AD735293

§
PTG

AFFDL-TR-71.52
VOLUME i

COMBAT OPTIMIZATION AND
ANALYSIS PROGRAM - COAP

VOLUME lll: PROGRAMMER'S MANUAL

. §. HAGUE, R. T. JONES, AND C.R. GLATT

ALROPHYSICS RESEARCE CORPORATION
BELLEVUE, WASHINGTON

TECHNICAL FEPORT AFFDL-TR-71-52, VOLUME 111

T {‘.

MAY 197

Approved for pubiic release; distribution unlimited

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Roproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield Va. 22151 50

UNCLASSIFIED

Secunty Cissrification

DOCUMENT CONTROL DATA-RA&D

(Sacurity classification of titie, dody of ebatract and Indexing ennotetion must be entersd when the overall report (s claneifled)

1 OMIGINAYING ACTIVITY (Corporeis suthor) 8. REPORY SECURITY CLASTIFIZATION
Aerophysics Research Corporation | Unclassiried
P. 0. Box 187 2h. GROUP
Bellevue, Washington 98009 N/A

3 REFPORT TITLE

combat Optimization and Analysis Program - COAP, VolumeIIl: Programmer's Manual

4. OFEICKRIPTIVE NOTES (Type of repert 3ad inclusive dates)

Final Report

. AUTHONS) (Firat name, middie initisl, (8t name)

D. S. Hague, R. T, Jones, and C. R. Glatt

6. REPOAT DATE 78, OTAL NG OF PAGES 70, NO. OF REFS
April 1971 4,88 Non«
0. CONTRACY OR GRANT NO. %2, OKIGINATOR'S REPORYT NUMBERIS)
F33615~-70-C~1036 None
b PROJECT NO.
1431
c. [T g::ﬂ::a:jl:«'ou‘r NOIS) (Any other numnberi: thet may be aseligned
d. AFFDL-TR~T1-52, Volume IIT

10. DITTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

1. SUPPLEMENTARY NOTE.I 12. SFONSORING MILITARY ACTIVITY
None Air Force Flight Dynamics Latoratory
Attn: FXG
Wright-Patterson Air Force Base, Ohio

o amsTRECY COAr is a program for the simulation and optimization of combative and

cooperative tuo-vehicle flight paths. It includes single vehicle flight path
problem capability as a subcase. Considerable emphasis is placed on the use of
modern optimization.

The program has the ability to perform trajectory optimization by the
Variational rteepest-descent method including search for optimel initial conditions;
search for uptimal arc (stage) lengths; constraints defined at terminal point,
intermediate corners (stage points), or along the pa“h; and optimum parameter
(design variable) values. The program can solve two system (vehicle) problems
with or without reacting feedback from the second systen (vehicle).

Alternatively, the program may be used to spply the direct multivariab™=
search approach to trajectory optimization. A variety of mul:ivariable search
algorithms are available in this mode including elemental perturbation (one
parameter at a time); organized first- and second-order methcds, and randomized
methods. A method of solution for problems exhibiting multiple extremals and a
procedure for the location of saddle points is also included.

Point mess equations of motion for a two--vehicle system are incorjorated in
the COAP program. Motion takes place about a rotating oblate planet having up to
four harmonics in its gravitational field, non-uniform atmosphere (1959 or 1962
ARDC), and vinds. Auxitiary computations for aercdynamic heating are included.
The vehicles may have arbitrary and independent eerodynamic and propulsive
characteristics, If desired two independent sets of planetary characteristics

may be emploved,

ORM REPLACRS DO FPORM 1672, § JAN 84, WHICKH 1§
' woV 3e OBOLRTYE FOR ARMY USE.

Unclassifieq
Security Classification

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be regarded
by implication or otherwise as in any manner licensing the holder or any other person
or corporation, or conveying any rights or permissionto manufacture, use, or sell any
patented invention that may in any way be related thereto.

Coples of this report should not be returned unless return is required by security
consideratious, oontractual obligations, or notice on a specific document,

AIR FORCE: 8-10-71/1%0

S —

Unclassified

13. Abstract (continued)

Combative 1logic is defined in terms of vehicle relative states.
The logic defines feedback control on the basis of relative state.
The COAP program may utilize variational optimization procedures to
determine optimal open loop control against a reacting opponent
employing feedback control defined by combat logic. Alternately, the
combative feedback control logic may be parameterized permitting
the use of multivariable search for the definition of optimal feedback
control parameters against a reacting opponent. Finally, by param-
eterization of both vehicle feedback control logic, a "mini-mex" mode
of operation may be employed in which a solution is obtained by multi-
varieble search for a saddle point.

All capabilities described are available in a single general
burpose FORTRAN IV digitel computer program developed for the CDC
6600 computer. This volume, Volume III, presents a programmer's manual
containing instructions regarding

(a) Computer requirements

(b) Program structure

{c) Detailed subroutine descriptions

Unclassifiqg

e g A P T g e

Unclagsified

Tecurlty Classlilcstion
RN

ts.

REY WORDS

LINKR A

LiHR &

LINK C

AOLE LA

nOLE LAJ

ACLE LAJ

Parameter optimization, non-linear
programming, steepest-descent,
“mini-max" solution, saddle point
solution, multiple extremal solution

Unclassiried

Secwrity Classification

'
1
!
i
1

7 e i

AFFDL-TR-71-52
VOLUME 1l

COMBAT OPTIMIZATION AND
ANALYSIS PROGRAM - COAP

VOLUME lil: PROGRAMMER’'S MANUAL

D. S. HAGUE, R. T. JONES, AND C.R. GLATT
AEROFHYSICS RESEARCH CORPORATION

Approved for public release; distribution unlimited

FOREVORD

The research project outlined in this report was completed in the
period from September 1969 to December 1970 under the sponsorship of
the Air Fecrce Flight Dynamics Laboratory, Air Force Systems Command,
Wright-Patterson Air Force Base, Ohio. This report was prepared by
Aerophysics Research Corporation, Bellevue, Washington, under the United
States Air Force Contract F33615-70-C-1036. Mr. B. R. Benson and
Mr. Davidi T. Johnson of the Air Force Flight Dynamics Laboratory were
the cognizant Air Force representatives for the study.

This report was authored by Mr. R. T. Jones, D.S. Hague,and C.R. Glatt
of Aerophysics Research Corporation. The report was prepared and organized
by Mrs. Jan2 Yonke of Aerophysics Research Corporation. The report and study
benefit directly from & number of previous government-sponsored research
studies including:

USAF Contract AF33(616)-6848, for trajectory equation and program

development

USAF Contract AF33(657)-8829, for development of the variational
optimization procedure and program

USAF Contract AF33(615)-3932, for extension of the variational
optimization program

NASA Contract NAS 2-4507, for development of the parameter

optimization procedure and program
NASA Contracts NAS 2-3691, for extension of the optimization
NAS 2-4880, NAS 1-9936, procedures

and NAS 3-13331

This project has resuited in considerable extension of the previously
available AFFDL generalized steepest-descent computer program. Notable
extensions consist of the addition «f equations of motion for a second
vehicle, addition of self-contained combative logic, extension of the
veriational steepest-descent procedure to situations involving a reacting
opponent, addition of parameter optimization capability by multivariable
search, and the development of a saddie point search procedure for the

solution of parametrica’ly defined trajectory or combat performance problems.

The study results are reported in four volumes as follows:

Volume I - TrajJectory, Combat and Variational Optimization
Formuletion

Volume II -~ Progrem User's Manual

Vo ume III - Programmer's Manual for Trajectory, Combat, and
Variational Optimization Subprograms

ii

it

R T

Volume IV - Programmer's Manual for Parameter Optimization
Subprogram AESOP

This report was submitted by the authors March 1, 1971.

This technicsl report has been reviewed and is approved.

PHILIP®* P. ANTONATOS
Chief, Flight Mechanies Division
Air Force Flight Dynamics Laboratory

i1i

ABSTRACT

A program for trajectory optimization by the variational steepest-
descent is described in detail. The program capability includes search
for optimal initial conditions; search for optimal arc (stage) lengths;
constraints defined at terminal point, intermediate corners (stage
points), or along the path; payofs function at terminal point or inter-
mediate correr (stage point); search for optimum parameter (design
variable) velues; and two system (vehicle) problems with or without
reacting feed-back from the second system (vehicle).

The program also incorporatecs an alternative direct multivariable
search approach to trajectory optimization employing a variety of multi-
variatle search algorithms including elemental perturbation (one param-
eter at a time), organized first- and second-order methods, and
randomized methods. A method for solution for problems exhibiting
multiple extremals and a procedure for the location of ssddle points
is also included in the program.

Foint mass equations of motion for a two-vehicle system are avail-
able in the program. Motion takes place about a rotating oblate planet
having up to four harmonics in its gravitational field, non-uniform
atmcsphere (1959 or 1962 ARDC), and winds. Auxiliary computations for
aerodynamic heating are included. The vehicles may have arbitrary and
ind:pendent aerodynamic and propulsive characteristics.

Combative logic defined in terms of vehicle relative states is
availab.e in the program. The logic defines feedback countrol on tha
basis of relative state. Variational optimization procedures may be
employed to determine optimal open loop control against a reacting
opponent employing feedback control defined by combat logic., Alter-
nately, the combative feedback control logic can be paramsterized
permitting the use of multivariable search for the dafinition of optimal
feedback control parameters against a reacting opponent. By paran-
eterization of both vehicle feedback control leogic, a "mini-max"
situation capable of solution by multivariable search for a saddle
point can be considered.

All capabilities described are availgble in a single general

purpose FORTRAN IV digital computer prograr developed for the CDC 6600
computer.

iv

S g

e PO IR T e

g

coegt

556

et

R VR A

T i

oL

e

Section

TABLE OF CONTENTS

I INTRODUCTION

II COMPUTER AND SYSTEM REQUIREMENTS

III PROGRAMMING CONCEPTS

O = O\ & W IO

10.

The Use of COMMON

Table anda Table Usage

Symbolic Input

Trajectory Printing Method

Tape Usage ’

Overlay Listing

Program Organizetion

Progrsm Generation, Modification, and Execution
Data Format

Table Format

Brief Write-Up on System Routines
ENCODE/DECODE

TV MAIN PROGRAM AND SUBROUTINE MAIN2

= AT FW N
« s o+ = . .

8.
9.
10.
il.
12.

MAIN and MAIN2

BDATAL - Block Data Subroutine

BDATA2 - Block Data Subroutine

BDATA3 - Block Data Subroutine

BDATAL - Block Dats Subroutine

BDATAS - Block Data Subroutine

BDATA6 - Block Data Subroutine

BUATAT - Block Data Subroutine

SPRANG - Random Number Generator

CHAIN -~ Overlay Control Trogram

MSGONE - Combat Message Subroutine, Vehicle 1
MBGTWG - Combat Message Subroutine, Vehicle 2

v PROGRAM MAIN1 AND SUBROUTINE MAIN12

o

READA and READA2 - Input Routines for Vehicle 1
and Vehicle 2 Data

DORDER - Dirsctory Order (utput Routine

PACKL - Pack Routirne

DSERCH and DSERCHT ~ Directory Search Aoutine for
Subscripts

STOPl - General Stojp Routine

EXERR - Error Routine

TSRCH and TSRCHZ - Directory Search for Table
Subscript

READB and REZADBZ2 - Binary Stags Date Input Routine

BAESQP ~ Pacameter Optimization Input Subroutine
DIPLAC ~ Integer Shift Routine

DEF and DEF2 - Haading and Page Eject

TABRE and TABRE? ~ Table Dimension Subscript
Routines

v

iR S

JuaEniiin n)

Section

VI

13.
1k,
15.
16.
17.
18,
19.

LINES and LINES2 ~ Lines Accounting PRoutines
PACBCD - Packs Six Character Words

PACKR - Packs BCD Characters

READ31 - Binary Conversion Routine

SVI and SVIZ2 - Block Save Routines

BIBLOCK -~ Data Cutput in Blocks
SHELL - Numeric Sorting Subroutine

FROGRAM EXE AND SUBROUTINE EXE2

—

OO =IO\ Wil

=

12.
l3n
1k,

15.
16.
17.
18.
19.

20,

DIFEQ - Differential Equation Selector
MANTGT and MANTGT2 - Maneuvering Target

8L

CTVS and CTVSZ -~ Control Variable Routine fcr EXE 90

IFCS - In-Flight Constraints
PARTS -~ Pertial Derivatives

93
96

LINCOM and LINCOM2 - Linear Combirnation Routines 104

SLACK and SLACK2 - Slack Variable Routines
PENAL and PENAL2 -~ Penalty Function Routine
PLTS and PLTS2 ~ Data Cathering Routine
OBSFUN and OBSFUNZ2 - Observation Function
Routine

FILTER and FILTERZ2 - Repeater Routines for
h-Transformation

STGTST and STGTST2 - Stuge Testing Routine

107
109
112

115

120
122

EXTRAN and EXTRAN2 - Driver for h-Transformation 125

INTGRT ,» INTGRT2 and INTGRTR - Interface for
Integration Routine
CODES and CODES2 -~ Code Print Routines
ITEMS and ITEMS2 - Variable Print Koutines
COMBAT and COMBAT2 - Combat Control Routine
MIMINF and MIMINF2 - Integration Routine
TIMID and TIMID2 - Step Furction Routines for
Time Points
VALUES and VALUES2 - Value Print Routines
iSCUT and MISCUT2 - Abortion Routine
ONLINED -~ Ou Line Display PRoutine
DIFEQl and DIFEQZ2 - Point Mass Equetions of
Motion
DIFEQ3 - Dwmy Subroutine
TLUREV -~ Two Dimensional Table Look-Up Routine
ACOS - Arc Cosine Routine
ASIN - Arcz Sine Routine
TIU and TWZ2 - Two Dimensional Table Look-Up
Routine
ATAN2 - Arctangent Routine
TLUl - Two Dimensional Teble Look-Up Routine
TIMREV and TIMPEV2 - Time Point Collection
Routine
CUBR - Evaluation of Partial Routine
PRPACK - Blocking Routine for Partials
FLUSH1 and FLUSH12 - Buffer Flush Routine
for PRPACK
SETGRD - Paper Plot Grid Size Routine
PAPERP - Printer-Plot Control Routine

vi

128
131
133
135
143

147
149
151
153

154
164
165
167
169

170
172
174

177
179
182

184
186
187

T e

Section Page

37. DETECT and DETECTZ - Sensor Control Program 188
38. ROLEl and ROLE2 - Role Selection Subprogram 190
39. HLIMIT and HLIMIT2 - Minimum Altitude Constraint
Routine 194
40, ANGLES and ANGLES2 - Relative Angular Orien-
tation Routines 196

41, CRATE and CRATE2 - Finite Control Rate Routine 199
L2, TIM0O0Ol and TIMOO1l2 - Tebular Time Point Routine 20k
43. DEQPRE and DEQPRE2 - Equation cof Motion Pre-Data

Initialization 206
LYy, FIRFUN and FIRFUN2 - Fire Control Subprograi 207
L5. GAM91 and GAM92 - Flight through Vertical

Routine 211
46, DEQINI and DEQINI2 - Equation of Motion Post-

Data Initialization 213
47. DEQBCI end DEQBCI2 ~ Derivative Calculation

Befure Control Definition 214
48, FPPS and FPPS2 - Flight Plan Programmer 215
49, ONETWO - Transformation of Selected Vehicle 2

Variable to Vehicle 1 COMMON 218
50. CTLITR and CTLITR2 - Control Dependent Deriv-

ative Calculation 219
S51. DEQACI and DEQACI2 - Derivative Calculation

after Control Definition 220
52. FPPG and FPPG2 - Gamma Command Flight Plan

Programmer 222
53. DEQSIP and DEQSIP2 - Derivative Evaluation

Initial Point 22
54, DEQCOD and DEQCOD2 - Trajectory Code Print 225

55. DEQVAL and DEQVAL2 - Trajectory History Print 226
56. DEQIV and DEQIV2 - Integrated Variable

Specification 227
57. DEQHT and DEQHT2 - Trajectory h-Transformation
Subroutines 228

58. ERROR and SiiROR2 - General Table Error Routine 229
59. PTBEQN and PTBEQN2 - Driver Routines for

Equations 231
60. TWOONE - Trensformation of Selected Vehicle 1

to Vehicle 2 COMMON 234
61. IZERO and IZERO2 - Packs Non-Zero Numbers 235
52. PPLNLN - Main Paper Plot Routine 237
63. SENSOR and SENSOR2 - Vehicle Sensor Routines 239
64. VISION and VISIONZ - Pilo% Vision Routines 242
65. PASSV1 and PASSY2 - Passive Tactics Routine 24k
66. DEFER1. amd DEFEN2 - Defensive Tactics Routine 2L6
67. EVADElL and EVADE?2 - Evasive Tactics Routine 2L9
68. OFFENl and OFFEN2 - Offensive Tactic Routine 252

(G9. ATTACl and ATTAC2 - Attacking Tactics Routine 255
TO. OALPBA und QALPBA2 - Subprogram for Instantan-

eous Control Vector Iteration 258
T1. HIHO and HIHO2 - N-Dimensional Table Call Routine262
72. TMTX - Transformation Matrix Routine 264
T73. TRNPCS - A 3 x 3 Matrix Transpose Routine 267

vii

Section Page

Th. MULT31 - A Matrix Multiplication Routine 268
75. HETS and HETS2 - Heating Computations 2569
76. TFFS and TFFS2 - Single Engine Thrust and
Fuel Flow 276
TT. SACS and SACS2 - Aerodynamic Routines 279
78. LATS and LATS2 - Geodetic~Geocentric Conversion 288
T9. ATMS and ATMS2 - Atmosphere Selector 290
80. GVSP and GVSP2 -~ Gravitational Routine 291
81. ANITR and ANITR2 - Throttle Dependent Deriv~
ative and Thrust Vector Calculation 293
82. BAITR and BAITR2 - Bank Anzle Dependent Deriv-
ative Calculation 294
83, ASRCH and ASRCH2 - Directory Search Routines for
BCD Characters 295
84. GRIDXY - Paper Plot Grid Routine 297
65. PLCPTS - Paper Plot Point Placing Program 299
B86. 1IPICK - Random Tactic Selector 300
87. DEFEN1l and DEFEN?2l -~ First Defensive Tactic 301
88. FIXFDR and FIXTDR2 - Fixed Role Selection Routine30T7
89. EVADEll and EVADE21l - First Evasive Tactic 308
G0. OFFEN1l and OFFEN21 - Lag-Pursuit Offensive
Tactic 312
91. OFFEN12 and QFFER22 - Lead-Pursuit Offensive
Tactic 313
92. (QFFEN13 snd OFFEN23 - Reference Vector Offensive
Tactic 31k
93. ATTAC11l and ATTAC21 - First Attacking Tactic 315
9L. ATTAC12 and ATTAC22 - Second Attacking Tectic 316
95. CTLOFT - Internal AESOP Optimization Loop 318
96. NDTLU - N-Dimensional Table Lookup Routine 320
97. CHEMP and CHEMP2 -~ Chemical Gtate Computation 323
98. CONV - Non-Linear Equation Solver 326
99. TFFM and TFFM2 - Multiengine Thrust and Fuel
Flow 329
100. ATMS59 and ATMS592 - 1959 Atmosphere Calcula-
tion Routine 333
101. ATMS62 and ATMS622 - 1962 Atmosphere Calculation
Routine 335
102. PUT - Character Manipulation Routine 337
103. GET - ‘heracter Manipulstion Routine 338
104. OPTBA and OPTBA2 - Bank-angle Iteration Routins 339
105. IMAINOP - Internal Parameter Optimization
Interface Routine 341
106, ISELECT - Interval Search Selection Routine 343
107. MULT33 - Matrix Multiplication Routine 34k
VII PROGRAM CTLS 345
1. CTLSl1 ~ Original Control System 347
2. CTLS2 -~ Arbitrary Control System 357
3. DISPLAY - Console Display Routine 362
4. SEARCH -~ Search Routine 363

viii

TR A W

oo g B

B A1 e AT

Section

\C o =N O\
.

