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PREFACE

The problem of turbulence in general, and of turbulent boundary
layers in particular, has recently become very important in view of
its increasing practical significance.

Due to the intensive development of aerospace technology,
power plant technology, and other branches of technology,
gclentists and engineers have become particularly interested in
problems related to supersonlic flow of homogeneous and inhomogeneous
gases in a turbulent boundary layer. A flow at supersonic velocitiles
in many cases results in such an extreme increase of the temperature
of the gas that thermochemical processes begin to take place in it
which lead to a disintegration of molecules into atoms, atoms into
ions and electrons, and the formatlon of oxldes and other compounds.
In certain cases, a discussion of supersonic flow mdét take into
account processes occurring on the surface around which the flow takes

~place such as fusion, sublimation, evaporation, chemical reactious, etec,

Many of these phenomena were and still remain an object of detailed
orv 'prirental and theoretical studles. The present book attempts to
y-v2 u systenatic exposition of some of the results of these studies.
As far as theory l1ls concerned, priority is usually glven to results
obtained on the basis of the seml-empirical theory of turbulence.

The seml-empirical theory of turbulence, being part of the
stutistical theory of turbulence, has until now remained an
important, and in many ceses the only Instrument in solving a
majority of practlcal problems. Created initially as 2 result of
investigations of the flow of an incompressible fluld in tubes,
channels, boundary layers, fllaments, wakes, and used primarily to
predict the properties of a flow of an incompressible I'luld, the
semi-empirical theory of turbulence has great potential for analyzing
much more complicated flows, such as the flow of a compressible and
heat-conducting gas, the flow of multicomponent reacting gas mixtures,
ete. This 1is convineingly demonstrated Ly the reoults of numerous
experimental and theoretical studies done during “he past few vears.

FPD=HC=23-723=T1 1
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The book does not pretend to treat exhaustively all the problems
arising In connection with studies of gas flows in a turbulent
e boundary layer at supersonic velocities. Partially this is due to
i : an insufficient solution of these problems; this is especially the
case for the precblem of a turbulent boundary layer on loosened sur-
g faces, and also in the case of ionized and radiating gas, etc. ;
Partially, the personal interests of the author have also played
o their role. In particular, certain chapters of the book (III-V)

: include only those divisions of turbulent boundary layer theory :
5 to which the author contributed to a lesser or greater extent.
& Chapter I presents the fundamentals of the molecular theory of %

gas flow and gives a derivation of the dynamic equations for a
multicomponent reacting gas on the basis of the fundamental equation
of the kinetic theory of gases, i.e., the Boltzmann equation.

Chapter II gives a derivation of a system of equations for a
4 turbulent flow of a multicomponent reacting gas. This system of
equations is used to obtain the equations of a turbulent boundary
layer. The integral momentum and energy relations that play an
important role in the semi-empirical theory of turbulent boundary
layers are also derived therein.

Chapter III discusses the theoretical and experimental results
obtalned when studying the characteristics of a turbulent boundary
layer on a nonpermeable surface in a supersonic gas flow which is
homogeneous in composition. The semi-empirical and empirical methods
for analyzing the boundary layer on a flat plate are presented.
The effect of compressibility and heat transfer on the laminar
sublayer is investigated. Experimental and theoretical data on the
parameters characterizing the heat transfer between the gas and the A\
wall (Reynolds similarity parameter counecting skin friction and ]
heat transfer; recovery factor) are given. A generalization of the
semi-empirical method to cases involving a flow over a cone at a
zero angle of attack, over a sphere, as well as to bodles of arbitrary
shape in a non-separated flow is also given.

(it o L R e O
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Chapter IV discusses the flow of a dissociated gas in a turbulent

boundary layer. A detailed treatment is given of the kinetics of

: chemical reactions occurring in a gas and on the surface of bodies,
and in particular, data are presented c¢n the kinetics of reactions
of dissociation for oxygen and nitrogen. Various models of a

d dissoclated, ideally dissociated and partially excited dissociated

4 gas are described. The semi-empirical methods of computing skin
friction and heat transfer on a flat plate for equilibrium,
frozen, and nonequilibrium states of the gas are presented.
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Chapter V glves the results of experimental and theoretical
studies of a turbulent boundary layer in the presence of mass
: transfer between the gas and the surface around which the flow takes
£ place. Methads eof computing skin friction and heat transfer on a
porous plate with various gases {njected into the boundary layer
are discussed,

The author wishes to express his deep gratitude to his tesgher
L'v Gerasimovich Loyusyanakiy for hig constant gsalgtance awd
encouragement in welting this book, aud partisularly, for his
: extremely valuable discussien of varieus guestiosnsg treated in the
: HOOR.

The author =ishes to eipress his cecp appreciation so ¥, P.
Nugilev, who has read the sanudoript, Por & nusber of valusele

cohents.
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CHAPTER I

EQUATIONS OF GAS D¥NAMICS

§l. Intrcidotion

The development of aerespace technology during the past faw
decades has aroused great Interest ia the problems of Zas
flow at supersonic and hypscsonie veloeities. A study of these
problems has shown that these flows cannet be desoribed using only
slaseizal eas dynasies, shich is sonevrned with & flow &t
relatively low velocltiez. In this case, in additlon to gaz dynamics,
one sust tupn Lo sany aress of physics and caesiatwey.

Any Tlow of 3 viseous gas 18 accospraied by disaipation of
teehanival energy, its eoaversion into heas, However, at low
velocities viscous di341pation doer 40t 1083 to the apprasasce of
any noticedble tesperature inhomugencities {(tenpordture gradients).
Under these conditiusg, the density and viscosity of a gas eoy be
considered to be condtant physlcal p€¥1@é€9r9 wileh are lrdependent

-of the characier of the Thow.

An increase of ihe veloeillad of gases from low zubsonic to
moderately supersonile velovities, and ad & result, the appearance of

PTD-HE=23-723-T0 4
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E substantial temperature gradients when a gas passes thirough shock

% % waves and through boundary layers has made it necessary to consider
'f ;. the dependence of the density, viscosity, and heat capacity of a gas
f * cn the temperature. Here the flowing gas may be considered Lo be

b homogeneous.

: |

A& transition to hypersonic velocities causes such an enormous
Inecrease of the gas temperature irn shock waven and boundary layers
that thermochemical processes begin to take place in the gas that
3 result in a dissociation of gas molecules intu atoms, a dissociation
b of the atoms into ions and electrons (icnization), and the formation

of oxldes and other chemlecal campounda. In addition, in certain
gases it is necessary to conslder precesses ocgeurping on the surfaces
of the bedies around which the flow takes place, sueh as fuslon awd
sublimation of the surface layer of a body, chemical reactlons, 3
ete. Under thegs conditicns, the moving medium mnst b pegarded as ;
a mizture of 2 number of compenents differing in thelr physical and 3
“chemical properties. A study ol these compleX provesses using the
uzual metheds of ¢lassical (pheaomanclogieal) pas dynanics in many
QEses turns out to be wvery d4ifficuls, espucialiy 46 the thersooheni-
cal prosegucs ovaur 1o a nonegquilibrius fashion,

_ We must Peegll thal the phenomenological appresch o a study of
vorious gas dynamly pheadmens luvelves puitulating eerbals relation-
ships boetween the veloaity eradiest and the Fristion stipesy {Hewton's
law), hest fluz and tespeprature gradient (Fourler's law), sags
ditfusion and zoncsotration gradient {Pilok's law), and usiag
equationd thad wis be obtalesd fros the fundamental lawg of ¢lassiesl

: wﬁﬁﬁéﬁiaé and thepandycaming.  The brataport coelTicisnts, f.0., the
' eoelliclonts of propurtionslily in Newton's, Fourler's, and Mok's
laws, reliceting certaln propurties of gas soleoules and thus o
o deterained by 1k misroetrugturs, aty iotluded in Rhe pheniminolaglodd

LR
.
&
&
&

b - theory as sonstants of funcilong of the atate thadl ace ancwn helopps
hand and cannod be saiculfted thearotinally, dul fnsténd sugab be
Cfound esperimentally, It 15 quite saburil that the phendmenslogiihi

ke
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theory, based on an approximate macroscopic model of a gas, is
inadequate for describing the many complicated processes, whose
study must take into account various microscopic phenomena (excita-
tion of the internal degrees of freedom of molecules, dissociation,
ionization, etc.). The kinetic theory of gases is a tool that can
be used to describe such processes.

The kinctic theory enables us to determine the transport
coefficients as functions of the temperature of a gas mixture, of N
molecular weights of the mixture components, and certain parameters
describing the field of intermolecular forces. It also makes it
possible to set up the macroscoplc equations of motlion for a gas
in question. The kinetic theory is valid only at sulficlently low
gas densities, when it is possible to neglect collisions of more
than two moleeules. If the mean free path of a molecule in a gas is
small compared to the characteristic macroscople dimensions of a body,
then the gas behaves like a continuous medium. In this c¢ase, the
basic equation eof the kinetic theory, l.e., the Boltzmann equation,
can be ugsed to obtaln the gas-dynamic transport equations and
expressions for the transport coefficients. Since our intention is
to follow thias path, we shall briefly proesent here some of the
elements of the kinetie theory of geses., A knowledge of the
fundamentals of the kinetic theory 1s necessary if one wishes to

~understand the relationship betwesn the miero- and magro-~processes

ovocurring in a gas, and 1% 3is algo practicplly useful when studying

“the flow of multizoupohent, chemically-reacting gas mixtures. bBoelow
".ue:shall prasent only those aspects of th2 kinetie gas theory that
_ -wlll be found necessiey later. & detalled and extensive presentation
jf,af,ﬁ%@ ey 10 givea in the monograshs by Hirschfelder, furtliss,
BIrd {37, and by Chapman and Cowling (2].

.82, Blementr of the Molvcuiar Thuory of Gas Flows '

C The uytamde state of a system of particles van be completely .

_ desuribed by speecifyine the enordinates and velocitles (momenta) of ¢
FTD=HC-33-723-71 6
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all particles. The laws of classical mechanics enable us to pre-
dict the state of a system at any point in time from its initial
dynamlc state.

At a certain time instant, each of the particles has a certain
velocity. Therefore to each particle we can assign a certain point
in velocity space, characterized by the vector vy The position of
a particle in the physical space 1s glven by the vector r.

To fully describe the dynanic state of a system of particles,
the kinetie theory makes use of the concept of the distribution
function. If a mixture of (strictly speaking, moncatomic) gases in
a nonequilibrium state is considered, then the properties of each
component of the mixture can be described in terms of the distribu-
tion function fi(r,~;i, t), defined as the number of particles of
the species { which it -+ time t are in an elementary unit volume of
the physical space conbtaining the point r, whoase velocitles lile
inside the elementary unit volume in the veloclty space containing

the point /T

The space (x, ¥, 2, Vig? Viy’ viz) is a phase space, and for
this reason the position and velocity coordinates are independent
variables,

The total number of particles in an elementary unit volume of
the physical space at time t can be obtained by integrating the

distritution function over all possible values of the velocities
Vigs viy and Vigt .

(AR X
vy (0 ) S
R

S S Jidog lhuydl’u.

(1.1)
By definition, ny 13 the numerical density of the particles of
species 1. FPFor convenience, the triple integral

w+w-§‘.u
S \ o tviduy doy
) e

+

‘c.’.

FTD~HC-23-723-71 7
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will be denoted below by

S( L)

Knowing the distribution function, we can calculate the average ‘
value of any quantity wi, associated with the particles of species
i, and being a function of the velocity components alone. The
formula for the average value of wi can obviously be written as

- R o f e
il by “7,73/:('. v )Y (o) des - m' (1.2)

The line over wi symbolizes averaging. Thus the average velocity
;i of the particles of the 1th component whose numerical density 1s
ny is given by

F*(""):",:Tg;kfi(". l‘*.l)c’]}‘g. (1'3)

The average mass velocity, which 1s a weighted average since each
particle makes a contribution to it which is proportional to its
mass m, , is defined by the formula

) -
> mine;

i
v(r, )= ol
- 4

(1.4)

wherefgm."s =po(r l) is the density of the medium at the point in
question.

The average mass velocity 1s usually termed the flow velocity,
and possesses the property that the momentum of & unit volume of the
gas 1s equal to the momentum that would result if all particles of
this volume were moving at the velocity under consideration.

The thermal veloclty of particles of species i1 is defined as

the velocity of the particles relative to a coordinate system moving
at the average mass velocity v:

FID-HC-23-723=71 8
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i )
fﬁv 1 Fi(rg oty =0y — . (1.5)
; % “
3 . The diffusive velocity of the {th component is defined as the
:§> 1 flow velocity of particles of this component relative to a coordinate
4 : y system moving at the average mass velocity of the gas. In other
'i ? words, the diffusive velocity is defined as the average thermal
' } velocity:
" * T 1) = —‘-—S(v;-— o3, w0y =y — o,
" e
‘% _ The temperature in the kinetic theory is defined in terms of
g Z the kinetilc energy »f thermal motlon averaged over all particles
P 4ol
1 T kT v TZT”,‘_R‘V?' (l . 7)
9 . 1
where p = }J“p and k is the Boluzmunn constant.
Q %
Jg 2. Listing the expressions for all the macroscoplc quantities
& 3 given in terms of the distribution function, ve shall have
L .p(r. t)= ? mny = ;""S/‘d”“ )
2 )= S Vifi o
. ) ¢ i.
> (.8)
i - { - -
(s t) = -“—‘2“‘ nqS rifidey,
‘ ‘Lf = -,;,;7‘ P, p= 2 P
kS ¢ !
'E . In a gas in a state ol nonequilii.rium, the field of one or
=§t ? ¢ several quantities characterizing the macroscopic properties cf a
-g 0 system may be inhonogeneous. The inhomogenelity of the llelds —
ﬁ i.e., the existence of the gradients of macrocccpic quantitizs (of
Q; . the average mass velocity v, temperature T, mass concentration
1 4 cy = °1/°’ and others) — causes the molecular $ransport of the
g momentum mivi, kinetic energy 3 mivi. and wmass my through the gas.

In order to characterize the molecular transport of some
substance, in the kinetic theory one introduces the concept of the

FTD-HC-23-723-T71 9
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flux density vector of wi(l):

= vuariar, (1.9)

The physical interpretation of the flux density 1s that its component
in any directicn 1s the density of the flow of the corresponding
physical quantity through a surface normal to this direction.

If ¢y = m,, then from Equation (1.9) we obtain the flux density
for the mass
Ji= g S/i)"fll" = m‘n;l-'-“.
(1.10)

Ir wi = mivi, then

Py - ”'iSf‘V\"idrt = Ty (1.11)

is a symmetric tensor of second rank characterizing the partial
pressure of the 1th component of the gaa(e). The sum of the tensor

partial pressures over all gas components forms the tensor of the
pressures of the mixture

b= 2 P‘ v 2 "-“RJ"’". (1. 12)
i ‘

The diagonal elements of the pressure tensor Pxx’ Pyy. and Psz are
equal to the normal stresses, and the off-diagonal elements represent
the shear stresses. For example, Pyx is equal to the force per unit
area of a surface perpendicular to the y direction in the x direction.

If ¢, = m Vi, then

q.m-;x-m‘ShV:V‘dV‘s-&-m‘n‘v"}" (1ol3)

Footnotes (1) and (2) appear on page 38.

FTD-HC~23=-723-71 10
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is a flow vector characterizing the transport of the kinetic energy
by the particles of species 1. The sum of such vectors over all
components of the gas mixture gives the heat flux density vector

1 e
7= =2 wViv,. (1.14)
i K}

The components Qys qy, q, of the heat flux vector represent the
fluxes of th kinetie energy in the x, y, and z directions, respec-
tively.

Equations (1.8) and (1.10) - (1.14) indicate that, if the
distribution function ri is known, then the problem of determining
the fleld of flow and the transport characteristics can be completely
solved.

The varlation of the distribution function fi is described by
the integro-differential Boltzmann equation which, assuming the
absence of an external force, becomes

5 4 pe Bl N/
-e-‘-..; \o-b.’-az_ “.
M J (lcls)

Here

1yw 20 = 10 gubdvany (1.16)

is the collision integral accounting for the change in the number of
particles of a given group due to collisions; a4, | ¢ — ;! 18 the
abgsolute value of the relative velocity of the particles of specles

i and J before a collision; b 1s the minimum distance between the
colliding particles if there were no interaction (impact parameter);
f'i and r'd are the distribution functions of the colliding particles
of species i and J after the collision; ri and rJ are the distribution
functions of the colliding particles before the cellision.

Equations similar to Equation (1.15) can be written for all
components of the gas mixture. In each of these equations, the

FTD=HC~23=723=T71 11
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integrand on the right-hand side will contain the distribution
functions of all components of the mixture. These integrals depend
implicitly on the intermolecular interaction. The distribution
functions f'i and f'J are functions of the velocities v'i and V'J
which can be found from the laws of mechanics assuming vi, vJ, b
and the potential of the intermolecular interaction are known.

§3. Gas Dynamic Transport Equations Expressed
in Terms of the Flux Density Vectors

The basic gas dynamic transport equations — j.e., conservation
equatlons for mass, momentum, and energy -—— can be obtalned directly
from the Boltzamann equation without specifying the form of the
distribution functions. Multiplying the Boltzmann Equation (1.15)
by wi and integrating the result over all values of the velocity Vyo
we obtaln

My

ol ot gidmee

The first two terms on the left-hand side of the equation can be put
in the form

S“ do, = TS‘W‘ v - SI. -;;-dm e ‘
S\.v. ey g .am - (/,(,.‘. e,
~ 3 T = (e 3.

Substituting these equations in the left-hand side of Equation
(1.17), we have

(“‘q“) 4 '.“ ’("‘\ s.'ﬁ) - “‘(‘b .%' By %‘3‘) bt (1 . 18)

This equasion is known as Enskog's generalized transport equation for
wi associated with particles of species {.

FID-HC=-23-T23-T1 12
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Summing Egquation (1.18) over all components, we can obtain the
transport equation for the mixture:

2 Nad + o Dndi — Zm(:f—-x- 65 =
g ' (1.19) ;
= .}JSQJ‘,«M. ;
it

e e

It is very difficult to use Equation (1.19) for arbitrary quantities
widuete the presen.e of very complicated integrals on the right-
hand side of the equation. However, 1if wi is identified ?s thi mass
my s momentum miV&,or the kinetic energy of the molecules 5 miv;

(in the case of the multi-atomic molecules, in addition to the
kinetic energy, one must also consider the internal energy), then,
as one can verify, the right-hand side of Equation (1.19) is equal
to zero and the esquation becomes considerably simplified. In fact,
let us assume that the interacting system consists of two types of
particles: one of type 1 with mass By and the other of type J with
mags mj. Let us assume that the velocities of particles before
¢ollisions are Vi and VJ, raspectively, and that the corresponding
velogities after the collision are V'1 and V'J. Then, assuning that
the aystem uf colliding particles as a whole is not subjeot to any
external forces, and the collisions are adiabatic, on the basis of
the conservation laws for miass, momentum, and energy we can write

R N
m" 4w 3*; s ol a& ',

L oeuud Trom {1.28) .
st

svailable coBy. "g“‘ Vi -e-h Njet LI DS -«m,t“'

in the absence of chemlcal reactions 6, = m'i, mj - “'3'

The above expressions for the conservation laws (1.20) for a
systetm of ¢olliding particles can bYe written in the follcwlng
generalized for:

G R (1.21)

where 0 {8 any of the guantities @& 10 ®y V and % ‘VZ It can bde
showts that any function of velocitles, satssrying the relation {1.21),

PTD-HC-23-723-71 i3

BaaeEy




i
4 H
4

is & linear combination of these quantitles. The quantities wi,
satisfying Equation (1.21), came to be called summation invariants.

Now let us consider the integral under the summation sign on the
right-hand side of Equation (1.19). This integral

e §¥dudes = \§ 00— A g bdbavan, (1.22)
i1s equal to the integral
W vivss = ihreiravac;an, (1.23)
written for reverse collisions.

It can be shown(3) that gij - 3.13‘ b =b' and dvj'dvi s dv'J'
dv',. Therefore, the integral (1.23) can be written as

- W\ sitisi = e abdbon, e, (1.24)

Since the integrals (1.22) and (1.24) are equal, each of them will
be equal to one half of the sum of both integrals, l.e,,

; - 1 LYY ¢ s ) .
Hlwtadr e [\t S0 = 1 s Babde e,

Sumaing these integrals over 1 amd j, and using the fact that i and
J may be interchanged, we have

s ¥ ivdote = 32 ons v-vi-vx (1.25)
i i .
XU, = 1)sbdbdede,
Por sumsation invarlants, ¢, ¢ ’j " i'i - "j 15 egual to zero. .

Consequently, also the right-hand side of Fnskog's generallzged
transport Equation {1.19) vanishes Al ¢, 13 equal to m,, ﬂivi or

1 2
5 ﬁl‘\". _ .

Footnote (3) apve#rs on page 38.

PTD-1C-23-723-T1 14
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Thus the mass, momentum, or energy transport in a gas mixture
are described by the followlng equation:

g\t = 5 AR A 7 % OWi
at “- x‘u .’ b 12‘\.‘0 ‘ ( +v‘ ) 0. (1.26)

i

Now we shall derive transport equations for specific molecular
quantities. We set by = m, . In this case Equation (1.18) becomes

an; d - Y
..01:_.*_.5;_(,“”‘).___.281“‘1,_.‘:,1\‘, (1.27)

i

The integral Sﬁ:dv‘is equal to the rate at which the number of
particles of the ith type lncreases due to collisions with particles
of Jth type in a unit volume (in the absence of chemical reactions
the integral vanishes). The quantity

2}131;}[(1!" ‘=K‘

glves the total increase in the number of particles of the ith type
in a unit volume per unit time due to collisions with all types

of particles, including those of the 1th type (as a result of chemical

reactions). Substituting in Equation (1.27) the expression for
! from Equation (1.6), we obtain the equation of continuity for the
i b component of the gas:

on; .

SR gk (0 T)) = Ky (1.28)

Passing in Equation (1.28) from n, to mass concertrations

e B ERs
ﬂw\““‘ " ) ] mh‘\‘?“‘) ] (1.29)
‘
we have
T(p‘q) ‘{ ‘90‘(.’ bl ’ i” Lol /1 (1 . 30)

where w, - mixl is the mass rate of formation of the &th ~omponent

in a unit volume.

PTD~HC-23-723-71 15
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Summing Equations (1.30) over all 1, we obtain an equatlon
of continuity for a mixture of gases

92 .
Lt o) =0, (1.31)

since}_p ; = 0 by the definition of the rate of diffusion, and

Su w; =0 by Equations (1.21) and (1.25). The condition

1

Sui=0 (1.32)
§ ©
expresses the conservation of mass of a gas mixture with chemical
conversions taklng place.

Using the equation of continuity for a mixture of gases (1.31),
we put the equation of continuity for the ith component in the form

p 28t pue Bhae = o (o, (1.33)

It will be noted that on the right-hand side of Equation (i.33) the
quantity to be differentiated was defined earlier (see formula (1.10)]
as the mass flux density vector.

To obtain the momentum transport eguation we substitute wi =
m,V; in Equation (1.26), and obtain
o |y _—r .'p‘ T
% “[ (ﬂ I) ... i .(n",“")..“ilo._'.‘..._n‘(v‘,_g;_)x"‘lmo. (1.3“)

This equation can be simplified by making use of the relations between
velocities (1.5) and (1.6) and the definition of the pressure tensor
(1.12). When differentiating, it must only be kept in mind that

r, vy and t are independent variables. After simple transformations,
the equation of motion for a mixture of gases will be written in the
following form:

%—,’--&-(q-—{;}w-':r(a!:"')' (1.35)

FID-HC-23-723-71 16
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The energy transport equation will be obtained by substituting

by = mivf in Equation (3.26):

v ! d{m¥hH , 9 . WT""‘
%?“‘i[w&' + 3 mJ’«-m-—-—n.(m ,,‘)]wa. (1.38)
Using the relations between the velocities (1.3), (1.6), and the
definition of the pressure tensor (1.12), and introducing the
energy {lux density vector q, defined by Equation (1.14), we shail
get the energy balanse equation

L] [ - [ [
DB‘ + <auk e P. =
(Bt 35 ¢ rrs ( 'ér—) (1.37)

Here

A‘“%‘;““V: (1.36)
i1s the internal energy of the gas per unit mass, equal to the
translational motion of molecules (kinetic energy of the transla-
tional motion of a gas stream as a whole is not included is this
energy). In the last term on the left-hand side of Equation {1.37)

vl
the symbol P FI

%F’ We recall that this operation san in general be represented by

the expression T-4, and the rosult can be expressed 33 a veotor with

componest s
(r"un bt r.r"g S r‘.i., LN r“ .4. ete.

Equation (1.37) can be simplilied using the eguation of eontlnuityA
for the mixture (1.31). As a result, we have

L. PP SR R P X (1.39)

Equation (1.39) is also valid for polyatomic gases whose
molecules possess internal degrees of freedoia. In thils case, E
should be understood as the sum of energles of translational and
internal degrees of freedon of molecules,

F'D-HC-23-723-71 i7

means that the tensor P is multiplicd by the vector
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Eelgld
B S nali+ o )_m. (1.40)

and the expression for the energy flux density (1.14) must be
replsced by the expresslon

g =3 Jwaiv + Jasl, (1.41)
t

where e, is the energy of the internal degrees of freedom of a
mol&eule of the 1°b type.

The energy balance Equation (1.39) can be written in terms of
the temperature. In this case, using the equation of continuity for
the %P component (1.30), we get

9&(% + *g{‘-) =0 -—é: g --(P. .g;)‘&..\.

—3&&-&-2&{{;&&). RS O N
[ 1 ] ’
ilere
e Jalfd), = Seew (1.43)
t [

i3 the ﬁean specific heat of the mixture per unit walght at constant
volute. :

§8. HRate of Diffusion, Flux Density Veotours
gnd Tranaport Coeffietents

The basle gas dynamic equations of continuity (1.33), motien
{1.35), and energy (1.39) or {1.%2) were obtained from the Bbltsmann
equationr withtut specifying the fora of the distribution function.
However, an inspection of these equations males it clear that to use
them in practice one Bust khow the expressions for the rate of
diffusion and the mass, acaentum, and ehergy flux deansity vectors
in terms of the sputial derivatives of the macroscopic quantities and
transport coefficients.

FrD-lic-23-723-71 18
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To determlne these quantities, one must solve the Boltazmann
equation. A great deal of literaturs is devoted to the problem cf
- obtaining approximate solutions of tne Boltzmann equation(n). It
is impossible to dwell upon thls prcblem in detall in the presens
volume, and for this reason we shull merely briefly present the
ideas involved in a wldely knowh method used to solve the Boltzmann
equation, i.2., the Enskog-Chapman method of perturbations.

L STV, -

As we know, a gas which is adlabatically insclated and is not
subject to external perturbing influences for a sufficlent length
of time will finally achieve a certain state of equiiibrium. Por
systems in equilibrium, the distribution funectlon f1 does not depend
on the time, and as @ result the right-hand side of the Boltzmenn
Equation {1.15) vanishes. The vanishing of the pight-hand zide of
the equation expresses the state of equilibrium existing in
collision pronesses, which means that the number of particles ef
the 1th type leaving a certain velocsty interval due to ¢olllsions
i3 exasotly equal to the nusber of particles entsriag this interval
as & resul% of collisiona. The sufficlent conditlcn for equilibrium
may be abtained if the integrand onh the right<hand side of the
Boltsmann equation iz assumad Lo wvanish, t.e.,

B Gk S e T A by S e T

L bl A

L TR

)1ty

At~ P o)

A 9"3",‘ {1.%%)

Howeve, 1t 38 neh clesr whosher this condition is nedessary, sinee
for the right-hand agde of the Dolismann eguation to vanish, It is
enly paceusary thatl fue integrand assume posibive and negative
values 1n the reglon of integration, so that the delinite istegral
will sdd up te sere. The necessity of the conditton {1.8%) i3
praved vaing Boltemannts He-theores, shose proofl can be Found in the
monciraph by Hirgenfelder, Surtise, and Bixd,

2

-
»

- .

Bquation {(1.83) can be written as

Footnote (4) appears ouApa;e 38. j

Gy . : .
7t f}wﬁ?«%ﬁ-ﬂw&«.—»«;w. o err b ies i ae e s
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Infi +'1n fj = Iof, - Ini.

(1.45)

Consequently, logarithms of the distribution functions are summation

invariants for molecular collisions. But according to the conserva- -

‘tion laws (1.20), the cnly quantities that can qualify as summation
invariagts fgr collisions are the mass L momentum myVvys and kinetic
energy 3 MyVye Therefore, in general 1n fi must be a linear
combination of these quantities, i.e.,

Inf, = agny 4 b-(mewy) + ¢ (-g-medt) - (1.46)

where ai, b and ¢ are constants which depend (through initial
distribution functions) on the tc .1 number of molecules of the ith
type, total momentum, and tota® =nergy of the system, Upon deter-
mining these'constantswfrom the conditions '

Sfidvi:‘:nh ]
}}misv;frdvmpv,
i

| | (1.47)
-—é—z mtS(v‘ — )Y, dv; = —g— nkT', j .
{ N\

we arrive at the well-known Maxwell distribution function for a

e

‘system in equilibrium

3, '
fi=n ("Z:":HE‘?'—) exp [~-~ Z'Z'% (v — v)“;;' , | (1.48)

where vy - Vv = Vi 1s the thermal velodity.

In the case when the gas mixture 1is not in equlilibrium, the
distribution functlon can be found using the Enskog-Chapman method '
by introducing a perturbation parameter e in the Boltzmann equation - ¢
(1/¢ 1is a measure of the collision frequency). For small ¢, A

collisions occur very frequently, so that the gas may be considered w

as & continuous medium at each point of which 2 local equilibrium is .
established., The distribution function for this case can be expanded
into u series in. the paranmeter e:

FTD-HC-23-723-T1 " 20
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S: Substituting this serles into a rearranged Boltzmann equation
4 3 Uy 4
'a‘f‘“*‘#”:%’u (1.50)
b and equating coefficlents of identical powers of g, we obtain a syst:m
kf : of equations for the function f(g), f(}), ete.:
‘\; 0=y, 1)
| SE aff "
< 7 ‘ ————+ Yo =
; at L (1 . 51 }
= © = JUU 1N L A0 ete.
f
E % The solution of the first equation in the system (1.51) 1s, as
E i is easy to see, in the form of the Maxwell distribution (1.48). The
'3 ¢ quantities
A i
3 & . wpsowg (e Oy e s (e, yand o Ty 1,

in the expression (1.48) are arbitrary funstions of position and
time. In order that these quantities may correspond to their local
values, 1t 1is necessary that the solutions of the remaining equations
of the system {1.51) satisfy the conditions (1.47). 1In other words,
the distribution functiors, in an approximation of order higher than
zZero f(f), k=1, 2, 3, «.., must satisfy the conditlons

. SI'(."‘j duy = 0,)
3 m‘g'l\/";“ du, =0, (1.52)
i )
v 1 8
. YE "‘tS(m — )3 dey = 0
for (k=1,2,3,... )
FTD-HC~23-723-T1 21
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Using the conditions (1.52) one can obtaln solutions of the

second equation in the system (1.51), ete. The Enskog-Chapman

method which is essentially a method of successive approximations
can in principle be extended to systems with larger gradients of
thermodynamic and gas-dynamic quantities.
a majority of gas-dynamic problems, it is sufficient to solve the
Boltzmann equation to a first approximation. In this case, the law
describing the variation of the distribution function differs very
little from the Maxwell law (1.48), and the gradients of gquantities
characterizing the maeroscopic properties of a gas turn out to be

small in the sense that these quantities do not vary apprecliably over

a distance on the order of the mean free path of molecules.

Referring the reader who is interested in the details of the
mathematical solution of the system (1.51) to the already clted
monograph by Hirschfelder et al., we shall indicate some of the

results obtained when solving the Boltzmann equation to a first
approximation.

The expression for the rate of diffusion has the form

P ol () + (-2 -

(1.53)

'rﬁlnT _
n‘m‘fD - i=1,2,..,N

where Dij and

for a multicomponent mixture, respectively; p is the pressure,
Formula (1.53) shows that in the absence of mass forces, diffusion
may occur for three reasons: (1) under the influence of a concen-
tration gradient (mass diffusion), (2) under the influence of a
pressure gradient (pressure diffusion), and (3) under the influence
of a2 temperature gradient (thermal diffusion).

It must be emphasized that in the zeroth approximation [for the
Maxwell velocity discribution (1.48)], the rate of diffusion Vi, and
consequently, the masy fux density vector for the i

component,
Ji’ will be =qual to ze.o.

PTD~HC-23~723=71 22
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The expression for the rate of diffusion of the 1th component

of the mixture (1.53) is usually difficult to use in practical
caleulations, since it involves a diffusion ccefficlent for a multi-
component mixture, Dij’ which to a first aggroximation can be
expressed in the form of determinants of N~ order (N is the number
of components in the mixture) in terms of the diffusion coefficlents
for the binary mixture 2 and of concentrations and molecular weights
of the components.

It is much more convenient, instead of N formulas (1.53), to
use N - 1 independent relations

o n n, am\ alnp
’lrntg)) (VJ“" Vi) (‘;‘) -+ (T"*"P—‘ T
jue=10
Jui N ] ) (l . 5“)
_am?r n.n, ( Z )
or j_’l ey nm, |°
J#t

A derivation of these relations, sometimes called the Stefan-Maxwell
relations, can be found in the monograph by Hirschfelder, Curtiss,
and Bird(?),

If one neglects thermal diffusion and pressure diffusion as
compared to mass diffusion, then Equations (1.54) simplify to the
form

2 o= Vo= ().
4 (1.55)

Using the expression for the mass concentration (1.29), we put (1.55)
in the form [3]

N
2 ::""‘ (V= V) — re.z Bl — (V- V).
§ el ;;: (1.56)

Making use of Equation (1.56), we can introduce the so-called
effective diffusion coefficient® (67

: ‘e
S - 0Dy s (1.57)

Footnotes (5) and (6) appear on page 38.
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where %; can be found using one of the following formulas:

S JL BN PR ¢ _.,____V-f"'-*=
:2;1 ™5 ( ~)+§\ k.fz:lm % Vi (1.58)
N 1.5
m S _ {Jq) ' (‘113 & Jx
zgﬁﬂu( ;A+é1§;°m khy

From the definition of the effective diffusion coefficlent
(1.58), it is clear that generally speaking this coefficient depends
not only on the composition of a mixture of gases, but also on the
ratios of the diffusive flows of components, i.e., essentially on
the defining parameters of a conerete problem. This circumstance,
although in certaln cases creating inconveniences in the computation
process, 1s not important in boundary layer calculations for multi-
component mixtures of gases(7), since in many cases the most conven-
lent method of calculations is the method of successive approximations.

The diffusion coefficient for a binary mixture, §;, is gilven by

the expression
9,; =0,0026280 + —_T_T““ o 2
\i ‘/ M, ) phaf O (T sec’ (1.59)

Here p 1s the pressure, in atm; M 1 is the molecular welght of the ith
component; Q%Y (7%) is the collision term for mass transfer measuring
the deviation from the model in which gas molecules are considered

as hard spheres for which 9%”=1; T is the temperature, in °K;

T, =kTle;; 1s the characteristic temperature, in °K; eij/k is a
parameter related to the potential energy of molecules that charac-
terizes the interaction between molecules of the 1th and Jth type,
°K; °13 1s the effective collision diameter for molecules (in
angstroms).

The values of the funotion Quy*(rjy for 0.3 < Tg < 400 are
listed in the monograph by Hirschfelder, Curtiss, and Bird.

Footnote (7) appears on page 38.
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Formula (1.59) shows that the diffusion coefficients for a
binary mixture, Py, are relatively insensitive to moderate changes
in the molecular welghts of the components. Therefore, if any gas
mixture consists of two types of components, each of which has
approximately identical atomic or molecular weight and approximately
identical collision cross-secticns, then the mixture may be considered
to be "effectively" binary in that each group acts as a single
component. One must, however, keep in mind that in calculating the
energy transfer, one must strictly differentiate between the
enthalples of the individual components.

For a binary mixture, from Equation (1.53) one can easily

obtain the following expression for the diffusive fliux of the ith
component:

72 * [a (n l
Si=mn¥,= ...-%— mimjﬁ?)‘_';[ (_*.) .

o \n
ng  nm \alnp .cﬂnT] (1.60
+ (3 M) e - 5. )
Here
Q'I'
S et 5
by == wmm; Dy; (1.61)

is the ratio of the thermal diffusion coefficlent to the binary
diffusion coefficient, known as the thermal diffusion ratio. This
ratio characterlzes the relative significance of the thermal
diffusion versus the mass diffusion.

Using Expression (1.29), we shall change ir Equation (1.60) to
the mass concentration, and we obtaln the resulec

. i *9ln e m, = m aln mmy,, anT
Ji= “'P"(EDU[ i -+ !m €i app;t:?ﬁr}“' ar ]' (1.62)
- L

In boundary layer type flows, the contribution of the pressure
diffusion to mass transfer is always negligibly small as compared
to the contributlion of the mass diffusion, since wlth an accuracy
on the order of 1/Re, the pressure 1is constant across a boundary
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layer. The term characterizing the thermal diffusion 1s also
usually small as compared to the term describing mass diffusion.

In a turbulent boundary layer, where the molecular diffusion needs
to be considered only in the laminar sublayer, usually occupying
less than one half of the entire boundary layer (although in certain
cases the thickness of the sublayer may amount to more than 50% of
the thickness of the entire layer), only the mass diffusion must be
considered(8). In this case Equation (1.62) assumes the form known
as Fick's law

Je,
dv=— Dy . (1.63)

Continuing the discussion of the first-order approximations
to the solution of the Boltzmann equation, we shall write an expres-
sion for the pressure tensor

p =P$""2PS-
(1.64)

where

p:.-nkT (1065)

1s the equilibrium static pressure for a local temperature and
density of particles,

100
3’:(010) (1.66)
001

is the unit tensor, é is the rate of strain (displacement) tensor,
defined by the expression

e (o) Sam (), (1.67)

| «,f =123,

4 1s the dynamic viscosity coefficlent.

Footnote (8) appears on page 39.
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The diagonal and off-diagonal elements of the pressure tensor

are

Pn=P+%P(3§:-v)— %,
P«a=-»(%’-+%). a,B=1,23 (1.68)

Equation (1.68) shows that the pressure tensor differs only as
to its sign from the stress tensor, as usually defined in the
mechanics of continuous media [4].

The dynamic viscosity coefficient introduced above for the case
of an N-component gas mixture is defined by the expression(g)

M Ha Ha ...y n
o iy Uu ... Hy 5

n n L A ;~-8~ 1}
18 Ba Ha Uy ’ (1.69)
Ha ilw Wy ... By

where

Pz} N\ a2, MM 8 M

-_— B | O M Y . O Yot
Ny = N +.2'J“ By (M43 [34;. i ﬁ‘]v
kxl

2 MM
Hym =28 MY [._‘.5 —- 1], is
y ¥ “* i,

{1.70)

By W+
Xy = niln i3 the molar concentration of tha ith component ; ¥y is
the viscosity coefficient of the 1‘" component, equal to

o YHTE .
By = 266,03.40° W.:.,’W“—'-;eb {1.71)

gy 1s the collision diameter; T.i = k‘l‘/c1 12 the characteristic
temperature; ei/k is the parameter related to the potential function
of the intermolecular interaction gt% {3 the collision tera for
momentum transport, measuring the deviation from the model in which
the molecules of the gas are considercd as hard spherez, £or which

Footnote (9) appears on page 39.
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QY = {. The values of the function 2*Y"(T) for a wide range of
T'1 are listed in the monograph by Hirschfelder, Curtiss, and Bird;
uij is a coefficient defined by the expression

TN g . (1.72)

= 266.93.10~
py = 266,93-10 AT

where Q@& is the collision term for the ith and Jth component for
the case of momentum transport. The values of this term are also
given in the monograph by Hirschfelder et al. The quantity “'ij’
appearing in EqQuations (1.70), is equal to Q%" %",

In Equation (1.69) the off-diagunal elements of RiJ are usually
small as compared to the diagonal elements 811. In order to make
the off-diagonal clements exactly equal to zero, one must set “.13 -
$/3. If the same assumption is used for diagonal elements, then
expression (1.69) becomes

1] ‘: ~ ik?
wedy e 3 T " {1.73)

However, foraula(1.73) 15 not in good agreemont with experiment.
To bring it in agreement with experimental data, it is sufficlont
to replace the factor 2 in the denominator with the empirical
eoefficient 1.386, 1.e., to write it in the form

2

*
Boe B i
=4

e A M

A computation of the viscosity ol slxtures according to these
fortsulag turns out to be quite latovricus. For this reason, in wany
cazed 1t 1s advisable to use less exact but siepler relations. In
particular, the dynamic Viseosity of a pure gas can be coamputed Iron
the well-ktiown Sutherland forsula

I

el -y (1.75)

PrD-HC-23-723-T1 28

e A e sk # i K St € ol Gl ea s



e P B O R e

Stk e,

TR GERATESTEIR RS TR O a SRR e e TR

B s T

The values of the coefficients K' and C' for certaln gases, as well
as numerous data on the viscosity of pure gases and mixtures, are
given in the monographs [5].

The energy flux density vector q for a multicomponent mixture
of mono-atomic gases, obtalned as the first approximation to the
solution of the Boltzmann equation, has the form

N N N
or = LN A
9= —d g+ Jpali+ T@?:ﬁ;"’“"”' (1.76)

Imi

Here A is the heat conductivity coefficient, and hi is the enthalpy
of the 1th component per unit weight, equal to

LI
3 l‘ * (lt??)

Expression (1.76) shows that in multicomponent mixtures the
energy transpert takes place by means of three mechanisms. The
first term on the right-hand side of (1.76) characterizes the
energy transport due to heat conductivity; the second term -— due
to mass transport by meuns of all types of diffusion (mass difrusion,
prossure difffusion, and thermal diffusion). The third term oharac-

‘terizes the additional energy flux due to the diffusive thermal

"
#ffect (Dufour's effect ).

For 4 mixture of polyatomic gases, the energy Plux density has
the same fores as for a aixture of monatomic gases (1.76), with the
esception that the enthalpy hi 1s understeod Lo be egual to the sum

:.‘,-?(;‘u.n,‘;__}:, (1.79)

whete ey 13 the energy of the internal degrees of reedos of molecules.

. '
Tranglator's Note: When conventra’lion gradients produce noh-
uniforsity of temperature, this 1s called the Dufour eifect.
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In boundary-layer type flows, the contribution of the diffusive
thermal effect to the energy transport is usually small, and thus
with accuracy sufflclent in practice we can write the following
expression for the energy flux density vector in a multicomponent

mixture

14

N
aT b
q:.—.k—a—;-g-?.pt‘r(h‘. i (1‘79)

If expression (1.53) is used for the mass flux density vector
of the ith component, and if it is assumed that thermal diffusion

and pressure diffusion are negligibly small, then Equation (1.79)
can be written in the form

T oz T
0= - (= IR Fmem, Dehigr) G- (1.80)
The quantity in parentheses may be considered to be a certain

effective thermal conductivity coefficlent, consisting of two parts:

A, which 1s the heat conductivity of a gas mixture, due to molecular
¢ollisions, and

55 W il
b= = T mm b (1.81)
which is the heat conductivity due to mass transport, i.e.,

Ao = A g, (1.82)

If mass transport makes chemical reactions such as dissociation,
fonization, etc., possible, then the heat conductivity coefficient
A 18 called the heat conductivity coefficient of a gas in a “frozen"
state (i.e., in the absence of chemical reactions), and XR is the .
heat conductivity coefficlent accounting for chemical reactions. .

For a gas consisting of molecules of one type which do not
possess ary internal degrees of freedom (the internal degrees of
freedon are “frozen"), the heat conductivity coefficient ¢an be
exprossed {n the following fashion (AR = 0):
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5
k=—2—-¥w¢c (1.83)

where ¢y is the heat capacity per unit weight at constant volume.

A gas consisting of molecules of one type that do possess
internal degrees of freedom and are in various excited quantum
states may be considered as a gas which is a chemically reacting
mixture with a large number of components, none of which possesses
any internal degrees of freedom. If we assume that the rate of
energy transport from translational degrees of freedom to internal
degrees is small — or, in other words, the distribution of molecules
over varicus states is an equilibrium distridbution, corresponding
to the local temperature — then for polyatomic molecules (of one
vype), we can obtain the following expression for the effective heat
conductivity coef!‘icientua

Mot {158 5)r— (15~ 10 S0 e (1.84)

whepe vy = cp/cv, P 1y the self-diffusion coefficient defined as the
limiting form of the diffusion coefficlent for a binary mixture.

The expression for the self-diffusion coefficlent can be obtalnad
from Equation (1.59) by setting i = J. Thu dimensionless quantiey
e 1s a function of temperature, and its value is on the order of
unity. By setting this value to unity, we obtain the following
formula for the heat conductivity coefficlent for a polyatomic gas

The factor (9y - §)/4 13 called Aftken's corrective factor. Equatlions
{1.84) and (1.8%) are not in good agreement with experimeni at
ordinary temperatures, since the energy transport frosm the transla-
tional to the internal degrees of freedom at such temperatures g
gifficult. towever, at high temperatures, Equation {(1.8&) 1a
sul'ffclently acturate.

Rootnote (10) appsars on page 39.
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Today the heat conductivity coefficients for mixtures of mono-
atomic gases can be computed with great accuracy using the Chapman-
Enskog theory. The existing methods of computation, which are a
further development of the Chapman-Enskog methods, make it possible
in principle to compute heat conductivities of mixtures of poly- .
atomlc gases at high temperatures. To carry out calculations using
these methods, one must know the potential specifying the interaction
between molecules. However, in many practical important cases,
these potentials are not as yet sufficliently known. Our knowledge
is particularly limited when it comes to potentials describing
interactions of electrons with atoms, ions, and molecules. When
calculating viscosity coefficients, we are permitted to neglect
collisions of electrons with other particles since the electrons
carry only a small fraction of the total momentum due to their
small mass. However, when calculating heat conductivities, the
collisions of electrons with other particles cannot be neglected,
since electrons,-having a great spead, carry a significant fraction
of the kinetic energy. A detalled discussion of the preblem of
determining transport coefficlients in the air at high temperatures
¢an be found in a papor by Hansen {[6). Practical methods of caloula-
tion of heat conductivities in pure gases and mixtures can bhe found
in the monograph by Bretshnayder which was quoted above(ll).

§ 5. Equations of the Dynamies of o ﬂultinomggnant.
Reacting Oas

The expressions for the miass flux density vector (rate of
diffusion) of the g th component (1.53), pressure tensor (1.64), and
the energy flux density vector (1.76) glven in the preceding sestion

enable us to write the gas dyhamic toansport ejuations (Seetien 3) .
in macroscople foxtn. However, before we do thiz, we shall first .
collect n2l)l transport eguations, keepliog fThe vector-tensor notation.

The oquation of continuity for a smixture of gases 18 : .

Footnote (11) appears on page 39.
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,. ! w i lpv) =0, (1.31)
R the equation of continuity for the 1°D component is
2 & e ae 2
| T 2 (133
‘_ E‘« .
§ the equation of motion 1s
& av 3 178
F(oaw)r - lee). (1.35)
the energy equaticn is
In order to complete the system of equations (1.31), (1.33),
{1.35), and (1,39), that relate the five unknown quantities v, o,
Py 2, and E (or T), we must add to this system the equation of
atate for a mixture of gases
;’; . .
pspﬁr?ﬁ!‘-, - (1.88)
Subshituting the expression {1.68) for the pressupe tenser in
the eguation of motion {1.33), we nbi,am the following fundamental
fordg of this equation:
3 dr _ 2
*’“&*“”%‘*‘2“‘5‘?'*‘3‘ {1.87)
E fiere and balow
'; 3 . ug.a‘_'-:ngs.%. ’.%.
' In the energy cquation (1.39), we pase Pros the internal snergy
3 3 : £ to the esnthalpy b, related to the forier by
] g A=E4 L, {1.89)
4 PTB-HC-23-723-71 33
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simultanecusly replacing the pressure tensor by its expression in
{1.64). Then we have

dh _ dp (-] ? s
PE = 4t W 50 (1.90)

Keeping in mind that

(8- o)0 =1, | (1.91)

we change Equation (1.90) to the form

dh d [ ¢
p_g?._——_.a.;:.—??—;-q-{-ZpSz. (1-92)

We shall give still another form of the energy equation that can be

easily derived from Equation (1.39) by using Equations (1.35), (1.64),
(1.88), and (1.89):

1 ) 8 a <
P (h ) = g a2 (S0} (1.93)
The gquantity
b %;;:H (1.94)

will be called below the total enthalpy of a gas.

Now we substitute the expression for the mass flux density
vector (1.10) in the equatlon of continuity ror the ith gomponent ,
also using Equation (1.53) for the rate of diffusion and replacing
the molar concentration Xy with the mass concentration ey according
to Equation (1.29). Thig gives

o, pmg (1.95)

de L) 3
T + pv..ﬁ‘_ Wy — -5;{—"‘;-25}0‘, [ﬁ(c‘m)-{—
+ e {m — my) %%ﬂ] -7 &%’;T.} .

MTD=-HCw23=723~T1 34

i Ay A T A e L Y Bee weue e e

PRI LTI S




7

TREARYIE e

v,
5

TR

ST

TAE

N G 1 A B PN 2 g

If we neglect the pressure diffusion and thermal diffusion as
compared to the mass diffusion and replace the diffusion coefficlent
for a multicomponent mixture, Dij’ with the so-called effectlve
diffusion coefficient &i, defined by Equation (1.58), then Equation
(1.95) will become

ot oe T =k L (o9t (1.96)

In the case of a binary mixture, the coefficient ; equals the
diffusion coefficient for a binary mixture, 2, and Equation (1.96)
will then be given by

dc dc 8
P+ 00 =t (0D L) (1.97)

Now we consider the energy equation in the form (1.93).
Substituting in this equation the expressions for the energy and
mass flux density vectors, (1.76) and (1.10), (1.53), respectively,
we have

dH 9 oT
Pm"m+2w(M”HVW(aJ

..,._.{P’ g‘[z miDiJ(“‘(c;m)'*‘C,(m—— ml)alnp)

_%ralnT]h‘}+ '{szx |_---(cim)+ (1.98)

ﬂlnp _Ohnr m? "
) o — oD} ]}
o & WO (a®j — ;D)
i

+a(m —my) =5

As noted above in boundary-layer type flows, the contribution
of the pressure diffusion to mass and energy transport is very
insignificant. The contribution of thermal diffusion to mass and
energy transport (diffusive thermal effect) 1s in many cases also
small. Neglectini these effects and using the effectlive diffusion
coefficient instead of the diffuslon coefficlent for a multicomponent
mixture, we obtain the following form of the energy equation:

p - 2ok (wS)t \
8 or do (1.99)
+3;‘(*'5?-‘+§1"9‘h‘37})‘
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Taking the fact into account that

N T
h=Dyohy, M= S edT + B
i o L

(1.100)
and, consequently,
N IN

ar A [ ) dey .

w*ﬁﬂ#‘émW% %“EMW (1.101)
we write Equation (1.99) in the form

di__ 9p [

P =5+ 25 (S-v) +
boow (1.102)
+3 {Pr [8r + 2 (Lo, —1) h‘T?T“

Here hg is the heat of formatlon of the 1th component under standard

conditions.

Equation (1.102) involves the parameters: the effective Lewls
number and the Prandtl number

9D
La‘sp——gg. PI’-"—-T‘ (1-103)

A parameter that can be derlved from these two is the effective
Schmidt number, defined as the ratio of the Prandtl and Lewis
numbers:

o= o= b (1.104)

The effective Lewis and Schmidt numbers introduced in this manner
carnot generally be considered, just as the Prandtl number, to be
similarity parameters, since the effective diffuslon coefficient
depends by definition on the diffusion flows of the individual
components and thus on the defining parameters of a specific
problem. However, in the particular case of a binary mixture, o
beconas equal to the diffusion coefficlent for & vinary mixture,dy,
which, as can be seen from Equation (1.59), does not depend on the
defining parameters of a flow. In this case, the Lewis and Schmidt
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numbers, formed in terms of the diffusion coefficient for a binary
mixture

= —5, Sc=-b_ (1.105)
i

may indeed be considered to be similarity parameters.
An inspection of Equation (1.102) shows that, 1f the Lewls

number is equal to unity (Le1 = 1), then the energy equation has the

same form as the ordinary energy equation for a gas with homogeneous
composition.

FID-HC-23-723-T1 37




Footnote (1) on page 10.
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(6)
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on page

on page

on page

on page

on page
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FOOTNOTES

It should be noted that, when comput-
ing averages, the Integration over Vi
is equivalent to integration over Vi
since these velocities differ by a
constant and the integration 1s per-
formed over all velocity values.

In Equation (1.11), the tensor P, 1s

regarded as the result of the dyad
multiplication of two vectors vivi,

where — in contrast with the scalar
product V1~V1 and the vector product

V1 X Vi of these vectors — the

multiplication sign is not included
in the dyad product.

See {1) on page 39a.

See, for example, the monographs

written by J. Hirschfelder, C. Curtiss,
and R. Bird, and by Chapman and Cowling,
mentioned before, that contain results
of early work. The results of more
recent work can be found in a monograph
by Kogan, M. N., "Dinamika razrezhennogo
gaza" (Dynamics of Rarefied Gas),
“Nauka"® Publishing House, Moscow, 1967.

See [1) and [2) on page 39a.

The concept of the effective diffusion
cveffleient was applied to practical
boundary layer caleulations by G. A,
Tirskiy. Sce, for example, Tirskily,
G. A., Determination of tha Effective

iffusion Coefficientas in a Laminar
Boundary Layer, Doklady AkKademii Nauk
S8SR, Vol. 155, No. 6, 1963, pp. 1278-
1282, as well a: the above papser by
the same author.

A detalled knowledge of tolecular
diffusion, Just as the knowledge of
molecular heat conductivities and
viscositieg, 15 very nocessary wheén
studying turbulent boundary layers in
hypersonic {lows, due to the ajor roie
played by the laminar sublayer in
processes involving heat and mass
transfer.
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Footnote (8) on page 26.

Footnote (9) on page 27.
Footnote (10) on page 31.

Footnote (11) on page 32.

PrO-HC-23-723-71

One exception may be flow of a multi-
component gas mixiture containing
components differing greatly in their
molecular weight — such as, for
example, hydrogen and air, helium and
air.

Hirschfeider, J. et al., see
[1] on page 39a.

Hirschfelder, J. et al., see [1] on
page 39a.

See [5] on page 39a.

39




=y

12 S et 0 4T ST A,

A

A AT ST AP s e aneni it o a v o

REFERENCES

1)Tirschtelderd. 0, Curtiss C.F, Rird 1. B,
Moleenlar theory of rases and liguids, New York, Wiley, London,
Chapman mnd Iall, 1054; pyecunit- nepenoy: 'npwdeasyep
J., Repruce U, Lepa P, Moteryaspuan reopitr rasos
nowmaroereit, I, Moenna, 1961, .

2YChapman$,,Cowling T. G, The mathematical the.
ory of non-uniform gases, Cambridge Univ, Press, 1952 pyecxnit ne-
penexs Yenven G on Rayannr T, Matemarunsckit Teopus
neouopoax ranon, 13, Moerna, 1960,

3)Tupexnit P, A, Auaan3 Xnunveckoro coctana Jawnnap-
NOT0  MIOTOKOMIONCTNOND MOTPAMTINOTO €101 1A JONEPXNOCTIL TO-
p:ggz)x naactikon, Rocmmmeckne uceaenosanna 2, pum, 4, 570—-594
(1964). )
NAofinnuenan J. T, Mexamma HUoCTI I £33, sllayxay,
Mucita, 1970,

5) FonyGen J. M, Baskoers Fason M rasonux emeceit, Ona-

warrns, Mockna, {930; Bpermuaitaep Cr,. CpolicTpa razos o
muaKocfeit, eXnuius, Mocktna — Jlennnrpag, {9G6.

6)Hansen F., Approximations for thoe thermodynamic :\:?d
ltansgort properties of high-tomporaturo air, NASA TR, R-50 (1958,

PID-HC-23-723-71 39a




Gt TR SR

L]

CHAPTER II

3 TURBULENCE IN GASDYNAMIC FLOWS

§6. Equations of Turbulent Motion

5 In turbulent motion the velocity, pressure, temperature, con-

1 centration fields and those of other gasdynamic¢ quantitles have a

very complicated structure. The complex structure of these filelds

is due to the extremely irregular and random character of their varia-
g tion in space and time. If the space and time scale of turbulence

; (1.e., the minimum size of a turbulent inhomogeneity and the charac-
»f teristic period of turbulent fluctuations) is much greater than the

’% space and time scale of molecular motion (i.e., the mean free path

3 of molecules and the mean time between two molecular collisions),

4 the transport equatlons obtalned in the preceding sections may in
principle be used to describe turbulent motion.

R A

Experiment shows that the space and time scale of turbulence is

t always greater by several orders of magnitude than the space and

time scale of molecular motion, and thus a description of turbulent
flows by means of differential transport equations is fully justified.
However, direot use of these equations 1s in practice impossible,

Y i AR

i
P v g
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since the fields of gasdynamic quantities in a turbulent flow, which
are always nonsteady, depend very strongly on the initial conditions
which are usually far from being completely known. Thic means that

a complete detalled description of turbulent motion 1is impossible.
However, in practice such a detailed knowledge of the fields of gas-
dynamic quantities is not even necessary in a majority of cases, since
we are merely interested in the average (statistical) characteristics
of these flelids. The fact that turbulent motion is described by dif-
ferential transport equations becomes extremely important in this
case. Due to this fact, it becomes nearly possible to establish re-
lationships among the average characteristics of the fields of
gasdynamic gquantities.

The techniques that make it possible to establish such relations
in the case of incompressible isothermic fluids were first proposed
by Reynolds [1]. By now these techniques hive been desnribed in great
detail in the literature [2], and for this reason we shall eniﬁrbrizfiy
describe thelir main features. As we know, Reynolds proposed that the
values of all gasdynamic quantities in a turbulent f“ow b2 represen-
ted as sums of the average and fluctuating components, and proposed
that only the average quantities which vary relatively swmoothly with
position and time be investigated. Reynolds suggested that, in order
to determine the average vaiue of a given quantity, one should apply
ordinary averaging over a certain time interval {(time averaging).
It should be noted that, along with this methoed of averaging, other
methods are also poussidle, including averaging over a c¢ertain regicn
at a given time instant (space averaging) or averaging for a large
number of fields that vary both from point to point and from one tiae
instant to another (statistical averaging over ensemtles). Without
discussing here the respective merits and drawbacks ol various smethods
of averaging, we shall only note that procedures most cossonly used
in practice enable us to measure time averages of various quantitioes,
and thus time averaging turns out to be most advi&able(i’.

