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FOREWORD
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Project Officer
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UNCLASSIFIED ABSTRACT

PRECISION CENTRIFUGE TESTING OF AN TR-0172($2970-10)-l
ACCELEROMETER, by C H. Neugebauer 71 SEP 15

A simple, direct, mathematically correct procedure for reducing accelerometer data
obtained on a precision centrifuge is presented. The procedure provides a means of
optimally separating even and odd terms and is applicable to the determination of all
the nonlinear coefficients of the assumed model equation. The effects .of the radial
acceleration gradient and of rotation are investigated. Criteria for establishing the
statistical significance of the coefficients and the validity of the model equation
(dependent on the application) are also presented. Finally, there is a discussioa on
the limitations imposed on the determination of the coeffic ients by angular compliance
of the centrifuge and of the mounting fixture, by misalignment angles, by uncertainties
in the length of the radius arm, and by relative magnitudes of the coefficients.
(Unclassified Report)
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SECTION I

INTRODUCTION

Accurate knowledge of accelerometer nonlinearitics is required in the

application of guidance control to today's missiles and space vehicles. Though some

attempts have been made to determine these coefficients on a precision linear shake

table, the only successful method, thus-far, has been by use of a precision centrifuge.

However, the use of a precision centrifuge does not guarantee that the nonlinear

coefficients will be accurately determined since there are several significant error

sources that must be controlled.

A data reduction procedure to minimize the effects of misalignments mAd radius

arm uncertainties has been describc-d by Evans and Fuhrman (Ref. 1) and is widely

used by the industry. In this procedure, quadratic equations ar6 sepaiately fittki

to accelerometer output data taken-in two positions (acceleration vector al-g plus

rnd minus input axis) by the methbd-of least squares. The constanit and linear terms,.

so obtained, are subtracted -from the data and a best fit cubic equation is-fitted-to

the resulting combined residuals.

Though- the above procedure is-mathematically incorr ct, it works faitlywell

for determining the- nonlinear coefficients because these coefficients are relatively

small and do not need to be known with great prec.sio.- -A

Evans and Fuhrman have also outlined-an iteration procedure-to improve the

accuracy With which the nonlinear coefficients may be obtained. - -

In this paper, a simpler, -more direct, more aedurate, and mathematically -
correct data- reduction,-procedure--is-preseited. It is a procedure in which all the

data (bipolar) are combined at encefor the optimum separation of even and dd terms.

It does involve a larger matrix of-sinultaneous equations than-the-method of Evans

and- Fuhrman but-with modern computers, even-desk c6mputers, this Is no great -

problem.

Preceding page blank,



The data reduction procedure has been applied not ony for obtaining the input

axis nonlinear ecoefficivnts but also for obtaining all th, oiler nonlinear coefficients

of the assumed model equation. Eq. (2-11. Methods fo;r establishing the uncertainties

of the coefficients and the adequacy of the model equation for particular applications

are also presented.

it is shown that the radial acceleration gradient, inherent to a centrifuge, has

no effect on a rigid body pendulun but that the rotation may affect the results due to

product of inertia torques. In addition, there is a discussion on the severe limitations

imposed on the (leterminaton of these coefficients by:

(1) misalignment angles

(2) uncertainties in the length of the radius arm

(3) relative magnitudes of the coefficients

(4) angular compliance of the centrifuge arm and of the mounting
fixture about all three principal axes.

The above limitations are reasonably independent of the data reduction procedures.

Limitations (1) and (2), above, were discussed by Evans and Fuhrman with regard to

obtaining bias and scale factor but not with regard to their effects on the determination

of the nonlinear coefficients, in general.

Ihc misalignments include not only the misalignments of the true input axis

with respect to the accelerometer mounting surface(s) but also the misalignments of

fixture mounting surface(s) and the centrifuge mounting surface(s) with respect to the

centrifuge and gravity acceleration vectors. In addition, misalignments can be introduced

by tightening of mounting screws, by dirt on the mounting surfaces, or by other causes.

Depending on the magnitude of the nonlinear co-fficients, it was found that the

angular compliance of the centrifuge arm and mounting fixture should not exceed about

1 or 2 arc second pet g about any axis.
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SECTION II

MODEL EQUATION

For convenience in this presentation, the model equation for a linear, penduloms,

nongyroscopic, torque balanced accelerometer is expressed in terms of the applied

acceleration components along the true input, pendulous, and output axes rather than

along the reference axes as given in Ref. 2. The misalignments 6 and 5 (Ref. 2)
p 0

of the true input axis with respect to the input reference axis are included later in the

misalignments of the accelerometer axes with respect to the centrifuge and gravity

acceleration vectors.

A E K + a + K 2 + 3 + 2+Ka3
K ii 0 I K21a1  (31a Ka 2pp aP

2 3 (2-1)
+ K 2 a2+ K a 3+ K a a + K a a + K aa a+ Kti~ai(-1

0 3o0 ip i p pop o o0 oi t'i

where

A = acceleration indicated by the accelerometer -

E = accelerometer output-output units

ai. a a 0  = applied acceleration2 components along the true input,

pendulous, and output (pivot) or floxure axes, respectiVe!y -.

= bias -

Kl1  = scale factor - output units/g

K21  = second order input axis coefficient - 12

g is a unit of acceleration. For convenienc.), it is usually taken v, be the local value
of gravity though some standard value may be chosen, if desired.

Applied acceleration refers to nongravitational acceleration since an accelerometer
cannot sense the acceleration of free fall. The attractive force of gravity acting on
an earthbound accelerometer is equivalent in its effect to an upward applied
acceleration of one

3



K 3i third order input axis coefficient -g/E 3

K 20 = second order cross-axis coefficients - gi12K2p' ~

K 30 third order cross-axis coefficients - FA 3
K3p'Ko

Kip, Kp, Ko - cross-coupling coefficients- 2

Kt torquing power (heating) coefficient - 2

The output units may be in volts, mA, pulses/sec or other convenient units.

Linear cross-axis sensitivity terms, Kpap and K0 a have not been included in the

model equation since they cannot be distinguished from misalignments of the input

axis about the pendulous and the output axes.

The input reference axis (IRA), the pendulous reference axis (PRA), and the

output reference axis (ORA) form a cartesian, orthogonal coordinate system which is

generally indicated by case markings and/or mounting surface(s). The true input

axis (IA), pendulous axis (PA), and output axis (OA), to which Eq. (2-1) refers, are

generally slightly misaligned with respect to the reference axes and can ouly be

determined by test. The output axis (OA) is mechanically determined by the flex or

pivot axis and the positive direction is chosen arbitrarily. The positive direction for

PA is orthogonal to OA and in the direction from the flex or pivot axis through the

centroid of the proof mass when the proof mass is at its null position. The three

axes form a right-hand orthogonal, coordinate system with the origin at the centroid

of the proof mass and such that

OA x IA =: PA (2-2)

where T, IA, and PA are unit vectors along OA, IA, and PA, respectively.

If the torquing power is kept constant, as it is in some pulse torqued systems,

then the coefficient Kt of Eq. (2-1) may be zero. Terms may be added to or deleted

from Eq. (2-1) as appropriate for the type of accelerometer and the requirements of

the appi-ation. The data reduction principles outlined herein may be applied to any

reasonable model equation.

3 Therc may be other sources than torquing power for this term.

4



SECTION III

ACCELERATION GRADIENT EFFECTS

In centrifuge testing of an accelerometer, it is evident that the acceleration

field is nonuniform; it varies linearly with the radius from the axis of rotation. The

question is frequently asked: What effects, if any, does this linear acceleration gradient

have on the accelerometer?

Construct a right-hand, orthogonal coordinate system XYZ that rotates with

the centrifuge as shown in Fig. 1. The Z axis coincides with the rotation axis and

the X axis passes through the center of gravity, C, of the proof mass (the proof mass

includes all pendulous parts and, in general, must be treated as a compound pendulum).

UZ

-
z 0

S-P r

10C Y

0

X, X

Figure 1. Proof Mass
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Construct an xyz coordinate system with the center of gravity, C, of the proof

mass as the origin and parallel to the XYZ system as shown in Fig. 1.