.

10.
11.
12.
13.
1k,
15.
16.
17.
18.
19.
20.

CARDS - Restart Cards Routine

DAICAL - Delta Alpha Calculation

KCALC ~ Step Size Logic Routine for Control
System 1

INVERT - Iyy Inversion

DECIDE - Driver for Decision Routines

OFFSW - Dlsplay Drop Routine

TLUU -~ Two-Dimensional Table Look-Up Routine
UNBLOCK -~ Unblocking Routine for A's

SUMOLA - Linear Combination Routine for A's
PLOT - Point Plot Subroutine

MATINV - Matrix Inversion Routine

DECID3 - Step Size Routine for Control Systems
DECID2 - Arbitrary Decision Routine

PACK -~ Integer Word Conversion Routine

WNORM - Weighting Matrix Norm Calculation
UPDK - Convergence Control Routine

VIIX PROGRAM KHEV

.

[o-R e RV, B g UV O

CTVSR - Control Variable Routine for REV
ADJEQ - Adjoint Equations Routine

UNPART -~ Unblocking Routine for Partials
MIMINR - Integration Routine for REV
WMA -~ Weighting Matrix Routine

DALPACK - Blocking Routine for A's
FLUSH - Buffer Flush Routine

IZUNPK - Switch Testing Routine

IX PROGRAM GRAPH

«

OO O A\ FWw ok

-

Mepping Routines

Arrow, Line, and Point Plotting Routines
Character Plotting Routines

Absolute Plotting Routines

Utility Routines

Internal Routines

PAPLT - Parameter Collection Routine
PRPLT -~ Partials Collection Routine
PLTCUR - Microfilm Plotting Routine
Dummy Flot Routines

X DIRECTORY

1.

CTAE - Perameter Optimization Control Program

XI ALPBABETIC INDEX OF SUBROUTINES

ix

Page

367
369

37k
379
384
385
386
388
390
392
398
400
Loé
ko7
409
k11

428
L3k
436
L2
Ly
446
453
455
456

458
459
459
459
h59
L60
L60
L2
L7k
h76
k719

L82
483

486

I T P s 5 -vesk R vt ot

a

SECTION I

INTRODUCTION

This report describes a generalized digital computer program for
the simulation and/or optimization of arbitrarily defined vehicle flight
paths. Two simultaneously coupled three-dimensional point mess trajec-
tories about a rotating oblate planet having a mulii-layered atmosphere
may be employed. Levels of reduced ccmplexity varying frcm the generalized
problem to straightforward planar point mass, single vehicle, vacuum
trajectories may be studied with the aid of the progran.

The program itself has evolved over a period of some ten years,
mainly on the basis of four Air Force Flight Dynamics Laboratory (AFFDL)
sponsored contractor research studies. The program has alsc been
supported by National Aeronautics and Space Administration studies at
Ames Research Center, Langley Research Center, and the Manned Spa:ecraft
Center and has received wide distribution throughout the aerospace
industry.

In addition %o the point mass capability, compatible trajectory
equation options of increased complexity up to and including & six-
degree-~of--freedom single vehicle option employing generalized vehicle
and planetary characteristics ard a generalized trajectory error and
dispersion analysis are available from AFFDL.

PURPOSE

The program reported in this document extends the existing AFFDL
sirgle-vehicle point mass program to the two.-vehicle point mass problem.
Specifically, the original program has been extended to provide a gener-
alized two-vehicle (one-on-one) combative engagement gimulation and
optimization capability. The combative encounter may be defined at
several levels of complexity short of differential game formulation
including:

OPTION (A): Self-contained role and tactic selection
based on relative vehicle states

OPTION (B): Parameterization of one vehicle's role and
tactic selection rules followed by the
application of multivariable search proced-
ures to obtain the optimal parameter values.
Thie option defines optimal parameters
against a specifisd opponent employing
fixed combat logic parameters.

OPTION (C): Parameterization of both opponent's role and
tactic selection rules followed by the appli-
cation of a multivariable saddle point search
technique. This option defines a "mini-max"
optimal procedure for opponents employing
variable combat logic parameters.

OPTION (D): Open loop, continuous control optimization
by the variational calculus against an
opponent performing a pre-specified maneuver,
the "maneuvering target" option.

OPTION (E): Open loop, continuous control optimization
by the variational calculus against a
reacting opponent employing fixed parameters
and self-cortained combat tactics.

It should be noted that the formulation and program include es
subcases two-vehicle cooperative problems. This leads to

OPTION (F): Cooperative twc—vehicle parametric control

OPTION (G): Cooperative two-vehicle open loop contin-
uous control

These last two options permit the optimization of two-~vehicle rendezvous
problems and are equally applicable to aircraft or spacecraft problems.
Single-venicle problems may also be studied by means of the program. In
this reduced mode, both parametric and variational optimization formulations
can be employed.

e

SECTION II

COMPUTER AND SYSTEM REQUIREMENTS

The combat simulation program has been written for use with the
CDC 6600 series computer system using the run compiler. FExcept for
three small subroutines, GET, PUT, and OFFSW, the program is written
in CDC FORTRAN IV.

Computer resource requirements are

1.

2.

A CDC 6600 computer with 131k (decimal) core

A card reader

A line printer

A card punch (if restart cards are to be punched)

Twenty-two tape transporte or a disk to simulate
magnetic tape

A display console (This requirement is omitted
vhen the display subroutine SCUPE is replaced by
& dummy subroutine).

SECTION III

PROCRAMMIKG CONCE?TS

l. The Use of COMMON

Whenever possible, a variable is plared in the FORTRAN "COMMON" arce.
There are several reasons for this:

&, The communication between subrcutines is simplified

b. The structure of the directory is simplified. Since
the number of variables in CO'MMON is quite large, all
COMMON cards are not placed in each assembly/compilation.
Instead, access to any quantity in the COMMON tlocks
is through individuel "EQUI'ALENCE" statements placed
in each deck of source cards. Thie has in a amall
panner reduced the aumber of COMMON cards in each deck.

In order that the user may be.ter obtain the required COMMON location
for a given variable, a system of COMMON subscripts is used. The first
location of COMMON has a subscri»t of l; the second, 2, . . . The listing
of the suffix directory can be cbtained by a program user if the dsta
quantity "DLIST" is input as 1.9 to the program.

The data for vehicle onc i3 stored in "blank" COMMON. The dava for
vehicle two is stored in namec. COMMON/COMMON2/. Blank COMMON and /COMMON2/
each ase 3000 core locations. The COMMON subscript of a given variable is
the same for both vehicles., For example, bank angle, "BATTD," is the
sixty-fourth location of blank COMMON for vehicle one and is the sixty-
fourth location of /COMMON2/ for vehicle 2.

2. Table and Table Usage

One of the usual required modifications of any program is the change
of table sizes, With this in mind, a COMMON block of locations has been
set aside,and the required number of cells required for each table is
specified with data {check TABRE for data preparation). This renuires
no re-assembly or recompilation unless the total number of cells required
exceeds the COMMON block. This has been set at L4000 cells for each
venicle, Table data for vehicle one is stored in numbered COMMON /S/,
and table data for vehicle two is stlored in numbered COMMON /52/.

3. Symbolic Input

Although the FORTRAN systiem itself has a system of input routines,
the program does the actual translaticn of cards using special coded
routines, Input data may be read using a system of symbols which is
designed to give engineering meaning to the analyst. The symbols are
internally referenced to actual locations by the use of COMMON and
subscripus.

4, Trajectory Printing Method

The printing of a trajectory may be divided into five categories:

a. Initial printing - The printing of specific values of the
first stage und at each subsequent major stage. Initial
print is designed to print certain values which will be
constant during the trajectory and serve as a reminder of
what values have been used for these constants.

b. Code printing - The printing of codes which will identify
the variables which are to be obtained in the coming time
history print. Only those variables to be printed in the
time history will have a code name prirted. All subpro-
grems being used as well as the differential equations
rcutine will print a set of codes.

c. Time history printing .- The printing of values specified
at the requested points of the trajectory. If a certain
variable is not desired as output, it is not printed, and
other desired variables are moved in the print format
accordingly.

d. Observation functions — A maximum of thirty~two variables
for each vehicle may be designated as observation functions.
At the end of each major stage, the time history of all
observation functions are printed ir tabular format. Obser-
vation functions may also te plotted on the line printer,.
The object of observation function printout is the construc~
tion of campact histories for the major trajectory variables.

e. Disgnostic error printing - The printing of errors detected
by the program.

The entire printing is con.rolled to print on a page 11 x 1U inches
and will print a maximum of fifty-four lines per page. Page ejection and
lines control are provided by the subroutines LINES and DEF.

In addition to the above printout, all input data involved for a case
nay be printed on the output page preceding the computation of the first
stage printout. This printout is user-contrclled and will be cmitted
vhen IPNAML = 0, This print will oceur cn thk: first cycle only.

5. Tape Usage

This esection will describe the tape usage c'aer than the FCRTRAN
system. All modification of tapes required msy be made with control
cards placed in fromt of the program btefore suli itting to the computer.

TAPE EQUIPMENT VEHICLE USAGE
Tape 5 Disk or tape 1402 Data input
Tape 6 Disk or tape l1&2 Printed output

TAPR

Tape

Tape

Tape

Tape

Tape

Tape

Tape

Tape

Tape

Tape

Tape

Tape

10

11

12

13

1k

15

16

17

18

19

EQULPMENT VEHICLE
Disk or tapre 1
Disk or tape 1l
Disk cr tape 1l
Disk or tape 1
Disk or tape 1&2
Disk or tape 1
Disk or tape 1
Disk or tape 1
Disk or tape l1&2
Disk or tape l1&2
Disk or tape 2
Disk or tape 2

USAGE

Save the o history for that
valid step for use with all
trials until another valid
step is found.

This unit is used in the
reverse integration to save
data for use in computing
the mode shape in the con-
wrol system,

Partials and control vari-
ables are written on this
unit for use in the reverse
integration

Target data is written on
this tape when using the
maneuvering target option.

Used to save the AESOP data
base for the outer AESOP
parameter optimization loop.

This tape is used for restart

cards. Restart cards for the 43
last completed cycle are
written on this tape. The
program call card may be used
to automatically assign this
tape to the punch file.

Used to prepare the input
tape in binary for use in
the iterative procedure.

Collects data for plotting
in overlay 5, O (GRAPH)

Save the AESOP parameter

and performance history for
the summary report at the
end of an optimization cycle.

Save the AESOP parameter and
performance history for the
final summary report.

Same as unit 10.

Same ar unit 11

R SRS e L A N ke R R ¢! 9 2 R R Y e 1 R

TAPE EQUIPMENT VEHICLE USAGE
Tape 22 Disk or tape 2 Same as unit 12,

rn

Tapc 23 Disk or tape Same ar unit 13,

Tepe 25 Disk or tape 2 Same as unit 1i5.
Tape 26 Disk or tape 2 Same as unit 16.
Tape 27 Disk or tape 2 Seme as unit 17.
FILMPL Disk or tape 1 Used bty the CDC 280 recorder

and display system.

6. Overlay Listing

The following is a list of the overlay structure of the combat simulation
program including the main program, subprograms, subroutines, and systenm
routines used. (Note: System routines appear in italics).

OVERLAY 00.00

1. MAIN 2. LDATA1
3. BDATA2 4. PBDATA3
S. BDATAL 6. BDATAS
7. BDATAG 8. BDATA7
9. SPRANG 10. MAIN2
11. CHAIN 12. MSGONE
13. MSGTWO 14. SYSTEM
15. FINBIN 16. ACGOER
17. EXP 18. ALNLOG
19. SQRT 20. SECOMD
21 oUTPIC 22. OVERLAY
23. REWINM 2k, ourpB
25. S8I08 26. GETBA
27. KODER 28. OVERLOD
OVERLAY 01.00
1. MAIN) 2. READA
3. DORDER L, PACKL
5. DSERCH 6. STOP1
T. EXERR 8. TSRCH
Q. READB 10. MAIN12
11. BAESOP 12. DIPLAC
13. DEF 14. TABRE
15. LINES 16. PACBCD
17. PACKR 18. READ31
19. §vI 20. BIBLOCK
21, SHELL 22. SHELLX
23. READA2 2L. DSERCH2

25. TSERCH2 26. READB2

-3

A et L o

2T,
29,
31.
33.
35.
37.

OVERLAY

87.

TABREZ2
BACKSP
INFUTC
IFENDE
OUTPTN
KRAKER

02.00

EXE
MANTGT
IFCS
LINCOM
PENAL
OBSFUN
EXE2
EXTRAN
TNTGRT
LINES
ITEMS
COMBAT?2
MIMINF
STGTST2
VATLUES
MISCUT2
DIFEQL
DIFEQ3
DIFEQS
STCP1
TLUREV
ASIN
ATAN2
TIMREV
EXERR
PSUBR
FLUEHL
PAPERP
CTVS2
PARTS2
SLACKR2
PLTS2
EXTRANZ
INTGRT2
ITEMS2
VALULS2
ROLE1
ANGLEE
DETECT
HLIMITZ
CRATEZ2
T1.1001
FIAFUN
DEQINI

28.
30.
32.
34.
36.

svI2

INPUTB
OUTPTS
INPUTN
INPUTS

DIFEQ
CTV3
PARTS
SLACK
PLTS
FILTZR
STGTST
READB
LEF
CODES
COMBAT
OBSFUN2
MIMINT?2
TIMID
MISCUT
GNLINED
DIFEQ:
DIFEQH
DIFEQS
TSECH
ACOS
TLU
TLUL
DSERCH
ONETWO
PRPACK
SETGRD
MANTGT2
IFCS2
LINCOM2
PENALZ2
FILTERZ2
READB2
CODES2
TIMID2
DETECT
HLIMIT
CRATE
ROLE?
ANGLES~
DSERCH2
DEQPRE
GAMASGL
DEQBCI

89.

gl.

93.

95.

97.

99.
101.
103.
1)5.
107.
109.
111,
113.
115.
117.
119.
121.
123.
125.
127.
129.
131.
133.
135.
137.
139.
1k1.
143.
145,
147,
149,
151.
153.
155.
157.
159.
161.
163.
165.
167.
169.
171.

73.
175.
177.
179.
181.
1€3.
185.
137.
189.

Y, — -y

FPPS
DEQACI
DEQSIP
DEQVAL
DEQHT
FIRFUN2
DEQINI2
FPPS2
DEQACI2
DEQSILP2
DEQVAL2
DEQHT2
PTBEQN
IZERO
TSRCH2
TIMREV2
SENSOR
PASSV1
EVADE1
ATTAC1
HIHO
TRNPOS
SENSOR2
PASSV2
EVADE2
ATTAC2
HETS
SACS
ATMS
ANITR
HETS2
SACS2
ATMS2
ANITR2
ASRCH
GRIDXY
ERROR2
DEFEN11
EVADE11l
ATTAC11
NDTLU
FIXEDR?
OFFEN21
CHEMP
TFFM
ATMs62
TFFM2
ATMS592
PUT
ASRCH2
INITOP

90.
92.

96.

98.
100.
102.
10k,
106.
108.
110.
112,
114,
116.
118.
120.
122.
124,
126.
128.
130.
132.

150.
152.
15k,
156.
158.
160.
162.
16k,
166.
168.
170.
172.
17k,
176.
178.
180.
132

18k,
186.
183.
190,

CTLITR
FPPG
DEGCOD
DEQIV
DEQPRE
GAMA92
DEQBCI2
CTLITR2
FPPG2
DEQCOD2
DEQIV?2
ERROR
TWOONE
PPLNLN
TLU2
TIMOOL2
VISION
DEFEN1
OFFEN1
OALPEA
TMTX
MULT31
VISION2
DEFEN2
OFFEN2
OALPBA2
TFFS
LATS
GVSP
BAITR
TFFS2
LATS2
GVSP2
BAITR2
PTBEQi?2
PLCPTS
IPICK
FIXEDR
OFFEN1L
CTLOPT
DEFEN21
EVADE21
ATTAC21
CONV
ATMS59
CHEMP2
HIHOZ
ATMS622
GET
OPTBA
BESTAF

N . N

191.
193.
195.
197.
199.
201.
203.
205.
207.
209.
211.
213.
215.
217.
219.
221.
223.
225.
227.
229.
231.
233.
235.