Footnote (l) appears on page 69.
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Pollowing Reynolds, we shall now write the instantaneous value
of each of the unknown quantities or their arbitrary combinations as
sums of the average (f) and fluctuating (f'} components:

lal'*‘l“ (2.1)

By averaging, we mean time averaging

()

7“5“' > /de, (2.2)‘

where the averaging interval At is assumed to be sufficlently long
as conpared to the characteristic period of the fluctuating field and
significantly smaller than the periocd of the average field. If the
average field is steady, i.e., its pericd is infinitely long, then
the average value of f will be given by

Hat

1=y i 1), 2.9

As shown by Reynolds, in the process involving any type of
averaging (not only time averaging) the following relations must bdbe
satisfied, which came to be called the Reynolds relations:

W7 eg=fem
2) a)wal, 1P o const;
) dwa, 11 qeoonst;

4)-!2—&-3{‘. where 8 18 %,¥,2 or t;

5) fa =Tk (2.4)

Setting g = 1, g = h, and g = h' = h - R in succession in
Equations (2.4) (the prime will signify from now on that fluctuating
components of quantities are meant), we shall obtain the following
important consequences of the Reynolds conditions:

Fode FoiZi oo, fhafh fiwicwo. (2.5)
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Making use of these equations, we shall establish the rules of
averaging for products of two and three variasbles that will be found
very useful below

Js= G+ {E+g)=F3+77%, (2.6)
Toi= [3 b gl = g0 BT8P (2.7)

The fluctuating component of a product of two variableg 1s obviously

equal to
O =is—ig=GrNE+e)—Tg=_
=RELEIE TIg —18—18 = (2.8)
=[g 1 l=-T8

Now we proceed to derive the averaged equations of turbulent
motion for a multicomponent reacting gas mixture(a). For convenlence
we shall write the equations of continuity for a mixture and for the
1th compenent, as well as the equations of momentum and energy transfer
in tensor notation: subscripts repeated twice will signify summation
over 1, 2, 3 corresponding to vector and tensor components along the
X, ¥y, and z axes (this rule does not apply to the subscript 1).

The equation of continuity for a mixturc of gases (1.31) in
this notation will beconme

[77

-a?_ o _‘.:.: (t)p'-)'m 0. (2 . 9)

The equation of continuiﬁy for the 1th cbmponent (1.33) will be
transformed using Equation (2.9) to the form

9

.0
i (000 % 5= (v =y = Té":;‘ Vi) (2.10)

To write the equations of momentum transport, we shall make use
of Equation (2.9) and the expression for the pressure tensor (1.64).

Footnote (2, appears on page §9,
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As a result we get

3 (00 5 (o) == = B+ (208, (2.11)

We shall use the form (1.93) of the equation of energy transport.

Making use of the expression for the heat flux (1.79), as well as
Equation (2.9), we obtain
a “iy, 9 ap
Ot (OI‘T-Q)TC'OT()U ]‘-L.._pp ”k) .-_--;i.’.-‘-
8 4. 0F
+ Js; 4 }'"‘;"’2"\?1)"5‘?2}*9)&”&) {2.12)
In these equations, the subscript i signifies the component number,
and the subscripts j and k may assume values 1, 2, 3.

Applying the averaging process (2.2) to the equation of contin-
uity (2.9) and assuming that this operation may be interchanged with
differentiation with respect to position and time [fourth ol the
Reynolds conditions (2.4)], we obtain

.3: \pv‘)uo. (2;?3)

Expanding the term BV; in accordance with the rule (2.6), we get
7, = 59; 4 0 (2.14)

Thus the equation of continuity for a compressible gas becomes

B G 5 PV 0. (2.15)

In contrast with the equation of continuity for an incompressible
fluid, Equation (2.15) involves space derivatives of the average
fluxes of fluctuating motion. The incompleteness of our knowledge on
the general nature of turbulence does not permit us at the present

to give a numerical estimate of the contribution made by the term

5; (p'r) to the equation of continuity. From physical considerations

it 15 clear that
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However, the question of under what conditions it ls permissible to
neglect ETV; as compared to 573 remains open. These factors give the
derivation of the equations of the avergge turbulent motion for a
compressible gas (if density fluctuations are not neglected) an essen-
tially formal character.

Now we take the average of the eguation of continuity for the
158 compenent (2.10), and obtain

dlm A memen = @ re— )
‘;{;‘Pﬁi + (.-}".‘(p"'i)ci = (V)6 (2.16)
—

Applyirg to this equation relatisn (2.8) and performing differsatia-
tlon on the left-hand side of the equation, we find :

‘ ey :
- a3 iy 3 premae
. B o TR tee A
&g“u‘"‘ "M . f\‘i‘;‘ (. f] f ‘:) ' 0“ &’&g)e =
(228 availeble copy. AR I A TR v 2.1
S CLEN L AR UL LN (2.17)
¢ '

Noting shat the .um of the first and sixth terms on the lefr-hand
aside of Equation (2.1i7) i3 pero by virtue of the equation of contine
uity (2.1%), and dropping the ladt tern on the right, since it is
negligible compared to the second ters on the same side

eIty e .
iis-‘vnalifst!(P?d‘i!- {2.18)
we fln&(3)
- et Ey
Pk | (2.19)

-

T T e e I U
L T :,;;l(!“ WG (32,1 a) = cmpley - gy, it
3

Footnote {3) appears on page 68,
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Inequality (2.18) holds because in turbulent motion, as we know,
the molecular properties of a medium play an important role only ir
the region immediately adjacent t. the wall (laminar sublayer), where
turbulent pulsations disappear. Since Vid is the rate of molecular
diffusion, it 1s clear that the fluctuating components of the diffu-
sive flow in tiis reglon will be small as compared to the average
components.

Equation (2.19) shows that in turbulent motion, in addition to
the transport of mass due to molecular diffusion, there is also trans-
port of msss dus to the mixing produced by fluctuations of the density,
velocity, and concentration TEVETT'S’. The process of mass transport j
in a turbulent flow, due to fluctuations of the 2=nsity, velocity, :
and concentration, will be called turbdbulent diffusicn in analogy with i
moiecular diffusion,

A derivation of the sverage equation of motion [Equations {2.11)
are the eguations we start with) does not involve any new features
as comparel to the derivation of the averaged equation of continuity
(2,19), and iz fully snalogous to it. Therefore, omitting the inter-
medlate steps, we shall only give these oguations in their final

a2 8

i

A e Y i a5kt

fore:
-2, e 0%,
oy g =
o Y Ry, e OB R =B
e SN te w e =, (2.29)

It should be noted that, in deriving these gguations, the teras con-

taining viscosity fauctuatlions were neglected a3 compared to the terus

sontaining thelr average values [for a reéason explained in the remark .
concerning the ineguality (2.18;). Hguations (2.20) will be called : .
the Reynoslds equationsd for a coupressible gas. In these eguations,
the guantities TB?;T*‘V; are understood to be the components of the
tensor of additlionhal stresses arising from the preseéhce of turbulent
fluctuations in the mass {low and veloeity. These additional stresses
are usually called the Reynolds stresses.
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In obtaining the equatlons of energy transport in an averagecd
turbulent motion of a multicomponent reacting mixture, we shall

- negiect the fluctuations of the viscoslty, heat conductivity, diffusion,
and specific heat capacity as compared with their average values.

Averaging Equation (2.1i2) and, as before, interchanging the
order of averaging and differentiation with respect to position and
time, we obtain

a 1 g - 92— 1 3 ""'—o_
:.);_—-0/‘7"".3— m_pvhtkw -U—?:‘ v;R ~T05 POV =
ép ., @ [~0F h“ e
T fem cle tems ——— — . b
o G ["Os,' T 'h <4208 ] (2.21)

We shall transform separately each of the four terms on the
left~hand side of this equation, using Equations (2.6) - (2.8). We
thus obtain

oo & ; i, 3
?u-uh =z —Y—-(I)h - 0 I- ) B *‘?‘ J- I -—‘- "'- H-—O'It
vt ? vl Yoat
g ~ g ,mma o, wmE ORI RE
= g by = (v b oo Qv - i) =
A N 7T a IO
e TR R T
& — 0 ‘"""
P e —~)— {p= )Iz~- -—--[pu h—-—(pv,)’la J =
- oy i T AT
r= 9"20'}'; P pv, + ——-‘ (cw)) (c LY =

ok o/'
;ﬂmx,”lda“T”‘“Ww+9W0+
]

L 4 O
: Z‘ cilpv, Yy + ~——4_ > poyYe - ——-Z (pv Yei h“
l ) i

2

»

3 { 9
"’."5;‘)‘ PUg = TZ’—;—;(QU))U

- Reproduced from
= .1)_._9.. [pvob & (ov;)of] = best available copy.
2 i

a5,

J
{0 =~ =1 ——
s T‘;‘:[p J(UL LUL)""-L‘L(DU)U)‘bf— pv})vk]u
4
o .- -
z.k a T - - , —— 0‘9
:-75‘-‘;'(901.1_ 'U") “f‘v‘qvk“ t .O’UJU*~I—-+
i d ~—"7 0 —
e 0k g v ()’ v + -—(pv,)v;.
’ i

We substitute these expressions in the initlal Equation {2.21) and
obtain
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v ! =i, s 0w . 0 Sy, Yhooa | v Y0
1 Py T g O e o T

Mm@ N

{ 0="3 ,= =7, 1 8 7H, K6 = 3
g OV ot Uy 00 - 5 0 9”;’;)_“ +
) 0] ®) )
, ok 29 - T FIAN :
.. b 00 ol g (v 5 0°0g) - o L6 (pv;) B
3 i Os. 2y o S
A a0y’ {n T
K L0 e TS 9 AT
X g 2 i pv)) e+ 5 Spv;)eih; +
e i i
e (13) (14)
k- I B T LI
-3 T (00 - 9'V)) T POV 5= OV = -
. j - i
4 e T 1) 7
I et S B vac I B e S P
L T i a7 eilo0;) 0 - o= (00;) 04t - o S =
k- (1) (19) " (20) )
- 200 25T 0 N
i f Y TRl Z-\-J—L“—i\—;-‘d—\j%p‘v“h‘._
i () (2 )
o O NV T g e @ 2T = 0 ST
= o V) Rl 2= vy < 2 =m0, (2.22
b J i (2 22)
) ) ) )

In the equation thus obtalned, the sum of the second, fourth,
eleventh, and fifteenth termson the left-hand side is equal to zero
according to the equation of continuity (2.15). The eighth, four-

teenth, and twelfth terms on the left-hand side may be dropped due to
their smallness, inasmuch as they involve a third power of fluctuations.

It is not hard to see that the sixth and the eighteenth termson the
left-hand side may also be neglected, since ,TQ& 22« The fourth and

. the sixthterms on the right-hand side of the equation may be omitted
for the same reason as the last term in Equation (2.17). To further
\i simplify Equation (2.22), we shall group together the fifth, seventh,

sixteenth, and seventeenth termson the left, obtaining the expression

S (oo, o 00, 0y 9 T
K. ke Tyt E L g
ve| gk PV g T Y o:‘”"]'

b which as can be easlly seen from Equation (2.20) is equivalent to
b the expression
g 5 M 4 0 =T d e
;‘ by ["" o + 3;;(4"‘5:}.-) - 37}'(9%‘) Uk] .
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Keeping this in mind and making simple rearrangements, we shall
change the energy Equation (2.22) to the following form:

T =00 [p0l N e
+ [2pS 5 — (ov;) Uklgj\.l—_‘-’r--.-;-[ T 'Cx(PUj)/‘zJ-*

& = Ik 7
— 0k — P'v'*—'—plvk‘—:-
Reproduced from 3 wP s, T
b:st available copy. ’ (2.23)

In Equation (2.23), the quantity TBV;TT'ET expresses the energy
transport of the ith component that 1s caused by turbulent fluctuations.
The term >(°%)Cht expresses the energy transport due to turbulent
mass transport (turbulent diffusion). The term UwﬂvL- gives the
conversion rate of the energy of average motlon into tﬂe energy of
turbulence as a result of the Reynolds stresses. The term 2 Gi(pw,V
expresses the total amount of energy transported by all COmﬁonents of
the mixture due to turbulent fluctuations.

The process of energy transport in a turbulent flow, which 1s
due to the denslity, velocity, and enthalpy fluctuations, will be
called turbulent heat conductivity in analogy with molecular heat
conductivity.

Now we shall perform the averaging process on the equation of
state (1.86). Using the rule (2.7) and neglecting third powers of
fluctuations, we obtain

. 7L
RS pi(’] > l. - e vl ;.;’_.:. - .'.,:._} .
i P

(2.24)
Equations (2.15), (2.19), (2.20), (£.23) and (2.24) constitute
a system of equations of the average turbulent motion for a multi~
compohent reacting mixture of gases. It nust, however, be noted at
once that the use of this system at the present time, even within
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the framework of the semiempirical theory of the boundary layer, 1s
not possible without a number of assumptions whose validity is in
many cases far from obvious. As already noted above, our knowledge
of the nature of turbulence does not permit us to estimate the con-
tribution made to the transport process by terms involving denslty
fluctuations. Therefore, in all existing theories that make use of
the indicated system of equations or its modifications, the terms
involving density fluctuations are neglected. Thls does not mean,
of course, that the density is considered constant. The average
density p is considered to be a variable quantity where it is

necessary.

Neglecting in the equations of the average turbulent motion for
multicomponent reacting mixture of gases the terms involving fluctua-
tions of the density, and 1n the equation of state neglecting all
fluctuating terms(u), and considering below only the "steady" turbu-
lent flows 1in which the average velocity, enthalpy, density, etc. do
not depend on time, we obtain the following system of equations:

3‘:—(5”))"'0'
- (2.25)
ﬁ S G =8 me =
HY; 053 = Uy ‘73;‘ (9 [5 0k S "UJcl)' (2-26)
£ X p ;) -7
o UG S A N -
£s Mg T g ,H*M . (2.27)
“-'_g oh = p PR - "k
38| g ”x“;"‘(—.“b.:»—m‘,vk) ;,—)"i'
s 2]
:'g A ol - 9 - o 4 e =T
E: T 0;} (/v-z-;;-—(\_.co t‘]lg)"“»"‘:‘.‘(%pi‘ hhi'*"%-'hipvjci)» (2.28)
490
oD -
pntpkl‘\ 7} (2.29)
Below we formally set
w—r an
— 0 e Bt
PR Sy, - (2.30)
- -, tue
....pv,'c;:-.-p;/_':ﬂb-;;.' (2.31)
=" aF
— 'I;H —— A
prltv e e gy (2.32)

Pootnote (4) appears c¢n page 69,
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where e, &, and AT are the turbulent viscosity, turbulent diffusion,
and turbulent heat conductlvity coefficlents, respectively. 1In
contrast with the molecular viscosity, diffusion, and heat conductivity
coefficients, the turbulent viscosity, diffusion, and heat conductivity
coefficients do not deseribe the physical properties of a gas, but
instead the statistical properties of fluctuating motion. Therefore,
these coefficients are functions of position and time. It 1s impor-
tant to note that far away from a solld surface the turbulent trans-
port coefficients are much greater than the molecular transport
coefficients.

By analogy with the molecular Prandtl, Lewis, and Schmidt
numbers (1.103) and (1.105), we shall introduce their turbulent
analogs

e
Pr -’-‘=-—-—P-v
R (2.33)
2D
Lep = 2. (2.34)
e Pry
S¢p = 52)7 = Lo:' (2.35)

Although the turbulent transport coefficlents e, Z:, and AT are in
general functions of position and tlme, their dimensionless combi-
natlons Pr,, Le; and Sc¢; usually are slowly varyling quantities which in
many practically important cases permits us to conslder them constant.
The numerical values of Pr,, le, and Sc; have not as yet been accurately
determined. The few experimental data concerning the values of these
numbers are extremely inconsistent. Nevertheless, it can be stated
that in boundary-layer type flows near a so0lid suvface Pr, and Sc;
are close to unity; in turbulent jet flows they are close to 0.5 =«

0.7(5),

Using Equations (2.30) = (2.32), and for simplicity omitting
below the averaglng symbols, we shall write the system of Equations
(2.25) - (2.29) in the form

Footnote (%) appears on page 69.
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a
7 (pv;) = 0, (2.36)
Je .} Ue,
o, 3;‘:‘ “iwy— o (.“Vu“\ —pDy -5;;*) (2.37)
‘ o, op d (o & dv,
o; ;T sy 4 o (-!‘-3;'.- + e -3?-_). (2.38)
, CEI N I P v, ov
05 i = e g+ (S e )
o8 ar 2 (W 9¢
" ; [(k -+ Ay) '0},-_] ~ % (4‘. pe Vi — 29@,& '5;:')- (2.39)
. ' ¢
p=pRT JJL. (2.40)
' B §

Making use of Equation (1.101), which in tensor notation has
the form,
ar 1t ah o, Ue
et (f-Sn i),
01, e“(o‘-). 2‘“ ds, (2.41)
and also taking into account Equations (2.33) - (2.35), we shall

bring the energy Equation (2.39) to the form

IS f LSO S RECCHND, O PR | "ﬂ..)
'!"0'8;‘-[(7""'?}-) EDNry p“V‘Jh"—"Pr h‘ba} +

o
“ -;"— (Lo, — ‘l)g?la-‘—a—‘?}o (2.42)

Passing in Equation (2.42) from the enthalpy h to the total enthalpy
H, defined by Equation (1.94), and using Equation (2.38), we shall
obtain
an a [fw . v \an
‘)U' -0;'.— 2 -«0“"— [(.P-'. A P.':..) - - .
N/ " O . \
—‘i‘ (‘N'l "i‘ — -PT}"-J;:-) . '-P-'-'—(Lc' - ‘)‘\‘.‘h‘ ‘0‘;;-+

2
. 1 ] ey S8 v 9 [l
- y(l — _.) -,'——(_.—) -.2}“‘ Ny ‘._..’....‘._( & .
v Pe R) . LT R Sl
A Ui, P m, X (2.‘53)

The system (2.36) - (2.40), containing 5 + N + J equations (out of
N equations for concentrations, only N - 1 equations are independent
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since ¥Cs==1), generally speaking, does not completely determine the
turbulent flow of an N-component reacting mixture since it involves

5 + N + J unknown functions Vis Py P, h, ¢ (1 =1, 2, ..., N) and
the undetermined turbulent viscosity, diffusion, and heat conductivity
coefficients ¢, Lo and AT’ respectively. In other words, the system
of Equations (2.,36) - (2.40) 1is open. The fact that the system of
equations describing the process of turbulent transport is open up to
the present time has made it impossible to create a theory by means
of which one could make turbulent flow calculations, even in the
simplest case involving flow of a homogeneous incompressible isother-
mal fluld, using a purely theoretical method. All the existing
theories of turbulence in an incompressible homogeneous fluid are
semiempirical, since -~ in addition to certain jJustified assumptions
— thay are also based on a number of empirical formulas. The solu-
tior of the turbulent flow problem for the more coaplicated cases
involving compressible heat-conducting reacting gases is ugually
based on a generalication of the semiempirical theories, daveloped
for an incompressible fluid, to the indicated more complicated cases.
Howaver, even in this type of a somi-empirical appreoach, it is diffi-
eult 50 use the system of Bquations (2.36) - (2.40) in view of their
#athematleal cemplexity. Therefore, in many laportant cases it i3
grteemeay useiul to deal with simplifications of this systes provided
by woundary layer the.py.

§ 7. Eguations of the Turbulent Boundary Layver in s
7 o KA, L2
Mulbiconponont Reachiing Qas

Appileatton of the system of Sguations (2.36) - (2.89) o flows
in thin boundary layers Foraing of the walls of channeis or on the
surface of btodles durlng motlion through a pas swedium  leads %o a
considerable simplivication of the systen. The set of assusptlions
(tirst formulated by L. Prandtl) that fors the basis of the presente-
day boundary layer theory Is well-Known.

et us conslder a steady two-dimensional average flow wilh
average velccities vy =u and Vo = v, corresponding o the direction
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§) = X along the surface of the
body with the flow and 8, =¥
along the normal to the surface
of the body (Figure 1).

Following the baslc idea
advanced by Prandtl, we shall
divide the entire flow fleld into
two regions: a thin region of
turbulent motion, adjacent to the
3 - surface of the body, in which the

Figure 1 parameters of the flow deviate
sharply from thelr values on the
surface to the values 1n the

external flow (boundary layer), and the region of potential (vortex-
free) flow (external flow). The thickness of the boundary layer §

< 1 will be assumed to be small as compared to the distance x. The
order of x and u will be taken to be unity, i.e.,
2 ¥ ~0(l) and ¥ ~0()

then
y~0() and v~0(

and, consequently,

d . ] 4
3 N 1
Le~0l) and 5-~0 (-5.-).

The pressure, density, concentration, and enthalpy will be assumed
to be on the order of unity:

P ~0)p~0() & ~0(1) A ~0y)
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Assuming that the terms in Equations (2.36) - (2.39) which
. involve u, %, ¢, &4 %, and ¥, do not exceed the order of the remaining
’ terms, it is not difficult to arrive at the conclusion that i.n, e 7,
and ., are no greater than ~6 and 7T, are no greater than §.

Using the preceding estimates and retaining in Equations (2.36)
- (2.39) terms of the same order, we shall reduce the system to the

following form:

3 d ;
“5;(9“)+7>‘(P”)='°- (2.44) :
a‘i o de, . [
pu—L < pv_oy_\_ = - (oc‘V‘,—pﬂ';-__t) (2.45)
an au 8p ;
})Itvd—;--;-pv—a-; =‘—- *o;“TOJLP'T'e)—;—-:} (2-1‘6)
ap A
oDt Ly 3, ".; gy {9y L :
e i A U s)\‘)y) L (2.48) |
de '
+ ?}[(K k kr)',)“‘“ ypc‘l‘wh‘—-pj'.? \"3’““]' ;
Equations (2.42) and (2.43) will then become ]
oh o .
pu-&'- - i Yl u'-gi'- < (B 5 e}g-a ») 3
L 9w .L..'i_.. Mo Ww " \‘ e i
oy [ + o) = Feen = o S+
, Jde 2.4
ae ‘,‘,';—(LQ, ‘) yht -e-] ( 9)
oduced from
and Lrt' avallable copy.
g gy L R L LA !
| R L P e A R LU R
' ! \ ¢ I nt
. -:'K(t——é;...)} 5 (_a_\__ ) YR A P
X , o
- 3;%_:_‘;10. —j;— A -—»(Lt, - 3)‘_23‘-0; ;‘ (2.50)
¢ In Equations (2.45) and (2.48) - (2.50), the diffusion rate is

generally given by Equation (1.53). However, as noted in Section 3,
the effect of pressure and thermal diffusion ln the boundary layer
is usually small. This ia even more true for a turbulent boundary
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1 layer in which a region with significant molecular transport processes
occupies only a portion of the entire boundary layer, and a portion

3 at that which is in many cases insignificant. Neglecting the effect

3 of pressure and thermal diffusion on mass transport as compared with
mass diffusion, the rate of diffusion will be given here by an expres-
sion that can be derived from Equation (1.57). Its y-component will
have the form

D, o
‘,“::?-—---—.‘_.__‘.-

' oy (2.51)

Here %, 1s the effective diffuslon coefficient given by Equation
2 (1.58). 1In the case of a birary mixture, 9% becomes the diffusion
.3 coefficlent for a vinary mixti»=, 9y .

Substituting Equation (2.51) in the equation of continuity for
4 the 1th component (2.45) and in the energy Equation (2.48), and omit-
€ ting the ratio (2.47), the system of equations for a turbulent boun-
> : dary layer in a multicomponent reacting gas will have the form

a @
D) e () 2 0,

(2.44)
My o tp J 7 . e ]
E i R "”Tu'*'bch‘*'ﬂ'm%? (2.52)
¥ de. | de. ae
'3 pu —o:!- U v W ;‘-} {9(50‘ <+ 9s) '0'3']' (2.53)
a3 N :
o ‘dpv.ww AV N | e \ A
2 u B
wud el | () (2.54)
RN .8 de, ¢
+ [ ea-n -,r.;‘—('-ﬁr—‘)}htw}'
The energy equation in the form (2.50), upon substitution of
Equation (2.51), will become
ol att a (fpn , e \OH
™ m'a_y{('?? "“Fi;‘")"é}""‘
.ol e § R
T 2: -5; (Ley 1) '5‘;,,;‘(“9'“ ‘)] "rj,‘s‘ +
. (2.55)

Pl
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It should be noted that in a turbulent boundary layer there is
a "transition" (buffer) zone at a certain distance from the wall in
which the molecular and turbulent transport coefficlents are of the
same order. In this region, the above boundary layer equations are
inaccurate, since, 1in deriving the general equations of turbulent
motion which in turn were used to deduce the boundary layer equations,
we neglected quantities (fiuctuations of molecular terms) which in
the buffer zone play an importantv role. Therefore, the equations of
motion (2.52), energy (2.54), (2.55), and continuity for the 1%h com-
ponent (2.53) in the form in which they are written assume that the
boundary layer is divided in two regions with different types of
flow: the turbulent core in which i« # A« i, ;<2 7., and the laminar
sublayer in which p¥»eg a5, and 7 P,

The equations of continuity for the ith component (2.53),
written for the mass concentrations of the individual components of
the mixture, are lnhomogeneous when homogeneous chemical reactlons
occur in the flow (wi # 0;. In certain cases, it is more convenient
not to write these equations for the mass concentrations of the com-
ponents, but instead for the mass concentrations of individual
chemical elements, regardless of the type of a chemical compound in
which a given elerment 1s bound. In this case, in the absence of
nuclear reactions, the diffusion equations become homogenecus. 1In
fact, if

@ M
cars =it (2.56)
signifies the voncentration of the kth element in the ith component
of the mixture, where N, 18 the number of atoms of the kM element
in the i‘h component, then LI will represent the mass rate of
transition of the element Kk into the component 1. 3inge in chemical
reactions, the mass of an element 1s conserved, we have

_?,r‘.n*,:aw.wﬂ.. {(2.57)

The concentration of the eletent X in a mixture will sbviously be
equal to % = Mo, Consequently, sultiplylag the diffusion Equaticon

.
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(2.53) by ¢,y and summing over all components of the mixture, we

obtain the equation of continuity for the k th element in the form

Je, % dey ]
pu—= =0 oy ["(-TL r)'_y“
e '0_]
Fo= DT\ Ty - (2.58)
1

The equations of the turbulent boundary layer are sometimes
conveniently written in terms of variables that were named after
L. Crocco. Crocco suggested that the longitudinal velocity component

u be used as one of the variables. The formulas describing a trans-

fom?gt);ion from the variables x, ¥y to the Crocco variabies £ = x, u
are

& U S | ¢
T O P
3 @ dy T & |
e Tl (2.59)

Upon making the indicated change of variables in the equation
of continuity (2.44) and multiplying the latter Ly i‘.::.f . we obtair

i @
t

e ol e B () e (90) = 0, (2.60)

Transforming to the verlables £, u and dividing through by
t/{u ¢+ &), the equation of motion {2.92) will beconw

—Wuaﬁ-ygwﬁuh‘gf‘ 32-“1 +~- {2\161)

Dirferentiating both sides of Bquation (2.61) with respect to u, we
get

9 vy de 2 s,
B

i a Paaay, S
ot -..-auau m—;.u‘-

Subtracting ters by term both sides of this egquation from Egquaticn
(2.80) and using vpidu = {p 4 o, we ellminate v and Find

Pootnote (6) appears oh page 69,
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o flu-lrys 7, 3¢ dp & =g\
— e e e — - i —— - .
. u Ui [ T J - o Us e <—L—.t—_) =O. (2 62)

3 We shall similarly transform the equation of continuity for the
3 % 1th component (2.53). Rewriting it first in terms of the new variables
o H L ]
g ¢ ", Jde
e R ey
E o X B [2HE DI )
: R I T va
and then eliminating with the help of (2.61) the expression on the
i left in parentheses, and taking into account Equations (1.104) and
g ; (2.35), we obtain after simple rearrangements
§ &Z:i_"f:'..:."" 2p n-eg) e N
R T E YT W s
L N ¥ 25 S TGN >
w ‘-'——h.;-f- W[(-—s?‘--:-—.——)!-;u}. (-.63)
Applying the transformation (2.69) tc the energy Equation (2.5%5),
3 and performing, as before, straightforward simplifications, we obtain
C Repraduced from
g g ME 2O g3 wahgy O q
o i‘..“i.;t: N .:5. - 3% Rl : £ )_.ﬁ. =2 bett_available copy.
LA t oy an VA ,
=) S e e e
e t v s
e SO an g Y \‘—&t,'f~_ e wm e e H (2
: Yv’ ‘u? ) “t e ‘f“\: ’q )aj}. (h‘é“)
; ' ) The energy egquatien in the Crocto variables written in terms of
3 the enthalpy h can be vasily obtained from Squation {2.8%) by substie
‘ tuting the equality {1.94) for H and keeping in mi6d ThAL Sw'el = G,
Thus we obtain
N Y AU T
: Wwvﬂ%ﬂm“ﬂ¥?gﬁé*‘§aﬂ
- d.!m-ﬁ:;.!::h\-i—s ;t a ‘31..3...:.‘_\5‘3‘; -
&(S LY ; l‘ RS e e 7
L
can .\1§\€;. O, = n .‘!;a. [, ISP S
. 4;‘?'(&“\ !) “ w’ (t‘éf “;Nt gu a‘ (2.£33
; ; Sguations (2.62), (2.63), (2.8%) (or (2.6%}], together with the

equation of state {2.8%0) constitute a system of eguatlons of aw

PTD-#0-23-723-74 %9
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turbulent boundary layer in Crocco variables. This system, similar
3 tc the system of Equations (2.44), (2.52), (2.53), (2.54) [or (2.55)],
assumes that the boundary layer has been divided into two parts —

FETANONITE I Y PPN SRR LI

namely, the turbulent core and the laminar sublayer. When applying

' these eguations to the laminar sublayer, one omits terms involving

] the turbulent transport coefficlents and their dimensionless combina-
tions(s, 2. £y, Pry. Le,, S¢;). In the case of the turbulent core, cone simi-

) larly omits terms involving the molecular transport coefficlents and

; thelr dimensionless combinations (u.4,:£,. o, Le, S¢;).

PP TR N e

i o /2 ot

1
3 For flows in the boundary layer over axially symmetric budies

of revolution, the equation of continuity is written as

;"-} (r. )+ ;\,—‘;-(QM) w4, (2.66)

and to the left-hand side of the egquation of motion in the Croeco

variables (2.62) one must add the term ﬁﬁézilfﬂézg, thus obtaining

S 9 ffu be)pt . & ds dfna

- i A e > ‘é{“'ba(‘"? )*
Lmlnta Lo o (2.67)
* ‘ '“ i *

Hore v, = r (x) = r (&) 1s the radius of the lateral curvature of

the boedy. EBguations (2.66) and (2.67) are valid only Af the thickness
O of the boundary layer § 1s much smaller than v, l.e., § 2 Pt This
C Y cendition ng longer holds for the prear portien oOf long, axially syu-
wetrla bodles or for long channeiz. ALl the other equations of the
turbulent bdoundary layer oa asxlally symmetric bodiws are completcly
fdentical with the equations of a flat boundary layer.

wBRP i e ki dep et S R T s e

3 ‘ § 8. Sesi-empirieal Theories of Turbulense.
' Reynolds Simdlitude .

The syetes of equatlions lop a rurbulent boundary layer which
 wag oitalhed 1n the precceding scotlon 13 oper Just like the initial
Cayotem (.30)Y - {2.40), since the nusber of unknowns exceeds the
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number of equations. As we know, in the study of tThe turbulent
motion of an incaumpressible homogeneous isothermal fluid, we must
resort to semi--empirical theories of turbulence in order to close the
system of equations. All present-day semi-empirical theories of

furbulence of an incompressible fluid are based on a set <f assumptlions

constituting a hypothesis which came to be cailed "“the hypothesis of
the local mechanism of turbulent transport™ {3}. The most important
of these assumptions is the one stating that the meachanism of turbu-~
lent momentum transport cen be completely specificd by giving the
lccal values of the derivatives of the average velocities along the
coordinate rormal tc the direction of the flow and by specifying the
physical properties of the fluid. The effect of processes far from
the indicated poirt in *he turbulent flow is not taken into account
by the locaiization hypothesis. On the basis of the localization
hyoothesis and dimenslonal considerations, one can obtain formulas
comprising the semi-empirical theories as proposed by Prandtl and

%)

Karman

In Prandtl's theory, it is assumed that a local variaticn of
the average velocity is determined only by the first derivative of
the velocity, du/dy. For thils reason, dimensional considerations
make 1t necessary for us to introduce the additional concept of the
length of "the mixing path" without which it would be impossible to
set Qb a formula for the frievion stress. Using dimensional cousider-
ations, it can be established that the only possible combination of
the fluid density p, "mixing path" I, and derivative of the veloclity
du/dy that can yicld the friction stress 1 is

\ 0

e = 0855 (2.68)

The quantitative expression for 7 (y) must be determlined on the basis
of additional considerations. '

Footnote (7) appears on page 70.

FTD=-HC-23-723=-71 £l

D A N R M AtV A bt b m g ATs Yo 65 e S ceimier + aee e

1.

SIS RIS DR ]



I Lt

In Karman's theory, the variztion of the average velocity is
determined by the first two derivatives of the velocities du/dy and
d2u/dy2. Similar dimensional considerations lead to a conclusion
about the existence and uniqueness of Karman's formula for the
fricticn stress

T = p/."-z‘g:z‘\—_.- (2.69)

Application of the semi-empirical theory to processes involving
turbulent heat and mass transfer is based on so-called "Reynolds
similitude™. According to this concept. it is assumed that the turbu-
lent momentum, enthalpy, and mass transport coefficients have identical
values. This assumption presupposes the absence of the effect of
changes in the enthalpy and concentration of mass in a flow on the
mechanism of turbulent mixing, and is probably valid for not too large
enthalpy and concen pration gradients. The assumptlion stating that
the turbulent momentum, enthalpy, and mass transport coefflcients are
ldentical is apparently equivalent to an assumption stating that the
turbulent analogs of the Prandtl and Schmidt numbers are equal to

unity:

Prp = Sex = 1. (2.70)

In quantitative terms, Reynolds similitude can be expressed as

du dh . de,
=egre  dTEG, ]a*'sjar (2.71)
or
l...._dh Tie _ de,
T T d' T T g (2.72)

When studying turbulent flows, in which one must take into
acecount the effects of compressibility, heat and mass transfer, chemi-
cal reactions, etc. (all at the same time or some of them), the only
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possible method involves an extension of the semi-empirical theories
of turbulence in incompressible fluids to these more complicated
cases. The extension In question usually reduces to direct use of

the semi-empirical formulas of Prandtl (2.68) and Karman (2.69). Here
Prandtl's and Karman's formulas retain their previous form, with the
orly exception that the density p 1s considered to bz variable.
Regarding the value of the turbulence constant kx (we recall that the
mixing path is usually given by I = ky), it should be noted that,

even though there 1is some experimental evidence that the value in
question is affected by compressibility and heat transfer, at the same
time the evidence we have does not permit us to make any numerical
gstimates of this effect( ). For this reason, the constant x is
usually given the value it assumes in an incompressible fluid,

(xk = 0,39 - 0.41).

§ 9. Integral Momentum and Energy Relations

In the theory of the boundary layer when constructing the so-
called (approximate) integral technigues of friction and heat transfer
calculations, one uses the integral form of the momentum and energy
conservation condlitions. 1In order to obtain these conditions, we
shall set up the boundary conditions at the surface of the body and
at the external boundary of the boundary layer for the velocities,
total enthalpy, and concentrations of components. To make the argu-
ments more general, we zhall assume that the supface of the body is
permeable. These conditions are

U= ), B, e by, 6, Gy fop ¥~ U
newlU, H-sil, e —¢, Top b= ]
a ~n o, !
- () - . - 3 -2 K%
37 » il - é - 0 Tap jes», } (2.?3)

The second condition at the wall, v = Vo degoribes {ts permeablilitvy.
If the wall is not permeable, then Ve = 0. The last three condiilions
provide for the smooth transition of the velncity, total esthalpy,
and concentration profiles at the boundary o! the boundary layer with
the external flow.

Footnote (8) appears on page 70,
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The external flow will be assumed to be isentroplc, and thus
the velocity at the outer boundary Ue will be related to pressure on
the surface of the body by the Bernoulli equation

4p i dau,
—ar gn.,(,".—&-z—-. (2.7&)

In defiving the integral relations, we make use of the boundary
layer equations expressed in terms of x, y. Here the equation of
continuity (2.66) will be

v

3 é ' { drg
o (0u) gy () pu - = O, (2.75)

where v = Q0 for a plane flow and v = 1 for an axially symmetric flow
in the boundary layer.

Integral momentum relation. Using Equations (2.7Y4) and (2.75),
we rewrite the equation of motion (2.52) as

2 , @ 1o
5 (0ut) + 57 (puw) - ot === =

’h .
ot + gt A

Hultiplying both sides of Equation (2.75) by U,, we obtain

) ry . 9 I 1 de?, &
ﬁ“}‘(i}ubc)"f‘ ‘s‘;(fwtig)‘:‘ P&U,-;-s-?;&mpu-a“&.

Subtracting both sides of the preceding equation from this equation,
we arrive at the cxpression

) » o _ ét!

‘;‘;;“a(bc = uj “é“.;‘W\vv = g) 3 (o Uy = ) ‘J}L &

.
3

‘ { e ) 37 . &y
£ pa(lly = iy gt v =m0 5]
L

Integrating this expression acroess the boundary layer along y
betweenh 0 and infinity, and introducing the integral thicknesses:

FTD-HC-23-723-71 &4
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O = ‘.._--11_.____ '
PEA
(2.76)
whlch is the momentum loss thickness, and
®
— LU !
3 }(‘ ) (2.77)

which is the displacement thickness, and also using the boundary
conditions for the velocity (2.73), we obtaln

LUy + 8700, e
.t dhy
= 0,128 _:..‘E‘:’.._-cw‘pv[/' (2.78)

where
o
Ty = (p .é.'l.;)w
1s the friction stress at the wall.

Performing differentiation in (2.78), and noting that

P; nU 2.
F‘.m—M“U ' ( 79)

upon dividing both sides of Equation (2.78) by peUg we obtaln the
integral momentum relation

8t U:‘ 22 . oy koo 8 drvw T ¥
— o | wen — s -L———-—-.-_—.—..—L“..- -
dz U.( okl M‘),é AT +p‘U‘ (2.80)
Here
. )
W=y (2.81)

is the form parameter of the boundary layer, M, = U/Ja, 1s the Mach
number, &g is the velocity of sound at the outer boundary of the
boundary layer. The prime indicates a derivative with respect to the

FID~-HC-23-723=71 6%
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x coordinate. It will be noted that Equation (2.79) can be easily
derived from the Bernoulli Equation (2.74), upon writing the latter
in the form

2 ds, - av
-—.-&.-—.L:_: Q‘U‘——‘-.
vda Je dz ; dz

Now recalling the definition of the velocity of sound

(2.82)

- s
il
—~
3B
oie
-
»

we arrive at once at (2.79).

The integral momentum relation may alsc be written in a somewhat
different form considering that

v—-1
=¢RT,, T, (1 + L5 M) = const

2
(]

and, consequently,

Ve M) M@ M 4T
U, M3, m, a, M, V2T,
M _G-uMg oM 1 M
M Y1 . r—1 M
. T €l ' (2.83)
As a result we obtain
a5t . Mg 2RIt =M e del ¢ .
b e 0" e = e 2.84
dz Rl r dz z. (2.84)
Here
2, (2.85)
Ple
is the local friction coefflclent, and
6 L2 (2.86)

POO

is the relatlive mass flow across the surface.
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Integral energy relation. The energy Equation (2.56) will be
transformed with the help of Equation (2.75) into

2 2 (o0 G A L)EL’
s Pull)+ 5y ovll) 4 oull o 2 = (30 4 55) 5

+2[ \Le-—-i)-l-v——-(l.e, 1)]h, -

pli=tee(= Al

<

-+

Noting that He = const, we shall write the equation of continuity
as

v

a J { dr
<5 (putle)4- -o—y‘(pvll,) + pu!l,.r—;— —&‘f- =0,

Subtracting the preceding equation'from the last one and integrating
across the boundary layer with respect to y between zero and infinity,
in view of the boundary conditions (2.73), we obtain

0
£\ ouit, = Iy puou i~ o)

o -

' { dn

+;.§-d—}spu(u,-/1) 1y = o (2.87)
0
where
fn ot 0 8q) '
qwm(-ﬁ-WTE;Z‘}(Lei—i)h{Ww (2.88)

is the heat flux from the gas to the wall.

Introducing the integral thickness of the energy loss

to

60570 (1- 75w (2.89)

in view of Equation (2.79), we obtain the integral energy relation
in the following form:

@y U, w) T+ 0,0, (0, =) (2.90)
-t (1 -~ MO 4 o gy e Ju T B SR e

w
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Introducing the dimensionless heat transfer coefficlent (Stanton
number), we have

9.,
= L= (2.91)
where
-yl
H, = kot r =t (2.92)

2

is the equilibrium enthalpy of the surface over which the flow occurs
without heat transfer, and r 1s the recovery factor characterizing
the nonadiabaticity of motion in the boundary layer. Using Equations

(2.83) and (2.86), we bring the integral energy relation (2.90) to
the following form:

e ‘ — 3 *0 ) (13
T e e
¢ l-i-"—i,""Mf To
”P-‘,‘\t‘ ) h“' Y
=C:.-—71;-‘r‘°m(1—7):)- (2.93)
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Footnote (1) on page

Footnote (2) on page

Footnote (3) on page

Footnote (4) on page

Footnote (5) on page

Footnote (6) on page
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41.

43.

4s.

50.

51.

58.

FOOTNOTES

A detalled discussion of the methods of
computing various averages in the
theory of turbulence can be found in
the monograph by A. S. Monin and

A. M. Yaglom that was quoted above.

A derivation of the average equations
of turbulent motion for a compressible
howogeneous gas was first given in the
paper: Van Driest, E.R. Turbulent
Boundary Layer in Compressible Fluids.
Journ. Aero. Sci., Vol. 18, No. 3,
1951, pp. 145-160.

It should be noted that the operation
involving averagin% the mass rate of
formation of the 1th component w, is

not written explicitly in this case,
since today, when using the averaged
equation of continuity of the ith
component in turbulent flow, wide use
is made of an approximation in which

Wy is understood to mean the expression

for ("1) in which all variables are

time averages. The attempts to take
into account the fluctuating terms in
the expression fopr Wy lead to difficulties

that have not as yet been overcome.

For the equation of state we use the
same approxlimation as for the mass rate
of formation of the ith component Wy

{(see footnote 3 above).

Concerning the turbulent Prandtl
number, see Section 15,

For a derivation of tine transformation
formulas, see¢ the monograph by

L. G. Loytsyanskiy “Laminarnyy pogran-
ichnyy sloy" (Laminar Boundary Layer),
"IMamatgia", Moscow, 1962, p. 335.
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Footnote (7) on page #61.

Footnote (8) on page 63.

FTD-HC-23-723-T1
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For a detalled exposition of Prandtl's
and Karman's theories see the monograph
by G. Schlichting, 'Boundary Layer
Theory", "Nauka" Publishing House,
Moscow, 1969.

This question will be considered in
detail in Chapter III.
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CHAPTER III

TURBULENT BOUNDARY LAYER IN A HOMOGENEOUS GAS PFLOW
T SUPERSQNIC VELOCITIES

§10. INTRODUCTION

In this chapter we are going to discuss the theoretical and
cxperimental resulta of the studles dealing with characteristies of
the surt-leat boundary laver on & nonpermeable surfase ln a homogeneous
gax {low 3t supersonie veloelties. The homogeneity of the gas flow
3ienifies gzzentiaily that no ghemical regotlongd ceeur in the flow.
A malority of the pesulbs presented here pafer to [lews in whieh the
specific heat capacity of the gas may be cehsidered to be constant.

e probles of turbulent boundapry layer caloulations for supers
donlc weioeities and bodies oF arbliiravy shape is at the present tige
s5ill far Prom cospletely being solved. 48 we EKnow, the probies sf
the deparatlicn of the turbulent boundary layer, ariaing in a study of
Flows with latge po2itive pressure gradlients, doesd not have 4 satlde
faetory svlution even for the case of an incodpres.ible Fluid., Thoree
fupe, exiating tiethods of turbulzant boundary layetr calewlatisnsg lop
superionic velocitlies enadble us jo deteiwine the skin Irictien ang

FoDeHC-23-723~71 7
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% heat transfer coefficients only for bodles of relatively simple shape
;- § . (plates, cones, neighborhood of the ceitical point of a blunt-nosed
i § ’ body, ¢te.), The moust significant results {(ezxperimental and itheoretl-
i é E cal) were obtained when studying the flow near a smooth flat plate

. pogltioned along the flow.

The llterature devoted to a computation of the drag ceefficient
for a smooth flat plate contains a large numhepr (several dozen) of
approachas. In accordance with the bhaslie assumptions used by varilous

authors, we can distinguish three dirvectioens of research that coexlst
at the pregent time.

vt Qb L

Tl e st s ol

The flrst of these 1s based on 3 generplization of the formulas
af the semi-emperical theorles of turbulenasg (2.83) {Prandyl) and
(2.69) {Karman), obtained for an incompressivle fluld Lo the sise of
4 gad seving at 2 laree velosity, Hethods used in this approash can
3180 be chavracterized asd methody using the logapithmic welowlity grom

E-

Faton

4
R v da € sla e

E

file,
The meihoed? couppising the sesend sooreach charastepietiesliiy %
piv & powgr=law velovliry profile. Both $he fipst and sag$s$ Sehrsseh ;

ne® 5 aaturdl extefsion of the traditicsnal smeikads of tha

W

roulent boundary layer Lo idconpresaible riusis

&

el

Miaslle, INS thipd approrel nmad

ol

Be zaiied emdteionl.  its uasic

feature 3 the i Shat 3% uysey Top-
zaias which ave fortally | %eatlesi
wilh Ehe Fopmuliad Pop an Lagofprese
$ible FlIuld and invilve paranmeiss
with values coProspondling 1o the

so~galied "Jelifilng" tetpersture,
Fhoute 7 seideiad 31 a eertals fashion.

There alds are getiodd whleh oveupy an ihiciwmediate po
the indlented ditections of research.

15§ awone
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=
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A majority of papers belonging to the first approach make use cf
the assumption that the tangential friction stress tv is constant across
the boundary layer and equal to its value at the wall, i.e.,

t = const = T,. (3.1)

In reality, as shown by experiments done by Klebanoff [1], in
an incompressible turbulent boundary layer on a flat plate (Figure 2,
clrales signify the experimental points obtained by Klebanoff), the
dependence of the turbulent friction stress on the lateral coordinate
1 nearly linear (straight line in Pigure 2), and can be approximately
desaoribed by the expression

Lot & {3.2)

“

-
o
-

whepre 3 13 the thiekness of the boundary layer.

Hevertheless, the assumption (3.1) does not introduse a signifi-
eant error, a3 compared with {3.2), into the ecaleulation of the inte=-
gral characteristics of the boundary layer {friction, dlaplacement
Ehivkeess, mosentum loss thicknessgs, 2te.), This tecores easy Lo see
iT e condider the womentusm 1033 thickness $%% given by Bquation {(2.76).
Writing shis eguation in the form

N “_ s 7 w‘iiﬁ
¥ i‘?‘:( miE T (3.1

we nobe that it ls the derivative dusdy thal dopends on the disributiosn
of jhe tangential stresses derods the boundary layer {this can be seésn

AL 2y,

AN 1 g

frot Prandtl's and Kapman's focwulas {2.68) and {2.69)). The tasisus
eryes introduced 16 it by asdusptlon {3.1) wiil obviously scour tear
the gsternal boundary ol the boundary layer, uwhere aceording to {*.13
{ # T Whers?s e Faet ¢ = @ ap §y » . ut in this case the deriva-
pive {duldyt™" 12 mulilplicd DY a smalil duantity (3 - n!@ei {The Guan»
1z 1 émall slinve uw » U for y - «) which 3% iSe Pinal anslysis
resulls in 2 stall error m L% G ke oibel aaed, as will be shoun

IO TSRS I
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telow, the friction coefficient at the wall is ¢f ~ (1n &¥¥). This

. also coutribuves to a reduction of the error made in the caiculation
3 i .
t becausz of the assumption (3.1).

. Tu Justify the assumption (2.1), we can also use the rollowing

simple arguments. Making use of the usual logarithmic veloeity
rrafile [2]

(3.4)

il is easy to obtain from Equaticn (3.2) the fellowing relationship
hetwsen the friction stress in the boundary layer and the velocity:

The results of th. computation based
on Equation (3.5) for three values

of the friction parameters CO = 20,
30, 40 are given in Figure 3., As

we can see from Figure 3, for.example,
for &g = 30 (this means that the Reynolds number is w107) in the veloc-

ity interval 0 < u < 0.8 the friction stress varies within the range

0.9 2 «/t, <1 which Justifies the use of (3.1) in practical calcula-
tions,

When using (3.1) from Prandtl's and Karman's formulas, (2.68) and

(2.69), we can obtain the following expressions for the velocity
profiles:

1] = —CiT exp uCS(B?;)"" dii, (3.6)

s Gyt Cot Jorp [t § ()" aa) a0 (3.1)
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Here

v s et ne ()
Y ‘ (3.8)
Ue 2 Py, ) ) - 21"”
) g e D
o, B, 2
Cl’ C2, C? are constants of integration; x is an empirical constant

of turbulence whose value is usually set equal to its value for an
incompressible fluid, i.e., ¥ = 0.39 - 0.41.

Equations (3.6) and (3.7) lead, respectively, to the following
expressions for the momentum loss thicknesses (2.76):

= il §(~é’;)",:a (1 —ad)exp [x; S({;)%dﬁ] dia,

o U C

(3.9)

- grf’““ exp[xgs(w) ai da (3.10)

The differences among studies using the first approach are
usually contained in the assumptions regarding the constants of inte-

gration C C2’ or regarding the expression for p/pw, or finally

l}
regarding the methods used to evaluate the integrals in the expres-

sions for the momentum loss thicknesses (3.9) and (3.10)(11

The paper that started a wide use of the seml-emplrical methods
in the first approach was written by F. I, Frankl' and V. V. Voyshel!
[3]. In this paper, the authors decided to follow the approach of a
direct generallizatlon of Karman's method (l). Unfortunately, the
degrez of approximatlion used by Frankl' and Voyshel' [U4] enabled them
only to perform calculations for Mach numbers not much larger than
unity.

The transition to large Mach numbers, apparently, would have
required even more complicated computational techniques than those
already used by the authors, or 1t might have required a direct use
of numerical methods.

vootnote (1) anpears on page 178,
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After almost 25 years, the same approach to a generalization of
* Karman's formula (2.69) to the case of supersonic velocities was taken

e AT ST AT S SR T AT TR

by Wilson [5], who had analyzed a flow over a thermally insulated
% plate.

: A more general problem of the drag of a plate in a gas flow in

% the presence of heat transfer but using Prandtl's formula (2.68) was

: considered by Van Driest [6] almost simultaneously with Wilson. Later
Van Driest [71} obtained the formula for friction on the basis of
Karman's formula (2.69).

A method developed by V. M. Ievlev has become widely used in
practice [8].

The semi-empirical methods have been further developed by I. P.
Ginzburg and A. A. Shemets [9], L. Ye. Kalikhman [10], S. S.
Kutateladze and A. I. Leont'ev [11], L. G. Loytsyanskiy and Yu. V,
Lapin [12], L. M. Zysina-Molozhen and I. N. Soskova [13], and other
authors.

Now we shall briefly characterize the methods of the turbulent

k- houndary layer calculations whilch belong to the second approach. 1t
must be noted that the theory of the lsothermic turbulent boundary

3
§
b
£
.l .
b

3 f layer in an lncompressible fluid, using a power-law veloclty profile,
? B 1s based on a well-known experimental fact first discovered by Blasius.
b In a turbulent flow in a straight circular tube, the variation of the
ﬁ - ';J i velocity across the tube as a function of the distance from the wall

: and the frictlon stress at the wall as a functlon of the Reynolds

p - §= number, calculated from the velocity on the axis U, and the tubve

x _;5‘ ' radius ry, obey a power law

4 g N L . A

_;. ‘,\ . 7: = (‘7—0—) * RS (Uoro )nf ' ( j 11 )

L 4 v

; R : A use of the power-law veiocity profile for the case of external
;" ) ‘f flow by an incompressible fluid made 1t possible to obtain a power-
{« 3 ) law dependence of the friction coefflcient on the Reynolds number,
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calculated in terms of the veloclty of the oncoming flow and the
length of the plate. The value of the exponent in the expression for
the velocity profile

7 ;-(%)"", (3.12)

where & is the thickness of the boundary layer, is usually selected

by demanding that the result agree with the experimental data. It is
then explained that the exponenn varies Adepending on the Reynolds num-
ber withln 2 fairlv wide range: % <n < 13. This fact, however, is
of nc essential importance <since — if other parameters do not affect
the u3lue f Lhe exponent — it 1s always possible to choose the

most satisfactory value of the exponent within the required range of
the Reynolds numoer.

The situation is different for a compressible gas. In this
case, the exponent is affected not only by the Reynolds number, but
also by the Mach number and a temperature factor, which greatly compli-
cates the selection of the correct value for the exponent. This means
that some of the theorles of turbulent boundary layer in a compressible
zas, based on the power-law velocity profile [14], are satisfactory
only within a relatively ilmited range of any given parameter
(Rex, Me, Tw/Te)‘

Among methods that belong in the se.ond approach, we shall
mention, in particular, the method of the “"effective length" proposed
by V. 8. Avduyevskiy {1%]. The method is based on power-law velocity
and enthalpy distributions in a boundary layer written in terms of
the Dorodnitsyn variables, and on experimentally established formulas
for the drag and heat transfer on a flat plate, A computation of the
drag and heat tranafler in a turbulent boundary layer of a compressible
zag for moderate longitudinal pressure gradients reduces in the final
analysis to a calculation using the formulas for a flat plate. Instead
of the astual coordinate giving the position of a puint on the surface
of the body, they use a certain "effective length" which can be
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calculated from integral conditions.

The third, so-called empirical, approach to the problem of a
turbulent boundary layer in a compressible gas 1s essentially an
attempt at extending the well-known relationships, obtained for
incompressible fluids, to the case of a compressible gas by referring
the physical parameters of a gas to a certain temperature, selected
in some fashion. Thus, as early as in 1935, at the Volta Congress
in Rome, Karman [16] proposed a formula for skin friction in a com-
pressible gas flowing over a thermally insulated plate. The formula
was set up without any theoretical justification by starting with a
simplified assumption stating that it 1s possible to use the same
formula for both large and small veloclties, as long as the physical
parameters are determined at the temperature of the wall. This for-~
mula for the mean fricticn coefficlent has the form

042 fy | g1 pa\h 1 o Y=t e
7?_;(1-;-1-2—&\3) = Ig(cy Re,)— nlg(1 + 1531 Ml). (3.13)

A comparison of Karman's formula with experiment has shown that the
use of the wall temperature as the defining temperature in a boundary
layer results in an exaggerated effect of compressibility.

By now, many authors have proposed a large number of empirical
formulas for the "defining" temperature. Some of them are given below:

et d () [nenfiertu])

Tomp . 0,42+ 0,032M} + 0,38 7= for M,<5,5%;
T‘ ¢

Tow . 0,70+ 0,023 M+ 0,38 7% For M>559).
Py [ 4

It should be noted that the last two formulas for the defining
temperature were obtalned from an analysis of the numerical solutions
of the equations of a laminar boundary layer. Even though these
expressions are used when calculating friction in a turbulent boundary
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layer, one should nevertheless keep this clrcumstance in mind. A
computation using these formulas gives understated values of the
friction coefficient.

A method which 1is different from others, but still essentially
empirical, was developed by Spalding and Chi (2). A comparison of
various methods of calculatling friction In a turbulent boundary layer
cn a flat plate with the existing experimental data, done by Spalding
and Chi in their paper, has shown that the most accurate methods are
those proposed by Wilson, Van Driest (3) (method based on Karman's
formula), Kutateladze and Leont'yev (h), Spalding and Chi.

Taking this into account, Section 12 will describe the semi-
empirical method of calculation, leading in the case of a thermally
insulated plate to Wilson's results and in the case of a flow wilth
heat transfer, to Van Driest's results. At the same time, we shall
briefly present Spalding and Chi's method (Section 13) which to a cer-
tain extent uses the results of the seml-empirical method. The
simpiicity and high accuracy of this method make 1t very convenient
for engineering calculations.

§11. Experimental Studies of a Turbulent Boundary
Layer in Supersonic Flows (Friction and Veloclty Profiles)

Among the numerous problems of experimental aerodynamics, the
problem of determining the turbulent skin friection has been for many
years one of the most urgent and wldely studled problems. Without
presenting the experimental results regarding the characteristlces of
the turbulent boundary layer in an incompressible fluld, we shall
limit ourselves here to the most important and interesting experimental
results concerning the veloclty profiles and skin friction in a

Pootnote (2) appears on pagel78.
Footnote (3) appears on page 178,
Footnote (4) appears on page78§.
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turbulent boundary layer of a compressible gas, both on thermally
insulated surfaces and on surfaces that can exchange heat with the
flowing gas. A majority of the results described below were obtained
from 1950 on. It should be noted that the experimental results avail-
able today are far from complete. This is particularly true regarding
data on the velocity profiles in a boundary layer.

Among papers dealing with the characteristics of the boundary
layer on thermally insulated surfaces, we shall consider those by
Wilson, Chapman and Kester, Coles, Korkegi, Matting et al., Moor and
Harkness. Among papers dealing with surfaces with heat exchange, we
shall consider those by Lobb et al., Hill, Sommer and Short, Winkler,
Rozlov. The results obtalned by other authors will be included in
the resultant plots.