Let

i,, k = unit vectors along X, Y, Z axes, respectively. Also

along x, y, z axes, respectively

Rc - = radius vector from the Z axis to the center of gravity, C,

of the proof mass.

= projection on XY plane of the radius vector from the Z axis

to any point P of the proof mass

r = radius vector from point C to point P

rx r, rz  = components of r parallel to the x, y, and z axes respectively

= steady-state angular velocity of the centrifuge about the

Z axis with respect to inertial space

M = mass of the proof mass.

Consider a differential mass, dim, at point P. The centripetal force acting on

the differential mass is

dF = -12U dm (3-1)

But, from Fig. 1, it is evident that

R = Re" + r - rz k (3-2)

Therefore, if we substitute Eq. (3-2) in Eq. (3-1) and integrate over the entire

body of the proof mass, we find

-f = -! , 2 fITR (di F dni- f z dm

But fdm = M, the total mass of the proof mass, and the other two integrals define

the center of gravity of the proof mass and are equal to zero. Therefore

2 lt=- , M 1 (3-3)
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and the acceleration gradient has no effect on the central force vector acting at the

centroid of the proof mass.

Let us now d3termine if the acceleration gradient causes any moments to act on

the proof mass. The moment of the centripetal force acting on the differential mass

about the centroid, C, is

dT = r x dF= - n 2 dmr x R (3-4)

Substitute Eq. (3-2) in Eq. (3-4) and integrate ov 3r the entire body of the proof mass.

Y S2 2 [IRcfPrx Tdm +fF x Fdm-ft xrz idmj

-a 2 [ c R kfrydm + Rcfrzdm + jfrz rxdm

T fry rz dm (35)

Tie first two *-Itegrals in Eq. (3-5) define the centroid and, therefore, are equal

to zero. The next two integrals define products of inertia of the proof mass. Therefore

= (I i -I j) 2  (3-6)
yZi zx

where Iyz and IIx are products of inertia of the proof mass. This torque is a

dynamic unbalance torque produced by rotation abo.at the Z axis or an axis parallel

to the Z axis. If the z axis is a principal axis of the proof mass, then y z = lzx = 0.

The construction of most accelerometers is such that IA, -PA, and OA are

nominally principal axes of inertia of the proof mass. In al! mounting positions

considered in this paper, the centrifuge rotation axis is nominally parallel to IA,

PA, or OA and no product of inertia effects are included. In general, only product

of inertia torque components about OA need be considered and these vary linearly

with acceleration.



SECTION IV

ACCELERATION COMPONENTS

In this section, the effects of earth's rate, nonverticality of the centrifuge axis,

angular deflections of the centrifuge radius arm, and misalignments of the true

accelerometer axes with respect to the accelerometer reference axes are considered.

It is assumed that the accelerometer reference axes are defined with respect to the

centrifuge and gravity acceleration vectors.

The following notation, in addition to that previously defined, will be used:

a centripetal acceleration at centroid of proof mass -C

a ay, a components of applied acceleration along the x, y, andxY z
z axes, respectively - g

a a , a components of applied acceleration along the u, v, andu vw
w axes, respectively - g

ai, a components of applied acceleration along IA, PA, and

OA, respectively-g

G = magnitude of g- ft/sec2

k y = compliance coefficients of mounting fixture and centrifuge

about the x, y, and z axes, respectively - rad/g

Tr period z, revolution with respect to earth-see

Yx , v, /z  angular deflections of mounting fixture and centrifuge

about the x, y, and z axes, respectively, as a function

of ac - rad

Ezv = angie between Z axis and local vertical - rad

0 = angular displacement of the centrifuge arm with respect

to an earth-fixed reference plane containing the Z axis - rad

Preceding page blank 9



f

oi, 0p, o°  small successive Euler angle displacements about IRA,
PRA, and OR A to transforin acceleration components

along acceleromcter reference axes to components along

the true axes - rad

astronomic latitude at centrifuge -dog

fir = angular velocity of the centrifuge relative to earth-rad/sec

= angular velocity of earth relative to inertial space-rad/sec

The earth sidereal rate is quite small (w - 72.9211 x 10-6 rad/sec) and may

be neglected in the calibration of some accelerometers, except on centrifuges with

long radius arms and at low centrifuge rates of rotation. The angular velocity cf

the centrifuge with respect to inertial space is

S2 = Str + we sin X

and the centripetal acceleration at the proof mass centroid is

RS22 Rc(,+siX)2 Re S~ 2 2w esinX
aC G G G r Or (4-1)

Thus the vertical component of earth rate at the middle latitudes would result in an

error of approximately 10-2/Vi % for R = 32 ft and varies approximately as the

square root of the radius.

The centripetal acceleration is a function of the angular velocity and the radius

arm. The anguiar velocity, corrected for earth rate, if necessary, may be determined

quite precisely by measuring its period of rotation, T, over several revolutions. The

radius to the centroid of the proof mass is more difficult to obtain. Some centrifuges,

such as the 100-inch centrifuges at Holloman AFB, have a cage rotating about a vertical
ax:s which permits a fairly accurate determination of the radius arm. An error of

0. 1 percent in the radius arm will result in an error of approximately 0.2 percent in

a quadratic term and ala 0.3 .r"c'vent in a cubic term, which is vsually q uiTh

acceptable. Th2 centripetal acceleration at the proof mass centroid is

10



4r2 / T i
aT c 2 7T / (4-2)

ae GT2 r /

Due to rotational stresses that vary as the square of the centrifuge rate, the

radius arm length may change. It would probably be safe to assume that arm stretch,
2whether positive or negative, is proportional to R . It is comparatively easy to

accurately measure arm stretch, so it will be assumed that this is done and used in

the data reduction procedure, if required. In general, measurements of arm stretch

do not include changes that are due to bending of the mounting fixture.

The centrifuge axis in a well-installed and adjusted centrifuge should be very

close to vertical so that czv << 1. Assuming that this angle is independent of Q r'

which is not necessarily true, czv may be determined by observing a low threshold,

high resolution, precision bubble level mounted parallel to the X axis. The bubble

level reading should vary sinusoidally as the centrifuge is rotated from one position

to another, i.e.

0 b =0 ° + Ezv COS (0 +)

where

Ob = angular reading of bubble - rad

00 = offset angle (bias) of bubble - rad

= phase angle with respect to reference plane - rad

The magnitude of czv is equal to one-half the variation in Ob over a complete

revolution.

As mentioned previously, the centrifuge axis of rotation may vary with speed

but probably not by significant amounts. The acceleration components in the xyz

system are

ax - a. + -a cos(o+ )

a e sin (0 +)(4-3)
y zV

az =cos Ezv

11



1From Eqs. (4-3), it is seen that the x and y components of acceleration

arising from nonverticality of the centrifuge axis average out to zero over an integral

number of revolutions. However, it is best to have the axis vertical within one or two

arc minutes so that the output reading is not necessarily tied down to averaging over an

integral number of revolutions and any rectification effects are negligible. It will now

be assumed that the centrifuge axis is adjusted to within one or two arc minutes of the

vertical. rhe average acceleration components along the x, y, and z axes, in & units,

are:

x c

a 0 (4-4)

a z 1

Due to bending of the centrifuge arm and of the mounting fixture induced by

dynamic unbalance, aerodynamic effects, or heating effects, the accelerometer

mount may deflect angularly as a function of acceleration level. As a first approxi-

motion, it will be assumed that angular deflections will be proportional to the

acceleration level, i.e.

y -= kx ac

VYy = ky a (4-5)

Yz = kz a I

In a well constructed, dynamically balanced centrifuge with a rigid mounting

fixture, the angular compliance should be less than two are seconds per g. For

example, the compliance of the MIT/CSDL 32-foot arm centrifuge was found to be

less than 0.2 arc seconds per 1. The compliance of the Holloman 100-inch arm

centrifuge about the y (tangential) axis has been found to be less than 0.25 are seconds

per & on some centrifuge runs but as much as 4 arc seconds per g on other runs. The

latter variations may be due to variations in the dynamic unbalance of the birdcage

for the different setups. It should be noted that the contribution of the mounting

fixture to the angular compliance may vary as a function of the accelerometer

mounting position.

