a<br>failure of $\lambda_A$ .<br>Note that after a failure in the main<br>transmitting unit has occurred and a<br>transmitting unit has occurred and a<br>transmitting is meaninglese.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Failure Rate<br>Data       | $\lambda_{G}: \lambda_{IQ} = 0.844 \times 10^{-6}$ $\lambda_{IT} = 2.658 \times 10^{-6}$ $\lambda_{1ZA} = 0.221 \times 10^{-6}$ $\lambda_{G} = 3.723 \times 10^{-6}$ $\lambda_{A} = 67.626 \times 10^{-6}$                                                                                                                                                                              | $\lambda_{D}: \frac{\lambda_{12}C}{\lambda_{4}CA} = 0.782 \times 10^{-6}$ $\lambda_{4}CA = 13.310 \times 10^{-6}$ $\lambda_{4}AA = 14.280 \times 10^{-6}$ $\lambda_{11} = 1.164 \times 10^{-6}$ $\lambda_{11} = 1.164 \times 10^{-6}$ $\lambda_{11} = 1.164 \times 10^{-6}$ $\lambda_{12} = 0.789 \times 10^{-6}$ $\lambda_{313} = 0.789 \times 10^{-6}$ $\lambda_{323} = 0.789 \times 10^{-6}$ $\lambda_{323} = 0.789 \times 10^{-6}$ $\lambda_{333} = 0.789 \times 10^{-6}$ $\lambda_{343} = 0.172 \times 10^{-6}$ $\lambda_{44} = 1.514 \times 10^{-6}$ $\lambda_{6} = 44.514 \times 10^{-6}$ $\lambda_{6} = 67.626 \times 10^{-6}$ |
|              | Probability<br>Calculation | $P_{AC} = \frac{A_{C}}{A + A_{C}} (P_{A} \cdot P_{C})$ $P_{A} =$ $P_{reviously identified.}$ $P_{C} =$ $The probability of the loss of the transfer to standby capability.$ $P_{A} = 1.879 \times 10^{-7}$ $P_{C} = (A_{C} - 336 \text{ HR})$ $= 1.251 \times 10^{-3}$ $P_{AC} = 1.227 \times 10^{-11}$                                                                                 | $P_{AD} = \frac{^{A}D}{^{A} + ^{A}D}$ $P_{A} =$ $P_{A} =$ $P_{reviously identified.}$ $P_{D} =$ $P_{D} =$ $P_{D} = 1.879 \times 10^{-7}$ $P_{A} = 1.879 \times 10^{-7}$ $P_{D} = 1.237 \times 10^{-7}$ $P_{D} = 1.237 \times 10^{-7}$ $P_{D} = 9.226 \times 10^{-13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | Protability<br>Description | A hidden fallure in the equipment<br>which essentially inhibits the<br>transfer capability of the trans-<br>mitting units and then a failure<br>in the main transmitting unit.                                                                                                                                                                                                          | A failure in the standby monitor-<br>ing system initiating a shudown<br>of the standby tranamitting unit<br>and then a failure in the main<br>tranamitting unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Page 5 of 14

Table E-2. Localizer Shutdown Probabilities (Cont'd)

| Remarks                    | Factors $\left(\frac{\lambda_{0B}}{\lambda_{0}} + \frac{\lambda_{B}}{\lambda_{BCD}}\right)$ and $\frac{\lambda_{BCE}}{\lambda_{0}}$ are conditional $\left(\frac{\lambda_{1}}{\lambda_{1}} + \frac{\lambda_{BCE}}{\lambda_{CE}}\right)$ are conditional equation for the sequence ordering of $P_{66B}$ and $P_{BC}$ respectively. Note that worst case failure rate 'for $\lambda_{B}$ has been used a not some of the failure rate of $\lambda_{B}$ may also produce a secultivity Cat. III DDM elarm. Also no discrimination has ever the antire probability calculation is worst case.                                                                                                                                                                         |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $\lambda_{46B} = 5.390 \cdot .10^{-6}$ $\lambda_{BCD} : \lambda_{B} = 67.346 \times 10^{-6}$ $\lambda_{C} = 3.723 \times 10^{-6}$ $\lambda_{C} = 3.723 \times 10^{-6}$ $\lambda_{B} = 144.514 \times 10^{-6}$ $\lambda_{BB} = 1.150 \times 10^{-6}$ $\lambda_{BB} = 1.1302 \times 10^{-6}$ $\lambda_{B} = 12.632 \times 10^{-6}$ |
| Probability<br>Calculation | $P_{STBY}CSE \left\{ \frac{A_{46B}}{A_{46B}} + \frac{A_{46B}}{A_{BCD}} \right\} P_{46B}$ $\times \left\{ \frac{A_{65E}}{A} + \frac{A_{55E}}{B_{CSE}} \right\} P_{BCSE}$ $\times P_{A}$ $P_{6B} =$ $P_{6B} =$ $P_{Cobability of sequence (1)}$ $P_{B}CSE =$ $P_{Cobability of sequence (2)}$ $P_{B}CSE =$ $P_{6B} = \left\{ A_{6B} = 336 \text{ HR} \right\}$ $P_{B}CSE = \left\{ B_{CSE} = 336 \text{ HR} \right\}$ $P_{B}CSE = \left\{ B_{CSE} = 336 \text{ HR} \right\}$ $P_{STBY}CSE = \left\{ B_{CSE} = 336 \text{ HR} \right\}$ $P_{STBY}CSE = \left\{ B_{CSE} = 336 \text{ HR} \right\}$ $P_{STBY}CSE = \left\{ B_{CSE} = 336 \text{ HR} \right\}$ $P_{STBY}CSE = \left\{ B_{CSE} = 1,722 \times 10^{-14} \text{ STBY}CSE$                                   |
| Probability<br>Description | Faiture sequence leading to a<br>shutdown for P_STBY CaSE<br>(1) Lose of monitoring ability<br>of the standby course moni-<br>tor.<br>(2) Faiture causing the genera-<br>tion of a faulty oranser from<br>SDM, or RF parameter from<br>tion of a faulty transmitting unit.<br>(3) Any failure in the main trans-<br>mitting unit which can initi-<br>ate a transfor.                                                                                                                                                                                                                                                                                                                                                                                               |

د ر

Page 6 of 14.

| Remarka                    | Factors $\left(\frac{47B}{4^{4}B} + \frac{47B}{ABCD}\right)$ and $\left(\frac{A}{\lambda^{4} + B_{SEN}}\right)$ are conditional probabilities that compensate for sequence ordering of $P_{47B}$ and $P_{SEN}$ . Note that worst case failure rate for basis. Note that worst case failure rate for a failure rate of $A_{SEN}$ may also produce Cat. III course monitor alarm, thus leading to a worst case $S_{TB}Y_{SEN}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fáilúre Rate<br>Data       | $A_{4TB} = 2.892 \times 10^{-6}$ $A_{BCD} = 183.207 \times 10^{-6}$ $A_{BCD} = 183.207 \times 10^{-6}$ $B_{SEN} : A_{BE} = 0.413 \times 10^{-6}$ $A_{B} = 12.832 \times 10^{-6}$ $A_{B} = 1.302 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Probability<br>Calculation | PSTBYSEN $\left(\frac{\lambda}{\lambda TB} + \frac{\lambda}{\lambda BCD}\right)$ , PATB<br>$\left(\frac{\lambda}{\lambda T} + \frac{\lambda}{\lambda TB} + \frac{\lambda}{\lambda BCD}\right)$ , PBSEN<br>$\left(\frac{\lambda}{\lambda} + \frac{\lambda}{BSEN}\right)$ , PBSEN<br>$\left(\frac{\lambda}{\lambda} + \frac{\lambda}{BSEN}\right)$ , PBSEN<br>$\left(\frac{\lambda}{\lambda} + \frac{\lambda}{BSEN}\right)$ , PBSEN<br>$\left(\frac{\lambda}{\lambda} + \frac{\lambda}{BSEN}\right)$ , PBSEN<br>$\left(\frac{\lambda}{2} + \frac{\lambda}{2}\right)$ , PBSEN<br>$\left(\frac{\lambda}{2} + $ |
| Probability<br>Description | Sailure sequence leading to a<br>jhuidown for PSTBY SEN<br>[1] Loss of monitoring ability<br>of the standby sensitivity<br>monitor.<br>(2) Failure causing the gener-<br>ation of a faulty course<br>width (DDM) parameter<br>from the standby transmit-<br>ting with.<br>(3) Any failure in the main<br>transmitting unit which can<br>initiate a transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

>

| Page 7 of 16 | Remarks                    | Factors $\left(\frac{\lambda_{aBB}}{\lambda_{aBB} + \lambda_{BCD}}\right)^{and}$<br>$\left(\frac{\lambda_{a} + \lambda_{BCL}}{\lambda_{aCL}}\right)$ are conditional<br>probabilities that compensate for<br>sequence ordering of $P_{ABB}$ and<br>$P_{BC}$ respectively.<br>A worst case probability calculation<br>is made alnce the failury rate $\lambda_{aBB}$<br>is nondiscriminatory as to which<br>clearance parameter (DDM, SDM,<br>or RF) is faulty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Failure.Rate<br>Data       | $\lambda_{BCD} = 103, 209 \times 10^{-6}$ $\lambda_{BCD} = 103, 209 \times 10^{-6}$ $\lambda_{B} = 7, 150 \times 10^{-6}$ $\lambda_{B} = 7, 150 \times 10^{-6}$ $\lambda_{B} = 1, 552 \times 10^{-6}$ $\lambda_{B} = 1, 552 \times 10^{-6}$ $\lambda_{B} = 0, 388 \times 10^{-6}$ $\lambda_{B} = 21, 542 \times 10^{-6}$ $\lambda_{B} = 1, 542 \times 10^{-6}$ $\lambda_{B} = 1, 542 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | Probability<br>Calculation | $P_{STBYCL} = \left(\frac{48B}{ABCD}\right)^{P} P_{48B}$ $\times \left(\frac{{}^{A}_{A} + {}^{A}_{B}_{CL}}{{}^{A}_{A} + {}^{A}_{B}_{CL}}\right)^{P} P_{CL}$ $P_{48B} = \times P_{A}$ $P_{48B} = \times P_{A}$ $P_{48B} = \left(\frac{1}{A}\right)^{P} P_{CL}$ $P_{2} P_{2} P_$ |
|              | Probability<br>Description | Failure acquence leading to a ahudown for PSTBYC.<br>(1) Losa of monitoring ability of the standby clearance mon-<br>itor.<br>(2) Failure causing the genera-<br>tion of a fully clearance<br>tion of a fully clearance<br>mitting unit.<br>(3) Any failure in the main<br>transmitting unit which can<br>initiate a transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