Experimental Studies Using Thermally Iiusulated Surrfaces

Wilson's ggperiments(S) . At certaln sections of the boundary _
later on a thermally insulated flat plate, Wilson measured the velocity

# T
16 : " et
fa LT e
T ek
ool ] “l Fri
T s -
,0 e g o RS 4-—«—«-;~- | S e =8 Yo bt - 3 oved e
Theory ' [Equation S e o MNP IR an T
= (3,101)] _ RN ? P
o R. Wilson 8 expetiment T o i ""%ﬁac”“*:i
FIR.” oo ~::4'xi M2t} Ty i A7)
5 T = S
1 m-.“—t:.p‘.lv)ﬂl ~¥ _n I*h‘._‘ [N i P '1
- ;.._Z:n‘u.;,;;k.. ~t 3 R "‘"*Il‘ o ﬁ‘ et
t_- T — ] L b el '“’"2\. ~ } are pmeipog sl n‘ﬁ‘;ﬁ.—:{
8 ewl e ’ ‘ . ‘::‘:_‘ . 'f‘ ,( v l‘fx*’.’m‘” l
‘i y e Spoprmrrmrrn NN
0 42 g6 a6 4 0 g crs aR, Wilaun's expeviments

A b bpergree T = Theory [Equation (3,91}
Fleure @ p , My t‘s ;T Equation (J.e?)
? &7 % a'd'

Wootnate (6) appsar: an pase 178,
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profiles using the Pitot tube. The numbers Me and Rex were varled in
the experiments within the followlag ranges:

1,579 < M, < 2.186;
22 < Re, - 100 <10,

As an example, Filgure U shows the velocity profile for Me = 1,999
(circles signify experimental points; the solid line will be explained
below in Section 12). Using the velocity profiles, Wilson determined
the momentum loss thickness &¥¥, ana then computed the mean friction
coefficlent [uvwe Equations (2.76) and (3.64)]. The values of the mean
friction coefficients thus found are plotted in Figure 5.

Chapman any Kester's experiments [20]. The measurements of the
mean friction coefficient Cp were made on the surface of a long cylin-
drical body of revolution at subsonic and supersonic flow velocities
for the following range of M and Rex: 0.61 < M < 3.605 4 < Re .
1" < 32, The skin friction force was determined direatlv by means
ar tedts on two models (models are sketched in Pigure 6), The ox-
prriments measnred the differenee hetweesn the total drag and walke
G, pespeat fvely, for each model of the cone-evlinder and the cone:
(v, - ?ﬁl) and (Q2 - Qnﬁ).

-

The difference between these two
Transition wirve
I values gives the friction force

e {3
ey acting en the surface of th2 cylinder:
Housing
B
P e .
Second model ¥ e (O ~ Q) = (@ — Quo)
pure § The results are ahown in Table 1.

The value of the mean friction eo-

efficient in an incompressidble fiuvid
(cﬂﬂ)exp by which friction coefficients, measurad for various values of
Nﬁ, were divided wag determined experimentally. In the lower row of
the table, the same cnefficlents were divided by the mean {riction
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coefficient Cro calculated using Karman's formula (3.£9).

TABLE 1
Me 0.51 0.81 1.99 2.49 2.95 3.36 3.60
cF/(cpo)exp 0.985 | 0.929 | 0.746 | 0.671 | 0.623 | 0.578 | 0.551
CF/CFO 0.994 0.924 0.757 0.672 0.630 0.571 0.552

Experimental values of the friction coefficlent Cp are plotted in

Figure 7 as functlons of the heX number for various values of Me' The
values of the friction coefficient

Cr —
403 = ] ,/%$0 Srg for Me = 0 were found using
e R hN\;E;ﬁ Karman's formula (3.59). As can be
a6 e W _ ézia seen in Figure 7, the plots corres-
l +o~ J I 26 -“m“‘%*w; ponding to various values of Me are
parallel to the curve for Me = 0,
which means that the ratio cF/cFO
aa, T 5w % H 25 w g5 Goes not depend on Re, in the range
Reg- 10 op Re, investigated. The layer
Figure 7 ' structure of the experimental data

for the same value of Me ly due to
the use of cylinders of various lengths (the experiments used cylin-
ders for which the ratlo of the length to the diameter was 2/d = 8,
13, and 23).

Coles! experiments [21]., Coles experimentally determined the
values of the local and mean skin friction. Local friction was
measuved directly by means of a "floating" element bullt into the
surface of a plate placed in the test section of a supersonlc aero-
dynamic tunnel. Mean friction was determined from the momentum loss
thickness &§#* [Equation (2.76)]. Me in the experiments ganged from
M, = 2 to M = L.5, and the Reynolds number — from 3:10° to 9410,
The experimental results are listed in Table 2.
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TABLE 2

M 957 | 258 { 3700 3,0 | &,50 0§ 4,5 | 45 0N

Ve gy |4.84 (8,32 |3.567.25]3.52]6,83]3.37| 6.9

Ve
eg-108 1,81 11,66 1,6211,3811,481{1.22)1,55 1,26
cpicy, 0,705] 0,700{0,595 | 0,570] 0,530 0,5 0,535} (,495
cplop 0,715} 0,710[0,635 | 0,6100 G,590] 0,560 0,600] 0,560

Korkegi's experiments [22]. The local friction on a flat plate
was measured by means of a "floating" element, similar to Coles!
studies, Me was held constant during the experiment (Me = 5.8), and
the Reynolds number, calculated from the parameters on the outer
boundary of the boundary layer and the distance from the "floating"
element to the front edge of the plate, was varied from 106 to 4 x 106
Along with friction, Korkegl also measured the velocity and tempera-
ture profiles wihich were then used to calculate the integral boundary
layer thicknesses &* ang é%%  and the parameter H* = SR/5%#% ., The
experimental results are listed in Table 3.

TABLE 3

MG Re*+ 3408 Y 1’0 "y foe (r' n'“m.u ‘[’"}o

5,787 | 2477 {U,0375 | 0,520 | 14,10 | 1,316 0,403 | 0,487
5,770 [ 8780 [0,0361 | 0,51 | 14,38 | ¢,375 G400 | 0,863
5,702 | 3120 10,0357 } 0,561 ; 156, ..} 1,223 0,100 0,463
5,805 1 401 {0,0885 ; v, 584 I w.u' {110 a7 oo

l

In Table 3 in the next to the last column, the ratio CP/QrO was cal-
culated for a constant value of Re##, {.e., Cpp Was determined for
the same value of Re#* as ¢p. The ratio ¢p/Cpy in the last column of
Table 3 was computed for

Re, — cunst (5 < Re, - 100 < G).
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The Matting, Chapman, Nyholm, and Thomas experiments [23]. These
four authors have performed an extensive and thorough experimental
Investigation of the turbulent boundary layer on a thermally insulated
surface in the absence of a longitudinal pressure gradient. The
experiments ylelded data on the local friction and velocity profiles
for Mach numbers ranging from 0.2 to 9.9 and Reynolds numbers ranging
from 2:10° to 100°10°. The working substance for 0.2 = Me < 4.2 was
the alr, and for 4.2 < M, < 9.9 — hellum. Since the adiabatic
exponents (ratio of the specific heat capacities at constant prevsure
and velume) y = cp/cv for the air and helium differ sipgniricantly fronm
each other (Yair =p1.u, The = 1.66), the similitude parameter was of
the form (y - 1) M;. In this case, the experimental rezults obtained
in a helium stream for (Me)He will be equivalent to the results obtalned
in an air stream for

[

LR Y

ENve—ry
(Me)a at = (Mo ]/}:‘N*:*_T = 1, 20(M e,

The validity of this relation was conidlimed by cxperiments, In
particular, Firure 8 shows the velocity profile in the air (Mé - “.2)£
and in helium (M@ = 3,25) for the same Reynolds numhep Rex a f.2 x 10°
I the uppur drawing and Rax = 35107 in the lawer ene. The veloelty
profiles determined for varlous gases arg In vevy good agveemant,

The roesulta of the vaelocity measurements in the boundary laver
for various values of (Me)air are presented in Fleure 9. The axes
measure the universal coordinates ¢ and n {30+ Bjuationg (3.8} 1, ax
we can dee from Flgure 9, in the turbulent rure, the #ach num er hag
nardly any effect on the form of the universal profile, wuieh ag bLefape
1a decorived well by a logarithmie formula. As wWe approach the wall
(in vhe laminar sublayet), we obterve a large sgatter of the experis
mental pointy and thelr dlsplacement upward from the curve § < a0
the author's epinfon, measurements near the wall are net rodinbic,

An estimate of the laminar dublayer thicknesd usinge thoe cgperimenial
data ghows that the thlckness increages with Nﬁ. rop (N“ — T,

Y

1t amounts 1o 107 of the thickness of the entipre boundary Vuyer,
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Along with the measurements of the velocity profiles, the authors
also measured the local skin frictior with the aid of a floating ele=-
ment. The results of these measurements are shown in Figures 10 and
11. s 2.p be seen from Figure 11, the Reynolds number does not affect

a
. & C' I T ] P oo o e - e
w»- ‘tn*l\ ‘:L %ﬂé ', F ;‘4 ’ . - : \
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Figure 10 Flgure 11

the patio cffcfa in the range investigated. In Figuwre: 10 and 11
"tlaga" Indieate the experimental peiaty obtalned iue amall Hewp.db
Bumbers f(ﬁexiﬂei) ¢ 0.8] (L iz the lepzth of the plate), The nytraps
cncauntered difficultlea when attempting ta senrure Jecurately tic
Friction ay thess points, The diffioultied were due Lo lnaufficlent
develcpment of tupbulent flow fop (Rexiﬁeé3 < 0.6,

vire Houre and Harkesss experiments [28).  Tae paper ravtalng foe

resuits of mendurermenia of Inmeal felcticn and velveity prorfiics o o 2
. thersnlly fazulated surface Por N FoBL e distincu:#hinﬁ HOE T ATEN §
. wf Lhede measturemonts ia the mm thal they envompar? 1 replag of vers
Large Resnelds nusters, up Lo Rex = 1,11 x 187, The ioval Triction 3
. wald rcasured by meana of a floating element. The rogulis of reasuring §
fricilon on the wall of a superdonis diffuges fection of 5 wlnd 1 oned
) are glven in Table 4,
3
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Experimental Investigations with Heat Exchange
Between = Gas and a Surflace of Bodies

Lobb, Winkler, and Persch experiments [25]. The papers discussed
in the preceding portion of this secction were devoted malnly to She
Investigation of skin friction on thermally insulated surfaces, and
#lelded relatively little infermation about characteristics of the
turbulent boundary layer duech as veloeity and temperature profiles,
laminar sublayer thlckness, ote,

The paper written by these three authors is one of thuse pare
papers in which a determination g sade noet only of Frictien, but alse
of She Indicated enaracteristics of the turbulesrt boundary layer. The
investligatiuns of the houndary layer were sade on the wall of a Flst
nezsie ln a superscale wind tunnel, with a s;all pressure gradlent in
the sectlion undesr lnvestigation. Local friction was detersined o

the veloelity gradlent nesr the wall, ag well 33 through the Reynolds
similivude ron the sedasurementy of theprmal Fiuses in the sentiod
investigated,

The resultz of seasurements of looal frictlenh and a charactoristic
of Tlow regimes inh which the measubesents were made are gives in
Table 5.
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The value of ¢,y was found for the same values of Re¥* for which
Cp Were measured, using Karman's formula
0,00012
lg(2Ror9) [ I Rote) + 0 (3.14)

Cpy =2

The Re#¥ number, calculated from the womentum loss thickness,
was chosen as the characteristic Reynolds number due to difficulties
Lhat were lnvolved in determining the beginning of the boundary layer
on the wall of the tunnel, and due to the faet that 1% was lumpossible
to use the Re‘ number calculated in terms of the length. The depen-
dence of (cp/eaqlp.uy On the temperature factor (7, - T WT, (T, i3 the
recovery temperature) is alsc showr in (Flgu.se 12) As can be seen
from the plot, the ratlo (°P/°f0)Re** depends alightly on heat exchange.

@Tﬁﬂ~"qum-1 f"ﬁf??“ Of preatest interest in the
‘”;ﬁﬂ_usﬁm__ﬂ i paper under conslderation are measure=
zqu R T mentes of the veloelvy proltiles in
N o .y the boundary layer.
TTTTTR T
- Flpure 13 shows the veloaluy
Flpure 12 profile fopr mﬂ = 6,8 and two values

of the heat exehanre factar (Lhe
largest and the smallest for the given Muaoch nhumber "e)' Ia ordar to
show the difference between the veloclity profiley, the diatance ‘n
millimeters was plotted in the fipgure on the harizental axls. As ean
be seen from flgure 13, the velocity profiles in the turtulent aore
change very little with the heat exchange factor, whepeans the nurvatule
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of' the curve in the laminar sub-
layer increases with ar increase -
in heat eXchange.

,

The same velocity pro-
files as well as prcfiles for
Me = 5, represented in terus of -
the universal variables ¢ and
n In Flgures 14 ang 15, exhibit
a couslderable displacement
upward of the curves in the
turbulent core of the layer
when the heat @xchange factor
incresses.
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The velocity profile in the laminar sublayer for all values of
the heat exchange factor is well described by the equality ¢ = n.
Inwover, the thickness of the sublayer, as seen in Figure 14 and Figure
15, increases with an increase of the heat exchange factor. The value
of the parameters ny which determines the thickness of the laminar
sublayer and plays an important role in the turbulent boundary layer
theory, turns out to be equal to its corresponding value for incom-
pressible fluids (nZ = 11.9 = a) only if there is no heat exchange
[see in Figure 15 the curve for M, = 55'(Tr - T)/T, =0l

%4709 :zz:gg The results of the measurement

a8 - o Mp=27 _ of the laminar sublayer thickness
¢ e o and the velocity on its boundary are

2% given in Figure 16. Although the
§ﬂ¢5 o L . ) scatter of points 1s quite signifi-

aaif — A cant (partly this is due to khe

. ® J difference in the Reynolds numbers),

& £ ,.n § nevertheless it is permissible to

=

draw the conclusion that, with an
increase in the heat exchange, the
Figure 16 relative velocities or the boundary
of the laminar sublayer and the sub-
Layer thlckness decrease. The same figure shows that, when thelMe
number increases from 5 to 6.8, the thickness of the laminar sublayer
in the boundary layer increases approximately by a factor of 2.

Hill's experiments [26). The experiments were made with a conical
nozzle with the Me number at the exit equal to 9.1. At several sec-
tions of the nozzle, the Pitot tube and a thermocouple were used to
meagure the velocity and temperature profiles in the boundary layer.
The conditions in the nozzle differed somewhat from the conditions of
flow on a flat plate, since the walls of the nozzle weve tilted to its
axis at the angle of 6°, and there was a small negative longitudinal
pressure gradient.
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The magnitude of local friction was determined from the slope of
the velocity profiles near the wall by means of the formula twr:(pgﬁ)w
The overall data on skin friction are listed in Table 6 (where cf is
the coefficient of friction calculated in terms of the parameters of -
the oncoming flow).

TABLE 6 !
M, T\O’TC Rets ""10‘ (f‘l."'lo)k."
8,99 7,68 1245 7,899 0,197
9,04 7,97 1607 8,910 0,235
9,07 8,28 1908 8.505 0,23
9,10 8,689 2287 8,000 0,227
8,22 1,17 2081 4,240 0,257
8,25 7,26 2498 91102 0,265
8,27 7:34 2885 8,695 0,250
8,29 7,37 3202 8,202 0,247
8,29 7,4 3451 7,709 0,234 l

In the last column of Table 6, the friction coefficient Cp Was
divided by the frlction coefflcient Cro calculated according to
Karman's formula (3.14) for the values of the Reynolds numbers Re##®
given in the Table.

When comparing the experimental data on frictlon with theoretical
calculations, one must keep in mind that, according to an estimate
given by Hill, the experimental values of the friction coefficilent
may exceed by 20% the friction coefficient on a flat plate due to the
effect of the negative pressure gradient.

The results of measurements of the velocity profiles in various .
sections of the boundary layer in the nozzle are given in Figure 17,
where the unlversal coordinate ¢ and n were plotted on the axes. As ,
can be ceen from the figure, in the laminar sublayer (lg n ¢ 1l.1), the
experimental points are distributed near the curve ¢ = n (solid line).
In the turbulent core, the experimencal points are located practically
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é e T T . along a straight line, which is

% ' e = S displaced upward from the dotted

E ) v line constructed according to Equa-
é , R o g;gg%@%& tion (3.4) for the velocity profile
g P A in an incompressible fluid (the

;- , | > solid line in the turbulent core
% v will be explained in Section 12).
%_ = ﬁﬁg@ﬁgﬁ} Among the given velocity profiles,

i / b w ¥ the profile for M, = 8.99 differs

4 y e considerably from the profiles for

% W ff other values of the Mach numbéf. .
? ‘ The reason, as noted by Hill, is that
% 7 4[/7 o e 0 the section in question was located
' 4 - in a region of an insufficiently

§ h— developed turbulence. Among other

% ¥ ?hg@ﬁbwﬁj peculiarities of the velocity pro-

' 'y i "?f%g files, we should note the thickening

of the laminar sublayer. According
Flgure 17 to Hlll's data, the laminar sublayer

for Me = 9 occuples about 15% of the

thickness of the boundary layer.

The Sommer and Short experiments [27]. Free~-flight determination
of friction was made measuring drag on hollow cylindrical models shot
through a supersonlic wind tunnel. Here the numbers Me= 2.8 and 3.9
were obtained when shooting through statlonary alr, and the number
Me = 7.2 was achieved when shooting against an alr stream moving at
the velocity M, = 2. The number M = 5.6 was obtained using models
with a falred leading edge which lowered the Mach number from Me =7
to 5.6 on the outer boundary of the boundary layer. The drag was cal-
culated from the deceleration of the models, which was in turn deter-

. mined on the basls of chronograph readings and shadow photographs.

o
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A turbulent boundary layer was produced using vortex generators
in the form of threaded cuts on the outer and inner surfaces of the

FTD-HG=23-723-71 93

ST Avergnt + eae o oL © e e e . - B - > o - ..




Y TR IV P Y £ A T AR A R T T T YT

model. To account for the thickening of the boundary layer and the
additional drag caused by the turbulence-producing threading, the so-
called "effective" Reynolds number was calcq;ated (in Table 7,Reeff),
from which the friction coefficient for an incompressible fluid, Cpgs
was determined. Without going into detalls of how Reeff was calculated,
we will only mention that this Reynolds number was constructed from

the léngth of the turbulent boundary layer necessary for the formation
of the momentum loss thickness which would be obtained if the additional
drag, caused by the vortex generator, were attributed only to the
friction 1n the boundary layer.

The results of the measuremenfs of the friction coefflcient are
glven In Table 7. The values of the friction coefficlents for incom-
pressible fluids were determined using Karman's formula (3.59).

papre 7(1)

M, Ty'T R,y 104 Re  fu-e oy r,/c,o

2,81 1,03 62,3 3,00 0,00284 0,867
3,82 1,05 84,0 4,07 0,00287 0,730
5,83 1,20 73,0 4, 0,00170 0,582 o
8,60 t,00 82,0 4,066,011 0,00125 | 0,404.-0,451
7,00 1.75 123,5 6,00--9,02 { 0,00415 | 0,395—0,446
3,18 1,05 81,0 4,02 0,00204 0,004
3,87 1,05 ™.5 3,73 0,00240 0,72

.

(l)In this table, Rec 1s the Reynolds number constructed from the
parameters of the oncoming flow and the length measured from the
beginning of the formation of the turbulent boundary layer.

Winkler's experiments [28]. An investigation was made of the
characteristics of the turbulent boundary layer on a cooled flat plate
for Me = 5,2 and three values of the temperature factor. Measurements
in the boundary layer were made using full-pressure nozzles (Pitot
tubes) and thermocouples, The friction stress on the walls t A was

W
determined in parallel using two methods: from the slope of the
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velocity profile at the wall LI uw(au/ay)w and from the measured
values of the thermal flux from the gas to the wall using the rela-
tionshlp, proposed by Kol'bern, between friction and heat transfer
cp = 2chPr2/3, where ¢, is the heat loss coefficient (so-called
generalized Reynolds similitude).

The results of the friction measurements using the two methods
are given in Table 8 (here T: is the deceleration temperatures; Ceo
the friction coefficlent constructed from the parameters of the on-
coming flow; Rex is the Reynolds number constructed from the parameters
of the oncoming flow). As seen in the table, the values obtained using
the two different methods coincide in a majority of cases to within
+ 4%. At the same time 1t should be noted that Winkler's data on the

is
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effect of the temperature factor on friction ars in disagreement with
the results of the caleulations and the experimental data provided

by other authors. The results of the velovlty profile measurements ia
the boundary layer for M_ = 5.2 and three vialuas of the temporsture
factor are given in Pigure 18. An approximate oculeulation of the
laminar sublayer thickness using the data of the figure shows that fhe
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laminar sublayer occupies about 9%
of the thickness of the entire
boundary layer. ,
L. V. Kozlov's experimerts [29].
A technique invelving a floating
element was used to mzasure local :
it friction on a flat plate in a super-
# } Mpeg2 sonic flow with intensive heat trans-
2 ﬂ,m_iv”ﬂf ay fer between the flow and the wall.
! The mach number of the oncoming flow
% ? in the experiments was equal to 2.9.
0 2 r] '] $'n0 The Reynolds number varied within
the intervala 1.5 < Re 1077 < 2.5.
Pigure 18 On the basis of the analysis of
experimental data, the author
r.oomnends the follcwing empirical formula for the friction coefficient:
Cpur = f'gé’ Emw_.‘o:m“khw (’%}“(%i‘”. (3.18)
“here ma, el £, 1fys 1 ary = 0m,
The author notes that the mean square deviation of the experie
mental points from the curve caleulated using foraula 3.15 was ¢ 5%
within the experimental range of the Reynolds nusber and the tempera-
ture factor. ' E
Some comments regaprding the results of the esperiecntal investi- ‘
gations of the turbulent boundary laver at supersonle veioeities. The .
resulis of the veloeity proflle measurenents for various values of the '
Nach number of the oncoming flow 2nd the temperature factor, ziven in o
the present section in Pigures 8, 1315, 17, indleate that 1n a lam-

inar sublayer the velocity profiles can be satisfactorily described by

‘the linear relationship ¢ = a.
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Flgure 19 Rigure 20

~ In the turbulent core, the veloeity profile is logarithmic
{Filgures 9, 1T}, In the case of a therpally insulated surface, the
profile slope (Flgure 9) turns out to be the same as fer an incpupres-
sible finid. In the prosente of heat Sransfer (Flzure 17), the slope
of the veloalty profile in thig regloa turns out %o be greater than
for an incoxpressible fluld {one must, howevar, keep in aiad that in
Hill's esperiments in Blaure 17, the lterease in th# slope of the pro-
file can be explalned partially as being due Lo the effect of the

- npegative preasups gradlientl. An lnoveaze in the inteasley of heat

transfepr betwsen a 2838 and Lhe wall say lead, as can be seen In Pigures
12 and 15, te a ehange in the slope oF the velociiy profile (tne
deforsation of the prefile ab the Junctien of the lasinsr sublayer

and the turbulent core fay b2 esplained 83 Gelng vdused by the pres-
sure gradlent, sinve the experiments were made on the surface of a

flat nozaie). . - . '

& conpariieh of the veloelty profiles Por large Nawh nusbers
(Pigure 17} and for as Incompressible {luld {flgure 19, dota sianily
the etperismenial dats cbtained by Wilkupadise {30)) shows that Tor laree
Mach nusbera, the transiiional {buffer) zone betweon the lasinar

FYB<HC-234723-71 | oy




sublayer and the turbulent core 1s considerably reduced. If for an
incompressible fluid, the buffer zone begins at n = 5 and ends at

n = 30 - 50, then for large Mach numbers (for exauple, Hill's experi-
ments) the buffer zone almost completely disintegrates and the trans-
ition from the laminar sublayer to the turbulent core 1s a sharp one.
This justifies the use of the double layer Prandtl scheme in the

theory of the turbulent boundary layer for large supersonlc velo:lties.

Another important feature of the velocity profiles in supersonic
flows 1s the increase in thickness of the laminar sublayer with zn
inorease in the Mach number. The change of the relative thickness of
the laminar sublayer with an increase in the Mach number for various
Reynolds numbers may be Judged using Figure 20 (this figure contains
the experimental data obtained by RHill, Lobb, Winkler, and Persch, as
well as by Ye. U, Replk). As can be seen from the figure, for an
incompresasible fluid, the thickness of the laminar sublayer does aot
exceed 3% of the thickness of tue entire layer §. For Ne =g 6;’ it
may occupy 30% and more of the total layer thickness, where the rate
of increase of the relative thickness of the laminar sublayer inoreases
with increase in tne Mach number. A decrease in the Reynolds number
‘Re®® also leads te¢ an increase in 62/6.

. O ———— Figure 21 shows the data
ol j Honughan | cbtained by Lobb ot al., Hill,
$&21 Lobd, Winkler, Nonaghan {31] on the universal coor-
. [ dinate » on the boundary of the
WY 1L laminar sublayer, denotsd by ,.
| ' As can be seen in Pigure 21, the
o experimental evidence available today
o is {nsufficlient to provide a numer-
' e lcal estimate ol the elffect of a
LTI W -
e certain facstor on the value of this

parameier.
Plgure 21
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This fact explains why, in a majority of the existing theories
of the turbulent boundary layer 1ln a compressible gas, the value of
ny is set equal to its value in an incompressible fluld, i.e.,

n, = a= 10.8 - 12.5(6)

§12. Semiempirical Method of Calculation of Friction
on a Flat Plate [32]

Let us consider flow over a smooth impermeable plate of a super-
sonic gas stream (PFigure 22). If the plate is oriented at zerc angle
of attack (Figure 22, a), then the velocity on the outer boundary of
the boundary laysr will be constant and equal to the veleelty of the
onceming flow at inflnity: Ue = U'(T). When the flow is over a nlate
at the angle of attack (or 1 wedge) with an ansaclated discontinuaity
on the lower surface and a fan of rarefaction aves on the upper Jure-
face (Figure 22, ©), the veloaity on the outer boundary of tre boundary
iayer will also Le cnnstant and equal to the velogity behind the dis-
eontinulity or the fan of rarefaction, respectively. The magnituce of
the velooity baehind the asscelated oblique shook wave and the fan of
the rarefaotion waves ocan be determined using woll known gasdynawnls
relations (33]).

Liégi\ .

o

a) % }\"“e}‘“ i
.

Mlaoure 22
In the easy under considepration Invelving a plane flow with

ganziant velocity (u@ « aonst, dUefdi # 0} over a sonpersestle wall
{u, = 0), the integral momentum selation {2,807 will beoome

Féétu@ea {&) appears on page 1?&_ :
Pootaote (7) appears on page 174,
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Here 4%t 13 the momentum loss thickness given by Equation (2.76). .

The parameters reflerred to the ocuter boundary of the boundary layer

will, as before, be lenoted with a subscript e, keeping in mind that

only inr the particular case involving flow over a flat plate at the .
Zero angle of attack are these parameters equal to the parameters of

the oncoming flow at infinity.

Introducing the Reynolds numbers, constructed using the momentum
loss thickness

LA JRE] ﬁh,-_.b"a“
Re W (3.17)

and the running coordinate of a peint on the plate

47
ko, = —4i= {3.16)

we shall write Equation (3.16) in the form
die, = (00 oo, (3.19)

whepre ¢ is the frictien parameter given by Bguation (3.82). Rowriting
Equation (3.19) in integral form, we obtaia

X l.h“ "
u.,ﬁ%g;‘saw. : L {3.26)

A8 implied by Eguation {(5.29), in order to soive Lhe probles thus X
forsulated, one aust £ind u reélavionshkip botween ¢ and Re®s, (. e,
one #ust establish a “drag law". Ty establish this liaw, we tuvn %o
the expression Por the momentum loss thickness (2.76), ufitiﬁg it in
tavas of the universal coordiniates ¢ and 4, intrsduced by EBgquations
(3.8}, in the foru
&% = Wf“'}%%‘{t = %’)2‘(%) ' (3.

£1;

FTO-#C-23-723-171 10¢

PO, {uﬂ*;a&@ﬁ

R T S W T




O R e e T o S e P T T o I T I A T S Py 2 P S T ST T, S TN, T T AT N

In view of Equations (3.17) and (3.8), we put (3.21) in the form

S P NG

1
et P - AN e
. Re** = [* Ly_;}p-:u(i—u)ﬁdu. (3.22)
é We use the two-layer model of the turbulent boundary layer:
§ laminar-turbulent core (for a justification of this model for super-
§ sonic flows see Section 11).
% To determine the function %% (1) in the turbulent core, we shall
‘L make use of Formula (2.69) in Karman's semiempirical theory. As far
? as the turbulence constant ¢ in thils formula is concerned, we shall
§ assume that it does not depend on compressibility (on the Me number)
E or on heat transfer (on the temperature factor Tw/Te), and has the
§ same numerical value as for an incompressible fluid, i.e., k = 0.4.
! Passing to the universal coordinates (3.8) in Karman's Formula (2.69),
we bring it to the form
; " L
R P e (3.23)
'  %f where the prime denotes a derivative with respect to n.
R o Taking the root of both sides of the question thus obtained, we
g have
¢ ?
T - st 'S i
b | v (3.24)
J”EE }f - f. ~ where
b
i 1 .
- vV = (3.25)
-»’.7. ¥
o g . The minus sign on the right-hand side of Equation (3.24) was chosen
E{ 3 since on the plate ¢" < 0 (the condition of the convexity of the
. velocity profile).
'-;._‘ %

- FTD=HC-23-723-71 101




o e PTIENR A TR IR R TE Y A T T R P VI SR P A0, T e RS pE 2 TP I TN S SN ARG
i R O e o 2 L : D

Interchanging in (3.24) the argument and the function, we obtain
the equation

»

@ (3.26)

whose first integral 1ic

5}=c,exp(x;§wa). (3.27)

To determine the constant of integration Cl the value of the deriva-~
tive d¢/dn at the boundary of the laminar sublayer on the side of the
turbulent core must be given. The simplest assumption here is a

requirement that “%/dn have the same value as fcr an lncompressible
fluid, i.e.,

9" (Mlapto= [ = ;,‘—:

In other words, it is assumed that v‘mz+-m does not depend on the
compressibility and heat transfer (o is an empirical constant for the
laminar sublayer, n; 1s a coordinate specifylng the boundary of the
laminar sublayer). This assumption leads to the following result:

1=t (| va). (3.28)

Here &Z==uﬂU, is the dimensionless velocity at the boundary of the
laminar sublayer (a definition of this quantity will be given later).

Upon performing integration in (3.28) and determining the -
constant of integration from the condition at the boundary of the
laminar sublayer (u = u, at n = nl), we obtaln an expression for the
veloclity profile in the turbulent core

n=n 45§ op(w| waa)aa. (3.29)

iy
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Here ¥ 1s given by Equation (3.25). In the laminar sublayer we assume
a linear relation for the velocity profile

=" (3.30)

from which follows an expresslon for the velocity at the boundary

(8)

of the laminar sublayer

l]_“:: w-—’i-::—_ ﬂn = ..i._.
T T (3.31)

Thus, the derivatilve %% (uW)which is necessary to determine the
Reynolds number Re*#* (3.22) is given for the turbulent core by
Equation (3.22), and for the laminar sublayer, according to (3.30),
by the equality

=1 (3.32)

Turning now to the expression for Re¥** (3.22), we note that,
when evaluating the integral on the right-hand side of the equation,
the integration interval must, strictly speaking, be divided into
two segments: laminar sublayer (0 < U ¢ U,) and turbulent core
(EZ < u < 1). A proper value of dn/d¢ should be substituted in each
of these segments, using the Expression (3.32) in the first segment,
and (3.28) in the second. However, such calculations result In a
fairly complicated expression for Re** and are not necessary in thoge
cases when the relative thickness of the lamlnar sublayer is not very
large [(63/6) < 0,10 - 0,15]. 1In this case, one may omit the {lirst
segment and continue the second all the way to the wall. Calculations
show that, for large values of the friction parameter , the error
involved in such an approximation is insignificant. Following this
reasoning, we shall substitute the expression for dn/d¢ (3.28) in
(3.22). As a result we obtain the following expression for the Reynolds
number Re##:

Footnote (8) appears on page 173.
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1 m
Re** = s;_»_ €’§m(a) exp(x§§ ‘Y(zi)d“)dﬁ.

T : (3.33)
Here we introduce the notation(g)
@)= g;E0—a). (3.34)
For later use it is convenient to write (3.33) in the form
i
R,u=up[-—xcl(ﬁa)]%—t}sw(&)oxp[x;I(&)]dﬁ, (3.35)
where
1w= frwa-{yEa (3. 360)
; W i
f 5 Y e 3V == (3.36b)
;_ 1@ § w(&)d = ‘/2" dzi.y

Regarding the friction stress +~ in the boundary layer, we shall
make the assumption (3.1) (a justification of this assumption was
given in Section 10). In this case, we have

OB

Lo P 1 ]

YV Ea. (3.37)

When determining I (El)’ we shall approximately set the density in
the laminar sublayer equal to a constant —  namely, its value at the
wall p_. In this case, in view of (3.31), we find

-3
= =g (3.38)

In order to evaluate the integral in the Zxpression (3.35), we
use the fact that ¢ is much greater than unity (g > 1). 1In this
case, the integral may be represented by an asymptotic series obtained
as a result of integration by parts:

Footnote (9) appears on page 179,
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gm(u)e.\'blngl(u)]a’u-:. '—_[firl((l)“’ié*iﬁ?“,@fr+--.>. (3.39)
Here
- » . L.\I": 2 _~_1— R __(D\PI \
v (%),
et (o OF Y 30w
Fz—-w(d)—_ 3 UG ),
Py -‘W}—a(uw__ﬁ‘b"*"+4‘?};‘i’"+w”’+
L B0 H00v Y oy (3.40)
72 —- =)

Here primes denote derivatives with respect to u.

We determine the values of the functions ¢ (u) and ¥ (U) and
theilr derivatives for u = 1:

M(1) == 0, (I)'({):.‘._.;L;_; ]'
R~ S~
v - L)) (s

It 1s not necessary to calculate the values of the functions ¢ and

¥ and their derivatives at W = 0, since it is obvious beforehand
that the contribution of the series (3.39) for U = 0 to the value of
the Integral 1s immeasurably smaller than the contribution of the
same series for U = 1, due to the presence in the latter of a large
exponential factor. In view of Equations (3.37), (3.38), (3.40) and
(3.41), we shall evaluate the definite integral occurring on the
right-hand side of (3.35) with the aid of (3.39).
terms up to K3C3 in the denomlnator, we obtaln the following
expression for Rel#.

R Ve oo
vt o 20 o [ () "a]

I (3.42)

PTD-HC-23-723-71 105

Retaining only the




ok

g

e A O e

a2 gy ERTATRRGIORGTRT RS AR ey SRS AT B e A e

i et P AT
i

NS YA e cpar =

Now let us consider the Reynolds number constructed with the
displacement thickness 6% (2.77):

Re" = I«———,‘p‘ b+

fe (3.43)

Following the same reasoning as in determining Re*¥, we find

-

— () &)+ (&) &) ()] (3.40)

Forming the ratio Re¥/Re¥**, we obtain an expression for the
form parameter H¥ = §¥/5¥%¥%,

~HEVE TR @) G

The Expression (3.42) that relates the Reynolds number Re¥#
(3.17) with the friction parameter ¢ (3.8) is essentially a "drag law".
It is important to emphasize that thls law was obtalned wlthout any
assumptions about the density variation in the boundary layer, and
can be used to solve precblems of flow over impermeable surfaces for
an arbitrary variation of density in the boundary layer.

Now we proceed to.establish the relationship between density
and velocity, which will be necessary below. We note that from the
equation of state (1.86) and the condition that pressure be constant
across the boundary layer, we can deduce the following simple relation
between the density and temperature

3 T - U6
L= (e (3.30)

In the simplest form, the relationship between the temperature and
velocity in the boundary layer can be obtalned by assuming that the
Prandtl number Pr and its turbulent analog Prp are equal to unity,
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and the specific heat capacity of the gas is constant. 1In this case,
we obtain a particular integral of the energy equation, called
the Crocco integral:

T

ﬁzri—mli-—[}ﬁ’". (3.47)
Here
T8 ~4 T,
vt T el
Tyo T, (14 Tt ) J 349

(Tg is the deceleration temperature).

Sometimes, in order to account for a deviation of the Prandtl
numbers (Pr and Prp) from unity, one artificlally introduces the
recovery factor r(lo) in the expression for w and B (3.48). In this
case we have

eI o pt=t s Te
0)—'] Tll" B‘ r P] M‘Tw’
Tr::: Te<‘l+)‘7—-—;—'—oM3) <30L‘9)

(Tr 1s the recovery temperature),

A basls for this modification of the Crocco integral is provided
by a simple reasoning according to which, in the absence of heat of
transfer between the gas and the wall, the coefficient w must vanish
regardless of the values of the Prandtl numbers (Pr, Prp).  When the
Prandtl numbers deviate from unlty, the condition in question will be
satlgfled only 1f, in the expression for w (3.48), Tg will signify
the equilibrium temperature of the thermally insulated wall, Tr' As
a result, in the expression for B (3.48) to satisfy the conditions on
the outer boundary (T = Te for U = 1) one must introduce the recovery
factor r, which brings 8 to its form in (3.49).

Footnote (10) appears on page 179.
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Using Equations (3.47) and (3.46), we find the desired relation-
ship between the density and the velocity in the boundary layer:
E";(i—mu——ﬂa’\l o : | (3.50)
Substituting Equation (3.50) in (3.37), and performing the
resultant integration, we find an expreSbion for the function I ()
which will be important lgfer ‘
) Vau+ —= :
I(#)= V’E(arcsm v ‘:—@——arcam-————-——z Ve )
(01
' Vieg . 1/1+W (3.51)
Furthermore noting that the function I (H) enters the exponents
in Equations (3,&2) and (3.44), and performing the indicated calcula-
tions on the right-hand sides of these equations and taking account
of (3.50), we find the following expressions for Re** and Re¥*:
«_ Ey 2—150--8
Re" T—- exp[x?;l(i)][ s Vl_.._m:m——:-ﬁ],
= &Lv_ 8 '
Re? ,,, - oxp (k! (1)1 =52 ] A (3.52)
H ) B\‘%—-—iom——3+ 3)]
Xl i .
z : [ ® (4B Vi—a=ad (3.53)
Here
'/;; CI) "—'(!):
UL YR KR!
A (1) ——_—(mcsm ————— : -,-;.“.,—*-—ul'wu« - w_.>
VB ul‘ ’ . u
Forming the ratio of Equations (3.53) and (3.52), we find an
expression for the form parameter HY = J#/5%¥,
l ﬁ('l-ﬂl.ﬁ(u'
1A -
PR e "'. 4] (3.55)
(I~ -3 [( - =V "‘“
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In the limiting case of an incompressible gas (B = 0) and in
; the absence of heat transfer (w = 0), we obtain an expression

{3.56)

¥
which for the Reynolds numbers 105 - 107 gives the value HO + 1.36 -

- 1,23, which is in good agreement with experiment.

PR N O

Having obtained the drag law (3.52) that establishes a relation
between the Reynolds numbers Re** {(3,17), constructed from the momen-
tum loss thickness, and the friction parameter g (3.8), it is not
difficult, using the momentum equation in the form (3.20), to
establish the required relationship between the friction coefficlent
¢p and the Reynolds number Rex (3.18), constructed from the runuing
coordinate of a point on the plate, 1In establishing this relationship,
it is convenlent to use a rough approximation for Re** in which one
neglects the second term on the right-hand side of Equation (3.52) as
compared with unity. This approximation will simplify conslderably
the rinal formula for the friction coefficlient Cpe Howsver, the error
intreduced In the formula for ¢p can be to a consoiderable ext@n%xl)
compensated by a sultable cholice of the constant of integration‘™™’,
Jubstituting the expression for Re**, with the épproximasian duseribed
above, in Equation (3.20) and performing the integration with the
boundary condition Rex = 0 at £ = 0 (the condition that the turbulent
boundary layer will begin at the leading ecdge of the plate), we
obtain approximately

» e e v ] L Ve (3,57
é , ) e sxpinel (1)) Re,.

The congtant Gy hus beea introduced in (3.57) to “compensate for the
approximation used for Rek#,

Passing in Formula (3.%7) from £ to ¢p aceoratng to (1.8), using
Equation {3.50), and tsiking the logurithm, we obtain

i v e et o S o i

Footnote (11) appoavs on page 179,
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i —1g(t) + 6 (3.58)

A where I (1) is given by Equation (3.54), and

C'Z‘~!3}

G=-1g

Setting in (3.58) x = 0.4 and determining the constant C, from

3 : the conditicn that for w = 8 = 0, Formula (3.58) turn into Kamran's
g ; formula for an incompressible fluid

| | &%:0.4f+18(hcux ' (3.59)

z We obtain the following expression for the local skin friction
! coeffiecient for a flat plate in a compressible gas:

L] L]
- 02 K== LA VA ).
i % < aresin - arC3ih 5§ s
b Ve V8 ( V:-&-i’g i; 1+
= 041 +t5(he, ) - 1 (82).  (3.60) (3.60)

To caleulate the dynamie viscosity of the gas, one can use
b ; sither the Sutherland Formula (1.79), or the power law

=l (3.60)

whare Lhe exponent n 1s 'usual-ly taken equal to 0.76.
Now wé proceed to detersine the mean coefficlent of skin fricties

LR e '
ese;;;srﬁm | (3.62)

b
3
33
e
e
s
3

. For thils purpose, we use the integeal mementus pelatlon in the Porm
(3.19), rirst transforsing 1t to the fore

3 %.’{74.‘.0‘—3‘.‘“. {3.63)
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Passing on the left-hand side of Equation (3.63) from ¢ to ¢p with
the help of tquation (3.8) and performing the resultant integration
ander the condition Re®* = 0 for Re, = 0 in view of Equatlon (3.62),
we obtaln

rpRe, — I Reee, (3.64)

suostituling in the right-hend side of Formula (3.64), the approximate
cxpression ror Re®® (3,52), we have

e, W4

¢rRe, = C, :-;fx~.e~:{:§;.‘s;.zx;1(|)g, (3.69)

The constant &;'3 has been introduced hore, just as In relation
(3.597), 2 “compensate® for the approximate expression for Red#t,

cospaeing Squation (3,.85) with Bquation {3.57), put in the rfurm

4 W
ale, 650G i),

[

iv 1 get dirflenlt to cote that, for the large valucs OF the papuse

step & shat are ionsidered here, the coefficients op and S JifPer
by ow eondtact. Consequently, ane way conclude that tnc expregsien
Fer the moan Prieklon ceefricient has the fore (3.60), altheugh with
3 ifTerent sanatant, l.e., '

wnz b A - .
L. Sae L mamen E,* ‘@‘\ g} = ':},’ T f . 0 iy
Fs by e =l Vi.et

The constany T, will be deternined by requiring that for « » § « 0,

Equstion (1.66) will pass 1040 the Karwon law Tor tHe me3n 2&ln

Triction coefliclent in the eade of an incompressitle riuld, nasely:

0242

bpol Jeletminlig the cofistiant Oy, we abtaln the rollewlng [Minal

forrmala or tiie #ean dkin Irlction coeifidlent:
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LELE AR ) '{.l.';/‘_" —8 (arcsm 2 Vq — arcsin —2¥8 _ . )*
Ver VB Vi Vg
=lg(Reccp)~ g (82).  (3.68) (3.68)

t

Let us conslder two practically important particular cases of
a flow over a flat plate,.

Thermally insulated plate. In this case, T,6 =T

W r,m=0

B.::v—-—-:——-— for PI’ :'-P"[ = 1'
EREN (3.69a)

3. T for P'#?P'tﬁﬁl‘ (3.69‘))
(+r—-§-—M:

Formulas (3.60) for the local friction coefficient and (3.68)
will become, respectively,

n q. V/
—y= aresin VB~ 0,414 lg(Reyc)) —1g
(&) (3.70)
and

‘%%V@nwﬂu}’aw lB(R'a‘r)'-lS(‘:—,:‘)' | (3.70)

Plate with heat transfer in a stream of an incompressible fluid.
in this case, setting B8 to 0, we obtain

R UAECE L T T &-ln(mr:)-lc(;;:-’)

Ve (3.72)
BAM (Vim0 (e . .
Vi 1g (Re,ep) lg( tl.)' (3.73)

“The relotionships between the friction coefficients and the
parameters of the oncoming fiow and the conditions at the wall, ob-
tained in an impilcit form, are not always convenient in practice.

It i3 not hard to show by means of simple rearrangements that these
.~,'réla!;,1ouships c¢an be sade explleit. Por this purpose, we turn to
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Equation (3.57), which in the case of an incompressible fluid and the
absence of heat transfer between the gas and the wall becomes

.ot P
(‘7-;..,- N,el.. . Re_‘. (3.71‘)

Dividing both sides of Equation (3.57), respectively, by both sides
of Eguation (3.78), we have

L e (w2l B
(»;:-)c.\; (bl (1) — =Byl "LH (3.75)

Passing in the Expression (3.75) from g to cp with the help of (3.8),

and taking the logarithm, we obtain

/m N
-l . FR Koo,
RO ’ (3.76)
where
F"‘“ﬁ:' (3.77)
iy
¢=le (3 | (3.78)

Vie st -
K= Ansm-——afti PRSP L 4. ,)- i
V —'r" VivEa Vies . (3.79)

2 determine the friction coefficlent ., one can use gither the
Karman Pormuia {3.59) or the simpler explicit pelations

{12 4
0, v Re, ™Y, mg et gl R v 3y (12) (3.8%)

Bquatlon (3.76) can ve reduced 1o a Uranscendental equatlon
with one parasetor. Por this purpose, we rauwriie thia equation in
the forn :

2lg—ons s £ 4 6

AR A A
n '/ n

Wootnate (12) appears on page 174,
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and then add 2 1g 2%— to both sides of the equation thus obtained,

obtaining

q Sl :
" = (3.81)
Introducing the notation
FK__
‘ ‘lo (3.82) \
Q= lg—r+£~t—6-. (3.33)

we shall have instead of Equation (3.8)) the following equation:

BN +N=Q (3.84)

Thus, this expression for the friction coefficlent can be
written in the form

[d - .
% (ng {3.85)

where P and K are determiped from Equations (3.77) and (3.79), and N
¢an be found solving Equation (3.84), Determination of N is not diffie
eult, and can be easlly done using tables of decimal logarithas or
graphiecally. '

If for the dynamic viscosity we use the power law (3.61), then
the expression for the function G, which together with F and X deter-
mines ¥, beesmes

'3 ' .
6 ale(t). | | {3.86)

It 15 interesting to note that, when Prandti's Porsula (2.68) , )

13 used instead of Rarsan’s Forsula {2.69), the expression Por the .

friction eocificlent thus obtalned 13 the sawe as the Expression (3.8%),

PID-HC-23-723-T1




with the only difference that the function G is not given by (3.86),
but instead by

-.An +_:‘:-.;lg(-—:). (3.87)

Considering Formula (3.85), it may be noted that for large
Reynclds numbers, the ratio cf/cfO depends slightly on the Reynolds
number. In fact, by letting the Reynolds number approach infinity
(rRe, ~ )} or, which is the same thing, F + =, we cbtain the following

limiting formula for the ratio cf/cfo

<
1 o
LK,

‘0 (3.88)

K, given by Equ- .ion (3.79), depends only on the compressibility of
the medium (B) aad the heat transfer (w), and does not depend on the
Reynolds number.

The existence of the limiting Formula (3.88) was established,
ard then widely used to construct semiemplrical methods of turbulent
houndary layer calculations by S. S. Kutateladze, A. I. Leont'yev,
and others [34].

When Formula (3.85) is used for computing the friction coeffi-
cient, 1t is useful, just as before, to consider certaln particular
cases,

In the case of a thermally insulated plate (w = 0), the coeffi~
clent B is given by Equations (2.69a) and (3.69b), and the determining
function K has the form

K = V'.‘:Egm'csin VB.
; (3.89)

For an incompressible fluid in the presence of heat transfer,
by letting B go to zero, we obtailn

Koo 2VT=0d0) (3.90)
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In order to calculate the mean friction coefficient for a flat
plate, one can easily establish the validity of a formula or the same
form as Formula (3.85), namely

A
-
1
——
-
e
—
aC
L4

(3.91) -

where K and N are given by the same equations as before, namely (3.79)
and (3.84), and T has the form

0%
F=m (3.92)

To determine the friction coefficient Cpos OnE can use elther Karman's
Formula (3.67), or the simpler power-law relation

ero = 0,0307 RV, (3.93)

Formulas (3.85) and (3.91) obtained above permit us to calculate
the ratios ¢f the local and mean friction coefficient if we are glven
the values of the Mach number Me’ the temperature factor Tw/Tr’ and
the Reynolds number Rex, to the local and mean friction coefficlents
for an incompressible fluld (Me =0, Tw/Tr = 1) for the same value of
the Reynolds number Rex. However, in certain cases, particularly
when analyzing experimental data, it may be more convenient to use
the Reynolds numbe. constructed from the momentum loss thickness, Re#¥*,
as the characteristic Reynolds number. This is expedient, for example,
in those cases when 1t 1s difficult to determine the initial point of
the boundary layer on the wall of a tunnel, and consequently, it is
impossible to use the Reynolds number constructed from the running
coordinate, Rex. In those cases, in order to compare theory with
experiment, it is useful to have the ratlos cf/cfo and °F/°F0 in
which Cp and Cpgs Cp and ¢ro have been calculated for the same values .

. of the Reynolds number Re#¥,

To obtaln these ratios, we turn to the expression for the
Reynolds number Re*¥, (3.53), which, for an incompressible fluid,
hecomes

FTD-HC-23-723-T1
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Rov* = S oo —3)- | (3.94)

Similarly, as was done when deriving Equations (3.85) and (3.91), we
shall use a rough approximation for the Reynolds number Re¥* in which
we neglect on the right-hand sides of Eguations (3.52) and (3.94)
terms containing 1/% (l/CO), as they are negligible compared to
unity. Then dividing as before, both sides of Equation (3.52) by both
sides of Equation (3.94), respectively, and passing from ¢ to co
according to (3.8), we obtaln after simple rearrangements

¢ -K 2
(;’;)—(H__;) (3.95)

where the functions F, K, and G are as before given by Equations
(3.77) ~ (3.79).

The expression for (CF/CFO)Re** has the same form as in (3.95%),
except that the function F 1s in this case given by Equation (3.92).

Letting in Equation (3.95) the Reynolds number Re*¥ go to
infinity, we arrive at the limiting Formula (3.88) obtained above.

Jow we proceed to determine the velocity profile in a boundary
layer. In the laminar sublayer, the velocity profile is described
by a linear relation (3.30). To find the velocity profile in the
turbulent core of the boundary layer, we turn to Equation (3.29),
first writing the latter in the form

Ne Wk -%— oxp [- al SJl 1y (jﬂ] {S oxp [x; S ¥ (lﬁ]dﬁ -

_g‘”oxpl}cc.‘{'dﬁ]dﬁ]- , - (3.96)

0

2l

=4

Here ¢ 1s given by Equation (3.25).
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Making the assumption (3.1) for the friction stress as before,
and assuming that the density in the laminar sublayer (for 0 < u < EZ)
is constant and equal to its value at the wall, we obtain from the
preceding equation

- Sexp[u§1(£)|d&.

0

(3.97)
Here I (u) is given by Equation (3.51).
Substituting in the Expression (3.97) the value of I (u) from

Equation (3.51) and performing integration, we cobtain the following
expression for the velocity profile in the turbulent core:

o XA Vl-—-mﬁ——[;;"‘—{- uBC u - 3'(:(:

| VBt 5o s
X exp[ s (GI‘CSIH ZB — arcsin ~——-— VB = )} . (3 98)
Vies + ~l/-1+§3- '

Upon a substitution in (3.98) of the corresponding values of the
empirical constants (o = 11.5, ¥ = 0.4, £ = 1/ka = 0.218) and taking
the logarlthm, we express the velocity profile in the following form:

VEit 55 ;
£ (arcsm ‘/u VB —-arcsin 1/ VB )
1+T l-}-T
...53 (VT—-—-'——; 2530 i25m'|
) e e o
= 5,75 1gy + 5,5, (3.99)

+ ')v7" lg [(

For the limiting case of an incompressible fluid (B = 0) and in
the absence of heat trangfer (w = 0), Equation (3.99) turns into the
well-known logarithmic velocity profile

¢ = 5,75 lg n + 5,5, (3.100)

When the Expression (3.52) for the Reynolds number Re#** is used,
the velocity profile (3.98) can be easily transformed to the following

FTD-HC=23-723-71 118
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form, which is useful in certain practical applications:

Vit —= P
2%‘9 — arcsin ——7—VB - )-}-5,75 K
1/1+z§

Vitg
m@(V&—mm—mT+5%E+ 7
6"5 ; ’ —._:
(T £ s

75—{; (arcsin

xlg

i .25(0')

(3.101)

The semiempirical method of calculating friction in the turbulent
boundary layer on a flat plate, as presented in the present section,
is 1llustrated by the plots given in Figures 23 - 26. For comparison,
the experimental data obtained by varlous workers are also given
therein,

FPigure 23 glves the results of calculating the local friction
coefficient for a thermally insulated plate for three Reynolds numbers:
106, 107, 107, The subscript « means that a curve in question has
been plotted according to the limiting Formula (3.88). In addition
to the experimental polints obtained by the authors whose papers were
discussed in Section 11, Flgure 23 also contains points obtained by
Lipmann and Dhavan [35].

Figure 24 gives the results of calculating the mean friction
coefflclent on a thermally insulated surface. In addition to the
experimental data taken from the papers discussed earlier, the results
obtained by Pappas [36] are also used here. It should be noted that
here, just as in Flgure 23, the data polnts obtalned by Coles lie
above the theoretical curves.

Figuie 25 glves the results of calculating the local friction
coel'ficient for a plate that can cxchange heat with gas (thermal flux

is directed from the gas to the wall).

Figure 26 gives the results of calculating the ratio of the
locul friction coefficlent in a compressible gas to the friction

119
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§ coefficient in an incompressible

/,'iai; . Me=527; -7%1——:,/,5 fluid, where both ccefficients
4 *ouy Gl a0 L were computed for the same Reynolds
X 1 ——t—— e ! 2]
5 T ° o log, ol ¢J A number constructed from the momen-
‘\JL_ Q
2 7 — tum loss thickness [Formula (3.95)].
L Mo=169; %%:155 Figure 26, along with the data
P L { L poinvs taken from Hill's paper
§ Y I d in Section 11, al
Rep- 1078 scussed in Section 11, also con-
tains data points for Me = 10
Pigure 27 from a later paper of the same

author.

o~ et

Figure 27 is a comparlson of the form parameter H¥, calculated
; using Equation (3.55), with the values of this form parameter obtained
§ from Pappas' experiments [37]. As can be seen from the graph, the
: theoretical and experimental data are in better agreement for larger
| Reynolds numbers.

Figure 17 also includes the theoretical profiles along with the
experimental velocity profiles, obtained experimentally by Hill,
Solid lines indicate the velocity profiles calculated using Formulas
(3.30) (laminar sublayer) and (3.99) (turbulent core). Dotted lines
indicate the logarithmlic veloclty profile obtained for an incompres-
sible fluid using Formula (3.100). A cbmparison of the solid lines
: with the experimental polnts shows that Formula (3.99) glves a good
' qualitative account of the effects of compressibllity and temperature
on the form of the velocity profile. One should not expect full
agreement between the theoretical and experimental velocity profiles,
1f one recalls that certain simplifying assumptions [in particular,
assumption (3.1) about a constant stress friction across the boundary
layer] were made 1n developing the computational technlque delineated

VR, e g san a4

» above.
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§ 13. The Effect of Compressibility and Heat
Transfer on the Laminar Sublayer

The problem of determining the thickness of the laminar sublayer
and the velocity at 1ts boundary is of great importance in turbulent
boundary layer theory, since the "laws" of drag and heat transfer
greatly depend on the choice of these parameters. It will be recalled »
that in the theory of the turbulent boundary layer for an incompressible
fluid the thickness of the laminar sublayer is determined from simple
dimensjional considerations., 1In fact, if it is assumed that the flow
in the laminar sublayer 1s determined by the friction stress at the
wall T Viscosity u, and the density of the medium, p, then dimen-
sional considerations imply [38] that

ty

v R

6,('—_'0: '(w/p-' v;:?;-.’ (3.102)

where o is a dimensionless empirical constant.

The value of the constant a cannrot be calculated theoretically
and must be determined from experliments. Measurements done by
Nikuradze which involved the flow of water in long cylindrical tubes
have shown that the value of o is close to 11.5. The subsequent
measurements done by other authors resulted in values of a ranging
from 10 to 13.5.

The assumption that the friction stress (r = const = rw) yields a
linear distribution of the velocities in the laminar sublayer and
the Newton formula (3,105) for friction lead to a linear velocity

distribution in a laminar sublayer: . .

u sy, (3.103)

¢ o (3.30)
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and at the boundary of the sublayer according to (3.102)(13)

6.1 ]‘/ I‘s“

N &7 et iz 2, (3.10%)

When considering the flow in the turbulent boundary layer of a
compressible gas, one can obviously obtain a formula similar to
Formula (3.102) by starting with the same dimensional considerations.
However, due to the variation of u and p across the sublayer, it 1is
unclear how one should choose the values of viscosity and density in
this formula. It is also not clear whether the empirical constant a
depends on the Mach number and the temperature factor. Usually, in
Formula (3.102), u and p are either taken at a certain "defining"
temperature or are obtained by averaging over the sublayer. In parti-
cuiar, in Wilson's and Van Driest's papers, which were quoted above,
the defining temperature was that of the wall,

(14)

In L. Ye. Kalikhman's paper the following averaging law was

used for viscosity

Ay
r C wuldy
ep oy
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and for the density and velocity

&

Py e, \ i,

One can also glve examples of other methods of averaglag,
however, today there 13 no necessity of using them, It lu perreoctt
c¢lear that, at the present time, it is not pousible to glve a defiuite
answer to the question of the “defining" temperature or the law of
averaging. This clrcumstance, as noted abeve, hag led to a greas
nunber of ways of determining the thickness of the laminar aubiaver.

IFootnotes (13) and {l4) appear on page 173,
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As always in such cases, the criterion that should be used when

selecting the "defining" temperature or the law of averaging is a

comparison with experiment. However, the lack of sufficient experi-

mental evidence does not permit us to make this comparison today. .
Until enough experimental data are accumulated, preference in selecting

a hypothesis about the "defining" temperature (method of averaging)

should apparently be given to a hypothesis that leads to the simplest

results.

The flow in the laminar sublayer in a compressible gas can be
most simply described when the temperature of the wall is used as the
"defining" temperature. In this case, the velocity profile is de-
scribed by the same linear relation {3.30) as in the case of an incom-
pressible fluid. The experimental data on velocity profiles given in
Section 1l indicate that this relation is also well-satisfled at
supersonic gas velocities.