OVERLAY

IMAINOP
PENLTY
PGAIN
INF®JAL
SAVALF
ISELECT
WEIGHT
QUTFUN
FNEVAL
SUMARY
CREEPR
OUTSUM
BOUND
ASVCHK
RGEN
FUNTYP
INPUTB
SINCOS
IFENDF
SCOPE
TAN
TANH
ENDFIL

03.00

CTLS
CTLS2
LINES
SEARCH
CARDS
KCALC
DECTDE
DSERCH
UNBLOCK
PLOT
DECID3
PACK
URDK
ENDFIL
CUTPTS
INPUTS

0k, 00

REY
ADJEQ
LINES
INTGRTR
MIMINR
VALUES
WMA
FLUSH
STOrL
INPUTB

10

192,
194.
196.
198,
200.
202.
20L.
206.
208.
210.
212.
21k,
216.
218.
220.
222,
224,
226.
228,
230.
232,
23k,
236.

WARPS
OPTBA2
ALFLIM
FESET
PATERN
PSRCH
OUTALF
PCYCLE
PFINAL
SECCON
OUTWGT
RANDUM
SECTON
FESAV
SHELL
STDALF
BACKSP
RBAIEX
QUTPTS
RBAREX
IBAIEX
ATAN
CPC

CTLS1
DEF
DISPLAY
STOP1
DALCAL
INVERT
OFFSW
TLUU
SUMOLA
\TINV
DECID2
WNCRM
INPUTR
LOCF
RBAREX
KRAKER

CTVSR
DEF
UNPART
TLUREV
CODES
TLUL
DALPACK
IZUNPK
BACKSP

I

RN, oo,

05.00

GRAPH 2.
PRPLT 4,
PLTCUR 6.
ABSVECT 8.
LINFOPT 10.
SETBEAM 12.
SYMBOL 1k,
INPUTB

06.00

DCAMES

07.00

CTAE 2
INITOP L.
MAINOP 6.
CODES 8.
CODES2 10.
SADDLE 12.
SADDLE 1L,
ALFLIM 16.
YESET 18.
PATERN 20.
PSRCH 22.
ENDCYC 2k,
OUTALF 26.
SUMARY 28.
SECCON 30.
STDESC 32,
QUADRA 3k.
RPOINT 36.
RAYSEC 38.
OUTWGT ho.
PCYCLE 42,
RANDUM Lk,
SECTON L6.
WMAY L8.
ASVCHK 50.
MINALP 52.
ALFNUL sk,
QUADOP 56.
DMATRX 58.
RGEN 60.
SHELL 62.
STDALF 6kL.
QMXINV 66.
INPUTN €8.
ENDFIL 70.

11

PAPLT
ABSBEAM
CHAROPT

VECTOR

STOP1
BESTAF
WARPS
VALUES
VALUES2
PENLTY
PGAIN
INEVAL
SAVALF
SELECT
WEIGHT
FNEVAL
OUTFUN
DEF
MAGNFY
CREEPR
DAVIDN
RANRAY
BAEEOP
OUTSUM
PFINAL
BOUND
DERIV
INISTD
FESAV
ALPERT
QDTRAN
MAXRDP
SAVDER
RANCOS
FUNTYP
MATMLT
RBAIEX
OUTPTN
INPUTB

T. Progrem Organization

The combat simulation computer program is written in CDC FORTRAN IV
except for one small display routine OFFSW and two small character mani-
pulation routines GET and PUT. The program takes advantage of the overlay
fzature to minimize core requirements.

This section describes the overall orginization of the program from
the viewpoint of control cards, tape usage, and 2=ck set up. The program
in broken into eight overlays as rollows:

1. MAIN - MAIN zeros out all of the common locations and moves
the directory data to common locations.

2. MAIN1 - Does some date initialization and prepares an input
tape for use in the iterative procedure.

3. EXE - Solves the equations of motion and computes the
partial derivatives.

L, CTLS - To compute the step size and new control variable
table for the next trajectory being computed.

5. REV = The reverse integration program computes integrals
which determine the mode shape of the changes in the con-
trol variables and puts this out on tape for use in
CTLS.

6. GRAPH - Dummy

T. DGAMES - Dummy

8. CTAE -~ Parameter optimization AESOP

a. Storage References

All variables requiring arrays have been arranged in the standard
FORTRAN convention. For exesmple, an array Aj is stored in jncreasing
storage locations for increasing i. Matrices are stored columnwise.

b. Integers

All integers are assumed to be in a 60 bit word right justified.

c. COMMON

In order to decrease the leng.h and t.iae ieguir2d I» calling
sequences, liberal use of COMMON has been made. Three types of COMMON
are used: ©blank, numbered, and labeled. For the actual variables and
their arrangement in COMMON, the user is referred (o the program listing.

d. Variable Names

Recuase any variable may be referred to by FORTRAN, all integer
variable names begin with the leading letters I, ¢, K, L, M, or N. This

12

¢

does not mean that all non-integer variable names begin with latters
other then I, J, K, L, M, or N. They may, in some subprograms, be
declared integer or resl.

8. Program Generation, Modification, and Execution

The following examples are designed to aid the user in wutilizing the
features of the CDC 6000 series computer for modification and execution
in the combat simulation program. All examples shown ere base’ upor an
overlayed program organized as follows:

OVERLAY (TRAJOPT, 0, 0)
MAIN

OVERLAY(TRAJOPT, 1, O)
MAIN1

OVERLAY (TRAJOPT, 2, 0)
EXE

OVERLAY (TRAJOPT, 3, O)
CTLS

OVERLAY (TRAJOPT, k4, 0)
REV

OVERLAY (TRAJOPT, 5, O)
GRAPH
OVERLAY (TRAJOPT, 6, 0)
DGAMES

OVERLAY (TRAJOPT, 7, O)
CTAE

All control cards are left-justified in card colurnn 1. The end of record
is a 7, 8, 9 punched in column 1 and an end of file card is a 6, 7. 8, 9
punched in column 1. In the con%rol zard examples, an end of record and
an end of file will be used in place of these cards.

a. Building the Program Overlay file

In constructing the program overlay file a CDC-developed utility
program COPYLIB is used. COPYLIB is a user library simulation copy routine
developed by CDC to take most of the work out of building overlay or
normal load files. However, COPYLIB is not a standard CDC utility program;
hence, 1 short description is supplied below with examples of its use.

COPYLIB is called by a control card and reads text cards.
(1) Control Card
coPYLib(SUTrILE, LTP1, LIBR2, . . LIBi)
vhere OUTFILE is the name of the disk or tape file upon which the output
(the program overlay file) is to be written, and LIBl, LIB3, . . ., LIBL
(1L £ 1 £ 6) are the names of the user-supplied library files containing

subprograms output from a CDC 6600 compiler or assembler in relocatable
object form (odd parity).

13

(2) Text Cards

The order and content of the text cards define the output file.
They are free form in columne 1 through T2, blanks ignored. The text cards

are listed as follows:
ident

where ident 1is a subprogram name. The purpose of the iJent card is to
name the main program. Once the main program neme is known, it and all
the routines it calls or references and all they call or reference that
vere available in the library files are copied ontc the output file
specified.

Usually, only the one card naming the main progy:. seed be
given except for certsin cases such as Block Data routines that are
necessary but not specifically called or referenced by any program. (In
the case of an otherwise unnamed Block Data routine, the additional
ident card would contain only BLKDATA). Another ingtance might be one
in which the order of lecalir-, was important to guarantee that the longest
named COMMON refcirern::= wuuld come first. The order would be forced by
the inceition or additional cards containing the names of the routines
in tue order required.

OVERLAY(fn, Iz, I3)

Overlay text cards are necessary %o properly define the structure of
the file to be built for overlay loading. These cards cause an overlay
loader directive record containing all the information on the text card
to be written on the out file. The order and form of this text card
must be exactly as defined in the Scope Reference Manual or the FORTRAN
Reference Manual, with the exception of the starting column.

An ident text card containing the name of the main program in the over-
lay must follow each overlay text card.

Given correct overlay and ident text cards, COPYLIB will correctly tuild
an overlay structure file; no routine needed or defined in a more funda-
mental overlay will b2 placed in a less fundamental level. If an ident
card incorrectly attempts to call a routine that has somehow either
through a previous ident text card or through a call by a subroutine at
that level aiready been mlaced in the more fundamental level, the ident
card is ignored and an informative diagnostic is printed. It is possibl:
to have several 0, O level overlay cards in the text stream if the pur-
pose is to build different overlay structured prcgranms.

MWEOF*

This text card causes an end of file to be written on the OUTFILE after
all the preceding text cards are processed. (A file mark might be

14

s e S g e T o e R S

[TSP e

between two separate overlay structured programs being output in a single
run).

(3) Interesting Details and Limitations

For perhaps 98 vor ¢sut of all the times COPYLIB is used,
500008 will be suffi-iszni field length. COPYLIB will abort if the fol-
lowing inter.... tables overflows:

Name of Table Size
Library Subprogram Name 768
Subprogram Entry Points 1280
Subprogram External References 3840
Current Overlay Need Stack 383
Working Storage Buffer variable (see below)

The working storage buffer size can be determined by subtrac-
ting L0500g from the fieid length. It is difficult to determine what the
minimum size required will be unless the lengths of the relocetable binary
records present on the user library files are known. The length of the
longest record determines the minimum working storage buffer size. (Note:
this length is not the amount of core required to load the subprogram for
execution but the number of words output by the compiler or assembler.)

In other words, it is proportional to the number of binary cards that
would be punciaed out,were the subprogram punched out, not necessarily
related to the size of any arrays dimensioned inside the subprogram. This
length can be obtained exactly, if necessary, from the information output
by a "LIBLIST" of the library files, and should be rcunded upward to the
nearest 10008 when figuring the minimum field length necessary for COPYLIB.

COPYLIB rewinds each user library file starting with the
first mentioned then transfers every routine contained in it to a random
accegs file, rewinds the library file, and then repeats this process with
the next user library file mentioned, for every file given.

If during the transfer process a subprogram is found that has
a name duplicating one found previously, the latter subprogram is skipped,
an informative diagnostic printed, and the process continues. This is
handily put to use when one wishes to use a newer versicn cof a routine
instead of the version contained in one of the user library files, e.g.,
by placing the name of the newer library file to the left of the older
version, the user causes the duplicate routines on the later file to be
ignored.

Entry points must be unique to one subprogram. If two or
more nave the g2me entry peoint rames, COPYLIB output may be scrambled.
The responsibility for proper overlay text card sequence 18 entiraly the
user's. Incorrect sequencing, as defined in the Scope and FORTRAN
Reference manuals, will not be flagged until an attempt is made to load
the outfile,

15

The out file is rewound at the beginning and end of COPYLIB.
It will be ended with one end-of-file mark unless more are forced through
WEOF cards at the end of the text cards.

The random access file mentioned earlier is callea RANSCR
and must bve a disk file. However, at the conclusion of COPYLIB it can
be revound end copied by the normal control cards (REWIND and COPYBF) if
the user wishes to save a new version of the user library. This file
contains all of the routines found in the library files input to COPYLIB
minus any duplicate routines, overlay cards, and compiler or assembler
error records,

The present versinsn does not allow the use of INPUT (the
card resder) as a library file.

FXAMPLE 1
The tnitial installation of COPYLIB as a permanent file.

RFL,60000.

UPDATE(N,C)

FIN(I=COMPILE)

LOAD(LGO)

NOGO.

CATALG (COPYLIB,COPYLIB,ID=ARCAFFDL ,EX=ARC1,
CN=ARC1,MD=ARC1,RP=999)

end of record

COPYLIB source deck}

end of record

EXAMPLE 2
The initial installation of the COMBAT simulation program.

The FORTRAN source decks are arranged, sequenced, and stored alpha-
betically. The following deck set up is used for the initial generation
of the COMBAT simulator program overlay file NEWPGM on tape ARCOl.

REQUEST NEWPGM,HI. (ARCOl/RING)
RFL,60000.

RUN(S,,,.»,77000)
ATTACH(COFYLYB,COPYLIB)
COPYLIB(NEWPGM,LGO)

:COMBAT gource decks arranged alphabetically

16

OVERLAY (TRAJOPT,0,0)
MAIK

OVERLAY (TRAJOPT,1,0)
MAIN1
OVERLAY(TRAJOPT,2,0)
EXE

OVERLAY (TRAJOPT, 3,0)
CTLS

OVERLAY (TRAJOPT, 4,0} CCPYLIB text cards
REV
OVERLAY (TRAJOPT,5,0)
GRAPH

OVERLAY (TRAJCPT ,,6,0)
DGAMES

OVERLAY (TRAJOPT,7,0)
CTAE

end of record
end of file

EXAMPLE 3
Modification of the combat simulation program

The following deck set up is used when making modifications to
the combat simulation program.

REQUEST OLDPGM,HI. (ARCOL/NORING)
REQUEST NEWPGN,HI. (ARC02/RING)
RFL,60000.

RUN(S,,,,,,7T000)

ATTACH (COPYLIB,COPYLIB)
COPYLIB(NEWPGM, LGO, OLDPGM)

end of record

Modi fied COMBAT eource decks

end of record

OVERLAY (TRAJOPT,G,0)
MAIN
OVERLAY (TRAJOPT,1,0)
MAIN1
OVERLAY (TRAJOPT,2,0)
EXE
OVERLAY { 'RAJOPT,3,0)
CTLS

OVERLAY (TRATOPT,4,0)
REV

OVERLAY (TRAJOPT,5,0)
GRAPH
OVERLAY (TRAJOPT ,6,0)
DGANES

OVERLAY (TRAJOPT,7,0)
CTAE

end of record
ond of file
17

COPYLIB text cards

gy 1T

EXAMPLE 4

The following deck set up is used to moditfy and execute the combat

simulation program.

REQUEST OLDPGM,HI. (ARCO1/NORING)
REQUEST NEWPGM,HI. (ARCO2/RING)
REQUEST ABSPGM,HI. (ARCO3/RING)
RFL,60000.

RUN(S, ,,,,,77000)
ATTACH(COPYLIB,COPYLIB)
COPYLIB(NEWPGM,LGO,0LDPCM)
REWIN (NEWPGM)

RFL,317000.

SET(0)

MODE(1)

LOAD(NEWPGM)

NOGO.

RFL,20000.

REWIND(TRAJOPT)

REWIND (ABSPGM)

COPYBF(TRAJOPT ,ABSPGM, 1)
REWIND(TRAJOPT)

RFL,317000.

TRAJOPT.

end of record

{Modified COMBAT source decks

end of record

OVERLAY (TRAJOP'',0,0)
MAIN
OVERLAY(TRAJOPT,1,0)
MAIN1

OVERLAY (TRAJOPZ,2,0)
EXE

OVERLAY {TRAJOPT,3,0)
CTLS COPYLIB Text Cards
OVERLAY (TRAJOPT, 4,0)
REV

GVERLAY (TRAJOPT,5,0)
GRAPH

OVERLAY(TRAJOPT,6,0)
DGAMES
OVERLAY (TRAJOPT,7,0)
CTAE

end of record
)data deck for COMBAT program

end of record
end of file

18

et B T R e

EXAMPLE 5

The followlng deck set up is used to execute the combat
similation program from a tape containing the sbsolute
program element,

REQUEST ABSPGM, HI. (ARCO3/NORING)
REWIND (ABSPGM)

REWIND(TRAJOPT)

RFL,20000.

COPYBF (ABSPGM, TRAJOPT, 1)
RFL,317000.

MODE(1)

TRAJOPT.

end of record

data deck for combat
simulution program

end of record
end of file

Program Call Card

In the two previous examples the combat simulation program

was executed by use of the program call caxd

vhere TRAJOPT is the name of a disk file that contains the absolute program
element.” The prcgram call card may also be used to override file name
paramete;s which appear on the program card of the source deck.

TRAJOPT.

parameters appear as follows:

N €5 O o 2

The restart cards for the combat program are written on TAPE1S.
loving call card may be used with any 6000 machine which has a card punch
and recognizes the FUNCH file to automatically punch the restart cards at
the end ¢f the job.

PROGRAM MAIN (INFUT=1001, OUTPUT=1001, TAPES=INPUT, TAPEG=OUTPUT,
TAPE10=1001, TAPE11=1001, TAPE12=1001, TAPE13=1001,
TAPE1L4=1001, TAPE15=10C1, TAPE16=1001, TAPE17=1001,
TAPE18=1001, TAPE12=1001,
TAPE20=1001, TAPE21=1001, TAPE22=1001, TAPE23=1001,
TAPE2521001, "7..PE26=1001, TAPE27=1001, FILMPL=1001)

TRAJOPT(. .,4s455s PUNCH)

19

F g

9. Data Format

Card Columns
Field

Card Field I

Card Field II

Card Field III

Card Format - The program input routine (READA) expects the following format.

1-6 T 8-10 11 12-66 €7-72 73-80
I I III v v VI VII

Contains the symbolic name of the variable intoc which
data contained in Field V begins loading.

Example: Card Column 1 12
GAMTD -1.23
SIGTD 90.
Not used.

Contains the words DEC, CCT, BCD, TRA, INT, PAR, or is
blank depending on the type of data to be loaded. The
word OCT indicates that the data is to be interpreted
as octal numbers. The word BCD specifies that N birary
coded decimal words (N punched in column 12) begirning
in column 13 are to be loaded. The word TRA denotes
to the input routine that all data has been input and
tce return control to the calling progi-am. The word
PAR indicates that the input quantity is to be treated
ag & free parameter in a multivariable optimization
study. The word DEC and blank are equivalent and
specifies that data loaded is decimal data.

OCT Example

Card Column 1 8 12
NPOINT OCT 17

BCD Example

Card Column 1 8 12
REM BCD 2

The 2 in column 1¢ specifies two words where each word
is considered to be six characters including blanks.
The largest number of six character words that can be
loaded from one card is nine. The analysts should be
very careful to see that the BCD informatioan dces not
get punched into Fiezldd ¥I, This wiil cause an input
error.