ş

1

Table E-2. Localizer Shutdown Probabilities (Cont'd)

. .

| Remarks                    | Factors $\left(\frac{\lambda_{34D} + \lambda_{34K}}{\lambda_{34D} + \lambda_{34K} + \lambda_{BCD}}\right)$<br>and $\left(\frac{\lambda_{B_{1D}}}{B_{1D} + \lambda_{A}}\right)$ are<br>conditional probabilities that com-<br>pensate for sequence ordering of<br>(P <sub>34D</sub> + P <sub>34K</sub> ) and P <sub>B</sub> respec-<br>tively.                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Prehability<br>Calculation | $P_{STBY_{ID}} \left\{ \begin{array}{l} \sum_{i=1}^{i} \frac{1}{i_{1}i_{D}} \cdot \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{D}} + \frac{1}{i_{1}i_{1}i_{D}} + \frac{1}{i_{1}i_{1}i_{1}i_{1}i_{1}i_{1}i_{1}i$ |
| Probabilie<br>Description  | Failure sequence leading to a shuddiwn for "STBY 13"<br>(1) Lusis of the monitoring ability of the standby 1,13, mon-<br>itor.<br>(2) Failure causing the genera-<br>torn of a laulty 1,13, signal<br>(or loss) of the standby<br>transmitting unit.<br>(3) Any failure in the main<br>transmitting unit which can<br>initiate a transfer.                                                                                                                                                                                                                                                                                                                                                                                                                  |

.

Page 8 of 14

E-16

6

| Remarks .                  | Factors $\left(\frac{\lambda_{1H} + \lambda_{1S1}}{\lambda_{1H} + \lambda_{1S1}} + \frac{\lambda_{BCD}}{\lambda_{BCD}}\right)$<br>and $\left(\frac{\lambda_{B}}{\lambda_{1} + \lambda_{B}}\right)$ are conditional<br>probabilities that compensate for<br>sequence ordering of $\left(P_{1H} + P_{1S1}\right)$<br>and $\left(\lambda_{B} - 356  HR\right)$ respectively.<br>Note that the probability $\left(\lambda_{B} - 356  HR\right)$<br>must be used rather than $P_{B}$ because<br>a two week period of failure fpreven-<br>tive maintenance cycle) must be used<br>rather than the 10 secord critical<br>landing phase period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fallure Rate<br>Data       | $A_{1H} = 1.399 \times 10^{-6}$<br>$A_{1S1} = 0.198 \times 10^{-6}$<br>$A_{BCD} = 181.209 \times 10^{-6}$<br>$V_{B} = 67.626 \times 10^{-6}$<br>$A_{A} = 67.626 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Probability<br>Calculation | $P_{STBY} = \left(\frac{\lambda_{1H} + \lambda_{1S1}}{\lambda_{1H} + \lambda_{1S1}}\right) \times \left(P_{1H} + P_{1S1}\right) \times \left(P_{1H} + P_{1S1}\right) \times \left(P_{1H} + P_{1S1}\right) \times \left(\frac{\lambda_{B}}{(\lambda + \lambda_{B}}\right) + \sum_{X \in A} \left(\lambda_{B} - 336 \text{ HR}\right) \times P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_{X} + P_$ |
| Probability<br>Description | Failure acquence leading to a shutdown for P <sub>STB</sub> y:<br>(1) Loss of <u>all</u> standby monitor-<br>ing ability.<br>(2) Faviure causing the genera-<br>tios of any faulty parameter<br>of the standby transmitting<br>unit.<br>(3) Any failure in the main<br>transmitting unit which can<br>initiate a transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

9 of 14 Page

10.57

.

1

| Fare 10 of 14 |
|---------------|
|               |

Ø

| Remarks                    | Note that since a power/environ-<br>mental alarm will be produced if<br>one of the converters fails, a down-<br>grade from Cas, III performance<br>will occur within 3 hours; hence a<br>3 hour time intervalvis used.<br>A monthly preventive maintenance<br>cycle is assumed to check that the<br>far fiz'd monitor battery and bat-<br>tery disconnect circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br><u>.</u> |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Failure Rate<br>Data       | AIT 18 (598 × 10 <sup>-6</sup><br>3.1A 5.740 × 10 <sup>-6</sup><br>5.0A 5.740 × 10 <sup>-6</sup><br>5.0B 0.519 × 10 <sup>-6</sup><br>ATTF 4.0 × 10 <sup>-6</sup><br>ATTF (assumed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Prohability<br>Calculation | $P_{PS/CONV} = P_{CONV_{MAIN}} + P_{SFF} + P_{SFF} + P_{SFF} + P_{SONV_{MAIN}} + P_{SONV_{FF}} + P_{SFF} + P_{SONVFF} + P_{SONVFF} + P_{SFF} + P_$ |              |
| Prohahsluts<br>Descryption | Power Aupply/Lonverter failures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

• • •

.

Á.

Page 11 of 14

| Remärka                    | It should be noted that since an output from the course monitor chan-<br>itor-wingul, a worst case analysis<br>may be accomplished by treating both<br>on an aggregute basis. Furthermore-<br>course RF. SDM, ani DDM alarma-<br>again leading to worst case analysis.<br>Note that it is assumed maintenance<br>action will be employed within 2<br>weeks (336 HR) after a monitor abmor-<br>mal due to a monitor mismatch occurs<br>mal due to a monitor mismatch occurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $\sum_{ACSF/ID}^{ACSF/ID} = ^{CSF/ID}_{CSF/ID} = ^{CSF/ID}_{CSE/ID}_{S}$ $\sum_{ACSE/ID}^{A} = ^{2}CSE/ID_{3}$ $\sum_{ACSE/ID}^{A} = ^{13.310 \times 10^{-6}} + ^{35A} = ^{13.310 \times 10^{-6}} + ^{32AA} = ^{13.31A} = ^{1.914 \times 10^{-6}} + ^{32AA} = ^{1.914 \times 10^{-6}} + ^{32AA} = ^{1.914 \times 10^{-6}} + ^{32AA} = ^{1.914 \times 10^{-6}} + ^{1.33}_{CSE/ID} = ^{16.539 \times 10^{-6}} = ^{16.539 \times 10^{-6}} + ^{1.33}_{CSE/ID} = ^{16.539 \times 10^{-6}} + ^{32AA} = ^{1.33A}_{1.21} = ^{16.539 \times 10^{-6}} + ^{1.33A}_{CSE/ID} = ^{16.539 \times 10^{-6}} = ^{16.539 \times$ |
| Probability<br>Calculation | $P_{GSE/ID} = (\lambda_{GSE/ID} \cdot 10 SEC) \times (2 \cdot \lambda_{CSE/ID} \cdot 10 SEC) = (5 \cdot 557 \times 10^{-3}) \times 19 \cdot 10^{-8}) = 5 \cdot 106 \times 10^{-10}$ Note: If each monitor were considuation of a second separately, the properties in the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of failure of each of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billity of the billi                                                                                                                                                                                                                                                                                                                                                                   |
| Probability<br>Description | Two of the three course/I. D.<br>monito's (including respective<br>peak detectors) failing, pro-<br>ducing an alarm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Remarks                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $\begin{cases} k_{SEN} = k_{SEN} = k_{SEN} = k_{SEN} = k_{SEN} \\ k_{SEN} = k_{SSN} = 0.367 \times 10^{-6} \\ k_{23A} = 0.789 \times 10^{-6} \\ k_{23B} = 0.386 \times 10^{-6} \\ k_{SEN} = 10.589 \times 10^{-6} \\ k_{SEN} = k_{24B} + 1/3\lambda + 1C2 \\ k_{25N} = k_{0A} + \lambda_{25A} \\ k_{25N} = k_{0A} + \lambda_{25A} \\ k_{25N} = k_{0A} + \lambda_{25A} \\ k_{25N} = k_{0A} + \lambda_{25A} \\ k_{25N} = k_{0A} + \lambda_{25A} \\ k_{25B} = k_{0A} + \lambda_{25A} \\ k_{25B} = k_{0A} + \lambda_{25A} \\ k_{25B} = k_{0} + k_{25A} \\ k_{25B} = k_{0} + k_{25B} \\ k_{25B} = k_{0} + k_{25A} \\ k_{25B} = k_{0} + k_{25B} \\ k_{25B} = k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k_{25} + k_{25} \\ k$ |
| Prohability<br>Calculation | Psex 'sex' 136 HR<br>• 2 • 'sex' 10 SEC<br>- 2,090 × 10 <sup>-10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Probability<br>Description | Two of the sensitivity monitors/<br>peak detectors failing, producing<br>an alarm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

2

# Table E-2. Localizer Shutdown Probabilities (Cont'd)

| Failure'Rate Remarko       | $\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Probability<br>Calculation | PCL = (LL - 3 <sup>16</sup> HR)<br>- (LL - 10 SEC)<br>= 4.540 × 10 <sup>-10</sup><br>= 4.540 × 10 <sup>-10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Probability<br>Description | Two of the clearance monitors/<br>peak detectors falling. producing<br>an alartit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