The above methods of accounting for the effects of compressibility
and heat transfer on the parameters of the laminar sublayer by select-
ing a "defining" temperature or by averaging over the sublayer do not
facilitate a detalled analysis, A much greater amount of information
on velocity profiles in the laminar sublayer can be obtained if one
takes into account the actual variation of the gas viscosity with the
temperature across the sublayer. This has been done by Czaranecki and
Monta (39). Following this paper, we shall rewrite Newton's formula
for she friction stress

'_'”"‘?? (3.105)
in the form :
- (R)R (3.106) |
‘where ¢ and n are the universal ccordinates defined in Equations (3.8). .
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Making the assumption (3.1) that the frictlon stress iy constant
| in the sublayer and that the dependence of viscosity on temperature
can be expressed in the form of a power law (3.61), and using the
Crocco integral (3.47) relating the temperature to velocity, one can
obtain the following expression for the velocity profile in the
laminar sublayer from Formula (3.106):

.-

Ty

qu\[ TQ “;TV‘ d?' (3-10'{)

i
E where w, 8 and ¢ are given by Equations (3.49) and (3.8).
B
g The results of calculations based og Far?nla §3.1G?) for the
i Mach number M, = 9, the numders Re, = 10°, 107, 107, and two values
% of the temperature factor T /T " 15 1 (thermnlly insulated surface}
g and T /T, = 6 (strongly eaoled surface) are given in Pigure 28.
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Flgure 28

vigure 78 makes 1t cléar that on a thersally insulated plate, the
cospressibiilty hardly arfests the fors of the veloeity profile: ail
| the surves {(for the three Reynolds nunbers) lle clase e the curve

: T2 J= 72371 | 1%
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¢ = n. As a result, the value of the coordinate n, characterizing

the boundary of the laminar sublayer, 1s close to its value in an in-
compressible fluid (n2 = 10 - 11). When the plate is strongly cooled
(Tw/Te = 2.6), the velocity profiles become flatter and are noticeably

: displaced relative to the profile ¢ = n. The values of the coordinate )
) % n1 increase considerably in this case(IS).
é ‘ Similar results were obtained .
E : by L. M. 2ysina-Molozhen and
3 I. N. Soskova‘l8), They assumed
3 a linear dependence of viscosity
'é on temperature (n = 1). The
§ velocity profile in this case has
] the forn
weli-F -5 %) (3.208)
‘f , Figure 29 : shere » and 8 are given by
f§ _ Equations (3.48). Using the pro-
-3 - ~ file (3.108) fer the laminar sube
lager, and Van Dpiest's velosity pra?ile(l?) for the tuprbulens sore,
the authors of the paper detérained the value of the coordinate 4,
for various values of the Rach nusber and the temperature factor by
;} copvining these profiles (Flgure 29). Here 2 repragents the experimental
4 data obtained by Lobb, Winkler, and Persch for N, * §; ) and 3 repre-
sent the experimentil dats sbrained by L. K, Zysina-Noloshen and
~ 1, . Joskova Pror R, ¢ 1.8% gnd M, = 0.3, respectively. As tan be
seen in Figure I9, with strang cooling She value of the paraseter fny .
inereases sﬁhétantaalﬁy‘la)i- A similay sendency was noted in the .

paper by Lobh, Winkler, and Perseh {Filgure 21), swhercas ia Hill's
experiments, as can ve Seen in the sase Plgure 21, thls phehctienodh
wag nat observed. The above discussioess itplies that on thermally
itsulated surfaccs ih the presence of heat transfer Pros the surlace

of the body %o the gas the value of the coordinate n, is close to 1ts

Pootuotes (13), (16), (173 and (18) appesr on pages 179 - 180.
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value in an incompresasible fluid. A final judgment as to the effect

of compressibility and heat transfer on the parameter n, ¢ apparently

. be made only if a sufficiently great amount of experimental data is
accumulated. Until the problem is solved experimentally, one should

‘ apparently use for n, =a those values of the parameter that were

i . obtalned in experiments with an incompressible fluild, i.e., a = 11.5.

3
<3
3
3

§ 14, Empirical Method of Calculating Friction
on a Plat Plate' 7’

R R IR ) o LT o A o i

The method is based on the assumption that we have the following
functional relationship:

‘fi" = G (Re*P Fegnm), (3.109)

where the function %% depends only on the Reynolds number Re¥*¥, con-
strueted from the momentum loss thickness, and the fungtions F and
Prats depend only on the Nach number N, and the temperature ‘actor
Tu/Te+ The functlions ¥, and Fp ee are such that

2 rnn §
A 5‘;(&«-79)6&‘, § .
for M = dand= =,

_ ¥, 4
Fom = Fue (M ) = ' (3.110)
é _ The reasoning that leads to Bgquatlon (3.109) becomes cbvious i the
; pelation 1o weltten in the fors
}" (%!w~”7f' S (3.111)
.. L
; whepe
i - .
P t = YIRS, - (3.302)
Comparing Eguaitons {3.111) with the Lxprossisn (3.94) in Sectlon il,

e note that, in contrast with (3.9%), the right-hand side of

'Fgatn@te (19) appears on page 189,
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Equation (3.111) does not depend on the Reynolds number Re##*, which
holds for sufficiently large Reynolds numbers [see the limiting
Formula (3.88)).

To establish the dependence of the friction coefficlent ¢y ON
the Reynolds number, constructed in terms of the distance from the
leading edge of the plate, Rex, we shall use the integral momentum
Equation (3.20) in the form

[ FSad

2
R'g‘-'?- § —‘7(‘3"'. (3‘113)

Multiplying both sides of this equation by FRQ“/FG, we obtain

Frgrler

Fegne Y
_TT,R.&&: § ';F;J(PQ.MRQ“). (3.11‘5)
Intraducing the notation
- ¥,
Fuay = =5 = Fea, (M 57 (3.115)

and noting that in accordance with the relation (3.109) there is a
unique prelation beﬁween'(efﬁe) and {(Fp ey Re®¥), wo conclude that

‘there is a relation

S aF, = e he b ), (3.116)

where the fungtion @x depornds only on She nusbey Rug. and does not

depend on the Nach numbor N and the tewperature factor T/T,, and
> - ',. a
Fao, « Fu (Mo 2] =
. r'
tor M- 0, ‘ﬁ =1
{3.117)
Similarly one ¢an obtain
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where ¥ again does not depend on M, and T_/T,.

Equations (3.116) and (3.118) can be written in the form

(”,’I)R:";“ . (3.119)
= (=72 (3-320)

Comparing the Expressions (3.119) and (3.120) with their analog (3.95),
we note that, iu contrast with (3.95), the right-hand sides of (3.119)
and (3.120) do not depend on the Reynolds number Rex. As a result,

in this method of calculation we have equality of the ratios

AN
o Ry \ epg JRegt

N e 3 i

e

NI

i To determine the functions y**, y  and ¥, the authors use the

3 relations

{ 9 2

Revw = o 8ot 5 (2 — o) osp (o) + 55+ 1 =
! : 1 \
i i (Kt = o (880)? — 7 (ol — 755 (%60l (3.120)
R o= 83 o o [(6 = ko + (b oxp ety = 6 -
L — 2 = 7y ()" = i ()t = i (e)* = g (6] (3.122)
. § 1 Ret .2
. -
- Where x w 0,4, o w12, §, = Vo, .
E
R The form of one of the two unknown functions F, and Fpouy
4 ’ ' (or Frpe ), which determine the friotion coeffiolent — namely, the

X
function PQ -= was selected on the basls of an analysis of the exist-
| ing semlompirical methoeds of compubtatinn, The analysis of the seml-
: , empirical methods, done by the authors, showed that those methods give
‘ﬁ.g A the highest accuracy. The results, weritten iu the form (3.111),
i 'f ] (3.119), o {3.120), lead to the following epxression for Po
|
B FID-NC-23-723-72 123
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where K is given by Equation (3.79), and the coefficients
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(3.124)

w and 8,

appearing in (3.79), are defined by Formulas (3.49). In other woxds,
the function Fc is determined in exactly the same way as was done in

the semi-empirical method presented in Section 12.

The second unknown function Fp gy Was determined empirically by

using the experimental data on the friction coefficient.
assumed that the function Fp 4y has the form

T An /T \4
e
Ret* Te Tw

It was

(3.125)

The considerations leading to the Expression (3.125) were also based

on an analysis of the existing semi-empirical methods.

Using the functions wRe**’ wx, ¥, and Fc’ defined above, as well
as numerous experimental data, the authors of the method found the

values of p and q by minihizing the mean-square value of

¢/ won — Cf 100p,
Cl JT00p

As a result, i1t turned out that p = 00,702, and q = 0.772.
the expression for Fp 44 has the form

T, \=0m8 ¢ T, 018
P (32) (1)

w
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TABLE 9. VALUES OF THE FUNCTION Fc FOR VARIOUS VALUES OF Me and
T,/T

o

o

5
3

" A 1 e TN eyt
RPN T n,\ PHTRHAN KNS

S N st o S S ROSEEEENY

1] 1 2 3 4 -5 [ 7

0,3743 0,4036 0,4884 0,4222 ©,7999 1.0184 1,2759 15713

0,433 01,4625 0,5477 0,6829 0,828 1.0842 1,3451 11,6444

00,5236 0, 5530 01,6338 0,7756 01,9584 1,1836 1.4491 1.7534

0,5989 0,6283 0,7145 0,8523 1,0370 1,2044 1,5 37 1,8418

0,6662 0,6957 0,7821 0,9208 1,1069 1,3370 {6083 1.9194

0,7286 0,7580 0,8446 0,9839 t,173 1,403t 1.6767 1,9903

1,7873 00,8168 U, 9036 1,0434 1,2318 1,4851 {,7405 2,0564

0,8972 0,9267 1,037 1,1544 1,3445 1,5802 1, 8454 3.1785

1 {,0000 1,0285 1,1167 1,281 1,4494 1.0871 1,90%4 2,2913
2 1,4571 1,4867 1,5744 1,7176 1,9130 2,i572 2.4472 2,781
3 1,8660 1,8956 1,0%36 2.1278 2,3254 2,5733 2,8687 3,2102
4 2,2500 2,2706 2.3878 2,5126 2,117 2, 9621 3,261 3,6066
5 2,6180 2,6477 2,7359 2,8812 3,0813 3,33306 3,6355 3,9847
6 23,0747 3,0044 3,0027 3,2384 3,4393 3,6930 3.0971 4,3493
8 3,6642 3,6038 3,7823 3,0284 41305 4,3863 4,6937 5,0505
4,3311 4,3608 4,4403 4,598 4,7086 95,0559 5,3657 h.7259

4,982t 5,0117 5,1003 5,2470 5,45004 5,7088 6,0204 6,3832

35,6208 5,6505 5,7301 5,48G0 6,0898 6,3451 6,662t 7,0271

6,2500 | 6,2797 | 6,383 | 6,5153 | 6,706 | 6.9795 | 7,287 | 7.6003

6,873 6,9010 6,9897 7,4368 7,3413 7,6019 7,970 8,851

7,4861 7,5157 7,6045 7.7517 7,9564 8,2175 8,5334 8,9027

9.0000 90,0297 09,1184 90,2653 9,471 09,7330 10,0505 10,4222

10,4886 10,5183 10,6071 10,7546 [ 10,9602 | 11.2228 ¢ 11,5415 | 11,9149

8 0 10 14 12 13 14 15

0,05 1,904t | 2.3738 | 2.6803 | 3,233 | 3,6027 | 4,48 | 4.6707 | 5,201
0.1 19812 | 23552 | 2,760 | 8,234 | 3,697 | 4,280 | 4.7748 | 53680
0.2 20058 | 2,4750 | 2,8025 | $.3462 | 3.8360 | 4,3636 | 49200 | 50247
0,3 21882 | 2,5723 | 3,0037 | 3,522 | 3.807a | 44793 | 5.0475 | 50521
0,4 22092 | 2,6560 | 3,0820 | 3,543 | 4,0435 | 4.5704 | 54518 | 5,708
0,5 2,420 | 2,738 | 3,620 | 3,0270 | 4,4303 | 4,097 | 52458 | 5.8584
0,4 2,4145 32,8049 13,2362 3,7048 4,2106 4,7531 5,3324 5,0483
0.8 2,5370 | 2,030 | 3,3720 | 3.8450 | 4,3570 | 4,951 | 5,401 | O,4117
1 2,0542 | 8.0502 | 3,4006 | 3,0748 | 4,4005 | 58,0434 | 50338 | 6,2500
2 38,4564 | 83,5725 | 4,0282 | 4.5228 | 5,055 | 5.6203 | 62346 | 0.88C1
3 8,5920 | 4,0184 | 4,480 | 4,000 | 55858 | 04187 | 0,7404 | 7,3003
4 3,0004 | 4,4200 | 4,0080 | 5.4170 | 50710 | 6,5053 | 7,072 | 7.8073
5 4,3792 | 48174 | 52070 | 5,8100 | 6.8817 | 06,9833 | 7.6240 | 83033
0 47477 | 5,005 | 56704 | 6,204 | ©,7727 | 7,984 | 8,007 | 8,7109
8 54540 | 5.0050 | 6,3094 | 6,038 | 7,510 | 84305 | 87972 | 0077
10 6,4347 | 0.5904 | 7,083 | 7.0303 | 81244 | 88530 | 0.5247 | 10,2330
12 6,705 | 7.2550 | 7,7618 | 8,312) | 810077 | 0.5453 | 40,2245 | 10,0440
14 74422 | 7.0088 | 84164 | 8,0727 [ 0.573% | 10,2074 | 10,0040 | 41,6321
B,0770 | A.5444 | 0,0887 | 90,0104 | 10,2251 | 10,6748 | 11,5678 | 12,3020

8,7045 | 0737 | 10,6013 | 10,2560 | {08657 | 11,5204 | 122187 | 13,0508

03238 | 90,7052 | 10,3154 | 10,8832 | 41,4074 | 124562 | 12,8505 | 14,6050

10,8467 | 41,3223 | 11,8482 | 12,4207 | 43,0446 | 43,7028 | 14,4200 | 15,4841

12,3418 | 12,8200 | 43,3500 | 43,6305 | 44,3580 | 45,2330 | 45,0550 { 16,7223
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TABLE 10.

VALUES OF THE FUNCTION F

TR RS IR

Re#s FOR VARIOUS VALUES OF M_

AND Tw/'l‘e
N Me 0 { 2 3 4 5 8 7
Tw:Tx
0,05 82,7405 93,8050 | 125,3n92 { 173,1153 | 234,1633 | 306,3489 | 388,2042 | 478,9220
(1N} 29,7852 33,8006 45,1092 2,3185 84,2049 | 110,2803 | 139,7684 | 172,4040
0.2 10,7221 12,1676 16,2385 22,4336 30,3447 39,6990 50,3142 62,0825
0,3 6,8083 | 6,6934 | 8,9323 | 42,3407 | 16,6926 | 20,83%4 | 27,6779 | 34,1406
0.4 3.8508 | 4.3801 | 5.8456 | 8,0757 | 10,9236 | 14,2010 | 18,1123 | 22,344
0,5 2,2779 3.1524 4,201 5,8121 7.9618 10,2353 13,0355 16,0792
0.6 2,1233 2,4095 3,2157 4,4425 6,009¢ 7,8615 9,0636 12,2000
0.8 13305 | 1.5768 | 2.1043 | 2.8071 | 39,9323 | 5.4445 | 6,5201 | 8,0425
1 1,0000 | 14348 | 4,545 | 2,0923 | 2.,8301 | 83,7025 | 4,6926 | 5,7883
2 0.3600 | 0.4085 | 0.5452 | 0.7532 | 41,0184 | 4,3328 | 1.6892 | 2,0837
3 01980 | 0.2247 | 02000 | O0.4143 | 0.5604 | 0.7332 | 09202 [ 1.1462
4 01206 | 04474 | 0.1963 [ 0,211 | 0,367 | 04783 | 0608 | 0,7501
5 0,0933 | 0058 | 1.4412 | 0,195t | 0,2039 | 0,3453 | 0.4377 | 0,5393
6 0,013 | 00308 | o0.080 [ 0,481 | 0,207 | 0.2639 | 0,335 | 0.4120
8 0,0466 0,0529 0,0706 0,0976 0,1320 0,1727 0,2189 0,2700
10 0,0336 0,038t 0,0503 0,0702 0,0950 0,1243 0,1875 0.1043
12 0,0257 0,029 0,0339 0,0537 0,0728 0,0950 0,124 0,1485
15 0,0204 | 00232 | 0.0810 | 0.0428 | 0,0578 | 00757 | 0.0950 | 01143
16 9,0168 | 0,019t | 0,025 | 6,035t | 0.0475 | 0,0022 | 0.0788 | 0,0072
13 0,014t 0,0180 0,0214 0,0295 0,0400 0,0523 0,0662 0,0447
20 00121 | 0.0137 | 0.0183 | 00253 | 0,042 | 0,047 | 0.4367 | 0.0700
25 0,0087 0,0099 0,0132 0,0182 0,0248 0,0322 0,0408 .0303
30 0,0066 | 0,00% | o0,0101 | 0,019 | o.0188 | o026 | 0.0312 | o,
“, o o .
7,1, 8 1 tt © n " 1
0,06 | 577,5040 | 683,7102 | 7008344 | 918,5708 [1042.020 |1174.722 |1312.620 .
N 207.9243 | 2401301 | 20,8407 | 390,0510 | 75.3360 | 4238700 | $12.5207 | to¢ 1rar
i 74,8402 | 88,6012 ws 2l | 1187770 18,1410 | 152,280 | 170.0083 | 183,004
"3 41,4745 | 48,7395 05,3902 | 74,3330 | 83,7414 | 83.3716 | 403,
0.4 20,9444 | 31,8040 amm 42,7577 ca 634 | 54,8000 | 61,02 K
0,5 19,3020 | 22,0540 | 26,7527 | S.7738 | 8500050 | 39,4308 «.m‘.isx &.s%;g
0.0 14,8221 | 17,5454 | 20,4482 | 2000210 | 26,7557 | 3u.1435| 336842 | 87'%63
.8 0093 | 11,4810 | 13,3912 | 15,3920 | 17,5088 | 10737 0428 | 2404508
t 0,998 | 8,203 | 9,6805 | 10,0777 | 42,602 ] 14,0077 | 158843 ] 17
2 2810 | 20747 | 3R | S0 | a2 | ‘aane| ‘Bt | ‘s
3 13824 | 1,6304 | 1,807t | 204087 | 2.4084 | 2.815{ S48 §'4ks0
3 00040 | 1,0708 | 4,2480 | 4,435 | 4,09%0 | vmes ] 2eas] 22w
5 0.0308 | 07707 | ovsoR2 | 10832 | 1)4782)  1laed AT | 18
§ 0,4076 00,5421 0,6802 0, 7807 ), 8683 {02 \ :
& (1,300 | 0Es | 0.4603 | 05108 | 0.3eTH u\efmln é.%i‘.?? ’u‘s%
10 0,2344 | 02174 | 03238 | 03719 | uat| ot o058%{ o'swe
2 00780 | 0,220 | 0247 | 02843 | 0334 | o3| oidon | o'asie
11 0,427 | 0,000 | 0,4960 | 02205 | 0.25M | w2k | 03248 ] 0 358
1t 04172 { 035 [ o817 | o8 | oaun| eam| o,
18 0008 | 0ivr | 0380 | 00504 | nvrio| 0| waes| S
% O848 | 00000 | 00964 | 09330 | oial | wlmie | o et | o 88t
25 U, 0007 0,019 00338 0. 0054 0,008 0,428 a.43% 045
0 OJHU& | o0 | o040 | 00787 | uiosds| oootd| owzs] ouite
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TABLE 11. VALUES OF THE FUNCTIONS Fccf Fch, FRe**Re ¥ AND

}“_r’ Feep Fpy sole®* FR',": F. “ F.orp Froeshe®* "Roxhx

LU 000t 716 3,035.400 | 4,610 ¢ 0,0063 0, 0091006 177.6 3,001 - 18
O ey 0,002333 3425108 | 4.631-107 0,0070 0,010032 40,4 iZJm«lO‘
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In the case of a flow near a thermally insulated wall, we have

T, >0t '
Foor = k:J v . %
- (-,m) (2.127)

A comparison of this mothod with the axperimental dala, dene by
she authors of the mithod, showed that it resulted {n a sesn-zguade
error which was smallest a3 compired with the other sethods —
namely, 9.98.

o simplilfy the computation, the necessary auxiliary funeiions
have been tabulated (Tables ¥ - 1l).

The computational procedure according £o the ibove method is

a3 Tollowa., OGiven the Nach fusber Né whd the tewporature actor
'a"wﬂ“ or W use Table 9 to deterwnine the lunction ?é. Then using
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Equation (3.126) or Table 10, we find the function FRe*’ and then —

using Formula (3.115) — FR Finally, from the given Reynolds
€x

1 5
(Re*¥ or Re ) and functions FRex (or Fp 4s) and F, determined

earlier, we use Table 11 to find the values of Ce and Cpe -

This method of calculating friction in the turbulent boundary
layer on a flat plate does not involve any new physical hypotheses.
The expression for the function Fc was assumed to be the same as in
the semi-empirical method considered in Section 12. The function
FRe'* was found in a purely empirical way. All in all, the method
can be recommended as a simple engineering method for calculating
friction on a flat plate.

§ 15, Relationship between Friction and Heat Transfer
on a Flat Plate (Reynolds Similitude). Recovery Factor

The specific thermal flux between a gas and a wall according to
the Fourier law can be written in the form

dom= (M 7). (3.128)

e e 2

Passing in this eguation from the temperature to enthalpy (Aﬁ c;dr)

and performing simple rearrangenents, we get

(Ao | Yo by o
w20l we'El (3.129)
 Here
Peb e (3.130) ‘

To 1nd the derdvative (Ih/3u), we turn to the energy equation
in the Croceo varlables (?.65)(2°). In the case of a Flow of a

-

Footnote (30) appears on page 180.

MO-HC-23-723=71 138

NI o s+



SRR R

NrGLCR RO

5
&
i’f}

s
%
i
.
B

o I A R R T T P R T

homogeneous gas (Bci/au = 0)over a flat plate positioned at a zero
angle of attack (dp/df = 0) the equation becomes

g 1, otdh 2 o/t gnl
A et — s gt L
utp-e) G+ = f e G e[ e Gl Gl -0 (2.131)

Here Prm = Pr in the laminar sublayer and Prm = PrT in the turbulent
core [see Formulas (1.103) and (2.33)1.

Below, for simplicity, we shall assume that the enthalpy h is a
function of the velocity u alone, and does rnot depend on the longi-
tudinal coordinate £, i.e., h = h (u). The assumption may be
Justified if one notes that it 1is strictly satis{ied if the Prandtl
number and its turbulent analog are equal to unity. In this case,
as we know, we have the Crocco integral.' Consequently, one can
expect that, for a small deviation of the Prandtl number and its
turbulent analog from unity, the dependence of enthalpy on the
longitudinal coordinate will be insignificant. Taking advantage of
this assumption (3h/3f = 0), we bring (3.131) to the form

vy ;'? A /4
(ﬁ;:) ‘"“P)%(T’") = (3.132)
dere

- T

T -';“",

and the prime denotes a d-rlvative with respect to the dimensionless
velocity U. The doundary cenditions for Equation (3.132) are

hosh, for a4 O, .
k=1 for &ul.} (3.133)
Integrat ‘ng Equation (3.132) onse, we get
& | $ di |
P L L (U L S R R
L™ l “ !’ (3.131{)

.é.u)""‘ ‘2;3“” (‘S (1 = Pr..) ﬁ‘)dﬁl .

BTPHE= 23270311 135




e PR N T L S T T R T RN R T Y APl a1

So7 ]

An integration of (3.134) leads to the relation
E(ﬁ)__. (" )w 3 ..
= ht 55— RUa), (3.135)

where -

eI
Ll P Y

8(@) = {{Praexp[— (1 = Pr,) %;]dﬁ}ﬂ. (3.136) .

3 _
R(z) = \Pr exp S 1 —Pr,) '—i;
3 f

U
Ce 33t

Soxp[g(i—l’rm) ] da. (3.137)

Using the second of the boundary conditions (3.133), we find from
Equation'(3.l3h) the derivative (h')w, which 1s necessary to deter-
mine the thermal flux:

_ y
(F)o=Pra (8 [1 = Fu + 5 RO (3.138)

Substituting the expression (3.138) into the relations (3.134) and
(3.129), we obtain

Bo(@) By = (By — “;L(‘u’ﬁ T [“;g),ﬂ(i) n(a)] (3.139)
RO (SR LIURCE NS (3.140)
The quantity
v
He=he+2RU)F (3.141) :

is usually called the equilibrium enthalpy of a thermally insulated
surface or the enthalpy of recovery. The factor

r = 2R (1), (3.142) *

FTD-HC~23-723-71 136
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in the expression for the equilibrium enthalpy (3.141) is called

the recovery factor. The recovery factor characterizes the differ-
ence between the value of the equilibrium enthalpy Hr and the

enthalpy of an adiabatically and isentropically decelerated gas

He = h, + Ue2/2. In other words, it characterizes the nonadiabaticity
of the flow processes in a boundary layer.

Let us introduce the dimensionless heat transfer coefficient
(Stanton number)

Oy = —l.j—l‘”___ .
Pel o (Hp — hy) (3-1"3)

Then, using the expression for the local friction coefficient Cp
(2.85), we find the following relation from Equation (3.140):

3:7"==S(1). (3.144)
The quantity S(1) is called the Reynolds similitude parameter.
Thus, in order to calculate the local heat flux q,» one must

know the recovery factor r, the Reynolds similitude parameter S(1),
and the local friction coefficient Cpt

w .
20 = F0l S M 1 rg=—hy). (3.145)
The recovery factor. The general expression for the recovery

factor with a variable Prandtl number Prm, in view of Equationsa
(3.142) and (3.137), has the form

b

re ngn.oxv[~$(' - Pr) ‘:‘] <

L]

5 . N
xl§“pﬁ(‘"9“4?}mPM. (3.148)

If the generalized Prandtl number Prm oan be consldered censtant
over the cross section of a boundary layer, then Equation (3.144)
will be conaiderably simplifiled, and after simple vearrangements 1o
will hecome
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(3.147)

‘?;: When the generalized Prandtl number is equal to unity (Prm = 1) .
i; — which, within the framewoi’k of the double-layer Prandtl model of
‘g the turbulent boundary layer, means that the Prandtl number (Pr)
; in the laminar sublayer and its turbulent analog (PrT) in the
turbulent core have been assumed constant and equal to unity — '
4 the recovery factor turns out to be s2qual to unity (r = 1), as can
,5 be seen from expression (3.147). 1In this case, the equilibrium
enthalpy of a thermally insulated surface is equal to the enthalpy
of an adiabatically and isentropically decelerated gas: Hr = He'
% Thus, it is only in the case Pr = PrT = 1 that the flow in the
boundary layer becomes similar to adiabatic flow.

In the case Prm = const # 1 and in order to determine the
recovery factor, as can be seen from Equation (3.147), one must
know the distribution of the tangential stresses across the boundary
layer T = T(u).

As was already noted in Section 10, there is very little infor-

% % mation about the character of this distribution, even in the case of
; § an incompressible fluid. According to the experimental data obtained
E . by Klebanov and shown in Flgure 2, the relationship between the

friction stress and the lateral coordinate is close to linear, and
ean be approximately described by the expression (3.2). The depen-
dence of the friction stress on the veloeity in the turbulent core

of the boundary layer has the approximate lorm shown in Figure 3, and
iz deserived by Equation (3.5). As can be seen in Figure 3, for

the value 8y = 30 and the velocelty range 0 ¢l ¢ n.B, the friction
stress varies within the range 0.9 ¢ t < 1, which makes it possible
to consider the friction stress in the boundary layer to be

3 approximately constant and equal to its value at the wall. If wo *
make this assumption, then, within the framework of the double-lajer &
model, Bguation (3.147) leads to the lollowing expression for the

recovery faator:
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r=Pr — (Pr, ~Pyal, (3.148)

Here G, is the dimensionless velocity at the boundary of the laminar
sublayér, defined by Equatior (3.31). We note that irn oktaining
(3.148) the integration interval 3 < u < } was sabaivided into two
Intervals: 0 < < ﬁz — ‘iami=mar sublayer, where Pr_ = Pr, and

ﬁz < < 1 — turbulent cors:, whers Pr = Pr.r_(‘l).

Unfortunately, up to the present time there has been a lack of
suffielently reliable data on the value of the turbulent Prandtl
number. The attempts to directly estimate the value of PrT from
the measurements of the velocity and temperature profiles for a
flow of air In tunnels and channels lead to values of PrT which are
somewhat smaller than unity. However, in experiments on heat
trangfer in liquid metals one observed PrT > 1. This deviation of
PrT from unity is apparently due to the diverse effects »f the
molecular transfer lnside the carriers of turbulent transfer -— l.¢.,
finite gaz volumes participating in turbulent mixing — on the
seehanlsm of mementum and heat transfer. A vertain ilndeterminacgy of
the value of PrT 13 sometimes used Lo ebtaln a better agreeoment
ketueen theory and exreriment through a sultable cholce of the
Prandtl nunher, Until the problem of the value of Pr? is ultimately
aalved =xperimentally, one should, as many authors often do, aat
it: value Lo unlty.

Letting Pr,. = ) in the expression for the rvecovery faetor
{3.148), wa get (29}

Pl M (3.149)

Bopr Frandtl pusberd close vo unity fop the valovity at the vdoundary
b the laminar sublayer u, ranglung from 2.2 to 0.8, Equation (3.1049)
wery ko withia * 102 be replaced by the followlng simple formula:

Pootnoter {21) and {82) appear on papey 180 « 38Y.
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For Pr = 0.72 (sir), Formule (3.156) leads to a vaiue of the recovery
factor r = 0.895, which is in good agreement, as will be shown below,
with the experimental data.

In addition to using the double-layer model and simple assump-
tions about the distribution of the friction stresses in the boundary
layer, attempts were also made to calculate the recovery factor
using a more complex three-layer Karman mcdel [40].

It will be recalled that according to this model [41] the
velocity profile in the turbulent houndary layer of an incompressible
fluld 1: Ilvided into three segments: 1) laminar sublayer in which

L | for O qeC 5 (3.151a)
2} buffer gone in which
g=31+w3]  ror S g 30 (3.151b)
3) fully turbulent region:
¢=585+25Imy fer 0> 30, (5.151¢)

In the paper by Van Driest [42), in the first two reglons the
friction stress was assumed to be constant and aqual to its value
at the wall. In the third regicn, the distribution ef the tangential
stresses was represented in the form (3.5). The final formula for
the recovery factor, obtained by Van Driest, has the form *

repofra Viza—m {3+ 30 =ped &
4-251;-{%;»1-@2!»[!44% g;...t)l 3 (3.152) v

+(luﬂ)lu{l 4 g(;; - !)] ~{la “)‘“[‘ * %‘(:,‘“ ')m
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This formula, as implied by the above discussion, refers to a flow
of an incompressible fluid. As shown by Van Driest, Formula (3.152)
can be generalized %o the case of a compressible gas (without heat
transfer) if instead of Coq the quantity Cp multiplied by(i4-rl§lAuq
is introduced in it, where Cp is understood to be the local friction
coefficlent for a compressible gas. In calewlations based on
Formula (3.152), it turned out that if the friction coefficient for
an lnconpressible flow, Cpgs is used and the value of the tuirbulent
Prandtl number is taken as 0.86, then, within the Reynolds number
range 105 M Rex < 108, the recovery factor will be a constant equal
ta 0.88. Here the value of the Prandtl number was set equal to 0.71l.

The result of taking into account the uffect of compressibility
on the value of r in Formula (3.152), by having introduced in this
formula the frictien cgefficient LTS for a compressible flow multi-
plied by (14-r1§1-M®. is that the values of the recovery factor
depend only slightly on the Mach number {for G < H, < 8 (Figure 36).
Flgure 30 shows two theoretical curves, The fipst curve (1) was
caleulazed for the conditions of 2 wind tunnel (stagnation temperature
T‘é 2 311" K), the second for fpae f{light conditions (temperature at
infindsy T, » 222° K). The difference hetusen those curve: is
gxplained by Van Driest as due to the different character of Lhe
vaplation <f the melecular Prandtl numbey in & wind tusnel as
compared with free flight.

Experimental data on the
reaovapry factoer., ‘The First measures
mente of the regovesr {astor wede
#ade Gore than i quarter of century
ago. In L. Crocso's papsr {(82).
published i 1883, 1t was satablished
axverimantally - by studyling the
turbulent boundary layer in a
supersonie flow = that the recovery raelor ranged Tron 0.9) to 2.93%,
whete 4 noticeable dependence ol r on the MNach nusmber wg wihi Obsohved.
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Later a whole series of experimental studies aimed at deter-

mining the recovery factor were made.

The results of some of those

studies, done between 1749 and 1951), are listed in Table 12 which
is reprinted from 2 paper by Kaye [43].

The most accurate measurements of the recovery factor have been
made during the past ten-fifteen years.

TABLE 12
Authors | Year Model Rex~10' M, r
Wimdrow | 1949 | cone, paraboloid| 2.7 2 |0.885 + 0.008
4.8 1.5 {o0.902 ¥ 0.005
- 2.0 1o.894 ¥ 0.008
ftolder | 1950 |plate 7 2.4 | (0,884-0.897
Ruhezin + 0,007
Tendeland
Hilton 1951 |plate 10 2.0 |0.88¢ + 0.00Y
Eber 1952 jcone, cone- 1.0 2,87 0.92
eylinder 0.2% 4,2% 0.97
Kliris, 1952 lecone, cone- 7 2-3.4 10,882 « 0.007
Sternberg ¢ylinder
Sleck 1952 |plate 3 2.4 0.%06
Steln 1952 [10° aone 0.4t 2-3.8 10.882 + 0.008
Scherer ko° cone- ¢.3=1 3-3.8 [0.88% & 0.012
: eylinder
Papnas! éxB?ri&éﬂt3(§3). In the course of the ciperiments,

measurements were made of the suvrface tesmperature of a thermaliy
fnsulated plate and of the Mach nusber on the cuter edge ol the
boundary layer. The recovery factor wig caleulated frot the lormsula

Pootnote (23) appears on page 181.
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r = -% hnd F)
T 0,2M  0.2M] (3.153)

)

'2‘wh°re T -~ 1s the temperature of an adiabatically and isentropically

dece;erated gas. The measurements were made at the Mach numbers
M, = 1.69 and M_ = 2.27. The Reynolds number was varied from 105
to 107 The_results of the measurements are shown in Figures 31
and 32. As can be seen from the diagrams, the recovery factor
decreases with an increase of the Reynolds number approximately

from 0.90 to 0.89, and a majority of the experimental points lies
near the value 0.89.

) N T
’ TH 1 ! R I ﬁ;ﬂ
(4 """"‘*’l""‘( 1 : aﬂdu»w‘»..v..r..,{,_l_T_‘ r1 ]' |
i3 IEETE R R TR
4w—-—A~L- LIAL RS an ARy
TR LT
. NEIHE Qe Lot
(.’N}”., K] A ’;4 e ] P/ 2 i 5 ;& F4

Figure 31 Flgure 32.

The Shoulberg, Hi1ll, and Rivas experiments [44]. In the
experiments, the recovery factor was measured on a flat plate placead
in a wind tunnel. The experimental and computational téchnique used
w8s the same as 1in Pappas' paper just considered. The measurements
were made wlthin the following range of the Mach and Reynolds
number: 1.9 < M, < 3.14:20° < Re, ¢ 17-106. The results of the
experiments are shown in Figures 33 and 34. As can be seen in
Filgure 33, the recovery. factor decreases somewhat with an increase
of the Reynolds number. Even though the decrease in the Reynolds
number range investigated 1s only about 0.5%, nevertheless, the
tendency toward a decrease can be seen very cleacly. As far as the
effect of the Mach number on the recovery factor is concerned, as
seen in Flgure 34,the effect in question is absent in the range of the
Me numbers investigated. The experimental value of the recovery
factor (Migure 33) is smaller than its value calculated using Formula
(3.150), in which the Prandtl number was determined at the
temperature at the wall Tw = Tr’ by approximately 1%.
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Figure 33

Tendeland's experiments [45]. The measurements were made on

the surface of a cylindrical model with a conical nose (cyl:nder .

~diameter was two inches, cylinder length was 14.75 inches, the cone

angle was 20°) in a flow of air with the Mach numbers M_ = 3; 3.4l;
4.,08; 4.56 and 5.04. The local Reynolds numbers per 1 foov (Rex/fqot)
were equal to'?-106;3u-106; 3.6'106, 2.8']06 and 2.3-106, respec-

tively. The recovery factors were calculated from the temperatures

' measured along the model under equilibrium conditions. The local

values of the recovery factors were Jdetermined after making correc-
tions for the relatively small radiation losses to the cold lateral
wall of the wind tunnel on the basils of tiie local values of temper-
atures, local values oif the Mach numbers Me’ and the values of the

" deceleration temperature..

The results: of the7measurements are shown in Flgure 35. The

- abscissa axis in this figure measures the distance from the nose of
the model in dlameters. The plots make it clear that, for M, = 3.00,
3,44 and 4.08, the recovery factor varies approximately from 0.88 to

0.89, where the values of r on the conical nose are somewhat smaller -

than those on the cylindrical portion-of the model., For M, = 4.56

and 5.04, the values of r near the junction of the nose with the
cylindrical portion are much smaller. This phenomenon 1s explained
by -the author of the paper as due to the large pressure drop at the
Junetion and the>temperature gradient along the axis of the model,
which resulted inh a reduction of temperature, and as a result, in

a significant error in the determination of r in the region of the

~Junction,
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The Adcock, Peterson, and McRee experiments [46]. The paper
presents the results of an experimental investigation of a turbulent
boundary layer on a cylinder for the Mach number Me = 6 and the
Reynolds numbers, constructed in terms of the distance from the
leading edge, 5 < Rex-lo'6 < 33. The dependence of the recovery
factor on the distance from the leading edge of the model is plotted
in Figure 36. Just as in the papers by Pappas, Shoulberg et al.
that have been considered above, one observes a tendency toward a
decrease of r with an increase of the Reynolds number. The values

of the recovery factor in the Reynolds number range investigated
lie within 0.875 < r < 0.895.

49

L ad

446

% W H H H W W
2, mm

Figure 36.

Summarizing the experimental data obtalned by various authors
which were discussed above, we can draw the conclusion that the
recovery factor depends very slightly on the local Reynolds number
Rex and does not depend at all on the Mach number. In the Reynolds
number and Mach number ranges investigated (up to M, = 6), the values
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of the recovery factor lie within 0.88 < r < 0.90. We should
observe the satisfactory agreement between the Van Driest Formula
(3.152) and the experimental data in the Mach number range inves-
tigated.

In order to develop sufficiently reliable theoretical methods
of calculating the recovery factor for supersonlc velocities,
detailed experimental studies must first be made of the structure
of the laminar sublayer and the buffer zone, as well as of the
distribution of the friction stresses in the turbulent boundary
layer at those velocitiles.

Until a satisfactory theory of the recovery factor is created and
the experimental data at high supersonic velocities are obtained,one
should use 0.88 < r < 0.90 in calculations.

The Reynolds similitude parameter. A general expression for
the Reynolds similitude coefficient, in view of Equations (3.144)
and (3.136), has the form’

1

2 Her,em [_S (1 —ro) Faa) ™. (3.154)

[}

If the generalized Prandtl number Prm 1s constant, then Equation
(3.154) becomes

%%=r(9nngi"m“da)“. (3.155)

If the generalized Prandtl number is equal to unity (Prm = 1),
which within the framework of the double-layer Prandtl model implies
the assumption

- .

Pr=Pr, =1,

Equation (3.155) leads to a classiocal expression for the Reynolds
similitude

(3.156)
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For Prm = const # 1, in order to determine the Reynolds
similitude parameter, it is necessary, just as in a calculation of
the recovery factor r, to have the distribution of the tangential
stresses in the boundary layer, T(u). Under the assumption (3.1)
(v = const = rw) and using the aouble-layer model of the turbulent
boundary layer, we obtain from Equation (3. :°S) the following

* expression for the Reynolds similitude parameter

2‘._". = -~ -— =
P lP’g (P" P') an] l. (3 . 157 )

The turbulent Prandtl number is taken as equal to unity (Pry = 1).

¢ Then expression (3.157) will become
: %’zun—(t—h)a,l“. (3.158)

When Gz ranges from 0.4 to 0.9 and the Prandtl numbers are close to
unity, the relation (3.158) can, to within + 10%, be written more
simply as

e e R PN

& . - iy
7: = () =Pl P (3.15%)

For Pr = 0.72 Formula (3.159) zives the value 2 ch/eg. = 1.24, Usiag
the same assumptionsz as those inveolved in 4 derivation of Formula
{3.152) fer the recovery factor, Van Drie&t(a“ cbtained the fellows
ing expression for the Reynolds similisude parameter:

B [ TR0 - mal s o=+
& %:—- 1+ hll @%(% - ‘)l}la‘

This Formula, as noted by 1t2 author, i¢ valld for 6.7 & Pry ¢ 1.
In 4t, just az in the ecaleulatien of r stslng Porsula (3.1%2), it i
recommended that the turbulent Pranmdtl nusber equal to 0.86& be used.

{3.160)

Po aceount for the effect of cosmpressibiiity and nhest trangfer
on the Reynolds similitude parateter ofie should, azesprding o Vus
Dricat, introduce in the expression (3.160) a racgter (.7.) efl i rl.}a‘ Afj).

Footnote {24) appears on page 181,
187
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multiplying Cge Cp should be understood to mean the local coeffi-
clent in a compressitle gas.

The results of the calculation of 2¢ /cf according to Formula
(3.160) for the conditions present in a wind tunnel (T = 338° K,
curve 1) and in free flight (‘I‘e 500° K, curve 2) for various Mach
numbers are shown in Pigure 37. Pigure 38 shows the results of
calculations based on Formulas (3.157), (3.158), (3.159) and (3.160)

for a flow of an incompressible fluid as functions of the Reynolds
number.

Flgure 37 Figure 38

To evaluate the accuracy of the formulas given above, let us
turn Lo the esperimental data.

Experimental data on the Reynolds similitude parameter aohfcf.
The expeprimental data on heat transfer and friction obtalned by
various workers up to 1958 have been analyzed by Seiff {37). 04 the
basis of the results of this analysis (see Figure 39), Seiff arrived
at the eonclusion that in the turbulent boundary layer the esperis
wontal data can be represented by the forsula o within 195 - 20%:

Butvew (3.161) X

Beia '

It 3hould be noted that the oxperimentil data used by Seifl were
cbtained for the roliowing Niach nusber range ¢ < “e <4,
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Py - Due to the scarcity of the exper-

@ M e
) o o imental data and their low accuracy,
! S A Seiff failed %o establish a relation
M7 s ? ”js between the Reynolds similitude
ks
P em s+ ey e e g e coefficlent 2¢,/c,, on one hand, and
W T TR T
i ol X SN SN Y i the Reynolds, Mach numbers and the
i w%—ﬂj " — temperature factor, on the other.
Lo A
E e by
| % Relatively recently, L. V.
' Figure 39 Kozlov [48), on the basis of an

analysis of experiments involving a

direct simultaneous measurement of the
loca) values of the thermal fluxes and friction, proposed the follow-
ing more agourdate relation between the Reynolds similitude parameter
and the parameters listed above:

u Al
L e (T I (3.182)

For T /T, = 1, %? * 0 and Re @ &.37’106, Forpula (3.162) changes
into Foreula (3.181), and the latter has been thoroughly verified in
nurerous experimnents on the flovw of an incompressible fluld in tubes
and ever Piay plates.

: Forauls (3.182) was obtained by L. V. Kozlov for the rollowing

: _ parameter ranges: 1.7 SN, % & 5-105 ¢ Re,, ¢ 2‘197; 9.9 & T /T, &1,
Tne effest of the individeal parasetars en ratis zah/ef 2an
be gesn in Plgure 50, in which, Just as in Figure 39, all plots ware
obtained on the basis of Foreula (3.122), ang ¢, and ¢, were deters

. tined from the conditions on the boundary of the boundary layer.
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Figures 80 and 39 imply that, «with ak incredsge ol the Mach and
Hoynolds nusbers, Ké and Rex, the value of zeh!er de¢reases, approschs
ing values plege to univy. The faet that at large Hach numberd the
feynolds similitude parametor 18 ¢luodé Lo unlty has allo been con-
Firmed by the experimenial data obtalned by Hill on a flat plate for

N o

1
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8 < Me < 10 (Figure 41). The values of the parameter 2ch/°f’
as seen in Figure 41, lie in the range 0.9 < 2°h/°f < 1.1.

An analysis of the theoretical and experimental data given
above shows that, in spite of the well-known achievements in this
area, the problem of the relationship between heat transfer and
friction as a whole requires further theoretical and experimental
investigation.

§ 16. Turbulent Boundary Layer on a Cone
at Zero Angle of Attack

Along with a flow near a flat plate, another case simple enough
for theoretical analysis involves a flow near a cone, positioned at
Zero angle of attack, if the cone angle is such that the front shock
wave forming the head of the cone is attached (Figure 42). 1In this
case, the flow of a gas behind the shock wave will be "conical", and
the preasure on the surface of the cone will be constant. This
makes the flow in a boundary layer on a cone resemble a flow near
a flat plate. As shown by Van Driest [43], there is a simple
approximate rule for converting the local frioction coefficient for
a plate to the analogous coefficient for a cone.

In order to establish this rule, let us turn to the integral
momentum relation (2.80). In the case of a cone with an impermeable
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surface (vw = (0}, the relation takes the form

d&" 6'.
T (3.163)

Here we used the fact that r, =X sin 6 (Figure 42): 6 is the half-
angle at the vertex. Equation (3.163) can be easily transformed to
the form

Re,d Re,= 22734 (Re* Re,).
o o : (3.164)

where the parameter r is given by Equation (3.8), and the Reynolds
numbers Re, and Re** are given by Equations (3.18) and (3.17).

If we assume that the mechanisms of flow in the boundary layers
around a cone and on a plate are identical (have vanishing gradients,
i.e., dp/dx = 0), then one may expect that the functional expressions
for the velocity profile and the momentum loss thickness for these
bodies will also be the same. In this case Equation (3.52), obtailned
for a flat plate, may be used for the Reynolds number Re**. Making ;
a somewhat rough approximation (Just as in Section 12), i.e., ‘
neglecting the second term on the right-hand side of Equetion (32.4%2), [
wve obtain {

R...m%t“&oxpm;l(l)l- (3.165)

Upon substituting expression (3.16%)
in Equation (3.164) and integrating
the latter with the same accuracy

as in Section 12, we obtaln an
analog of Equation (3.57) for a
cone:

et

Ol R 2 Lo I (1) < pRe, (3.166)

Figure 42
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Since the parameter ¢ is equivalent to the local friction coeffi~
clent Cp [see Formula [3.81)], then a comparison of Equations
(3.166) and (3.57) yields a simple rule according to which the
local friction coefficient for a cone is equal to the value of this
coefficient for a flat plate calculated for the Reynolds number Rex
equal to one half of its value for the cone, and the same values of
the temperature factor and the Mach number at the outer boundary of
the boundary layer.

If one compares the local friction coefficients for a cone and
a plate at identical Reynolds numbers and identical values of the
temperature factor, and the Mach numbers at the outer boundary,
then it turns out that, for a cone, these coefflclents exceed their
values for a flat plate by 10 - 15%.

An analysis of the relationship between the local and average
friction cocefficlients for a cone and a plate invelving the use of
the integral momentum relation, power-law velocity profiles, and the
drag law was done by Bradfild [50]. As a result, he obtained the

relation
1

s [t a) (3.167)

where 1/n is the exponent in the expressicon for the velocity
profile »il', .. (wdi», For n = 7, Fquaticn (3.167) yields °rk/°rpz -
1.18. When n changes from 5 to 10, the ratio °rk/°fpz changes from
1.13 to 1l.23,

For the average friction coefficients, it was established that

R

3}

—,i%az[.,".“ ]" . (3.168)

i

For 5 < n < 10 Equation (3.168) implies that 1.03% < °Fk/°F pz‘ for
n Ld ?’ ch/OF Pi L] 10?"!‘0 ’
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Along with the analvsis mentioned abeve, Rradfild‘®s paper gives
the results of measurements of the local friction coefficient for a
cone with tha half angle at the vertex equal to 15°, Mach number Me =
3.7, ani various Reynolds numbers. The results of the measurements
are shown in Figure 43 (open circles), solid circles indicate the re-
sults of the measurements done by Coles(?q) on a flat plate under the
same conditions; the dashed line represents the plot of afk = 1.18cf
As seen in Figure 43, friction on a cone exceeds the friction on a
plate by anproximatelv 28%. Apparently, both the Van Driest rule and
Bradfild's relation (3.167) result in magnitudes of friction on a
cone that are somewhat understated as compared with their actual
values.

A move definite conclusion regarding the problem in question
can, apparently, be drawn only after new experlmental data are

obtalned.

5 17. Turbulent Boundary Layer in the Presence

of a Longitudinal Pressure Drop

The problem of the turbulent boundary layer calculations in
the presence of an arbitrary distribution of the longitudinal
valoclty component at the cuter boundary of the layer, including
the mest difficult part of the proplem — namely, a determination of
the point (line) of separation — even for an incompressible fluid is
still far from a complete solution(es).

The effectas of compressibility and heat transfer between gas
and a surface complicate the problem even more, leading to addi-
tional difficulties whose character was degeribed in the preceaing
sections., The existing methods used in turbulent boundary laver
caleulations for high-velecolity gas flows in the preaence of a
loagitudinal pressure drop and heat transfer between the gay and the
aurface usually represent a generalization and a further developmant

Pootnotes {(29) and (26) appear on page 181,
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of the methods used in turbulent

q?” 'éﬁﬁié;- i boundary layer calculations for an
1 i Con incompressible fluid. A character-
SYJ:F%RI N ; istic feature of a majority of these ]
Sl x‘ilt;' e ., , methods is the fact that they use )
s integral relations (for momentum,
Figure 43. energy, angular momentum). The

number of unknowns appearing in those
integral relations usually exceeds the number of equations. There-
fore, it is of basic ilmportance in these methods to select families
of the velocity and temperature profiles that could be used for
substitution in the integral relations, instead of the actual ones
that remain unknown. In the present state of the theory, even that
gelection is a difficult problem. In order to specify the veloclity
fields, in addition to the semi-empirical theory of turbulence
proposed by Prandtl and Karman, sometimes single-~term power-law
formulas with a consbant(27) or variable exponent depending on
various parametcrs are used.

Detailed development of the semi-empirical method for turbulent
boundary layer calculations in a gas in the presence of heat
transfer and artitrary pressure distribution in the outer flow was
given by L. Ye. Kalikhman [51]. According to this method, based on
the formula used in Prandtl's semi-empirical theory, a determination
of friction and heat transfer in a boundary layer reduces to solving
linear differential equations whieh are approxinately equivalent to
the integral momentum and energy relationa, followed by a tranaition
from the functions found to those that are still unknown (i.e.,
friction and heat transfer coefficlents) using auxiliary tables
and graphs.

A method proposed by S. 8. Kutateladse and A. 1. Leont'yev
(52], based on the limiting laws of frictlon and heat transfer, .

Pootnote (27) appears on page 151.
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and designed for turbulent boundary layer calculations on a curvi-
linear surface, is essentially akin to the semi-empirical methods.

The papers by McLafferty and Barber [53] and by Sasman and
Cresci [54] are an example of the empirical approach to the problem
in question. In the latter paper, the well-known empirical formula
proposed by Ludwig and Tillman which related the drag coefficient
to the momentum loss thickness §%*% and the form parameter H¥ = §#/5#d
in the theory of the turbulent boundary layer for an incompressible
fluid is used as the drag law. A generalization of this formula to
include a flow with variable density is done using the defining
temperature methed, proposed by Eckert {55]. Characteristics of the
turbulent boundary layer in Sasman and Cresci's paper are found by
slmuitaneously solving the integral momentum and angular momentum
relations.

Asong other methods used ip the theory of the turbulent boundary
layer in the presence of a longltudinal pressure gradient, one
should mention a method proposed by V. ¥. levlev {s6].

fefepring the resder Popr detpils o the opiginsl sourees, we

hould note 3 festure which is chavracteriatie of a mujority of the
sothode., I% 18 &he faet thuat single-parsmeter Pamilies of veloelvy
sralfiles svre used. Thiz 13 apparently ene of the wain reasons oy
the unsatisfaetory resulis obtulined in #any 20863 when Lhese sethods
of voundary laver caleulations are applied to prasseparstlon reglons.
e Tar % Lhe Lwo- and sany-paraieter sdthods ape @5%@@9@@3, Lthey are
A% the present tike in thele be2ianling stage of develspsent.

in evaluating the siate 9F Lhe provies a3 & whdvle, we 8R% von=
clude shat the oxidting twwethods used in the theory of the Lurbuiong.
boundary layer ifi supersonic gas [lowd Fop an arBivesry presgupe
distrivution in Lhe Suter Tiow und heat transfer betwesn & gas and 2
surloge ioud To more or less sabisfavtory resuitienly 5 these
@adcs uhen the effeet of Lhe longlitwdlf ys-s&éé@ ETPT oL 14 the
Popsy of the veleeity profile is ssail. '
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Figure 44

Taking the above into acecount, we shall limit our attention
here te a presentation of those computational methods in whlch the
effect of the longitudinal pressure gradient on friction is
accounted for only through the integral momentum relation, and the
direct offect of the pressure gradient on the velocity profile is
neglected. These assumptions, 35 shown in experiments, are
approximately valld for Flows with negative and small positive
praessure gradients. The latter restriction means essentially that
pre~separation and separated [lows are excluded from the discussion.

Computaticnal method based on the linearized integral momentun
ralation., Let us consider a stezdy gas f{low over a curvilinear
supriaee (Pigure U§). We shall introduce a curvilinsar goordinate
aystew. The position of a point in the {low will be characterized by
the ¥ cooprdinste measured aloung the surface Pros the oritieal point,
and the y coordinate measured along the normal to the surface.

Let uz turn to the 1ategral womentus relatie- (2.80), which in
the ease of a {low nedr an laperseable surface (vu,- 0) becoties
‘e t/‘}:_ a bid . (¥ f > i A
Trr @ oMo Dham - e { 3.163)
L'd N .
Por later dizcuzsioen, it is convenient $o write Hguatien (3.169) ie
a somswhal #odifted Forw which 1s obtained by slislnating the terw
involving u; From this eguation with the aid of Bguation {2.79).
Omisting these simple rearringements, the résult i3
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()‘:U—‘It(pe(‘rté )-r'b [l—,:('l-l- 1’)7--—'-.;—- :—._E:.g_.‘ (3.170)

() e
Here 7 is given by Equation (3.8).

Furthermore, applying the technigue introduced by L. Ye. Klikhman
in the paper already quoted in this section, we introduce a new
variable

2 =p UL
(3.171)

The first term on the left-hand side of Equation (3.170) can with
the aid of (3.171) be written as

K w1 @
i,;ﬁ:ﬁ(pcvca )—' P.U,{'.'A dz * (3 . 172)

Here we use the notation

dlnz 2
A =+ T (3.173)

din{
Using Equation (3.172), we transform the integral momentum relation
(3.170) to the following form

2 U: . (r:l‘)'
St AfgE A B+ 2= peUd. (3.174)
It should be noted that the differential Equation (3.174) for the
function z is Just as exact as the starting Equation (3.169).

Before proceeding to the question of integration of Equation
(3.174), one must establish the dependence of parameters A and H¥,
involved in this equation, on the unknown function z. To establish
this dependence, one must know the drag "law", 1l.e., the relationship
between the momentum loss thickness (8*¥) and friction (z). Since
here we only discuss those flows in which the direct effect of a
longitudinal pressure gradient on the form of the velocity proflle is
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significant, then it is obvious that the drag law for a flat plate
(3.52 ), established in Section 12, may be used as the drag law here.
One must only keep in mind that the parameters Ue(x), w(x), B8(x),
ete. at the outer boundary of the boundary layer are in this case
variables. 1In addition, just as in Section 12, we use the "approxi-

mate" expression for the drag law for simplicity, omitting the second

term In brackets in Equation (3.52). In order to compensate for the

error thus introduced, we put a certain constant C, in the drag law,
whose reasonable selection will enable us later to—make the result
obtained more accurate [it will be noted that a similar technique was
used by Karman in deriving the drag law (3.59)1].
transformed will have the form

The drag law thus

C-X X

8 = Cyloxp (T (1)), Ca=Cy S (3.175)

Here I(1) is given by Equation (3.54), and w and B, involved in the
expression (3.54), are given by the ratios (3.48) or (3.49).

Substituting the expressions for the momentum loss thickness

(3.175) in Equation (3.174), we obtain a relation between z and the
friction parameter r:

z = Cypty, £ oxp [ (DL, (3.176)

As seen from Equations (3.176), the dependence of the friction
parameter ¢ on z is essentially logarithmic, and this enables us
to 1imit ourselves to an approximate determination of the function
z(x). As a result, in calculating the parameter H¥, one can use
its expression applicable to a flat plate (3.5%5 ), which is fully
Justified in the approximate approach taken here.

The expression for the function A (3.173), upon substitution
of the drag law (3.175) in it, becomes
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A=14 grm- (3.177)

The dependence of the functions F#* and A on the friction
parameter r, and consequently, through Equation (3.176), on the
unknown functiecn z reduces the proplem of determining this function

< %o integration of a very complicated nonlinear equation {3.174).

’ Exact integration of this equation is very difficult, and, as will\
be seen beiow, is not necessary. A simplification may be achieved
due to the faet that the functions H¥ and A depend on the friction

. parameter ¢ very slightly. This permits us to approximately deter-

e et S 4 o 3 i e 98 A b s PPV T EANEEPEAL €T D 1

i mine H¥ and A for the values of the parameter ¢ calculated using ,
g the formulas for the flat plate (Section 12). Regarding the parameters
i '8 and w [see Equations (3.48), (3.49)] on which, along with the param-
eter ¢, H*¥ and A are dependent, they must be computed for each
section of the boundary layer from the local values of the Mach
number Me_and the temperature factor Tw/Te. Thus, the functions A
and H¥ may be considered to be known functions of the longitudinal x
: coordinate before we proceed to integréte Equation (3.174).

This approximate method of determining the parameters A and H¥,
as shown by estimates glven below, will not result in any significant
errors, and the function z(x) is determined from Equation (3.174).

