
'1'h0 tIniver,; ity of Wisconsin

M~Ai~;n ,W~ifscon!,;in

TECHNICAL REPORT NO. 276

August 1971

MAXIMUM LIKELIHOOD ESTIMATION AND
HYPOTHESIS TESTING IN THE BIVARIATE

EXPONENTIAL MODEL OF MARSHALL

AND OLKIN

By

G.K. Bhattacharyya
and

Richard A. Johnson
University of Wisconsin

-. y

Typist: Jacquelyn 11. Jones A1L1
Tltit; work was ';uJ)porte(d by the Air Force Office of Scientific Research
under Gra t AFO.Sl 69-1789.

SAppro--ord foc public Y(a1Oam4I
Nvwibmdcm Ualirniod '



Security Cles.it'ication

DOCUME14T CONTROL DATA.- R & D
(Scuufty elaositkottem o #1110U. bedy of &be veer and AndoahA mamotsion' m~ust be entereed he", R. overall report is easeellled)

OR.GNA INGACTIITY(Copoves miths) A. R4EPORT SECURITY CLASSIFICATION

University of Wisconsin *UNCLASSIFIED
D epartment of Statistics GRP

3. FREPORUT TItTL

Gouri K. Bhattacharyya
Richard A. Johnson

4. I-EPORT DATE 7416 TOT4L. NO. OF PAGES b.NO. OF ^6PS

40. CONTRACT OR RANT 040 so. ORIGINATOR'S REPORT kJMUERISM

AFOSR 69-1789
b. PROJECT NO.

9749__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
C. Sb.OTHER REPORT NOM)I (Any eow bea UZ .metwy be ossiledro

6110ZF this eepeat)

681304 AFOSR -Th -72 -0494
SO. DISTRIBUTION STATEMENT

A. Approved for public release distribution unlimited.

I I- SUPPLEMENTARY NOTES Ii. SPONSORING MILITARY AC TIVITY

Air Force Office cf Scien~tific Research/N
1400 Wilson Blvd

TECH, OTHER Arlington, Virginia 22209

The present work concerns statistical inference in the bivariate exnonentialSdistribution introduced by M¶arshall and 01kin. Even thouc'h the distribution has as inoular component, the use of a special dominatinq measure leads to an explicitform of the likelihood whose nrot~erties are investinated. The existence, uniouenessand asymptotic distrihutional properties of the maximum likelihood estimators Iare
studied. tUsinn the criterion of aneneralized variance, it is shown that the simple
unbiased estimators proposed by Ar'nold are asymototically less efficient than theM'aximum likelihood estimators and the loss in efficiency is narticiflarly seriousI
in the case of independence. Unirormlv mrost notwerful test for independence isderived for the special model having identical marginal distributions.

DD I202 ''..14 73 _ _ _ _ _ _ _ _ _

Security clasafficatin"



DEPARTMENT OF STATISTICS

The University of Wisconsin
Madison, Wisconsin

TECHNICAL REPORT NO. 276

August 1971

MAXIMUM LIKELIHOOD ESTIMATION AND

HYPOTHESIS TESTING IN THE BIVARIATE

EXPONENTIAL MODEL OF MARSHALL

AND OLKIN

By

G.K. Bhattacharyya
and

Richard A. Johnson
University of Wisconsin

Typist: Jacquelyn R. Jones

This work was supported by the Air Force Office of Scientific Research
under Grant AFOSR 69-1789.

I2
:" ~ ~ ~ Ap ed for puli |" - ' elecik m



Maximum Likelihood Estimation and Hypothesis Testing

in the Bivariate Exponential Model of Marshall

and 01kin

By

G.K. Bhattacharyya and Richard A. J hnson
University of Wisconsin

ABSTRACT

The present work concerns statistical inference in the

bivariate exponential distribution introduced by Marshall

and 01kin. Even though the distribution has a singular

component, the use of a special dominating measure leads to

an explicit form of the likelihood whose properties are

investigated. The existence, uniqueness and asymptotic

distributional properties of the maximum likelihood estimators

are studied. Using the criterion of generalized variance,

it is shown that the simple unbiased estimators proposed by

Arnold are asymptotically ].!ss efficient than the maximum

likelihood estimators and the loss in efficiency is particularly

serious in the case of independence. Uniformly most powerful

test for independence is derived for the special model having

identical marginal distributions.
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1. INTRODUCTION AND SUMMARY