DEC_Example
Card Column 1 8 12
ATABOL DEC 2,-100.,1.,100.,1.

Note that the first chsracter in column 12 is an
integer and the input routine will loal only one
integer per DEC card and that has to be the firsu
number puriched in Field V.

20

Card Field IV

Card Field V

Card Field VI

A T

ATABO1 DEC 2.,-100.,1.,100.,1.

If the above card is punched, the two will now be
loaded into the machine as a binary floating point
number., Likewlse, the other numbers will be loaded
in the sume manner with the decimal point assumed
right Justified.

If anything other than OCT, BCD, INT, TRA, or blank
appears in Field II, then the word DEC is assumed.

Card Column 1 8 12
JPSCUT INT 1
JPSCUT 1

JPSCUT INT 1,1, 1,1

When the word INT is used, it is assumed that all
numbers on the card will be loaded as integers. If
only one integer is punched per card,the INT may be
punched or cmittied.

PAR Example

Card Column 1 8 12
GAMTD PAR 2

The PAR in column 8 indicates that the input quantity
GAMTD is a free parameter. The 2 in column 12 indi-
cates that GAM(D is the second free parameter.

Not used.

The actual input data to the program is punched in the
Field V. DEC, INi, and OCT must always be left adjusted,
that is, it must start in column 12 on the input card.
All pumbers are separated by a "comma,"and the field
terminates with the first blank. BCD information begins
in column 13, and the naximum number of six character
words per card is nine. Note that since Field V ends
with the fiirst blank, the user may punch any comments

in the remeinder of the field.

This field specifies the initial subscript of the data
in Field V. If this field is blank, au initial sub-
script of 1 is implied. The subscript may appear
anyvhere within the field.

Example

Card Columan 1 12 67
ATABOL 4,0,20.,10.,18. 1 or blank
ATABQOl 20.,17.,30.,15. 6

21

i el L [Ut Y e T . ¥ R T I

T e st i

In the example above the integer 4 is loaded into the

first cell of the arresy ATABOl. On the second card

20. is loaded into the sixth cell of the array. The

one and six punched in Field VI indicate the su s2ript i

for the array ATABOl.

Card Field VII -~ Not used as far as the input routine is concerned.
This may be used as a sequence number for the card.

10, Table Format

The various types of tables used by the program may be classed as
follows:

Two dimensionsl table.

Example TTABO1 T = £(t)
Card Column 1 12
TTABOL N, t), Ty, b5, Tpy 85 Tos o v vy b5 T

N equals fixed point number equal to two times the number of independent
variables. For a 20 point table N would equal 40. The total number of

machine cells required for this table is Ll.

fl

t independent variable values

i
T,
i
N-dimensional table.

corresponding dependent values

Example ATABBO0 C = £(x,y)
Card Column 1 12
IA80X NX
IA80Y NY
ATABBO X;, X, Koo oo Xy ‘

ATABSO Y], Y5, Y3, . . ., Ypy
ATAB8O Cx=1 y=1, Cx=2, y=1» + * +» Cx=nx, y=1

ATAB3O Cx=1, y=2, Cxap ymp, * * *» Cyemx, y=2

C

ATAB8O szl’ y=ny> Cx=2, y=ny» = -+ <> =nx, y=ny
NX and NY are fixed point numbers of independent variables. Cx=1, y=1 '
The table

+ + + Cxsnx, y=ny equal values of independent variables.
subscripts would apply to the N-dimensional table as well as the two
aimensional. The total number of machine cells required for an N-dimen-

sional table equal XN(NY) + NX + NY.

Examplies

"

0o
ne !

c = fix,y) NX points for x
NY points for y

22

Machine cells requires 2 x 2 + 2 + 2 = 8§ cells

c = £(X, ¥, 2) NX = points for X = 20
NY = points for ¥ = 10
NZ = points for Z = 15

Machine cells required = 20 x 10 x 15 + 20 + 10 + 15 = 3045 cells.

All tables must heve at least two points per tsble., A check for each
individual table should be made to see if an indicator is necessary for
the program to read the table.

11. Brief Write-up on System Routines

This section is a brief write-up of some of the system subroutines
used by the CDC 6000 software. Since the system software is in a stete
of constant change, this information may be of little or no use.

a. INPUTB

Orly one logical record is read each time INPUTB is called. If
the list is longer then the logical record, the excess words in the list
are ignored oy the routine.

An attempt to read past an end of file will cause a program short.
The end of file condition can be cleared by testing for end file after
the file mark has been read and prior to another attempt to read.

INPUTB calls routines GETBA (to locate Buffer Argument address),
UMERR (to output Unassigned Medium diagnostic), MARKFI (to end file
OUTPUT and position file INPUT), and XRCL (to go on Recall while an I/O
trensmission is in progress and computation can not continue).

b. INPUTC

INPUTC handles the I/0 transmission for the input to the computer.
It calls routine KRAKER to perform conversion.

An attempt to read past an end of file will cause the program to
be aborted.

The end of file condition can be cleared by testing for end file
after the file mark has been read and prior to another attempt to read.
The end file condition for the file INPUT is set by either an end of file
mark or a short record (end of logical record).

INPUTC also calls routines GETBA (to locate Buffer Argument
address), UMERR (to output Unassigned Medium diagnostic), MARKSI (to
end file output and position file INPUT on ,.ogram abort), and XRCL (to
go on Recall while on I/0 transmission is in progress and computation
can not continue).

23

T e o AT g ey s o, et - e on s e

c. INPUTS

INPUTS does the core to core iransmissions. It calls routine
KRAKER to perform conversion.

The parameter specifying the record length may be sn arbitrary
number of BCD characters less than 150, The record startis with the leftmost
character of the location specified by Format and continues ten BCD charac-
ters per computer memory word for the BCD characters or until a zero
character is encountered. If the record ends in the middle of a word, the
remaining characters are ignored. ZEach record begins with a new coamputer
word. The number of records processed by each call to INPUTS depends on the
Format and the length of the list. If the number is greater than 150
characters, the routine aborts the program and gives a diagnostic.

INPUTS also calls rcutines CONADD (to convert the calling address)
and MARKFI (to end file OUTPUT and position file INPUT).

d. KODER

KODER is a data conversion routine. The necessary conversion is
specified by a Format. Any transmission of data is handled by tle routine
making the call to KODER.

KODER calls routines CONADD (to convert the calling address) and
MARKFI (to end file OUTPUT and position file INPUT on the program abort).

€., KRAKER

r—— e

KRAKER is a data conversion routine. The necessary conversion is
specified by a Format. KRAKER is a DECODE conversion routine,and KODER
is an ENCODE conversion routine.

KRAKER calls routines CONADD (to convert the calling address) and
MARKFI (to end file OUTPUT and position file INPUT on program abort).

f. OUTPTB

OUTPTB does the I/0 for binary output. One logical record is
written each time OUTPTB is called; to decrease the number of I/0 trans-
missions, datea should be blocked in large arrays before outputting to nome

I/0 device.

OUTPTB calls routines GETBA (to locate Buffer Arguments address),
UMERK (to output error message), and XRCL (to go on recall while an I/O
transmission is in progress).

g. OUTPTC

OUTPTC does the I/0 transmission for the output file. The infor-
mation is stacked into a buffer, and I/0 is done when the buffer is filled.
It calls KODER for data conversion. For the output file only, a line count
is kept, and, if this count is exceeded, it causcs an abort.

OUTPTC also calls routines GETBA (to locate Buffer Argument adaress)
UMERR (to output error diagnostic), MARKFI (to end file OUTPUT and position

20y

file INFUT on program abort, and XRCL (to go on recall while an I/0
transnission is in progress).
h.

OUTPTS performs the reverse of INPUTS. ENCODE routine makes use
of OUTFTS wliere DECODE routine calls INPUTS,

OUTI>TS also calls routines CONADD {to convert the calling
address) ani MARKFI (to end file OUTPUT and position file INPUT).

i. s™op

STQI’ flushes the buffer and places a file mark on the files
named OUTPU! and PUNCH if they were declared on the Program Header Card.

J. ERD

The purpoze of END is to position the file named INPUT to the
beginning o1’ the next logical record if it has not been so positioned
by the prograem and if it has been declared on the Program Header Card.

k. EXIT

EXIT enters a dayfile message with the name of the routine and,
for END and STOP, follows the routine name with an actual number if one
appeard on tle source statement.

No other files are terminated or positioned by these routines.
It is the programmer's responsibility to insure that other buffers are
flushed and that their files are properly terminated or positioned at
the end of a program,.

12. ENCODE/DECODE

ENCODE and DECODE are gystem routines and are comparable to the
BCD write/read statements with the essential difference that no peripheral
equipment is used in the data transfer. Information is transferred
under Format specifications from one area of storage to another.

Entry is made (¢ the rouwtines by the following statements:

ENCODE(C,N,V)LIST
DECODE(C,N,V)LIST

vhere N is & Format statement number, & variable identifier, or a formal
parameter representing the associated Format list. LIST is the input/
output list. V is a variable identifier o. an array identifier that
supplies the starting location of the records. The identifier may be
subscripted.

C is an unsigned integer or an integer variable, simple or subscripted,
specifying the length of a record. C may be an arbitrary number of BCD
characters. The first record starts with the leftmost character of the
location specified by V and contains BCD characters.

25

a. ENCODE

ENCODE converts the information in the list according to Format
list N and stores it in locations starting at V,C BCD characters per
record., If the Format list attempts to convert more then C characters
per record, a diagnostic occurs, If the number of characters converted
by the Format list is less than C, the remainder of the record is filled

with blanks.

When C is not a multiple of four, the last record doces not fill
a computer word; the remainder of the word is blank-filled.

b. DECODE

DECODE converts and edits information from records consisting
of C consecutive BCD characters starting at Address V according to
Format list N and stores it in the I/0 1list. When the Format list
specifies more than C characters per record, a diagnostic is provided.
If DECODE attempts to proceecs a charscter illegal under a given conver-
sion specification, a diagnostic occurs. When fewer than C characters
are specified, the remainder of the word is ignored.

Since these routines are system routines, no flow charts will
be furnished, and all diagnostics will come from the FORTRAN system.

26

i, SN

BTty

e R A e BTE ML T Y I

SECTION IV

MAIN PROGRAM AND SUEROUTINE MAIN2
1. MAIN and MAIN2

The MAIN program is a requirement of the CDC system. When called
by the system, all of Blank and Numbered COMMON is zeroed. The MAIN
program may consist of as many subroutines as necessary. The only
functions that MAIN serves to this program besides meeting the system
requirement is to move the vehicle table directory from Labeled COMMON
to Nuntered COMMON to initialize program block data, to initialize the
randon number generator, and to call MAIN2.

Subroutirn: MAIN2 moves the vehicle 2 table directory from Labelled
COMMON to Numbered COMMON.

27

MAIN

|

CALL FTNBIN (1,0,0)

l

CALL BDATAl
CALL BDATA2
CALL BDATA3
CALL BDATAY4
CALL BDATAS
CALL BDATA6
CALL BDATAT

l

OPTIMA=2

MAXT3=MAXT

——D0 20 I =1, MAXT

I

STABL3(T)=STABLE(I)

RSTART=RUNIF(110) Initialize random
number generator
CALL MAIN2 Initialize second
vehicle
ICHANE(2)=1
T
|
CALL CHAIN(1) pb— RETURN

DO 20 I=1,MAXT

|

STABL3(1)=STABLE(1) |

|

RETURN

28

2. BDATAl ~ Block Data Subroutine

This block data subroutine establishes all basic directory available

maneuvers.

3. BDATA2 ~ Block Data Subroutine

This block data subroutine establishes all data table names.

4, BDATA3 - Block Data Subroutine

This block data subroutine establishes control variable table
names CTABLE and DALALY, for vehicle 1.

5. BLATAL - Block Data Subroutine

This block data subroutine is a dummy rcutine.

€. BLATAS - Block Data Subroutine

This biock data subroutine establishes control variable table
names CTABLE and DALALF for vehicle 2,

T. BDATA6 - Block Data Subroutine

This block date subroutine establishes all sdditional directory
variable names.

8. BDATAT - Block Data Subroutine

This block data subroutine sets all AESOF parameter optimization
variables.

9. SPRANG - Random Number Generator

Random number generator for AESOP program. See Volume IV,

29

i

10.

CHAIN - Overlay Control Program

Purposge:

Controls program overlay structure.

CHAIN controls the following seven program overlays:
OVERIAY 1, MAIN-MAIN PROGRAM FOR TRAJECTORY CALCULATION
OVERLAY 2, EXE-EXECUTIVE PROGRAM FOR TRAJECTORY CALCULATION
OVERLAY 3, CTLS-VARIATIONAL OPTIMIZATION CONTROL PROGRAM
OVERLAY 4, REV-TRAJECTORY REVERGE INTEGRATICN
OVERLAY 5, GRAPH-GRAPHICAL ROUTINES
OVERLAY 6, DGAMES-DUMMY OVERLAY
OVERLAY T, CTAR-PARAMETER OPTIMIZATION CONTROL

Entry is made to the routine with the tollowing statement:

CALL CHAIN(N)
where

N = Overlay number to be loaded

30

AMSG ong

84",1-"‘" (el

OPTIMA N YES " iseee
RE.2
3

CHAIN

w)

Sé’éozvb (x)

-

DZIF = x - xx
XX = X

GRApA
| ovesiay (s, o)

9

e oy

B
IVEULAY [4,9)

——

-~

(sleruens

"o, Vel e pidy a ’

WVISG TewD

‘ ; .
Vit te (lh\

WRITE (1)

L
(Rcra)

<tal
OVERIAY (1. 5)

(RET U@

600

ames

OrediAy (¢ o)

/(.%:’ Y4 A/

(700)
X\

pd
“MAXIFY N\ .
Nu \ FES

NMAxX3IT

11. MSGONE - Combat Message Subroutine, Vehicle 1

Preserves the current combat message for vehicle 1. Message is
subsecuently printed by EXE

Ms'Gom:
3

D0101m1,6]

MSGl; = MSGi|

— ¥
10 CONTINUE’

RETURN

12. MSGTWO - Combat Message Subroutine, Vehicle 2

Preserves the curren® combat message for vehicle 2. Message is
subsequently printed by vehicle 2.,

MSGTWO

DO 10 i - 1, 6

[MSGP: = MSGy

| 4
-~ 710 CONTINUE —]

'

RETURN

3¢

SECTION V

PROGRAM MAINL AND SUBROUTINE MAIN12

This program 1s executed once per case. The nominal values are set,
and subscripts to BCD word input are searched for., DATA2 is read in,and
a tape is prepared in binary to be reed again in program EXE for each
trajcctory. DATAL is read in this chain and never read again for that
case. The MAINI program determines whether or not the two vebicle option
is requested (INDNOM=2) and whether nr not a variational optimization
formulation option is to be employed (OPTIMA=2).

Subroutine MAIN12 performs the MAIN1 function for vehicle 2. However,
since MAIN12 is only called when a second vehicle exists, the test for
a second vehicle is omitted. Again, since a variational option is re-
gquested, it nust be exercised through the firet vehicle; the variational
test Iis omitted from MAIN1Z,

A flow chart for MAINl follcws; MAIN12 is identical to MAIN1 with
the exceptions noted above.

33

(senismor)

@ s & BLvio = JLVASN,

L

* = oowow

P

O

(2NNILNOD)

JETAUPYCITLIN

L = sjL0N!
1 2 yndom
4 « 4n00CN)

{

r

$1'0 =i §HLOQ
1

L -
WNYIL = 1UISXT
uNy 1l = 'SuvANt
s = 1190
‘3 o= Nuved
o= 'Xzwwn

2008 = '35
o ='IMd LN
Lo 2wl

—$iyel 921 0U

WIS TIVA
Y NRRUL LIRS

LN R] tnoa

43 4- ¢ BIOVAD
i etdse) GASVLD

B i 120)

_\ = vidaM:
s = Wvegw:

disini
&

() INIVW

ML AL ERERFC IS P o
: o iegisiQe
(AR 13- 2K

YOI =) S0

R

EHYIB e 1 SBVYALS
d MUY IB =AUV ALS

[

si'i=1t (908

U S—

N RNYYIQ e (IMOIOND .
1 ss « nnsddo!
{ [e 01ea

! 10 = (uNENS

—

st =1 i3 00

DL g

41'\

s8eT 1" (200
LI .Clu-.#
o-.‘.kaiaoa

]
titsr st ol

.sll:v._
Ve tLBAY MDY

QU1-1 4% 04

3h

(3on11803)

= dorant

MNYIY = (I RNYA L2

) 1
18X 1R8N

[t<eoranizdoianT]
(3IANITEINCD]

1=

YRV I -TEVYASIW

{(IANILNO D)

Y RICT]

L

{INNIINDD)

O=9VvViwnN

NNV = MIXVN

M=) QL og

ANV IZ2UINOINY

(400 Rt
1Y

L

AWSON! = Lmdill
L 4LNION! » LugaNt

v

)

{ -:...n:Ouv”

|

(T IHIVW

CTOINIGRY T77VI

L==NODIS!

—50_02_”51-.;0_ —

— AINICINBUI+INODW)== N ;—

!
qo.a_._::o;z_ = hz.o.u

0=déWid O
t=NDIg

T2V vanN

L CarS FI-L1]
i = dv2I
8 = gvivi

T . (TITAVYH

1 =114d N

(INNIENOYY
osr

—ﬂﬁcuxﬂl I=0INa N l—

| S

CINNILINOD)

LTI >v

1

|

—e{ 100 .:.OTJ

(3INNITINOD)

i

O=ZQINGOGN
0=114QN)

57 i=1 6ev OO

nuvie ='lgl074

(~()*i—-1e2 =

a3
a1 S04

#8330 T1vd,

(€)

INIVW

[Y]

ti‘v =P e 0Q

[X1X 1]

LEL AT

- JuLEXY
J

1. READA and READA2- Input Routines for Vehicle 1 and Vehicle 2 Data

Purpoge

To provide a general method of reading a variable field data card amd
assigning variable length table, Data may be read into symbolic locations in

memory.