ĩ

| Rémarka                    | Note that the failure of both the DDM<br>and SDM has been included in the<br>near field monitor channel failure<br>rate, since the SDM strap option for<br>a general alarm will be utilized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Note that the failure rate of the SDM<br>is also included, since the SDM strap<br>option for a general Cat. II alarm<br>will be utilized.<br>Although a time delay (nominal 120<br>seconds) exists at the far field for<br>alarm processing, the 10 sec time<br>interval in the probability calculation<br>is still used. Only the initial arbi-<br>trary reference has changed. |                                                                                                                                                     |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $\begin{cases} \lambda_{NF} = \lambda_{NF1} = \lambda_{NF2} \\ \lambda_{NF1} + \lambda_{1A} = 11.099 \times 10^{-6} \\ \lambda_{2A} = 0.769 \times 10^{-6} \\ \lambda_{29B} = 0.386 \times 10^{-6} \\ \lambda_{29B} = 0.386 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 344 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 344 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F1} = 12^{2} 348 \times 10^{-6} \\ \lambda_{F$ | YEF * YEFI * YEF2 * YEF3<br>YEF1:                                                                                                                                                                                                                                                                                                                                                | 1 <sub>52</sub> 2, 31: × 10 <sup>-6</sup><br><sup>1</sup> 12 0, 140 × 10 <sup>-6</sup>                                                              |
| Probability<br>Catrulation | P <sub>NF</sub> = ( <sub>NF</sub> · 33) HR)<br>= ( <sub>NF</sub> · 10 SEC)<br>= 1,422 × 10-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PFF (\FF 330.11R)<br>× {2 • \FF • 16 SEC}<br>•081 × 10-10                                                                                                                                                                                                                                                                                                                        | P <sub>INHIR</sub> ( <u>1</u> 52 * <sup>1</sup> <sub>1 w</sub> )- In SEC<br>6. 822 × 10 <sup>-9</sup>                                               |
| Probability<br>Description | Buth of the near field monitors/<br>peak detectors failing, producing<br>an alarm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Two of the three far field mun-<br>itors/ receivers failing. produc-<br>ing an alarm,                                                                                                                                                                                                                                                                                            | Failure inhibiting the monitors<br>while the ILS signal is radiated.<br>A shutdown status will result-<br>loss of Cat. III and Cat. II sta-<br>tus. |

۰,

Table E-2. Localizer Shutdown Probabilities (Cont'd)

Appendix F Glideslope Math Models

## Appendix F

### Glideslope Math Model's

7 .

This appendix consists of tables F-l and F-2, referred to in section 8.0, which give respectively, probability math models for glideslope hazardous signal radiation and shutdown. Table F-1. Glideslope Hazardous Signal Radiation Probabilities

Pake Lof 6

;

Table F-1. Glideslope Hazardous Signal Radiation Probabilities (Cont'd)

1. 2 ... C

| adure Pate<br>Data          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Productificy<br>Calculation | $P_{XMTR} CSE_{DDM}$ The probability that an actual harardous Gat. III course DDM will harardous Gat. III course DDM will be radiated, while no other parameters are effected. First CSE_DDM = 6.001 × 10^{-7} * 0.001 × 10^{-7} * 0.001 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 10^{-7} * 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × 0.01 × | P(HS) CSE SDM = PINT CSE SDM<br>* PXMTR CSE SDM<br>* PXMTR CSE SDM<br>PINT CSE SDM<br>+ ( <sup>A</sup> CATE · 168) <sup>2</sup><br>+ ( <sup>A</sup> CATE · 168)<br>* ( <sup>A</sup> ALDCIC · 168)<br>* ( <sup>A</sup> AEDUND · 168)]<br>* ( <sup>A</sup> AEDUND · 168)] |
| Probabílity<br>Drecription  | Probability of the radiation of a<br>hazardoun course position (path<br>anglei Cat. III DDM signal.<br>(continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probability of the radiation of a hazardous course position Cat. III SDM signal signal, i.e., incorrect percentage modulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Rematks                    | Worst case and yale performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . Fållure Rate<br>Data     | $MON_{GSE} = ^{3}4B = ^{3}5B$ $= ^{3}_{36B} = 4.836 \times 10^{-6}$ $Catte = ^{1}1D1 = 0.700 \times 10^{-6}$ $LOGIC = ^{1}1D2 = 0.700 \times 10^{-6}$ $h = 1.249 \times 10^{-6}$ $\sum_{s = 0.686 \times 10^{-6}}$ $\sum_{s = 0.686 \times 10^{-6}}$ $\sum_{s = 0.686 \times 10^{-6}}$ $\sum_{s = 0.427 \times 10^{-6}}$ $\sum_{s = 0.427 \times 10^{-6}}$ $\sum_{s = 0.427 \times 10^{-6}}$ $\sum_{s = 0.466 \times 10^{-6}}$ $\sum_{s = 0.466 \times 10^{-6}}$ $\sum_{s = 0.466 \times 10^{-6}}$ $\sum_{s = 0.466 \times 10^{-6}}$ $\sum_{s = 1.231 \times 10^{-6}}$ $\sum_{s = 1.231 \times 10^{-6}}$ $\sum_{s = 1.231 \times 10^{-6}}$ $\sum_{s = 1.231 \times 10^{-6}}$ $\sum_{s = 1.231 \times 10^{-6}}$ $\sum_{s = 1.231 \times 10^{-6}}$ $\sum_{s = 0.846 \times 10^{-6}}$ $\sum_{s = 0.846 \times 10^{-6}}$ $\sum_{s = 0.427 \times 10^{-6}}$ $\sum_{s = 0.427 \times 10^{-6}}$ $\sum_{s = 0.427 \times 10^{-6}}$ $\sum_{s = 0.427 \times 10^{-6}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Protability<br>Calculation | PRHS) CSE RF <sup>2</sup> PINT CSE RF<br>* PXMTR CSE RF<br>* PINT CSE RF<br>PINT CSE RF<br>+ ( $ACTE \cdot 168$ )<br>+ ( $AEDUND \cdot 168$ )]<br>* ( $AEERF \cdot 1.822 \times 10^{-3}$ ]<br>* ( $AERF \cdot 1.248 \times 10^{-7}$ ] |
| Probability<br>Description | Probability of the radiation of a signal that is out of Cat. III limit with respect to course RF power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

¢

١

Table F-1. Glideslope Hazardous Signal Radiation Probabilities (Cont'd)

ĸ

Table F-I. Glideslope Hazardous Signal Radiation Probabilities (Cont'd)

and the second

1. S. S. S. S.

Page 4 nf 6

| Remarks                    | Worst case analysis performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $\frac{1}{3}MON_{SEN} = \frac{3}{3}9B = 2.892 \times 15^{-5} = \frac{3}{3}9B = 2.892 \times 15^{-5} = \frac{3}{2}MON_{SEN} = \frac{3}{1}D3 = 2.892 \times 10^{-6} = \frac{1}{1}D3 = 0.700 \times 10^{-6} = \frac{1}{1}D3 = 1.249 \times 10^{-6} = \frac{1}{3}C = 1.302 \times 10^{-6} = \frac{1}{3}C = 1.302 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 1.231 \times 10^{-6} = \frac{1}{1}D3 = 0.700 \times 10^{-6} = \frac{1}{1}D3 = 0.700 \times 10^{-6} = \frac{1}{1}D3 = 0.700 \times 10^{-6} = \frac{1}{1}D3 = 0.700 \times 10^{-6} = \frac{1}{1}D3 = 0.700 \times 10^{-6} = \frac{1}{1}D3 = 0.700 \times 10^{-6} = \frac{1}{1}D3 = 0.700 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = \frac{1}{1}D3 \times 10^{-6} = $ |
| Probability<br>Calculation | $P(HS)_{SEN} = P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{INT}_{SEN} P_{IN}^{II} P_{IN} P_{IN}^{II} P_{IN}^{I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Probability<br>Description | Probability of the radiation of a signal that is out of Cat. III limit with respect to course angle width-<br>sensitivity DDM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 14×Ke 2 01 6 | Remarks                    | Note that by considering the three clearance parameters (DDM, SDM, RF) collectively, a worst case analysis results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For the probability $P_{TM'}$ some<br>number must be assumed since this<br>number is unpredictable, being a<br>function of external and uncontrol-<br>lable forces. For convenience, let<br>$P_{TM} = 10^{-5}$ . |
|--------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Failure Rate<br>Data       | $\sum_{i=1}^{1} NON_{CL} = \frac{1}{40B} = \frac{1}{41B}$ $= \frac{1}{42B} = 4.848 \times 10^{-6}$ $= \frac{1}{42B} = 0.140 \times 10^{-6}$ $\sum_{i=10CIC} = \frac{1}{1D2} = 0.700 \times 10^{-6}$ $\sum_{i=10CIC} = \frac{1}{1D3} = 0.700 \times 10^{-6}$ $\sum_{i=10CIC} = \frac{1}{1D3} = 1.249 \times 10^{-6}$ $\sum_{i=10}^{1} = 1.176 \times 10^{-6}$ $\sum_{i=10}^{1} = 1.176 \times 10^{-6}$ $\sum_{i=10}^{1} = 1.231 \times 10^{-6}$ $\sum_{i=10}^{1} = 1.231 \times 10^{-6}$ $\sum_{i=10}^{1} = 1.521 \times 10^{-6}$ $\sum_{i=10}^{1} = 1.521 \times 10^{-6}$ $\sum_{i=10}^{1} = 1.521 \times 10^{-6}$                                                                                                                                                                                                                                                                 | $^{A}_{MD}^{i}$<br>$^{A}_{49B} = 2.354 \times 10^{-6}$<br>$^{A}_{1\Sigma} = 1.102 \times 10^{-6}$<br>$^{A}_{MD}^{i} = 3.456 \times 10^{-6}$                                                                      |
|              | Probability<br>Calculation | PIIIS] CL $\cdot$ P. Tr $_{CL}$ P. P. $_{RT} _{R} _{CL}$<br>P. Tr $_{L}$ $\cdot$ ( $^{A}_{MON} _{CL}$ $\cdot$ 16 $^{D}_{10}$<br>$+$ ( $^{3} \cdot ^{A}_{GATE} \cdot$ 16 $^{B}_{10}$<br>$+$ ( $^{3} \cdot ^{A}_{LOCIC} \cdot$ 16 $^{B}_{10}$<br>$+$ ( $^{1}_{A} _{LOCIC} \cdot$ 16 $^{B}_{10}$ )<br>$\times (^{A}_{REDUND} \cdot$ 16 $^{B}_{10}$ )<br>$\times (^{A}_{REDUND} \cdot$ 16 $^{B}_{10}$ )<br>$P_{TNT} _{CL} = (^{A}_{XMTR} _{CL} \cdot$ 16 $^{B}_{10}$ )<br>$P_{INT} _{CL} = (^{A}_{23} + 10^{-7})$<br>$P_{INT} _{CL} = 0.536 \times 10^{-7}$<br>$P_{INT} _{CL} = 1.935 \times 10^{-3}$<br>$P_{THR} _{CL} = 1.935 \times 10^{-3}$<br>$P_{THS} _{CL} = 1.427 \times 10^{-9}$ | P(HS) <sub>ATM</sub> = P <sub>MD</sub> - P <sub>TM</sub><br>P <sub>MD</sub> = ( <sup>1</sup> <sub>MD</sub> - 168HR)<br>= 5,806 × 10 <sup>-4</sup>                                                                |
|              | Probability<br>Description | Probability of the radiation of a<br>hazardous clearance signal (DDM,<br>SDM, or RF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Probability of the radiation of a<br>hazardout signal, due to antenna<br>tower misalignment.                                                                                                                     |