From reliability considerations, Marshall and Olkin (6)

formulated a multivariate analog of the exponential distribution

as a realistic model for a system wher-. the component life

times may be dependent due to shocks affecting two or more

components simultaneously. In their bivariate model, two

components A and B in a system are subject to three types of

shocks which occur independently according to Poisson processes

with intensity parameters A1 , A2 and 6 respectively. The

first (second) type of shock affects only the component A (B)

while the third type of shock causes the failure of both A

and B so that their life times Y1 and Y2 will be dependent

when 6>0. It is shown in (6] that the joint distribution of

(YY2 ) has the right hand cdf

F(YY 2 ) = P(YI>y 1 ,Y 2 >y 2 ) = exp[-AlyI - A2y 2 - 6max(YlY 2 )]

for v 1 y2 > n. (1.1)

Some properties of this distribution including the moment

generating function, the distribution of min(Y ,Y 2 ), etc. are

studied in [6) and a natural extension to higher dimensions

is also presented.
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Although developed from a Poisson shock model analogously

to the univariate exponential distribution, an analytical

treatment of this bivariate exponential distribution is made

difficult by the existence of a component which is singular

with respect to the two-dimensional Lebesgue measure. Several

authors (1], [2), [4] have mentioned this difficulty particularly

in the context of maximum likelihood estimation. Problems of

parameter estimation and testing certain hypotheses, based on

a random sample Yi = (Y liY 2i), i=l,...,n from (1.1), have

been considered by Arnold [1) and George [4]. Due to the

difficulty of explicitly writing out the likelihood function,

both authors start with an initial reduction of the data to

n

T1 = E min(Y li,Y2), N1 # (Yli > Y2i)
i=1

(1.2)

N7 = #(Yli > Y 2i' N0 = #(Yli = Y2i)

where the symbol # (".") denotes the number of vectors Y

satisfying the statement "-". The counts (N 0 ,NI,N 2 ) have a

multinomial distribution and are independent of T1 which has

a gamma distribution. Based on this fact, unbiased estimators

of X1I' X2 and 6 are obtained in [1] and likelihood ratio tests

are formulated in [4). However, aside from having a convenient

distribution, (N0 ,NI,N 2 ,T,) does not constitute a sufficient
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for (1.1) and therefore this reduction involves some loss of

information. In this paper, we study procedures based on the

complete random sample and its reduction to sufficient

statistics.

A mixture of one- and two-dimensional Lebesgue measures

is used in Section 2 as a dominating measure which leads to

a joint density function and minimal sufficient statistics.

The distributional properties of the sufficient statistics

are studied and the lack of completeness is demonstrated for

the case of identical marginals. Maximum likelihood estimators

(MLE) are investigated in Section 3. It is shown that the MLE

is realized as the unique root of the likelihood equation

except in a subset of the sample space where it does not exist

or is not unique. The probability of this set however tends

to zero with increasing sample size. The structure of the

MLE is compared with the simple unbiased estimators proposed

by Arnold [i1 and the asymptotic distribution of both estimators

are obtained. Using the criterion of generalized variance,

the asymptotic efficiency of the unbiased estimators relative

to the MLE is derived and bounds of this efficiency are

studied.

A case of particular interest in the model (1.1) is the

one having identical marginal distributions, that is A1 -A 2 .

This model fits real life situations where the components

which are connected in parallel in a system are similar in



nature and are likely to experience the same sort of shocks

component-wise in addition to occasionally being simultaneously

affected by some catastrophic shocks. Since independence of

life times introduces substantial simplification in system

reliability studies, in Section 4 we consider the problem of

testing for independence (6-0) in this model. Using the

concept of a least favorable distribution, the uniformly most

powerful (UMP) test for independence is derived in a convenient

form. The proof indicates a strong optimality of some other

tests in reliability studies. For instance, when testing for

the equality of scale parameters in two exponential distribu-

tions against one sided alternatives, the usual F test is UMP

rather than just UMP unbiased and the same property holds

even for censored samples.

2. LIKELIHOOD, SUFFICIENCY AND COMPLETENESS

Let (YIY 2 ) have the nivariate exponential cdf given by

(1.1) and denote this distribution by BVE ( 1 ,X2 ,6) where the

parameter space is n - {(XIX 2 ,6): 0 <Xi<-, i-1,2; 06<-<}.

In order to obtain its probability density function (pdf),

we consider the Lebesgue measure u12 on (R , ) where R2 is the

positive orthant of the (yly 2 ) plane and is the correspondins

Borel a-field. In order to handle the singular component, we
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define another measure V on (R2, ) as follows: let C0={(x,x):2 +

O<x<-} be the diagonal line in R and for Borel sets B R2,

set v(B) = pl({x: (x,x)eB C01) where u1 is the Lebesgue

measure on the real line. v is a a-finite measure on (R•, )

and is singular with respect to V2" Finally, we let U-P2+v

on (R2 , ) and note that the probability measure determined

by (1.1) is absolutely continuous with respect to the measure

U'.