12



Construct a right-hand, orthcgonal coordinate systern uvw derived from the

xyz system (see Fig. 2) by the Euler angle rotations -,x, yyz, . The uvw system
coincides with the xyz system when ac = 0.

z
W

C

X U

Figure 2. Coordinate Systems

Though angular displacements about orthogonal axes are not commutative, they may

be treated as commutative when they are very small, say less than five are minutes.

Using small angle approximations, the acceleration components in the uvw system

are:

au a + a yz a Iy
av  ay + az(-axyz  (4-6)

aw  az + axvy - aV

From Eqs. (4-4) thru (4-6)

-% 1 + k y)a

a -kx ac + kz a2 c (4-7)

a l-k a2

aw y a

13



Next use small successive Euler angle displacements oi' 0p, 0 to transform

acceleration components along the accelerometer reference axes to acceleration

components along the true accelerometer axes. The resulting relationshipr, are

given in Eqs. (4-8).

a i A i cos oP cos o ° + Ap (sin o i sino Cos o0 + sin o Cos 0.) "

- A (sin o ° sino. - cos o sin o cos )
0 0 p 0

ap Ap (cos 0 cos 0 - sin o i sin op sino 0 ) + A° (cos 0 o sin 0 i  (4-8)

Scos o i sin op sin o)- Ai cos 0p sino 0

a A ! cosO i eos p o-V Ai sin0 -A sin 0 i Cos p

Let us specify that the magnitudes of the misalignment angles (oi' 0p' o)

be limited to 0.01 rad (34.4), i.e. Io. <_0.01 rad, where j =i, p, o. RecallJI

that these misalignment angles include misalignments of the mounting fixture and of

the centrifuge mounting surfaces with respect to the centripetal and gravity vectors

but not misal.gnments due to angular compliance. We may now use the small angle

approximations:
sin 0. 0o. w -ith an absolute error less than 3.3 x

si j 0J ih,1

Cc. o 1 - 2 oj with an absolute error less than 4 x 1010j 2j

Substitute the above approximations in Eqs. (4-8) and neglect third order errors,

i.e. triple products of 0., j = i, p, o and products of o and the compliance

coefficients k, k kz .

1 2 1 2.ai - A i (1 - - p -2) Vo "(o p00i p-Ao(pp 0 p

ap A (1-.0-102) + Ao (0 1 + 00)-A 0 (4-9)
p 2 o i 0 p 0

a =A(1- I 10) + Ai0p-Ap0J
02 2 p

[ 14



SECTION V

MOUNTING POSITIONS AND LIMITS

In order to determine the coefficients of the model equation, it is necessary to

test the accelerometer in a number of different mounting positions and at many

aeceleraticsi levels. The chosen positions (others are possible) are shown in Figs. 3

and 4. Recall that the centripetal acceleration vector a is in the minus x directionc
and the effect of gravity is equivalent to an upward acceleration of one

Table I shows the model equation coefficients that will be determined in each

position pair of Figs. 3 and 4.

Table I

Position Pair Coefficient

1 and 2 K2 K, K3i

3 and 4 K2p , K3p

5 and 6 K, K
2o 3o

7 and 8 Kip

9 and 10 Kpo

11 and 12 Koi

Based on past experience with this type of torque balanced pendulous

accelerometer, we may conservatively assume that the model equation coefficients

satisfy the following limits:

K2ij ,K2p, I g2ol )I Kip I Koi, Kt 1 10 -4 g / g 2

K I IKI K , 1<30  .10-4 1 (5-1)

kx I Iky kz I S o10-'5 rad/1 (I arc see/)

15



w, ORA w, ORA

I RA

PRA-'- - v PRA
c rac

(a) POSITION 1 u. IRA ()PSTO

w, ORA W R

PRA

0 crv, IRA -R~ 0 V

CPOSITION 3 (d) POSITION 4

*w, IRA w

ORA
.0e acs V, PRA

,PRA
0cr u, ORA
'000 IRA

U
N(e) POSITION 5 (f) POSITION 6

Figure 3. Accelerometer Mounting Positions
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cr acs

PRA 450 IRA

w, ORA v OA*-

IRA 450
IRA U PRA

(a) POSITION 7 (b) POSITION 8

acr a Cs
ORA 450 PRA

w, I RA 41Z v -w§ IRAv

45,
U ORA U* PRA

(c) POSITION 9 (d) POSITION 10

ORA cr IRA
450

-w, PRA v -w, PRA v

u IRA U ORA

(6) POSITION 11 (f) *P051TI ON 12

Figure 4. Accelerometer Mounting Positions (Top Views)
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Recall that we have already limited the misalignment angles to

o. I < 0.01 rad (34.4'), j = i, p. o.

Further, in our development of the centrifuge equations, let us neglect

errors less than the following magnitudes:

Bias terms < 10- g

Linear terms < 10- 6 g/g

Quadratic terms < 10 7 g (5-2)

Cubic terms < 10 8 /3

18



SECTION VI

INPUT AXIS NONLINEAR COEFFICIENTS K2i, Kt, K3i

6.1 MOUNTING AND DATA TAKING

For maximum accuracy in the separation of the quadratic and cubic terms,

data should be taken with the input acceleration along both the positive and the

negative input reference axis such as positions 1 and 2 of Fig. 3.

Mount the accelerometer on its fixture in position 1 and check for proper

operation. Align the input axis (L not IRA) to the radial d'rection on the centrifuge

within 0. 01 rad (34 miir.) about the pendulous and output axes. Align the output axis

(OA) to the vertical within 0.61 rad. Determine the radius arm to the centrold of

the proof mass by whatever procedure is appropriate for the particular facility.

Measure and record the nominal bias and scale factor by the two-point static

test method (IA up and IA down) before and after the group of runs in each position.

Preferably. these should be made in the centrifuge environment. The measurements

are to be used as a check on the drift or shift in the accelerometer bias and scale

factor due to centrifuge action or other environmental changes. Any drift or shift

of these parameters will affect the accuracy of the centrifuge tests.

T'he accelerometer should be tested at a number of acceleration levels which

are approximately everly spaced over the input range in each mounting position. The

centrifuge speed should be smoothly and unidirectionally increased from one acceleration

level to the next and allowed to stabilize at each level since there may be heating effects

at the different torquing levels. When the accelerometer has been tested at its peak

acceleration level, decrease the centrifuge speed smoothly and unidirectionally from

one acceleration level to the next. Test at approximately the same levels as for

increasing speed. hi each mounting position the acceler3meter should be tested at

a minimum of 11 acceleration levels: at 5 acceleratlon levels each for increasing
and decreasing speeds plus the peak acceleration level. More acceleration levels are

desirable since redundancy reduces the uncertainties in the coefficients determined by

the centrifu e tests.
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The output of the accelerometer should be averaged over a number of

revolutions sufficient to minimize quantization errors; quantization may be a function

of the instrumentation as well as of the accelerometer. The period of the centrifuge

relative to earth, the output of the accelerometer, the radius arm, the arm stretch,

and the angular compliance (if available) must be determined as precisely as possible

and recorded. It is common practice to make three sets of measurements at each

acceleration level and to use either the median or the mean of the three sets of

measurements in the data reduction.

6.2 OUTPUT EQUATIONS

In position 1 of Fig. 3, the acceleration components along the input, pendulous,

and output reference axes, see Eqs. (4.-7), are:

A =-a (1+ k)a, il u y or

A =a~ =-(k a'c + k a 2 )
pl v x cr z cr,

ol = 1- a2

ol y cr

Substitute the above values in Eqs. (4-9). Let a subscript 1 denote the

misalignments and outputs in position 1 and a subscript r denote the variable

accelcration level for this position. Let n equal the number of acceleration test

levels in position 1 so that r = 1, 2, 3, ... , n. From the limits set in Eqs. (5-1)
and (5-2), it is evident that we may neglect products of the misalignment angles by

the compliance coefficients, e.g. kx 001.