» · · · · · · · »

Table F-1. Glideslope Hazardous Signal Radiation Probabilities (Contrd)

Table F-1. Glideslope Hazardous Signal Radiation Probabilities (Cont'd)

Page 6 of 6

| Remarks .                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Probability<br>Calculation | $P_{MD}^{2}$ . The privability of the loss of tover slignment detection an not not producing an alarm.<br>$P_{TM}^{2}$ The probability that the glideslope ant.nna tower will become mis-<br>mained within the preventive maintenance cycle time of one week.<br>Note-mat the misalignment must effect only the path angle width (field monitored by the near field monitore.<br>$P(HS) = 5,806 \times 10^{-9}$ . |
| Probability<br>Descript/on | Probability of the radiation of a hazardous signed, due to antenna towar missilesconent. (continued) (continued)                                                                                                                                                                                                                                                                                                  |

í

|              | Remarke     | The subscript on A refers to the<br>failure mode, hance, failure rate<br>identification is readily accomplished.<br>Note: The same nomenclature as<br>for the focalizer will be employed<br>for the glidenlope in specifying and<br>determining probabilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Any failure mode of A with any<br>Any failure mode of A with any<br>other failure mode of A <sub>B</sub> will shut<br>down the glidealope station.<br>Note that all failure modes con-<br>sidered in A <sub>A</sub> apple, are figs of<br>hidden failures: hence, the 5 sec-<br>ond time interval for probability<br>calculations is common to all<br>failure modes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fallure Rate | Data        | $ \frac{1}{1A} = 2.895^{\circ} \times 19^{-6} $ $ \frac{1}{1B} = 2.004 \times 10^{-6} $ $ \frac{1}{1A} = 0.140 \times 10^{-6} $ $ \frac{1}{1Z} = 6.339 \times 10^{-6} $ $ \frac{1}{1A} = 1.464 \times 10^{-6} $ $ \frac{1}{1A} = 1.951 \times 10^{-6} $ $ \frac{1}{1} = 2.0.778 \times 10^{-6} $ $ \frac{1}{12} \times 0.778 \times 10^{-6} $ $ \frac{1}{12} \times 0.778 \times 10^{-6} $ $ \frac{1}{12} = 0.098 \times 10^{-6} $ $ \frac{1}{18} = 0.098 \times 10^{-6} $ $ \frac{1}{15.815 \times 10^{-6} } $ $ \frac{1}{15.815 \times 10^{-6} } $ | $\lambda_{1} \cdot \lambda_{2} = 5.734 \times 10^{-6}$ $\lambda_{3} = 1.914 \times 10^{-6}$ $\lambda_{4B} = 6.734 \times 10^{-6}$ $\lambda_{3} = 6.734 \times 10^{-6}$ $\lambda_{3} = 0.686 \times 10^{-6}$ $\lambda_{3} = 2.613 \times 10^{-6}$ $\lambda_{3} = 2.613 \times 10^{-6}$ $\lambda_{3} = 1.453 \times 10^{-6}$ $\lambda_{3} = 1.302 \times 10^{-6}$ $\lambda_{1} = 0.420 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.134 \times 10^{-6}$ $\lambda_{1} = 0.070 \times 10^{-6}$ |
| Probability  | Calculation | Ps = 2. NSINGLE FAILURES - 5 SEC<br>Ps = 15.815 x 10 <sup>-6</sup> x 5 SEC<br>Ps = 2.197 x 10 <sup>-8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $P_{AB} = P_{A} \cdot P_{B}$ $P_{A} =$ $The probability of loss of the main transmitting unit.$ $P_{B} =$ $The probability of loss of the stand-by transmitting unit.$ $P_{AB} = (\Lambda_{A} \cdot 5 SEC) (\Lambda_{B} \cdot 5 SEC)$ $P_{AB} = (\Lambda_{A} \cdot 5 SEC) (\Lambda_{B} \cdot 5 SEC)$ $P_{AB} = (17, 245 \times 10^{-6} \times 5 SEC)$ $= 2.691 \times 10^{-15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Probability  | Description | Single fallures in glideslope<br>equipment that cause immediate<br>glideslope shutdown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Failure in the main transmitting<br>unit and a failure in the standby<br>transmitting unit. Both failures<br>occur within the critical phase of<br>the Cat. III landing (5 seconds for<br>gludeslope) and it is immaterial of<br>which failure occurs first.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Table F-2. Glideslope Shutdown Probabilities

ć

| Remarks                    |                                                                                                                                                                                                                                                                             | The factor $\left( \begin{array}{c} \sqrt{C} \\ M + \lambda C \end{array} \right)$ is the condi-<br>tional probability that the hidden<br>failure invides $(\lambda_C)$ will occur prior<br>to a mein transmitting unit failure<br>that initiates a transfer $(\lambda_A)^{(1)}$<br>A two week preventive graintenance<br>cycle is assumed to chick the trans-<br>station. |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                       | B<br>$A = 37.455 \times 10^{-6}$<br>$A = 3.455 \times 10^{-6}$<br>$A = 0.844 \times 10^{-6}$<br>$A = 0.221 \times 10^{-6}$<br>$A = 3.723 \times 10^{-6}$                                                                                                                                                                                                                   |
| Probability<br>Calculation |                                                                                                                                                                                                                                                                             | $P_{AC} = \frac{\lambda_{C}}{M + \lambda_{C}} (P_{A} \cdot P_{C})$ $P_{A} = \text{previoually idintified}$ $P_{C} = \text{the probability.}$ $P_{C} = 5.202 \times 10^{-8}$ $P_{A} = 5.202 \times 10^{-8}$ $P_{C} = (\lambda_{C}^{-2} \cdot 2 \cdot w_{L})$ $= 1.251 \times 10^{-12}$ $z^{2}A_{C} = 5.884 \times 10^{-12}$                                                 |
| Probabilit;<br>Description | Failure in the main transmitting<br>unit and a failure in the standby<br>transmitting unit. Both failures<br>occur within the critical phase of<br>the Cat III lynding (5 seconds for<br>glideslope) and it is immaterial<br>of which failure occurs. (irr).<br>(continued) | A hidon fallure in the equipment<br>which essentially inhibite the<br>transfer capability of the trans-<br>mitting units and then a fallure in<br>the main transmitting unit.                                                                                                                                                                                              |

4

Table F-2. Glideslope Shutdown Probabilities (Cont'a)

¥:

ليز

2

| Pare 4 of 8 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                                                                                                                                                                                                                                                                                                                                            |
|-------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                         |                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                         |                                                                                                                                                                                                                                                                                                                                                            |
|             | Probability<br>Description                              | ailure sequence leading to z<br>hutdown for PSTBY SEN<br>Loss of monitoring ability<br>monitor.<br>Faulure causing the genera-<br>tion of a faulty path angle<br>course width (DDM) para-<br>meter from the standby<br>irransmitting unit.<br>Any failure in the main<br>. Any failure in the main<br>. Tanamitting unit which can<br>initiate a transfer. |

Table F-2. Glideslope Shutdown Probabilities (Cont<sup>1</sup>d)

ļ

Table F-2. Glideslope Shutdown Probabilities (Cont'd)