Let C1 = ((yly 2 ): O<yl<y 2 <®} and C2 = { (yly 2 ): 0<Y2 <yl<a}

be the subsets of R which are above and below the diagonal2

respectively so that R+2 = U C Then, from the propertiesrepetiey o ha 2 =_ a
a=0

of the distribution (1.1) discussed in (61, we observe that

a determination of the pdf of (Y1 ,Y 2 ), with respect to V,

is given by

f(yly2) = 2f(ylfy2) CO(yl'y2)(2.1)

where

f 0 (yly 2 ) - 6 expf-(X1 + A2 + 6)y 1 ]

fl(yly 2 ) = Al(A 2 +6)exp(-Xlyl - A2 y 2 - 6Y21 (2.2)

f 2 (yly 2 ) = X2(Al+6)exp[-Alyl - X2 y 2 - 6y 1 ]
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and I is the indicator of the set appearing in its suffix.

The joint pdf of the random sample Yi = (Yli'¥2i)' i=l,...,n
n

is then the product inI f(yliy2i) where f is defined by
i=1

(2.1) and (2.2). To simplify the expression, we introduce

the following notations:

nL = nIC (Yli,'y2i), a=0,1,2, s E n

wli = min(yli,y 2 i ), w2 i = max(Yliy 2 i ) i=1,...,n (2.3)

n n
= I w 1 1 , t 2  E w w2~i v -t 2  t

i=1 i=1

Thus n0 ,n 1 and n2 are, respectively, the number of points

which are cn, above and below the diagonal line so that

n 0+l+n2 = n. Also we have s1+S2 = . 1+t 2 . Noting that,

for every point (yly 2 ) in R+, exactly one term in the r.h.s.

of (2.1) is non-zero, the likelihood function simplifies to

the form

n 2
E(,XI, 2F6) = . f(ylly2i) = H H1 fayliy 2 i)

i=l a=O YiEca

nI n no
= [X 1 (A2 +6)] 1 (A 2(O+6)] 6 0 exp[-S -1 2 s 2 - 6t 2J

for (X1 ,A 2 ,6) C 0. (2.4)
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For the case 6=0, the above functional form holds provided

0we interprete 0 =1. The likelihood in this case is then 0

if n0 >0 and (AiX 2 )nexp[-Alsl - A2 s 2 ] if n0 =0.

From the factorization criterion, it follows that a set

of sufficient statistics is given by (N1,N 2 ,SIT,,T12 ) or,

equivalently, by (N1 ,N 2 ,S 1 ,TI1 V) where the components are

defined in (2.3) using small letters. The minimality of this

sufficient statistics follows from the usual partitioning

operation of the sample space (c.f. (81, p. 50). For the

subfamily of (1.1) with 6=0, a minimal sufficient statistic

is (S 1 ,S 2 ) since N2=0 with probability 1. This is also clear

from the fact that, in this subfamily, Y1 and Y2 are independent

and exponentially distributed.

In the special subfamily of (1.1) having identical

marginals, we denote the common parameter X1 =A2 by 8 and the

parameter space by Q 1l {(S,6): 0<0<-, 016<=}. The likelihood

function is then given by

t*(8,6) ((+6)n 6 n0exp[-B(t 1 +t 2 ) - 6t 2 1,

(0,6) C Q1 (2.5)

and (N0 ,TIV) constitutes a set of minimal sufficient

statistics.

We now list some distributional properties of this

sufficient statistics for future reference, particularly for

1|
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Section 4 where we consider hypothesis testing in this

subfamily. For abbreviation we shall write "X is G(n,8)" to

n-imean that X has a gamma distribution with p.d.f. a exp[-Oxlx

0<x<- and the corresponding cdf will be denoted by G(x; n,6).

Theorem 2.1. Let Yi, iil,...,n be a random sample from

BVE(B,B,6) and let N0 , T1 , V be defined as in (2.3), then

the following hold:

(a) T1 is G(n, 28+6) and is independent of (N0 ,V)

(b) No and V jointly have the mixed distribution given by

0 k

if k=0,...,n-1

n if k=n (2.6)

where 0<v<-, and p=6/(20+6) is the probability mass on

the diagonal for a single observation.

(c) Conditionally given n0 =0, V is G(n,8+6).

The property (a) holds even in the general case of non-

identical marginals in which case 28+6 is to be replaced by

X 1+A2 +6. The distribution of T1 has already been noted in

[6]. Independence of T1 and (N0 ,V) can be verified by using

(2.1) and (2.2) to write out the joint pdf of Wli and

Vi-W2i-Wli and then factoring the pdf of W1, and V . Since
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T1 EW1 i, VlEVi and N0 =#(VilO), the result follows. To

establish (b), one needs to write P(N 0 =k, V<v) = P(N 0 =k)P(V<vlN0=k)

and note that when k=n, V has the constant value 0 and for
n-k

any k<n, V is the sum of (n-k) terms I V1i where V,.,Vni-i j
are i.i.d. G(1,0+6) and (i1,...in) is a permutation of the

integers (1,...,n). (c) follows immediately from (b).