Method

Decimal, Octal, and Integer numbers are converted to binary integers. BCD
information is stored in six character words.

Card Formats

The variable name punched in cciumns 1-6 is the location into which the
first data word will be loaded. The variable field information is for re-
location. A fixed point integer punched anywhere in the field (67-72) will
be treated as a subscript to the variable name punched in column 1-6. Nega-
tive integers punched in colummns 67-72 will be in violation of the subroutine.
The first blank character found in the card to the right of colum 12 termin-
ates loading from the card. One exception tc this is BCD data. Nine 6 char-
acter words may be loaded including blanks.

The general character of the data to be loaded is determined by a three
letter pseudo-operation punched in columns 8-10, The pseudo-operations are:
DEC or blank, OCT, INT, BCD, PAR, and TRA. The pseudo-operation TRA is a

me*hod of exit from the subroutine,

Decipal Data

Decimal data beginning in column 12 and ending in column 66 is converted
to binary and loaded intc the symbolic location punched in column 1-6 aub-
scripted by the integer punched in colum 67-72. Signs are indicated by + and
- precaeding the number. All unsigned numbers are treated as positive., If
either the characters E or . or both appear in the decimal data word, the word
is converted to a floating binary number. The decimal exponent used in the
conversion is the number which follows immediately after the character E.

This number may have a + or ~ sign preceding it. If the character E does not
appear the exponent is assumed to be zero. If a decimal point does not appear
it is assumed to be at the right of the number. Unless it is the only word
or the first word on a card then it is assumed to be an integer.

37

A1l the examples below are equivalent.

1. 12.345803
2. 12.345E403

3. 12.345E3
L. 12345800
5. 12345.

6. 1.23458,

7. 1234500E-02
8. +1234500E-2

Note that in the examples above all decimal words have decimal points.
If the first word on a card, or if it happens to be the cnlv word on a card
and it does not contain a decimal point, the word will be conveited to binary
integer.

Octal Datg = OCT

The Octal data is loaded the same as decimal data but must have OCT
punched in column 8, 9, and 10. All data is converted t. binary with binary
point assumed at the right end of each word.

Ho -

Hollerith information is loaded from column 13 through 66 and assigned
consecutive locations for avery 6 characters. A msxdimum of nine é character
words may be punched on any one card and the number of words must be punched
in column 12. A subscript may also be punched in column 67-72.

I =T

The purpose of tha TRA card is to transfer control from the subroutine
back to the main program. TRA must be punched in column 8, 9, and 10. The
subscript field is not used. A REWIND may be punched beginning in column 12.
Only the R is checked and the only use is for the rewind of a data tape.

Integer - INT

Integer data begins in colunn 12 and ends in column 66. INT is punched in
column 8, 9, and 10. It may be relocaved with respect to the BCD name by punch-
ing a subscript integer in colummn 67 through 72. If only one data word is punched
per card, colum 8, 9, and 10 may be left blank.

Parameter - PAR

Integer data begins in column 12. PAR is punched in columns 8,9,and
10. It may be relocated with respect to the BCD name by punching a sub-
script integer in columns 67 through 72.

Error Messages

A message is written on the output tape describing the type of error en-
countered. If an error is encountered, exscution of the case is deleted and
the subroutine only searches for other possible errors in the data.

38

The following error messages are possible.

1. Symbol not in directory.

2. Colum 12 is blank.

If a bad pseudo-operation is punched in column 8, 9, and 10 the subroutine
will treat it as decimal data.)

All checking for redundancies, end of tape, format errors, etc., is handled
by FORTRAN system input/output routines.

Usage

No initialization is required, the entry is established by a:

CALL READA or CALL READAZ2

Subroutines called and used by READA and READA2 other than normsl
FORTRAN system routines.

3 DIPLAC DSERCH(2) PACBCD
DEF PACKR SVI(Z)
TABRE(2) READ31

: LINES BIBLOCK

a atio
The first card expected by READA or READA2 is a

STCASE TAB

with the S beginning in columr: 1 and TAB punched in 8, 9, and 10. Following
this card is a set of cards «nich define the table sizes necessary for that

case.
Example: TTABOL 10

! TTABO2 20

On the above example TTABOl is punched beginning in column 1. The numbers
10 and 20 are punched in column 12 and indicate the number of machine cells
necessary for that table. Any number of tables may be assigned as long as the
total number of machine cells does not exceed 4L000. Follow all table ussigrments
with a TRA punched in column 8, 9, and 10. The next data required by the sub~
routine is DATA2 (this is data that is read at the beginning of each trial and
valid step) this may be made up with any combination of OCT, BCD, INT
cards. All this data is written on a data tape and reserved for future uss.
If the last TRA carl has a R punched in columm 12 this data tape will be re-
wound as soon as the test is made. This is not necessary for the program to

work, Just more efficient if used.

39

a
‘i
|

e —

The next set of data expected by the subroutine is LiaTAl (this is data
which is ¢nly read one time per case). This data should begin with:

STCASE UATAL

The STCASE is punched beginning in column 1 and DATAl beginning in column
This data is terminated with a TRA beginning in colum 8.

A flow chart for READA is provided. Subroutine READA2 is identical to
READA except for the COMMON block, tape units, snd auxiliary routines employed.

12,

T ——

S .

i,

L0

RERADA

REWIND 16
Ke¥ =0
ZEXROR =0

S¢TSyry = BLANK

l

BAESOF

e

TLUridl =
L=y

|
I7QPE = 16 !

S)

PEF

YES

TPNAML

NO €Q-

‘J—JF)

* READ (S, ¥)
sYm, of, KA, RAl

PAROPT = FAISE,

Kok=1

1€ALSE.

74857

TRUE,

7PCRE (1Ras TP,

DEF

TIAsE s |
Péwird 1o |

A

YES

KoK
NE.

NO

TrnAn
L@

LIi/ve_s ¢ /)J

&)

TIRPE = ©

IERROR =/ *

YES

NO

LINES (2)

YES
L EQ -
,‘—/\O
TNno
~
D..

1IAFE

DEERZN Sy, T, TIASLE)

L2

HCECD (84, £r, 1T)

rMIORD = O

Secovle card acctim

NO oF
JME,
8co

-/

T

TXD =ZXL +Ia¢ »M10R0

!

SYI(s7AdLE) g7, XI0, £13,
£X, 2AR0pr

BIBLOCK (IIb, JI, ITAGLE,

FAROCPT, TurIT)

SLTSym = Sym

43

VES

IFr -z o

o2 7 = | 7ous,

OFr = [INT

- —— No
J& =KR ~;—1

)

g IECTE BT !

£z YES
NE,

PXCRR(LACKR), £FOC1,TT), Mm@ -KR*+1)

IFrz=2 =

NO rK
l”e’
1s)
!
IY=3T+ YES

IFr =2 o

Ly

KEADI! (3£X, Fo, r1 , 37)

e

2. DORDER - Dirextory Order Output Routine

Purpose: !
To provide an ordered listing of the directory on user request.
Method:

When the input DLIST = 1, en ordered directory listing is output
ahead of the trajectory print. The directory is first sorted in
numerical order and printed; then it is sorted in alphabetlc order

and printed. The sort routines SHELL and SHFLLX perform the
numeric and alphabetic sorts, respectively.

Remarks:

It is assumed that vehicle 1 and vehicle 2 directories are identical;
hence, only one directory order output routine is provided.

DORDER

ﬂﬂ,llc"‘j 200,

L= /, Leouny

SHELL (MAmE, Key, LeaiwT)

NAMIE, 1
L1, LeounT i

{

swexfsoc, KE,, Leounr) _l

1

A€ ‘:1 .

£ 4, Lepu T

KETURN)

b5

30

F ' CKL ~ Pack Routine
RPyrpoge:
This routine packs two words into one.

Mathod:

The routine ‘akes the first five characters of one word and the first
character of the second word and packs this into one wurd.

Usage:!
Entry is made to this routine by the following statement:

CALL PACKL (A,ADOT,D)

where,
A = the five char.c er word.
D = the single cha acter word.

ADOT = the result of the packed word.

This subroutine uses ENCODE which is a system subroutine. For more
information, check ENDODE write=-up.

PACKL

(10, 1, ADOT)

A,D

RETURN

L6

e 3 TERERER

A RN 0 P A I P B AR ot A BB Y S A e

ho

DSERCH and DSERCH2. Directory Searcgh Routine for Subscripts
Purpoge::

To provide a method of searching the directory to find the subscript
corresponding to a BCD argument.

Method:
The routine searches the directory for the exact BCD name required by
the argument. When an equal compare has besn found, the corresponding

subscript is returned as a fixed point integer. An error message will
result if the BCD name is not in the directory.

Unage:
Entry is made to the routine with the following statemeat:
CALL DSERCH (SYM,LOC,ICOM)
where
SM = BCD name being searched for.
I0C = The location the corresponding subscript will be stored in,
ICOM = Error code in case a compare is not found.
If an error occurs in the BCD nane, 1OC is set to zero. Ilocation ICOM
is set to one and a mossage is printed stating that the BCD name is not
in the directory.

Nc subroutines are called from these subroutines,

Subroutine DSERCH2 is identical to DSERCH except for the COMMON
‘blocks employed. A flow chart of DSERCH is provided.

L7

DSERCH

DO S0 e LCOUNT

A # Anani (i) A
50
1CC NTINUE
icom =y
Loc *1ocrQ

00 160 |2 '..‘XT

com z ~
LOC s LOCCY.

{
l_-G. #sTase))L

00 100 1= 4O

icom s -3
L0¢ stacch)

. ¢ .
(€=
auy

'—Lluwnnm g

STOP]. ~ Gone Rowipe

To print out a stop number and return to the next case.
Mathod :

To initialize JCHANE, print a stop number and return the program
to segment MAIN1 for re-initialization for the next case.

Note: STOPl was used for the name of this routine because there
was a system routine by the name of STOP,

Usage:

Entry is made to this routine by the statement:
CALL 3TOP1

If this routine is called a statement is printed:
STOP LINK N

where,

N = Tte ssgwnt lini¢ 3T0OPl was called from

N=] IHAINL segment
N=2 i+ 4 segasnt
N=3 TLS segnent
N=} ARV segment
N=§ GRAPH segment
N=6 DGANES segment
N:=17 CTAE segment

Subrout.ines LINES, CHAIN and Normal I/0 FORTRAN routines are called
from this routine.

k9

vl

ICHANE (1)

\ CHAZN (1)

\Péfww/)

50

A U AR 4 0 O, RN B R O S i A, it o

R %

6. EXERR - Error Routize
Purpose:

To provide a method of printing a stop number code snd ending the
execution of a given case.

Method:

The routine obtains tha req:ired stop mmber from the ceslling program,
prints i1t, and calls tiie rouvine CIOPl. The statement STOP NUMBER
IXXXX is printed.

Usage:
Entry is nade to this routine by the statement:
CALL EXERR(N)

where N is the stop mmber desired to print.
This routine calls STOPL and the normal I/0 YORTRAN routines.

EXERR

RETURN

2

7. ISRCH and TSRCH2 - Directory Search for Table Subscript
Purpoge:
To provide a method of searching the directory for table subscripts.
Mathod:
The routine searches the directory for the exact BCP name required by the

argument. When an equal has tsen found the corresponding subscript is
returned as a fixad point integer.

Unage:
Entry is made to the ircutine with the following statemsnt:

CAIL TSRCH (SYM2,L0C2,N2,IER)
where
SIM2 = BCD nams of argument.
10C2 = Location of first subscript.
N2 = Number of sequential subscripts to return with.
IER = Error Code:

IER is mei to a plus 1 if the BCD argument does not compare.
IER is set to a minus 1 if the BCD argument does compare.

No other subroutines are called from these subroutines.

TSRCH2 is identical to TSRCH except for the COMMON blocks employed, A
flow chart for TSRCH is provided.

52

TSRCH

DO 1009) =1, MAXT

£ _@m # STABLE (V)
Jn = I)

‘ 1000
CON TINVE
po 5¢8 I =, N2

| Loc2(= LOCS LK)

RETURN

93

PR
W

8.

IR e A A

READB and READB2 - Binary Stage Data Input Routines

Purpoge:
To read the stage data from the data tape (TAPK1S or TAPE26).
Usage:

CALL READB (ISFIN)

ISFIN is rsturned with the following value:

ISFIN < 0 always.
ISFIN = =10 data for the last stage has been read.

READB rewinds TAPE1S when the data for the last stage has heen read. For
each call to READB, the stage data for one stage is read in. Stage data
is ordered seruentially on TAPE16 in the order that the stage data appears

in the input deck.

READB may bes called only after READA has been called once, since READA
prepa-es TAPE1S (vla the ad-hoc blocking routine BIBLOCK).

READB2 is identical to READB except for the tapes and COMMON blocks employed.
A flow chart for READB is presented.

5L

RERDE

owdtern PESOF

L, Jeeglone
rewinb /‘/, ota base Lbegorne
READCIY) AdaTA | Secca olen s wWa ¢ slada

—

ey a M:&M
alege a
‘?;’m veandd /6

END - OF .FILe
OrUNIT 26

No

YE'S et welected
Tragectan data,

g AESor
O @ L

No J

zzo yES
LER. e
-/0

NO

REwrpd /6

7Id
LT

NO s

YES

ENTRY NO INONUMY YES TN
SETIAD AETeR A
‘ 2

RGARR . e LL A

i

BAESOP -- Parameter Optimizaticn Input Subroutine

Purpose:

To reed in the psram:ter optimization program AESOP, Volume IV,
input data.

Method:

Data is read in conventional FORTRAN NAMELIST manner. NAMELIST nanie
is TAESOF. '

56

10.

DIPIAC - Integer Shift Routipe

Pyrpoge:

To let the routine right justify a number so that the displacement
(col. 67-72) on an input card may be punched anywhere in the field.

Method:

The displacement field is read into the machine with an A format and
right justified before the conversion is made to a binary integer.

Usage:
Entry is made to this routine with the following statement:
CALL DIPLAC (RAL,INC,BLANK)
where,
RAl - The six character BCD array.
INC =~ location that the converted integer will be stored in.
BIANK - Hlank character used for comparing.
Subroutines Called:
PACKR READ31

5T

B e s b s b

F RA {s) BLANK \ T
o #)

DO1'N:1,6

' CALL PACKR
RA1, RC, ¢

| 1 |

Nt=7-N
N2=¢-N

RA1 (N1) =RA1(N2) v
]

RA1(1) = BLANK

\

INC =0

RETURN

58

Ty

11, DBF and DEF2 - Heading and Page Eject
Purposse:
To provide page ejection and title print.
Mothed:

Initially the current page number (NPAGE) is incremented by 1.
The page is ejected and return is made to the calling program.

Usage:
Bntry is made by the following statements:
CALL DEF or CALL DEF2

Only the normal I/O FORTRAN routines are used with this routine. DEF2
is an entry point used by vehicle 2.

DEF, DEF2

NPAGE = NPAGE + 1
LONG =0

WRITE
6,900

RETURN

59

W r——

12.

TABRE and TABRE2 -~ Table Dimension Subsecript Routines

EEQOSO 1

This subroutine is called from READA or READA2 and computes sub-
scripts such that the table dimension requirements may be variable,

Mathod ¢

Uses input data prepared by the user to compute subscripts for
variable table asaignments.

Usage:

This subroutine is cal’sd from subroutine READA or READA2 one time
per case,and linkage is obtained by:

CALL TABRE (TABSTF)

where TABSTP is an indicator set false hy TABRE or TABREZ when
READA or READA2 will not recall TABRE or TAEREZ2.

Subproutines Called:

DIPLAC LINES
Brror Massages:
1. Symbo). does not exist in table list.
2. Total table size N exceeds maximum size N.

where N is the required and N1 is the maxiinm.

Data Preparation:

Control will be transferred to subroutine TABRE or TABREZ wren
READA or READ processes a control card:

STCASE TAB

SICASE beginning in colwrn 1 and TAB punched in column 8, 9 and 10.
Following this card will be the cards requesting table siges.

TTABO1 10

ATABOl 20

TTABOl1 and ATABOl punched beginning in column 1 and the required
machine cells (10 and 20 in this case) punched Lsginning in column 12.
Anything punched past colummn 15 will not ts used. After all table
aseignments a TRA should be punched in coiumn 8, 9 an! 10,

60

T e s e

13,

LINBS and LINES2 - Lines Accounting Routines

]

To keep an accounting of the number of lines printed per page, and
to provide for page control.

Msthod:

If the number of lines to be printed (LCOUNT) is such that it will

not fit on the current page, the page is sjected (via DEF) and printing
will begin on the new pege. Initially, the location LONG, should be
set to zero, indicating that currently no lines have been printsad

on the present Lpage.

Usage:
Bntry is made to the routine by the following statement:

CALL LINES (LCOUNT) cr CALL LINES2 (LCOUNT)

where

LCOUNT = A fixed point variable or constant indicating the
number of lines to be printed.

Subroutine DRF is called from this routine. LINES2 is an entry point
used by the second vehicle.

02

LINES, LINES2

LONG = LONG 4+ LCOUNT

!

F NG « 54 T

CALL DEP RETURN

LONG « LCOUNT

'

RETURN

63

H
H
i
H

i i

£ :

4

:

L

E

£

s o S 155 T Ty e 3w 3+ i s s

14 .

P, - S

Purpoge:

To pack BCD worvis into six character words.

Method:

The first character is converted to an integer by the system routine,
DECODE. This integer is the number of six character words contained

on the card. ENCODE is then used to pack that number of six character
BCD words.

Usage:
Entry is made to this routine by the following statement:
CALL PACBCD (RA,FI,JJ)
where,
RA - is the first location of the array being converted.
FI - is the first location where the results will be stored.
JJ = is the number of wix character wouris.

This subroutine uses FNCODE and DECODE which are system routines. For
more information, check write-up for ENCODE and DECODE.

64

PACBCD

DECODE
1, 5,RA, IT

-~
(€
n o
N N

DO 101I=1,7

NCODE
10, 1, F1(i)

Kl = Kl &+ 6

10 $

KK= KK + 6
RETURN

65

15. R - ks BCD Chara

Purpogy:
Packs BCD Characters into words.