Page 3 of 8

| Remarks                    | The factor $\left(\frac{\lambda}{\Lambda + \Lambda}\right)$ is the conditional probability that a failure of $\lambda_{\Lambda}$ will occur prior to a failure of $\lambda_{\Lambda}$ .<br>Note that after a failure in the main note that after a compliched, standby monitoring is meaningless.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Factors $\left(\frac{\lambda_{4,B}}{4,6B} + \frac{\lambda_{4,B}}{\Lambda B,CD}\right)$ and $\left(\frac{\lambda_{4,B}}{4,6B} + \frac{\lambda_{4,B,CD}}{\Lambda B,CSE}\right)^{-1}$ are conditional prob-<br>( $\left(\frac{\lambda_{4,B}}{\Lambda^{+,B}}\right)^{-1}$ are conditional prob-<br>difficient and compensate for sequence<br>ordering of P <sub>46B</sub> and P <sub>B</sub> compense<br>tively. Second and P <sub>B</sub> compense<br>tively. And P <sub>B</sub> compense<br>tively. And P <sub>B</sub> may also<br>the failure rate of $\lambda_{B}$ may also<br>produce a sensitivity (path angle<br>produce a sensitivity (path angle<br>width) Cat. III DDM alarm. Also<br>produce a sensitivity (path angle<br>of discrimination has been made as<br>to which course prameter (DDM, SDM,<br>probability calculation is worst case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{rcl} \lambda_{dB} & = & 4.836 \times 10^{-6} \\ \lambda_{BGL} & \lambda_{B} & 37.245 \times 10^{-6} \\ \lambda_{B} & 3.7245 \times 10^{-6} \\ \lambda_{B} & 3.723 \times 10^{-6} \\ \lambda_{C} & 3.723 \times 10^{-6} \\ \lambda_{C} & 3.724 \times 10^{-6} \\ \lambda_{D} & 118.604 \times 10^{-6} \\ \lambda_{D} & 0.427 \times 10^{-6} \\ \lambda_{T} & 0.427 \times 10^{-6} \\ \lambda_{T} & 0.427 \times 10^{-6} \\ \lambda_{T} & 1.232 \times 10^{-6} \\ \lambda_{T} & 1.232 \times 10^{-6} \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.263 \times 10^{-6} \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.263 \times 10^{-6} \\ \lambda_{D} & 1.263 \times 10^{-6} \\ \lambda_{D} & 1.263 \times 10^{-6} \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.263 \times 10^{-6} \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.263 \times 10^{-6} \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.263 \times 10^{-6} \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D} & 1.265 \\ \lambda_{D$ |
| Probability<br>Calculation | $P_{AD} = \frac{h_D}{\lambda + \lambda_D} \left( P_A \cdot P_D \right)$ $P_A = Previoualy identified.$ $P_D = The probability of the loas of the standby transmitting unit due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stillure in the standby due to a stallare a standby due to a stallare a standby due to a stallare a standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the standby due to a stallare in the s$ | PSTBY CSE = $\begin{pmatrix} \lambda_{46B} + \lambda_{ABCD} \end{pmatrix}$<br>P $_{46B} = \frac{\gamma_{46B}}{\gamma_{A} + \lambda_{BCD}}$<br>P $_{46B} = \frac{\gamma_{AB}}{\gamma_{A} + \lambda_{BCSE}}$ , P $_{BCSE}$<br>P $_{46B} = Frobability of sequence (1)$<br>P $_{BCSE} = Frobability of sequence (3)$ , P $_{BCSE}$<br>P $_{AB} = Frobability of sequence (3)$ , P $_{BCSE}$<br>P $_{AB} = 1$ $_{AB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Probability<br>Description | A fallure in the damp monitoring<br>system initiating a shutdown of the<br>standby transmitting unit and then<br>a fallure in the main transmitting<br>unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fallure sequence leading to a shut-<br>down for STBY CSE:<br>(1) Lose of monitoring abisity of<br>the standby course smonitor.<br>(2) Faluer causing the generation<br>of a faulty course DDM, SDM,<br>or RF parameter from the<br>standby transmitting unit.<br>(3) Any failure in the main trans-<br>mitting unit which can initiate<br>a transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
Table F-2. Glideslope Shutdown Probrailities (Cont'd)

Vace 5 of 8

| Remarks                    | Factors ABB ABCD<br>ABB ABCD<br>A ABCL<br>probabilities that compensate for<br>sequence ordering of P4BB and<br>PL respectively.<br>A worst case probability caïcula-<br>tion is made since the failure rate<br>ABB is nondiscriminatory as to<br>which clearance párameter (DDM,<br>SDM, or RF) is faulty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $\lambda_{ABCD}^{46B} : 4.848 \times 10^{-6}$ $\lambda_{ABCD}^{2} : 118.604 \times 10^{-6}$ $\lambda_{ABCD}^{2} : 5.734 \times 10^{-6}$ $\gamma_{BB}^{3} : 5.734 \times 10^{-6}$ $\lambda_{DCL}^{3} : 9.824 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Probability<br>Calculation | $P_{STBYC1} = \frac{1}{48B} + \frac{1}{ABCD} + P_{48B} + \frac{1}{ABCD} + P_{BCL} + P_{AC} + P_{AB} + P_{AB} + P_{AB} + P_{AB} + P_{AB} + P_{BCL} + P_{AB} + P_{BCL} + P_{AB} + P_{BCL} + P_{BCL} + P_{BCL} + P_{BB} + P_{BCL} + P_{AB} + $ |
| Prnhahility<br>Deerstption | <ul> <li>Iure sequence leading to a down for PTTY.</li> <li>10. Loss of monitoring ability of the standby clearan c monitor.</li> <li>12. Ealinte causing the generation of a faulty clearance DD91, SDM, or RF parameter from the standby transmitting unit.</li> <li>(3) Apy failure in the main transfer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

ŗ

| Pare <u>ta</u> ol <u>a</u> . | Remarke                    | Factors $\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{1}}S_{1}+\frac{\lambda_{1}}{\lambda_{B}CD}\right)$<br>and $\left(\frac{\lambda_{B}}{\lambda_{1}+\lambda_{B}}\right)$ are conditional<br>probabilities that compensate for<br>sequence ordering of $(P_{11}+P_{1S1})$<br>and $(\lambda_{B}, 366)$ respectively.<br>Note that the probability $(\lambda_{B}, 356)$<br>must be used reperied of failure (preven-<br>tive maintenance cycle) must be used<br>rather than the 5 second critical land-<br>ing phase period for the glideslope.<br>Note that since a power/contronnental<br>alarm will be produced if one of the<br>converters fails, a domegrade farm<br>Cat. III performance will occur within<br>3 hours; hence, a 3 hour time interval-<br>is used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Fallure Rate<br>Data       | $\lambda_{11}^{1} = 1.399 \times 10^{-6}$<br>$\lambda_{151}^{1} = 0.198 \times 10^{-6}$<br>$\lambda_{ABCD}^{2} = 118.604 \times 10^{-6}$<br>$\lambda_{1}^{2} = 37.245 \times 10^{-6}$<br>$\lambda_{15}^{1} = \lambda_{16}^{1} = 5.593 \times 10^{-6}$<br>$\lambda_{15}^{1} = \lambda_{16}^{1} = 5.593 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | Probability<br>Calculation | $P_{STBY} = \frac{\lambda_{1H} + \lambda_{1S1}}{\lambda_{1H} + \lambda_{1S1}} + \lambda_{BCD}$ $\times P_{1H} + P_{1S1}$ $\times \frac{\lambda_{B}}{\lambda + \lambda_{B}}$ $\cdot \left(\lambda_{B} \cdot 336 \text{ HR}\right)$ $\times P_{A}$ $\left(P_{1H} + P_{1S1}\right) =$ $Probability of equence (1).$ $(N_{B} \cdot 336 \text{ HR}) =$ $Probability of equence (2).$ $P_{1H} = (\lambda_{1H} \cdot 336)$ $P_{2ONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ $P_{CONV} = (\lambda_{15} \times 341\text{ HR}) \cdot (\lambda_{10} \times 5 \text{ SEC})$ |
|                              | Probebility<br>Description | Failure acquence leading to a abuidown for P <sub>STBY</sub> :<br>(1) Loss of all standby monitor-<br>ing ability.<br>(2) Failure causing the genera-<br>tion of any faulty parameter<br>of the standby transmitting<br>unit.<br>(3) Any failure in the main<br>transmitting unit which can<br>initiate a transfer.<br>Converture failures leading to<br>a shuddown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table F-2. Glideslope Shutdown Probabilities (Cont'd)

F-13

Table F-2. Gliäeslope Shutdown Präbabilities (Cont'd)

Page 7 of 8

| Remarka                    | No diacrimination is made among<br>the course RF, SDM, and DDM<br>alarins; hence. a worst case analy-<br>sif creaults.<br>Note that if each monitor ware con-<br>sidered separately. The probability<br>of failure of each of the 3 monitors<br>is 1/5 of P <sub>CSE</sub> .<br>Note that if 3 assumed maintenance<br>action will be employed within 2<br>weeks (336 HR) after a monitor ab-<br>normal due to a monitor mismatch<br>occurs.                       |                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fajlure Rate<br>Data       | $\begin{cases} CSE^{-1} CSEI^{-1} CSE2^{-1} CSE2^{-1} CSE3 \\ CSE1: \\ CSE1: \\ \gamma_{34} = \frac{1}{2} 2.689 \times 10^{-6} \\ \gamma_{19} = 1.115 \times 10^{-6} \\ 1/3 \lambda_{1C1} = 0.140 \times 10^{-6} \\ CSE1 = 13.944 \times 10^{-6} \\ CSE2 = \lambda_{35} \Lambda + \lambda_{21} + 1/3 \lambda_{1C1} \\ = 13.944 \times 10^{-6} \\ \lambda_{CSE3} = \lambda_{36} \Lambda + \lambda_{21} + 1/3 \lambda_{1C1} \\ = 13.944 \times 10^{-6} \end{cases}$ | $\lambda_{SEN} = \lambda_{SENI} = \lambda_{SENI} = \lambda_{SENI3}$ $\lambda_{SENI} : 0^{-6}$ $\lambda_{22} = 1.115 = 10^{-6}$ $\lambda_{22} = 1.115 = 10^{-6}$ $\lambda_{SENI} = 10.529 \times 10^{-6}$ $\lambda_{SEN2} = \lambda_{38A} + \lambda_{23} + 1/3\lambda_{1C2}$ $= 10.529 \times 10^{-6}$ $\lambda_{SEN3} = \lambda_{39A} + \lambda_{24} + 1/3\lambda_{1C2}$ $= 10.529 \times 10^{-6}$ |
| Probability<br>Calculation | PcsE * ( <sup>x</sup> csE * <sup>336</sup> HRS)<br>x (2 * <sup>x</sup> csE * 5 SEC)<br>* 1.815 x 10 <sup>-10</sup>                                                                                                                                                                                                                                                                                                                                                | Psew = ( <sup>x</sup> sew * 336 HR)<br>x (2 * <sup>x</sup> sew * 5 gec)<br>= 1.035 x 10 <sup>-10</sup>                                                                                                                                                                                                                                                                                             |
| Probability<br>Description | Two of the three course moni-<br>tors/peak detectors failing,<br>producing an alarm.                                                                                                                                                                                                                                                                                                                                                                              | Two of the aensitivity monitors/<br>peak detectors failing, produc-<br>ing an alarm.                                                                                                                                                                                                                                                                                                               |

| σ             |
|---------------|
| (Cont'        |
| Probabilities |
| Shutdown      |
| Glideslope    |
| le F-2.       |
| Tabl          |