Let us determine the expression for the parameter A in the case
of flow of an incompressible fluid over a flat plate under isothermal
condltions. Noting that in this case I(1) = 1, and using the drag
Formula (3.80), we obtain from (3.177)

R R I e T W o T T o et s e o e

Azt = 14356V Gg = 1 4 0.575Re™, (3.178)

Expression (3.178) implies that, when the Reynolds number changes by
two orders (from 10° to 107), the value of A changes by 6% (from
1.25 to 1.18). In the general case of compressible gas flow 1n the
presence of heat transfer between the gas and the surface, the
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parameter A will not vary too sigriificantly under real conditions.

The results of calculating the parameter H¥ from Formula (3.55)
for the case of air flow over a flat plate for

M, =169, T./T, =166 and M, =227, T,T,=245

are given in Figure 27. The same figure includes the experimental N
points obtained by Pappas for the same flow conditions. As seen in ‘
Figure 27, the parameter H*¥ hardly depends on the Reynolds number,

and, consequently, hardly depends on the friction parameter r. The

fact that H¥ hardly depends on the parameter [ has been amply verified

by experiment also in the case of flow of an incompressible fluid

over a plate. Thus, measurements done by Schultz-Grunow [57] and

Hama [58] on flat platesnindicate~that, when vhe parameter [, changes

from 18 to 30, the parameter H¥ changes from 1.5 to 1.25. The

results of applying Formula (3.55) to a flow of an incompressible

fluid are also in satisfactory agreement with the experimental data.

The results of this analysis of the behavior of H¥ and A can be
written in the form

14 [ 72 LMo Ro] >
~ H* [ ‘T ;Cnx( ¢o 7' rRex)]
;;( ; Re#] (3.179)

.‘_ [M,, T—, Cnn( ey T ' Rex}.’

In these formulas, the subscript "pl" indicates that the quantity in
question should be determined, using formulas obtalned for flow over
a flat plate, -

If we use the approximate method of determining the pearameters
H% and A, as expressed in Eguations (3.179), then the problem of
finding z(x) reduces to integration of the followlng linear differ-
ential equation of first order with variable coefflclents:
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&\ p(z)z:- .
&+ P(R)z:= Q) (3.180)

where

Plz)=A [l—?’:'-(‘l + H*) 4 (—rr'”-)-J Q)= pule. (3.181)

Integrating (3.180), we obtain

3= oxp[— i P(x)da:]{i()(z)oxp[i P (.t)dr]dz-{-C}. (3.182)

X *t 1

t

Here x° 1is the coordinate specifying the location of the point where

the laminar boundary layer changes Ilnto the turbulent layer. The
constant of integration C follows, as usual, from the continuity
condition for the momentum loss thickness §#* at the transition
point. As a result, we obtaln

x

22 0Xp [— S P(z)dz|x

|\"
3 p (3.183)
% { 5 Q (z)exp[ S P(x) dx] dz -+ p«t'..c.o:‘} ,

& x,

-

*i
where the parameters Ct and § & must be found from the theory of the
laminar boundary layer.

*e
If the laminar region is absent (for X, = 08 . " 0), then
Equation (3.183) is somewhat simpler and becomes

X X L4

2= exp [— § P(.t)d.t]s Q(z)oxp[§ P(s)dz] dz. (3.184)
0

The integrals appearing in Equations (3.183) and (3.184) can be
evaluated using elther numerical or graphic methods.

For flow over a flat plate at zero angle of attack (dUe/dx = 0,
v = 0), Equation (3.184), in view of Equations (3.181) and (3.177),
hecomes

1

a='PcUc§‘4 dz espl 8 + 5p T0)] d. (3.185)

|
] ]
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For an incompressible fluid, if the expression in (3.178) is used for
A, the integral on the right-hand side of Equation (3.185) is easily
evaluated, whereupon we cbtain

2 = plz (1 + 0,62 Re,14), (3.186)

When the Reynolds number (Rex) varies from 105 to 107, the expression
in parentheses in Equation (3.186) varies from 1.27 to 1.20. Conse-
quently, we see that with a sufficient degree of accuracy

2 = 1.24p,U,z. (3.187)

After the distribution of the parameter z(x) over the surface
of a body is found from Equation (3.183) (of (3.184, Formula (3.176)
can be used to determine the dependence of the friction parameter ¢
on the longitudinal coordinate, and then Equation (3.8) can be used
to yield the friction coefficient cr(x). However, a direct use ,of
Equation (3.176) is inconvenient because it involves the solution of
a logarithmlc equation. 1In order to simplify the calculation of
friction, we shall write expression in (3.176) in a different form.

Taking the logarithm of Equation (3.176), and passing from %
to ¢, with the help of Equation (3.8), we obtain

x)fi(ng«)(%f-')"'z(t)c,"" 4 20g(e ") - Gyt xg(%’j‘{;).

Cy= 18 G,

Upon performing simple caloulations and introducing

K= (L) 100, (3.188)
we obtain
0,212K . Lo, BN, .
S 2l Gt () (3.189)

The constant C3 can be determined from the condition that Formula
(3.189) coincide with Karman's Pormula (3.59) for a flat plate in an
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incompressible fluid. In view of Equation (3.187), upon comparing
Ecuation (3.189) with Equation (3.59), we find that C3 = 0,30.

Equation (3.189) can be reduced to an equation with one parameter.
Dividing both sides of this equation by two and then adding 1g(0.121 K)
N to both sides, we get

ks

a

Ny lgN=—0,767 +1g (K l/-f-'- ‘z—) '

§ b By (3.190)
b
§ where
' K (3.191)
Solving Equation (3.191) for cp, We get
0AMUK \$ (3.192)
¢y = ('—'Tv'—") .

The function N can be easily found from Equation (3.190) in terms of
the known right hand side of this equation with the help of a table of
decimal logarithms.

An even greater simplification of the computational procedure can
be achieved by replacing the left-hand side of Equation (3.190) with
a simpler approximate expression. As shown in the calculations,
when N ranges from 1 to 4 (which in flow over a flat plate corresponds
to a variation of the Reynolds, Mach numberes and the temperature
factor within the ranges: 10° < Re, < 108; 0 < Mg <105 0.1 < T /T, <1)
the left hand side of Equation (3.190) can be written with a
sufficlient degree of accuracy in the form

3 N+ 1gN = 0,45 + 1,2W. (3.193)

The maximum error made in such approximation is 5% for N = 1. On the
average, however, the error varies from 2 to 1%.

TR Y

Using Equation (3.193), after simple calculations, we obtain
instead of (3.192) the following expression for the friction coeffl-
clent:
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. 0,445K :
q_u{lg(mzwxl//lkui_)] (3.194)

Closing this presentation of the computational procedure, we
note that one of the functions of N, which determines friction, is
related to 2z in an almost logarithmic fashion. This fact justifies
the approximate method of determining z on the basis of linearization
of the integral momentum relation that was used here,.

In closing, we shall briefly 1list the basic steps of the calcula-
tion using the method presented above.

1. Given the parameters of the external flow [Me (x) and Te (x)]
and the conditions at the wall (Tw), Formulas (3.48) and (3.49) are
used to determine B(x) and w(x). The recovery factor r in Formulas
(3.+9) should be taken as equal to 0.89.

2. Given 8(x) and w(x) and the local Reynolds number Rex =
Uepex/ue, Formula (3.85) is used to find the local friction cceffi-

clent at the plate Cp p1? and Formula (3.8) — to find the friction

parameter ;pz(x). We determine the functions I(1) [Equation (3.54)]

and K(x) [Formula (3.79)] which are needed later. The density ratio

pw/oe is found from Equation (3.50), the viscosity u — from Equatlon
(3-61)0

3. From B(x), w(x) and ;pz(x) we determine H¥(x) and A(x) using
Formulas (3.55) and (3.177).

b, Pormulas (3.181) are used to calculate the coelficlents
P(x) and Q(x). Here Ue(x), U'e(x), rw(x) and r'w(x) must be known.

5, From Equation (3.183) [or (3.184) if the laminar and buffer

zones are absent from the boundary layer), we determine the function
2(x). The integrals in Equation (3.183) [or in Equation [3.184)]
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are found using numerical or graphic methods,

6. Formula (3.194) is used to determine the distribution of the
local friction coefficient cf(x) over the surface of a body. If the
friction coefficient is determined using the more accurate Formula
(3.192), then it is necessary to first determine the function N(x)
from Equation (3.190) in terms of its known right-hand side. Equation
(3.190) is solved using the tables of decimal logarithms.

The following data must be given initially: Ue(x), Ut (x),
r (x), r'w(x), T,(x) and T, Instead of Ue(x) and U'e(x), we may be
given the Mach number at the outer boundary of the boundary layer,
Me(x), and its derivative with respect t» the longitudinal coordinate,
M'e(x), which are related to the former by Equation (2.83).

From the distribution cf(x) thus found, one can determine the

friction coefficlent using the parameters of the oncoming flow:
R
cin= oo~ (g2 (3.195)

Method of sucgessive approximations. 9n the basis of the same
initial assumptions as in the preceding method, i.e., considering
only flow with moderate longitudinal pressure gradients, one can
propose the following method of calculation based on a simple trans-
formation of the integral momentum relation to a form permitting a
determination of friction by the method of successive approximations.
The first such transformation was used by K. K. Fedyayevskiy and A.
S. Ginevskiy [59] to calculate friction in a turbulent boundary layer
of an incompressible fluid, and then applied by Yu. V. Lapin to cal-
culate friction in a compressible gas {60].

Let us turn to the momentum Equation (3.170). Introducing in
it the new variable

0 ea U 0%, Q,.( [.;;:(1 o+ }r)+‘_':':_’L dr, (3.196)
Bl o
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we reduce it to the form

dy _ %
@ =gl (3.197)

Integrating Equation (3.197) and passing from 6 back to &8**, we obtailn

2 x’ cn *»
pUS™” = &8 (S "c‘rpwuedx + el i ) ' (3.19 8)
*t
where the subscript t signifies that the parameters refer to the
point where the laminar layer transfers into the turbulent layer,
*%
where § t is determined using the theory of the laminar layer.

Substituting now the expression for the momentum loss thickness
(3.175) in the left-hand side of (3.198), we obtain '
!

s i " «"
Cﬂmonuxyln]=c‘%S—%—gﬁuuq-mﬂam,r . (3.199)
1\“

Taking the logarithm of (3.199), and passing from ¥ to Cp with the

aid of (3.8), we obtain after simple rearrangements
¢
L S R S (3.200)
V“;
where K is given by Equation (3.79), and the function E involving
the unknown friction coefficient Cp has the form

k]
h

&y a . “‘ "
b ows lg[%’;“\%‘ ‘S‘eopouccld‘ 1 pal’ adi ]) . (3.201)

The value of the constant 03 must be taken the same as in the pre-
cedling method, i.,e., 03 = 0,3, Having this in mind, it is easy to

obtain from Equation (3.200) the following expression for the friction
goefficlent:

A\
QE*Gﬁtrﬁ)‘ (3.202)
In the case where there are no laminar and buffer zones in the

"
boundary layer (xi =0, 6, = 0), the expression for the function E
simplifies to
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E=:&(%r{iLSQWU;WM). (3.203)

[

P The exponent @, given by the second of Equations (3.196), involves
N * *¥

: the parameter H¥ = § /§ . This parameter can be calculated, just
as in the preceding method, using Formula (3.55).

P Equation (3.202) enables us to use the method of successive
approximations in calculating friction. As the zero-order approxima-
tion for the friction coefficient Cps it is natural to take the value

of this coefficient for a flat plate, i.e., c§0) = df b1 Given the

parameters at the outer boundary of the boundary layer, Cp D1 can

be computed by a method presented in Section 12. Upon finding

c(og (x), one can successively find: c(o)(x) by means of Equation

(3.8), H*(O) using Equation (3.55), 0(0)(x) by means of Equation

1
(3.196), E(x) from the relation (3.201) [or (3.203)], et )(x) from
the expression (3.202), ete.

The fact that the unknown function Cp Occurs on the right-hand
side of Equation (3.203) in the integrand and under the sign of the
logarithm guarantees the normal fast convergence of the lterative
process,

In conclusion, we note that, as was shown ia the calculatiens,
both cf' the methods of turbulent boundary layer caloulations, presentad
in this section (the method based on a linearization of the integral
momentum relation, and the method of suoccessive approximations) lead
to slmilar results., Attempts to use thes2 methods for caleoulating

. the frictien coefficient in pre~separation flow reglons have shown
that, in those cases, the friction geefficlents thus obtained are
much too high.
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§ 18. Turbulent Boundary Layer on a Sphere

Among bodies with various shapes of their nose section, bodies
with a spherical surface have attracted the greatest interest among
engineers and researchers. This interest is due to the wide use of
blunt bodies in the construction of various types of aircraft. One
of the main advantages that blunt bodies have to offer, compared to
bodies of a sharp profile, is the fact that the specifie thermal
fluxes transferred to blunt bedies are much smaller than those transe-
ferred to bodies of sharp profile. For a laminar flow In the boundary
layerr 1a the neighborhood of the front stagnation point, the thermnl
flux to the wall turns out be be inversely proportional to the square
root of the radius of curvature: #,~ WWE .

At the present time, the problem of flow in the laminar beundary
layer in the neighborhoad of the front stagnation point of blunt
bodles at uupersonic veloocities has been thoroughly investigated
both theoretically and cxiperimentally.

Much less research has been done in the ares of turbulaent flows
over blunt bodles at supersenie velocitiea., This 13 due to the fagt
that, at the front stagnabion point and in i%s immediate neizhborhood,
the flow in the houndapy layer, in view of the smallness of the
Hesynelds numbers, always remaing lamisar., If the laminay character
of the flow ig also preserved larther alasg the body, Lhen the thersal
flux attaina a maxisum &t the froant stagnation point. The available
grperimental data, however, show thit the lasisar chavacter of flaw
in the boundary layer on blunt bodies does nol always estend very
far. In particular, the experimental dats obtalned by Stetzon [61]
indicate that 1t 18 podsivle for the lasinar layer to pasa into 4
turbulent layer in the neighborhoed of the sonle point (iine) {sonie
goint (line) 1s defined as the point (line) at whieh the veloolty at
the outer boundayy of the boundary layer begomes equal %o the loval
veloeity of sound). In thls case, the maxiswmm heat Tlux occurs in
the neighborhood of the senie polint {line). This ¢ircumstance
explaing why there 13 partieular interest In burtulent boundary
layers on bluit bBodies.
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: Among the wide class of blunt-nosed bdodies, the flow pattern
near spherical bodies has been studied to the greatest extent. A

¢ diagram of flow near a sphere is shown in Flgure 45. In a superusonie
flow aver a spherical body, a
separatad shock wave forms in front
of the hody. The stream uponl pass-
ing through the direct shoeck wave in
the neighborheed of the front astag-
ration point is5 decelerated to zerc
velocity, and then acecelevrsted neay
the body, reaching the loeal veloalty
of sound at a certzin line (sonie
line), As shouwn by experimant and

e

Pigure 25 theory, the sonic Iinse ltes nesr fhe
peint haviag the angulay gsoordinsie
@« U5

A theorstleal investizatien of the Plou near the frort tagna-
tion point of & sphere was, in partioular, done by LI Ting-Yi aad
Gelger [62}1, and an oxperisental Study wis dene By Rorobkin and
Gruenewnld [63]. In shetir investigaticn, id Ting-¥i and Geiger
Found Tt ehe veloaity gradient of ke ssiernal Flow zf the Proas
saghation polnt of 3 skhepe is

5

&A«

uhere By 13 1he pydlus o7 supvaturs sl the body at ke front slagnse

tion $oint, &, 12 the deasity <7 ihe £a8 in the onvomimg flew {befers
v the fhook wave), B, 13 the €a3 dengity behinad the dircet sheal vgve,

The asio of denﬁiiiOH belsre and alter the shorl, o J@;, as imw;ﬂ¢u

by the theory of aurfal shock waves, ﬁ@@eﬂﬁa of the Mack musibor

the stteming Flov ad 18 2iven by

., - ¥ f b
‘;L\:_s iﬁ"‘ j»n‘ﬁ‘ ‘ # S " «»ﬁ_h‘\ !3)‘—*_»-’__.9 e 15 ?0’53
Fa  H QW 12 T gml -0
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Figure 46 gives the results of the calculation of ﬁi-(ééd‘ using
€0

Equations {(3.204) and (3.205). The same figure contains the experi-
mental data obtalned by Korobkin and Gruenewald. One must admit that
the agreement between theory and experiment is good.

Pigure 47 implies that, with an increase of the Mach number M,
R, dt
the parameter ifh(?f)‘ tends asymptotically to a certain limit which
depends on the adlabatic exponent vy.

}E%&

asE -

1A

T
§
ki

Angular coordinate o, in degrees
Pigure &6 Figure 47

It should be noted that for N, > & one can caloulate the value
of %;) with high accuracy using the corrected Hewton's formula [64).

in this case, the veleclity graaaent at the stagnation point is given
by the 2xpression

{3.206)

Fopr our purposes, e are interested nob only in the velovity

- gredient at the front stagnation polnt, but also in the variatien of
the flew velocity along the surface of the sphere in general, and

in the nelghborhood of the senle point in particular. The experi-
gensal dika of the veloeity disteibution along a sphere, obtained

by Korobkin and Gruchewald for the Kach aulbers of the oncosing flow
paRging fraw 1.22 to 5.87 (Flgure 86}, imdicate that the dependence
of the velovity on the 1ongitudinal coardinale s ¢logs Lo linear:
né ~ %. The veéloelity gradient along i uhifate of the sphere turng

W(gun(i-( ?’“A“ )}b?l l?g

‘e




oui to be very close to the value of this gradient at the stagnstion
point. According to an estimation by Sibulkin [65] the difference
between the velocity gradients at the front stagnation point and at
the sonic point does not exceed 3% (for vy = 1.4). All the data
available enable us to draw a conelusion that the velocity distribu-
‘:% - tion along the surface of 2 sphere (0 < 8§ < 90°%) is deserided well
¥ by the linear relation ‘

A8
bt
s
3
i3
R

8
¥ : dU,

: | U= (%), e =8
The value of (dUe/dx)S can be determined either using Formula (3.204)
= or the plot in Figure 47, or using Formula (3.206) if the Mach

number ¥ > 4,
@«

15 Calculation of skin friction on a sphere. Now we proceed to

. z calculate the friction distribution along the surface of a sphere.
ﬁ For this purpose, we shall use a method based on the linearization of
§~ the momentum equation (Section 17), first making some preliminary

E simplifying assumptions regarding the behavior of the parameter H¥
and the function A. Thus we shall assume that both of these quantitics
3 _ are constant. An inspection of Equations (3.55) and (3.173) will
provide a justification for this assumption. 1In fact, as implied bty
the results of the analysis in the preceding section, H¥ and A

hardly depend on the friction parameter r. Therefore, one can expect
that — 1f the compressibility parameter g and the heat transfer

9 parameter w [see Equations (3.48) or (3.49)] change little along the
T ' surface —— then also the functions H¥ and A will change very little.
4 The comprrssibility parameter B in the case of a flow near a sphere
will be small, since the Mach numbers at the outer edge of the
boundjary layer will not exceed 1.5 - 2. In this connection we shall

B A Y

',{ . encounter the experimental fact, already mentioned above, according

{; ' to which the Mach number Me attains a value of unity at the point
"3 . with the angular coordinate % = U5°, (Consequently, the effect of the
4 | compressibilit s parameter on H*¥ and A will be insignificant. As far

as the heat tvansfer parameter w 1s concerned, its value may turn out

171
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simplified, namely

tc b= Quite large. Howeaver, if the temperature of the wall is
constant, then the zariatjon of this parameter along the surface ¢f

;-vne spaere will be insignificant, since the temperature at the outer
‘edge o;_*h¢‘boundpry layer near the sphere changes very little. Thus,

we have every reason to copsider H¥ and 4 to be constant in the case

-A of a flow over a sphere. If, in addition, we assume” approximately
that rw(x) & X, then the coefficicents of Equation (3.180), P{x)

and Q(x) given by‘EquatiEh‘(3.181){be¢ome
PEY=AQ+H)3 Q@)=pddzs. . (3.207)

Substituting the values of these uoeff;cients in the expre531on for
the function z, (3.183), we find upon- 1ntpgration

Lo R AEEYE B,py-1zy FERTIGT YL ] o '
“ (=:) [A(2:+'H')+2l( ) Y+ . (3.208)
V 'Lpe ,[Jl;;ax }» {3 R

L._

If the laminar and transition regions zare absent from the- boundary
layer, (xt = 0, Uet = 0), then Equation (3.208) becomes somewhat

B,p,A
A@R4-HYy+2

2= 22 C (3.209)
Having the function z(x), it 1s easy to calculate the distribu-

tion of the skin friction coefficient cf(x), using Formulas (3.192)
or (3.194) of the preceding section.

For a fully tu.oulent boundary layer upon a substitution of
Equation (3.209) in Equation (3.194), one can obtain the following
relation for the local friction coefficient

028K
€1 = (g {0, 56K Reg (el A (A (2 + H) + 2] 1) ° (3.210)
where
Bt :
Ree - = (3.211)
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and K, H¥, and A are given by Equations (2.188), (3.55), (3.177),

respectively.

For convenience in calculations, Figure 48 gives a plot of the
expression A/A(2 + H¥) + 2 versus the temperature factor Tw/Te for
the Mach numbers Me = 0; 2. The character and the limits of the
variation of this expression confirm the correctness of the assumption
about constant A and H¥, It should be noted that expression
A/A(2 + H¥*)}-+ 2 depends not only on the parameters T /T and Me, but
also-on the Re"nolds number. However, this aependence turns out to
be °xtremely weak, and for thls reason the plots given in Figure 48
(they were comnstructed for Re = 107: r = 0.89) can be used with

'great accuracy. w1th1n a wide range of the Reynolds numbers (v from

10° to 10%)..
. . “7. - Figures 49 and 50 give the
AN ; : o results of calculating the distri-
o f ~ _%J'ff't butions of certaln parameters and
ez N local friction coefficients over
B AN O S e the surface of 3 sphere for various

o #,=z'\é\\ S _ flow condi‘cions(28)

L P e . e :

. o e o e The ‘calculations whose results
“A:F;gure M8{ ‘ N gre given in Figure 49 wsre done for

“"a flow of air of Mach number M_ = 3

at the altitude 20 km (according to the standard atmosphere) over a

gphere of diameter d- 2 m. The surface of the sphere was assumed to

"be thermally insulated. The figure gives, in particular, the distri-

bution of the Mach numbers Me_and the Reynolds numbers Rex [see
Formula (3.211)} at the outer edge of the boundary layer. The
presence of a maximum s characteristic of the variation of the
Reynolds number. The maxiﬁumvis due to>the fact that, within the
initial segment, the lncrease of the longlitudinal coordinate x is
the dominant factor, which accounts for the rise of the Reynolds
number. Within the final segment, the gas density p, which sharply

Footnote (28) appears on page 181,
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Figure L9

decreases as a result of a isentropic expansion of flow along the

surface of the sphere, is such a factor. Figure U9 also gives the

distributions of the local friction coefficients over the surface

of a sphere, Cp [see Formula (3.210)] and Cho [see Formula (3.195)].
The same figure also contains the plot of the friction coefficient
o p1? calculated using the flat plate formules for the local values
of the Mach and Reynolds numbers, Me and Rex, at the outer edge of

the boundary layer.

Figure 5C gives the analogous results obtained for flow of Mach
number M_ = 11 at the altitude 25 km for the temperature factor
Tw/Teo = 0,327 (Teo is the stagnation temperature) in a flow over

& sphere of diameter d = 1.07 m.

Figures 49 and 50 show that, in both cases of a flow over a
sphere, the local friction coefficient € poo? determined from the
parameters of the oncoming flow [see Formula (3.195)], is largest
in the region of flow adjacent to the sonic line.

: Calculation of heat transfer for a sphere. Upon a determination
5 of the friction coefficient accord;hg to the method described above

%ﬁ FTD-HC-23-723-71 174




one can find, using the Reynolds similitude (3.144), the local heat
transfer coefficient (Stanton number). The expression for the local
thermal flux, in view of the Reynolds similitude, becomes

[

14
qw=";_'CIPeU¢S(1)(hI+r'—2e'—h\D)' (3.145)

- Here S{(1) and r are the Reynolds similitude parameter and the

recovery factor, respectively. The values of these coefficlents can
; be determined from Formulas (3.150) and (3.159). Using these '
formulas and Equation (3.207), we reduce the expression for the heat
flux on a sphere to the form

Qo= 4¢Pt by (he + - Prifia — fy). (3.212)

Along with the method described above, there are other approxi-
mate methods for calculating heat transfer on spherical surfaces.
The results of some of tnem are given below.

Van Driest [66] using the power-law velocity profile with the
exponent 1/7, obtained the following expression for the local heat
transfer coefflcient: A

Chx =2 0,042 Pr-*h (M)% (p°°U°°d )-‘/' (__P_e_.)'/l (ﬁf_)‘h (i)‘l. .

Uy Peo P P d (3'213)

Here the heat flux was given by

Gw = ChoPocl oo (Hy — Ryl (3.214)

It should be noted that Formula (3.213) was obtained under the
assumption that the turbulent boundary layer begins at the front
stagnation point.

Arthur and Willjams [67], using the Van Driest Formula (3.213),
the power-law dependence of viscosity on temperature, u ~v TO'76, and
the assumption about the isentropic expansion of the gas along the
surface of the sphere, have found that in this case the maximum value

i AV S P TR T e e WS S Tl e e
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of the heat transfer coefficient (chw)max 1s achieved at the point
x/d = 0.322, which corresponds to the angular coordinate &= 37°.

The maximum heat flux for Pr = 0.75 turns out to be

(gehune = 00195 (52)" (22)* ()"

w) \Po/ \beo
" .215)
Pellod \ o (3
X ( T ) Pl e (H, -~ hy),

where the subscript s denotes parameters at the front stagnation point.

A relation equivalent to (3.213) was obtained by Sibulkin(Z9)
who investigated heat transfer at the sonic point. Just like Van
Driest, Sibulkin used a power-law velocity profile. 1In calculating
friction, he made use of the Blasius power-law formula, widely used
in the theory of the turbulent boundary layer of an incompressible
fluid, in which the flow parameters were calculated using Eckert's
arbitrary temperature method(30).

In the conclusion of this section, we shall give a formula for
calculating turbulent heat transfer in the neighborhood of the
stagnation point of an axially symmetric body, proposed by V. S.
Avduyevskiy [68]:

N

"A

h.
K.
IR
\5‘.
[
k. -

B. 2, -0,2
qw = 36008%90‘3!‘7 0'040 ( :ep‘ ) .

T =018
X () o= Ty) K52L,
" m hr

(3.216)

Formula (3.216) was obtained by solving the integral energy relation
with the aid of the experimental relation between the heat flux and
the local characteristics of the boundary layer, established for a
flat plate. 1In deriving Formula (3.216), 1t was assumed that pe(x) =
const.

Figures 51 and 52 glve the results of calculating the heat
transfer coefficients Ch and Chew O the surface of a sphere for the
flow conditions indicated in the explanations of Figures 49 and 50,

Footnotes (29) and (30) appear on page 181,
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respectively. The lccal heat transfer coefficient Cho determined
using the parameters on the outer edge of the bourdary layer [see
Formula (3.143)], was computed from Equation (3.159). The local
heat transfer coefficient Cha WBS determined from the relation

. Pe v,
s = Or T

Figures 51 and 52 also give the distributions of the local heat
transfer coefficients Ch oo obtained using the Van Driest Formula
(3.213). As can be seen in these figures, both methods lead
to similar results, The maximum heat transfer occurs near the sonic
line.
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FOOTNOTES

Footnote (1) on page 76. A detailed analysis of various
methods used in turbulent boundary
layer calculations for the case of a
flat plate can be found in: {
Spalding, D. B., S, W. Chi. The
Drag of a Compressible Turbulent
Boundary Layer on a Smooth Flat Plate
with and without Heat Transfer,
Journ. of Fluid Mechan., Vol, 18,
Part 1, 1964, pp. 117-143; Russian
translation: Mekhanika, No. 6 (88),
Foreign Literature Press (IL), 1964.

Footnote (2) on page 80. See footnote on foreign page 78.
Footnote (3) on page §0. For a footnote on papers by Wilson

and Van Driest, see [5,6,7] on page 182,
Footnote (4) on page 80. See footnote on foreign page 80.
Footnote (5) on page 81, See [11] on page 182.
Footnote (6) on page 99. This question will be discussed in

detall in Section 13.

Footnote (7) on page 99. For large supersonic velocities, it may
be necessary to consider the interaction
of the boundary layer with the outer
nonviscous flow. Due to this inter-
action, the magnitude of the pressure,
and consequently, also the veloclty
on the outer boundary of the boundary
layer, may notlceably differ from the
values of these parameters at infinity.
For more details, see, for example,
Heis, W. D., R, F, Probstain. "Theory
of Hypersonic Flow", IL, Moscow, 1962.
In the present chapter, when discussing
flows at relatively small supersonic
velocities, the viscous interaction
does not have to be taken into account.

Footnote (8) on page 103, A detailed justification of Equatlons
(3.30) and (3.31), as well as a
discussion of the questions involved
in determining the thickness of the
laminar sublayer and questions related
to the effect of various faoctors on the .
sublayer parameters, will be given in
Section 13.
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Foctnote (9) on page 104,

Footnote (10) on page 107.

Footnote (11) on page 109.

Footnote (12) on page 113.

Footnote (13) on page 123,

Footnote (14) on page 123.

Rootnote (15) on page 126.
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The function ¢ generally depends on
two variables x and u, since p = p
(x,u). However, in connection with
the approximate calculation glven
below, where we assume p § po(u),

¢ & ().

For a detailled discussion of the
recovery factor in the turbulent
boundary layer, see Section 15.

It will be recalled that a similar
technique was used when deriving the
well-known Karman formula for the
friction coefficient on a flat plate
in an incompressible fluid. See, for
example, Sovremennoye sostoyanlye
gildroaerodinamiki vyazkoy zhldkosti
(Present State of the Hydroaerody-
namics of a Viscous Fluid), Vol. II,
ediged by 3. Gol'dshteyn, IL, Moscow,
1944.

See [29] on the paper L. V. Kozlov
on page 183.

From Equations (3.104) and (3.30) it
is easy to obtain the relation ou,;é,

H

which some authorg used as the reason
for consldering a¢ as the critical
Reynolds number (Recr) that determines

the transition {rom laminar flow in
the sublayer to turbulent flow in the
gore.

See [5] on page 182.

Here it is proper to note that the
estimates of the effect of compressi-
bility and heat transfer on the
coordinate Ny presented here, are not

strictly jJustifiied, since the values
of the coordinates ny in the paper by

Czarnecki and Monta have been obtained
by Joining the velocity protile (3.07)
in the laminar aublayer to the lopar-
ithmic velocity profile in an incou-
pressible fluild. This fact does not
permit us to draw any numerioul con-
clusiong on the basis of this type eof
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Footnote (16) on
Footnote (17) on

Footnote (18) on

Footnote (19) on

Footnote (20) on
Footnote (21) on
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page 126.
page 126,
page 126.

page 127.

page 134,
page 139.

analysis. However, this analysis is
undoubtedly useful in revealing
tendencies in the effect that compres-
sibility and heat transfer have on the
thickness of the laminar sublayer. Of
course, the numerical dependence of
the thickness of the laminar sublayer
(nl) on the Mach number and the

temperature factor can at the present
time be studied only experimentally.

See [11] on page 182,
See [5] on page 182.

Regardless of the fact that the use of
Van Driest's velocity profile is more
natural than that of the logarithmic
veloclty profile in an incompressible
fluid, the comment made earlier with
respect to Figure 28 is valid also

in this case.

See the paper by Spalding and Chi,
which was already cited in this
chapter,

See a paper by Van Driest: [4].

Here 1t is proper to note that the
deviation of the Prandtl rnumber from
unity leads — within the framework of
the double-layer model of the turbulent
boundary layer — to a situation in
which the dynamic and thermal thick-
nesses of the laminar sublayer turn

out to be different. If one takes

this discrepancy strictly into account,
this will lead to substantially more
complicated calculations of heat
transfer , and is not necessary if the
Prandtl number is not too different
from unity. In this connection, it
will be recalled that calculation of
heat transfer within the framework of
the double=layer Prandtl model generally
leads to satisfactory results only if
the Prandtl number ls close to unity.
If the Prandtl number is substantially
different from unity, better results
are obtalined by using the more compleX
three-layer Karman model. For more
details about this and also about a
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calculation of heat transfer for very
large Prandtl numbers, see Loytsyanskly,
L. G., "Seml-empirical Theories of the
Interaction of the Processes of

i Molecular and Molar Exchange in a
Turbulent Flow of a Fluid", Trudy
Vsesoyuznogo S'yezda po teorilcheskoy

i prikladnoy mekhanike, 27. I - 3. IX

: 1960, Academy of Sciences of the USSR,

v Moscow~Leningrad, 1962.

Footnote (22) on page 139. Apparently, the first expression for
the recovery factor, similar to
expression (3.149), was obtained by
M. F. Shirokov in a paper published
in "Zhurnal Tekhnicheskoy Fizlki",

Vol. III, No. 12, 1936. See also a
monograph by the same author:
"Fizicheskiye Osnovy Gazodinamiki"
(Physical Foundations of Gas Dynamics),
Fizmatgiz, Moscow, 1958.

Footnote (23) on page 1l42. See a paper by this author that was
mentioned 1ln Section 12.

Footnote (24) on page 147. See the earlier noted paper of 1§55.
(Footnote on foreign page 153).

Footnote (25) on page 153. See [12] of Coles' paper on page
182.

Footnote (26) on page 153, For more details on this subject zee,

for example, Rotta, I. K., Turbulentnyi
pogranichnyy sloy v neszhimayemoy
zhidkosti (Turbulent Boundary Layer in

an Incompressible Fluld), "Sudostroyeniye",
Leningrad, 1967.

Footnote (27) on page 154, See the paper by V. S. Avdureyskiy
which was already quoted In this
chapter ([15] on page 182).

Footnote (28) on page 173, Calculations verc done at the request
of the author G. V. Semenova.
* Footnote (29) on page 176. See [65] on nage 185,
' Footnote (30) on page 176. See [55) on page 184,
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CHAPTER IV

TURBULENT BOUNDARY LAYER IN A DISSOCIATIHNG GAS

§ 19. Certain Comments Regarding the Thermodynamig
Properties of the Air at High Temperatures )

The increase of the velocities of alrcraft from low subsonic to
moderate supersonic velocltles has made 1t necessary to consider the
depinuwnre of the density of air and tranaport coefficients (visco-
sity and heat tranafer) on the tempeiature when dealing with such
velocities. The specific heat capacity of the air increases with
temperature due to the excltation of the vibrational degrees of free-~
dom (Figure 53). However, il the temperature gradient in the boundary
layer is not very high, then in approximate caleulations the heat
capacity of the air may be considered constant, and equal to a value
corresponding to certain average temperature of the [low,

The methods used in turbulent boundary layer calculations for
bodies of various shapes were discussed in the preceding chapter
based on the assumption taat the heat capacity of the gas is cotristant,

Pootnote (1) appears on page 2869.
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‘ A further increase of the

_§ =3 e g - velocities of aircraft is accompanled
Sl T by such a high increase of the gas
R : -g /ni //////- ro temperature that, along with the
5 AL fact that the density and transport
o AR coefficients arc variable, it may

<
also become necessary to consider

Figure 53 the dependence of the heat capacity
on the temperature. Here one must
keep Iin mind that it is not the

absolute value of the temperature, but the temperature gradient in

the boundary layer (in cther words, the difference between the maximum
and minimum temperature) that is of basic importance. The flow of a
gas with variable heat capacity ¢an be analyzed both by generalizing
the wethods discussed in the preceding chapter (such a generalization
in many cases reduces formally to replacing the temperature with the
enthalpy) and by applying methods that will be presented in this
chapter.,

A transition to hypersonlc velocities causes such an enormous
ingredase in the temperature of the gas that thermochemical processes
Lbegln to oeeur in it, They lnelude the dissoclation of the gas wolew
cules, lonization of the atoms, formation of gxidee, radlation, vte,

Sone oonocept of the effect of
those processes on the “elreptive"

eity 18 usualiy dofined as the
heat capaeity whlceh, togethes Witk
the opdinary nheat capaeisy, in-
eludes the thersal effects of the
Flgure 84 thermochenical provesses i a gas).

» heat capacity of the alr in
: .s R equilibriug may be obbtained Froxn
: 4 Figure 68 (17, whieh givea the
'.:; 8y plots of the heat capacity ep
: : o versus Seaperature for various
; " predsure {Meffectiv:™ heas oupa-
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Figure 55 has been reprinted from the paper by Ye. V. Stupochenko
The figure gives the molar concen-
trations of the molecular and atomic components of the air and elec-
trons, computed for the conditions or:thermodynamic equilibrium, as
functions of the temperature for thrée values of pressure p = 0.001;

l and 1000 atm. As seen in Figure 55,3t high temperatures the air 1is

a multicomponent mixture, consisting of the molecules of oxygen 02,
nitrogen N,, nitrogen oxide NO, atomic oxygen 0, nitrogen N, argon Ar,

et al., which was quoted above.

Flgure 95

FID-HC-23-723-71

and electrons 2 . In addition
to those compoenents, the mixture
contains positively charged ions
of oxygen 0*, nitrogen N*, and
nitrogen oxide NO¥ (in Figure 55
the concentrations of these
components are not given).

The argon and nitrogen
oxide content does not exceed 1%
within a wide temperature and
pressure range, and for this
reason we may negleet the exis=
tence of these components in
approximate caloulations.

Caleulations of the eguili-
brium composition of the aly show

(21 vhat, due to a considerable

188

difference in the dissoceiation
energy of oxygen aand nitrogen
(5.08 eV ror 0, and 9.756 eV ror
32). the dissoclation of oxygen
i3 essentially terminated before
tiltrogen disscclution begins.

In additlon, dueé te the high
lonizatlon pcetential for oxygen

-
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and nitrogen (13.62 eV for Oa and 14,55 eV for N), the dissociation
of the oxygen and nltrogen molecules is to a large extent terminated
before the ionization of 0 and N atoms begins.

These features of the flow of chemical reactions in the air at
high temperatures enable us to approximately distinguish temperature
and pressure ranges in each of which a certain reaction is dominant
(Figure 56)(2). The subdivision into regions, given in Figure 56,
permits a considerable simplification of the air flow calculations at
high temperatures.

& In the present chapter, we
S ~— shall conslder those methods of
L ator, turbulent boundary layer calcu-
lonization”
Yyt S.'Z@:f" lations that are applicable to
- &"
Soapatyingaccompanylngaccampanylng ™) flows in which the effect of the
-G P nenee  components fenization processes may be
" &f 2 1 g /q :' neglected {see Figure $9).
1 3 g . 9 -
o/ # | .
eﬁﬁzm4 ; € 20, Elements of the Kinetles
| / : Z ’ . A
: ef Chemieal Reaetlons
775 SR S - :
¢ 2 d s 7 ¥ L N ¥
* ) w

in the present gsepsicn, we
Fipure 56 shall give certaln basie lafoeps
‘ ' mavich on the Pormal kinetics of
: pomogonedus ohuslival eeastlions
L3} snd, i pacticular, sone infopsmatlion soneepning the kineilzg of
the dissoelation reattiond of the basic conpounente of Lhe ale {siygen
and nitrogen). We shall limlt oupr stlentlon Lo waterial that will
be found necessary below. e shall alap deseribe a model of ab
“i1deslily dissoelating gas™, propoded by Lignthill {&], whish kg
becone widely used in various gasdynsmic studies. We shiall alse de-
vate sowe spate to a model of a partially exeited dlcsvelallng gas.
A brief igeateent ¢f the Rinetles of héterogén@dus {surfece) cheileal
resetlions will Be glven as well.

Footnote {(2) apgears on page I69.
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Definitions. The processes of chemical interaction among the
molecules of a gas mixture are a result of collisions among the
reacting molecules. Depending on systems in which the reactions take
place, they may be of two types: homogeneous and heterogeneous.

Hemogeneous reactions are those that occur in a homogeheous
medium (for example, in a mixture of reacting gases or in a solution).
Usually, when we say homogeneous reactions we mean reactions occurring
in finite volumes of gases, solutions, etc. -Moreover, if the gases
participating in 3 reaction are contained in a vessel, then the rate
of a homogeneous. reaction does not depend on the surface area of the
vessel. An example of a homogeneous reaction is the dissoclation of
the cxygen and nitrogen molecules and high temperatures.

Heterogenheous reactions are those that oceur in an inhomogeneous
medium, at the interface of interaeting components which oceur in
different phases — for exanple, solid and gaseous (recombination
reactions at a catalytic suprface), liquid and gasceous, (carbon burnout

- at the surface of the protective film made of certain materials used

for shielding spaceerafis from heat), ere. The heterogeneous reac-
tions are also usually sald to inelude raactlions oceurring in narrow
{as cowpared with the volume occupied by gases) regisns, which form
when reasting gases (not previously mized) are brour.t "3 so=taet,

In the limitlng case when tne rate of a chealeal reaction is infinitely
large as cospared with the rate of diffusion (the rate of delivery

cand pemoval of reagtants aad products of reaction) such a region may

be considered o be & surfate (reaction front). An exasple of such

a veaction say boe provided by the oxidasion reavtion {vombustion) of
gaseous carbos when bigh-temperature alr flows over a carbon surface.
In tkis case, the gaseous carben which 18 Forwed as a result of a |
sublimation of solld carboen diffuses from the surface of the wall to
the outeér cdge of the boundary layer, toward osyren which diffuses

in the opposite direstion. I the tesperature in the boundiry layer
is sulfictently high, thén the oxldation pate {combustion) of carbon
wiil be very large, and the reactlion zone (ecombustion front) will be
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so thin, as compared with the thickness of the boundary layer, that
in practice such a reaction may be considered heterogeneous.

A reaction is called endothermic if it involves absorption of
heat (for example, the dissociation of oxygen molecules), and exo-
thermic 1f it involves release of heat (for example, recombination of
the oxygen atoms). )

The law of mass action. Every chemlcal reaction obeys the law
of constant multiple proportions, and can be generally described by
the follewing stoichiometric equation:

N v g}. .
-V;Alii vidy,
gx ¥ k=l (4.1)

where v& and vﬁ are the stoichiometric coefficlents for reactants
(prime), and reaction preoducts (double prime); A, are the chemical
synbols of the reactants, N is the total number of the chemical
speciev, and k' and k" are the rate constants of the direct and reverse

reactions, prespectively, which are functlions of temperature,

The law 0f mass action 1s the basle relation describing the rate
of a chemical reagtion (the rate of formation or disintegration of
spoeeies 1), According %o the law of mass action, the rate of formation
of a speclien 15 proportional to tne product of the concentrations of
the reacting species, whore oach concentration in the product is
valsed to a powver equal to itz stolchiometrlc coefficlent., According
to thia law for Yne equation of a chemical reaction (4.1), the rate
of thoe peastion golng from lelt to right can ba given by the
expression

£
f"'»’f.!.l.‘y T 1
() = e [Liear (4.2)

and the rate ol the reaction golng From right to lefy by

(460 by [] g™,
L e
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Here [ni] gives the number of moles per unit volume of speciles 1.

The derivative d[ni]/dt represents the rate of change of the number

of moles per unit volume of specles 1 as a result of the chemical
reaction. It will be noted that Equations (4.2) and (4.3) were written
for one mole. If a reaction 1s such that reactants are present on
both sides of the equation of reaction, then the expressions for the
reaction rates must be written in the form

’ - , N "
(i%‘d') '_‘(Vi—vs)k'(T)kl;lll"k] k, (4.1)
y “ U u v‘ .
(%’:L]-) m(v‘_"‘)k'(T)kH‘ [nkl k, (u 5)

These equations were written for (v{ - vi) moles.

The total rate of formation of species 1 is equal to the differ-
ence between the rates of the forward and reverse reactions:

d(n “ : N ! . — i '
—&1'-]- == (vi = )& (T) [T U1 == (vi = )& () [T (g (4.6)
[y =1 ’

In chemical eguilibrium, no changes occur in the composition of
a mixture, i.e,, the rates of the forward and reverse reactions are
equal (d[ni]/dt = 0). Consequently, in this case

) N ' * N 2
;'({7}) = kl;!; (A e Ky (T, .7

where K (T) is an equilibrium constant, and the subscript (e) signi-
fies the equilibrium values of ["k]’

Equation (4.7) is the most general equation that can be used to
determine the composition of the reaction products in chemical
equilibrium, This equation relates the ratio of the kinetic parameters
k' and k" to the equilibrium constant Kn(T), which may be calculated
exactly using thermodynamic and quantum-mechanical methods.
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Equation (4.6) can also be writtern, in view (4.7), in the form
dinj

i

- s S R T (4.8)
= (vi —w&(T) [] ()5 i — e :
v= () Tt o — g T mar™ ]

If a number of reactions occcur simultanecusly in a system, then
— 1n calculating the total rate of formaticn of species 1 —- une can
use the principle of independence of individual reactions. According
to this principle, if a number of reactions occur within a system,
then each of them occurs independently of the rest, and each 1s subject
to the law of mass action. The total rate of formation of species 1
is egqual to the sum of the rates of formation of species 1 in each of

the reactions
-S4
- 2 (v = vl by n 1ot — 2L n ], (4.9)

where a is the number of independent reactions, s 1is the reaction
number,

Por an ideal gas whose state 13 deseribed by .he Clapeyron
aquation, we have

() = g (4.10)

Here Py 18 the partial preasure of speeies'i R i3 the univerial gas
constant (if (n ) 18 wmeasured in moles/ams snd 9ressure in &te, then
the gas ocnstant is R = 82.05 aw3 ata-mole” =l .. K )

A equilﬁbriu&

o
- s (8213

In chenical Kinetices along with the equilibriug consiant K",
expressed in terms of the nuttber ¢f molee (¥auatlon 4.7), ohe often
uses th? equilivrius constant Kp. expressed in terams of partial
pressures:
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N .
K, = n (Pﬁ*ﬂ) LR
b=y (4.12)

It is easy to see, in view of Equation (4,11}, that the equilibrium
constants Kn and Kp are related as follows

»
Kow Ky (RIS, Aves t?;(“;‘“ w) {4.13)

The ratlo of the number of moles of species i per unit volume
(or of the partial pressure of species 1) %o the total number of moles
per uait volume (to the total pressure of the mixture) is calied the
wmolar concantration of species i:

-tg'_-!

73

»

wir

. , (4.18)

e

x

Hepe [ai= g:tnal iz the total number of moles per unit volume, and p is

he pressure of the gas mixture.

The expression for the squilibrium constant in terms of the
equilibrium molar concentrations has the foram
&

Ky [ty | {4.15)

S}

Sisilarly, ohe can introduce the eguilibrium constant, expressed
in torsms of the equilibrium tass concentrations:

L .
K= e, :
, _!io&% , (4.16)
Hope
T R (8.11)

Ualng these relations, 1t 18 easy to show that we have the
following relatlohs among the equilibrium constants:
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N ..
= Ke(pn® [T (ay ] ™. (4.18)
LY
As seen from Equations (4.15) and (4.16), the equilibrium
constants Kx anu KC are always dimensionless parameters. As f{ar as
K, and Kp [Egquations (4.7) and (8.12)) are concerned, tnese equili-
brium constants are dimensionless only under the condition that Av = 0,
in order to use any of the above equilibrium constants in the expres-

sion far the rate of a chemical reaction (4.8), it is useful to note
that the expression

X -
& P
[T LY
1?££(&|
is always dimensionless.

xncréducing, by analogy with .he equillibrium constant, the
quantities

. A PN N . .
4 LR " B EEY
k. = !rls {me) 47, "a = ‘n i?i}'i ",
N B

X . ¥ .
» o= ot . vy == ‘.
K, 3% n f‘g),’e "’q‘ A, IT feg) (3 'A‘
L2} [ Y

te obtain ,
¥ *» ¥ * Y » »
BB w sy K:Qi‘g N &_,,; . ‘Y: ",;?:.la’ ) &“,
Bl e ()

faan pg) (4.29)

Ia view of Equation (4.19), we¢ obtain the following equivaient
expressions for the rate of a chemleal peaction:

R4

* .
"“'%"1 = v \%)i'(! - ;‘%) TR
.o Tens .
(v = w)k’(iﬂ'r‘(! . 3:’.-) n “;‘)"0 -
s 7 gy
(equation continued on next page)
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Equilibrium constants. Statistical thermodynamics [5] leads to
the fellowing expression for the equilibrium constant:

InKy = — 3+ Zv.luQ () = Emuop {(Aeh (4.21)

Lical

where

L'}

ARy s tZ.Vuh‘.( ENES 2, DUAEN (4,22)
18 the difference hetween the energies of the products and the ener-
gles of the reactants at a zero temperature polnt, where the reactant
and the reaction products are considered te be in states with unit
congentrations at normal pressupe; Qp {5 the partition funetion for 7
a gas at unlt pressure; Eo 18 the asnergy of the gas at zero absclute
vemperature. :

The partition funetlon for a gaa-at unly pressure 1s related to
the tetal partition funetion Q (a basie quantity in statistieal
thersodynamies) by tie equation

0y = pQ. i
(&.23)
The partition function Q is glven by
; 5 !1
Qf%w i, (4.2%)

whepe €y 13 the eneprgy of a particle in the Lth stite; &y is the
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statistical weight or degeneracy of the energy levels, il.e., the
number of states of a particle with energy levels near €.

According to present-day concepts, the energy of gas molecules
consists of the translational energy €45 rotational energy €ps the
intramolecular vibration energy, i.e., vibrations of atoms and groups
o> and
the nuclear excitation energy. For the temperatures occurring in
gasdynamics, the energy of the nuclear excitation may be neglected.
If we assume that the different forms of energy are independent, then
the partition function will be given by the product

of atoms in a molecule, Eys the electron excitatlion energy ¢

Q = QQrQeQe. (4.25)

The factors on the right-hand side of Equation (4.25) are the
partition functions for the translational, rotational, vibrational,
and electron levels of energy, respectively. In statistical mechanics,
it is shown that for two-atomic molecules these factors are equal to

¢ [ 2wy kT \Y RT

Q-‘\x"'( ht ) —[T-' (u 263)

Qh =t tntkr 4 T |
1 =TT R 2 1. (4.26b)

Av \-1 _ Ty

Q% = (1_3?1") =(1-—e "r—) , (4.26¢c)

N .
Qa= g ™. (4.260)

. §=0
Here my is the mass of the molecule, I 1s the moment of inertia of
the molecule, h 1s Planck's constant, v is the vibrational frequency,
7 Tr is the characteristic temperature of rotation, T, 1s the charac-
teristic vibrational temperature,

The expression for QK was written for a two-atomic molecule
consisting of ldentical atoms. For monocatomic molecules that do not
have rotational and vibrational degrees of freedom, the corresponding
partition functions will become equal to unity. The partition func-
tions for the “ranslational and electron degrees of freedom for
monatomic mclecules have the same form as Expressions(4.26a) and
(4,26d), except that mi} in (4,26a) must be replaced by L
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Rate constants of homogeneous reactions. The expressions for
the rate constants of chemical reactions can be obtalned either using
the collision theory (Arrhenius theory) [6], or using the theory of
absolute reaction rates [7] (sometimes the theory of absolute reaction
rates is called the activated complex method).

“q

Collision theory, which is a part of formal kinetics, does not
go into the mechanlsm of collisions, and gives a numerical description
of only the results of an interaction of particles. Arrhenius is the
founder of collision theory. According to Arrhenius, every reaction
goes through an intermediate stage involving the formation of active
molecules, i.e., molec. e~ that possess excess energy sufficient to
overcome the energy barrier. 1In order that an elementary chemical
interaction process may occur, it 1s necessary that the melecules of
the reactants come close together. Here, regardless of whether the
process involves release or absorption of energy, as a rule, when
" molecules approach one another, repulsive forces arise, and a definite
energy is needed to overcome them. As an example, Figure 57 gives a
dlagram of the variatlon of the energy of a reacting system. The
ordinate axls measures the potential energy of the system, and on the
axis of abscissas we plot a coordinate characterizing the relative
spatial distribution of the atoms. Region I refers to the initial
particles, II refers to active particles, III refers to the products
; of the reaction. The energy difference between the initial and the
f final states of the system 1s equal to the energy effect of the
reaction. (AEO). Ea is the activation energy, i.e., the minimum value
of the total energy of the
colliding molecules which is
necessary for a reaction to take
place.

The reactlion rate constant
1s directly related to the number ‘
of collisions of the active mole~ R
cules, Therefore, its value turns

Pigure 57
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out to be proportional to the Boltzmann factor (-Ea/RT). The question
of which collisions should be considered active must be solved experi-
mentally. A comparison of calculations, based on different hypotheses,
with the experimental data showed that for simple molecules, active
collisions are those in which a component of the kinetic energy of

relative motion along the line Joining the mass centers exceeds the
activation energy. In this case, we obtain the followlng expression

' (39,

for the reaction rate constant

- InkT \'h E ?
k() o (= ) =vemyome (- )

(&= k' k).

b e <, L A 857

Here ris is the sum of the radil of the colliding particles,

! E=3(7%~4-7%j4 is the reduced mass of the particles, k is the Boltzmann

constant.

The above expresslon for the reaction rate constant does not
always lead to results that are in good agreement with experiment,
] particularly if complex molecules participate in a reaction. This 1s
due to the fact that not all active collisions 1lead to a chemical
4 transformation. In order to account for this possibility, the expres-
sion for the reactlon rate constant must include an additlonal factor
P which gilves the probabllity that an active collision will result
in a chemical transformation (sometimes P 1is cnlled a steric factor),
In this case, the expression for k becowws

| ) K,
kr.Pb(T)oxp(-‘ﬁ)' (4.27)

If all active colllsions result in a reaction, then H = 1, 1In
reactions in which complex moleculos particlpate, the value of P may
be very small (on the order of 10” ).

Instead of the Expression (4.27), one most often makes use ol
the expression

Footnote (3) appears on page 269.
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+ N

(4.28)

which was introduced by Arrhenius. The value of the factor Z(T) that
multiolies the exponent 1s usually determined experimentally, and for
some of the not too complex reactions, it may be computed on the
basis of the theory of absolute reaction rates(

Heterogeneous chemical reactions(S). In chemical kinetics, the
term "heterogeneou." refers to reactions which occur on the separating
surfuces, l.<., on phase boundaries. Depending on the character of
the surface participaticun in the reaction, the heterogeneous reactions
tha. are of greatest interest car be of two types.

in one case, the surface plays the role of a catalyst for the
reactants exlsting in the gas phuse., Here the proJucts of a hetero-
geneous catalytlic reaction do not contain the elements of which the
surface is composed, In the courze of such a reaction, neither the
properties of the catalyst ror the shape aof the catalytic surface
undergo any chenge, An example of such a reuction is provided by the
catalytic recombination of atoms.

In the second case, the surfacc plays .n active rule in the
reaction. An example is the combustion of ~ carbon surfac2 which fﬁ
submerged in a strean of high-temperature alr, In “he sourse of such
a reaction, the shape of the surface may clange due to the removal
of the combustion products by the alr siream.

The chemical prccess occurring in heterogerious resctions ls
localized in a thin (monomolecular) layer ut the surface. The vo.ume
of the layer is determined by the grea of the surface and the dimen-
sions of the reacting molecules. The monomolecular layer holds on te
the surface as 4 result of the forces of chelcal adsorption, whose

Footnotes (U4) and (5) appear on page 209.
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nature is similar tc the forces of valence bonding (physical, or
Van der Waals, adsorption rarely leads to heterogeneous reactions).

A reaction occurring at a solid surface may be divided into the
following stages: 1) transport of the reactants to the surface,
2) chemical adsorption of the reactants by the surface, 3) chemical
reaction between the reactants, adsorbed at the surface or between the
adsorbed species and the species in the gas phase, 4) desorption of
the reaction products from the surface, 5) removal of the reaction
products from the surface.

As an example let us consider the surface reaction of the recom-
bination and dissoclation of oxygen. One of the possible mechanisms
of this reaction, bearing the name of Langmuir-Hinshelwocod 8], may be
described by the following system of equations:

04 W20owW, (4.29)

OW + OW =20, + W + W, (4.30)

Equation (4.29) describes the adsorption (forward reaction) and
desorption (reverse reaction) of the oxygen atom. W denotes the so-
called active portion of the surface, and OW denotes the adsorbed
oxygen atom, l.e.,, the atom which 1s chemically bound to the surface.
Equation (4,30) describes a reaction between the neighboring adsorbed
atoms, as a result of which an oxygen molecule is formed and released
(desorbed), and the active segments (W) become free.

Another possible nmechaniam of the reaction, sometimes called
the Ridil-Ell mechanism {8), is described by thre equations

0+ W= 0w,
(4.29)

0+0W=0,+W (4.31)

Equation (4.31) describes a reaction between an adsorbed oxygen atom
and the oxygen atom in the gas phase.
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In both first and second cases, the reaction rates depend on the
type of surface and the conditions on it.

In gasdynamic applications it 1s usually assumed for simplicity
that the adsorption reaction (4.29) occurs very fast, and thus does
not determine the rate of the entire process as a whole. In this case,
reactions of the type (4.30) and (4.31) will be decisive. Schemati-
cally, both of these reactions can be written in the form

R
A=A, (4.32)
*u
where kwi and kwJ are the rates of the forward and reverse surface
catalytic reactions. The expression for the rate of formation of
species Ai’ provided by formal kinetics, can be written as

gk“m%!i = kg LA — oy (A1, (4.33)

where ny and n, are the orders of the forward and reverse reactlons,
respectively, [Aijw and [AJ]w are the concentrations of the reactant
and the reaction product at the wall. The dimensionality of the

rates kwi (or kwj) depends on the dimensionality of the concentrations
of the reactant and the reaction product.

Taking into consideration the equilibrium constant

K i A" _
.= k‘“ = uA"nJ)(v) (u.3u)

(here the superscript (e) denotes parameters in the state of thermo-
dynamic equilibrium], we write Equation (4.33) in the form

Bage = — T kg A = Ko (AT (4.35)

Under stationary conditions, the rate of formation of a specles
is equal to the diffusive flux of the specles toward the surface:
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Equation (4.36) may be used as a boundary condition in solving
boundary layer problems involving surface catalytic reactions.
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The temperature dependence of the constant kwi is in many cases
well described by the Arrhenius law

I

b= borp (- ). (4.37)

: ! Here k01 is a constant of the reactant-catalyst system which 1s under
S ' consideration; an is the activation energy. The ratic of an Lo

) _ the universal gas constant R may be viewed as the "characterisvic"

. ,; temperature T, of the reactant-catalyst system.

% Kinetics of disscciation and recombination reactions in the air.
The air under normal conditions is primarily a mixture of two-atomice
molecules of nitrogen and oxygen.