Method

No I/0 transmission takes place.

Usage:

Entry is made to this routine by the statement:
CALL PACKR (I1,12,N)

where,

I1 - Contains the BCD integers to be converted.

N - Number of words to be converted.

This routine uses ENCODE which is a system routine.
check ENCODE write=up.

66

This routine uses ENCODE to convert BCD information to a binary integer.

I2 ~ location of where converted numbers are to be restored.

For more information

PACKR

k = 20-N

ENCODE
20, XMAT, 12
I1(1)

RETUKRN

67

16. READ3L - Bipary Conversion Routipe
Pyrpoge:
To convert from BCD to Octal, Floating Point and Integer numbers.
Mothod:

This routine takes the BCD display code and converts it to the necessary
binary dats depending on the operation code.

Uggge:

Entry is made to this routine by the following statement.
CALL READ31 (IFI,PFJ,FI,JJ)

where,

IFI - is a code that determines if its Octal, Floating Point or
Intager convarsion.

FI -~ is the location where the answers are stored.
FJ ~ contains the BCD characters to be convertad.
JJ = the number of wonds to be converted.

This subroutine uses the system routine DECODE. For more information on
DECODE check the write-up fcr DECODE.

68

READIN

Y e \4

1

sy

A

=842

o ccolfiwr—

2 3

5

Bo 18Y 1wy

by

44 =
1
‘GO%VOWQ

w(RITURN)@ ' I

|
e
F

C‘Cd‘ﬂor‘mu)-—-)

69

b oo B

17.

SVI and SVI2 ~ Block Save Routines
Purposet

To place & number of variables into an array. The location of each
plece of data is contained in any array. The routines also equate
data flagged by the PAR input subject to the appropriate optimizing
parameter.,

Method:

Each piece of data is picked up sequentially beginning with A and

stored into an array beginning with the subescript ISTART.
Usage:
Bntry is made to the routine with ths following statement.
CALL SVI (ICOM,N,ISTART,A, IA,PAROPT)
where,
ICOM = Type of data being saved.
N = Number of words being saved.
ISTART = Common subscript for A.
A = Location where value is being moved from.

T4 =(0ptimization parameter suffix area.

PAROPT =Flag indicating data is to be set equal
to an optimizing parameter.

No other routines are called from this routine.

Subroutine SVI2 is identical tc¢ SVI except for certain COMMON
blocks. A flow chart is presented for SVI.

70

DATR (3) = ALPKA ()
T T+

ﬁ"‘ T /LN

SVI

J - Zs7aeT
K= [zcom[*1

JTRUE,
PREPT
| EuSE,
=/ =3
DAIA (3)= A1) | agreer— K
J=J+
g I LN =2 1

(7 d): AD!
MRS \

}4,, TN

KET ’@

"1

C7ABLE(E): ACD)
J=3 »
for THLN

BETren

Y |

TAGE (3)= ALAWA) \

J+J 4t
S ELN

CTABLE (T): ALAVA(T)
TJ=J +!
ﬁﬂ I= ’J N

18, BIBIOCK - Data Output in Blocks
Pyrpose
To propare ard output data in large blocks rather than a card at a tims.

Method

Thiae dimension arrays are used by this routine to imput data too. The
data is read into the machine in BCD and then decoded depending on the
pseudo-operation punched on the card. After decoding all data is treated |
as integers, then stored in one of the three dimension arreys. Just prior 1
to this call, a subscript is stored which defines which dell in the array

the number will be stored into when it is read back int» the machine. When

either of threes buffasrs are filled, all three buffers ars flushed out on

tape. If anyone of the buffers fail to have anything stored in it a dummy

cell is set up. This is necessary because of the way the Fortran system i
works. It is impcssible to store zero words on tape.
‘

Linkage is made by the following call:
CALL BIBLOCK(IID,JJ,FI,ITABLE)
uhere
IID = the subscript which relocates the integer in core. 1
JJ = the number of integers to be stored in the array. |
FI = the integer to be stored in array.

ITABIE = contains a number defining which of the three arrays to
store into. In this case ITABIE is either O, 1, or 2.

No initialization or printing is necessary for this routine.

Subroutines Celled
The only routines called are the normal output FORTRAN routines.

T2

BIBLOCK

DO t1

1A(K1-1)s 11D '

1A (k1)1 JPKD) ‘ .

noswWp?t ':'” IC (K3-1)e 1D

| 110110+ ICIK3) 24718

! 1O =110+

m *
RET VD []

ReV
IRA * I1XA - ™
X8 T 1X8 -1
Ixe = Ix¢ -1
FEL
1A®LODAY
XAat
1XKA *
WRITE I1X@e
'Y IXCa t

73

T~

19.

SHELL - Numeric Sorting Subroutine

08e:

To store an array in ascending order.

T4

| co.\'TI.\'_%j:L I

1

~TARRAY (I1)

ARRAY ()

v

IARRAY (I)
IARRAY (II)
LIMBO = KE
KEY (I) =
KEY (11) =

§ LIMBO = TARRAY (I}

= TARRAY (I1)
= LIMBO

Y (1)

KEY (II)
LIMBO

I-M

E SECTION VI
PROGRAM EXE AND SUBROUTINE EXE2

EXE is the executive program that drives both vehicle forward trajectories.
EXE controls the major logical decisions that must be made. The subprograms
of EXE are responsible for accomplishing the calculations which fall into
their respective domains of specialisation. Since, during any one call, it
is not feasibls for a subprogram to do all types (e.g. initialization, print-
ing, function calculations, etc.) of computations delegated to it, the sub-
programs are segmented into functional units; access to a particular func-
tional unit of a subprogram is accomplished by calling that subprogram with
\ an argument called the entry point. For most of the subprograms of EXE there
1 is the following correspondence between entry points and functional units:

Entry Point Functional Unit
1 pre-data initialization (to be done at
the be of each trajectory before
date is read
2 post-data initialization and/or initial

transformation (to be dono at the
[begir)ming of each stage after data is
s read

3 main calculation (e.g. calculate
derivatives)

' 4 initial print; generally this is for
’ print of that which is calculated at
entry point 2.

1 5 code print; to identify the values
[printed at entry point 6.

6 value print; for printing time history
of varisbles calculated during tra-
Jectory.

7 for specifying variobles that are to be
integruted. Each variable that is to
be integrated should have its deriva-
tive compi.red st entry voint 3.

3 8 h-transforeation (or miscellansous
chores)

In addition to the so called "standard subprograms” of EXE there ars a
few which are of such a special nature that the standard entry points no
longer apply, or else perhape an additional emtry point is included for soms

15

special purpose. Those subprograms which huve multiple entry points which
deviate from the standard are MIMINF, INTGRT, EXTRAN, PLTS, MANTGT, and EXEZ.

The structure of YR is integral with the structure for accomplishing
the mmerical integration. This is necessitated by the premise that EXE
should have control. As a result, the nmerical integration routirs, MIMINF,
is a slave to EXE., The relationship between MIMINF and EXE differs distinctly
from that of the standard subprograms and EXE. The MIMINF writeup contiine
a complete description of the entry points and their respective fun~tions.
EXTRAN is a special subprogram which is in reality a subdriver for accomplish-
ing the initial transformation and the h-tranaformation.

One great benefit of this type of orgsnisation of is that it is
general; any trajectory program may be set up this way. In particular, this
fact was used for the programming of the reverse trajectory. REV is the
exscutive progrem that drives the reverss trajectory and hence the structure
of REV is virtually isomorphic td EXK.

Communication between EXE and its subprograms i: accomplished by setting
indicators. However, of all the indicators used in EXE proper, EXE sets most
of them itself. The following is a 1list of all those irdicators that are set
by subprograms of for the purpose of communication with EXE proper.

Ipdicator Subprogran

KiMPAS and MIMPAS2 MIMINF and MIMINF2

INDPAR MANTGT

INGHOM ang INGHOM2 STGTST and STGTST2

INDSTE and INDSTE2 any subprogram (denotes error)
INDSTG and INDSTG2 STGTST and STGIST2

LOOF and LCOK2 STGTST and STGTST2

One of the most critical functione of EXF is to control the integration
step sise. EXE itself actually does wery lit:ie 2 the calculation for the
step size. Yet, it governs the sequence of ceilc that are made to subprograms
which determine a step size to meet their res:..ctive requirements. Exe must
then veigh each factor against the other and select that step sise which is
"moat reasonable”., A summary of the step si:e control procedure follows:

The logic in EX® that controls the integration step sizxe, HO, during
the forward trajectory is necessarily somewhst complicated because of all the
factors that have to be considered. "Stagirg" and/or "time points” may
require the step sise to be either cut back or increased. Depending on the
situation the intsgrated variables may rave to be backed up one step.

MIMINF(5) and MIMIWF2(5) are cie entries to the integration routines
which check the trunca:ion error, SICTST(3) and STGTST2(3) are the entries
to the stage test rcutines whicl. check the staging variadble (s) to see
when they pass from cie side %o the

76

other of their respuctive staging values. The MIMINF and STGTST writeups
should be referred to if it is desired f.o know how these routines dctermine
the step size vwhen they are granted this responsibility.

The following points summarize the logic involved in controlling the
step size:

(1) An integration step is a "trial step” until it has been accepted
as valid by MIMINF(5), MIMINF2(5), STGTST(3), and STGTST2(3)

(2) 1f MIMINF(5) or MIMINF2(S5) rejects the trial step, then the inte-
grated variables are backed up one step,and a nvw trial step is
made with the step size (HO) which MIMINF/S) and MIMINF2{5) have
determined .

(3) Only after MIMINF(5) and MIMINF2(5) accept a trial step does
STGTST(3) and STGTET2(3) have the opportunity to reject it. If
STGTST(3) or STGTST2(3) reject a trial step, then the integration
is backed up one step, and a new trial step is made with the
step size (HO) which STGTST(3) or STGTST2(3) have determined.

(4) It is assumed that the HO determined by (2) or (3) when a trial
c%tcp 18 rejected, is less than the HO which produced the bad step.

(5) After a valid integration step has been taken, the next time point,
TIMPT, is picked up. TIMPT will be the first time point greater
than TIMES + AMINER.

(6) The next trial step must have an HO < TIMPT - TIMES.

(7T) After a valid step, the HO for the next trial step will have been
determined or at least sanctioned by MIMINF(5) and MIMINF2(5).
Paragruph (6) merely imposes a further condition in addition to
MIMINF(5) and MIMINF2(5).

(8) Once staging has started; i.e., once STGTST(3) or STGTST2(3)
has rejected a trial step, MIMINF(5) and MIMINF2(5) will be
passive. This means that MIMINF(5) and MIMINF2(5) accept every
trial step and compute no new HO.

(9) MIMINF(5) and MIMINF2(5) have sole control over increasing the
step size HO; MIMINF(5) or MIM)iF< (5’ may increase HO oniy if
they accept the trial step and cr-e uot passive,

(10) The above procedure insures that ail time points are hit, and
that variable ntep integration dces not interfere with the

staging process.

It chould be noied that EXE drives the second vehicle trajectory through
EXE2. This routine is virtually a copy of EXE. However, correct interfacing
of the two vehicle trajectory integration procedures has required EXEZ2 to be
split into a sequence of entry points. Each entry point carries out a well
defined function for Vehicle 2's trajectcry control. Control of integration
stepsize for both trajectories is carried out by EXE itself.

17

>

A flow chart for program EXE is presented. Subroutine L fcllows the
general computational flow of program EXE. However, the COMMON blocks,
tapes, and subroutines employed are differentiated from those of EXE by

the numeral 2. For example, COMMON/1/ becomes COMMON/12/; DIFEQ becomes
DIFEQ2; and tape 12 becomes tape 22,

78

e

SvaTac=va

AVEDIS=QIOOIS

I =SVYINTH

(Fr)2axa

NIWCH=0H
(20H “OH) ININY-NINGH)

NINOH=3CR
NIWOH=0H
(208 ‘OH) INIWV=NIWOH

0=2I00ANT=F0IAD)—
[Zosanr=z2z000NT J«Qn%wmﬂ@
al

| :
—— K
[P=A4INXT =T =g SYIHIN=SYININ)
i
E&ﬁf«m«mﬁxi I_WNNGNT)
= (£)2ax3
= (2)NRASIO

(£)ISIDES
¥,

N £y
llIIAN I~=ZSVdNIN <0 SVININ
Y

| SYdWIR=2SVInTH Ir(T=Hanan)

®

(Z)HA4540

=

o\nl—hLlJ.-'".

2
L] .

D T

" I=RINGAT ,
L sgIvIYT
L(L}ISIoLS
00

C (Dzaxs
(1-)HILTI4

(E) UN4S80

THHAR
ifilin

*J =4avayI

DISANI=5OISANT

ZLSANI=EXLSANT

I=HNAN

(0T)23x3
aNas40
2°2°8°Y ‘qIIM
«mymﬁzaq

&

‘L

(T)XIVED

I=(3)INVHOI

@

(6)z8x3
[-4SOANI=NSDaNI
I[-MSITANT=NSIANI
I-XNANI=XSHANT
I-¥SdaNI=XSdaNI

(8)NNISE0

ZaRT5E0 JeGHNGHD) — Tma]
0%z

aNasdo]

I=20ISANI=DLSUNT
[+ZHHIANT=ZHYIANT
e

(9) SKALI
(9)TVNad
{9)AOVIS
(8)8041
(8)SALS

(8) IDINVH
(0)SENTVA

g . (9)bF4Ia
(3°2°2)SENTVA
¥AIT IITHM
(2)SENIT

(9)NNdSE0
(9)SKNALT
{3)TVNIEd

(815041
(9)S5ALO
(9)ISINVH

(8)X0VIS (0)S3ANTVA

g (9)03d1a

(272°2)830TVA

0=y3IY

:3LIYM

HAIT

(2)SENIT
(P)SANIT
{S)ANds90

(757 S0ava e 0PavaanT P OASIANT)
[J

(S)SWILT
($)TVNad
($)XOVIS
(8)20d4I
($)SALD

(2) IOINVH
(9)53060

g _ (S)034Ia
("33°2)59000
HALI ‘&IT4M
2IEIA 04 XHOISIE XHOIOALVHL *3iTdM
44g

[-=dNILdT

T
—(0=TvaaNI P1o 0=d4IANI 40 0¥XSIaNI)

_ LO1d80 w
N

[zosw

| — L |
TOSW ‘ZHIL ...EE&.M@&E%H PuD [=OSWNIdI)
. d

(0F T)NDISy (SANII-IINIL “(OH)SHIY) [NIKV=0R

(IdWIL “HANIWV+SIKIL) CINIL
acLDIS=AVSDIS
Ve IIq=Sve13d

——— ——(0F¥SdANT <0 0=NSIANT
0se

oer (9)

80

{8)NIVHO (SINIVHD (L)NIVHD (9)NIVHD
8=(2)ANVHOI | |£=(8)ANVHOI | |{=(8)ANVHOT | |9=(8)ENVHOI
- . X C

(VAZId0 0% _0D)

aan
(2T)23X3

vI71 (PL)avay
pI QNIMEH

(2):1

(IT)23x3

(£)ISIDHIS

(2)ISIHLS

CTINDISy(STNII-IANII® OH) INIWV=DH
(IANIL “HANINY+SINIT) AINIL

SI73a=08

‘ L4
aQ&E%E .No&mpﬁ

| DISANI=gDISANT (&I =WNNANI

MuULU0) 03

4
L~=(I)&nosdr
(T)HOWOO=: T ‘T)4VISSd
(I)5d207=1

X

IWAIIT ‘I=I 03% ©oa

[-=1008d.7
DISTAy (BID0T)NOWOI=(T; YYISHd

—N

H
[5273a=dS1730 (0 *0=¥SI130)

i o .l
[(NT3sT)aavay _M.@N ..mmﬁﬁ
0 0=4SI73d
0=0ISANT

¥
snuUIIUOF 20¥

1
[¥avia=(1) 20100 L *=9avayr)
qﬁ e -alll\
{oIsaur=1
. T
2°I=1 mwv oq
qaVIIT=24avayl

L
[A&yIa=(T) 240100 [

[*4°=8avaaI} =z _ISaNI 20 DISANT

DISANI=¢OISANI

[}
o]

DT

Al 7

1,

DIFEQ-Differential Equation Selector
Purpose:

To enable the user to select which set of differential equations will
be used by the program.

Usage:
CALL DIFEQ(IENTRY)

IENTRY = indicator which determines what task is to bas performed by
the differential equations subprogram which will be called

by DIFEQ.
INDSEL is of the form i0j.) determines which differeontial equations
subprogram will be used. INDSEL is nominally 101, so for this
INDSEL, J = 1 and DIFEQl will be used.
Remarks:
DIFEQ is called by EXE, EXTRAN, and PTBEQN

D1+dQ ecalls DIFEQL, DIFEQ2, DIFLQ3, DI "4, DIFEQS, DIFEQ6, and STOP.

i determines which control system will be used, It should be noted that in
the combat simulation, the first vehicle equations of motion are contained

in DIFEQl,and the second vehicle equations of mction are in DIFEQZ.

DIFEQ3, DIFEQL, DIFEQ6

These are dummy routines included so that the user may write his own
differential equations for use with the optimization progrem.

In writing a new differential eguation subprogram, the entry point
pattern established by EXE for such a subprogram must be adhered to.
DIFEQlL and DIFEQS are examples of such subprograms.

N¥N1l3 N

tdb3ldia r2341Q (034419
Ny v JY
suotqwiby suotqenby suotryenby
porrrTdurts 3TOTYSA PUODIS STOTU2A 3IBITA
o
/

8077

[ot 50w 125ani= s100n1]

G

Vid10

83

2. MANTGT- and MAEI‘G’H - Maneuvering Target

To prepare a target tape containing the time history of a "target
trajectory.”

To read the target tape as a function of time during a forward trajec-
tory and to computc functions of the variables read from tape or in COMMON

together with the variabies of the current trajectory.
Method:

This subprogram has all the standard entry points of EXE, except that
entry point 8 is unique, in that it prepares a target tape.