() · · ·

Page 8 of 8

| Remarke                    | Worst case analysis is again con-<br>sidured since no discrimination han<br>been made among the clearance DDM,<br>SDM, or RF alarme.                                                                                                                                                                                                                                                                                                                                   | Note that the failure of both the DDM<br>and SDM has been included in the near<br>field monitor channel failure rute,<br>since the SDM atrap option for a gen-<br>eral alarm will be utilized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Failure Rate<br>Data       | $\lambda_{CL} = \lambda_{CL1} = \lambda_{CL2} = \lambda_{CL3}$ $\lambda_{40\Lambda} = 13.044 \times 10^{-6}$ $\lambda_{25} = 1.115 \times 10^{-6}$ $\lambda_{25} = 1.115 \times 10^{-6}$ $\lambda_{25} = 1.115 \times 10^{-6}$ $\lambda_{CL1} = 14.299 \times 10^{-6}$ $\lambda_{CL2} = \lambda_{41\Lambda} + \lambda_{26} + \frac{1/3}{12} \lambda_{C4}$ $\lambda_{CL3} = \lambda_{42\Lambda} + \lambda_{27} + \frac{1/3}{12} \lambda_{C4}$ $= 14.299 \times 10^{-6}$ | $\lambda_{\rm NF} \stackrel{\Lambda}{=} NF1 \stackrel{\Lambda}{=} \lambda_{\rm NF2} \stackrel{\Lambda}{=} \lambda_{\rm NF3}$ $\lambda_{\rm SF1} \stackrel{\Lambda}{=} 11.099 \times 10^{-6}$ $\lambda_{\rm 2S} \stackrel{\Lambda}{=} 1.115 \times 10^{-6}$ $\lambda_{\rm 2S} \stackrel{\Lambda}{=} 1.115 \times 10^{-6}$ $\lambda_{\rm NF1} \stackrel{\Lambda}{=} 12.261 \times 10^{-6}$ $\lambda_{\rm NF2} \stackrel{\Lambda}{=} \lambda_{\rm 2A} \stackrel{\Lambda}{=} \lambda_{\rm 2} \stackrel{\Lambda}{=} 1/3^{\Lambda} \Gamma_{\rm C3}$ $\lambda_{\rm NF2} \stackrel{\Lambda}{=} \lambda_{\rm 2A} \stackrel{\Lambda}{=} \lambda_{\rm 2} \stackrel{\Lambda}{=} 1/3^{\Lambda} \Gamma_{\rm C3}$ $\lambda_{\rm NF3} \stackrel{\Lambda}{=} \lambda_{\rm 2A} \stackrel{\Lambda}{=} \lambda_{\rm 30} \stackrel{\Lambda}{=} 1/3^{\Lambda} \Gamma_{\rm C3}$ $\lambda_{\rm NF3} \stackrel{\Lambda}{=} \lambda_{\rm 2A} \stackrel{\Lambda}{=} \lambda_{\rm 30} \stackrel{\Lambda}{=} 1/3^{\Lambda} \Gamma_{\rm C3}$ | $r_{1S2}^{1} = 2.316 \times 10^{-6}$<br>$r_{1W}^{1} = 0.140 \times 10^{-6}$                                                                          |
| Probability<br>Calculation | P <sub>CL</sub> <sup>-</sup> ( <sup>1</sup> <sub>CL</sub> - 336 HR)<br><b>*</b> (2 - <sup>1</sup> <sub>CL</sub> - 5 SEC)<br><sup>-</sup> 1.908 × 10 <sup>-10</sup>                                                                                                                                                                                                                                                                                                     | $P_{\rm MF} = \left( \lambda_{\rm NF} \cdot 336 \text{ HR} \right) \\ \times \left( 2 \cdot \lambda_{\rm MF} \cdot 5 \text{ SEC} \right) \\ = 1.403 \times 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P <sub>1NHIB</sub> = ( <sup>1</sup> <sub>152</sub> + <sup>1</sup> <sub>1W</sub> • 5 SEC)<br>= 3.411 × 10 <sup>-9</sup>                               |
| Probability<br>Description | Two of the clearance monitore/<br>peak detectora faliing, produc-<br>ing an alarm.                                                                                                                                                                                                                                                                                                                                                                                     | Two of the near field monitora/<br>peak detectora failing. produc-<br>ing an alarm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Failure inhibiting the monitors<br>while the ILS signal is radiated.<br>A shutdown status will reault -<br>loss of Cat, III and Cat. II sta-<br>tus. |

;

Appendix G

Ŷ

Localizer Preventive Maintenance Checks

....

## Appendix G

## Localizer Preventive Maintenance Checks

This appendix consisting of table G-1, details the preventive maintenance checks necessary to detect hidden failures in the localizer.

| Identificat                              | nci                | Esilitre Mode                                        | Preventive Maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                             | Recommended<br>Task | Estimuted<br>Task |
|------------------------------------------|--------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|
| ltem                                     | No.                |                                                      | Task Description                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Frequency           | Time              |
| urae<br>onitor<br>annela<br>(Allii)      | ۵. <sup>۲</sup> ۲. | 1 oss of monitoring ability.<br>producing no alarme. | <ol> <li>Flip switch on each monitor to<br/>check DDM alarm.</li> <li>Misalign SDM phase shifter and<br/>front panel meter. realign SDM<br/>phase shifter.</li> <li>Iower course transmitter power.<br/>and check RF alarms: then using<br/>front panel meter. readjust RF<br/>power level.</li> <li>Note: Control unit logic for transfer<br/>capability may be simultaneously<br/>checked it "ijocal" or "remote"<br/>mode of õpirtation is selected.</li> </ol> | W cekiy             | 3.0°min.          |
| ns itivity<br>onitor<br>hannels<br>fAIN1 | 30<br>30<br>40     | Same as above.                                       | <ul> <li>(1) Flip switch on each monitor to<br/>check DDM alarm.<sup>n</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                            | W eekly             | 0.5 min.          |
| learance<br>onitor<br>hannels<br>AAIN)   | 43<br>44<br>45     | Same as above.                                       | <ol> <li>(1) Flip switch on each monitor to<br/>check DDM alarm.<sup>*</sup></li> <li>(2) Disconnect output of clearance<br/>transmitter to check RF and<br/>SDM alarms.<sup>*</sup></li> </ol>                                                                                                                                                                                                                                                                    | .Weekly             | 1.0 min.          |
| car Field<br>Ionitor<br>hannels          |                    | Same as above.<br>(Not hazardous)                    | <ol> <li>Flip switch on sach monitor to<br/>check DDM alarm.</li> <li>Note: Control unit logic for shut-<br/>down can be checked simul-<br/>taneously.</li> </ol>                                                                                                                                                                                                                                                                                                  | Monthly             | 0.5 min.          |
| andby<br>ourse<br>fonitor<br>hannel      | <b>.</b>           | l ass of relative ability.<br>producing no alarm.    | Same as main course monitor's<br>except misalignment of standby<br>transmitter:<br>(1), (2), (3)<br>rrNote: Control unit logic for stand-<br>by alarm processing may he<br>simulaneously checked if "iocal"<br>or "remote" mode of operation<br>is selected.                                                                                                                                                                                                       | 2 weeks             | (2.0 min.         |