The following moments are obtained from the distributions

stated in Theorem 2.1 using the properties of gamma distribution.

E(T 1 ) = n(20+6) -1

E(N 0 T1 ) = n26(20+8S)-2
(2.7)

E(V) = E[E(VIN 0 )] = 2nB(S+6)- (28+6)-I

E(VN0 ) = 2n(n-l)BS(8+S) -(2B+6)2.

For the family BVE(6,6,S), we note that although the parameter

space is two-dimensional, the minimal sufficient statistic

obtained above has three components. To prove that the

sufficient statistic is not complete we consider the statistic

T* = V(n+N0 -1)[4n(n-l)) -1 - T 1 (n-N 0 ) [2n 2 1- 1 . (2.8)

By using the moments in (2.7) it is easy to verify that each

of the two terms in the r.h.s. of (2.8) is an unbiased
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estimator of 8(2B+6)-2 so that T* is an unbiased estimator

of 0. Since T* is not identically 0, the statistics (N0 ,T1 ,V)

is not complete. Although the unbiased estimators constructed

by Arnold [l1 are functions of N0 and T,, the lack of complete-

ness prevents one from concluding that these have minimum

variance. In the general model BVE(AIA 2 ,6) where the

parameter space is three dimensional, the minimal sufficient

statistics have five components. It is unlikely that these

sufficient statistics are complete but we have not been able

to prove it.

3. MAXIMUM LIKELIHOOD ESTIMATION

This section is devoted to the derivation and study of

the asymptotic properties of the MLE for the parameters of

the general model BVE(AIA 2,6) as well as for the special

model having identical marginals. The use of the dominating

measure p, introduced in Section 2, permits an explicit

functional representation of the likelihood whose properties

are readily studied. The investigation brings out some

interesting facts about the model with regard to the

existence and uniqueness of the MLE. We give the details

for the general model and only summarize the results for the

case of identical marginals.
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Let B=BI B2 denote the boundary of the parameter space

0 of the general model BVE(XIA 2 ,6) where B1 - [6-0, AI>0, A2 >0]

and B2 - [A1 0] IX[2 -01. Note that B 1 whereas B2 is

disjoint from 9, although it is in the closure of n. Using

(2.4), the likelihood function is given by

I(AIX 2 ,6) - [AI(A 2 +6)] [X2 (A 1+6)]n 2 6n 0 exp[- 1 s1  A2 s 2 -6t2],

on P-D 1

W [IXA 2 nexp[-X1 S1 - X2 s 2 ]In 0 0], on B1 . (3.1)

Equating the first partial derivatives of logI(XlX 2 ,6) on

f-B1 to zero, we obtain the likelihood equations

n(+)-I + n2A;' = s2 (3.2)
n X- + n (X +6) -

-1 -1 -1

n1(X2+6) 1+ n 2 (A1 +6) + n 0 6 = 2`

and the matrix Q of the second partial derivatives is given

by
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Sn2 n2S-, + 0

2 22+

(+6) 2 (+6) (X+6) +6) 26

The existence and uniqueness properties of MLE are given in

the following theorem.

Theorem 3.1.

Mi If n01 n1 ln 2 are all non-zero, the MLE of (XA11A2 ' 6) is

unqeand iste uniue root, belonging to Q-B1  of

the set of equations (3.2).

(ii) If n 0-0, n I>0 and n 2>0, the unique MLE !is gven y~ 6=0,

(iii) If n 0=0 and either n 1=0 or n 2=0, the F4LE exists but is

not

(iv) If n 0 >0 and one or both of n 1and n 2 are 0, the MLE does

not exist in the sense that the supremum of the likelihood

is not attained within the parameter space Q.

Proof.. (iM We first note that when nn>0, i-0,1,2, the diagonal
m=1 2+s)

mtrix folwn th2e2 -2 ispsiieeem.t o

diag/s1, 2 n/ 2. 2 ,n
6
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all (X 1 2'2 6) e U-B 1 and also it is easy to verify that the

matrix -(Q+D) is positive semi-definite. It follows that

when (A1 ,A2 ,6) c f-B 1 and all ni>0, the matrix Q is negative

definite. Thus log t is a strictly concave function on f-B 1 .

Also, Z-0 on B1 and L0 as the argument (X1 ,X216) approaches

any point on the boundary B or tends to infinity in any

component. Hence I has a unique maximum within A-B1 and the

maximum is attained at the root of (3.2).