1 2 1 2
a 1l=act (1 -C p-20o1 +ky) - (0pl -ol oil)

a =-a 2 k -a (0 +k )+(0 +0 00l) (6-1)pl cr z cr kx i pl

-a 2 ky+a o + (1121 jao - acr y cr pl 2 il- 2 0 pl )

Substitute Eqs. (6-1) in the model equation, Eq. (2-1), and apply the limits of

Eqs. (5-1) and (5-2). The acceleration indicited by the accelerometer in position 1

is given by Eq. (6-2).
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Air: [K0 -Op, + 0 il +Kl K2 o + K p3 +KP 0 0i - Koi Opi]

+ ar [I - 21pl - 01 k - (2K 2 i + 2Kt -2K 20 -3K 3 )op

+ p Koa [K Kt + (Koi"3Ki (6-2)

-K 0o1 + K a pip01 3ie

In position 2 of Fig. 2 the acceleration components along the accelerometer

reference axes are:

Ai2 au ( +kyc) aes

2
Ap2 av k x a s + kz acs

A = =1 -k a 2

o2 wy Cs

Substitute the above values in Eqs. (4-9). Let a subscript 2 denote the

misalignments and outputs in position 2 and a subscript: s denote the variable

acceleration for this position. Let m equal the number of. acceleration test levels

in position 2 so that s = 1, 2, 3, ... , m. Note that the misalignment angles with

the accelerometer mounted in position 2 will not be the same as the misalignment

angles with the accelerometer mounted in position 1, In general.
=1 2 1 2 + k i-)12 =-acs ( - p2 -%2 y )-(2 -0 2 . 2

ap2 = kz ac.+ aes ( k2 +k) + (01 U+p20 o2) (6-3)

2 1Iao2 acs ky - acs p2 + ( 1 - 0 22 -0 Op2)

Substitute Eqs. (6-3) in Eq. (2-1) and apply the limits of Eqs. (G-1) and (5-2).

The indicated acceleration is given by Eq. (6-4).
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A2s= [K0 - 0 p2 + 0o20i2 +K 2 0 + K3 0 + Kpo 0 i2 - Koi 0 p2

-. cs [1_ 1 02 2 102 + k - (2K2 i 2Kt - 2K 2 - 3K 3 3 ) 0 p2

K 0 K o o~Ko+ a 2 s [K Kt+(%i -3K (6-4)

ip i2 - 0poo2 ' Oil a 2i - K+

- Kip 002] -K 31 cs

It is evident that the unknown misalignment angles and the uncertainty in the
radius arm, which affects the value of aer and acs, makes it impossible to

precisely determine either the bias or the scale factor from Eq. (6-2) and/or

Eq. (6-4). If (K9. + Kt ) and (K2i - Kt) are to be determined from Eqs. (6-2)

and (6-4) with an err r less than 10 percent (aside from noise in the data), then

the magnitudes of the terms 3K 3 i, Kip, and Koi may not exceed the magnitude

of K2i or Kt, whichever is larger, by more than a factor of two or three. If the

magnitude of these coefficients exceed those limits or if the allowable error is less

than 10 percent, then the misalignment angles 0. (j = i, o, p) must be reduced

proportionately. If the above conditions are met, then Eqs. (6-2) and (6-4) may

be simplified to:

A B + Bac + B2 a2 +K 3 (6-5)
r B0 +1 ct 2cr 3i cr

2 3
A + -C a +C a3 -K a (6-6)

2s 0 1 es 2 cs 3i es

where

B0 , CO = constant terms of Eqs. (6-2) and (6-4), respectively

B1, C1 = linear terms of Eqs. (6-2) and (6-4), respectively

B2= K2i + Kt

2 2i - t
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Then

K2i= (B2 + C2)/2 (6-7)

Kt = (B2 - C2)/2 (6-8)

The effect of arm stretch -and earth rate must be considered in determining

acr and acs, if necessary. Remember that both acr and acs a_'e the centripetal

accelerations and are always positive.

6.3 DETERMINATION OF THE COEFFICIENTS

In the proposed data reduction procedure, the method of leact squares is

applied to all the data at once rather than in the three stage method of Evans and

Fuhrman. In order to accurately determine the coefficients for the quadratic and

cubic terms, it is vital to have the cubic coefficient, at least, be common to both

positions as in Eqs. (6-5) and (6-6). Let the best fit combined outputs of positions 1

and 2 as obtained from Eqs. (6-5) and (6-6) be

Ajk = (130 + B1 a B2 
a 2 ) 6  + (C - + C2 acr 2cr)r 0 1C C1 2 cs) s

3 3 (6-9)
3i cr r cs s

where

Ajk = best fit value of output for jk = ir or 2s

Ajk = measured value of output for jk = lr or 2s

6 r = land 5s =Owhenk=r.

6s = land6 r = 0 whenk=s.

The residual at centripetal acceleration level ack (k = r or s) is:

rk kkrr[( Ba+=Ak -A. k = (Ar6 r +As 6s )- (B + l cr +2cr 6r

+ ( 0 -, c Cc2 a ±)  +K~ i (~ a3 e 5s ) 66--a
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and the sum of the squares of all the residuals is

n
r 2 A 6 A2  v

r,s r=l s--1 (s/

B f(B 1  + B 11 r) 6 + (C-C~ a 5 +02 a 2') (6-11)
- 0  1 acr B2 acr r CO -1 acs 2cs6

K3 1 cr 6 r cs s

In the method of least squares (Ref. 3), the sum of the squares of the

residuals is minimized by setting the partial derivatives of Eq. (6-11) with respect

to each unknown coefficient (B0 , B1 , B2 , C0 , C1, 02, and K3i) equal to zero. The

resulting normal equations are given in matrix form by Eq. (6-12). Recall that

acr and acs are centripetal accelerations and are always considered to be positive.

Solve Eqs. (6-12) and (6-10) for the unknown coefficients and each residual,

respectively. The coefficients B0 and CO should closely approximate the bias

determined from a two or four position test, within approximately 0.01g. The

coefficients B1 and C1 should closely approximate unity with an error less than

0. 15 percent if the radius arm has been determined within 0. 1 percent. The

coefficients K2i and Kt of the model equation are determined from Eqs. (6-7)

and (6-8). A plot of the residuals vs. a level will be used to estimate the adequacy

of the model equation. The residuals will also be used to determine the uncertainty

of the coefficients.

If Kt 0, as may occur in puLse torqued systems of constant power input,

then B2 = C2 = K2 i and the best fit equation becomes:

A ' B a2 + 2 (s )

jk (B0 + Bl acr ) r + (CO Cjacs) s + K2i( cr r acs

6 a3  (6-13)

.3i (acr r cs s
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The residuals arc:

k Ajk Ajk (Ar 5r A2 s) [(Bo B1 .1 0) C acS

2 2 3  a ] (6-14)
+K2i(acrr c s 3i r r cs S)

The normal equations are obtained, as before, by taking partial derivatives

of the sum of the squares of the residuals with respect to each unknow coefficient

(B0 , B1, C0 C1, K2i, and K3i) and setting each derivative equal to zero. The

normal equations are given in matrix form by Eq. (6-15).

Solve Eqs. (6-15) and (6-14) for the unknown coefficients and each residual,

respectively.

6.4 STANDARD DEVIATION OF THE RESIDUALS

The standard deviation of the residuals is a measure of the fit of the mode'

equation to the measured accelerometer output. It is not necessarily a measure of

the accuracy or completeness of the model equation in describing the phenomena.

the unbiased estimate of the standard deviation of the residuals is given

by the formula of Eq. (6-16) (Ref. 3).

(rk) = (n+m) - q

where

a (rk) unbiased estimate of the standard deviation of the

residuals rk (k = r, S) -

r2 = sum of the squares of all the residuals- 2

n + m = total number of data points for k equal r and s

q total number of coefficients B0 , Co, etc.