Table G-1. Localizer Preventive Maintenance Checks

Page A of 5

| timated                | Task<br>Time     | .2 min.                                                                   | .6 min.                                                                                                                                                        | 5 min.                                                                                                                         | .5 min.                                                                               | ,                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                          |                                                                                                  | -                                                                                    |
|------------------------|------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Recommended Es         | Frequency        | 2 weeks 0                                                                 | 2 weeks 0.                                                                                                                                                     | Monthly 0.                                                                                                                     | 2 weeks 0.                                                                            |                                                                                                        | Weekly                                                                                                                                                                                                                   | Monthly                                                                                                                  | Monthly                                                                                          | 2 waeka                                                                              |
| Preventive Maintenance | Task Déscription | <ol> <li>Flip switch on monitor to check</li> <li>DDM slarm.**</li> </ol> | <ol> <li>Flip switch on monitor to check<br/>DDM alarm.**</li> <li>Disconnect output of clearance<br/>transmitter to check RF and<br/>SDM alarms.**</li> </ol> | <ol> <li>Flip switch on main I. D. unit<br/>to "CONTINUOUS" to check if<br/>alarms occur on all I. D.<br/>monitore.</li> </ol> | (2) Filp switch on standby 1. D. unit<br>to "CONTINUOUS" to check if<br>alarm occurs. | Note: 1. D. monitor ase'y logic and<br>1. D. centrol unit processing may<br>be checked simultaneously. | By checking the individual monitor<br>channel alarms this hidden (allure<br>mode can also be checked. Note<br>that the "local" or "remote" mode<br>of operation is required for control<br>unit processing logic checks. | Same as above: (indication - "SHUT-<br>DOWN" on control unit front panel).                                               | Same as above: (indication - "MIS-<br>MATCH" on control unit front panel).                       | Same as above: (indication - "AB-<br>NORMAL" only on control unit front (<br>panel). |
|                        | Fallure Mode     | 1.000 of monitoring sbility.<br>producing no alarm.                       | Sane as above.                                                                                                                                                 | l oss of one of the main I.D.<br>monitors, producing no<br>alarms.<br>(Not hazaro,)                                            | 1.088 of standby 1. D. monitor.<br>producing no alarm.                                |                                                                                                        | Inability to process a trans-<br>fer signal from the integral<br>course. sensitivity. I.D.,<br>and/or clsarance monitors.                                                                                                | Inability to process a shut-<br>down signal initiated by the<br>NF. FF. and/or Cat. II<br>course DDM.<br>(Not hazardous) | Inability to process a mis-<br>match condition of any or all<br>monitor sets.<br>[Not hazardous] | Inability to process a standby<br>alarm.                                             |
| ion                    | No.              | 47                                                                        | 4 <b>4</b>                                                                                                                                                     | 34                                                                                                                             |                                                                                       |                                                                                                        | 10                                                                                                                                                                                                                       |                                                                                                                          |                                                                                                  |                                                                                      |
| Identificat            | ltem             | Standby<br>Senoitivity<br>Monitor<br>Channel                              | Standby<br>Clearance<br>Monitor<br>Channel                                                                                                                     | Identification<br>Monitor<br>Ass'y                                                                                             |                                                                                       |                                                                                                        | Control<br>Unit                                                                                                                                                                                                          | ***                                                                                                                      |                                                                                                  |                                                                                      |

| •                            | Tablé | e G-l. Localizer Pı                                                                                                         | reventive Maintenance CF                                                                                                                                                                                                                                                                                                                         | iecks (Cont'd)      | l'are 3 of 5 |
|------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| ldentifica                   | tion  | Esilure Mode                                                                                                                | Preventive Maintenance                                                                                                                                                                                                                                                                                                                           | Recommended<br>Tack | Fatimated    |
| Stera"                       | ۲'n.  |                                                                                                                             | Task Description                                                                                                                                                                                                                                                                                                                                 | if statency         | uic          |
| Control T'nıf<br>'continuedl | 5     | Inability to process any or all<br>power (environmental alarma,<br>(Not harardous)                                          | <ol> <li>[1] Flip pach voltage circuit breaker<br/>switch on each converter and<br/>check if "CONVERTER FAII<br/>light lights.</li> <li>[2] Flip DC 10AD" and AC IN-<br/>PUT circuit breakers and check<br/>if CHARGER FAII. and AC<br/>FAII hughts respectively light.</li> </ol>                                                               | v months            | 5.0 min.     |
|                              |       | Inability to shutdown either the<br>main or standby transmitting<br>mit.<br>/'Sot hazardous)                                | By checking the individual monitor<br>channel alarms this hidden failure<br>mode can also be checked. Note that<br>the local or remote mude of<br>operation is required for control<br>unit processing logic checks.                                                                                                                             | Monthly             |              |
|                              |       | Inability to effect a change of<br>units feeding the antennas.                                                              | Same as above findication - TRANS-<br>FFR' on control unit front panel).                                                                                                                                                                                                                                                                         | 2 weeks             |              |
|                              |       | Inability to process a main<br>inhibit to the monitor<br>channels.                                                          | Same as ahove (note that when two<br>integral monitor alarms exist, a<br>transfer will occur. If an immediate<br>shutdown does not follow (within 2<br>seconds 1 the main inhibit is function-<br>ing properly. (If the alarms are left<br>on longer than 2 ecconds - monitor<br>channel'simulated alarm with switch-<br>a shutdown will occur.) | 2 wreks             |              |
|                              | ·     | Inability to process a r nubv<br>inhibit to the standby lamibit<br>to the standby monitor chan-<br>nels.<br>[Not hazardous] | Same as above (note that it a standby<br>Di)M alarm :s generated from a<br>standby monitor channel. the standby<br>transmitter should shut down and the<br>standby monitor channels be inhibited<br>if the inhibit is not generated. all<br>R f and SDM lights on all standby<br>monitore will light).                                           | Monthly             |              |
|                              |       | Inability to generate a correct<br>shutdown alert signal.<br>(Not hazardous)                                                | Same as above (note dat when the<br>two near field alarms are simulated,<br>a shutdown after a time delay will<br>result. Prior to that shutdown, the<br>shutdown alert should be generated).                                                                                                                                                    | Monthly             |              |
|                              |       | Reproc<br>best a                                                                                                            | duced from Conversion of the copy.                                                                                                                                                                                                                                                                                                               |                     |              |

| hat'd)                  | Page 4 of 5 | Imended Estimated      | juency Time      | 4                                                                                                                                                                                                                          | onthe 15.0 min.                                                                                                                                                                                                                                                                | skiy 3.0 min.                                                                                                                     |                                                             | coka                                                                                                                                                                                                             | e;;e                                                                                                                                                                                                                            | ceka                                                                                                                                                                          |
|-------------------------|-------------|------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| scks (Co                |             | Recon                  | Freq             | 2                                                                                                                                                                                                                          | 9<br>9                                                                                                                                                                                                                                                                         | Wee                                                                                                                               |                                                             | 2 æ                                                                                                                                                                                                              | 2 &                                                                                                                                                                                                                             | ŝ<br>N                                                                                                                                                                        |
| ventive Maintenance Che |             | Preventive Maintenance | Task Description | When the SDM phase chilter is mis-<br>aligned in checking the SDM monitor-<br>ing circuitry of the course monitors,<br>a transfer and <u>not</u> a shutdown should<br>result to indicate failure mode has<br>not occurred. | <ol> <li>Turn "EOUALIZE TIMER" dial<br/>and then check front panel meter<br/>to are if voltage is approximately<br/>33 volts. (each charger)</li> <li>Check respective batteries of<br/>each charger to see if full<br/>charge has been maintained<br/>(all cells).</li> </ol> | <ul> <li>Flip awitch on each monitor to<br/>check DDM alarm.</li> <li>Note: Both hidden failure modes are<br/>checked.</li> </ul> | Note: FFM combining logic may be<br>simultaneously checked. | When two far field monitor alarms<br>are activated (above), a Cat. III<br>diable abould occur at the remote<br>control tower after a nominal 20<br>second delay. Signal check may be<br>accomplished with a vom. | When two far field monitor alarms<br>are activated, both a shutdown alert<br>and a Cat. II monitor alarm (shut-<br>down) should occur after their res-<br>pective time delays. Signal checks<br>may be accomplished with a VOM. | When only one far field monitor<br>alarm is activated, a mismatch sig-<br>nal should occur after a time delay<br>(120 sec). Signal check may be ac-<br>complished with a VOM. |
| i-l. Localizer Pre      |             |                        | r allure mode    | Inability to changeover trans-<br>mitting units by switching<br>circuitry.                                                                                                                                                 | foss of the equalize voltage<br>capability.<br>(Not hazardous)                                                                                                                                                                                                                 | Loss of monttoring ability.<br>producing a Cat. III DDM<br>alarm.<br>(Not hazardous)                                              | Loss of monitoring ability.<br>producing no alarms.         | Inability to generate a Cat.<br>III dizable signal.                                                                                                                                                              | Inability to process a Cat. If<br>monitor alarm.<br>(Not hazardous)<br>Inability to process a shut-<br>down alert.<br>(Not hazard2005)                                                                                          | Inability to process a mis-<br>match condition at the FFM.<br>(Not harardous)                                                                                                 |
| able G                  |             | tion                   | No.              | 12                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                             | 56<br>57<br>58                                                                                                                    |                                                             | Ş                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                                                                                                                               |
| Ţ                       | •           | fdentifica             | ltem             | Changeover<br>and Test                                                                                                                                                                                                     | Battery<br>Charger                                                                                                                                                                                                                                                             | Far Field<br>Monitor<br>Channels                                                                                                  |                                                             | Combining<br>Circuite                                                                                                                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                                                               |

| Fairmared              |                   | 1.0 m.in.                                                                                                                                                      | 0.5 mi .<br>5.0 min.                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0 min.                          |
|------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Pertary ended<br>Task  | Frequency         | • the •                                                                                                                                                        | Starrbly<br>6. norths                                                                                                                                                                                                                                                                                                                                                                                                   | Mouth New York State              |
| Breventive Maintenance | Tack there repres | Tura for fueld monitor charger<br>corrue arraiger of and observe<br>CHAPCSR FAIL Tich Light, frae<br>SCM to check PARK TRMP FAIL<br>argual to breaker station. | Turn far fu ki munitor charger cit-<br>cus heraier off and are far fuch<br>monitor munitor alarmal, operation<br>for monitor starmal, unbage af FTM<br>haitery during mermul operation.<br>(1) Check terminal unbager af FTM<br>haitery during mermul operation.<br>(2) Escenarci FTM charger and<br>aberts a rise in FTM battery<br>unhage (oqualize vehaget).<br>None Abore procedure che, is belli<br>failure medee. | Check all cella of butters.       |
|                        |                   | lability to process a FWP<br>TFMP alarm for either re-<br>more or local displa<br>(Not hazardous)                                                              | I nu voltage hutery dis-<br>connect circuit failers, dis-<br>connecting the harres from<br>the load.<br>I na of equalize charge<br>capability after a power<br>outage<br>foot hazardoust<br>foot hazardoust<br>foot hazardoust<br>foot hazardoust<br>foot hazardoust                                                                                                                                                    | Inability to main and full charge |
| 1.00                   |                   | -                                                                                                                                                              | ¢,                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| لطحطالادعا             | lten:             | Combining<br>Circuits<br>Acont. ard                                                                                                                            | Ratteru<br>Charger<br>Far Firdd)                                                                                                                                                                                                                                                                                                                                                                                        | Ratery                            |

Table G-1. Localizer Preventive Maintenance Checks (Cont'd)

G-6

í)

## Áppendix H

.