The fractions of carbon dioxide, water vapcr, argon, and other
admixtures are so small that their presence in the air may be neglec-
19 . ted in a majority of practically ilmportant cases.

In the temperature range from 2000 to 8000° K, the threc-atomic
species such as 03. Noe, and some other multi-atomic nitrogen oxider,
a3 well as the ionization process. do not play an important role,

The following reactions are fundamental in the temperature range
" ‘ndicated [9]:

| ' Oy X .20, 08X
Ng l X ot N B0 Nk 0\.i
{ Ng i 0 c—f '-\'0 ‘!' N\
i NO 0020y 1 N,
3 Ny -l O tNO - N, 4.3
i NO 4 NW2N 4 0 i X (4.38)

¢ Here X stands for the catalyst molecule.
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Out of the six reactions given, the last four, involving nitrogen
oxide NO, play a secondary role as compared with the first two reactions,
ﬁ because the equilibrium content of nitrogen oxide is usually small
5 (no greater than 1%). Therefore, in performing approximate calcula-
tions when the basic objective is to obtain integral characteristics
(friction, heat flux), one may in many cases consider only the first
two reactions., It was already noted above that molecular oxygen is
almost completely dissociated (equilibrium dissociation is being con-
sidered) before nitrogen begins to dissociate. This fact permits us
to consider air as a binary mixture of atoms and molecules., It 1s s
only necessary in this case to consider the difference in the
dissoclation energies of oxygen and nitrogen,

48

In nonequilibrium dissociation, the binary model of the air may
in certain cases turn out to be insufficient due to the difference
in the recombination rates kP for reactions in which different cata-
lyst molecules (X) participate. The values of the constants kr for
various reactions and different catalyst molecules are giv<a in
Table 13, adapted from the book by Chung [10]. As is seen in Table 13,
the basie scheme which the dissoclation reactions follow can be
written in the form

l».-i!}}: >
A..*.R‘:mi\éw\-{’%. (4.39)

Here A2 denotes a two-atom molecule, A denotes an atom, X reprosents
a catalyst particle (atom or molecule).

The process of disscciation and recombination, occurring sccord-
ing to the acheme A, o A+ A, L,e., without the participation ol the
particle X, does not play an important role. The rate of the forward
reaction is small, since the direoct disintegration of a strongly ex-
cited molecule is very unlikely. The rate of the reverse reaction 1is
also small, since the molecules forming as a result of combinations
3 involving two atoms possess a very large energy. Duc to this fact, .
a majority of such molecules dissociate upon the first collision with
other particles.
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Table 13 indicates that the recombination pates For oxygen and
nitrogen may differ significantly depending on the type af the gatsu-
lyst particle (X) participating in the rescvtion. The reactien rate
constants, for peactions which differ only in the type of the catalyss
particle, depend solely on the temperat re and are related to eath
other by a relatlon whieh follows from the principie of detalles

-balance:
LA
o A £4,30)

whorerxn(?) 13 anh eguilibrium constant given by Eguatlon (& 77

Using the relations obtalned earlier 1n this sevtlon, iy ig 4
diffieult to write an expression for the muss rate of Porsaticn of
the atomlc spesies %, in a reaction deseribed by the stolchliogetsris
Equation (4.39). Here if the alxtuprs consists of N 3gceies, theén in
a general case the =mass rate of lorsation #, can be odbralned, ih
accordance with the principle of the independence of reactions (4.9),
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by summing the rates of formation in each of the reactions (in this

case the number of reactions s is equal to the number of species N).

Por later use, it is convenient to obtain an expression for LY in

terms of the mass concentrations of species. Therefore, we shall use ;
the last of Equations (4.20) for the rate of formation d[nA]/dt, and

Equation (4.16) and the last of Equations (4.19) for the equilibrium

constant and the ratio K:/KQ, respectively. Taking into account the

fact that for all N reactions of the type (4.39), differing oaly in .
the catalyst particle X, the stolchlometric coefficients are identical

and equal to va=1vx =1 =0, v, =0, vi=1,v,=2, and also the

fact that

L N
3= zv.'ma. dva Z(V.'-V")-‘“‘.
k) twi

we obtain

*‘-l‘ Y
f I & ¢ d £y
- plen g__.._A.__) s 0 4.41)
‘( x‘ rA‘ p“) o ﬁ"x. . (

Here and below the superseript (e) denotes the equilibrium parameters;
°Xs 13 the mass concentration of the catalyst (X) in the oth reaction;
N is the number of species (reactions).

Sometines the mass rate of formation o the atomic species va
may be more convenlently expressed not in terms of the dissociation
rate constants k,,, &s in the Expression (4.41), but in terms of the
recombination rates kfs‘ In this case, in view of Equation (4.40)
and the relation between the constants Rn and Ke. given by Zquation
(4.18), 1t 4s not hard to obtain the result

! " ‘ "fQ Qg “ Ca.
e o SN

In the case of reaction (4.39), the equilibrium constant Koo

generally given by Equation (4.16), becomes
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In order to determine the equilibrium constant we turn to Equation
(4.21). PFor the reaction (4.39), the former equation becomes

ln K, = = 532 4 2100, (A) — In 0, (Ay). (4. 44)

Let us substitute the expressions for the partition functions of the
molecules (4.26) and atoms in the preceding equation (the parcition
function for the tranalation&l energy levels for atoms, QA, is defined
in the same way as Qﬁa’ except that mA muSt be replaced with ma ).

Upon substitution and changing from Ky to K,, by Equation (4. 18), we
obtain

oo L) (5 (-

~ep(-) «;:: e (4.45)

Here Td is the characteristic dissoclation temperature, equal to

r“ D L} Dé’ A’f‘ .
= o (4.46)

D is the dissoclarion energy per unit molecule mass, AEO is the

dissoclation enargy per mole of the starting substance (molecules).

Thus, to deternine the equilibrium constant K, 1t is necessary
to know the characteristic temperatures: of dissoelation, Td. ol
vibration, T , of rotation, Tr' as well as the electron partiticn
functions ror the basic components of the asr. Data on the charac-
teristic temperatures are given in Table 14 {11].

The electron partition functions are written in the form (seeé
the paper by Hansen which was quoted)
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11390 18 990
ao.—a+2oxp(— ——)+exp(— =)
Qo= 5+3oxp - +exp( %)
+ oexp( .____0.0_) ( 48600) '
Q§s= 1,
_ M0\ | 41500 :
Qh =4 +100xp(— 27 ) + Goxp(— 23 ). (4.47)
TABLE 14
M oo w, ¥ T 'K Te 'K | T 'K
0, 2 5.312 10w 59 000 270 2,08
Na 3 4.848. 10" 113200 3380 2.8

Equations (4.47) imply that in the temperature range under consider-
ation, (2000 - 8000° K), the ratios of the electron partition functions
for oxygen and nitrogen, which are necessary in calculating the
equilibrium constants, are only insigni’icantly modified. Therefore,
we can write approximately

.!-Q-:-’!‘—.ma"'. ..(Q.—’:-)Lalﬁ.
&%, V') (4,48)

If we made the assumption (4,48) —- namely, that the ratios of the
electron partition functions are constant (for nitrogen this assump-
tion is satisfied to a high degree of accuracy and for oxygen the
error does not exceed 10 - 12%) — then the expression for the equili-
brium constant (4.45) may be written in the following form:

K.as?-ﬁ%» (.f?)%lt-exp(u I;’_’»)Jup(—--%..)- (4.49)
Here
b+ (S e LB - (4.50)
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is the so-called characteristic density. A dissociating gas whose
equilibrium state is described by Equation (4.49) (pd = const) has
come to be called a "partially excited dissociating gas" [12]. For
oxygen, assuming Equatlo. (4.48) is satisfied, Pg = 151 g/cm3. For
nitrogen under the same assumption, py = 107 g/em3 [12].

If we compute the expression
Par = 29;1(‘1%)%[1 — oxp (-. -:-,'L)] . (4,51)

which appears on the right-hand side of Equation (4.49) then we see
that, for gases such as oxygen and nitrogen, the value of Par, varies
relatively little within a wide temperature range. This can be seen
in the Table 15, adapted from the work by Lighthill, which was already
quoted in this section.

TABLE 15

T 'K fon | B0 | e § 4w ] Mo} W | M

p . B 1 0 08 fam fasn 1138 faa 10y |12
e R ILAR U AU AL R R U R

This feature of the behavior of Pyp, Mas used by Lighthill, who
propesed a model of an "ideally dissoclating gas® in which one of the
basic assumptions is the assumption that the value of 04, which just
like 94 has the dimensions of dens&gv, 1s constant. py. came to be
called the characteristic density of an ideally dissociating gas.

For oxygon and nitrogen, the values of D4y, BAY be taken to be egual
to 150 g/cm3 and 130 gicm3. respectively (other properties of an

" ideally dissociating gas, Just as the properties of a partially ex-

2fted dissociating gas, will be ronsidered in the Toliowing section).
Thus, for an ideally dissoclating ga® the Expression (4.89) for the
equilibrium constant K., in view of Byuation (4.51), becomes
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K.~ ;’:—';’-oxp (— -ri-) (Par, = const).. (4.52}

Now substituting the Expression (4.52) for the equilibrium con-
stant K, into Equations (4.41) and (4.42), we obtain the following
equivalent relations for the mass rate of formation of the atomile
specles:

p ch
w, s ple [t--——-—o\ ] »
B SR 2‘ (4.53)
Bas, 1, ¢
va e B Vi -'—-G\P(~—~=)——-—]Zk.. L s
4 T ! €Ay Jamt 3&

For a binary mixture consisting of atoms and molecules of a
single gas (cA + cAe = 1), the precading expressions will become

. 8 T ¢
wy, = pi{t —CA)MA‘[‘ — 3“-&- up(—fi‘-)-;;—};: ]&
*[katArey + 11 = ex)ks (A, (%.55)

o1 Pat.
=2 e [ o 3 - o2 ]

x[ketAren + 11 = exrietan]):
In those cases when the difference between the disscclation rate
constant (or, which is the same thing, recombination rate constanis)

is insignificant and one caa limit himsell to just one constant,
Bquations (4.55) and (4.56) will be wyicten in the Porm

o w-p‘(lwe&)u h[‘-‘méip(-f Tﬂ-:;:ﬂ]

@ (3.57)
¥ .
o= (=) "A’h[-—“ !"SP u_f‘u) - ‘i':—i; ] )

(4.58)

Using Equations (4.43) and (8.45), 1t i not hard %o preduce the
last two expressions for the wmass rate of rordaticn of the atamle
species to the loram
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{ 2
wy = ~—pMi'ka {1 — L
2 - X (4.59)
- -4
wA_—.pMRk,.(i-}-c,\)——i:&;),—. (4.60)
Equating the right-hand sides of Equations (4.59) and (4.60), we
find after simple alpehra an expression for the equilibrium constant

k 4p (e
d
K n = A

k mr =& (4.61)

The reac.lon rate constants generally depend on the temperature
according to the Arrhenius law [see Equation (4.28)], i.e., they
increase exponentially with the temperature. The atom recomblnation
rabe constant 1s an exception to this rule, since the recombination
redaction proceeds without energy losses to activation (Ear = Q). The
expression for the recombination rate constant has the form

ky = Z(T). (4.62)

Por recomblnatlon reactlons, cccurring in the air, k., is satis-
factorily approximated by a power-law dependence on temperature, of
the form (see¢ Table 12)

k=407 0<n<2). (4.63)

The equilibrium constants Kn for the more important reactlons,
occurring in the air at temperatures ranging from 3000 to 8000° K,
were approx‘mated by Ree' (see the work by Ree, already quoted in
this section) by relations of the form

Kow= AT“oxp(-—-—'}g%).

The results of the approximation (with an error less than 10%) are
given in Table 16.
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TABLE 16
Reaction Equilibrium constant Dimension-
W R}
Kn alicy 3
0:+ X0+ 0+X 1,2.10°T"exp (—118 000/RT) mole/cm";
N+ XN ENEX 18 exp (—224 900/RT)
NO+X2N40+X 4,0 exp (—150 000/RT) mole/cm
N:+O0x=NO+N 4,5 0xp (~75 000/RT) mole/cm
NO+020:4N 0,24 oxp (—32 020/RT) 1
N:+ 0: 2 NO 4 NO 19 0xp (—42 980/A™ Ly

Table 17 lists the values of the rate constants for reactions
occurring in the alr, which were recommended in the monograph by
Ye. V. Stupochenko et al. [13].

The boundary conditions at a catalytic surface generally have
the form (L4,36). For catalytic recombination reactions, the condi-
tions at the surface are usually far from thermodynamic equilibrium,
[Al, >> [A](e). Therefore, the second term on the right-hand side
of Equation (4.36) may 1sually be neglected as compared with the
first. In this case, Equation (4.36) becomes

JA‘w':""'kw(PcA)z- (“.6’4)

Using the expression for the diffusive flow of specles i (1.57), we
write Equation (4.64) in the form

de .
(o ), = utpon. (4.65) .
Here Kw ls the rate of the catalytic recombinatlon, which depends on

the temperature according to the Arrhenius law (4.37); n is the order
of the reaction.
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3 TABLE 17
Py
Reaction x kg em>/mole-sec
.t ) otxo o [AB\S  [—ARy
- - ~040+X 0: 5,2.4000 % (W) exp( 7 )
] AEg= vy [AEg 18 —AEy
: =tf8kcal/mole N |BSIHTY (“EIT) oxp (TT'—)
o |6,25.10mT% (%%’.)"' oxp (‘l‘:ﬁ‘
3 N,NO k; (02)
qoupt (AEs (— ARy
Ar |4,2.40u 7" (M)exp o)
¢ 2N+ X > 1 e AE‘o —AE,
? N X No  |4,2540n7 ( (_ﬁ_.)
t ABy= e (AR | 1» —AE,
) =Wgcal/mole | |FITT ( “p( T )
0Oq, NO, O ky (Ng)
] Ar  [8,8-40uT" (““ oxp (..ﬂ_'m
ii 8)| NO+ X ABy\3 AE
- Jqo00 s [} el }
: Mok [onNearToe T (777) exp (’n"r—)
S ARy == NO,0, N 20k, (A1)
t =180kcal/mole
4]0+ Nes 7.404 oxp T (75 S00/RT)
_ »NO+N _
N+0y= 1,3.400 7 oxp (—T100/RT)
: - NO+0
3 : Nid- O 9.4- 10 7" oxp (128 500/ RT)
: - NO - NO
;;:
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If the wall temperatures are not too high, reactions of the type
(4.32) proceed in the first order, i.e., n = 1,

Equation (4.65) implies that for kw =0
(@ lealloy), = 0,

which corresponds to a chemically insulated (absolutely noncatalytic)
surface; for k,—> oeay—0, which corresponds to an absolutely catalytilc
surface.

At the present time, information regarding the rate of the
catalytic recombination reactlons for nitrogen and oxygen at various
surfaces is very limited. “Some of the avallable results are plotted
in FPigure 58, adapted from the work [14]. The abscissa axis in that
figure measures the catalytic abllity Yy? related to the constant kw
by

f*"**(%} (4.66)

On the ordinate a_xis, we plot the

0 ; wall temperature ) . The figure
ko om ' w0 ' i
W% — d 4 }fﬂ Auk‘ includes the lines ,of constant
BBF  byrex /} ¢ e ky» which for oxygen and nitrogen
ugy o{- are practically identical.
s+ Experiment
(-
Kel o 41
@l g It should be noted that the
data given in Figure 58 were ob-
A0
Pyrex §i Qe de tained inati
e opy "&""-13"."8%“.'1 ,m.°.ag alned for a recombination of

03 T R 0T 27 - bure nitrogen and oxyger. The
Catalytic ability s, processes of catalytic recombina-
tion for a mixture of nitrogen
and oxygen have not been suffi-
clently investigated.

Figure 53
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§ 21, The Propertles of Partially Exclted, Dissociating
and Ideally Dissociating Gaset.

In the preceding sectlion, we obtained the expressions for the
equilibrium constants for a partially excited dissociating gas (L.49)
and an 1deally dissoclating gas (4.52), as well as the expressions
f'or the mass rates of formation of atomic components.

For a partially exclited dissociating gas, consisting of atoms
and molecules (binary mixture), the equilibrium composition can be
determined from the following relation:

Bt @ Ben(-2). e

which was obtalned from Equations (4.43) and (4.49). The value of

the characteristic density P gs generally given by Equation (4,50), for
oxygen may be taken to be equal to Pq (O ) = 151 g/cm3, and for
nitrogen — P4 (N ) = 107 g/cm .

For an ldeally dissoclating gas, Equations (4.43) and (4.52)
imply that

SR -
= o exp r-ir-). (4.68)
where Pqp is glven oy Equation (4.51),

3For oxygen, we take PaL ™ 150 g/om and for nitrogen Par = 130
g/em”,

For later use, let us consider the thermodynamic properties of
dissoclating gasses.

Statistical thermodynamics leads to the following expressions
for the enthalpy and the integral energy of a gas mixture:
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h=2c‘h,=2c¢[_;__2‘ ( olnQ, ) +h‘]

ar (4.69)

E=.;°tbt th[ A, (“:f“){-hq- (4.70)

Here Qip is the partition function of species i in a gas mixture at
unit pressure, defined by Equations (4.23) - (b.26); Qi is the par-
tition function for the i component of the gas mixture of unit
concentration

S
Qic— RT Qh (’-l.?l)

Qi 1s given by Equations (4.24) - (4.26); hg i1s the formation energy
of species 1 per unit mass at a temperature equal to absolute zero.

For a binary mixture of atoms and molecules with ground electron
states, substitution of Qip and Qic into Equations (4.69) and (4.70),
respectively, glves

Tv
_ 5 R
h=[ ""—--"1\“‘(1 °A)“‘,§;"‘;]‘;37-:17T+6AD‘ (4.72)
-1 7 |
n
+—¢A+(i cA) por ‘]ZMAT-}-OAD. (11.73)

In the above expressions for the enthalpy and internal energy of a
partially exlcted dissoclating gas, the third term i1 brackets des-
cribes the contribution of the vibrational degrees of freedom to the
enthalpy and internal energy. The magnitude of this term for the
temperature changing from 0 to « varies from zero to (1 - °A)‘ The
maximum contribution of the vibrational degrees of freedom occurs at
cy ™ 0, and amounts to about 20% of the total enthalpy and 30% of the
total internal energy.

At high temperatures, when dissociation becomes noticable, Equa-

tions (4.72) and (4.73) may be simplified by setting [T /71 [exp
(T /T) - 1] = 1/2. According to this assumption — which provides,
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along with the assumption about the constant characteristic density
(de = censt), a basis for the Lighthlill model of an 1deally dis-
soclating gas — it is assvmed that the vibrational degrees of freedom
of gas molecules are exclted regardless of the temperature by an amount
equal to one half the value of the "classical" vibrational excitation
of molecules. This assumption does not lead to a great error at high
temperatures, since with a temperature increase, the molecule concen-
tration (1 - cA) decreases and the contribution of the term cAD
increases. Thus for an 1ldeally dissoclating gas we have

R

h=(4+ca) M, T LD, (4.74)
E=3—-§§-A—-T>+CAD. (uc75)

Next, having the expressions for the enthalpy and the internal
energy of partially excited dissoclating and ideally dissoclating
gases, let us determine the "effective" specific heat capacities of
a gas at constant pressure and constant volume.

By definition, the specific heat capacities of a mixture of gases
at constant pressure, cp, and constant volume, c,s are given by
ok or
¢p=('37-)p. %=(-§r),- (4.76)

Substituting in Equations (4.76) the expressions for h and £ (4.69) and
(4.70), and taking Equation (4.67) into account, we find the "effective"

specific heat capacities of a partially excited dissociating gas in a
stape of equilibrium

Ty
0 7 3 T
—-—IB‘—-—-::T'*'TOA +(1—CA) i—a'”’T -+ )
e (4.77)

T 3
1 3 Ty _)
+gal=d g+ -7
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{ 3—“¢A 2 T {—e pﬂ' *

"effective" specific heat capacities of an ideally dissoclating gas

E i Similarly, using Equations (4.68) and (4.74) - (4.76), we obtain the
: v
1 i in thermodynamic equilibrium

-——c,g’—=4+cA+~;—cA(1-c’A)(i+ T )2-

e | T, \?
. SRR

: 2—“¢A T (4.80)
: M),

From the last two equations, it follows that the assumption about

. : constant excitatlon of the vibrational degrees of freedom implies

g that the ratios of the specific heat capacities of an ideally dis-
soclating gas before the onset of dlssociation is cp/cv = 1.33, and
not 1.4, as in the case of real two-atomic gases in the absence of an
4 ' excltation of vibrational degrees of freedom. In addition, it 1s not
i : hard to see that for an ideally dissociating gas, the specific heat

capacities at constant volume per unlt mass for molecules and atoms

turn out to be l1dentical: ch = qvAZ, since the number of the degrees

N of freedom of the molecules (6) is twice as large as the number of

f. degrees of freedom of atoms (3).

E' In various gas~dynamlc investigations, including studles of

i f boundary layers in dissocliating gases, it 1s useful to introduce the

§ ; characteristic pressure of an ldeally disscclating gas, P4

2 pa= - b (4.81) :

The values of Py for oxygen and nitrogen, along with other quantities

describing the properties of 1deally dilssoclating oxygen and nitrogen,
are given in Table 18,

PO S Yo w2 1

s St
R AR R T
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TABLE 18

[%.4

Ty K DdL.s / cmﬂ Py 'ﬂtm_

0 59000 150 2,3.107
Ns 118200 130 4,1.407

An expression for the equilibrium concentration of atoms in an
ideally dissoclating gas as a function of temperature can be easily
obtained from Equation (4.68) by using the equation of state for a
binary mixture, transformed with the aid of Formula (4.81), to the
form

=g e (4.82)

Eliminating the density p for Equations (4.68) and (4.82), after
simple transformatlons we obtain

™ T,
c,\-s[w{{;-;.‘i-exp-ﬁ-] - (4.83)

In concluding this section (see Figure 59), we shall give the
results of calculating the equilibrium concentration of oxygen atoms
7 at the pressure p = 1 atm and varl-

Q%?E"HIM_‘ ous temperatures for an ideally
oy dissoclating gas [dashed curve cor-
a(" — ~_..+..‘. S
Ly responds to Formula (4.83), Par, ™
ey I 150 s/cm ] and for a partially
g2y excited dissociating gas [solld
] curve corresponds to Formula (4.67),

b ® 151 g/om’].
FPigure 59
. As seen in Flgure 59, adapted
from an earlier quoted paper by
Glass and Takano, the difference between the equilibrium concentrutions
of an ldeally dissociating and partially excited dissoccliating gas is
small.
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§ 22. Statement of the Problem of a& Turbulent Boundary
Layer in a Dissociating Gas

Remarks concerning the dynamic structure of a turbulent boundary
layer at high supersonic velocities. The results of measuring velocity
profiles 1n a turbulent boundary layer on a f%ﬁt plate for large Mach
numbers (up to Me = 10) and various values of the temperature factor
(see Section 11) indicate that the velocity profile — constructed in
terms of universal coordinates — in a laminar sublayer can be satis-
factorily described by a linear relationship, and in a turbulent core
(at least in its internal portion) it is of the logarithmic type.

As already noted above, a characteristic feature of velocity
profiles for large Mach numbers is the fact that the widih of the
buffer zone between the laminar sublayer and the turbulent core is
very small. The buffer zone is in essence almost completely non-

existent, and there is a sharp transition from the sublayer to the
core,

Another important feature of velocity profiles at large Mach
numbers is the increase in the relative thickness of the laminar
sublayer.with increasing Mach number. In an incompressible fluid,
the thickness of the laminar sublayer, as we know, does not exceed
2 - 3% of the tpickneaa of the entire boundary layer. According to
the data obtained by Hill and given in Seetion 11, at "e = 9, the sub-
layer thickness may be about 15% of the entire thickness of the boundary
layer.,

i

These features of the experimental velocity profiles for high
supersonic velocities will, of course, be taken into consideration
when constructing the semi-vmpirical theory of a turbulent boundary
layer. The very possibility of formulating a semi-empirical theory
of the turbulent boundary layer for high supersonic velocities 18 to
an extent based on the existence of a sufficiently extended lougirithmic
section of the velocity profile in the turbulent core. - The axistence

FTD-HC~23-723-71 220

Ak ey cn i gy




¥R PO ——

g ; of such a section permits us to use the semi-empirical formulas of

' Prandtl and Karman in the theory of the turbulent boundary layer for
high Mach numbers, since these formulas, as shown in Section 10,
always result in a logarithmic velocity profile, no matter what the
density distribution in the boundary layer is.

(44

- The sharp transition from the laminar sublayer to the tnrbulent
core (disintegration of the buffer zone) Justifies the use of the
Prandtl double-layer scheme (laminar sublayer-turbulent core) in a
theory of the turbulent boundary layer for high supersonic velocities.

Finally, the latter feature of velocity:pforiles for high super-
sonlc velocities (increase in the relative thickness of the laminar
sublayer) indicates the inecreasing role of the laminar sublayer in the
heat and mass transfer in the boundary layer. As a result, when cal-
culating the heat and diffusive fluxes, one must take proper ascount
f of the thermal and diffusive properties of the sublayer (deviation of
: the Prandtl and Schmidt numbers from unity). As far as the computa~
tion of friction for large supersonic velocities 18 goncerned, here it
is apparently permissible to consider the flow in the laminar sub-
layer assuming that the Prandtl and Schmidt numbers are equal to unlsy.

ey e

Bquation of the turbulent boundary layer in a dissoelating gas.
Boundary conditions. The general equations of the turbuleat boundary
layer in a multicomponent mixture of chemically reacting gases were
obtained in Chapter IX, In the present chapter, we shall confine vur
attention to stationary flows in boundary layer under the assusption
that the turbulent Prandtl and Schmidt numbers are equal to unity.

b
£y

The fundamental equations will be written in “he following Tora:
equation of continulty

{4.84)

o rl) & & porl) 0,
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- =
momentum equation
a du dp , @ u
4 g tog - —Ergletag] (4.85)
! N
: ; energy equation
1 ; W, OH _ 8l W
wgtrg=gleg)t (4. 86)
3 ? H
L + o lE 5+ St - )k -+
: 4 fw
+er- 05 (1)l
equation of the conservation of species i
et R m -« ) 2 f p B
SRR (- Y (L) R (4.87)
equation uf state
¢,
»reRT Zgt. (k.88)
] i
Total enthalpy H i3 given by the expressions
c - _ ”E*‘F%‘-; iu?q&. &ﬁscﬂﬂ.‘-ld?‘_ (4.89)
For a nonpermeable surface, the boundary conditions for the .
] velocities have the usual fora
\ 2,56
w=g=l for 359.} (8.50)
e U, for §— .
The boundary conditions foy the total enthalpy csn bYe easuy
obtunea fros Equation (t 89). At the wall, we have
R Ve waﬂ'%zr‘h tor y= 0, (h.91)
; i v .
. at the outer edge of the boundary fayer
i FTD-HC-23-723-71 2ee
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Nl = byt = = Sew | ol + Sl +
TR | i
for y— oo. (4.92)

The boundary conditions- for total enthalpy (4.91) and (4.92) contain
cencentrations cof species i1 at the wall, Cyw? and at the outer boun-
dary, Cyo* The concentration of specles 1 at the outer boundary 1is
usually known from vhe solution for the outer flow. Therefore, the

boundary condition for concentrations at the outer boundary has the
form

[l 17} for Yy—>®.

(4.93)

The concentration at the wall L in the precence of surface
catalytic reactions is generally unknown beforehand and must be deter-
mined when solving the problem with the aid of the dtoundary condition
(4,36) ({for air, at not too high wall temperatures, the condition
simplifies to (4.65)).. The boundary conditions for concentration at
the wall are known in two extreme cases: 1) surface is absolutely
noncatalytic (kwi = 0), 1In this case, in view of the condition (4,36}

%i&o for y=iy -(:3»95)

2} surface is avselutely catalytle (kwl + @), In this case, in view
of the sanme condition {(4.36), w& have -

¢, =& tory =9 ‘ (&, 9%)
For alr, and not too high suriace teap@ratﬁr@, ei*) = 0 fory =0,

Theselore, conditlion (¥.65) sleplifies vo

{8.95)

¢'§eﬁ for gy =0,

-In the theory of the turbulent boundary layer, Lt 18 useful in
#any cases to use the enedrgy equatlon and the equaltlen of congervation
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of species 1 in terms of the Crocco variables (2.63), (2.64). Below
the flow in the turbulent boundary layer will be discussed within
the framework of the double-layer Prandtl scheme (laminar sublayer-
turbulent core). For this reason, it will be convenient to write
these equations separately for the sublayer and the core, making use
of the assumption, stated earlier in this chapter, that the turbulent
Prandtl and Schmidt numbers are equal to unity.

In the lamlnar sublayer, we have:
the energy equation

0 (e
el "“4 chto.wm.wm-‘mul} (4.97)

the equation of conservation of species 1

mE R E-g Rt () e

In the turbulent core, the eguations of energy and conservation
of speeles L in terss of the Crocco variables becone

S

Q‘ ":&;Q‘:ﬁ.ﬁu
Ll

PR

{§.99)
(&.100)

il

The boundary conditions ror Bquations (8.97) - (§.100) will ve
wieitten in the following fors: '
U=k, o,=é, &y a— ﬂJ
. Hsll, t,=+t, forue=? (&.101)
@ ' It should ve noted that the lofurends sade 4t the bYeglinning of
3 the present section regarding the boundary cenditlons Yor concentras
3 tions at the wall are valld also in this case.

FID=-#C-23-723-71 28

%
i

N
. -
BN L KY SRR )Ss‘fah



TS,

L e s igemegrina =

.

Damkchler's number. Equilibrium, frozen, and nonequilibrium flows.
The flow in the boundary layer with chemical reactions occuring in the
outer flow and in the boundary layer itself depends on the relation
vetween the rates of the diffusive and chemical processes. ‘

Consider the equation of conservation of an atomic species (4.87),
assuming for simplicity that the mixture is binary and consists of
atoms and molecules. The expression in (4.60) will be used to repre-
sent the mass rate of formation of the atomic specles. Substituting
this expression in the equation of conservation, we have

dey dey

pU 5z + PV 5= o
o L {(&e o) S omrn 4 e gt
Let us pass In this equation to dimensionles: quantitiles, introducing
as the unit of length tue cnaracteristic dimensicn of the body L; as
the unit of velocity, the velocity of the incldent flow U_; as the
units of density and viscosity, the density and viscosity of the
incldent flow o, and w,. Upon making this substitution and performing
slmple algebra, we obtain
F g -mg (k) 5]

S
nDa‘Z;‘(i-{»‘c,\)-?‘ A

T=elr

Hera

4,
b i et
R.L ¥ "‘—p‘ﬁ v o. ""C‘E_‘: :’L -

3’1‘ MA‘ ‘r

The dimensionless parameter Da, appearing on the right-hand side
of the equatlion thus obtalned, is callad the Damkohler number. The
wesning of the Damikohler number i3 easy to see by considering sepapately
the numerator and the dernominator of the last equation. In fact, iu
is pasily seen that quantity L/U_, in tue numerator, characterizes the
time Spent by a parsiele in the boundary layer, (Trlow)' The quantity
in the denvminator, 1/Lfﬁﬁ“gkv » tnhem' alse huy the dimension of time.
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This quantity characterizes the lifetime of an atom and is the
characteristic time giving the rate of a chemical process.

Thus, the Damkohler number is the ratio of two characteristic
times: time spent by the particle in the flow (time of diffusion) and
the duration of a chemical reaction, i.e.,

' L
pa e Tu (4.102)

xuu
Po M3k,

If Da » 0, then the duration of a chemical reaction is much longer
than the time spent by the particle in the flow (tchem
consequently, the effect of chemical reactions in the gas phase on

the flow in the boundary layer 1s insignificant. 1In thls case, the

gas mixture in the boundary layer may be considered chemically inert,
and the boundary layer may be regarded as of chemically "frozen." The
products of dissoclation, atoms, in thls case appear in the boundary
layer only due to thelr diffusion from the outer flow., For a chemically
frozen boundary layer, the equation of conservation of specles 1 is
simplified, since the term expressing the mass rate of formation of
species 1 1s equal to zero, (wi £ 0).

>> tflow)’ and

If the Damkohler number is very large, Da + «», then the duration
of a chemical reaction ls much smaller than the time spent by a particle
in the boundary layer (tchem << tflow)’ Consequently, there will be
enough time for a local thermodynamic equilibrium to be established
at each peint of the boundary layer. The distribution of the concen-
trations of each species will not depend on transfer processes (con-
vection and diffucion), but will only depend on the local values of
the temperature and pressure. The simllarity to the equation of con-
servation of species i will not occur in this case, and the distribution
of concentrations will be determined from the condision Wy 0 (the
equality sign must not be confused with the identity sign in the case
of a frogen flow). The boundary layer in which thermudynamic equilib-
rium is established is called an "equilibrium" layer.
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\g ¢ When the Damkohler number has a finite value, the rates of the

3 3 chemical process and the transfer processes turn out to be of the same
} i . order (tflow/tchem v 1). Therefore, the thermodynamic state of the

. : boundary layer will differ from its equilibrium state. Such a boundary
y : layer will be briefly called "nonequilibrium" layer. To determine

the concentration distribution in this case, one must use the equa-

. tion of conservation of the individual species in their general form.

§ 23. Velocity Profile, Integral Thicknesses, and
Friction on a Flat Plate

an
A el Lok

Returning to Section 12, 1t is not hard to see that many of the
ke : results obtained there are also valid in the case of flow of a dis~

: soclating gas over a fiat plate. In fact, the expression ifor the
velocity profile in the turbulent core, (3.28), was obtained from

f§ : the Karman formula without any assumptions about the denslty variation

E in the turbulent core. Therefore, it can also be used to calculate

the veloclty proflle on a plate in the presence of dissociation., This
expression, using the assumption (3.1) according to which friction 1

o . ls constant across the boundary layer and equals Tl becomes

¢ § T (4,10
nent b {mfu {1/ E ] &
5y -’ Yn ‘Tﬂ w

Using Equation (4.103), we find the derivative dn/d¢ in the
turbulent core which will be found necessary below

- @ =T xc5|/~—da (4.104)

In the laminar sublayer, we shall use a linear reiatlion for the
g ' veloclty profile, similar to the one used in Section 1lé.

e i

. P = (4.105)

. This relation was Justified on the basis of experimental data Iin
‘ Segtions 11 and 13,
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The derivative dn/d¢ in the laminar sublayer is obviously equal to

an
dp

(4.106)

To determine the Reynolds numbers, constructed from the momentum

loss thickness and the displacement thickness, as well as the form

parameter
He = 3% /gs*

one can use the expressions (3.42), (3.44), and (3.45), obtained in
Section 12 for an arbitrary density distribution in the boundary

layer.
For convenience, we list these expressions here

Re* = —il—;—%iexp l_ucs (

=
iy

g

A

Py

P %\,
(J_&QL4 ee) 3 pel)®
2P, Py 2o !
P (B
i [H' (%) X

x(‘ p(l)_{_pp(i) _'_‘r_P(:) ]x
- . o pp

24 ;-—Ll !
F AR

xR
Here

Pt)= () et (5

Uned Wal
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It is easy to see that to calculate friction one can use formulas
obtained in Sectlion 12. One must not try, however, to be specific about
the functional dependence of the gas density in the boundary layer on
the velocity in these formulas. This refers to the function K which,
for an arbitrary density distribution in the boundary layer, should
be written in the form

K=\ (%) (4.108)

The form of the functions F, G, and N which are necessary to calculate
friction remains the same in this case of a flow of a dissceciating gas.
Por convenlence, we shall list all the relations necessary for calcu-
lating friction

()= ().
F=024260, 6= 13({-';). (4.109)

PN+ N =g L (F 4 0)

It will be recalled that the local friction coefficient Bey On A plate
in an incompressible fluld can be caloulated elther using the Karman
Formula (3.59) or Formulas (3.80). The dynamic vizcosity coefficient
can he determined using the power law (3.61). The function il can be
easily calculated using the last of Byuations (4.109) and a sable of
devimal logarithms.

In a similar fashion, all the formulas for the local and gverage
friction, obtalned in Section 12, may be extended £o the case of 2
dissoclating gas. “The effect of the theprmochemlcal state of flow ia
the boundary layer on the drag will, of course, be manilested thiough
p(u) and the viseosity v, Tuus, the problem of caleulating the drag
reduces to establishing a relationship between the lesperature and
density, and the veloedty. '

fhe next section of the present chapter will be devoted to the
derivation of these relations for frozen, equilibriuw, and aosiequlilib-
rium flows in the boundary layer.

]
%
-
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§ 24, Longitudinal Flow Around a Flat Plate with
Prandtl and Schmidt Numbers Equal to Unity

Relationship hetween velocity profiles and total enthalpy. Let us
consider the longitudinal flow of a gas around a flat plate (dp/dx = 0)
at supersonic velocity (Figure 22). The Prandtl and Schmidt numbers
(consequently, also the Lewis number) will be assumed to be equal to
unity. In this case, the differential equations of momentum (4.85),
energy (4.86), and conservation of species 1 (U4.87) become

N L) ou
m“+w@-“hwn3}> (4.110)

oH :
P“-,—;+P”%=*::;[(B+B)%]. (4.111)

P“%+0v-%‘.§‘-m%[(u+e).;‘;_]+wl_ (4.112)

Equations (4.110) and (4.111) and the boundary conditions (4.101)
imply a similitude relation between the velocity field and the total
enthalpy flelad

M - !I—A‘
[/ e W (4.113)

Solving Equation (4.113) for H, we get

H=hy 4l b (5,—,., '5:') . (4.114)

Equilibrium flow of an ideally dlssoeiating gas. In the case of
complete thermadynamic equilibrium, the concentration of the atoule
spocies in the mixture 13 unlquely deteramined by the local alues of
pressure and temperature. ‘This relation of ¢oneentration to pressure
and tesperature for an ideally dissociating gas is given by Eguation
(%.83). 3ince the pressure 13 constant across the boundary layer, the
pressure p in this equation aust ba aet equal to its value at the outer
edge of the boundary layer b,- Hs a result, we have

o - ‘ % LR Y -
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Here Py and Td are the characteristic pressure and temperatnre (for
oxygen and nitrogen, the values of these quantitles are listed in
Table 18).

The relation between the velocity profiles, temperatures, and
concentrations can be easily obtalned by substituring the expression
for the enthalpy of an ideally dissociating gas, (4.74) into the left-
hand side of Equation (4.114). The substitution follcwed by simple
algebra yields the followlng relation:

But — (o= h)u—hy+4T +or (A 4+ T) = 0.

(4.116)
Here

1784

Bt
h -

Ew"—'ﬁl‘::cAu'{‘(é'*‘c,\')Tm (u-ll?)
H

‘,70""‘ "5" = €A +'(4+CAQ)TC+' Bo
P .

TsnT;.»

Equations (4.115) and (4.116) enable u3 to esatablish the relation
between velocglity and temperat:re and concentration. Placing Equation
(4,11%) in Equation (4.116), we obtaln the following quadratic equa-
tion in terms of dixensionless veloolty:

saan—ca-*-bilo, (urlls)
Here
a iy«
b%&f-&l{lci-?)ll_ {-i?"‘uy(%r)!..'&« (4.119)
Y,
P~ “’;‘f‘

Solving Bquation (4.118) for u, we get
3 ' (%.120)
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The sign in front of the radical in Equation (4.120) is chosen to
satisfy the condition U < 1.

After a relationship between the velocity and temperature is
established with the aid of Equation (4.120), one can use Equation
(4.115) to establish a relation between the velocity and concentration.

The density distribution in the boundary layer can be easily
determined for the known temperature and concentration by using the

relation
BT\ Mty (4.121)
Pe (T,) T+ec, *

which can be obtalned from the equation of state (4.88), assuming that
the pressure is constant across the boundary layer.

Using the density distribution and Formulas (4.108) and (4.108),
one can determine the local friction coefficient,

Frozen flow of an ideally dissoclating gas over a catalytic plate.
In a frozen flow, the rate of chemical reactions is negligibly small
compared with the rate of diffusion (wA g 0)., For this reason, the
congentration distribution is completely determined by diffusion
procasses.

The equation for the conservation of the atomic species (4.112)
in this ocase becomes

de I
N'f-'*'wﬁ‘*m%[(»-&c)%‘-]. (4.122)

The conservation of molecular specles, Cp. s in this case is
2

unnecessary, since for a binary mixture the concentration c, = i-=- Cype

2

Equations (4.110) and (4.122), a3 well as the boundary conditions
(4.101), imply similitude between the velooity and concentration fflelds:
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CA ™ Caw

u
g T, " T (4.123)
;‘{
4

In order to determine the atomle concentration at the wall, we use
the boundary condition (4.65) which, assuming that the order of the

. catalytlic reaction is equal to unity (which is true for air, for not
. too high wall temperature), after simple algebra can be written in
the form
’ de,
% (T) = pukulcCas. (4.124%)
¥ Jw

Evaluating the derivative (ch/dﬁ)w from Equation (4.123), we obtain,

according to Equation (4.124), the following expression for the con-
; centration at the wall:

R AR AT, R A

pk’k*‘ uQ

e

; Cav "Gl + AN, Au = (“0125)

For kw = 0, which corresponds to the case of an absolutely
noncatalytic wall, °A\ = Cp s i.e., the atomic concentration in the
i e

2 ; boundary layer 15 constant over its cross-sectiion and equal to the
2 4 : value at the outer boundary [this follows from Equation (4.123)].

For kw + «, which corresponds to the case of an absolutely
catalytie wall, ko + 0, 1.e., all atoms which diffuse toward the wall

beceme recombined.

Jvlving Bquatien (4.123) for B, WE obtain the dependence ol thw
atomic concentration on the veloeity

LY W (WY SR T3 {45.12%)

Substituting expression {4.126) into Bquation (b.116) and solvise the
lattesr for temp. rature, we obtaln

$o 5 Bordl 36 gy ceyyesFeae, i
f; 1 Flgy &ﬁcyx’»tm)}&i * M.ié‘?
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Here B, B, ﬁe are glven by Equations (4.117), and ¢, 1is given by
Equation (4.125). w

The denslity and friction can be found using Equations (4.121) and t
(4.108), (4.109).

Nonequilibrium flow of an ideally dissoclating gas [14]. In order
to determine the dependence of density on veloclty, one must establish
a relation between the temperature and the velocity and concentration,
and of concentration with velocity and temperature. The dependence of
the temperature on velocity and concentration can be easily obtalned
from Equation (4.116), and is arrived at without any assumptions as to
the thermochemical state of {low in the boundary layer, by solwing it
for the temperature

T thet M=) — G0 = cr) [4 + 4] (4.128)

In order to establish the dependence of concentration on velooclity
and temperature, we turn to the equation of conservation of the atomic
spegles, written in terms of Croceo variables. It 1s not hard to
obtain this equation frot Bquations (4.98) and (4.100), by setting
dp/dg = 0, Se, = 1 in the latter. Combining Equations {4.98) and
(4.100), thus simplified, inte one eguation, we have

p.;‘%.ﬂ;{x%. . (4.129)

For slmplicity, we shall assume that goncentration is a function
of only the velocity u and does not depend on the longitudinal coordin-
ate ¢, i.e., auA/ac « 0 (implieit dependence on the physical ccordinate
X resaing, since ¢, = o, (ux,¥)). To Justify this assumption, we note *
that it 13 strictly valld AT the low in the boundary layer is frogzen
or if it 18 in a state of equilibrium (see the preceding sections of
the gresent chapter). Consequently, we dre entitled to expect that the
explicit dependence e‘(t) 15 30 weak that 1t wmay be negleceed(s).

Footnote (6) appears on page 269.
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With this assumption, Equation (4.129) becomes

R S . LI (4.130)

Integrating Equation (4.130) twice and deterisining the integration
constants from the conditions ac the wall, we obtailn

€a = Caw (‘%\'),"id":\:'t.?"; wa . (4.131)
Y

Making use of the boundary condition (4.124) and the condition
at the outer boundary (cA = c, foru = Ue), we find an equation for
e

the concentration of atoms at the wall in the presence of surface
catalytic reactions

L‘, \é
eawlent | du \Brwadu)t + Aa (4.132)
L] °

where A, 13 given by Equation (4.125)

For later use, it will be more convenien“ to write Equation (4.131)
in the folilowing form, which 13 easlly obtained if one uses the
conditions at the outer edge of the boundary layer:

- ea = Cawt [0ae=Can + )i — 1 {B)

(4.133)

Here .

"

" N
) - uzgaagtg;w, di. (4.134)

Equation (4.133) implies that the influence of nonequilibrium disscei-
atisn on the distribution of atomic concentration in the boundary layer
can be taken into aceount by caleulating I (u). In the particular

case of a frozen flow, in the boundary layer (w, 2 0) I (u) = 0, and
the disteibution of the atomle concentration 18 given by Equation
(u.126). '

23%
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In order to determine I (u), we write it in.the form

wo di

r@)- vi{aa{-"a (4.135)
>t (-5;)

OC.3E)

By transferring in the integral of Equation (4.135) to the universal
coordinates (3.8) and substituting the expression for the mass rate of
formation of the atomic species, W, (4.60), we have

-

IR PN TSI coit S (4.136)
l{a) = i éd&§c.(9‘) (l rCA)-T_-_-?A:;;—;-'—du.
Hexre
%,
- . tfa':
o M (4.137)
LN

The quantity CP; as can be easlly seen, represents the Damkohler num-
ber (4,.102). The physical interpretution of this numbe) was discussed
in detall in Seotion 22. In those cases when we do deal with dissoci-
ation reactions, Cr is sometimes called the recombinaticn parameter.
If the parameter is large, the flow will be steady; if it is smali, it
will be frozen.

The derivative dn/d¢, in Byuation (4.136), is given by Equation
(4.108) in the case of the turbulent core, and by (8.108) tn the lami-
nar sublayer. ‘The friction parameter ¢ is given by Bquation {3.8),
and the equilibrium atom concentration cgai is determined by Eguation

_(0.68).

To caleulate the concentration profile using Foraula (8.133), sne
can use the method of sucvessive wproximations. PFipst, the character-
1stles of the boundary layer ¢, {u), T {w), » (W), eps ¢ are computed
for frozen and steady flows (gee the preceding seétions of the present
chapter). As the zero-order approsication for the atomi¢ concentra-
tioh, we can use elther the atotie concentration in the Yrozen [low
(parameters of the froten flow will be denoted below with the subseript

), L.e., c:a) = c:f’, or the arithsetic mean of the ceacentirations
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in the frozen and steady flows, i.e., c§0) a 1/2 (cgr) + cﬁe)) (the
subseript e will refer to equilibrium values). After using Formula
(4.133) to find the dependence of concentration on velocity in the

first approximation, cﬁl), we use formulas (4.128) and (4.121) to deter-
mine the temperature and density, T(l) and a(i). Having the density
distribution, we use Formulas (4.109), (3.8), (4.104) and (4.106) to

determine the values of cgl), ((1), (dn/d¢)(l), ete.

Figures 60 - 6% give the results of calculating flow in the
boundary layer on a wedge with the semi-angle at the vertex egual te
30° tmmersed in a flow of oxyger at the velocity U, = T km/sec with the
pressure and temperature in the oncoming flow equal to p_ = 2.83‘13'u
ata and T = 320°K(7). The temperature of the wall was assumed to bhe
720%°K. The values of the characteristic paramaters and the ra%e of
recombination for oxygen were assumed to be the same &5 those in Tables
id and 14, In these figures, the lesters (e), (£), (ne), refer to
plots deseribling the equilibrium, frozen, and nonequllitrium flows,
respectively, in the boundary layer.

Figure 60 1llustrates the
dependence «of the coneentration of
oXygen atons on the veloalty at &
gegtion of the boundary layer on a
completely catalytle wall (K, = «).
Te fllustrate the convergenve prose’s
for norsquilibriuve flow caleoulation,
the same diagria includes plots
(dashed) wbtgined in curlvus approsimstions (the nuabers in the dingras
iadlcate the order of the agprozimation). As oan be seen in Flgure 86,
the convergence o0 the sethod 18 coxpletely satisfactory.

For the same Ilow conditiens (k= =), Pigure 61 anowe the depend-
ence of the temperatute oh veloeity in the boundary layer; Figure €2

Foothote {7) appears on page 279.
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Figure 61

ﬁgwéﬁs o - Pgure 6%

shows the véloélty"prasilaasrgé eyuiiibri ua, f-ozen, and naréqni?ib?iur
flows in the boundary layer {sse Forsulas (§.183) aad (4.1053), In
addition, Plzure 62 shows the velsuity profile Fov am Inosmpreast it

Fluld {see Poraula (3.4); this profile 1& indicaled Gy the sj&é@l-sﬁc33_ 

and the veleelt; profile, saleulavsd, fur the;saa@-extﬁrﬁaz gondat long
and conditions at the surface of the wedge, % in the easy of the
plots {¢), (), and {ne), but without taking into acooust the éisuociau
tion in the boundary layer (sce Foreula (3.99); this profile 1s
detignated by the sysbol (v)]. ‘The plots in Figure 52 were obtalned
for & o

Pigure 63 gives the plets of the local frictisn gosfficlent on the
wedge (k" = w) a3 functionz of ehe,lcngitad&aal'eoorﬁaﬁat@. It can be
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seen. from the diagram that ia this case the friction in an equilibrium

flow is much greater (approximately 1.3 times greater) than the fric-
tion for a frozen flow, This indicates that, when calculating the

. drag, one must take proper account of the thermochemical processes in

the boundary layer.

Figure 6l gives the dependence of the concentration of oxygen
atoms on the velocity in the houndary layer at a completely noncataly-
tic wall (kw = (), When calculating nonequilibrium flow for this
case, the concentration distribution In frozen flow was used as the
zero-order approximation. As can be seen in the diagram (the notation
is the same as in Figure 60), the fact that we took into consideration
the nonequilibrium character of dissociation resulted in a slight
change of the concentration proflile as compared with the frozen flow.

. The methods of calculating fric¢tion In an ideally dissociating
gas presented in this section may, if necessary, be extended to the
case ol a partlally excited dissoclating gas whose properties were
described in Section &l.

§ 25, Heat and Mass Transfer in the Boundary Layer
on & Filat Plate for Prandtl and Schmidt Numbers Different

From _Unity

It was already noted above (Section 22) that, at hypersonic
veloeitles, the relative shickness of the laminar sublayer increases,
and as a result we observe an increaslng role of the molecular heat
conductivity and diffusion in the processes of heat and mass transfer
in a turbulent boundary layer., This fact makes it necesgsary in ~ertain
cases o rigorously take into aceount the thermal and diffusive prope-
erties of the laminar sublayer when determining the heat and mass
transfer on the surface.

In the first approximation, this can be done by abandoning tne
assumption that the Prandtl and Schmidt numbers are equal to unity,
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considering these numbers constant across the laminar sublayer and
equal to their values at the wall. However, if the laminar sublayer
occuples a significant portion of the entire turbulent boundary layer
(20 - 30% and more), such an approximation may be insufficient. The
problem is that the Prandtl and Schmidt numbers in dissociating air
depend on the degree of dissociation, The approximate estimations
made by Dorrance [15] for dissoclating oxygen 1lead to the following
dependence of these criteria on the degree of dissociation:

(4 40,25 ) (1 + ¢5) Sc = Sco (1 + co). (4.138) .

Pr == Pr°m1+1,62c0 -

Here ¢y is the concentratvien of atomic oxygen. From these erpressions,
1t 1s easy to estimate the dependence of the Lewis number on the
degree of dissociation

14-0,25¢
Le:Le“T—T—T&'&%‘ (14.139)

The results of the calcula-
tions based on the above formulas
are shown in Pigure 65. The dia-
gram makes it clear that the
Prandtl number varles relatively

L 148 (f‘”"‘"
o — little with the degree of dlssow
‘ Léfly ciation. The same Prandtl number
o af”a% a%hzo may chenge by approximately a
_ factor of two. A subsequent com-
Figure 65 parison of these relationships

with the more accurate results
, showed that the variatisn of the
Pr and Sc numbers, as described above, is similar also in the case of
the dissveciating air. Thus, if the variation of the atomic concen-
tration is such that the Prandtl number undergoes a noticeable change
across the laminar sublayer, then it might be necessary to take this
change into account in the calculaflons.
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The deviation of the Prandtl and Schmidt numbers from unity
implies, within the framework of the double-layer turbulent boundary
layer model, that the dynamic, thermal and diffusive thicknesses of
the laminar sublayer are generally different. It is not hard to show,
using the equatlions of mection, energy, and conservation of specles 1
in the laminar sublayer that

Y
nm=“i/-‘=‘;-‘, ’hm:‘—f{:‘- (4.140)

The subscripts "th" and "d" here stand for "thermal' and "diffusive",
respectively.

Inspection of (4.140) indicates that if Pr < 1 and Se < 1 (as is
the case in dissociating air), then the thicknesses of the thermal
and diffusive laminar sublayers are greater than the thickness of the
dynamic sublayer. In this case, the thermal and diffusive sublayers
occupy a porticon ol' the turbulent core with a logarithmic velocity
distribution (Figure 66). Taking this fact into account, it is easy
to estimate the differences among the dimenslonless veloclties at the
boundaries of the dynamic, thermal and diffusive sublayers. In fact,
assuming approximately the logarithmic veloclity profile in an incom-
pressible fluid (3.100) for the turbulent core, in view of (4.,140),
we obtain

Pre 7 Py 2873 e Pf‘ Pan = @y - 2,878 lg Sc.
(h,141)

Setting Pr = 0.72, S¢ = 0.5,
°l s 11.5, we find

S q0s Jm
¢. s ’. \3. T- Lo 1‘“7_

i

This approximate analysis
implies that for Pr < 1 and
Se¢ < 1 (for air), it is not neces=-
sary to take into account the

Figure 66
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discrepancies in the velocities at the boundaries of the dynamic,
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i

thermal, and diffusive laminar sublayers, and consequently these
velocities may be determined from Equation (3.31).

The relationship of total enthalpy to veloecity and concentration.

Reynolds similitude. Recovery enthalpy. In order to establish an

approximate relation among total enthalpy, veloclty, and concentration,
we turn to the equations of energy in the Crocco variables, (4.97)
and (4.99),

For a flat plate (dp/df = 0), these equations become

pOH | v oH
e Etaa
) t o |, 1 de,
= e I [ Le; — 1) A, —3.. __L\
au{ [Pr £ +Pr2{}(e‘ Vi 5 (1 Pr}u]} (4.142)

in the laminar sublayer, and
ol _ W o (4.143)
in the turbulent ccre.

Next we shall make a simplifying assumption: we assume that
total enthalpy 1is a function of only the longitudinal velocity, il.e.,
H = H(u), To justify this assumption, we note that it is strictly
valld 1f the Prandtl and Schmidt numbers are equal to unity. 1In
this case, as shown in the preceding section, there is an integral of
the energy Equation (4,119), which is similar to the Crocco integral.
Consequently, one can expect that for small deviations of the Prandtl
and Schmidt numbers from unity, the dependence of total enthalpy on
the longitudinal coordinate, H (£), will be sufficiently weak.

In addltion to the above assumption, we make as before the
assumptlon that the friction stress 1s constant across the layer,

l,e., T = const = Tyt
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Using these assumptions, Equations (4,142) and (4.143) become,
respectively,

i+ Do — 1) A+ (Pr—1)u] =0, (4.144)
i
| %ao. (4.145)

Integrating Equation (4.144) and determining the constant of integra-
tion from the condition at the wall (for u =0 q = qw), we find

: a
Gt e b Pr—)u - 0 (4.146)
1 - w
Here
_ Y [an b,
= 5~ 7;'*‘2(“&"“"(‘7;5"] (4.147)
i ~ w

is the thermal flux at the wall. Equation (4.147), as can be easily
seen, follows from the definition of heat flux in a multicomponent
mixture, (1.79) taking into account only the energy transfer due to
heat conductivity and mass diffusion.

Performing integration from 0 to u in (4,146), and determining
the Integration constant from the condition H = Hw at v = 0, we obtain
a relation between the total enthalpy and velocity and concentration
in the laminar sublayer

%
H = hy+ Pr—;;"- (Hy — Hyp) i —

F o .
—Z(Le,—1)Slzi%dci+-§-(1~Pr)U2&', (4.148)
i [}

2¢

Hlere -3, 1is the Reynolds similitude parameter,

" (KM
= TR (4. 149)

L is the dimensionless heat transfer coefficient (Stanton number),
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Hr is the equilibrium enthalpy of a thermally insulated wall or the
recovery enthalpy (definition of H, and 2¢c, /¢, will be given below).

In the turbulent core, the relation of the total enthalpy to
velocity and concentration will be found by integraing Equation (4.145)
twice. The first constant of integration will be determined assuming
that the heat flux is constant across the boundary layer and equal to
its value at the wall, i.e., q = const = q,. The second integration
constant will be determined from the condition at the outer edge:
for u -+ Ue, H~+ He' As a result, we obtain

Hw 1:,._3:,’:.(;;, = k)1 — &), (4.150)

Furthermore, let us consider the case when there is no heat
transfer between the gas and the wall (h, = Hr)' We equate total
enthalpies from Equations (4.148) and (4.150) at the boundary of the
laminar sublayer and solve the resulting equation for “r’ This

yields

”g s;# ég
Hy e b+ Proet 4 Sl ~ 1 § '\ da.
’ T I A (4.151)

We note that in formulating (4.151), we made use of the approximate
relation (3.150). The expression for the enthalpy of recovery, H,,
(4.151) is sufficiently general in the sense that it may be used for
calculating the equilibrium, frozen, and nonequilibrium flows.

If we introduce the recovery factor r, just as for a homogeneous
gas, i.e.,

(74
o by r g (4.152)

then by equating Equationa (4.151) and (4.152), we obtain an expression
for the recovery factor in a multicomponent mixture of ghses

. o®
ot 3 Zte - 0 gy a4 (4.153)
L I :
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To determine the Reynolds similitude parameter, we equate the
total enthalpies from Equations (4.148) and (4.150) at the boundary
of the laminar sublayer and solve the resulting equation for the
parameter in question. Thils yields :

..it_"‘. m Pr(H, — h,)? [1,. + p,v._”z.':._ A, +
+ = §agaa]
(4.154)

In deriving relation (4.154), we use the approximate expressions
(3.150), (3.159).