E.g., q= 7in Eq. (6--12)
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6.5 UNCERTAINTY OF TIHE COEFFICIENTS

rhe unbiased estimate of the uncertainty of the coefficients (Ref. 3) obtained

from Eq. (6-12) or (6-15) are

S((Q) a rk)o (6-17)

where

a (Q) uncertainty of coefficient Q

Q one of the coefficients in the second (column) matrix of

Eq. (6-12) or (6-15), such as B2

D determinant of the left-hand matrix .n Eq. (6-12) or (6-15)

M (Q) minor of the determinant D for the coefficient Q. E.g.,

M(B 2 ) is obtained by deleting column and row indicated by

asterisks in Eq. (6-12)

It is quite possible that a coefficient of Eq. (6-12), or of a similar equation,

should actually be zero but, because of the small number of observations, it is

practically certain that we would obtain a nonzero value. We may determine if a

coefficient Q is likely to be zero by assuming the null hypothesis, i.e., Q = 0,

and applying a statistical significance test, such as the Student's t statistic to the

significance ratio IQI / }(Q). The Student's t statistic varies with the number of

degrees of freedom (f n-im-q) and the chosen rejection level for the null hypothesis.

The rejection level depends on the application and is a matter of judgment; however,

a 5 percent rejection level is commonly used. By a 5 percent rejection level, we

mean that the null hypothesis will be rejected if there is only a 5 percent chance

that Q = 0 if IQI / l (Q) of our sample exceeds a certain value. This is equivalent

to saying that %%c can be 95 percent confident that the coefficient is significant if the

significance ratio exceeds the Student's t statistic.

At the 5 percent rejection evei (2 sided), the t statistic varies from 3.162

for f - 3 to 1.96 for f - o. Since we should have a minimum of 22 data points

(n+m >22) and since the maximum number of coefficients ir Eq. (6-12) is 7 (q = 7),
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the minimum number of degrees of freedom is f = n+m-q = 15. At the 5 percent

rejection level and f = 15, the Student's t statistic is 2. 13. With our assumptions,

the t statistic can vary only from 2.13 for f = 15 to 1.96 for f = oo. Therefore, we

may apply the simple rule that the null nypothesis will be rejected if IQI //' (Q) > 2.

For a more extensive discussion on the null hypothesis and the various significance

tests, see Ref. 4, or equivalent.

If a coefficient is set equal to zero as a result of the t test, Eqs. (6-2) and

(6-4) thru (6-15) should be modified appropriately.

6.6 "GOODNESS" OF THE MODEL EQUATION

6.6.1 Introduction

There are no general rules for defining the "goodness" of a model equation

though we may apply one or more criteria such as:

(1) Is it derived from basic physical principles?

(2) Is it simple?

(3) How well does it fit the observational data?

(a) What is the value of the standard deviation of the residuals ?

(b) What is the magnitude of the peak residual?

(4) Wotld a different model equation fit the observational data better ?

It is apparent that the "goodness" of a model equation is a subjective question

which can be settled only by each person for each application, There are some

statistical criteria that we may apply, but they must be applied with judgment.

Thus, in Section 6.5, we showed how to apply the null hypothesis and the

Student's t significance test to the coefficients of our best-fit equation, but at an

arbitrary 5 percent rejection level, which was a matter of judgment. In examples 1

and 2, below, we will illustrate some of the decisions or judgments that may be

required An adopting a model equation.
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It is obvious that observational data must be valid, i.e. without systematic

error and with a minimun of noise, if we are to obtain a "good" model equation.

Care must be taken in the choice of instrumentation, the test setup (including temperature

control), the mounting fxture(s), the data-taking procedures, and data processing

(such as smoothing) in order to avoid systematic errors and excessive noise.

Use of one model equation for all accelerometers in all applications is to

bc deplored. A model equation which is satisfactory for a particular model of

accelerometer, in a particular application, may be quite unsatisfactory for a

different ,ecelerometer and/or a different application. Equally deplorable is a data

reduction program which grinds out coefficients, even programs with statistical

criteria, without the intervention of human interpretation and judgment.

6.6.2 Example 1

The effects of an incorrect model equation will nov be illustrated with an

ardificial example. For acceleration inputs only along plus and minus IA, let the

true and exact output equation be:

-5 2 -6 3

A-2x10 + a + 10 a. + 10 a. + 10 - a (6-18)

The calculated outputs A over the input range from +30 g to -30 1 in 2 EL

steps is given in column 2 of Table II with the results rounded off at six decimal

places. "The tabulated inputs and outputs of columns 1 and 2 will now be treated as

observational data to which we will fit a cubic equation by the method of least squares.

The resulting cubic equation is:

A' = -5. 83326 x 10 + a i + 9.2x10 - 5 ai + i 0 6 a' (6-19)

Note that the lincar and cubic coefficients are unchanged, as would be

expected, since it is only the symmetric fourth degree term which has been omitted.

Also note that the K2 coefficient is an order of magnitude larger than that of

Eq. (6-18).
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Table II

1 2 3 4 5

a. x A' r= A' -A r"= A" -A

30 30.119000 30.10396674 -0.01503326 -0.007200
28 28.093258 28.08824674 -0.00501126 0.002822
26 26.072034 26.07393474 0.00190074 0.009734
24 24.054762 24.06098274 0.00622074 0.014054
22 22.040914 22.04934274 0.00842874 0.016262
20 20.030000 20.03896674 0.00896674 0.016800
18 18.021570 18.02980674 0.00823674 0.016070
16 16.015210 16.02181474 0.00660474 0.014438
14 14.010546 14.01494274 0.00439674 0.012230
12 12.007242 12.00914274 0.00190074 0.009734
10 10.005000 10.00436674 -0.00063326 0.007200

8 8.003562 8.00056674 -0.00299526 0.004838
6 6.002706 5.99769474 -0.00501126 0.002822
4 4.002250 3.99570274 -0.00654726 0.001286
2 2.002050 1.99454274 -0.00750726 0.000326
0 0.002000 -0.00583326 -0.00783326 0.000000
-2 -1.997966 -2.00547326 -0.00750726 0.000326
-4 -3.997878 -4.00442526 -0.00654726 0.001286
-6 -5.997726 -6.00273726 -0.00501126 0.002822
-8 -7.997462 -8.00045726 -0.00299526 0.004838

-10 -9.997000 -9.99763326 -0.00063326 0.007200
-12 -11.996214 -11.99431326 0.00190074 0.009734
-14 -13.994942 -13.99054526 0.00439674 0.012230
-16 -15.992982 -15.98637726 0.00660474 0.014438
-18 -17.990094 -17.98185726 0.00823674 0.016070
-20 -19.986000 -19.97703326 0.00896674 0.016800
-22 -21.980382 -21.97195326 0.00842874 0.016262
-24 -23.972886 -23.96666526 0.00622074 0.014054
-26 -25.963118 -25.96121726 0.00190074 0.009734
-28 -27.950646 -27.95565726 -0.00501126 0.002822
-30 -29.935000 -29.95003326 -0.01503326 -0.007200

Rms Value = 6.9 x 10-3  10. 5 x 10-3

Lr'= lx10-6
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The outputs, A'. and the corresponding residuals, A' - A. were calculated

to 8 decimal places and are tabulated in columns 3 and 4 of Table Ii. The sum of the

residuals is not quite zero due to round-off errors.

Using Eq. (6-16), the unbiased estimate of the standard deviation of the

residuals is ' (r') = 7.422 x 10- 3 g. The coefficients and the uncertainties of the

coefficients of Eq. (6-19) are listed along with the significance ratio IQI /1" (Q) in

Table III.

Table IllI

Q (Q) iQI/9(Q)

K0  -5.83326x10 -3  1.333x10 - 3  4.37

K'1  1 0.1S7x10 - 3  5.35

K9  9.2x10 0.467x10 - 5  19.7

K3  1x10-6  0.298x10-6  3.363 __~~__ _ _ __ _ _

Note that K'I is not the scale factor as defined in Eq. (2-1) but is in g

The application of the Student's t statistic for f = 31-4=27 degrees of freedom
shows that all four coefficients are significantly different than zero at a 99 percent or

higher confidence level. (1 percent rejection level) However, two of the coefficients

are far different than the corresponding coefficients of the exact model equation,

Eq. (6-18).