## Glideslope Preventive Maintenance Checks

| Identifica                                   | tlon                                   |                                                      | Preventive Maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recommended | Estimated         |
|----------------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|
| ltem                                         | No.                                    | ranure mode                                          | Task Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Frequency   | Time              |
| Course<br>Monitor<br>Channels<br>(MAIN)      | \$ 10 9<br>• 10 9<br>• 10 9            | I.nee of monitoring ability.<br>producing no elarme. | <ul> <li>(1) Titp awitch on sach staltor to chick DDM sharm.</li> <li>(2) Misting SDM phase shifter and front panel meter. realign SDM phase shifter.</li> <li>(3) Lower course strangmitter power.</li> <li>(3) Lower course strangmitter power.</li> <li>(3) Lower course strangmitter power.</li> <li>(3) Lower course strange then using front panel meter. readjust RF power tevel.</li> <li>*Note: Control unit logic for transfer capability may be simultaneously checked.</li> </ul> | Weekly      | 3.0 mfn.          |
| Senaítivity<br>Monitor<br>Channels<br>(MAIN) | 38.3                                   | Same as above.                                       | (1) Flip switch on each monitor to<br>check DDM alarm."                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weekly      | 0.5 min.          |
| Clearance<br>Monitor<br>Channels<br>(MAIN)   | <del>5</del> <del>2</del> <del>2</del> | Same at above.                                       | <ul> <li>(1) Flip switch on each monitor to<br/>check DDM alarm.*</li> <li>(2) Disconnect output of clearance<br/>transmitter to check RF and<br/>SDM alarms.*</li> </ul>                                                                                                                                                                                                                                                                                                                     | Weekly      | 1.0 min.          |
| Near Field<br>Monitor<br>Channels            | ÷ 4 ÷                                  | Same as above.                                       | <ol> <li>(1) Flip switch on each monitor<br/>to check DDM alarm.*</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                  | Monthly     | 0. ŝ min.         |
| Standby<br>Course<br>Monitor<br>Channel      | <b>4</b> 5                             | Lots of monitoring ability.<br>producing no alarm.   | Same as ynain course monitors except<br>misallghment of staidby transmitter:<br>(1), (2), (3)<br>r*Note Control unit logic for stand-<br>by alarm processing may be<br>by alarm processing may be<br>'poal' or "rerrote' mode of<br>'poration is selected if                                                                                                                                                                                                                                  | 2 weeks     | <b>2.0</b> min. ~ |
| Standby<br>Eenaltivity<br>Monitor<br>Channel | 4                                      | Same as above.                                       | (1) Filp switch on monitor to check<br>DDM alarm. **                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 weeks     | 0.2 min.          |

Table H-1. Glideslope Preventive Maintenance Checks

÷

Ľ

÷

` )

H-2

Page Z of 3

Table H-1. Glideslope Preventive Maintenance Checks

2

\$

| Identificat                                | íon       |                                                                                                                   | Preventive Maintenance                                                                                                                                                                                                                                                              | Recommended<br>Tech | Fstimated                                                      |  |
|--------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------|--|
| Item                                       | Ng.       | 200W 210117 /                                                                                                     | Task Description                                                                                                                                                                                                                                                                    | Frequency           | Time                                                           |  |
| Standby<br>Clearance<br>Monitoř<br>Channel | 48        | Loss of monitoring ability.<br>producing no alarm.                                                                | <ol> <li>Fitp switch on monitor.to check<br/>DDM alarm.**</li> <li>Disconnect-output of clearance<br/>transmitter'to check PF.and<br/>SDM alarms.**</li> </ol>                                                                                                                      | 2 weeks             | 0.6 min.                                                       |  |
| Misalignment<br>Detector                   | <b>°4</b> | I ose of alignment detection,<br>producing no alarm.                                                              | Flip switch on control unit front<br>panel (MISALIGNMENT DETECTOR<br>TEST switch) to "test" and wait for<br>glideslope shutdown. Note control<br>unit logic is simultaneously checked.                                                                                              | Weeklý              | 0.2 min.<br>(time delay<br>of 2.25<br>minutés not<br>included) |  |
| Control<br>Unit<br>Unit                    | õ         | Inability to process a transfer<br>signal from the integral<br>course. sensitivity. and/or<br>clearance monitors. | By checking the individual monitor<br>channel alarms this hidden failure<br>mode can also be checked. Note that<br>the "local" or "remote" mode of<br>operation is required for control<br>unit processing logic checks.                                                            | Weekly              | ,                                                              |  |
| <u></u>                                    |           | Inability to process a shut-<br>down signal initiated by the<br>misalignment detector.                            | Checked by testing the misalignment<br>détevior alarm when in "local" or<br>"remote" mode of operation.                                                                                                                                                                             | Wcekly              |                                                                |  |
|                                            |           | Inability to process a mis-<br>match condition of any ör all<br>monitor gets.<br>(Not hazardous)                  | Checked when tey "monitor channel<br>alatme (Indication - "MISMATCH"<br>on control unit front panel).                                                                                                                                                                               |                     | -                                                              |  |
|                                            |           | frability to process a stand-<br>by alarm.                                                                        | Checked when testing monitor channel<br>alarms: lindication - "ABNORMAL"<br>only on control unit front smell.                                                                                                                                                                       | 2 weeks             | ·<br>                                                          |  |
|                                            |           | Inability to process any or all<br>power/ënvironmental alarms.<br>(Not hazardous)                                 | <ol> <li>FIIp each voltage circinit breaker<br/>switch on each convertier and<br/>check if "CONVERTER FAIL"<br/>light lights.</li> <li>Filp "DC LOAD" and "AC IN-<br/>FUT" circuit breakers and check<br/>if "CHARGER FAIL" and "AC<br/>FAIL" lights.respectively light.</li> </ol> | 6 months            | 5.0 min.                                                       |  |
|                                            |           | Inability to shutdown either<br>the mainsor standby trans-<br>mitting unit.<br>(Not hazardous)                    | By checking the individual monitor<br>chamel alarnis this hidden failure<br>mode can also be checked. Nothing<br>the "local" or "remote" mode of<br>operation is required for control unit<br>processing logic checks.                                                              | Monthlý             |                                                                |  |
|                                            |           |                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                            |                     | <u>.</u>                                                       |  |

H-3

3

٢,

#. . . .

c

|                                            | ]                                                                                                                                                                                                                                                                                  | ļ.                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                           | · .                                                                                                                                                                                                                       | ,<br>2                                                                                                                                                                                                                                                                         |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimated<br>Task<br>Timé                  |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                           | 15.0 min.                                                                                                                                                                                                                                                                      |
| Recommended<br>Task<br>Frequency           | 2 weeks                                                                                                                                                                                                                                                                            | Zówceks.                                                                                                                                                                                                                                                                                                                                                                                   | Móathly                                                                                                                                                                                                                                                                                   | · · · 2 weeks                                                                                                                                                                                                             | 6 months                                                                                                                                                                                                                                                                       |
| Prevêntive Maîntenance<br>Task Descriptiôn | By checking the individual monitor<br>channel alarms this hidden failure<br>mode can i'so be checked. Note that<br>the 'local' or 'remote' mode of<br>operation is required for control unit<br>processing logic checke. (indication -<br>'transfer' on control unit front panell, | Same as above: (note that when two.<br>integral monitor alarms exist, a<br>transfer will occur. If an immediate<br>shutdown does not follow (within 2<br>seconds) the main inhibit is function-<br>seconds) the main inhibit is function-<br>in properly. (If the alarms are left<br>on longer than 2 seconds - monitor<br>channel sinulated alarm with switch-<br>a shutdown will occur). | Sane as above: (note that if a standby<br>DDM alarm is generated from:<br>standby monitor channel. the standby<br>transmitter should intudown and the<br>standby monitor chonels be<br>if the inhibit is not generated. all<br>R T and SDM lights on all standby<br>monitors will light). | When the SDM phase shifter is mis-<br>aligned in checking the SDM<br>monitoring circuitry of the course<br>monitors. a transfer and <u>not</u> a shut-<br>down should result to indicate failure<br>mode has not occured. | <ol> <li>Turn "EQUALIZE TIMER" dial<br/>and then check front panel meter<br/>to see if voltage is approximately<br/>33 volts. (each charger)</li> <li>Check respective batteries of<br/>each charger to see if full<br/>charge has been maintained<br/>(all cells).</li> </ol> |
| Failure Mode                               | Inibility to effict a change of<br>units feeding the antennas.                                                                                                                                                                                                                     | Inability to process a main<br>inhibit to the monitor chancels                                                                                                                                                                                                                                                                                                                             | fnability to process a standby<br>inhibit to the standby monitor<br>channels.<br>(Not hazardous)                                                                                                                                                                                          | . Inablijty-to changeover trana-<br>mitting unite by switching<br>cefcuitry.                                                                                                                                              | Loss of the equalize voltage<br>capability.<br>(Not hazardous)                                                                                                                                                                                                                 |
| vo.                                        | 5                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                           | 01                                                                                                                                                                                                                        | <u>e.</u> z                                                                                                                                                                                                                                                                    |
| Identificat                                | Cantrol<br>Unit<br>(continued)                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                           | Changeover<br>and Test                                                                                                                                                                                                    | Battery<br>Charger                                                                                                                                                                                                                                                             |

Fyle Preventive Maintenance Checks

GPO 925.990

H-4

-

ž

7 3

2