Making use of Equations (4.149}) and (4.154), we find an expres-
sion for the heat flux at the wall:

i
R AL Y S L

, &
+ ﬁg(g.‘-t)SA.-;gwﬁL (4,155)

The definition of tetal enthalpy (&.99), uader the assumption
that the apecifiie heat capacities of the ipdividual specles do not
depend on the tesmperature, ylelds an expression for the temperature

Telil = B $3 S L teasé)

The above expressions ror the total enthalpy in the lamlinar sub-
layer aad the turbulent gore, secovery Pastors, Reynolds similitude
parageter, heat flux, and temperature contaln the concesntrations of
the isdividual specles, which are as yet unknaswn. Thus, the problem
peduces to establishing & relationship between the concentpation and
veloelty in the lasminar sublayer asad the turbulent core. The forw
of thls relstiouship will be different dépending on thersicChoemical
state of flow, l.e., on whether the flow will be steady, [rogsen or
ronsteady . o
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Steady flow of an ideally dissociating gas [16]. We shall con-
sider the steady flow of an ideally dissociating gas. For later use,
we note that the difference between the enthalpies of the atomic and
: molecular species may be approximately considered to be equal to the
% dissociation energy. In fact, taking the fact into account that

10 ] 8 L
by = () T+ B st e H
A 2(3““ Y k“w J(Jﬂ:)r+ hg,

we find

ha = b= (g ) T4 (= e = () T4 D . (4.157)

For such gases as oxygen and nitrogen, the approxlmatibn made in
(4.157) does not result in any noticeable errors in calculations,

Naking use of Equation (4.157), we obtain {rom the relation
(4.148) the following expression for total enthalpy in the laminar
sublayer '

L RS LAY ¥ .
# {1 - Pl — (Lo A)(e, e, ) {4,158y 7.

The dimensionless quantities §i, ﬁ§ and § are given by Eguations
(4.117).

The Reynolds simllitude parameter é&hlﬁf and the recovery enthalpy
H,, genecally given by Equations (8.154) and (8.15)), beceme
r
A y " . S -
e LN RETI Y- S
e e, = e il {8.159)
Boss e Bt BN Hlo = ey, = el (3.160)

It %11l be recalled that in Bquations (¥.1%9) and (%.160) the subseript
t refers to paraseters caleulated Tor the case wheti there is no heat ‘
transler betweot the gas and the wall.,
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The expression for the heat flux (4.155) in an ideally disso-
clating gas becomes
Qe " '-‘:!—c‘?evc Pt i x

% ARy + BPPP Byt (Lo —1){e,, — ) (4.161)

The total enthalpy in the turbulent core (4.15Q0), in view of
- Eauation (4.159), can be written in the form

S Y 2

B = v B PSR, 4 o5 K, 4 I
+ (Lo = 4j(c,, — e, 2i( —a). | (4.162)

S AN AR e Y

A similar tranaformation of the expression for the total
enthalpy in the laminar sublayer, (4.,158), yields '

R R L] Ly W
o ey, = € N (= P)TE = (e 4)e, e, ) (30183)

For Pr = Le = 1 Bquations (4.162) and (&.163) reduse to Equation
{2.114) of the preceding sectlon.

The dependence of the atesmic ¢oncentration on the pressure and
tegperature 12 in this cuse givea by Bquation (&.11%5).

Bguationg (&.162), {(5.163), (R.156) and (4,119) permit us in
principle o detersine the dopendence of enthalpy, tomperalure, and
canpentrat fon on the veloelity In the boundary layer. However, fop
gotivenience in ealeulasivng 1t s ugseful to make certaln modiflications.
substituting Lhe expression for the enthalpy b, (8.74), into the leli-

s nand side of Squatlon (4.163), after simple algebra we obtain the
. rellowing ejuation for the velvelity u, in view of {§.115):

l‘;:.' “M E =
' - it = i b = 0, (4.168)

wheéreé

orrmtans
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=Pt (R, -k §Pr— By + (Lo —1)(c, . — ¢, )],

bePrfR, + (La—1)c,,— Le[i + —;’3— _%_“p(_z_,‘_)]]u/..

)
Ty (4.164)

Solving Equation (4.164), we find the dependence of velocity on tempera-
ture in the laminar sublayer

T LEY Y
] (4.166)

Similarly, substituting Equation (U4.74) into the left-hand side
of Equation (4.162), we obtain, in view of (4.115), an equation relat-
ing the temperature and velccity in the turbulent core

fut - ag—e=0, (4.167)
where a is given by the first of Equations (4.165), and ¢ has the
form

Wn,_a-u—[iw.f"oxp(-%-)] ' i‘o"%‘ (4,168)

Solving Equation (4.167) for U, we find a relation between the tem=
perature and velocity in the turbulent core
PP ST

(4.169)

In Equations (4,166) and (4.169), the sign in front of the
radical 18 chosen to satisfy the condition u ¢ 1.

The détermination of the concentration and temperature for the
flow around a thermally insulated wall is simpler than lor a thermally
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conducting wall, since the coefficient a in Equations (4.166) and
(4.169) becomes zero. The value of the temperature at the boundary
of the laminar sublayer can in this case be found from the condition

(Bu, = b),, (4.170)

where the dimensionless velocity at the bcundary of the laminar
sublayer, (EZ), is given by Equation (3.31).

If the above computational procedure ls to be followed, we must
be glven the values of the parameters at the cuter edge of the boun-
dary layer,(U,, Tg, Po!, and at the wall, (T ). The atom concentra-
tion at the outer edge, Cra? must also be given, Assuming that the
outer flow is in a state of equilibrium, Cpe SRV be determlined fram
Te and p, using Formula (4.115). The atom congcentration at the wall
Cpy C8N be simllarly obtaired from T, and p,. In the case of thermo-
cheuical equilibrium, the occurrence of catalytic processes on the
wall, taking place at a finite rate, will obviously not influence the
distribution of concentration in the boundary layer.

The distribution of parsmeters in the boundary laye» oan be
found from the above¢ relations by using the method of successive:
appror.mations., As aeen {rom Equations (4.165), the concentratlion at
the boundary of the laminar sublayer, °Az’ iz tho quantity whiahANill
be approximated in the calculation. As the sero-order approximatiosn
for ¢, , one can use the value ubtained fo¢ Pr » §¢ = lA(see‘the pres
ceding section). From the same calculation we adapt the valug of the
friction parameter { , which is negessapry from the vepy beginnlng, to
determine the dimensionless velocity at the boundary of the laminar
sublayer, Gz (Formula (3.31)). In this connection, we note Lhat i%
{6 not necessary to obtalin a better approximation Por‘iz, since a
slight deviation of the Prandtl and Schmidt numbers Spros unlty hag
very little effest on the value of friction ().
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After EZ is determined, we use Equations (4.166) for 0 < u < El
and (4.169) for u, < u < 1 tu establish a relationship between the
temperature and velocity in the boundary layer in the first approxi-
mation. When calculating the flow over a plate at zero angle of
attack, the values of the temperature Equations (4.165) and (4.168)
must be given in the interval ranging from the temperature of the wall
to the stagnation temperature. In calculating the flow over a plate
at a nonzero angle of attack, whern the temperature at the edge of the

‘boundary layer may set equal to the temperature behind the front shock

wave, the valuas of the temperature must be given in the interval

ranging from the temperature of the wall to the temperature of the
ocuter edge. (In this case, the temperature in the boundary layer

usually varies monotonically).

Upon establishing a relationship between the velocity and the
temperature with the aild of Formula (4.115), one can determine the
dependence of gonuentration on yelocity, ete.

given the disteibution of congentratich and temperature, we can
find the depondence of dansity on velocity ([Bquation (8.121)]), and
then alsy the local Peigtion coefficient (4,109). Given the friction

_zgoeffza§ant and the values of the paraseters at the wall, boundary at
the lasminar sublayer, and the outer edge of the boundapy layer, Ne
~ean use Equation (4.;61) to caloulate the heat flui.

“The Prandtl, Schaldn, and lLewls nunbers can bBe Tound for a glves
atoln concentration at the wall using the approxisate fortulas cbtalned

by mrraneé. (4.138) and (8.139), assuming Pry = 0.7, 8¢, = 0.9,

pozen flow of an idealiy dissceiating gas % 3 eatalytie
wail £17]. In the preceding subsestion 1% was shown Ehat, 15 The
case of frozen Flow in the boundary layer (wa 0), and utider the
assumption that the Sehmidt nusbes 15 equal 3¢ uhify, we Have &
particular integral of the equation of coasérvatlon of specles 1

B
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(4.126), according to which the concentration depends only on the
velocity, l.e., ¢, = ck(u). In the case of frozen flow along a flat
plate with the Schmidt number different from unity, we shall assume
approximately that the concentration as before depends only on the
velacity, and does not depend on *he longitudinal coordinate. One can
expect that for small deviations of the Schmidt number from unity,

the dependence of concentration on the longitudinal coordinate ¢a ()
will be sufficiently weak. In addition, we also make the simplifying
assumption (3.1) stating that the friaction stress is constant across
the boundary layer: v = coust = T’

Using She$@ assumpb:ens, we obtain from Bauations (4.98) and
(4.100) the fallowing relation for the concentration in the laminar
sublayer andd the turbulent core:

""a

T =0 (§.171)
A8 the boundary condition on the concentration at the wall we use
Exprossien £4,65), assuming that the order of the catalytic reaction,
fn, 13 unity, After simple slgebrs, we wrlite the expressiosn In the
fors

. (-fgg-:)’ ok e Uit {8.172)

integrating Eguation (8.171) onee, in view of Sguatisn (R.172), we

Fiag
& . LR
i = Ep §. I S bl ,':'.._;;.'
ﬁ— st .‘.«awg-q«. . lu “v‘:. . . X i& i?s)

integrating (4.173) and determining the lntegratisn constant Irew she
candivion 3% the will $%atisg that €y ® Qpy For u = 9, se da5ephine.
tie dependerice of concentratisn on veloeity in the lasdnde ablaxce

€, =, (U3 S AR o (e qyay
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The derivative of concentration with respect to the dimensionless
velocity at the boundary of the laminar sublayer on the side of the
turbulent core, (ch/dK)~ - , will be found from the condition

that the diffusive flows of the atomic species in either direction
from the boundary of the sublayer and the core be equal:

(4.175)

Using this relation and the condition at the nuter edge: ¢ ® Cpe
at u = Ue, we [ind tne relationship between the concentration and
velocity in the turbulent core

€ P o= A (1 —3)

(4.176)

Equating the concentration values obtained from Equations (4.173) and
(4,176) at the boundary of the laminar sublayer, we obtain an expres-
sion fecr the atom concentration at the wall as a function of the
parameter of catalytic recombination, AN:

€= 6 1 % A, Sy, (8.277)

In cbtalning the relation (8.177), we made the approximation

Pl Sery = e (4.178)
Assusing that So = 0.5, with the veloeity i) ranging fros 0.6 to
0.56, the cosputational error when Portaula (8.178) i3 used does not
exceed *10%.

Expressions (8.174) and {%.176) way be transiorwed to a fors aot

T contalning the parameter of catalytic recosblnatios A, by elimiftating
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this paramcter with the aid of Equation (4.177). After simple
rearrangements, we obtain

€= Cyyy+Sc(c,, —c, Vi,

¢y =4, —Sch(c, —c, (1 — &). (4.179)
The first of these equalities 1s valid in the laminar sublayer; the
second — in the turbulent core. When the Schmidt number is equal to
unity, the equalities reduce to the relation (4.126) which was
obtained éarlier.

Formulas (4.174), (4.176) and (4.177) imply that for k, =0
(this corresponds to flow around an absolutely noncatalytic wall)
Caw = Cpe’ l.e., the atom concentration in the houndary layer 1s con-

stant over the cross-section and equal to its value at the outer :dge.

For kw + o (this corresponds to a flow around an absolutely catalytic
wall) Crw = 0, 1.e., all atoms that diffuse toward the wall become
recombined.

Using Equations (4.174) and (4.177), as well as the relations

(4.160), (4.159) and (4.161), which are valid in the case of a frozen
flow, we obtaln expressions for the recovery enthalpy, Reynolds simili~

tude parameter, and heat flux in a frozen turbulent boundary layer on
a flat plate with arbitrary catalytlc properties of the surface:
Ity T4 BPe™ 4 [(Le? — 1) S, 1,

i 3 Pt (H, — Ty )t X
° (4.180)

% (R -+ BPr — By + (Lo — 1)Sc™ e, ],

qw-———-—;—c,p,,U,Pr""]) X (4,181)
s [ BPY — Iy o+ (Le™ = 1)Sc e, 0, ). (4.182)

In Equations (4.180) - (4,182) we use the approximation
1 4+ (Le — 1)il, = Le', (4.183)
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and introduce the function

Yo = (1 +7—;E:> ‘.

(4,184)
It is easy to see that, for an absolutely catalytic wall (kw + @)
the function by 1, and for an absolutely noncatalytic wall,
(kw = 0) ¥, ~ 0.

If the effect of the catalytic properties of the wall on friction
(cf) and the Prandtl and Lewils numbers is disregarded, then using
relation (4.182), it is easy to obtain the expression for the ratio
of the heat flux (for an arbitrary catalytic recombination rate) to
the heat flux on an absolutely catalytic wall

Ty

(’lw)kw—#o—o‘:

_ (te"r—1) Sc're , D

=1- LUt ) ) (=) (L4.185)
byt P = (Le¥r 1) Sc¥ey D — 1,

Formula (4.185) allows us to estimate the effect of the catalytic
capacity of the wall on the local heat flux. Figure 67 1llustrates
the result of the calculation based on (4,185) for air flow over a
flat plate. The computation was made for a pressure corresponding to
an altitude of 45 km above sea level and the temperature of the wall,
Tw = T700° K. On the abscissa axis, we plotted the rate of catalytic
recombination and indicated the range of kw for a number of materials
(for more details, see Figure 58). Figure 67 shows that the catalytic
capacity of a wall has a very strong effect on the heat flux. This
fact permits us to conclude that a sultable choice of the material
used for spacecraft skin may significantly reduce the heat transfer
to surface. The fact that the curve calculated for the flight velocity
of 2.5 km/sec lies below the curve for 3 km/sec 1s explained by saying
that nitroggn begins to dissoeiate(ggter the entire oxygen in the

outer flow had already dissociated‘ ‘.

Foot.iote (8) appears on page 270,
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Next we shall establish a relationship between the temperature
and velocity. Substituting in the left-hand side of Equation (4,1863)
the expression for enthalpy of an ideally dissociating gas, (4.74),
and solving the resulting equation for the temporature, we obtalm an

expreasion for the temperature as a funetion of velocity in the
laminar sublayer:

Potbde) B o Pk, W o,
+ (L™ 1)5c™e, 0 ) = Peflat £ (Lo s 130, Lo ). (4.186)

Here ¢, and ¢, are glven by Equatlons (4.174) and (%.177).

Siwllarly, Bquation (4.182) can be used to obtain the relation
vetween the teaperature and velotlity in the turbtulent core

L (% + ‘a) t“']' e @ i P!";{‘o b iﬁﬁ‘f".,_ E,., &

(%.187)
+{La™ = 1)8¢%e, 4, 101 ~ i)

Here ¢, and o, are given by Bquatlons (%.176) and (4.177).
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The dimensionless quantities h_, H&, B, T in Formulas (4.186)

and (4.187) are given by Equations (4.117) and (4.162).

Given the dependence of the temperature on velocity and Equation
(4.121), we can determine the dependence of the density on velocity,
which 1n turn enables us to calculate the loc¢al friction coefficient
from Formulas (4.109).

A convenlent correlation formula for the friction coefficient of
frozen flow in the boundary layer was obtained by Dorrance [18] who
calculated friction for wide parameter ranges (10°<Re<{10% O M, <4
004 7u/T,<1), The formula has the form

Lo () 1 (4.188)
Here Cro is the friction coefficient calculated without considering
dissociation (but considering the effect of the Mach number and the
temperature factor). The difference between the results based on
Formula (4,188) and the exact results does not exceed 4%. Formula
(4.188) implies that dissoclation changes the friction coefficient by
no more than +22% as compared with Coge In addition, lnspection of
Formula (4.188) shows that an increase in the catalytic capacity of
the wall (cAw = 0) leads to an increase in the friction coefficient.

Figures 68 - 72 give the results of calculating the boundary
layer characteristics according to the method presented above for a
flow of dissoclating oxygen around a plate [19].

Pigures 68 and 69 give the plots of the local coefficlent versus
the Reynolds number for two Mach numbers: Me = 4 and Me = 10, The
following values were used in the calculation: Te = 3600° K, P =1
atm, Pr = 0,72, Le = 1.4, Cpw = 0+ Skin friction was calculated
without considering dissociation effects according to a method presented
in Section 1l2. As seen in the plots, the friction coefficients for
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a frozen flow of a gas differ from the friction coefflicients calcu~
lated for the same conditions, but in the absence of dissocilation, by
no more than 20%, which is in good agreement with the results obtained
by Dorrance [Formula (4.188)]. In the case of equilibrium dissoclation,
the difference may amount to 40%.

Figures 70 and 71 are the plots of the concentration and tempera-

ture versus the velocity in a frozen (curves A, B) and equilibrium
(curves C, D) boundary layer, calculated for the conditions:
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Mg = 2.2, Ty = 3600° K, T, = 500° K, ¢y, = 0.3, ¢, = 0. Curves A
and C, obtained by Dorrance [20], are also given in Figures 70 and 71
for comparison. The difference between curves B and D, calculated
using the methods of the present section, and Dorrance's curves A and
C, is due to the fact that Dorrance used the relation connecting total
enthalpy, concentration, and veloclty which is obtained for Pr = Se¢ =1
[Equations {4,114) and (4.126)]. Therefore, Dorrance's method is very
similar to the methods presented in Section 24, The deviation of the
Prandtl and Schmidt numbers from unlty was considered by Dorrance only
in the expression for the Reynolds similitude parameter and through

the introduction of the recovery factor. It should also be noted that
in his paper Dorrance did not take into account the contribution of

the vibrational degrees of freedom to the heat capacity of molecules.

0w flgure 72 1s a plot of the
Jf heat transfer coefficlent versus
{j; the Reynolds number obtained ac-

A 4/' cording to the method presented
(frozen flow) for the conditions:

- . M ilz, Tw/Te = 0.1, ¢p = 0.31

——3By the method of § 25 (ch is plotted on the axis of

" | =--By Dorrance's theory

»140 Experiments of Rose et al, ordinates). For comparison, the

72 l 0] same figure includes a plot ob=-

50 we 0w? 74
Rz,

W

Figure 72

tained by Dorrance (dashed curve).
The dlfference between the theo-
retical plots Is due to both the
reasons indicated in the discussion
of Flgures 70 and 71 and to the fact that, in calculating skin friction,
Dorrance used a formula from the semi-empirical Prandtl theory, in
contrast with Karman's formula used in the present method, Figure 72
also includes the experimental points obtained by measuring heat
transfer on a cylinder with a spherical nose. The measurements were
done by Rose et al. [21] in a region where the longitudinal pressure
gradlent was close to zero, The distribution of the experimental
points is characterized by a large scatter. Nevertheless, the agree-
ment between the theoretlcal results and the experimental data may be
considered satisfactory.
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Nonequilibrium flow of an ideally dissociating gas. The results
of caleulating the equilibrium and frozen flows in the boundary layer,
given in the preceding subsections of the present section, showed con-
vincingly that the thermochemical state of a gas may have a substantial
effect on the drag. It 1s obvious that the flow in the boundary layer
assumes an even greater importance in heat transfer calculations. Of
course, it 1s possible to estimate the heat flux to the surface in
the two limiting cases conslidered in the preceding subsections —
namely, for steady and frozen flows. However, with the ald of the
methods presented in these subsections, it is impossible to analysze
the character of flow in the boundary layer. In many cases impertant
in practice, it may be necessary to estimate heat transfer with the
dissoclation reactlon proceeding at a finite rate comparable with the
rate of diffusion, which results in a nonequilibrium flow in the
boundary layer. The nonequilibrium flow of an ideally dissoclating
gas under the assumption that the Prandtl and Schmidt numbers are
equal te unity was considered in the preceding section. In heat
transfer calculation, as was pointed out many times above (Chapter I1I),
it is necessary to consider the deviation of the Prandtl and Schmidt
numbers from unity.

The general expressions for the heat flux Qs enthalpy of
recovery H,, Reynolds similitude parameter 2°h/°r' as w2ll as the
relation of total enthalpy to concentration and velocity for arbltrary
Prandtl and Schmidt numbers, were established at the beginning of the
present section. To solve the problem in guestion, we must establish
a relation between concentration and velooity., It seoms justified,
on the basis of considerations given in the discussion ol nonequilie
brium flow for Pr = Sg¢ = 1 {Section 24), and frozen flow for Pr ¥
¥ Soc ¥ 1 (Section 25), to make the simplifying assumption that the
concentration depends only on velocity in the boundary laver, and does
not depend on the longitudinal coordinate, i.e., ¢, = ﬁn(u). In
addition, we shall make the usual assumption that the friction stress
is gonstant across the boundary layer, i.e., v = gonst = L With
these assumptions, Equations (4.98) and (4.100) become, respoutively
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The first of these equations 1is valid in the laminar sublayer; the
second — in the turbulent core. Integrating the first of Equations
(4.189) and using the boundary condition (4.124), we have

(f“ u 'Y l 0)
-ﬁ“ = 8¢ A,,,"A,,,"'SC l-'l(‘z)‘ ( ?
Here
Ltaye U S(—';L)éi i, (4.191)
a w

and A, is given by the second of Equations (4.125),

It should be noted that the connentration of the atomic species
at the wall, (ko), i as yet unknosn, and will be determined later.

Integrating Equation (4.159) and determining the integration
constant for conditions at the wall, (o, = ¢, for U « 0), we find
the distribution ¢oneentration in the laminar sublayer

ey = e (Lot S 1, 0) = Se ytu), (4.192)

where

-
-

1.46) = v (i S(-g« } 5.
L4

[ L ¥ 3N

Now we procead to determine the concentration profile in the
turbulent gure. Integrating the second of Equations (4.1L9) once,
we get
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Here EZ is the dimensionless velocl* at the boundary of the laminar
sublayer given by Equation (3.31).

The derivative of concentration with respect to the dimenslonless
velocity at the boundary of the laminar sublayer on the side of the
turbulent core, (de,/dl)g . 7. 4 g» Will be determined from the condi-
tion that the diffusive flows of the atomic species in both directions
— from the boundary between the sublayer and the turbulent core —
are equal, (4.175). Using this condition and Equation (4.190), we
find

de, .
(73“ Rty 0 = A0 = lalBa). (4.194)

Substituting Expression (4,194) in Equation (4.193), and perform-
ing the resulting integration, after determining the integration con-
stant from the condition at the outer boundary (cA = Cpe for u = 1), we
shall obtain the distribution of coneentration in the turbulent corne

€y eyt I(l) = Le(@) = (1 = B)[A e, = La (B,
(4.195)

whare

% "
1 (8) = U} S di S (-‘;-) <A du,

L I T

Equating the values of concentration from Equations (4.,192) and
(4.195) at the boundary between the sublayer and the turbulent core,
and solving the resulting equation for concentration at the wall, we
obtain the following expression for it

FTD-HC~23-T23-T1 261




B

TN

T e e e T
DA P g T N T

o= (1 + 54,y x
X [cA¢+ '[T(i) + Sc I;,(f&_-,) + (1 - a.‘x) I.n(ﬁ:x))- (u 196)

In deriving (4.196), we used Equation (4.178).

The concentration distribution in the laminar sublayer, (4.192),
and in the turbulent core (4.195), may in certain cases be conveniently
used in the form that does not involve the parameter of catalytic re-
combination A . Eliminating A from Equations (4.192) and (4.195)
with the aid of the Expression (4.196), we shall have in the laminar

sublayer

Cp = Capy S (c,, — €+ S I (1) + Se Ia(fia) 4
+ (= @) Lo (82)1 8 — Sc I (), (4. (4.197)

and in the turbulent core

€y = cA,—Sc"‘(cM—- o)l —8)+ (1) = I () —

~ S [ I2(1) + Sc L (@a)} (1 — @) + Se i (3a) (1 — &), (4.198)

In the frozen flow (wA £ 0), the functions L1y and iz become
zero, and Equations (4.197) and (4.198) reduce to relation (4.179) of
the present sectilon.,

The dimensionless integral quantities Iz and Ith[(ﬂ.l92) aad
(4.195)], appearing in the concentration distributions, characterize
the total "power" of the sources of formation of the atomic specles,
contained within a certain volume, whose extension in the y-direction .
is determined by the limits of integration, and the base area may be .
assumed to be equal to unity. The expressions for these quantitlies
can be obtained similarly to the expression for the quantity I (U)
(4.136) in the preceding seotion. For this reason, leaving out simple !
algebra, we shall merely state the expressions for these quantities

in their final) form:
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) 1o (8) = o2 _S duS ( )( +CA) (;A g, (4.200)
g up

Here ¢ is the friction parameter (3.8), C. is the recombination
parameter (4.137), Re , 1s the Reynolds number (4,137), dn/dé is glven
by Equation (4.104) in the turbulent core and by (4.106) in the
laminar sublayer. The equilibrium atom concentration cﬁe) is glven

by (4.68).

The quantity Iz (), which is also necessary to calculate the
concentratlion distribution, is given by

Ity S (4.201)

The velocity at the boundary of the laminar sublayer, 35, Qan
be determined from Equation (3.31).

The concentration profile can be calculated using the method of
successive approximations applied to Formulas (4.197) and (4,198 or
to (4.192) and (4,195). The order of caleculation remains the same as
in nonequilibrium flow calculstions for Pr » S¢ ¢ 1 (see Sevtlon ),

In Bquations (4.197) and (4.198), the first two terms on the
right-hand sides give the sontribution of diffusion o the eoneentra-
tion distribution, and the remaining teems, containing I Iy 3. .,.
glve the contribution of the chemical reactions to this d¢ scv bubiaa.
The mutual effect of diffusion and chemical reactions on gsch other
{3 manifested through the concentration at the wall Cay (5,196},
which depends on the rates of both processes. The flow in the boundary
dayer will be determined by the relative contributions of dirfustosn
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and chemical reactions to the concentration distribution. If the
recombination parameter is Cr = », the contribution of the chemical
4 processes will be infinitely large compared with the contribution of
; diffusion (the sum of the terms containing the integral quantities
in Equations (4.197), (4.198) will be infinitely large compared with
the diffusive terms). In this case, the flow will be steady and the

§ concentration distribution can be determined from the condition w, = 0.

E In the other extreme case, when the recombination parameter is equal

3 to zero (C, = 0), the diffusion process will be the dominant factor

3 (frozen flow). Thus, the objective of the computation roeduces to

§ establishing the role of diff'usion and chemical reactions in the *

transfur processes in the boundary layer.

,% Given the concentration distribution {&,197), (§,198), 1t is
g easy to obtain the expressions for the Reynolds similitude parameter,
é recovery enthalpy and heat flux for a nonst2ady flow in the doundary

layer, For this purpose, we use Equations (4.159) and (4.181), sub-
stituting in them ¢pz 83 glven by (4.197).

As a result, we obtain
2, i "
-;;“-éf B R WAL REY. 1 VL Gy

] | b (LT )5, e, ) ok ™ SO ) &
& Se da @)+ (1 = &) 15 (Ga)) ~ (Lo = 1)S¢ 7, (a0

{&.222)

By By 5™ 4 e 1) 5™, e, ) 4
(L™ 138 1, (1) & Se 7, () 4 (1 = g} By (@)} ==
. e (= )88 Ja (). ' {5.203)

s A M S

o PR AU R RS LY SR | o

| 4 (Lo 8P, b M LT SN (8.208) "
o S& Bulida) & {1 = @) {000 = {Le = 3088 (.3

! The concentration st the wall 1n Hguations (&.202) - (Q.Q?i) is given

% by Squation (4.196), and the lotegral guantitles 1., 1., 1, by

Equations (&.199) - (5,201}, The subssript v in she Expression

4 {%.203) refiérs to conditions at 3 Cthermally insulated wall.
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3 The distribution of enthalpy in the boundary layer is determined
ﬁ § by Equations (4.163) in the laminar sublayer and (4,162) in the tur-
i tulent core upen a substitutlon of the concentrations as given by

: : ' (4.197) and (4.198), respestively.

3 { The temperature distribution can be obtained {rom the enthalpy
i distribuclon by solving Equation (4.74) for temperature. AS a result,
we obtaln

14
©etHagris i AR e

s e,

Felsde (A —B w0, (8,.205)

: A Puprthermore, EBguations {(4.121) aad (4.10%) can be used t¢ detepw
eine the density in the boundary layer and the locel fristicn coelfi-
cient at the wall.

Pigure 73 gives the pegulirs
af caleuwlatiag logal heat Uluses
oh g wodze with the 30° nmair-aagle
at the vepries, l=mersed is &
streas of GRyYEen Hoving At the
velpeity ¥, = T &kadfses, o She
presaursd and LOSESTARUYE In Lhe
oo oning Flow g » 2.$§~3@“& A%

Cand T ow 220 K. The wall iespeore
stues 13 assumed %o equai 720° .
& gosputalion of heat Flures fer
fracen [see Bgustion (%.182);
Bashed curves) and swnsguilibriu

tu 2t Gk Inz

P {see Bquation {(N.2ta}; solir
! curves] Flsws la the Goundary
i, layer was done Lor & nubter of
S values of ihe tatalytlic teconbine
% ] atlen paraneter A, If the sange
k' from 0 to @ [this parametlsr
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differs from the catalytic recombination parameter A, used in the
present section [see Pormula (4.125)] ip only an additional factor
(ay; = 8e2/3 a0

It will be recalled that the value Awl = 0 corresponds to flow
over an absolutely noncatalytic surface, and the value Awl = ® o flow
over an absolutely catalytic surface. The value of the heat flux for
a steady {low in the boundary layer (dot-dash curve) was determined
using Pormula (4.161).

It will be noted that the values of the local frictlon coeffl-
cient, which arce necessary for calculating the heat flux from
FPormulas (4.161), (4.182) and (4.204), were calculated using a method
presented in the preceding section {i,e., under the assumption that
the Prandtl and Schmidt numbers are conatant and egual to unity).

§ 25, Canslusien

The metheds of ealoulating skin frictlesn and heat traansfer in
the tupbulent boundapy layer of a disseclating gas, presented in this
chapier, ape easlly soen $o be an exbension of the wmethods used in

the theory of 4 homogencous gas [low, presented ia Chaplter 111 ,
- {Sections 12 and 1%). 4% thy sawe tlme, oae can point $o a number of

papers written by Soviet and forelgn workers in whieh the approach
$o the probles of the turbulent boundary layer la a dlssouviating gas
giffers ¢ a greater or ledses degree row the approach uwsed in this
chapter.

The case of equilitrium disdvzistion In » turbulent boundary
layer on & ¥lat plate was discussed by 3. 1. Rosterin snd Yu. A.
Roshmarey {22). Thelp analysis was baged onh a sodel of an ideally
dissoclating gas dnd ofn the seal-ofiplrical Prandtl thewry. The
Prasdtl, Scehinldd funbers and thelr furbulent analogs woere assuped Lo
Ge égqual $o unity. S. 1. Rostérin 3ad Tu. R. Koshsarov's sothsd is
largely sismllae to the eethid used in Jevtien 28.
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The effect of equilivrium dissociation on skin friction and heat
transfer on a flat plate for the Prarndtl and Schmidt numbers diffevent
from unity was discussed in the paper by I. P. Ginzburg [23]. The
calculation of friction in that paper was based on the semi-empirical
Prandtl theory.

The method of caleulating skin friction and heat transfer on a
flat plate in equilibrium and frozen flows was proposed by Dorrance.
The basic features of this method and some of the results of the cal-
culation were discussed in Section 25 {see the footnote on Dorrance's
paper).

Heat transfer from a nonequilibrium turbulent boundary layer to
a catalytic surface was calculated by Kulgein [24]. 1In this paper,
the deviation of the dissociation process from equilibrium was taken
into account only in the laminar sublayer, and in the turbulent core,
the flow was assumed to be frozen. A computer-assisted calculation
of ueat transfer was made for various conditions of flow in the external
stream and at the wall.

The methods of calculating friction and heat transfer in &n
ideally dissoziating gas presented in Sections 24 and 25 (for a binary
mixture of atoms ané molecules) can be easily extended to the case of
a flow of a multicompunent disscciating mixture. It 1s for that
reason that Section 25, in particular, gives the expressions for total
enthalpy, Reynolds similitude parameter, recovery enthalpy, and heat
flux in a multicomponent mixture. The computation of the concentratlon
fields for steady and frczen flows in a multicomponent mixture is in
princirle no different from the calculation of the same fields in a
binary mixture. To calculate the nonequilibrium flcws of a multicom-
ponent mixture, data on the mass rates of formation of specles,
presented 1n Sectlon 20 of Chapter IV, must be used.

The method . ¢can be eaclily extended to the flow of a partlally
excited dissoclating gas whose propertles were described in detall in
Sections 20 and 21.
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Finally, in the approximation used in Sections 17 and 18 making
use of the formulas obtained in Sections 17, 18, and in Chapter IV,
it is possible to calculate skin friction and heat transfer in the
presence of a longitudinal pressure gradient. The necessary expres-
sions for the integral thicknesses and the form parameter H¥ are given

in Section 23.

An almost complete lack of experimental data on the character-
istics of the turbulent boundary layer in a dissociating gas prevents
us from estimating the accuracy of the computational methods presented.
Nevertheless, the good agreement between the theoretical and experi-
mental data in the absence of dissociation (Chapter III) leads us to
hope that the methods of Chapter IV, which are an extension of the
methods of Chapter III, will also glve satisfactory results.
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. Footnote (1) on page 186. For more details about thermodynamic
propertles of gases at high tempera-
tures, see the monograph: 2Zel'dovich,
Ya. B., Rayzer, Yu. P., Fizika udarnykh

. voln 1 vysokotemperaturnykh gidrodinami-

cheskikh yavleniy (Physics of Shock

Waves and High-Temperature Hydrodynamic

Phenomena), Fizmatglz, Moscow, 1963.

n g
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Footnote (2) on page 189. Figure 56, prepared by Hansen, has been
reprinted from the book: Dorrance, W.H.
Hypersonic Flow of a Viscous Gas, 1966.

Footnote (3) on page 199. See the paper by M.S. Zakhar'yevskiy
which was already cited in this section.

Footnote (4) on page 200. A presentation of the theory of the
absolute reaction rates goes beyond the
objective of the present book. Those
Interested in the theory are advised to
consult the monograph by Glesston,
Leidler, and Eyring, which was already
clted in this section.

Footnote (5) on page 200. Concerning this question, we recommend
{ the paper by Rosner which contains a

7 £ ' summary and an extensive bibliography:
3 E: Rosner, D. Convective Diffusion as an

. 3 : Intruder in Kinetic Studies of Surface
3 0 : Catalyzed Reactions, AIAA J. 2, No. 4
3 % : (196u3; Russian translation: Raketa.

' Tekhn. 1 Kesmonaut., Nov. U, 1964,

3 Footnote (6) on page 234. The principle, used here as the basis
for our analysls of a nonequilibriunm

- : flow, might be called (by analogy with
; P A the well-known principle, introduced by

3 . ' ‘ L, Lees in the theory cl the laminav

3 B . boundary layer) the principle of local
' 1} i e similitude for the turbulent boundary
/ E: ; layer. According to this principle,

K ! the concentration and temperature
E : (enthalpy) profiles are similar to the
& o0 velocity profiles in each section.

e o g G g i i
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Footnote (7) on page 237.

Footnote (8) on page 254.
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The calculations were done at the
request of the author by 0. K. Zakharova.

A similar result was obtained for the
laminar boundary layer near the front
stagnation point, as reported in
Goulard's paper quoted earlier in this
chapter.
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CHAPTER V

TURBULENT BOUNDARY LAYER WITH MASS TRANSFER
BETWEEN THE GAS AND THE SOLID SURFACE.

§ 27. Introduction

In Chapter III and Chapter IV we discussed the properties of the
turbulent boundary layers which are formed on bodles of various
shapes, 1n the absence of mass transfer between the gas and the solid
wall., When bodies movée at very large supersonic velocities through
the dense layers of the atmosphere, the processes of mass transfer
between the gas and surface begin to play an important role. Strong
heating may lead to a change of the state ol a solld body: to ltg
meiting, vaporization, and the subsequent removal of the surface
material by the gas flow. The first data on mass transfer for bodles
moving at very large supersonlc velocltles were obtalned more than
forty years ago as a result of studles done on the motion of meteors.
In recent decades, interest in the problem hus grown even more due
to the advances in rocket and space technology. The pheromena which
occur when moving bodles are heated to very high temperatures became
the subject of extensive experimental and theoretical studies. One
of the most important results of those studies was the conclusion
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that 1t is possible to use speclal ablating coverings in crder lo
thermally insulate the front portions of rockets and spacecraft. At
the present time, it has apparently been accepted that the heat
protection of hypersonic vehicles by means of ablating coverings isg
the most effective method from a weight and design standpoint. Mass
transfer plays an important role in coocling the walls of combustion
chambers, supersonic air scoops, nozzles, rocket engines, etec.

Heat protection coverings are widely made of construction syn-
thetics, synthesized on the base of thermoreactive phenol-formaldehyde
and epoxy resins [1]. With respect to resin-reinforcing fillers, use
is made of textolite, glass-textolite, asbestos, chromium, high-melting
oxides of magnesium, aluminum, nylon, Terylene, and other materials.

Materials that decompose at relatively low temperatures (up to
1000° K) are of great interest today: teflon kapron, polyethylene,
organic glass. When heat protection coverings made of these materials
undergo decomposition, the boundary layer becomes 'filled with gases
of various molecular weights, which in many cases leads to a strong
"plowing effect" that reduces the heat flux to the surface. By now a
great number of varlous heat proof mateclals have been investigated
and applied. However, regardless of the dlversity of these materlals,
1t was noted that heat protection coverings decompose basically due
to the f'ollowing physical-chemical processes: surface pyrolysis of
the binding depolymerization, vaporization, sublimation, combustion,
melting, erosicn. In a majority of cases, the rate of combustion of
the coke residue of the binding resin ls used as the defining rate
of decomposition, of a synthetic covering. Removal processes in the
liquld phase may play an important role if a covering has a large
percentage of guartz and glass fillers. An example of such & heat
protection 2overing is an asbestos-textolite covering in which the
following processes are observed upon heating: coking, dehydration
of asbestos, chemical interaction of coke residue with oxygen and
nitrogen, sublimation of cnke residue, flow of melted silica fiber
(8102), vaporization of melted 8$10,. The result of all these
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processes 1is that the composition of the gas mixture in the boundary
layer becomes very complicated [2]. Depending on.the conditions, the
mixture may contain the following components: 02, 0, N2, N, C, 02’

C3, CO’ cog, CN, HCN, H2, H, Si, sio, 8102, ScC, Sicz,_Si2C and others.,

The process of surface decomposition through the mechanisms
indicated, all at the same time or some of them, has come to be-
called mass removal. Gne of the possible mechanisms resonable for
mass removal is illustrated in Figure T4, a. '

Externs . stream " External stream
Boundary layer Boundary layer

= v |9
{oke vapors
|

.

» Gas blowing
Pt IAEREENYRNNN!

oke layeriIuX ; nc1a M

Porous materials
- -Zones of thermal

---gtructural reactiong|Gas reservoir:
i P N Y ry sy vl

a) = b

Figure T4

In certain cases, a surface muy be cooled by fercéd injectlion of
a subsbtance into the boundary layer through the porous wall (Figure
74, b). One may use air, water vapor, Jight gases (hydrogen,
helium), and other gases and vapors [3] as the cooling material in
porous cooling.

The presence of lateral mass flow in the boundary layer, caused
ty the injection of mass through the porous wall, sublimation of a
s0lid surface, or vaporizatior of a liquid film, has an effect on
the structure of the boundary layer, {(veloecity, temperature profiles,
etc.) whlch 1s proportional to the intensity o the rlow. Along with
the change of the local characteristics of the houndary layer, its
. integral characteristics are modified. 1In partlcular, the injectien
usually leads to a reduction of {ricticon and neat flux on the wsil.
Exceptions may occur only in thone casen when the masa injeckesd inte
the boundary layer reacta chemically with the ecmponents of the
fundamental flow, and the heat thug released may 10 the inal anatyedls

~3
-3
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result in an increase of heat fiux on the wall. The phenomenon in
which friction and heat flux are reduced upon the injection of mass
into the boundary layer is sometimes called the "blocking effect".

The present chapter will be devoted to a description of some of
the phenconena mentioned above and to a presentation of the methods

- of calculating friction and heat transfer for the case of mass

injection 1nto the boundary layer. We shall discuss flows n2ar a
porous (or sublimating) plate immersed in a supersonic gas stream,

with no chemical interaction between the mass injected and the gas of
the fundamental flow. '

In conclugion, we note that a solution of this problem, either
of an experimental or theoretical nature, is still far from realiza-
tion. In fact, only the first few results have been obtained. Many

~theoretical and experimental aspects of the provlem remain unclear,
In view of this fact, 1t seems advicsable to give a brief survey of
the bacic approaches used in this area of the theory of the
tvrbulent boundary layer,

§ 28. Baslc Trends in the Study of the Turbulent
Boundary Layer with Mass Transfer
Between the Gas and the Surface

This area of investigations has developed primarily during the
past ten to fifteen yesgrs. An acquaintance with papers related to
this area proves that the development has followed the same paths
as the development of the Fheory ol the turkulent boundary layer in
a compressihle gas in the absence of mass transfer between the gas
and the surface {some results of these investigations) were discussed
in Chapter III)}. Similarly as before, there are three principal
trends: (1) semi-empirical, bassd on 8 generaiization of the Frandtl
and Karman Formulas, (2.68) and (2.069), to the flow of a cowpressible
gas with mass trarsfer between the gas and the wall (thia spproach

Smay also be ghavacterized as one usging the logarithmic velocity

profile”; (2) semi-empirical, based on power-law velocity profiles;
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(3) empirical, based on direct use of experimental data.

Thus far, the first approach has been followed the most. 1In a
nmajority of papers following this approach, the following expression
for the friction stress in the boundary layer is used

T =Ty 4 (PY)ul (5.1)
Here (pv)w is the mass flux at the surface of a body.

Equavion (5.1) can be easily obtained using the following simple
considerations. We expand (1t - pwku) inte a Taylor series

¥(5 3) = puva (B ) == ¥(8, O [ (e —povat)] y o
axt
Noting that the equation of motion (2.52) for a flat plate and the
second of the boundary conditions (2.73) imply that

L"‘% (S0 pw"w“)]uﬁo =0,

we arrive at Equation (5.1). The fact that expression (5.1) is
used for the friction stress means essentlally that we assume the
mass flux in the boundary layer vo be constant

v = const v (pe)y,

Equatlon (5,1), as can be easily seen, leads to invalid results at
thhe oukar edge of the boundary layer, where we must satiafy the condi-
tlon t @ 0 for u = Ue‘

The qetual character of the fristion streas diatribution in the
boundary laysr with mass addition may be ageen in Plgure 7% (4), which
shouws the results of the friection meanurements for various values
af the injection parameter B, defined by

o 5 ¥ *
o TRn amre 15.2)
el o' Y. .
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The distribution of the tan-
gential stresses was given iu
Figure 75 as a function of the
dimensionless distance from the wall
y/8, where § is the thickness of the
boundary layer. It can be seen from
the dlagram that in the absence of
mass addition (B = 0), the maximum
of the friction stress 1 will occur
at the wall. With an increase of
the Injection parameter, the friction

Pigure 75 stress at the wall decreases
neticeably, and in the boundary

layer it noticeably increases, attaining a maximum in 2 region
adjacent to the wall., The same results, given in the form of the
relation v/t = f(u), are shown in Figure 76. We can sece that in
the region U < L,5 the distribution of the friction stresses is
described well by Equation (5.1) (dotted straight line) written in
the form

vy, {4 B (5.3)

Disregarding the fact that Equation (5.3) poorly deseribes the
distribution of tangential 2tresses in the outer region of the
boundary layer, it turng out to be fully applieable in the calcula-
tion of the intezral characteristics of the boundary laver (friction,
displacement and momentum loss thieckneasses, otd). This can be
explained using the same conziderations as those presented in Sectlon
10 because of Equatlon (3.1).

Using Bquation (5.%), the Prandtl and Karman Formulas, (2.68) and
(2:69). may be used to obtain the followlng expresstiens for the
velucity profiles in the turbulent core of the boundary layer:

":‘(T*:,q) -h‘i]. (5.4)

. \
q- 2y oKp
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. Here Cls’ CS’ Cﬁ are the constants of Iintegration, and n and ¢ are

given by Equations (3.8).

It is not hard to see that,

* N
‘ T’E&,_‘ ;f ;gggﬂ when there is no injection (8 = 0),
ok , ;5:% Equations (5.4) and (5.5) reduce to
ol 1°\ | ogo2y | Equations (3.6) and (3.7), respec-
4 “ tively, which gives the veloeity
/, “KR profile in the turbulen. core on a
¢ s - nonpermeable wall.
2 -
Equatiens (5.4) and (9.9) lead,
Y L I respestively, te the following
expressions for the momentum lesz
Plgure 76 thickness (2,76):

‘ B\t .
o &:_:El” § W @l =\i7§ > ( <i;;' \ : ] 4
o () s en]ll ) o s

& L
O ;E‘A 2 L YR ( ‘z{:“ ) 3 b {%.73
& :—u-:-gx;S(?;ﬂ)ﬁux—Q)v%:[u,S TR i |8 -

R
Tt the abzence of injeotion (B = 3) Hguations {95.6) and (5.7} reduts
to Equations (3.9) and (3‘16)'respéet1vely(1). '

The differences 4mong the parury wpitien by varisuy worker: are
usualily related o the determination of the conatanteg ¢f lnisgralien
Cyr Sgy nnd L0 the setnads of evaluating the integrals in Egustions
{&:6) and (3.7)(33. One of the firat papers sontiining an analyate
of the turbulent baundary layer on 2 porcus plade with additien of
‘ mazs of Lhe same physical-shemi¢al propertiesd as those of the gag in

the oneoaing flow, was weitton by Doreance and Dore (52, The
velocisy profile 'n 3hial paper was delerfined on the basla of the

Pootnotes (1) and (2) appear on page 3°1.
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Prandtl formula [see (5.4)]) under the assumption that the distribution
of tangential stresses in the boundary layer is described by Equation

{5.3). The friction coefficient was found using the usual method with
the aid of the integral momentum relation (2.80), which in the case

of a flow over a flat plate becomes

*zrz-éf(i+-n; (5.8)

The Dorrance and Dore method was =xtended to the case where a aub-
stance with properties different from these of the encoming f{low was
added to the boundary layer, by V. P. Motulevich {6]. Later V. P.
¥otulevich extended this method to the ease of the sublimation »°
the plate surface, at the time improving his computational procedures
f7..

L. Ye. Kalikhman [8] investigated the turbulent boundary layer ia
an incempressible fluld with the addition of & substance with the
same physieal propertlies as those of the zas flowing over the surface.
He ebtained 3 solution on the basis of the esi-enpirical Prandtl
shaopy (2.68) using the coundary condition at the wail, sitilar to
the condition in the boundary layer of a free stresmline, which ig
equivalent $o sssuding Lhatl there iz no laminag sublayer near the
wall,

The question 8f the sIfecet of the Prandi]l and Lewis ﬂﬁ@ﬁﬁrérﬁﬁ
siin Prictias of & {130 plate with injéction Lthruugh ihe porous
wiall of a subatarece lners relative "o the gas s Lhe Dundasental
Plow was studied in the paper by I. P. Ginzbure, 8. V. Kocheryahesnitew,
and X, 1. dMordvineva {91.

At anslysls of the problew in grestion on Yhe Panrlz of the
Iiniting friztion and heal Transfed laws ¢an be found in lhe papers
by S. 8. Kutateladie and A. I. Looni'yov et al. {183,

Fhe somi-ompirival theory o the turbulent boundary layer on a
chetsieally netive ablatine surface was developed by Benison [111
and applied %o ablating graghite Furfaced.

e
‘o
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The second approach, based on power-law expressions for velocity
rofiles, has not been pursued to a great extent. Among the papers
using the second approach, we shall mention one written by V. D.
Sovershennyi [12] in which — in addition to a flow near a porous
plate — he discussed flow on a permeable surface with a small
longitudinal pressure gradient.

2
o bt
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The empirical theory of friction and heat transfer on a porous
plate with injection of air into air was proposed by V. P. Mugalev
‘[13]. The method is basad on the similarity, established by the
author experimentally, between the flow with & longitudinal positive
pressure gradient and the flow on 2 porous plate with injection.

By The similarity 1s seen in the veloclty profiles in the boundary layer
3 X for the flows indicated above. Introducing the form parameter fw =
_ {(Pwtwlpll ) Re** ™3y, P, Mugalev brings the integral momentum relation
_@' 3 to a form allowing its linearizatlon, similarly as it was done in the

T Y T T R B

)

well-known L. Q. Loytsyanskiy method [14]. The rest of the compu-
. 3 1 tation proceeds in the same way as in the case of a boundary layer
with a longitudlnal pressure gradient. A

-3 £ The empirical theory of heat and mass transfer on a flat plate

' in the presence or absence of chemical reactions In the boundary

x_ﬁ. : layer was developed by Spalding, Auslander, and Sandarom (see their
paper, already quoted in thils section). Thelr method is tc an

extent similar to Spalding and Chi's method of calculating friction

f on a nonpermeable plate, discussed in Section 1lU. Just as in the
latier case, In the paper in question some of the determining
functions are chosen on the basis of an analysls of the semi-empirical
i methods of computation, and others on the basis of experimental data.

SR
el

o e bz
T R T S O AT Bt

i L As an aid in the computation of the drag, heat transfer, and

) : consumption of the cooling substance, tables and graphs were con-

A S structed for Mach numbers ranging from 0 to 12, and the temperature
" g factor (Tw/Tm) ranging from 0.05 to 20. The cases considered

X . involved injection of air, hellum, and hydrogen into the air. For
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hydrogen, two groups of tables are given: one in which combustion
was considered, and the other in which it was not.

It will be noted that Spalding, Auslander, and Sandarom's paver
also contains a detailed analysis of many semi-empirical methods

as well as an extensive bibliography.

§ 29, Experimental Investigations of the Turbulent

Boundary Layer with Mass Transfer

At the present time we have at our disposal a fairly large amount
of experimental data on the effect of injection of various gases on
the characteristics of a turbulent boundary layer (velocity and
temperature profiles, friction, heat transfer, ete.). A majority
of the experimental data were obtained for flows without longitudinal
pressure gradients (plate, cone)(3). Unfortunately, great technical
difficulties in conducting such experliments have in many cases
resulted in significant errors (up to 100%), which is indicated
by vhe large discrepancies in the experimental polnts obtained by
various workers for the same conditions. The basic experimental
method of determining local friction had for a long time involved
measurements of the veloclty and temperature profiles. More
accurate direct methods of measuring local forces of frictlon with
the aild of a "floating" element, used extensively in the investiga-
tion of flows on nonpermeable surfaces (see Section 1l1), are still
very lmperfect. In a number of papers, the accuracy with which
various characteristics are measured is insufficient. These circum-
stances resulted in a situation in which the effect of Individual
parameters on friction and heat transfer still 1s unknown, and in
certaln cases, the experimental data obtained by various authors are
contradictory.

In the present section, we shall mainly discuss the results of
the experimental studies of the boundary layer characteristies, with

Footnote (3) appears on page 321,
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injection at supersonic velocities. The experimental data for sub-
sonic flows will usually be glven in summary diagrams.

V. P. Mugalev's experiments(u). V. P. Mugalev obtalned extensive
data on the flow structure in a turbulent boundary layer with
injection, and on the effect of the individual parameters (Me, Re
numbers, properties of the injected gas, etc.) on heat transfer.
The experiments included measurements of the velocity, temperature,
concentration, and density profiles in the boundary layer, and of
heat transfer on a fiat porous plate, for a wide range of flow
parameters and injection intensity.

X

Figure 77 gives the veloclty profiles for conditions involving
addition of air to an air stream moving at a subsonic velocity
(Ue = 51 m/sec). We can see that, as the iInjection increases, the
velocity profiles become deformed and less solid. For a large
intensity of injection (VW/Ue > 0.02), the profiles undergo an
inflection, and the derivative (Bu/ay)w tends to zero. From this
variation of the veloelty profiles, V. P, Mugalev concluded that
for moderate injection intensities (up to an appearance of an
Inflection point), the effect of injection is similar to the effect
of_a longitudinal positive pressure gradient, and for larger injection
Intensities, the veloclty profile becomes similar to a jet profile.

10 s

4 R
‘”“w s P, / 5 .A/ '

”
W 7

a2 A

el Y=s1m/sec
g 8 4 & é 0 /.4
3 mm
Figure 77

Footnote (4) appears on page 321.
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Figure 78 shows the velocity and temperature profiles, obtained
under identical conditions (Me = 0.08) with air injJection. On the
axis of ordinates in this diagram we plot Y/Ye and Y/Ye £ where

4
o

Y =\~~~ dy, and Y, and Y_ . are the coordinates of the boundaries

H -"r (r)

of the dynamic and thermal boundary layers. The injectlion parameter
B¥¥ is given by

[TR7 02 T
34 e W R WL,
I p, Re T

¢
A comparison for the velocity profiles and the stagnation temperature
gradients shows thelr approximate similarity. At the same time, for

large values of the injection parameter, heat transfer is somewhat
greater than momentum transfer,

1, 1
¥ ] %
a8 > w”

oo —t—rz o ﬂmia/;
446%W“W? Qngoen " (ui=4ms ,“@7/
7" Qo aiss 407
g2l eioner, s— wrspdl |
i gosey) f o gz,
0779 W 0 0 42 o @ 4w
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Figure 78

In Figure 79 a similar comparison was made for the velocity and
relative concentration profiles in the boundary layer for injection
of carbon dioxide Into the alr stream, also obtained under identical
conditions (Me = 2.5; /T, = 1.1). We can see that the velocity
and concentration profiles are approximately similar.

Thus, in this case, we may conclude that injection of gases into
a boundary layer has a similar effect on the velocity, temperature,
and concentration profiles. At the same time, the author notes that
there does not exlst any similarlty between the profiles indicated in
the case of injection.
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Measurements of heat transfer were made in the wind tunnels with
injection of cold gases (helium, alr, carbon dioxide, argon and
krypon) into the boundary layer. The Mach and Reynolds numbers
varied within the intervals 0 < M_ < 3.7; 10° < Re_ < 107. The
temperature factor Tw/'I‘ro varied for 0.5 to 1. The heat transfer
coefficients for transfer to porous surface were determined on the
basis of the heat balance equation from the measured values of the
temperatures of the injected gas at the wall, flow rate of the
injected gas, and the external flow parameters.

The results of the experlments in which the effect of Injectlon
on heat transfer was measured with addition of various gases and for
various Mach numbers of the external flow, are given in Figure 80
{1 -« helium (Me = 2,5); 2 - carbon dioxide (Me = 2,5); 3 - argon
(Mg, = 2.5); 4 « krypton (Me = 2,5); 5 - ailr (Me A 0); 6 - alr (Me =
2.5); 7 ~ alr (Me = 3.7)]. According to the author's estimate, the
maximum possible experimental error did not exceed 10 - 40% for
(M /M By o % 0.5 = 5.

On the basls of the data given in Figure 80, we conclude that the
variation of the parameters Me’ Rex. and 'l‘w/Tro In the range

investigated does not have any effect on the oriterion relations

‘lu-/(‘lw)uhnu = /l (B!.) and qul'(fl.=)m-s = f:g (l’,.a).
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'“%ﬁl—f. | - [Here B, = (pwvw)/peUech,
’ ud s I o 2
ol i : B,y = (p, v, )/p U, (c.) H
D, v E % ho ww'/Pele *nIB
q75 xfiﬁi . o £ q . (a.) are the heat
8 ¥, * 7 i w w’'B -
xC;K e J1718 h = 0
g0 ?A&_io : @9}  fluxes to the wall in the presence
NG and absence of injection, and
025 . S T, = idem].
A
L
On the basis of an analysis
g 7 2 g 4 5 &
‘ﬂ)b%w of the experimental data on the
.
T2 effect of injection on heat
Figure 80 transfer, V. P. Mugalev proposed

a simple approximate formula
for heat fluxes

_ T
('Tw)u,‘=o

=1-049 (325) B (5.9)

Here Ml and M2 are .the molecular weights of the gas at the outer
edge of the boundary layer and of the Injected gas; b = 0.35 for
0.2 < (Ml/M2) <13 b=20.7 forl« (Ml/Mz) < 8; b=1"for (Ml/M2 =
14.5. The approximate Formula (5.9) 1ls applicable for g/(¢.)u—o> 04 -

Pappas' and Okuno's experiments [15). These authors investigated
the dependence of the mean frletion hoeot ﬁvarsfer-coefficients, as
well as of the recovery coefflclent and the Reynolds simlilitude
parameter on the injection of alr, helium, and freon-12 through
a porous wall of a cone with a 12° angle at the vertex for the Mach
numbers of the air stream (on a cone) 0.7; 3.67; 4.35 and the
Reynolds numbers on the order 9.5'106.

The results of the measurements made by Pappas and Okuno are
given in Figures 81 - 89. The followlng notation is used in these
figures: Cp is the mean friction coefficient; ey is the mean heat
transfer coefflclent; By, = 2p,0./0 Veler)u » 18 the injection parameter for
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a supersonic flow; Br = 2p0/pelm (er)s=0 15 the injection parameter for
a subsonic flow; Ue’ Pe is the velocity and density at the edge of a
boundary layer; Me is the Mach number at the outer edge of the
toundary layer (in the case of a subsonic flow He = Mw); r = ('I‘r -
Tw)/Tg - Tw) 1s the recovery factor; T, i1s the recovery temperature;
Tg is the stagnation temperature in the outer flow; Rex = Uepex/Gu
is a Reynolds number for a supersonic flow, Rex = U px/u, is the
Reynolds number for a subsonic flow; x is the distance measured
along the cone. The subscript "zero" refers to the parameter values
in the case of no injection.