(ii) When n 0 =0, n 1 >0, n 2 >0 and (A,X 2 ,6) c f-B 1 , Q

is again negative definite so that log I is strictly concave

on fl-B Since X is continuous on B, it has a unique maximum

either at an interior point of 0 or on the boundary B. If

possible, suppose the maximum occurs at an interior point

(AA 22"). Then it must be a root of the equations (3.2).

Substituting these values in (3.2) and subtracting the first

two equations from the third, we obtain

S+- -1-

1 2 1 1  =2 1

2 1- - t 2 -s 2 .

Since t2-s > 0 and t -s2> 0, we have > >-l -

Sic t 2 1 W 2 2 (2+g 12

But (ri, 2 '6b, being an interior point of 9, satisfies

<X2<X 2+6; and we reach a contradiction. Therefore supt - supt
SB 1
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and it follows from (3.1) that the sup on B1 is attained at

X =n/sl, 2 =n/s 2 •

(iii) Consider the case n 0 -n=10, n2 =n so that s 1 =t 2

and s 2=tI. Then we have

[X= [ 2 (X+6)] nexp[-(X +6)t2- A2 tI] on Q2.

It is easy to see that £ is maximized at every point (Xi, 2 ,6)

in Q satisfying A2=n/tI and X.+6=n/t The MLE exists but

it is not unique as far as X1 and 6 are concerned. The case

n0 =n 2=0, n1 =n is entirely symmetric.

(iv) Let n0 >0, n2 >0 and n1 =0, logi is again strictly

concave on P-B If (3.2) has a solution ( 2iX2 ,6) c Q-BI,

we have n0 /6=0 as can be seen from the first and third

equations after noting that sI=t 2 in this case. This is a

contradiction. Hence supt is not attained at any interior

point of 0, and on the boundary B1 we have 1=0. The MLE does

not exist. However, if Q is extended to include B2 , then

supt is attained on Q B 2 at the point tiMO, X2 =n2/tl,

6=n/t 2 and, by convention, we may take this to be the MLE.

The other situation to be considered is when n0 =n which

implies s 1 =S 2 =t 1 =t 2 and hence

t(XiX2,6) = 6 nexp[-(A1 +A 2 +6)t 1 1 on n-B1

= 0 otherwise.
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Supt is clearly not attained at any point in R although it

is attained on the extended set 6 at the point 1=o, A2=0,

6=n/t 1 . This may be taken to be the MLE, by convention.

This concludes the proof of the theorem.

With increasing sample size, the probability that NI =0

or N2 =0 approaches 0 exponentially and therefore the cases

'which are important in large samples are (i) and (ii) of

the above theorem. For (i), a closed form expression of the

MLE could not be obtained due to the non-linear form of the

likelihood equations. In application, the estimates must be

computed by an iterative procedure. The unbiased estimators

of XV1,A 2 ,6 proposed by Arnold [1) are based on (N0 ,N1,N 2 ,T1 )

and do not use all the components of the minimal sufficient

statistic. In some parts of the sample space, these estimates

are close to the MLE while in others they are quite different.

The two sets of estimators are presented in Table 1 for

comparison. In the first three columns, +(0) means that the

corresponding Ni is greater than (equal to) zero. The cases

(N0 ,N1 ,N2 ) = (0,0,n) and (+,+,0) are not included in the

table because they follow by symmetry from (0,n,O) and

(+,0,+) respectively.
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TABLE I. COMPARISON OF MLE AND UNBIASED ESTIMATORS

c = (n-l)/n

Estimators of (X,,2,6)

N0 N1 N2 MLE Unbiased

0 + + (n/SI, n/S 2 , 0) Cn(Nl/Ti, N2 /Ti, 0)

+ + + Unique root of (3.2) cn (N 1/Tip N2/T1, No/T1

0 n 0 (n/TI, n/T 2 , 0) Cn(Ni/Ti, 0, 0)

n 0 0 (0, 0, n/T 1 ) cn (0, 0, n/T 1 )

+ 0 + (0, N2 /TI, n/T 2 ) Cn(0, N2 /TI, N0 /TI)

*
a member in the class of MLE.

In the model BVE (0,3,6) having identical marginals,

the derivation of the MLE is essentially similar and a closed

form expression can be obtained. However, even in this

simplified model, there is a part of the sample space where

the MLE does not exist. We state the findings without proof

since the derivations are along the same lines as in Theorem

3.1.
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Theorem 3.2. If n0 <n, the MLE of (0,6) in the model BVE(0,0,6)

exists, is unique and is given by 6M0, 9=2n/(t 1 +t 2 ) if n0 =O

and by

8 (2t 1 t 2 )-1 [{n 2 (t 2 -t 1 )2 + 4n 0 (2n-n 0 )tIt 2 }t - n(t 2 -t 1)

S= (n-n0)6 [n 0+St 1]-

if n0>0. If n0 =n, the MLE does not exist.