Let us not stop here but let us plot the residuals given in the fourth column

of Table I, see Fig. 5. Even a casual glance shows that the residuals are not

randomly distributed, therelore, the residuals are not primarily due to noise in the

observational data but are largely systematic. From the shape of the curve (3 maxima),

we should suspect that a fourth degree term should be added to the model equation.

If this is clone, w( know that we would get Eq. (6-18) except for slight computational

errors. If there had been four maxima in Fig. 5 instead of three, we would have

suspected that the model equation required a fifth degree term.
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It should be remembered that this illustration is an ideal case with no noise

in the data except that due to rounding-off errors. In an actual case, the residual plot

would be distorted and roughened by noise.

Let us now consider one more fact that is best illustrated by this artificial

example. As indicated previous), it is presumed that the bias and scale factor obtained

by reduction of centrifuge data is probably seriously in error due to rr isalignments

and uncertainty in the radius arm to the centroid of the proof mass. The bias and

scale factor are generally obtained from a two, four, or six point static calibration

test in a one g field. In this example we would find it to be those of Eq. (6-18), i.e.

K0 = 0.002g and K'1 = 1 g/g. The nonlinear coefficients would be those of Eq. (6-19).

Thus, it would be presumed that the output equation is:

A" = 2 x 10-3 + ai + 9.2x10 -5 a2 + 10- 6 a3 (6-20)

In many applications, the bias is subtracted from the output but the other

errors are tolerated; the errors, for this example, would be:
r = A - (a. + 0.002) (6-21)

I

In other applications, not only the bias but also the errors due to the

nonlinear terms are removed by a computer. The errors would be the difference

between the predicted output of Eq. (6-20) and the true output of Eq. (6-18), i.e.

the errors would be:

= A" - (6-22)

The residuals r" are given in column 5 of Table II. As would be expected,

the rms value of r" is larger than the rms value of r': in this example, over

50 percent larger.

Example 1 illustrates that it is not sufficient to look at the standard deviation

of the residuais nor to compute the statistical significance of the coefficients to

determine if we have a "good" model equation; we must also look at a plot of the

residuals. If the residuals look as if they are randomly distributed, we probably

cannot obtain a better fit model equation, but we might try a polynomial of lower

degree to determine if it is satisfactory. If the residuals are not randomly distributed,
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we might try a more complex model equation, or we might decide that the model

equation is satisfactory for the particular application, i.e. the errors are acceptable.

However, we should also recognize that the actual residuals are larger than the

calculated residuals as illustrated by the difference between columns 5 and 4 of

Table II.

6.6.3 Example 2

In this example, we will use actual experimental data and obtain certain

coefficients of the model equation, Eq. (2-1): first, with the assumption Kt / 0

and second with the assumption that Kt = 0. The input and output data of the binary

pulse torque accelerometer (constant torquing power) are listed in Tables IV and V.

The input data have been partly processed to save time and space, i.e. the input

acceleration has been derived from the period of the centrifuge and the radius arm

with corrections for arm stretch and earth rate. At the end of the increasing run,

the centrifuge was run beyond 45 K before starting the decreasing run.

The data in Tables IV and V are substituted in Eqs. (6-12) and (6-15) to

determine the coefficients B0 , CO, etc. The resulting coefficients, the unbiased

estimate of the standard deviation of the residuals from Eq. (6-16), the uncertainties

of the coefficients from Eq. (6-17), the number of degrees of freedom, and the

significance ratios are given in Table VI. The residuals were determined using

Eqs. (6-10) and (6-14) and are plotted in Figs. 6 and 7.

Normally, we would expect the unbiased estimate of the standard deviation of

the residuals fot Eq. (6-12) to be less than for Eq. (6-15) since Eq. (6-12) has more

coefficients and, therefore, it should give a better fit. Actually, the rms of the

residuals is less for Eq. (6-12) by approximately 1 percent but this is more than

offset by the effect of the reduction in the degrees of freedom from 30 to 29.

'Te significance ratio for B2, C2 , and K31 of Eq. (6-12) indicate that these

coefficients may not be significantly different from zero. on the other hand, all the

coefficients of Eq. (6-15) are significantly different from zero at a 99 percent or

higher confidence level. This is not too surprising when we consider that B2 and C2

are of opposite sign and of different magnitudes; therefore, the combination has some

of the characteristics of boih quadratic and cubic terms. Thus, we have three terms
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I
Table IV

POSITION 1 OF FIGURE 3 (a i > 0)

Increasing Data Decreasing Data

Input Output Input Output

acr A alr

5.000281 5.034095 45.048050 45.119699

10.020010 10.059407 40.040700 40.108608

15.018229 15.063017 35.022121 35.086046

20.030342 20.080320 30.020392 30.080080

25.015052 25.069831 25.015060 25.07016.

30.020392 30.079824 20.030342 20.080584

35.022121 35.085875 15.018229 15.063135

40.040700 40.10S535 10.020008 10.059338

45.048050 45.119553 5.000280 5.033769
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Table V

POSITION 2 OF FIGURE 3 (a i < 0)

Increasing Data Decreasing Data

Input Output Input Output

acs A2s acs A2s

5.000281 -4.976889 45.048050 -45.055412

10.020010 -10.000542 40.040717 -40.044992

15.018225 -15.002753 35.022108 -35.022991.

20.030336 -20.018835 30.020392 -30.018014

25.015060 -25.007460 25.015052 -25.008900

30.020392 -30.016623 20.030336 -20.020096

35.022108 -35.022125 15.018229 -15.003737

40.040717 -40.044235 10.020010 -10.001131

45.048050 -45.054973 5.000281 -4.976946
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performing the function of two terms, at least partially, and all three are weakened

by this process. In other words, it is difficult t(, separate an odd square term (a

quadratic term with change of sign at 0) such as the Kt aI ai term from a cubic term.

It is apparent that Eq. (6-15) is a more appropriate equation to use than

Eq. (6-12) for this example since it is simpler, the unbiased estimate of the standard

deviation of the residuals is smaller (though not significantly so), and the coefficients

are statistically more significant as shown by the significance ratios.

Though we have shown that Eq. (6-15) is better than Eq. (6-12) for this case,

we have not demonstrated that it is the "best" equation. The plots of the residuals

in Figs. 6 and 7 confirm ojur previous conclusion that Eqs. (6-12) and (6-15) fit the

data about equally well and they also show that the residuals are definitely not random.

However, unlike our Example 1, we cannot reduce the residuals significantly

by going to a higher-order polynomial since the residual errors are primarily due to

hysteresis for negative input accelerations.

At this time, the mechanism causing the hysteresis is unknown. The hysteresis

could be due to a number of causes of which some may be inherent to the accelerometer

design or it could be due to the fixturing (including the centrifuge) or to the instrumenta-

tion.

If we had blindly used Eq. (6-12) and accepted the derived coefficients, we

would have determined values of K21 and Kt by means of Eqs. (6-7) and (7-8).

These would be -1.412 p g/g and -2.761 g 2 , respectively. However, when we

applied the Student's t statistic to the significance ratio, we showed that, statistically,

those coefficients were not significantly different than zero. Physically, we should

not be surprised if Kt = 0 since this is a binary, pulse-torqued accelerometer with

constant power input.

3-
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SECTJON VII

PENDULOUS AXIS, NONLINEAR COEFFICIENT K2p AND K3p

Positions 3 and 4 of Fig. 3 will be used to obtain the value of K and K 3p. The
2p 1

mounting and data taking procedures for the accelerometer in these positions would be

similar to those outlined in Section 6. 1.

In position 3 of Fig. 3, the acceleration components along the accelerometer

reference axes are:

2
A = a ka +k a13 v x cr z cr

Ap 3 = -au (1 4 ky) acr

Ao3 a 1 -k a2

o3 w y cr

Substitute the above values in Eqs. (4-9). Let a subscript 3 denote the 6utputs

in position 3 and a subscript r denote the variable acceleration level for this position.