INDICP = O: No computations made.

INDICP = 1: A target tape will be prspared; the target tape is
TAPE 13. The information put on this tape is the
values of the following variables:

TIME, XETTF, YETTF, ZETIF, UETTF, VETTF, WETTF,
UET7F1, VET7Fl, WE77FL.

At entry point 1 the tape is rewound and INDPAR is

set to O (this deletes computation of partials). At
entry point 8 the tape is written. None of the other
entry points will be effective. UXE proper calls
MANTGT (8) at every {ITCONTH1th valid integration
step. ITCONT is inpat. It is assumed that only a
forward trajectory is to be run for a case with INDICP =
1 in the data. This trajectory should be set up to
terminate on TMAX.

INDICP = 2: It is assumed that a target tape {TAPE 13) has been
prepared by a previous case run with INDICP = 1 (or 3)
in the -ata. During each forward trajectory of the
present case, the target tape will be read sc that the
value of trajectory time of the present case is
bracketed between the trajectory time of two adjacent
records on the target ctape. The instantaneous value
of the variables on the target tape are eatimstad
by linear interpclation. Then the necessary
functions are compuled from these interpolated values
and the information available from the present trajec-
tory., Code and value printing of the computed quan-
tities are accomplished at entry points 5 and 6
respictively.

84

Remarkes:

It must be known that the values of TIME on the target tape exceed the
largest value of TIME that will be encountered on all trajectories of a
case with INDICP = 2,

TIME should be a state variable when INDICP = 2,

INDICP = 3:

This option is designed for the purpose of running a standard cese, with-
out maneuvering target, for INDCYC cycles and then defining the last
cycle as a target trajectory to be put on the target tape exactly as if
INDICP were input as 1. On the last cycle, at MANTGT (1), TMAX is set
to TOMAX and NCYCLE is set to O and INDICP is set to 1 so that the caso
will terminate just as if one trajectory with INDICP = 1 were run;
however, this will not be done until INDPAR has been set ¥O on the last
cycle.

The following basic functions are camputed at MANTGT (3): (see formu-
lation mamal for detail)

mr AX]

YAMTF Ar) Coordinate differences of the

— AZE R two vehicles

ML Al

Warn Al 4 Teloclty cltferences of the two

ATl Al 4

VAMT? | ¥

RAMTP ||

RAMIFL (= VCRAF) — —Vh_ﬁ./i—n‘l Rate of change ofln‘
THASD (] ASP Aspect angle

PHLIZD Y11 Lead angle

SHEDD o1y Heading of lead angle vector

SLOSD o " Heading of line—of-gigit vector

SGERD Ao ns Hepding error from .ine-of-sight paith
GGBHED AY s Inclination error from line-of-gight path

85

g+t e e 5

SMERD bo,, Heading error from lead angle path
GMERD AV Inclination error from lead angle path
TC Time to kill

In addition, the following missile calculations are made:

RMINF Rpin Minimim missile range
RC77F Re Range to kill zone
ESE7D €cp Allowable steering error

The input data for MANTGT calculations may consist of:

Nominaily
INDICP 0 Option indicator
ITCONT 0 Skip indicator
AC 0 Arrays of missile range constants
BC 0
c1c 0
c2C 0 Allowable steering
error ccnstants
C3C o
D1C 0
Missile minimum range constants
D2C 0
D3C 0
RMAXF RMA.X 0 Missile maxdmum range constants
DLVMF AVM 0 Missile AV
GTABOL r(l-é—R-l) Two dimensional table for multiplier in
a steering error calculation.

A flow chart for MANTGT is presented. MANTGT2 is identical except
for use of vehicle 2 COMMON blocks, tapes, and auxiliery subroutines.

86

f
b
,
b
i

e e G T T R e

RALINF 2 JDodos,
& SE20: 5o, o

{

{ CornjBay (1)

Cons8Ar 2
CID 2)
il TRUE faad (1o ¥4
“ l AND,
% REYes AN DI/ o
LETven) \/
1AUSE
46070 i n
Va ley i
CorIBAT (v) J
| !
:z‘ . t.. LETURN
e 1 LEr2men
L L] LI 8
o = 0
et aereen
AR o+ @
-] Soo00 /“
b 7000
LA)
TRUE
£E T Leas l‘./.'me.gr(y‘)

#

Fh 3 AT Pd

ML Covlra

KETURN

_ AoV(¢ *1T34 al3442 .rl|~w

t

LA A XS A 25 200
EROTARG (IDLANC, - " "0%
1%y . 0 N0 4% 0:Dwnget Vx- 1IWG « (WB2 AXD

—nlw (L)

Ve, »s .o

[{)Ogm A
T-.!_:uomxdi.li.. »»m.»i!vu._ R ..i-i

]

e ituatyy

a {y.r.(vmﬂm_n.{:m oy

80,0503 « 807

* ot

A n
1)

ToavievL ¢ (Wi]
reevLEYL o+ (04,
tHavemes o mat
TS T I I
1 - =
" . sup

,ﬁwv

68

T

f00

Cor8A47 (8)

RETUwRN

e

€S ITARGT

i} 'Ea'
/

TRARG() = Cormp(¥2T)
7arG { tg T CommmM(Y2F,
TARG (3) = Comvani(428
TG (v) = Coremi(¥23)
TARG (5) * CorrmM (426}
TARG(C) = CoramN(429)

. T

i)

89

R

3I

CTVS and CTVS2 - Control Vuriable Routine for EXE

Purpose:

During the forward trajectory, to obtain the instantaneous values of
the control variables as a function of stage iime; to obtain values of
the initial conditions at the start of stage 1; to define points in
stage time which must be hit in the corresponding stage of the reverse

trajectory.
Control Variables

CTABLE is an array of NPOINT stags time values and the corresponding
ve_ues of the MCONT control variables. The format «f the CTABLE array

ia:

_[| : [9 | | Yconr | |

NPOIRT NPOINT NPOINT NFOINT

At CTVS(3), tie task of this routinu is to interpolats in the CT*BLE
to obtain the current values of the control varisbles. This is accom-
plished trivially by calling the interpolation routine TLUL. CTVS(3)

does not allow values of the control variables that exceed the upper

or lower boundaries (CTABUB, CTABLB) which may be input for the respective

control variables.

CTABLE will be considerad tc contain stage time values unless INDCTA is
0. Wwhen a new CTABLE is prepared (in DALCAL) INDCTA is set to 1; hence
on all trajsctcries after the nominal, CTABLE will contain stage time
values. For the nominal trajectory CTABLE may be dafined as a function
of trajectory time if INDCTA is input O in stage 1 data. If the range
of the CTABLE for a stage it exceeded, the pertinent sna points will be
used as the values of the control variables.

Tape Usage

In order that the CTAHLE for a particular stage ba availsble for CTVS(3),
it must be read from tzpe before CTVS(3) is first culled. This is the
task of CTVS(2). For the nominal trajectory, the CTABLE exists in the
data; hence after the stage data has been read the CTABLE for that stage
may be assumed to be available for CTVS(3). On all trajectories after
the nominal, the CTABLE for ssch major stage resides on tape IATAP.
Furthermore, the stages exist in inverse order on IATAP; hence to get
the proper stage from IATAP, CTVS(2) does a BACKSPACE, HEAD, BACKSPACE
at the beginning of each major stage. It is zssumed that IATAP has not
been rewound since it was last written (in DALCAL). The information on
TIATAP 10 not for the exclusive use of CTVS; in fact, each logical record
on IATAP contains much more information than just the CTABLE for that stage.

90

The complete format of each logical record of IATAP is described in the
write~up of the routine (DALCAL) which prepares IATAP.

Initial Conditions

The values of the INDIOP initial conditions (which are not specified
categorical'y in the stage 1 data) may be perturbed from trajectory
to trajectory in a mammer analagous to the way the control variabie
values in the CTABLE are perturbed. VALINS is the ar~ay of these
initial conditions. VALINS is read from IATAP at the zame time the
CTABLE for stage 1 is read. Heance, at CTVS(2), after IATAP has been
read for stage 1, the values in the VALINS array are giver to the rus-
pective initial conditions. On the other hand, for the nominal, the
VALINS array is initialized with the nominal values of the initial
conditions specified in the stage 1 data. Just as with the control
variables, the values of the initial conditions are not allowed to
violate their respective upper or lower boundaries {VALIUB, VALILB).

Time Points

When pertials are being computed (INDPAE # 0), CTVS(3) makes a calil
to TIMREV in order to attempt to insert the current stage time value
into the array of points which must be hit in the corresponding stage
of the reverse trajectory.

However, tho tolerance DELTSA is used in the call to TIMREV. This
means the points stipulated by CTVS(3) may be no closer than DELTSA
from any cther point which has already been stipulated as one which the
reverse trajectory must hit, The motivation for this festure is to
enhance the performancs of the variable step integration option by
preserving the CT'ALE at every point used to generate a trajectory
(using DELTSA = 0). DELTSA may be input. It is nominally 1000.

CTV3 has the standard entry points. Entry points Z and 3 have been
described in detail above. Code and value printing of ths control
variables is done at entry points 5 and 6 respectively.

Remarks:

CTV82 ubtains instantaneous values for the second vehicle control
variables as a function of stage time, obtains initial second
vehicle conditions at the start of stage 1, and Jefines points

in time which must be put in the corresponding points in time

of the reverse trajectory. CTVS2 ie icentical to CTVS except for
the ure of Vehicle 2's COMMON blocks, auxiliary routines, and
tapes. A flow chart of CTVS is presented.

91

92

sl A,

E L, IPCS~In- o Bo Violation Houti

Purpoge:

E To calculate the instantaneous toundary violations of given functions
and to integrate each of these violations.

IFCS is a subprogram of EXE; it has all the standard entry points. Up
to six functions may be specified for IFCS; this is done in the data.
If no functions are specified then IFCS is not active.

Method:

| The instantaneous violation of the ith IFCS function is computed at
entry point 3 as

A
IFCSi

fl

{ [0, &y - 7, (Ei))]}mDBNDi 1f INDEND, > O

. INDBEND, | .
{mm [o, (p; (g5) - yi)]}l il if INDEND, < O
whare ¥y ig the value of the i'th variable listed in the BFCDV array
£y is the value of the i'th variable listed in the BFCDV array

Pi is the function tabulated as a two dimensional table on the
i'th PSTAR data card (s).

INDEND; is an indicator which is input > O to define an upper
boundary; and which is input < O to define a lower boundary.

At entry point 7, the violation A is integrated.

IFCS,
1
The names ascribed to the respective violations and their integrals are,
in order:
Violations Integrated Violation
ATFCS1 AIFCS
BIFCS1 BIFCS
CIFCS1 CIKFCS
DIFCS1 DIFCS
EIFCS1 EIFCS
FIFCSl FIFCS

The first IFCS function for which no computation is reque:ted terminates
the list of those IFCS functions for which computations will be made.

93

Remarks:

IFCS2 calculates instantaneous boundary violations of given functions
and their integrals for vehicle 2. A program modification is required
to permit specification of second vehicle in-flight constraints in
cooperative variational optimization. IFCS2 is identical to IFCS
except for the use of the second vehicle's COMMON blocks and auxiiiary
routines. A flow chart for IFCS is presented.

94

nunLlw

lllw-l \Q

1k [T

¥
(I
(AL 1]

[LFET]
308ut8r Fec OE

--M-n r\ul-u..-!

I
LRI LT orud

sunsre O

e
o)
D

(LY

}

Ansnn

o s amsiivy

0 (e
BOUIS » Al Ie
BUTIS = (Ha0Ii0)

#3330

95

5, PARTS-Partial Derivatives

Purpose:

To obtain all necessary partial derivatives and put them on the partial
tape (TAPE12); also, to transmit information from the forward trajectory
to the reverse trajectory by putting it on the partial tape.

Methods :

This subprogram has the standard entry points of all the other sub-
programs of EXE. The calculation of a particular matrix of partials
is accomplished by a call to PSUBR; the particular matrix desired is
completely specified in the arguments to PSUBR.

The partials to be computed are:

3x?
RATXY = R= 3 1] initial conditions
- fd‘ PARTS (2)
- dxst beginning of a stage
PATX = P= 'é'x_i'-'] h-transformation
(it
3%]
a AT == PARTS (3)
| _ during a stage
%y
GMATX = (G= Ta—
3)
PARTPH = -Sx-z
v
PARTFS = L k] terminal partials | PARTS (3) at the
Xy > end of every major
PARTOM 130 i
= s
RER

PHITL = &

, (1, wa{¥ | are computed by the chain rule:

. od | (. od
.8ey ¢ = [_b—x_i.] {xi} + —a—q
this is valid since ®=P(x, t,) + C

It may be necessary to modify the ‘erminal partials at the end of a
stage. If the contribution “o the payoff at the end of a given stage

is O, then {-3%} and @ are set to 0. Likewise if the contribution to

the ith constraint at the end of stage i is 0, then {%!l]’t_i} and ¥, are
J
set to O,

These conditions are determined by the values of JPHCUT and JPSCUT
respectively. For the payoff, the contribution is O, if JPHCUT < O,
For the kth constraint the contribution is O, if JPSCUT), < O. the
analyst has control of JPHCUT and JPSCUTk in the input data.

At PARTS (3) a call to TTMREV is made (with O tolerance) to define the
current stage time as a point which must be hit in the corresponding
stage of the raverse trajectory.

At PARTS (2), the R ratrix is calculated at the first stage only (and
“hen only if it is needed). [t the beginning of any stage after the
first, the P matrix is calculated but only if it !s actually needed.
The R matrix and the P matrix are put on the partial tape directly
within PAFTS. The F matrix, the G matrix, all terminal partials and
other information for reverse is put on the partial tape via the ad-hoc
blocking routine PRPACK.

At PARTS (4), the R matrix or the P matrix is printed (if it has been
computed).

At PARTS (5), code printing is done for the F and G matrices.

At PARTS (6), the values of the F and G matrices are printed; at the
termination of a stage the terminal partials are printed also.

The information (besides the partials) which is transmitted to reverse

is:

TIMES Stage time

ND Indicator deteimining beginning and type of a major stage.
ALPHC Current values of control variables.

DELTCR Integration step size for reverse,

97

TNDWMA Weighting matrix option for reverse.
WAI Weighting matrix paremeters.
WBI Weighting mstrix parameters.

This nformation is put on the partial tape every time an F and a G
matrix are put on the tape.

Sav a ~ Points

There are several ways of preserving the a history which generates a
given trajectory. (there will be no reason to preserve the « history

on a trial trajectory). The success of the program will depend to

scme extent on the accuracy in preserving the a-history of a given cycle.

The (TIMES) history exists in tabular form (CTABLE) as a function of
stage time for each major stage. During the numerical integration of
the forward trajectory the CTABLE is sampled (by some given inter-
polation fornula) at the various points in stage time dictated by the
particular mmerical integration method. It is only this sampled
version of the a-history which determines the trajectory. Hence to
preserve the a-history which generated the trajectory it is only nec-
essary to preserve the corresponding sample of the CTABLE that was used.

There are basically three options available for preserving the a-history.

Option I:

The a ~history is preserved at those points in the forward
trajectory where partials are computed, and cnly at those poiats.

Option IT:

The a-history is preserved at those points in the forward trajec-
tory where partials are computed (as in Option I), and in addition
a subset of the sample points used to effect the mmericsl inte-
gration; the subset is determined as followa:

An a point is preserved if it is no closer than a distance
of DELTSA away from the previous a point which was pre-
served. (distance means distance in stage time). Thea
time points are preserved in strictly monotonically in-
creasing order; if for any reason the intogration is backed
up, all a -time poirts that might have been accumulated in
the back-up interval are annihilated.

Option III:

Use Option I on the nominal (i.e. first cycle of a run) and Option II
on all others.

98

)
(2)

(3)

(8)

(5)

Every a -time point which is preserved in the forward trajectory will
be hit in the reverse trajectory and a corresponding 6 @ will be
| produced at this point.

Observations and Remarks

uption I accomplishes precisely what the program has always done.

Option I is a special case of Option II (with DELTSA =), In
fact this is the way Option I is selected.

Option II still can fail to preserve all the a ~history that was
used to generate a trajectory even when DELTSA = O, This may happen
because the integration step size sontrol logic has a part in dster-
mining the trajectory; if we camnnot reproduce the exact step size
control logic on the next cycle with a § @ history identically O,
then we cannot reproduce the same trajectory. Now a trial inte-
gration step which was rejected on the nominal does not have an

a ~tine point assocliated with it. Hence this o point was not
preserved; hence the next cycle might nol obtain the same a value
for this point and hence the trial integration step which was re-
Jected on the nominal may Le accepted on the next cycle.

A remedy to the preblem in (3) would be to have an Option that
would preserve every « -time point even if it were assoclated with
an integration step that was rejected. However, it is questionable
whether the problem is of that much lmportsnce.

When utilifzing vehicle 2 functions in & cooperative variational
optimization problem, care must be taken to insure that

{a) The smecond vehicle function has a unique name assigned
in the vehicle 1 directory.

(b) Appropriate transformations are available in ONETWO and
TWOONE.

i s o i i ax it T T U T ST oo L i e st g

rarvysy)

3130, -"—-mm) comeir t1%
Ve -ruaTY),
v - tavy,
fmar - tow,
‘) J (L 1 TH] Yue
M S T
I + *“*'(:u?vmd
) wery e gl
raan,, TATE ot
1 s e ngTAT ety
1™ w0 1 1 aTAYS
(ot =e AT
— couumy
P—_ smaTY "e
troumm) comment
avem neTURN 38
} .
01 1=scomr) (reuen}
AUNC VAL OF TR I
CONTROU VAR Sit I
. jum L]
; owgear 47 * *TT
{00 Vauwarart)
‘cnu,-onn, [T cownne
0
—_ *T. teavan)
Z YL (rasey 11 4
racnt . - |:~ madl L]
jd i Il‘il'l!l i
saats 1 i3 sacaine ue W ouTwyT To 1AM 1
niott ar STant AT ST TIMEL RO
T tuow ALPRC A LTOR. NS Wae
wALEe) STABLD CTARUY
| N \mracn)

"1 n,-;;‘\ ":"Y.