In order to investigate the asymptotic properties of

the MLE in the model BVE (X 1 ,A 2 ,6), we write 0 = lnF X2n 6 n)

for the MLE of 0 = (A1 ,A 2 ,6) where the suffix n indicates

the sample size. Also let Nn = (NOn'Nln'N2n) where we

write Nin for Ni, i=0,l,2 of the previous sections. We

consider first the case when the true 0 is an interior

point of Q, that is, 0>0. For every n, N has the trinomial

distribution TN(n;p) where p = (p 0 ,PlP 2 ) X- 1 (6,A ,X 2) and

A = A1 +A2+tS. By the Borel-Cantelli lemma, almost surely

N >0 for all but a finite number of n as n÷+. For all

sufficiently large n, 6n is the unique root of the likelihood

equation (3.2) and hence 2n-8 with probability 1 by the strong

consistency property of MLE (c.f. Rao [7), p. 300). In the

multiparameter case, it is necessary to use the fact that the

log likelihood is dominated by an integrable function in some

small neighborhoci of 0 in order to use the uniform strong
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law. Further, the likelihood function (3.1), restricted to

P-B1, satisfies the Cramdr conditions (c.f. Rao [71, p. 299)

for asymptotic normality. The boundedness condition for the

third partial derivatives of logl in a neighborhood of e

easily follows as these can be bounded by constants. Hence

n (~n-0) has asymptotically th.- trivariate normal distribution

3(0,E-) where Z- E(n-nQ) is the information matrix

and Q is given in (3.3). Letting

a = X 2 (X 1 +6) -2, b = XI(X2+6)-2

M= diag (XI,2,X6)

1/a 0 a

C = 0 b b (3.4)
a b a+b)

and computing E(Q), we obtain

-= + C. (3.5)

The following lemma provides the limit distribution of the

unbiased estimators.

Lemma 3.1. If 0 e-BI, the limitingdistribution of

nl (*-0), where n = (n-l) (nTn) -1 (NNnn is- In NnN2n On

trivariate normal 3(O,'i) with Z1 given by (3.4).

3 1 - givn by 3.4)
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Proof. From the properties of BVE(AI,X2,6), we note that Tln

has the distribution G(n,A) and it is independent of N n

which has a trinomial distribution. Letting Zn W (ZinZ2nz3n)

where

Nn
Zin = (-n--,- Pi) i=1,2 ; Z3  1 A), (3.6)

we see that n zn is asymptotically 3 (0,r) where

pl(l-pl) -PiP2  0

r = -plP2  p 2 (l-P 2 ) 0 (3.7)

0 0 A2

Employing the linear transformation Un = HZ , where

H =0 A, P2
-X -X

it follows that nsU - 3 (0,HrH'). It is easy to check that

Vn - -n U -- > 0. For example,
-n ~ -n -n

Vin -n (Nlnn-I p )(nTin -I ) P-> 0 since nki(Ninn- pi)in in
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has a limiting normal distribution and nTin --- > X. There-

fore n -% 3 (0,HrH') and the lemma follows by checking

that HrH' = V

From (3.4) and (3.5) it is clear that Z-I-£1- is non-

negative definite so that EI-" is non-negative definite.

This has several implications on the concentration of the

two asymptotic distributions. However, as a measure of the

asymptotic efficiency of the vector estimator en relative to

the MLE 6n' we only employ the criterion of the inverse ratio

of their asymptotic generalized variances. From (3.5) and.
Lemma 3.1, the ARE of 0n relative to n is given by

e(XV1 X2 '6) =JII~. Ill)-

A 2 IX 1/ 1 X- 2S(jI + C )-

22 1 I2 +6)"-[1 + + Al + (I62A+}(A+A+I2

(3.8)

As for the bounds of the ARE, we note that e<1 for all

(AIA 2 ,6) > 0. e-0 if A1 and 6 are fixed and A 2 or if

A2 and 6 are fixed and A1-W. Secondly, by keeping 6 fixed

and letting A1.0, A2 -0, we have e.l. Summarizing these, we

have
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inf e(A X,• ,6) - 0 , sup e(l,•X2,6) = 1. (3.9)
1-B 2-B 1

When eEB 1 , we have 6-0. In this case the MLE is given

by Xin n/Si, i=1,2, 6=0, while the unbiased estimator is
in' 1

AX - (n-l)Nin/(nTln), i=1,2, 6 -0. The asymptotic normalityinin I
of n"(tin-)1, X2-X and of n&,(X X *0l Xn-X can be

n(InX, 2n 2 in ~l 2n 2 cnb

established using the above method. The ARE of the unbiased

estimator relative to the MLE and its bounds are given by

e(A1 ,A 2 ,0) = AIA2 (AI+X 2 )- 2  (3.10)

inf e(A1 ,A 2 ,0) = 0 , sup e(Al V 0) - (3.11)
B1  B1

The maximum efficiency occurs when the marginals have the

same scale parameter and the minimum occurs when A/2 0

or a.