Let n equal the number of acceleration test levels in position 3 so that r = 1, 2, 3,

•. n. Neglect second order errors as was done in Section 6.2. From here on, it is

to be understood that the misalignments o. (j = i, p, o) will be different, in general,

for each mounting position. For convenience, the subscript numbers on the mis-

alignments will be dropped.

a =a 2 k c (2o 0ki p +k x )-(o p -o0i)Mi cr z '-acr (',+0 p x P 01

1 21 2
a = a (1- -02 _ +ky)+i + 0 0) (7-1)p3 acr '2 o 2 y' I P0

2 k1 21i + 2( 1  1 02
o3 =-acr y, acr 2 1 p

Substitute Eqs. (7-1) in the model equation and apply the limits of EVq. 15-1)

and (5-2). Since the bias and linear terms are so uncertain because of misalignments,

Preceding page blank
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etc., we will not list the individual factors in these terms. The acceleration indicated

by the accclerometer may be expressed in the following form:
A D D p + K 3 (7-2)
3r 0 1 +cr I K2p + Kip ° o + (3K3p - KpOo i + kz  cr 3pacr

In position 4 of Fig. 3, the acceleration components along the accelerometer

reference axes are:

A . - -- (k xa c + k a 2
A 4  -v z es

A p4= a u-(1 +ky)acs

S w  y cs

Substitute the above values in Eqs. (4-9). Let the subscript 4 denote the outputs

in position 4 and a subscript s denote the variable acceleration level for this position.

Let m equal the num~ber of acceleration test levels in position 4 so that s = 1, 2, 3,

... , m. Neglect second order errors. The acceleration components along the true

axes are:

2 1 12ai4 =-cs z cs 0° k) (p 0o°i

a 1 1 0 2 +k )+( 0 o0) (7-3)A -- acs ( 2 o 2; -i y ky)

=-a 2  o. + (1- 1 2 1 2ao4 cs ky es o 2 i 2 'p

Substitute Eqs. (7-3) in Eq. (2-1) and apply the limits of Eqs. (5-1) and (5-2).

The indicated acceleration in position 4 is

A =E-E a + rK+K. 0+(3K - K )0 kl]a 2s K pa3s (7-4)4s 0 1 cs 2p ip o 3p po) i kzc 3  c

If K2p is to be obtained from Eqs. (7-2) and (7-4) with an error of no more than

10 percent (aside from noise in the data), then the magnitudes of the products of the

accelerometer coefficients by the misalignment angles which appear in those equations
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must be smaller than K 2p If those products are sufficiently small, then Eqs. (7-2)

and (7-4) may be simplified.

A3 r = DO +D 1 acr +D 2 a2 +K a 3 (7-5)3r= 1 r 2cr 3p cr

A E D a +E a2  -K 3 (7-6)
4s 0-12cs 3p cs

where

D2 K 2p + kz

E 2=K 2-kE2 = 2p z

The coefficients DO E0 , Di, etc., and their uncertainties are determined by

the methods outlined in Section 6. If it is assumed that the compliance coefficient k.

is the same for both positions 3 and 4 (depends on construction of mounting fixture)

then

K (D +E (7-7)K2p 2 (2 + 2)

The residuals should be determined and plotted to see if there are systematic

errors that indicate the model equation is incomplete. The standard deviation of the

residuals and the uncertainty of the coefficients are obtained in a manner similar to

that outlined in Sections 6.4 and 6. 5.

Suppose that in place of positions 3 and 4 of Fig. 3, we were to use the

alternate positions of 3' and 4' of Fig. 8 for the determination of K2p and K3p, The

output for the latt6r positions are:

A' -D' + + [K + (K + 3K)0- Kpo +ka + Ka 3  (7-8)
3r 0 lacr + 2p ip 3p PO 0 y cr 3pacr

- +2 3A's =E - Ea + IK +(K -3K 0- K 0.-k Ias- K ac (7-9)
4s 0 ic 2p ip a p PO1 yjs p
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w, IRA

PRA

u . v, ORA v, ORA

u, PRA

IRA

(a) POSITION 3' (b) POSITION 4#

Figure 8. Alternate Mounting Positions

The only significant difference between the above equations and Eqs. (7-2) and

(7-4) is that the compliance coefficient ky has replaced the coefficient kz in the

quadratic term. It would be desirable to use Eqs. (7-8) and (7-9) instead of Eqs. (7-2)

and (7-4) if:

(a) k is measured or known but k is noty z
(b) if ky < k

(c) if k is the same for positions 3' and 4' but k is not the same for
y z

positions 3 and 4.
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SECTION VIII

OUTPUT AXIS, NONLINEAR COEFFICIENT K2o AND K3o

Positions 5 and 6 of Fig. 3 will be used to obtain the value of K2o and K3o'

The mounting and data taking procedures for the accelerometer in these positions would

be similar to thouse outlined in Section 6. 1.

In position 5 of Fig. 3, the acceleration components along the accelerometer

reference axes are:

A a= 1 - k a2

i5 w y cr

A5 -a u = ( + ky) ac

bubstitute the above values in Eqs. (4-9). Let a subscript 5 denote the outputs

in position 5 and a subscript r denote the variable acceleration level for this position.

Again neglect second order errors.

A = a2  k a(0 001 2 1 2
A5 cry-acr(0p2 p - o

ap5 =a2cr kz + acr (0i+po+kx)-o (8-1)

~cr 1212 p0

a6=acr (1 2 1 p y)+

Substitute Eqs. (8-1) in the model equation and apply the limits of Eqs. (5-1)

and (5-2).
A5r= F0+Flacr + [K 2o +Kpoi +(3K 3-Koi) kyl +1 r K3oacr (8-2)

In order to minimize the uncertainty in K2 introduced by the compliance ky,

position 6 has been chosen which is obtained by rotating about the v axis rather than
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the w axis as was clone to ohtain positions 2 and 4. The acceleration components

along the accelerometer reference axcs are:
A -a= -(1-k -9~

Wif w y cs

A t-a ka k a
p.; v x cs z cs

Ao06 a - (1 k y) acs

In the usual manner, we find the acceleration components along the true

axes are:

a a 2k 1+ (2 (-1 02
W csk y cs p 0 2 p - o

a a 2 k - a s ( o i + 0 o o  k ) + o (8-3)c ) s kz a 5 (0 1 + 0 -k) 0

(1 o - 1 02 +k) -o2o6 ics 2- 2i p y p

Substitute Eqs. (8-3) in Eq. (2-1) and apply the limits of Eqs. (5-1) and (5-2).

A G -G a+ K K - (3K +K o +k 12 -K a3  (8-4)
6s 0 1 cs I 2o + po oi) p y acs 34 cs

If K 2o is to be obtained from Eqs. (8-2) and (8-4) with an error of no more

than 10 percent (aside from noise in the data), then the magnitudes of the products of

the accelerometer coefficients by the misalignment angles which appear in those

equations must be much smaller than K2o' If those products are sufficiently small,

then Eqs. (8-2) and (8-4) may be simplified.

A F +F a +F a 2 +K a3  (8-5)5r 0 cr 2cr K30 cr

A G-GGa2 -Ka 3  (8-6)6s =G -G 1 as + 2 cs - s

where

F = K20 - k

2 20+ yG2 = K2 o +ky

4t8



Assuming that k is the same for positions 3 and 4, theny

K2o = I (F2 + G2) (8-7)

The values of K2o and K3o are obtained in a manner similar to that used for

the determination of K and K.p in Section 7.2p .5
If there is any advantage to having the compliance coefficient kz instead of k

in the quadratic term use alternate positions in which IRA is along the plus v axis when

ORA is along the minus u axis and in the second position IRA is along the minus v axis

when ORA is along the positive u axis.

F
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SECTION IX

CROSS COUPLING COEFFICIENT K!p

For the assumcd model equation, the best mounting positions for determining

K1p are those in which the acceleration components along IRA and PRA are both

reversed in sign. This results in a common cubic term which is vital for accuracy

in separating the quadratic and cubic terms of the output equations. In order to

separa te the compliance term 2k from Kipt it is necessary to choose positions

in which one and only one of these terms reverse sign. Positions 7 and 8 of Fig. 4

is one set of positions which satisfy the above criteria providing kz is the same for

the two positions.