Figures 81 and 82 are plots of ¢p/(c)ume ON @ thermally insulated

surface versus the Mach number for various values of the injection
parameter BFO'

In addition, Figure 82 also includes the experimental point
obtained by Mickley and Davis [16], obtained by measuring local
friction on the basls of the velocity profiles on a plate in incom-
pressible fluid. Inspection of PFigures 81 and 82 enables us to
conclude that the Mach number at the outer edge of the boundary luyer
has a substantial effect on the ratio @/lerlase. This effect increases
with an increase of the injection parameter BFO‘ '

Figures 83 and 84 show the results of the measurements of the
heat transfer coefficlients for various injection intensities of
helium, air, and freon-12, and for Me = 3,67 and 4.35. The same
data for helium and alr, supplemented by data for Me = 0.7, are
shown in different coordinates in Figures 85 and 86. Figures 85
and 86 make it clear that for M, ranging from 0.7 to 3.67, the
effect of the Mach number on the ratio eyllen)n-« is small, which agrees
with the data obtained by V. P. Mugalev consldered above. For Me
in the range from 3.67 to 4.35, the character of this dependence
changes sharply, which is in disagreement with other results
available, as well as with the results obtained by the same authors
in the interval 0.7 < M, < 3.67. PFigure 87 is a plot of the
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; Helium injection
i
’ Hr
M recovery factor r versus the
Pigure 85 injection paranmeter for the

Mach numbers 0.7 and 4.35. As
can be seen from the diagram, for the Mach number 0.7, the recovery
factor for air and freon injection deoreases with an increase in
the injection Intensity. For helium injection, it first increases
up to 1.25, and then falls off, For N@ = 4,35, the recovery factor
firast decreases for all injected gases, and then beccmes lapszer.

The faet that the values of the recovery factor exceed unity is
particularly striking. '

#lgures 88 and 89 represent plots of the Reynolds siallitude ps=-
patol op gcn/e? versus the injeetion intensity of alr and heliun for
various Maech nusbers., We note the character of trke variation ol the
Reynolds similitude varameter for helium injection (Figure 89) at
supersonie velocities. Firat the paraseter ingreases, attailning
a saxismum equal to 1.39, and then dicreases noticeably.

An analysis of the expeilmental data obtain by Pappas and Okuno -
shows that an injection ol a substance into the boundary layer leads
to a significant change in the characteristics of the boundary
layer. Moreover, the charaster of the varisijon of sudh quantitiss
as the recovery Tactor and the Reyrolds similitude parnmoter differs
signiTicantly fro# the behavior of these quantities when teésve s
no injedtion.
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Pigure 88

Fegarell and Saydah's
esperiments {17). The paper by

Pagarol!l and Saydah contains the
results of a hypursonic wipd
tunnel investipgation of the
effect of air injection on
friction apd keat transfer in a
turbulent boundary layer on a
porous cone at Mack nunbers egual
to 5.3 and 8.1 on the cone, znd

. for a variation of the injection

'(l'

paratieter K= “1fxigjf= fros 0 to

20. The halfeangle at the vértex
of the cone was 7.5%.

 Pigure 90 18 a plet of the
patio of heat rlux xith injeetion
to heat flux without tajeetion

versus the injection paraseter fop
varisus values of the Naek nusber

~at the ¢dze of the bvoundary layer.

Figure 90 also contalng the data
of other workers {points in the
flagran have no nases). The

seattor of the experimental points 1¢ falrly lirge, 4nd thus 1t 13
diffleult toestimate the lafluehce of the Mach nuther on heat rlux.

PrO-HC-23-723-71

290



Ry et ki <o A R

DR et Al s i s e

To a Tirst approximation, we can apparently assume that the Mach
number does not have an effect on heat flux. The curve given in the
firure was calculated using the following approximate formula:
l{‘ I ) 2’ (I i
TR ['Tl“) ’IJ =3B, {5.10)

Zxperimental data obtained by other authors. Flgure 9], adapted
from Nash's paner(5). 1s a summary plot of the experimental data
obtalned by various authers who measured skin friction with inJuction

(vy 1s the dynamic velocity). The same figure includes a curve
caleulated using the formula

e =

. -
oo exp{ “M( )l ’;T,']ZT,‘;

.-:n-.,.

YA 'w el (5.11)

L ]

Zquation (5.11) was obtainaed by MNash as a generalization o the
Turcotte formula [18]) introduced for an incompressible fluid.

Examinatien of the above experimental results of injection of
vaprious wubstances into a turbulent boundary layer enables us o
draw the following eonclusioens.

injevtion of & substance into a boundary layer lowers She skia
friotion and heat transfep oa the surface. An ianjection of light
2ases hag the greatest effeet.

The veleeity profiles in the beundary layer undergs distortisn
upon injeetion, beconing ‘esg 30lid a3 the intensity of iajeation
inoreases.  For intense injeotion, an Infleotion point appesrs on
the velpelty profile, and the proflles themselves resesble Jot

profiles.

Indectlon of varlous gases 1oto the Loundary luayer may have i
ereut er'Tact on the recovery lacter and the Keynolds sismilitude
parameler,

Footnate (4) appears on page 322.
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Figure 91

The Mach number at the outer edge 2f the boundary layer haz &
noticeable effeet on friction [eylfep)sigl. The effeet is greaster,

the greater the intensity.

A majopity of the sxperimental dabta indicates that the Magh
number hag no effect. {or a weak one) on heat sransfer leufiendy, »
erileda, ol »

In conglusion, e nole that all the data considered abovww were
chtalned 1o experiemmt: lavdlvivg nonrendting zas sixtures.

The nusber of studles of the turbdlent bourdaey laver @1th an
{njection of ehesically active 23863 13 At Lhe prezent tise very
 legsed {19). '

i._.‘%g“’? _ i@}n},ﬁ' r ¥

Sanditicng 8t the Wail snd 2t the

C Muger Bawe of the HBoundaee Lager in the
. Eresense of Nazs Pransler Bstwesn the Suptaps

- and Yre fas,  beay Flax at the Wall

The Formal boundary conditions fer Lhe losgitudinal veleeity
component, colicentration, 364 tutal enthalpy in 1he provende of sase
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§ transfer between the surface and the gas can be written in the
Z usual form
. a=0, =, H=h, mry=0:} .
w=Upci=co H=1Il, for y—ro. (5-12)
A
The boundary condition for the normal veloclty component at a
o permeable wall has the form

v=1v, at y=0 (5.13)

in contrast with the condition v = ¢ at y=0 at a nonpermeabls wall.
The surface of a plate is usually assumed to be semipermeable, i.e.,
vermeable for the injected substance and nonpermeable for the gas
flowing around the surface.

The expressions for the enthalpy at the wall and at the outer S
edge of the boundary layer have the form

hu‘ = F_!cilrkilrv hi.r =2
H

< f/'as'"

C,,i(IT +1I';'. (5 'lu)

B T o o Tt T g B Tt R A g ANk =Pt o v g e e PG et i

Te

H, o= by _'_";. . he= Zc"'h*" Ry == S epidT - I, (5.15)
i o
The species concentrations at the outer edge of the boundary
'% - layer, Cyqr are usually assumed to be known from the solution for
i the external flow. In a majority of cases, it is assumed that the
B external flow is in a state of thermochemical equilibrium, l.e.,
i ¢ cilv Thus, the boundary conditions at the outer edge of the
§ v boundary layer are usually completely defined. The conditions at
' the wall for the concentrations ¢, and velocities v are inter-
dependent., as will be secn later. The value of v, may, in prineciple,
"be specified if we deal with injectlon through a porous surface.
The valuss of concentration at the wall, Ciy? in thls case must be
determined from auxiliary condltions In the course of solving the
problem.

e e TNV s T
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In the case of a flow over a sublimating surface, the normal
velocity component Ve cannot be arbitrarily specified and must,
Just as Fhe concentration at the surface ciw’ be determined from
auxiliary conditions in the course of solving the problem (in the
case of equilibrium sublimation, one of these auxiliary conditions is '
given by the Ciausius-Clapeyron equation, which relates the concen-
tration of the sublimate <o the temperature and pressure at the wall).

In order to derive the auxiliary relations connecting the flux
of a subétance injected into the boundaryAlayér through a porous
surface (or forming due to sublimation) to the conéentrations of
lhe st -cles at the wall. we.shall eqtablish the condition of con- -
serva. ion of Qpeciea i at the gas-solid interface (Figure 32). The

figure shows .that species 1 travels
‘from-the gas -to the wall by diffusion.

" df . B
2o, (B 5 The mass flux of species i migrating-
I i Gas - in this way is obviously equal to
1 w . gr \ )
‘& - Solid (Pf”i—,ﬁ})"_ [ % is the effective
P (Cra)- : : 4iffusion coefiicient v1.58); here L L
“ Figure 92 we conplder mass diffu31on] ‘At the

‘e

same time, specles 1 travels from
the surface into the boundaryilayer Wwith the flow of the substance,
i (pv) injected through the wall. The amount of speties 1, carried -
§ in thiu fashion, is obviously equal to (pv) cy . In addition, if \
: species 1 becomes a component of the mixture, injected into the
i boundary layer through the peorous surface (or sublimating) and the
i _ concentration of the species inside the surface is (ciw)’ then the
i : amount. of species 1 entering the boundary layer through Injection
} will be equal to (pv)w (ciw). If a chemical reaction occurs at the ‘
: wall, as a result of which an amount giw'of species 1 is added (or »' . .
: subtracted) (giw is the mass rate of formation of species i per unit
area), then the condition for the conservation of speciles 1 at the
f wall, taking into account all the transfer processes indicated above,
P can obviously be written in the form . : :
1

/

N de .
i ¥ 'b”l r ('_07}')”‘ -l Pubw (e~ (ciu')~-]‘ (5 . 16)
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Substituting the expression Biy (4.35) into the left-hand side of
Equation (5.16), we get

6«“

[ (‘—y)w = PuPy [Cii~— (c1p)-]1 =

. (5.17)
=kyy [(Pci):oi —~K w(pcj)wj]-

For species that are not contained in the mixture injected into
the boundary iayer, the value of (ciw) may be set equal to zero.
When only one specles is injected, (ciw)— = 1. It is obvious that
for an injected mixture inside the wall, we always have ?(ﬁd_“=h

If there are no chemical reactions on the surface (giw = 0},
condition {(5.16) bacomes

de
Pyl (clw - (Ciu-)-] - pr(w (_0",‘}')"! == 0. ( 5 . 18)

When one species 1s injected through the wall [(ciw)_ = 1], Fquation
(5.18) can be written in the form

60{
Pl = PuPuliiy pw@iw <—517)u" ( 5.19 )
Now we proceed to consider the heat balance at the gas-solid
interface (Figure 93). The heat is supplied to the surface of the
body through heat conductivity and mass diffusion

The heat is carried from the
surface to the boundary layer by

or o . 26
Wl o) [A 55 P F Bk 5!
Flerw Pt /347 ‘F‘Q‘ay)w_ the flux of the substance Injected

‘ ¢ into the boundary layer: (Pu"u)zijcmhv- ;
as
Solidw. the followinpg heat flux flows in the
( direction from the solid body
toward the intepface: v-uwi(eiohin)-
Wopn el ‘
(temperature gradient in the body is
Flgurce 93 assumed to be zero). Thus. the -

heat flux contributing to the heating

295
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— Pwlu 2 [eqwhyy — (Ciwhiv)-). ( )

Taking into account the expression for the heat flux from the
gas to the wall, (4.147), we bring Equation (5.20) to the form

q= %%[(%)w + ‘?‘(‘-e« — 1)l (G2 Jol-

(5.21)
—PuVy 2 Leswhyo = (Cruhia). .
For sublimating species we can write
("tw)— = hiw — Iy, ( 5. 22)

where hiL is the heat of sublimation of species i. Substituting
Equation (5.22) into the expression (5.20), we get

T
4= A‘u' ("67‘)' -+ ; pw:f[iwhw (’%‘)w -

r
= Pubu 2 h"l) u‘{-u - (C‘w)_l — pmvth‘ ( e 23 )
{
where

hL = Zl’(ci,u)_hu‘ ( 5 . 2u )

is the total heat of sublimation.

By expressing the diffisive flow of species 1(M9\J%3L with the

ald of Equation (5.18), we obtain frowm Equation (5.23) the following
expression for heat flux which is useful in practica’® calculations:
Q= by (-%f,—')w"‘ ‘\? Buuliw = (Pubu) Be. (5.25)
i
In conclusion, we note that the analysis done here for a sublimating

surfavce can be easily extended to the case of vaporization with a
gas-liquid interface. One must only replace the heat of sublimation

206
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h, with the heat of vaporization hv.

L
The conditions (5.16) - (5.19) obtained in the present section

relate the flux of the substance injected into the boundary layer

(or produced due to sublimation) to the concentrations of the specles

at the wall. Thus, all the boundary conditions at the wall are now

fully determined.

§ 31. Veloclty Profile and Friction on a Flat Plate
with Mass Addition to the Boundary Layer

The expression for the velocity profile in the turbulent core,
based on the Karman formula (2.69) and on the distribution of the
stresses of friction in the boundary layer (5.3), in general has
the form (5.5). In order to determine the constant of integration
C6 in Equation (5.5), we make the same assumption as in Section 12:
we assume that the derivative dn/d¢ at the boundary of the laminar
sublayer on the side of the turbulent core has the same value as in an
tncompressible fluid in the absence of injection, l.e., (dn/«:lo)"z",Q =

1/f = va. In other words, it is assumed that (dn/d¢)nl+0 does not

derend on compressibility, heat transfer or mass injection. The
turbulence conztants ¢ and a will be assumed to be equal to their
values in an {ncompressible fluld (x = 0.4, ¢« = 12). This assumption
abeut the value of the derivative at the boundary of the sublayer

and the turbulent core, as jndicated by the alope of the velocity
profiles in the ocase of injection (Figures 77 and 78), will

not result in any noticeable errors in the computation.

Using the above assumption, one obtains the following expreasion
for the veloeity profile in the turbulent core:

& 3R AW .
Wb § e § (T%:)a da | . (5.24)
C} wy

The slope of the velocity profile in the turbulent core is obvioualy
given by
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dy B0 oo\
& =Tew[x | (TT) dal.
JA\TFE] (5.27)
Here GZ is the dimensionless velocity at the boundary of the laminar
sublayer (the question of the determination of ﬁz will be considered
below).

In the case of a flow of constant density over a plate and
injection into the boundary layer of a substance of the same
composition as that of an oncoming flow (p = const = pe), the
expression for the velocity profile (5.26) after evaluation of the
integrals will become

9=y, —a VT g, +
+aVTF By n,wp[%‘:(y‘m_ym)} (5.28)
Here
”’E%ﬁ:&" v.ah§—:':’.‘ada€‘ (5'29)

In order to determine the velocity profile in the laminar sublayer,
we use Equation (3.106), first simplifying it by assuming that
viseoaity is constant in the sublayer (u = const = N")s Next,
gsubstituting the relation (5.3) in Equation (3.106) and performing
the integration, we obtain the followinz expresslon for the velooity
profile in the laminar sublayer: ‘

we g lexp(Ba)~ 1), (5.30) -

Por small injection intensities, expanding the exponent in a gerles

and retaining only the rirst two tersms of the serles we Iind

| : (5.31)
Vsq(w-%:tl‘q). 5.3

When there 18 fno injection, the éxpr@ssiaﬁg (5.30) and (5.31) reduce

to the expressions for the linear veloecity profile, (3.30) whiceh

were obtained earlier. '
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. The velocity profiles in the

, laminar sublayer, calculated using
¢

4 } [ ar | @ 2 Formula (5.30), are given in
2 — / “/qw Figure 94. The diagram also
P DR 8 2-g S ad ;ﬂ includes the logarithmic velocity
i fAer! okl profile for an incompressible fluid

for no injection. At first sight,
the character of the variation of
velocity in thelaminar sublayer in
| Figure 94 seems to be paradoxical
Y B R R R UM l‘,"“ since the velocity profile here
becomes more solid with an ilncrease
in the injection parameter, which
contradicts the experimental data
given above (Figures 77 and 78). However, this paradox is only
apparent sinee Figures 77 and 78 deal with the actual veloeities u/UQ.
and Figure 94 with the veloeity profiles axpressed in terms of the
universal coordinates ¢ = u/v,.

22—y I a—— ‘..7 - 50&’5“——-.—.—.
¢ !
’ RS,

4
|
e P
' |
l

A ol I
1 |

Pigure 94

The problem of the thickness of the laminar sublayer and the
veloeity at its boundary ia the turbulent cere in the presence of

injeetion i3 the least understeod teday. The scarce experimental

data avallable to ug enable us to contlude thst the relative thiek-
ness of the iawinar sublayer decreases with an inerease in the
injection intensity. Uafortunately, there are no nuserizal data
avallabie that vould be based on reliable esperimental results.

The expression for the velocity profile in the lamisar sublayer
(5.36), based on the law (5.3) for the distribution of tangential
stresses, whieh 12 in good agreement in the laminar sublayer with
the esisting esperimental data (Flgure Y8), ean apparently be contids
ered sefficiontly reliable. Thus, IF the thilekness of the lasinar
sublayer f, 13 calovlated on the basls of certaln consideral’ans, then
frotw (5.30) we ¢an find 9, and consequently, '

% = e
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Van Driest [20] in determining the thickness of the laminar
sublayer, used the ccndition similar to the condition (3.102),
with the exception that the friction stress at the boundary of the
sublayer, and not at the wall as in Equation (3.102), was the
determining factor. 1In analogy with condition (3.102), this can be
stated in the form

pg=a VL .

M (5.32)

o

The simultaneous use of Equations (5.32), (5.3), and (5.30) leads %o
the following expression for the thickness of the laminar sublayer:
1 .
%"P(TB.'L) =a, (5.33)

If there is no injection (B, = 0), Equation (5.33) reduces to the
condition n, = a, which was assumed below (Chapter III and IV).

The results of a computation of n, and ¢, using Equations (5.33)
and (5.30) are given in Figure 95.

In addition to the velocity
proliles in the laminar sublayer
calculated using Formula (5.30),
,/ﬁk : Pigure 94 contains the velocity

' profiles in the turbulent core cal-
culated using Foreula {5.28) for

‘NT T  three values of the injesction
N | parameter B, « 0; 0.2 and 1. The
P I '“3“}L boundary ol the laminar sublayer was

here deteroined from Equation (5.33).
Plgure 9%

' Kow lét usd proceed to vonslder
the probles of calceulatiag the felgtion on a flat plate with injection.
It 13 not hard to see that with the assusption (c6 + 1/¥), eade in
the present chapter, the expression for the tomentum loss thickness,
(5.7), besomes '
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LTI Y
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Here, as earlier in Section 12 of Chapter III, in calculating 6‘*,
we assume approximately that the derivative n in the entire boundary
layer is given by Equation (5.27), which was obtained for the
turbulent core. Here we skip, as it were, over the laminar sublayer,
The lower boundary of the turbulent core 1s accordingly shifted to
the wall (EZ + 0). Such an assumption, as was shown in Chapter III,
is applicable to a flow near a nonpermeable surface, and it 'is even
more applicable with injection, since injection lowers the relative
thickness of the laminar sublayer. The integral on the right-hand
side of Equation (5.34) can be evaluated using the asymptotic
expansion (3.39). After some calculétions we find the first approxi-
mation

L,
(o) ). (5.35)

Furthermore, substituting the expression (5.35) in the integral
momentum relation (5.8), and following the procedure indicated in
Seetion 12, we obtain the folleowing system of equations which

. enables us to determine the local friction coefficient on a flat
plate:

W R4+ 8)
= S o[

[

TN T R

LelG) Ke\rm) o
K e 03426, ”‘“"(&)' (5.38)
NptgN e lg Ly a6

Here Cpg 18 the friction cceffielent on a plate 1n an incompressible
fluld with no injeetion, given either by the Karman Forsula (3.%9)

or by Pormula (3.80). “he viscozity of a gas mixture at the wall

ean be caloulated uvilng the relations given in Chapter 1. Chapter I
4lso contalns a deseription of techalques that can be used to calouw
‘1ate the viscosity of gas amixturez. The Nunction N 1z sasily computed
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% using a table of decimal logarithms and the last of Equation (5.36),

4 in which the right-hand side is known. 1In order to determine the

? function K (see the second of Equation (5.36), it is necessary to

establish a relationship between the intensity of the gas (gas mixture)

in the boundary layer and its velocity. The form of thls relation !
3 will be determined by the flow conditions in the boundary layver

3 (presence or absence of chemical reactions) and the assumptions made

.ﬁ in establishing the relation between the velocity, concentrations, '
4 and temperature (for example, assumptions about the magnitude of

: Prandtl and Schmidt numbers).

n .
e St sk

3 Letting the Reynolds numbers in the first of Equation (5.36)
: go to infinity (Rex + »), we obtain [similarly, as was the case
in the analysis of the flow around a nonpermeable plate (Section
12)], the following limiting formula for the ratio °r’°ro‘

¢
= (5.37)

Equation (5.37) makes it possible to determine the limiting
value of the flow rate coefficient ¢, =pu./pl/,, at which the friction .
3 at the wall becomes 2ero. Recalling that by definition B = 2e'/cr,'
. we can write Equation (5.37) with the aid of the second of Equation
. (5.36) in the form

.é . | - '|//f:z;f5:f .i' (5.30) .

Setting on the right-hand side of Fquatiou (9. 38) °r’°ro w 0, we
obtain an expression for the llmiting value of the rloa rate coef i~

VR am

Por injeotion into the boundary layer of ¢ ga. of the same density
as that of the gas in the oncoming {low (p = const * o, ) Fornnla
(5.39) ylelds (o,)y,, -

"
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Now we shall consider certain particular cases of the flow near
a flat plate with injection of mass into the boundary layer.

§ 32. Boundary Layer on a Flat Plate with
Injection and the Prandtl and Schmidt
Numbers Equal to Unity [12]

Let us consider a flow of a gas of homogeneous composition over
a flat plate. The gas injected through a porous surface into the
boundary layer will also be assumed homogenecus, but its physical-
chemical properties will be assumed different from the gas in the
main flow., In addition, we shall assume that the substance injected
is inert relative to the gas in the main Ilow, i.e., there are no
chemical reactions, and the mixture in the boundary layer may be
considered binary. We shall also assume that the speclfic heat
capacities of both species are constant, i.e., they do not depend
on the temperature. The Prandtl and Schmidt numbers and their
turbulent analogs are assumed to be equal to unity.

W%ith those assumptions the equations of the boundary (4.85) -
(4.87) vecome

w%+w%¢%[ﬂ*+e)§].
pudl 4o = L+ 0], (5.40)

ougt + o3 e ol + 0]

“he bouadary conditions for the aystem (5.40) will be written
in the forsm

Mo, ray, Jlel, oug,for 0;
bl llwlla gm0 " tor b aco) (5.41)

The subscript 2 will vefer here and belew to the parameters of the
inJ2oted substance, and the subseript 1 to the parameters of the
oheosing flow. :
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Since the mixture in the boundary layer is binary, the convenience
of conserving specles 1 is no longer present (cl =1 - 02). The
condition for the concentration c, at the outer boundary indicates
that there is no injected substance in the external flow.

Thie equation of state (1.86) for a mixture of two gases becomes

=p
p"‘pu T' (5.u2)
where
MM,
M= s int=a (5.43)

is the molecular weight of the binary mixturs.

The system (5.40) and the boundary conditions (5.41) imply
similitude of velocity, total enthalpy, and concentration flields

8 H—=H, ‘tp—0
T = W=hy < e (5.44)
From Equation (5.44) we can derive the obvious relations
Hw]] H,—11.)a,
H‘+ ( * ) (5.“5)
a=a.(l—d (5.46)
According to the definition of total enthalpy, we have
Hw e 55
e =ty t (1 = y)epy = ep - (Ca=ep) ey (5.47)
Since
ll.wc;.f.ﬂ(wuﬂt-—e..)r,.lr.. (5.48)
vt .o.om
e eply 4 gh = el 4 . (5.49) :
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from Formula (5.45), in view of Equations (5.47) - (5.49), we obtain
the following equality giving the relation between the temperature
and velocity

T - B
o= U —ai-- @ —0(t — B)} {1 — 01 —a) (5.50)
Here
'{'-‘i (X Te_ 2 U;‘ .
‘“”’""(”’ .)f;’ M’q('r*“)‘mi.'
o y—1 H 0. == -23-0 (5.51)
= o 0 e,.,(i—- ‘m)'

if there is no mass injection into the boundary layer (°2w 2 0)
or if there is injection of a gas with the same specific heat
capacity as that of the oncoming flow (cpa = cpl). Equation (5.50)
reduces to the Crocco integral (3.47).

Furthermore, using the equation ef state (5.42), Equations (5.43)
and (5.50), we obtain an expression for the density in the boundary

layer
8 Isﬁlllm@(l-
% = RS W s (552
whepe
8o et ). (553}

Expression (9.52) 1aplies thst, in addition to the Maeh nusber at

the euter edge of the boundary layer, ”e’ #ind the temperature facter
?u/T@, the thind lsportant parapeter which detersines the distribution
of the density ia the boundary layer 1g the ronceatration of the

injected substance at the wall, ¢,..

In order to obtalin a sclutlion 1n a closed forw, one pust Tind 3
relation between the Injection paraseter B, defined by Bguation (1.2},
and the concentriation Copt ?h.@ relation can Lo obtilned Cron
Egquation {5.19), which @aprosseﬁ the couservation conditlon for the
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injected substance at the wall. Taking into account the assumption
that the Schmidt number (5¢ =p./pPys) 1s equal to unity, we put (5.19)
in the form

Pube = Aubcre— % (T ), (5.54)

Using Equaticn {5.48), we find from the expression (%.5U) the
desired relation between tne injection parameter B and the concen-~
tration of the injected substance at the wall

B
‘o = TFE (5.55)
Bgﬁ%‘_. {5.56)

Equation {5.55) implies that the concentration of the injected
substance at the wall for a finite value of the parameter B is aiways
less than unity, and in the limit assumes the following values:
caquf‘oer*D. c,av-‘l!‘orﬁew.

Making use of Bguation (5.55), we replace ¢, in Formula (5.52)
by B. Then after sinmple algebra we obtain

%—a(t—uwﬂ)‘l+8[!-€!m-i;?-’-)(txi)]l*e
. Py o 4
wdiapliafi~ o alf ¢ (8.51)
PR LN T AT R
A x{l - w2 m(ﬁ “in)“ ﬁ)} .
if the gas has a low velocity (8 = 0) and if there 13 no heat

transfor between the gas and the wall (e = 0), Bguatien {5.5%7)
becones ' '

L. BREY —
% wtigtm(uu%g}ants_} B - {5.%8)

The function K, walch dotermines Triction, 1s generally given ¥y the
second of Hquatlons (5.38), and in the vase ol u &« § » U 1t Bevomes -
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K=3 LNl A0 bl .

LI By, +1

1m e

(5.59)

for M{> M,

and

. M
_ 2 _[T¥E M /r‘“iﬁ .60
K_-B-‘/- tmh;/i_ﬁg—aruhl ] (5.60)

My
i i+B-ﬂ;

Hs

for M,<M,.

W: 2n the injected gas has the same molecular welight as the gas in the
mein flow, (M1 = M2), assuming that w = 8 = 0, the expression for
K:becomes

2 PO

K=—--3—(V1+B—1)' (5.61)

In the general case, when the density is given by Equation (5.57),
the integral in the expression for K (5.36) can be evaluated
numerically or graphicallv.

When calculating the frictlon coefficient, we assume that the
injectlon parameter B is given. After we determine the friction
coefiicient Cp with the aid of the system (5.36) using

= = Boy (5.62)

we can determine the relative flow rate of Injected gas. Thus, a
computation for various values of the injJection parameter B enables
one to establish a relation between the friction and the flow rate
of' the injected substance, i.e., to determine the relation

Pat
q=’ﬁ(3%ﬁ) for given flow conditions.

(]

Figure 96 gives the plots of the friction coefficient versus
the injection parumeter for injection of various gases (freon-12, air,
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helium, and hydrogen) into an air

%w\\ Bl L=y Res=m’ 1 boundary layer. The calculation
18 : P L] was made for the conditions: M_ =
N 7 °
P L N, | %regﬁf 0, T, /Ty =1, Re = 10'.
a i ’
\\ Air Figure 97 deccribes the
4 \ 7\\\{ i — effect of the ratio of molecular
> m .
(iydrogep — ¢~7H weights on the injection parameter

¢ 4 8 12 16 20 i %
“g. for a fixed value of the friction A

coefficient. The figure shows that

Figure 96 a change from injection of heavy
gases to injection nf light gases
R ? ~’47££:¢ _ permits one to significantly
il e reduce the value of the injection
2 F arameter.
\¢ i
o 1\ po
odb—XN \:\ I Figure 98 illustrates the
”/\\\EEEE§§E , dependence of friction on the
A ﬁﬂmm relative flow rate of the injected
Figure 97 gas for thz conditions Me = 3,
Rex = 4-10°, Tw/Te = 1.1. The
, : upper curve was obtained for the
& N injection of air into air, the
\ L lower one for injection of helium
21 :
i 1\\k\ into air.
a4 5 \Q—‘
4z ,Helﬁum This method of calculating
o A T friction on a porous plate can be
- 8%‘.”’ relatively easily extended to the
Figure 98 case of sublimation of a surface

immersed in a stream of high-
temperature gas [22]. We know that if the surface temperature is
lower than the temperature at the triple point in the phase diagram,
then in a flow of a mixture of gases over a solid body, wlth the
partial pressure of the vapors emanating from the solld in the
oncoming flow lower than the pressure of the saturated vapors at the
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surface temperature, the body will be vaporized (will sublimate) by
skipping the liquid phase. The mechanism of the transfer of various
quantities (momentum, heat and mass) in the boundary layer with

\ addition of mass through a porous surface and sublimation is identlcal.
Only the boundary conditions will be different. 1If, for a porous
addition the concentration of the injccted substance at the wall may

S L SO T R

4 change in an arbitrary way, then,for sublimation, the concentration
of the substance forming at the wall depends on the heat of subli-
mation and the surface temperature.

The concentration of the sublimating substance at the wall, Coy?
is given in terms of the partial vapor pressure Py by

o = Mo P2
W= Wy b, (5.63)

b where Mw is the molecular weight of the mixture at the wall [see

: Equation (5.43)]. For equilibrium sublimasion, the partial pressure
of the sublimate at the wall, Pss is equal to the partial pressure
of the saturated vapors, pg, at the temperatureATw, given by the
(lausius-Clapeyron law [231]:

. by ML
Inep} - b — 7 (5.64)

where b 1s an experimental constant, hL i1s the latent heat of subli-
mation. Substituting in Equation (5.63)~for the molecular weight Mw—
1ts value from Formula (5.43) and keeping in mind Equation (5.64), we
obtain an expression for the concentration of the sublimate at the

wall given in terms of the wall temperature and the boiling temperature

TK(pe):

yozes

v 7+ L it fow 2477 (gt = ) 1], (5.65)

It the temperature of the wall 1s equal to the bollling temperature,
(Tw = TK)’ the concentration of the sublimating substance at the
wall will become equal to unity, which corresponds to a type of

FPD-HC-23-723=71 3Na
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bolling in which the vapor flow rate and the concentration are no
longer related by a boundary diffusion condition.

Given the sublimate concentration at the wall, (czw), it 1s
easy to determine the value of the injection parameter B, related
to oy by Equation (5.56). Making use of this equation, we obtaln
the following expression for the injection parameter for the case of
sublimation of the surface material

k Mz -1
Be Melon 50 (- 1) -1 (5.66)

Thus, this method of computing friction on a porous plate can be
ugsed in its entirety to calculate the equilibrium sublimation, the
only difference being that the parameter B may not be specified
arbitrarily but instead it must satisfy the condition (5.66).
§ 33, Heat and Mass Transfer in a Boundary Layer on a
Flat Plate with Injection and the Prandti and
Schmidt Numbers Different from Unity

In this section, in contrast with the preceding one, we shall
discuss a flow in the turbulent boundary layer on a flat plate
with injection and the Prandtl and Schmidt numbers different
from unity. The necessity of this type of analysis is
due to the fact that for injectlion into the boundary layer of gases
which differ in their physical-chemical properties from the gas in
the oncoming flow, and in particalar, for injection of light gases
such as helium and hydrogen, the Prandtl and Schmidt numbers may
differ significantly from unity. For example, the Schmidt number
for the gas mixture hydrogen-air, calculated for the conditions:
T = 273° K and p = 1 atm, ranges from 0.2 to 1.7 depending on the
specles concentration. The Schmidt number for the mixture helium-alr
can also range from 0.2 to 1.7, and the Prandtl number for the same
mixture varies from 0.5 to 1.l depending on the specles concentration
(see Figure 99, mass concentration of helium is plotted on the
abscissa axis).
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As was noted many times in the
preceding chapters, the devliation of the
Prandtl and Sechmidt numbers from unity
in the laminar sublayer is usually of no
great significance when computing friction,
but it may have a substantial influence
on the heat and mass transfer between
the gas and the wall.

&
Vi
15

71 S

Figure 99

To simplify the analysis, we shall
assume that the Prandtl and Schmidt numbers are constant over the
cross-section of the laminar sublayer and equal to thelr values at
the wall. Otherwise, the analysis will be similar to the analysis
done in the preceding section (chemical reactions are absent, specific
heat capacities of the species are constant, the mixture is binary).

In order to establish an approximate relation between the veloclity,
total enthalpy, and concentration profiles, we shall use the equations
for a turbulent boundary layer expressed in terms of the Crocco
variables, (4.97) - (4.100), at the same time simplifying them by

00‘

i means of the assumptlon of local similitude, (%g‘=iﬁ‘=0)’ which was

: often used in the preceding chapters. In this case, the conservation
{ equation for the injected specles and the energy cquation in the

laminar sublayer, (4.98) and (4.97), become
do o de
{ T = Se—=1) 5 (5.67)
o dll _'0q
e T (5.68)
Here
. rrdn L dos
q"'ﬁ'[‘,ﬂ.“- (Pr—1)u ‘|‘(|-"'1)(¢m"“m)7'7;—]- (5.69)
The quantlty q may be called a generalized heat flux.

In the turbulent core the same equations can be written in the
form

FTD=-HC=23=-723=71 311

bt s s e b

A 4 . -
R, ai gt sy
L e AR RIS S e e



LR I T A v e -

=0, (5.70)

dicy .
=0 (5.71)

The boundary conditions for Equations (5.67) - (5.70) have the form

foru=0 H=H, ¢ =,
or w 2 !} (5.72)

for u=U, H=H, ¢=0

The problem of determining heat transfer reduces in this case, as
usual, to a determination of the friction coefficient and of the
relation between friction and heat transfer.

The relation between the concentration and total enthalpy
profiles, and the velocity profile in the laminar sublayer. Assuming
that the distribution of the friction stresses in the boundary layer
s given by Equation (5.3), we put Equation (5.67) in the form

4 _ (Se—1) B
T TEm (5.73)

Here primes signify differentiation with respect to the dimensionless
velocity u = u/Ue.

Integrating Equation (5.73) once and determining the constant of
integration from the condition (5.19), which in this case, (Sc # 1),

becomes
we obtain ‘
oy = — BSe (1 —cp) (1 + Ba)*, (5.75)

Integration of Equation (5.75), using the second of the boundary
conditions (5.72), leads to the following relation which relates the
concentration and velocity profiles in the laminar sublayer:
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aa:=1—(1 —cae)( + Bu)™. (5.76)

. It should be noted that Equation (5.76) cannot be used in this form,
since we have not established the relation between the injection
parameter B and the concentration at the wall, Cou’

Now we turn to the energy Equation (5.68). Introducing the
dimensionless quantities

T, .. - Y. _. 1
f=3i 775 g0 8T (5.77)
we bring the equation to the form
At dH _ dj .78
W T (5.78)

i where

(5.79)
|-

afls U
1+ (Le—1)(c)a — cpy) &3 (]l - 33_ ,p) ‘%,

In Equation (5.79), in contrast with (5.69), temperature T is given
In terms of tetal enthalpy and veloclty by

S

1‘-_4(11..-',‘;-),:;‘. (5.80)
Making use of the expression (5.3), we integrate Equation (5.78)
and determine the constant of integration from the condition at the

wall. As a result we get

g=qu+ BT =), (5.81)

Here

h2d

R

- i S
o o et ST, R,

o . (5.82)
Ot ._.._..q_w_.—.---‘ [ L'v,-:‘—w-
WO T, = hy) 1 Ut
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Q, i1s the heat flux from ths gas to the wall; given by Equation
(4.147), H, is the equilibrium enthalpy of a thermally insulated wall,
or the enthalpy of recovery (a definition of the last quantity will

be given below).

We substitute the expression for q given in Equation (5.79)
into Equation (5.81), and after simple algebra we obtain

75
Tt Pe—1)1oa

Fla=1)ea— (A= glar)da_ B g (5.83)

P =
=rra@—Bh). (5.8

Fquation (5.83) is a linear equation of first order with variable
coefficlents which can be integrated by quadratures. However, in
order to obtain the final result in a simpler form, we shall limit
ourselves to an approximate determination of the distribution of
total enthalpy in the laminar sublayer. Thus we shall assume that
H can be expanded in a series involving powers of the longitudinal
velocity U. Since U < 1, we retain only three terms of the series.
In this case we get

”m%mao'{"axﬂ‘*‘a'a‘t (5.8“)

Using the condition at the wall H = hw at u = 0, we find that
a, = hw/he = h,. Then differentiating the expression (5.84) with
respect to U and setting U = 0, we obtain

Bl )w.

a=(4) a=1(GH (5.85)

The coefficient a, will be found from Equation (5.83) for u = 0:

o (G )= Pt BT (5.86)
Here
A lm— )t —o) Sele—1) (5.87)

ot (O = 0y} oy
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An expression for the coefficient a, will be obtained by
differentiating Equation (£.83) with respect to u, and then setting
U = 0. The result will be

(‘f{aﬁ,)f Pr(A 4 Pr— 1) By + (1 — Pr) (71— 1) M+
LBRAIA+A(le—4)2+Sc—1+Pr];
: |

(r— M= 1"

(5.88)

Substituting the values of the coefficients 2, 8 and ay in
(5.84), we obtain a relation connecting the velocity profile and the
total enthalpy profile in the laminar sublayer:

) .,ff. = ot (Pr§o + BAR,)d +
+{Pr(A -+ Pr— 1) B, + (1 — Pr)(y— )M+ (5.89)
+ HRA LA+ (Lo~ 1)+ Se — 1 4 P} &

A relation between the concentration and total enthalpy profiles,
and_the velocity profile in the turbulent core. In order to
establish a relation between the concentration and velocity profiles,
we integrate Equation (5.71) once

o\
&= C. (5.90)

The constant of integration C will be determined from the condition
of continulty for the diffusive flows of the injected specles at
the boundary of the laminar sublayer

@), (@) . (5.92)

Using Equations (5.91) and (5.75), and integrating (5.90), we
find a relation between the concentration and velocity in the
turbulent core

eo e B(L — cng) (1 + Bl (1 = ). (5.92)

Equating the concentrations obtained from Pormulas (5.92) and (5.76)
at the boundary of the laminar sublayer, we obtain a relation between

318
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the injection parameter B and the concentration at the wall, caw:

ero=1—(1 4 By (1 + Diy)*™. (5.93)

o8

It should be noted that,if the Schmidt number is equal to unity,
Equation (5.93) will reduce to Equation (5.55) of the preceding
section. Using Equation (5.93), we bring Equation (5.92) to the form

2pi—a) (5.54)

g =
Now we establish a relation between the total enthalpy and the
velocity in the turbulent core. Integrating Equation (5.70) once,
we obtain

4l|0l

ol
= oonst = (5.95)

The constant of integration in the expression (5.95) will be
determined from the condition that the generalized heat fluxes are
equal at the boundary of the laminar sublayer. Using this condition
and Equation (5.8), we find

%’-“W'mﬂu-i-mﬂa—‘o)l' (5.96)

Integrating Equation (5.96), and determining the constant of
integration from the condition at the outer edge, we obtain a relation
between total enthalpy and velocity in the turbulent core

B Ry 11 4 B §ot BB = AL = &) (5.97)

It is not hard to see that Af there is no injection (B = 0), Bquation
(5.97) will reduce to Equation (4,150) of the preceding chapter.

Deternination of the enthalpy ol recovery “r and the Reynolds
similitude parameter 2¢,/¢.. Letting U= i'i-l in the expression
(5.97), we obtain,
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R =4+ Biz)(1 + BY*A, — (4 — 3a)(3 + BY*(Fu— BR,). (5.98)

e Equating the values of HZ’ determined from Formulas (5.98) and (5.89),
at the boundary of the laminar sublayer, we obtain
hold 4 BAGy — B(i — d,){§ + B)y* +

3
. + BAIA+ A =1yt + Sc + Pe—11 3] +

( .
TS N[ TRTEPRVEY ETETETIY L. | M 99)

= (1 + Bas)(t + B, — (1 — er) Lt mal.

If there is no heat transfer between the gas and the wall
(3, = 0, h, = H.), Equation (5.99) easily implies the following
expression for the enthalpy of recovery:
Hy= (4 + P LT MY) = H,04 4 By (1~ 20) B) X
X {1+ 803 =~ B — 81 + B +

_ t (5.190)
+BANH A= 1 S+ )2 -

Here weo used the approximate relation £3.150).

Substituting the relation (5.82) 'in Bguation (5.99) and selving
- the resulting equation for the Reynolds similitude parameter, we
get : |
te Y LY
..;3. o {1 --4-&%.?_-5...“} ~ B8 ..‘_ﬁ_a
Vool | Lo
*&[! b By~ By 4 BPAIA $ AQe = 1) &

4 $¢ .g.-ﬁp-...ns"_}{m,.ﬁi,][mg . {5.101)
L , g

s Nty
— {4;; ﬂ%‘ﬁ(a\#haup_f‘]} .

Her#» we used the approximate relation {3.199).

? In She absence of inJection, (B = @), the expressions (5.100)
and (5.101) reduce to thelir analogs obtaimed in Chapter 111,
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If the Prandtl and Schmidt numbers are equal to unity, we have
independently of injection Hr = He and Zch/cr = 1, as we can easlily
infer from Equations (5.100) and (5.101).

The temperature and density distribution in the boundary layer.
Given the distribution of total enthalpy H and concentration, as
well as Equations (5.80) and (5.47), we can find the temperature

-distribution in the boundary layer

s -
PR T s

In the laminar sublayer H and ¢, are given by Bquatioens (5.89)
and (5.76); in the turbulent core-by Bquations (5.97) and (5.94).

Using the condition of conatant pressure across the boundary
layer, the equation of state (5.42), and Bquatiens (53.43) and (5.102),
we obtaln the density distpibution in the boundary layer
’ e
14{52 1) |

R e § e 2 _ ) . ;
The frietioh edr be caleulated Pros the relation between the density
an? veloelity usiag Bguation {9.36). It wil) be recalled that the
concentratlos of the inJected specles at the wall, ¢,,, can be

deternined from the injectlosn parametoer B in accordanes with Equation -
(5.93}. o

S uﬁutiéﬂai”§rﬂ¢£ﬂnr@; a3 the initial dana we gust be given:
the Mach nutther at the ocuter edge of the boundary layer W, Heynolds

'ﬁugser_ﬁea “ U s/v,, Cesperature of the wail, ¥, terperature #t the
putey edpgs of the boundary layer, Tye We must 5130 be glven the

polesular weights and speelfic heat eapacities of the Injected gas
rad the 238 Plowlng over the supface of a piste.

Silven ihe valusg of the lndectian ParaScter B, weé sath udl Ine

| pothed presented 1n Sestlon 32, 1.¢., assunlng that the Pranatl
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and Schmidt numbers are equal to unity, to determine the local
friction coefficient with injection, Cps and the friction parameter
¢, which is related to ¢, by Fquation (3.8). Then, given the
values of B and ¢ we determine the parameter B, [see Formula (5.20
(5.29)). PFormulas (5.33) and (5.30) ecan be used to calculate
the thickness ¢of the laminar sublaver n, and the veloeity at the
boundary of the laminar sublayer Ny Then, using the Schmidt nurber
a3 a parameter, from Fquation (5.93) we find ¢y, 85 8 function of B
(Pigure 100,a). GOiven the compositicn of the mixture at the wall,
(ewa), and the conditions at the wall (T, p), we can determine the
actual Schmidt number at the wall (Scu)(é) (Pigure 100,b). Using
the dava of Figures 100,a and 100,b (see the key in the diagram), we
can find Sew as a function of the injection parameter (Flgure 109,@).
After the relation between B and Se, i3 established, Formula (5.23)
can be used to determine the actual concentration of the injectad
species at the wall, Coye Stmilarly, we can detertine the value of
the Prandtl nuwber Pru. However, in many cases this 1s not no.essary
' since the dependence of thas ,
© Prandt) nuaber on the compesis
tion is nueh weaker &3 zonpared
with the Schmidt nusber, and
the number @ay be sssumed
~g  eonstant. Given the values sf

. ©)  the Sohmidt and Prawdtl rusbers,
Flgure 100 ' we can valeulate the Lewls

- : nusber (Le, = Pr /8¢ ). Then
we doterming the folluwing in this onder: lunetlon A [uitng Bqustion
{5.871), recovery enthalpy H, {using Bgustion (5.100)), Reynolds
aiailitude parameter [using Bguation (5.101)1, heut fius iu {using
Bguition (5.82)), enthalpy and cencentratlien in She lasinad sublayer

AT TIRTMRTRWS,

(using Squations (5.89) and ($.76}), and in the Surbulent eore {uslng

¥guations (5.37) and (%.58) 3, temperature ung density in the boundary

layer {weing Bquatlens (5.102) and (5.103)), reietion fustng Bqustion

{5.361].

The hedt Flux frol the 2as %o the will can be calsulited fron

Postnote (6) zppedrs of page 322.
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As can be seen from Equation (5.21), the heat fiux which con-
tributes to the heating of the body (inside th2 body) is, in this
case, equal to
0, — U b, — (k) )

R ' {5.105)

 [hat

Figure 101 1is a plot of the ratie cp/(¢plg o versus the flow

rate of the injected gas (hydrogen), obtainsd for Pr = Se= 1 (solid

1line) sad for Pr = 0.7, Sa = Sc, (dashed lime}. A comparison of

thoze cuprves shows that the deviation of the Prandil and Schmidt
nusbers from unity has only a slight
Hydrogeu-air effect on the value of the friction
e ] eogfficlent. Per this reason, it
&;{m‘” 1s not neceassary to use higher-
ordey approximetions {for e Koo
;’@hf'er} in the couputation., This
faet pormits us te expect that,with
an aceuracy sufficlent ln praetioesl
_ ealeulations, the friction coeffie
9 iy é W eient wiih iajection say in many
&%“ & 4393 be caleviated using & aothod
A baged of the assunptlon that the
Prasdtl and Sehmidt nusbers are
egual to unity (Seetion 32).

Flzgupre 101

Whon paisuiating the parasotesrs eharaelerizing th. heatl transler
betwsen the 2as and the wall (;’.'cw*"%. “‘r" the fael that the Prandtl

. and Schsidt nusbers ace different Trow unity sust be taken inte

consideration.
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FOOTNOTES

‘ Feotnote (1) on page 279. It should be noted that the

] expressions (5.6), (5.7), just as

SN (3.9), (3.10) are approximate, since
they are obtained if one neglects the
laminar subliyer, simultaneously
extending the turbulent core up to the
wall, which is valid. in the case when
: the laminar sublayer 1s relatively

’ thin. .

N R
-~y

Footnote (2) on page 279. A detailed analysis of these dilscrepan-
cies may be found in: Spalding, D. B.,

i D. M. Auslander and T. R. Sundarom,

g The Calculation of Heat and Mass

1

Transfer through the Turbulent Boun-
dery Layer on a Flat Plate at High
Mach numbers, wiith and without -
Cremical Reaction, "Supersonic Flow,
Cnemical Processes and Radlative

{ Transfer", Oxford-London-New York-

! Paris-Frankfurt, pp. 211-276, 1964.
}

Fostnote (3) on page 282. It should be noted that in experiments
involving injection at high supersonic

: velocities 1t 1s not always possible
: to obtain gradlent-free flows over a
plate or a cone. This 1is due to the
effect of an extended boundary layer
: on the exvernal flow. We note inci=-
: dentally that a theory of the inter-
; action between the turbulent boundary
; layer and the hypersonlc external flow
£ is at the present time in its infancy.
H See, for example, Barnes, J. W, and
. H. Tang. Strong and Weak Inter-
action Parameters for Turbulent Flow,
AIAA Journ., Vol. 4, No. i0 (1966);
Rugslan translation: Raketn. Tekh. 1
Kosmonavt., Na., 10, 1966,

i Footnota (4) on page 283. Mugalev, V. P., Experinental’-dnvesti-
LS gatien of the Turbulent Boundary Layer
on a Plate with Injection of Air and
tarbon Dioxide at Supersonic Velocltles,
Trudy Moskovskoge Plzicheski-tekliniches-
. kogo instituta, Oborongiz, No. 4, 1959.
Mugalev, V. P., bxperimental Investiga-
tion of the Subsonic Turbulent Boundary
Layar on a Plate with Injection.
Izvestiya vysshikh uchebnykh zavedeniy,
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Footnote (5) on page 291.

Footnote (6) on page: 319.

FrDwHe=23=723-71

J T T R I T N

Series of Aeronautics Technology, No.

-3, 1959. Mugalev, V. P., An Investi-~
_ gation of Heat Transfer and Turbulent

Boundary Layer Characteristics on a

.. Porous Surface. Teplo-~ i massoperenos

(Heat and Mass Transfer), Vol. I,
"Energiya" Publishing House, Moscow,

- 1968.

" -Figure 91 and Formula (5.11) are given
‘in survey article: Squire, L. C.

- Some Notes on: Turbulent Boundary Layers
"with' Fluid Injection at High Supersonic

Speeds, ARC. CP,-No. 740, 1964,

The methods of oalcu;ating the

~diffusion and viscosity coefficilents

for a gas mixture were discussed in
Chapter I. Handbooks and alds that
might help in the. computation are.also
indicated there (see, for example, the

- monograph by Bretshnayder, [5] on
‘page 39a.
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Roman Letters

NOTATION

A — see Equation (3.173);
Ak — chemical symbols of reactants, Equation (4.1);
A — speed of sound;
puvvm 2 puvvw 2 A
=0, o BTN, e
— Pwvlﬂ -_:_-)__ = Pwvw 2
Br= 50, o Br=%0, @y’
. Pwvw _i_ Pwvw 1 .
"plUy eyt B"°=TJ/—,(%)B,,=0' r injection parameters;
= Pty 1 Puby 1
H7pU, ot “HOT T, (o) g’
B v
B.z—fw=7?
* J
b -— impact parameter, Equation (1.16);
¢p — average friction coefficlent, Equation (3.62);
¢y — average heat transfer coefficlent;
¢p - local friction coefficient, Equation (2.85);
¢y, - local heat transfer coefficient, Equation (2.91);
¢; -— mass concentration of specles i, Equation (1.29);
Cpp ™ flow rate coefflcient for the injected substance,
Equatin (2.86);
¢, - recombination parameter, Equation (4.137);
¢y — specific heat capacity at constant volume, Equation (1.43);
cp — specific heat capaclty at constant pressure;
°pi — speclfic heat capacity of specles i at constant pressure;
Cyy = specific heat capacity of specles 1 at constant volume;
D — energy of dissoclatlion per unit molecular mass,

Equation (4.46);
Dij -— diffusion coefficlent for a multlcomponent mixture,
Equation (1.53);

FID=lC=23-723«71
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. 94 — diffusion coefficient for a binary mixture,

E . Equation (1.59);

S #y . effective diffusion coefficient, Equation (1.58);
27 — thermodiffusion coefficient;

9: — turbulent diffusion ccefficient, Equation (2.31);

Da — Damkohler number, Equation (4.102);
a — diameter of a sphere;
E — internal energy of a gas, Equation (1.38);
EO — energy of a gas at zero absolute temperature;
Ea — activation energy;
AEO — dissociation energy per unit mole of starting substance,
Equation (4.22);
: an — activation energy for a surface reaction;
X ey -— energy of the internal degrees of freedom of a molecule
of species ij
3 fi — distribution function;
3 F — function defined by Equations (3.77) and (3.92);
: G — function defined by Equation (3.78);
: 3 Byy — see Equation (1.16);
3 gy — Mass rate of formation of specles 1 per unit area;
{ g, — statistical welght;
H — total enthalpy of a mixture, Equation (1.94);
e H¥ = §*¥/§%¥t  form parameter;

— enthalpy of a mixture, Equation (1.100);
— enthalpy of specles 1;

— heat of formation of species 1 under standard conditlons;
— enthalpy of recovery;
Planck constant;
— heat of sublimation of species 1;
— mass flux density vector of species i, Equation (1.10);
-— Boltzmann constant;
— thermodiffusive ratio, Equation (1.61);
— numerical rate of formation of the molecules of specles
i per unit volume, Equation (1.27);

PO

=N N D> oDom Dy 5T
3 HFL-_'-.

[
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K, ~— see Equation (4.7,
Kp — see Equation (4.12), equilibrium constants;
K, — see Equation (4.15),
~ K, - see Equation (4.16)
kwi’ kwJ — rates of forwardand reverse surface reactlons;
k', k" — rates of reverse reactions in the gas phase;
[ Kw — equilibrium constant for the surface reaction;
: kg — rate of dissociation;
k: — rate of recombination;
| Ii —— collision integral;
I (ﬁg — see Equation (3.36);
L  — characteristic length;
§ Le, — effective Lewis rumber, Equation (1.103);
§ Le — Lewis number for s binary mixture, Equation (1.105);
| Le, — turbulent Lewis number, Equation (2.34);
g t — turbulent path of mixing;
§ Mi — . molecular weight of specles 1ij

M  — molecular welght of a mixture;

% Me —— Mach number at the outer edge of the boundary layer;

! m; -—— mass of a particle of specles i;

§ ng — numerical dersity of particles of species i, Equation (1.1);
% n — number of particles per unit volume, Equation (1.7);

!

[ni] = ni/NA ~=- nuuber of moles of species i per unit volume;
Ny, n'j —- order ofvforwardand reverse surface reactions;
NA — Avogadro number;
N — see Equation (3.82);
p — pressure of a mixture, Equation (1.8);
p. — partial pressure of specles i, Equation (1.8);

Py — characteristic pressure of an ldeally dissoclating gas;
! P — pressure tensor, Equations (1.12) and (1.64);
P, — pressure tensor of species 1, Equation (1.11);

) Pr - Prandtl number;
Pr, — turbulent Prandtl number, Equation (2.33);
Q,. -— partition function for a gas of unit pressure;

FTD-HC=23-723-71 327
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total partition function; see also Equation (3.181);
partition function for a gas of unit concentration;
kinetic energy flux density vector of speciles 1,
Equation (1.13);

heat flux density vector, Equations (1.14) and (1.76);
heat flux from the gas to the wall, Equation (2.88);
heat flux inside the body, Equation (5.20);

universal gas constants;

Reynolds number constructed from the displacement
thickness, Equation (3.43);

Reynolds number, constructed from the momentum loss
thickness, Equation (3.17);

Reynolds number constructed from the parameters at the
outer edge of the boundary layer, Equation (3.18);
radius vectors with components x, y, z;

radius of lateral curvature of a body of revolution;
turbulent Schmidt number, Equation (2.36);

Schmidt number for a binary mixture, Equation (1,105);
effective Schmidt number, Equation (1.103);

strain rate tensor, Equation (1.67);

gas temperature, Equation (1.8);

characteristic dissoclation temperature;

characteristic rotational temperature and temperature of
recovery;

characteristic vibrational temperature;

time;

velocity of a particle of species i (components Hetiydu);
center-of-mass veloeity, Equation (1.4);

mean velocity of particles of species i, Equation (1.3);
thermal velocity of particle of species i, Equation (1.5);
rate of diffusion of species i, Equations (1.6) and (1.53);
dynamic velocity, Equation (3.8);

longitudinal velocity component;

mass rate of formation of species i, Equation (1.30);
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W — actlive portion of a catalytic surface;
— x-component of vector r;
X — molar concentration;
T X — catalytic molecule.

Greek Lelters

A T e T P T R E

— universal turbulence constant, Equation (3.102);
— see Equations (3.48) and (3.49);
see Equation (4.117);
= cp/cv;
Yy — catalytic capacity of the wall, Equation (4.61);
displacement thickness, Equation (2.77);
§#% . momentum loss thickness, Equation (2.76);
§ -— boundary layer thickness, Equation (5.53);
§%* — energy loss thickness, Equation (2.89);
¢ — turbulent viscosity coefficient, Equation (2.30);
¢ — unit tensor, Equation (1.66);
& r — friction parameter, Equation (3.8);
n — universal coordinate, Equation (3.8);
g ny, — coordinate of the boundary of the laminar sublayer;
; k- universal turbulence constant {x = 0.4), Equation (2.69);
A -— molecular heat conductivity coefficient;
— turbulent heat conductivity coefficient, Equation (2.32);
— offective heat conductivity coefficient, Equation (1.82);
*R - goefficient of heat conductivity due to mass transfer,
Equation (1.81);
u - dynamic viscosity coefficient;

* . v, - Rinematic viscosity coef'ficlent;
Vr Y stoichicmetric reaction coefficlents, Egquation (4.1);

¢ ~— Crocco variable, Bquation {(2.59);
.. p, -— partial density of species 1, Equation (1.8);
p -— gas density, Bguation (1.8);
by — characterigtic density of a partially excited dissoclating

gas, Bquation (4.50);

SOREB AN

- w ™ R

O
E

RS e

LTI e PR e o e Sl VL 2

G Ty e
-~

FID-HC-23-723-71 329




E %L — characteristic density of an ideally dissoclating gas,
3 Equation (4.51);

' 0 -— see Equation (4.20);
t — stress of friction; - n
‘ universal coordinate, Equation (3.8);
! #(li) — see Equation (3.34};

¥ — flux density vector, Equation (1.9);

¢, — summation invariants, Equation (1.21); '
i ¥ — see Equation (3.25);
w — see Equations (3.48) and (3.49);
@ — see Equation (3.196).

l

Subscripts

~— parameters at the outer edge of the boundary layer;

—— parameters at the wall;

-~ parameters at the stagnation point;

— parameters at infinity in the oncoming flow;

— parameters in an incompressible fluid, as well as parameters
for no injection;

r - parameters ir the absence of heat transfer between the gas

and the wall;

O 8 w £ O

S

! — parameters gt the boundary of the laminar sublayer;

t — parcmeters in the turbulent core;
- t - paraneters at the point of transition of laminar flow
- into turbulent flow,

Supersoripts

(e) — equilibrivm flow; ‘
(f) = frozen flow;
(ne)— nonequilidrium flow;
: line above signifies: in Chapter I — statistical
3 averaging over velocities, Equation (1.2); in Chapter II
' — time averaging, Equation (2.2); &in Chapter III « V —
dimensionless guantities.
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SYMBOL LIST

E ' Russian Typed Meaning

N el eff effeccive
T ¢ turbulent
H n not defined
onpP +{:33 defining

* 3Mcn exp : axperiment
8034 air air
n l laminar
cP av average
TeOP theory theory
nn pl plane
NOTOR Tlow of flow
X chem chemical
0t lth laminar-thermal
i} 1d laminar-diffusive
Pal lim limiting
T th thermal
A d diffusive
H K boiling

+

L

2
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