(3.9) and (3.11) show that the unbiased estimators pro-

posed in (11 ar- asymptotically less efficient than the MLE

and the loss in efficiency is serious in certain parts of

the parameter space, particularly when 6 is close to 0.

However, it should be remarked that the unbiased estimators

have a simple form even in the multidimensional case while

the derivation of the MLE in hiqher dimensions is rather

tedious.
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4. TEST OF INDEPENDENCE IN BVE(6,6,0)

In this section, we restrict ourselves to the bivariate

exponential distribution with identical marginals which, as

noted earlier, is a plausible model in many practical contexts

where identical components are connected in parallel. We

proceed to derive an optimal test for the null hypothesis

that the component life times are independent which is

equivalent to testing Ho: 6=0 against H1 : 6>0. Without loss
0

of generality, we can restrict attention to tests which are

functions of the sufficient statistics (N0 ,T 1IV). Their

joint distribution, however, does not constitute an exponential

family and therefore the standard procedure for deriving an

optimal test in an exponential family does not apply.

Let 9l = ((8,6): 0<8<-, 0<6<-} denote the parameter

space and w = ((8,0): 0<8<-) denote the subset specified

by the composite null hypothesis. We shall write 0-0,6)

to denote a point in 9 and * = *(N0 ,T1 ,V) a test function.

The following lemma provides an essentially complete cliAss

of level a tests.

Lemma 4.1. Let f= (*: E *)<, OEw} be the class of level

a tests for H vs. H1 and define a class of tests ' as

follows:
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= : -*=1 if N0>0, * mc if N0=0}. (4.1)

Then and Z; is an essentially complete class of level

a tests.

Proof. Under H0 , the probability of the event [N0 >0] is

zero. Thus, for any test e*c and any * we have

E = P8 (N0 >0) + P8 (N0 f0)E (1IN 0 =0). (4.2)

and E0  = E0* if ecw. Hence • c . Also, since

0<05i, we have P0 (N0 >0) 2 Fe(OINo=0)Pe(N0>0) and hence

(4.2) yields E 0 > E 0 for all 0 en l1-w. Consequently,

every test OeV has a power function which is dominated by

a test in * and thus, by definition, Z* is essentially

complete.

The lemma implies that we only need to look for a UMP

test within the class Z!*. A UMP level a test *o, if one
0

exists, will maximize E (Io1N 0 =0) uniformly in 8•1-W

subject to EO 00= E(0o IN22i'0) • •, Oew. This reduces the

problem to finding a UMP test in the conditional problem

given that N12=0 is observed.

From Theorem 2.1, we note that, conditionally given

N0= P, T1 and V have the joint pdf given by
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g(tVV) = (28+6)n(8+6)n n-1
[r~n)r exp[-(20+6)t1  (B+8)vJ(t V)

1*

I[ (n) ]

0 -C tit v<G, (0,6) C a V (4.3)

Theorem 4.1. The UMP level a test of Ho: 6=0 vs. H1 : 6>0

for the family of distributions (4.3) exists and is given by

o (t,,v) = 1 if 2tI/v > F

= 0 otherwise, (4.4)

where F is the upper a point of the central F distribution

with (2n,2n) degrees of freedom.

Proof. For convenience, we make the following transformations:

t1 =u , v = 2u 2

20+6 = ý , 2(0+6) = -. (4.5)

The "nint pdf of U1 , U2 is given by

n-i
g(u1 lu 2 ;&,n) = c(&)c(n) exp[-FuI - nu 2I(Ulu2) ,

0<uI, u 2 <c, (4.6)
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where c(C) - n/r(n). The transformed parameter space is

Q= {(•,n): 0 < n/2 < < r n <cm} and the hypotheses are
*

equivalent to H : t-n vs. Hl: &<n. Let w - {((,*): 0<F<u.)