The acceleration components along the accelerometer reference axes in these

positions are:

A--- [ 2 k + a (1+k +k-

A 7 =-2 (au-av)-/ a- act z acr xky)

1 2__-aI a) 1_1(2 k- 1 -k +kj(9
Ap7= -f- (au+av) a cr kz -acr ky- 9+k

A, a = 1-k a2

o7 %ycr

A = 1 a - -i[a2 k + (1+kx+ ]
Vf2,r r2 V lacs z cs xy
1 1 [ 2 (-x 92

p8 F (au+av =kz acs (1- k (9-2)

a~ = a =1-k~ a sao4 -- y es

Substitute Eqs. (9-1):and (9-2) in Eqs. (4-9) to obtain the acceleration components

along the true axes of the accelerometer, neglect second order errors. These components
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are then substituted in the model equation, Eq. (2-1). Using the criteria of Eqs. (5-1)

and (5-2), the output equations are:

a 2 '

A rH 0 H 1 act + T_ 2Ko - 33i Op +K2p (1 - 20o) + 3K3p 0

3

(K 4 K) (0-O + 2 k + Kip + (K3 i + K3p) ac--- r  (9-3)
p0o-- pi 2(9-

2

8s I acs+ - (K2ipt o )+K (1-2)

3

+ 3K3poi -(K po + K o i) (O - Op) -2 +k z + K  - (K3 + K3p) a cs

Equations (9-3) ard (94) show that, due to the magnitude of the allowable

misalignment angles, the value of Kip can be determined from the quadratic terms

only if the magnitudes of-the products-of the accelerometercoefficients by the mis-

alignment angles are -small compared to the magnitude of K It may be found

necessary to tighten the tolerance on the misalignment angles. It should be recalled

at this-point that'the misalignment angles o j(j = i, p, ,o) are unknown and, in:general,

are different in each mounting position.

If the above criteria are satisfied, then"Eqs. (9-3) and (9-4) may be simplified

to:

A7 r H + H acr + H2 ar + K3ip cr (95)

8 1=1011 acs +12 K 3 pcs (9-6)

where

H2 = [K 2 i+Kt+K + 2k + Kip] (9-7)
J2 T 21 +  2p - i

I2=1 [K2 1-Kt+K2p 12-kz + Kip (9-8)

K K3 1p= (13 1 + K 3 p) /2
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The coefficients H0, 10, lil, etc., and their uncertainties are dctermined
by the methods outlined in Section 6. The value of, Kip is obtained-from Eqs. (9-7)
and (9-8) and the previously determined values of K~i and K~p, i. e.

K = H2 + 12 - (K2 i + K2p) (9-9)

Even though the parameters of the output equations and their uncertainties are
such that Kpcannot be determined from these tests, nevertheless, the centrifuge

test may be useful for determining if there aro Ittckling o- c.her unexpected effects.
As usual, the residuals should be plotted to see if they are randomly or systematically

distributed.
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SECTION X

CROSS PRODUCT COEFFICIENT Kpo

The best mounting positions for obtaining the cross product coefficient K are
PO

those in which the acceleration components along PRA and ORA are reversed in sign.

This is necessar- in order to have -a common cubic term for optimum separation of the

quadratic and cub. -,erms. The compliance term in the quadratic coefficient of the

output equations are reversed in the two positions relative to the cross coupling term.

Positions 9 and 10 of Fig. 4 satisfy the above criteria; The acceleration

components along-the reference axes are:

a 2 2

Ai9 =aw~lky acr

A 1 1 - a +acr (1 + (10-)

p _ = !(a+av)= _ a2  (!kx+ky

19- 1%+a)= - r 2r

and

12

Aio= - a . a cs):

A°1 a2/ (a -v =  k + as(1 + kx +ky)

Substitute Eqs. (10-1) and:(10-2) in Eqs. (4-9)to-obtain the acceleration

components along the true axes for each position. These components are then

substituted in Eq. (2-1) in accordance with the criteria of Eqs. (5-1) and (5-2).

The output equations are:

Precdif, pap bag5



a2

A = a + K 1 +p2o4p - 3Kp +K 2 0o)
9r J0 1 cr 2- 2p (3p 2o 2 (1 2

a3

+3K30 o- (Kip + Koi) (Op - 0) - 2ky + Kpo I + (K3p + K3o) %r (10-3)

_ 2,/2(1+2 +3K3po 2o)-

0 I0 " (csI-+ K 2p +3 o +K f- -3K0

a3

-(Kip + Ki ) (0p o +2 ky+ Kpo - (K3p + K30 ) CS (10-4)

Because of the magnitude of the allowable misalignment angles, the value of Xpo

in the quadratic terms of Eqs. (10-3) and (10-4) can be determined only if the magnitudes

of the products of the accelerometer coefficients by the allowable misalignment angles

are small compared to the magijitude of Kpo. As previously mentioned, it may be

necessary to tighten the tolerance on the misalignment angles.

If the above criteria are satisfied, then Eqs. (10-3) and (10-4) may be

simplified to:

A 9 +J ar+J a 2 +K (10-5)
9r 0 1 cr 2 cr 3po or

A10= L0"Lacs +L a 2  -K ac3  (10--)

ls 0 12 os 3po c

where

J K I +K - 2k '-K 01107
2 2 2 po (10-7)

J1 +K +2k +KpoJ (10-8)L2  2 2p+K2o ky* (1O

K3p °  (K3p/K 3o)/2I2

The coefficients ,07 L0 , J1 9 etc., and their uncertainties are determined by

the methods outlined in Section 6. The value of K is obtained from Eqs. (10-7) and

(10-8) and the previously determined values of K2p and K2o , i.e.

Kpo = J2 + L2 - (K2p + K2o) (10-9)
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SECTION XI

CROS3 PRODUCT COEFFICIENT K,-.01

Using the same reasoning-as in Sections 9 and 10, the mounting positions 11

and 12 of F',g. 74 were chosen for deternining Koi. Other combinations of positions

may also satisfy our criteria. The acceleration components along the reference axes

for these positions are:

- 2 k +a (I+k +kl
ill7 -- a aV = cr z cr x yJ

Apll=- a=(1- a 2 ) (11)p - w ycr)Y]
A.1 (au + av)  2 c k -ac _&- -kOil= (ara= 'T2  :c z cr Y

Ai12 Z (a -av)=, facskz +acs (I+kx +k]

A -aw =-1--k a%2  (11-2)

p12= w ycs
A012  -(a _ a . - cs( - + ky)]

Substitute ,Eqs. (11-1) and (11-2) in Eqs. (4-9) to-obtain the acceleration

components along the true axes for each posit ion. These components are then

subetituted in Eq. (2-1) in accordance with the criteria of Eqs. (5-1) and (5-2).

The output equations are:

Air= M  2i + Kt (1 -20p) K3 1 o 
+ K (1+20

a3

+3K 0i - (K; + KP)(o oi') + r k + K ri a2 + K3o+  1- 3
3o 1 p Po- 0 Z 0 cr 2 K 2)
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A N . a I(K Kt) (I - 2 o 3K3 0 + K (I + 2op) +
A12s N0  N0a o2i 3K0 1

(Ki+ Kp o)( . -k + Koi] 2 -(K 3 o +K31 ) a (11-4)

As in the determination of Kip and Kp, the products of the accelerometer

coefficients by the allowable misa'ignment angles in the quadratic terms of Eqs. (11-3)

and (11-4) must be small compared to the magnitude Koi. If these products are small,

then Eqs. (11-3) and (11-4) may be simplified to:

A M +2 a + M a2  3(11-5)
A r: M0 1 b cr 2 cr K3 oi ar

A =N-NacI 4Na - K a(112s 1 cs 2 cs 3oi a cs-

where

2 + K F kz + (11-7)2  2 - K21 +K2o+

N2 I~[K2 -Kt+K 2 - / - +K01  (11-8)
N2 2 21 K2o0 V 1 Koi

. Koi (K3o + K i ) / 2 /2
3oC o 31/V

The coefficients M0 , No, M1 , etc., and their uncertainties- are 'determined

by the method of least squares as outlined in Section 6. The valueof Ki is obtained

from.Eqs. (11-7), (11-8) and the previously determined values of K21 and K2o, i.e.

K0 i M2 +N 2 -(K 21 +K2 o )
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