To derive the UMP test, we shall use the notion of least

favorable distributions. Consider a fixed simple alternative
* *

(Elnl) c 9 -w* and let & be a suitable constant, to be

selected later, which satisfies 0l<•oTnl. Let X(&O) be a

prior probability distribution on Q which concentrates mass
* *

1 on the single point 0* = (& . Letting

g)(ultu2 ) = fg(ul 1 u 2 ; &,n)dA(&o), we have

gX (u l'U2= c• (&0 )exp[-&0 (u1 +u 2)J (ulu2)n-l)

Consider the test * defined by

g(Ul,2•(,l c(&1)c(n1)
*(UlU = 1, if >2gx (Ul'U2) c 2 M 0)

= 0 otherwise. (4.7)

After some simplification of the inequality, * is equivalently

given by *=l if u1 /u 2 > (nl-&o)/(&o-EI) and *-0 otherwise.

Now we choose &o such that (n 1-co)/(Mo- 1 ) = F . Such a

choice is always possible because the ratio tends to 0 and

as ýo tends to and &1 respectively. With this choice
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of 0 and hence of the prior distribution A (.o), we have

*=I if U1 /U 2 > Fa and *-0 otherwise. Since under any

8 ew , U1 /U 2 has a central F(2n,2n) distribution, we have

E **(UI'U 2)o= E8 **(U 1 'U2 ) 2 a for all 8" ew. The
0

conditions for Corollary 5 in p. 92 of Lehmann [5) are

satisfied and therefore the test 41 is the most powerful

level a test for Re against the simple alternative (&101).

Transforming back to the variables t1 and v, we recognize

that * is identical with the test *o given by (4.4). As

the test does not depend on the particular alternative

(1,n), it is also the UMP test. This concludes the proof.

Combining Lemma 4.1 and Theorem 4*.1, we have

Corollary 4.1. For testing H : 6=0 vs. H1 : 6>0 in the

distribution BVE(0,0,6), a UMP level a test exists and is

given by

*(N 0 ,TIV) - 1 if N0>0 or 2T 1 /V > F

- 0 otherwise. (4.8)

Incidentally, we note that the test (4.8) can also be

derived from a natural invariance consideration. The

problem is invariant under a common scale change in the two
icoordinates, that is, transformnations of the form lCl,
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Y2 1'cY2 , i-l,...,n, c>O. On the set of sufficient statistics,

the induced transformation is N0 -N 0 , T1 N-cT, V -cV and a

maximal invariant is given by (N0 ,R) where R-2T1 /V. Conditionally,

given N0 -0, R is distributed as kF where k - (2$+6)/(2S+26)

and F nas a central F(2n,2n) distribution. For O<kjl, the

family has monotone likelihood ratio in R and hence the

conditional UIRV invariant test is the same as *.Using
0

Lemma 4.1, it then follows that the UMP invariant test is

the one given by Corollary 4.1. Although it is easier to

derive the test through this invariance argument, the use of

least favorable distribution provides a stronger optimality

property of the test.

The test (4.8), being invariant under common scale

change, has a power function which depends only on p-6/0

which is the maximal invariant in the parameter space.

Using (4.2) and the distributional properties mentioned

above, the power function y(p)-E p is given by

= - 2~n 28n
Y(P) 1 (- ( ) + ( Wi* ) P •2+ > FC)

= 1 - (2/(2+p)]nH(2Fa (1+p)/(2+p)) (4.9)

where H(o) is the cdf of a central F(2n,2n). For given n

and p, the power y(p) can be easily computed with the help

I
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of an incomplete beta function table. The power is strictly

increasing in p for every n. To see this, let q(p) 2Fa (l+p)/(2+p)

and note that the derivative of y(p) is proportional to

J(p) - {nH(q(p)I - q(p)htq(p)]} where h(°) is the pdf of

F(2n,2n). For n>2, the pdf h(x) is strictly concave over

0 to the mode (n-l)/(n+l), so that 2H(x) > xh(x) for all

x>O and hence J(p)>O. The case n-i is immediate since h(x)

is monotone decreasinq.

Remark. It is apparent from the proof of Theorem 4.1 that a

UMP test for testing H0 : &=n vs. H1 : C<n can be constructed

in the same way even when U1 and U2 are independent G(nl,&)

and g(n 2 ,n) respectively, and the parameter space is

'= {(&,n): 0<&<n<-}, and n1 and n2 may be different. For

an application in life testing, let X1 1 ... ,X and Y1...,*Yn
1 2

be two independent random samples from f(x) = rexp(-rx) and

g(y) = Fexp(-ýy) respectively. Epstein and Tsao [3] con-

sidered the problem of testing H : &-n against two-sided

alternatives and showed that the UMP unbiased test rejects

for large and small values of X/Y. The above theorem shows

that for one-sided alternatives H1 : 4<n, the test which

rejects for large values of X/Y is UMP rather than just UMP

unbiased. Same property holds with the usual modification

of the test statistic when the samples are censored at fixed

numbers of order statistics.
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