[riosey imese | S

100

N¥NLIY

t

WLVISN>—I =
ALVISNe—| =1
1]
XAV
SINIVA ININd

NI

XAWRY,
ANMd

JOVISH
[>

NMNL 3

%

2

(HSNYV4)

uwid4nd
2 IETL HSNT?

o

(AOvdYd)

HdldVd ‘WOLUvd
‘biLiHd IVOINOLLLLSX
4 3dVLI Ol LN4LDO

(N4 ¥d)

Hd1¥Ve NOLMYE ‘LiLiIHd

114} 8d IYDINO ULISX
‘21 Ja¥i 0L iNdin

4‘

e 1WaN02)
org

9z S.livMd
IUVISN——i=, o

v3lge

~
o
~

PARTS 3)

——2CiNCIOP ’
o >0
ACCOUNT FOR
LINES
PRINT: "PARTS"| PRINT: "PARTS'
"RMATX" PMAT X"

| N

PRINT CODES FOR RMAYX

STVARS,, | NVARS,

i = 1-= NSTATE
) = Band |ND-OP

I T Y

PRINT: FARTS"
"EMATX & GMATX

| ¥

ACCOUNT FOR
LINES |

a -
rpmm CODES +OR FMATX:

STVARS, STVARS;

i =4~= MSTATE

..-,

[~ 1~ NSTATE

N T

PRINY CODES FOR GMATX:

STVARY;, CTVARS;
i -1—=NSTATE

j= 1= MCONT

| i

RETURN

102

TN TR T

J PARTS (4)
[11]

ACCOUNT FOR
LINES

PRINT:
“PARTS"

R

PRINT VALUES:

FMATX;;
i =1==NSTATE e
j=1-=NSTATE
PRINT VALUES: PRINT:

GMATX OMEGA1, PHITTT"
j= 1 ~=NSTATE PRINT VALUES:

OMEGA1, P

=1 ~MCONT GAY, PHITN

INDP.!T_

INDSTG -
__‘_* 0

PRINT: P83 771"
REVUEN
PRINT VALUES:

@oswu)on(mosm:u

‘v:s

[ACCOUNT FOR LINES] rsim,

I i=1==INDPMT

PRINT: XST7771"

PRINT:
“TERMINAL PARTIALS" ' ‘

PRINT: "PARTOM" PRINT vaLUES
PKINT VALUES: Xs nm,
PARTOM;
i=1— NSTATE
i=t=s NSTATE |
PRINT: "PARTPH"
RETURN
PRINT VALUES
PARTPY;
1=1«aNSTATE

1

R,
_— INDPMY
[

PRINT: "‘PARTPS "~
PRINT VALUES:

PARTPS

hz1= (NDPMT
j=1==NSTATE

103

6. LINCOM and LINCOM? - Linear Combinatiop Routinpes
Purpoge:

To compute new functions as linear combinations of existing functions.
n
i.e. §* = ‘El ¢y B4

where the £; are existing functions, the c; are fixed coefficients, and
*
¢” is the new function.

Method:
The c; and the g; for a particular g* ars specified in the data -- the

c; are input directly; the g5 are input as BCD names, and hence the
names for the g; must be in the directory.

Up to five different linear combination functions, g*, may be defined
this way. For each g*, n must be < 3. If a linear combination is
desired with more than three component functions gj, then it must be
defined as a linear combination of already computed linear combinations
(as will be illustrated in the examples below).

The names of the five avai’able linear combination functions are ALINK,
BLINK, CLINK, DLINK, and ".LINK, The names of the cost vector for the
above linear combinatieci: functions are, respectively, ACOST, BCOST,

CCOST, DCOST, ECOST. ALINK through ELINK are computed in alphabetical
order.

Example 1:

To define a linear combination £ = (1)h + (2)V8, the following
input date is sufficient:

BLINC BCD 2HG.7FPVIT7F
BCOST 1., 2.
Example 2:

To define a linear combination g* + (5.2)My + (6.5)h + (2.0)AIFCS +
(lO.)Vg the following input data in sufficient:

ALINC BCD 3AMACHPHGCTFPAIFCS
ACOST 5.2, 6.5, 2.0

BLINC BCD 2ALINKPVG77I

BCOST 1., 12

104

Example 3:
TE define a linear combination £* = (1/2)21 + (1/2)m® + n? where
m* denotes the masg in the first stage, m* denctes the mass in the

second stage and h< the altitude in the second stage, the follow-
ing data is sufficient:

r}\LINC BCD 1AMASS
tage 1

ACOST .5
CALING BCD 1P
Stage 2 | BLINC BCD 3ALINKPAMASSPHGCTF

_BCOST 1.’ .5,1.

Hence, at the end of the last stage, BLINC will be the average of the
mass at the termination of the first stage and the last stage plus the
altitude at the end of the last stage. Note that when a linear com~
bination function is "blanked out" in the data, the value of that
function remains constant.

This subprogram has all the standard entry points. However, entry points
4, 5, 6, and 7 are vacuous. That is, no printing of the values of the
linear combinations is done; also, nothing is integrated.

It is well to note that it 1g pogsible to take linear combinations in-
volving in-flight constraints and also to take in-flight constraints of
linear combinations. The reason is that LINCOM(3) is called before
IFCS(3) from EXE.

Remarks:

LINCOM2 computes linear combipnation functions for the second vehicle.
The use of second vehicle linear combination functions in cooperative
variational optimization problems will require a program modifi-
cation. LINCOM2 is identical to LINCOM except for the use of the
second vehicle's COMMON blocks and auxiliary subroutines. A flow
chart for LINCOM is presented.

105

&

(ONINRIT'L=1 S200 OO

)
<G>

)

il e

(INNILNOIr——

|

J
CINNILNOD

i

(F'14803V - (1MOmMOD HLPTIMNNY = (UMY
{(t1+11v30Y =3

O=irIANIIY

(F'11¥301 =N

e =ir)vI01

-

(OMOWIT'L =T 09I OOr@———

LI
s

(AN LNOIP—"""")

1= (r}vI07

MRV IP = (P L+ ANNINY

(XYW =1 8108 COrg———

s =(r1)vaed

MM =f sCel Oﬂ‘l\‘_

|

RLLIFE LE] =]

i S

| ol
FLTAL BERTNRNN LIRL A
—

(XYM L =t 8108 SO g

4

{ !
(owINIY 4 = F 010, LY RS o

[

]

D)

LE-EFL AR

106

SIACK and SLACKZ2- - Slack Varisble Routines

3

Purpose:

To make available "slack" variables that may be used for various
effects including optimal staging and optimizing or constraining the
initial value of a variable.

Method:

The four slack variables, FLUXA, FLUXB, FLUXC, FLUXD, and their re-
spective derivatives, FLUXAl, FLUXBl, FLUXC1l, and FLUXD1l, are available.
SLACK has all the standard entry points, however, some of the entry
points are vacuous.

The first IINDFLXI slack variables are integrated; INDFLX ie input.

If INDFLX is 0, no slack variables are integrated. FLUXEQ is an array
of BCD names; the BCD name in FLUXEQ; equates the ith slack variable
with the initial value of that variable. (i.e., tha value at the

beginning of stage 1).

Code and value printing of the first INDFLX slack variables and their
derivatives is done if and only if INDFILX>O.

All variables are nominally O; FLUXEQ is nominally blank.
Remarks:

SLACK2 defines slack variables for the second vehicle. Before use
of the second vehicle's slack variables in a cooperative variational
optimization problem, a program modification equating the second
vehicle's slack variables to names in the first vehicle's directory
is required. SLACK2 is identical to SLACK excep:¢ for the use of

the second vehicle's COMMON bloc.s and auxilisry subroutines, A
flow chart tor SLACK is presented.

107

e

SLACK

no"i [FAR)

FLUXA(D = o
FLUXEQ(]) =80 ANK

INDFLX

—~
[
-

‘ , 4

RETURN

210 124
I RETURN
f ‘uuxiou)xlunx)_'

ALL QSERCH
FLerxaULocFLx
IEARGR

Y[nsTage p
N

RETGRN

['LU XAQ) ®COMON(LOCFLX) I

(m'£NUl Ve———]

RETURN

108

ALTURN

3

CALL VALUE
INDFLX FLUXA
FLUXS FLUXS

LALL COOES
INDEFLX, FLURA

CALL vaLuts
INDFLX, FLUXAY

&y

CALL CODES
INDFLX, FLUXAY
FLUXBY FLUXCY

8. PEJAL and PENALZ? - Fenalty Function Routine
Purpoge

To compute a penalty function using the values of the variables, ¥i, whose
names are listed in the ENDCON array and/or values ¥.* that have been
accumulated at previous stage points for these variablzs in the PSSTAR
table.

Mothod

PENAL is a standard subprogram of EXE. PENAL will be effective if and
only if MAXIM or MINIM contains the name "PNALTY". PNALTY ie the name of
the function that will be computed at entry point 3:

whers W, are weights (WGTSI) and

A
Y -¥, =¥ -¥, if JPSCUT, =1

=" - ¥, if JescuT; <0

=0 if JPSCUT:.L =90

The - sign is used if the name YPNALTY" is in MAXIM. The + sign ie used
if the name "PNALTY" is in MINIM.

The weights W, may be input or may be controlled by some logic in the

control systefi. JPSCU'I‘i is the array of indicators that indicate the

stage point to which the corresponding ¥, function applies. Y, is an
slement of iiie PSSTAR table and is the vdlue of Y; at the most recent

stage point for which JPSCUTi = 1.

Code and valus printing are done at entry points 5 and 6 respectively.
The value of PNALTY will be printed.

Remarks:
1. WGTSI and DSINL are two names for the same array.

2. Note that the number of functions is taken to be IIIPMT. (This is
set in MAIN1.).

3. The penalty function must be computed when using control system
CTLS2. Thus, when using CTLS2, MAXIM or MINIM mrst contain the
name "PNALTY", the variable being maximized or minimized must
appear as the first name of the ENDCON array and the remaining
names of the ENDCON array must bc those variables that are being
constrained. 109

L. PENAL2 creates a penalty function from the second vehicle
variables, Y,;. Use of the second vehicle's penalty
function in cooperative variational optimization will

% require a program modification. PENAL2 is identical to

‘ PENAL except for the use of the second vehicle's COMMON

F blocks and auxiliary subroutines., A flow chart for PENAL

is presented.

pn!c-hno we :F:@
i

. Zos(1) NERIS— (4 QWISSH =Myl (® L)

Ry, Y @

_ 1€ VRIS - (BOW P « (LWEIS- (D .8.80-!;&

i

m::ﬂg. ('O Bsd = ALYV (LY () LNI8eN) v

"

r—

wo
an
E MU LY (90D TNIOND
[0

ﬂo&l‘.ﬂl. I-‘L

Y A (001 “900 081 "00y "S0r 903 ‘001) 01 20)

T\ -/

TVNE

PLTS and PLTS2 - Data-Gathering Routine

PURPOSE:

To record the time histories of a seat of prescribed variables on a
taps to be used later (GRAPH segment) for plotting.

Method:
The following assumptions are made

1. The variable whose time histories are to be saved are input
(PLOTS card(s)).

2, The time histories are to be saved for each pass up tc the sixth
without requiring the tape.

3. The F and G matrix time histories are to be saved on the last
forward trajectory of a cycle on a different tape than the other
variables,

4. Saving of the F and/or G should be done as an option based on the
value of the indicatcr INDFAG.

Tape 17 is used for the regular variables.
Tape ILTAP is used for the F and/or G,

Entry Point 1: Number of points for a trsjectory is zeroed.

fntry Point 2: Tape 17 is written. NPASS, INDSTG and the point number
for the pass, MPT (NPASS), are put on tape 17 along with the valies
of the variablss that have been specified.

Entry Point 3: Tape ILTA® is written oaly if INDFAG # 0. NPASS, INDSTG,
the pcint mmber (MPTFAG) and TIME are put on ILTAP. In addition the
following is put on ILTAP depending on the value of INDFAG:

INDFAG = 1 FMATX
2 CMATX
3 MATX and GMATX

Entry point 2 is called by EXE after every (IGCONT+l) valid integration
steps. Entry puint ? is called by EXE after the F and ¢ ure computed.
IGCONT may be input.

Up to 40 variables may be specilied in the PLOTS array by HCD names,
Inly distinct variables are written on tape, This means that if a
variasble is specified twice in the FLOTS array, its value will be put
on tape only once per record.

11

The LPLT array is set up in MAIN1.

LPLT{ is either the COMMON subscript
for the name in PLOTS

{ or is & negative integer J where J points tc the
cell in the LPLT array which contains the COMMON subscripts for the name
in PLOTSy. PLTS2 performs the PLTS function for vehicle 2.

Y

113

L}

R o

<8

K= 2*LNDPLT
d=i

bosese 1=1.K J - ==

P
r— 2. trlff(l_) >
IZO

b e e e e e —-

L= LEAT)
THMPQ)=COMONLLY
J=J+9 J

.

RITE
17

En(unss»= rnn(unss):_ij

=0
INDFAG r—r————y

*0

A
iNDFAG

[MPYFAG= MPTFAGH)

e —

RETURN

LA s B s KSR L LA RN Y A R L R R, AR LR e spn ' RO Y

10, OBSFUN and OBSFUNZ? - Observatioi. ™anction Routine

Purpose:

To provide an organized time histery cutput of selected trajectory
varisbles, the observation functiors.

Method:

Input data defines a set of observation functions for each vehicle.

Time histories of these variables are organized and printed in a compact
form at set intervals of time, Selected observation functions may

also be plotted on th: printer using the printer-plotter routine,
PAPERP,

Femarks:

A flow chart for OBSFUN is presented, OBSFUN2 is identical except for
the use of vehicle 2 COMMON blocks and auxiliary routines,

115

@

=0
NUNIPTS = F

OBSELV, = BLAVK
Locogs,. = 307
- =/,32

l

OBSALTy = 72777

_4:: ;,/za

Z’frm?/v)
o
(5a)

CETUEN

2000

NUtiP7s
GCT
41

YES
|

t

NUMPTS = 4/
A

§ o e . .

116

T

———

PRInT CoDES
AnD YALUES
OF OGEENvATIIN
Fuwvcrzovs

NUMP = NUMPTS

117

NO

fooo

=]
o) (Fen
ITH vES
LT,
MPTS

C

TIN:=2TH 7?1

L= LOCOBS (T)
OBSTH(17#,T)= coman (L)
I =1, NOBSER

&

Is=y
NV = IS »7
YES
NoO vb X
| vt = p10 85 &% '
COOES(058V,

1
|
i

118

119

11. FILTER and ¥ILTER2 - Repeater Fouvtines for h-Transformation

Purposc:

To detect if a change has been made in the value of a prescribed
O00MMON varlable and if a change has been made to produce sither the
original o: the altered vaiue when asked to do so.

There are three eniry points to FILTER.

FILTER (1): The current values are saved; a 7ilter is laid over
each variable.

FILTER (2): Alterea values of variables that are trapped in the
filter are saved; the original values of the variables
are rastored.

FILTER (3): A variable for which there is an altered value is set
equal to the altered volue.

If FILTER(1) is ever called, FILTER (2) must be celled before ths values
being riltered are ever used. FILTER(3) may be called any numbsr of

times after FTLTER(1) and FILTER(2) have been called, FILTER(3) is the
entry point which reproduces the detected change. FILTER(1) and FILTER(2),
in conjunction, detect the change.

The variables to be filtered are prescribed by putting their COMM
locations successively into the cells of the name-common hlock/¥TLTER/.
At most 14 variables may be filtered.

Remarks:

FILTER2 detects chunges in the value of specified second venicla
COMMON variables. FILTER2 is identical to FILTER except for the
use of vehicle 2's COMMON blocks. A flow char: of FILTER is
provided.

220

[L%

1) 22{Y NONOD

[{IR PRIFALA]

A.—n o2 OO-B.—O.UG&.»N-%@

TisN 121 010

TR
L

LEFEE]

—[A: 2%(V) 80'00[_

I
|I.me 0D(G10°LT (1) NOKOD 41

TINON O JIT (1)

14071 033 01

N

m... 0100 (0°08 T14m) 41
—’

u.u*

(]

ﬁo Ohgo.ﬂu.a.ulh.-.u.:sw

{
_u: TR eT‘IL

L\Mﬂ.—.!u. (soc‘0ez'00s) 0L 00)

A J

¥34714

121

13.

STGTST and STGTET2 - Stage Testing Routine

Purpose:

(1) 1 dctg_m:;.ne if the trajectory should be terminated (i.e.,
0y = 0N4).

(2) {b d;tomine g a stage sbould be terminated (i.»., 02, = {1 N
- g oevey k

3) '{;)detu(ﬁ)m an integration step size to use to achieve condition
or (2).

(4) To commmicate the information 4hs% is gleaned to EXE proper for
the appropriate action.

IMis subprogram has the standard enry poirts. Code and value print-
ing are used only for diagnostic purposes and are called if and only if
INDCOT is input ¥ O,

Up to fouwr variables may be prescribed for terminating the trajectory
or the stage by the BCD names in the array CUTOFF. The respictive
values of these variables at which termination is desired appear in the
array OMBAR.

Termingtion Criteria

W |y -0y < 0780, +1)

{2) 1t is noi the first point of a major stage.
(3) if i =1 ti-n TIME > TOMAX -~ DTMOD

If the above three conditions are satisfied for the iith variable listed
in the CUTOFF array, then INDSTG is set equal to i at STGTST (3). This
informs EXE to terminate the atage if i = 2, 3, or 4 or to terminute the
trajectory if INDSTG =1,

T tion rithm

(1) tP is the value of stage time, t,, at the last valid integration
sfep. (4P 1s the value of {}, on the last valid integration step.
STGTST(3) updated ,P snd ty,P only if it does nct reject the inte-

gration step (or if It is the first point of a major stage).

(2) STGTST(3) rejects an integration step (sets LOOK ¥ 0) only if the
termination criteria is not satisfied and
‘0,-1;) @F -T1;) < 0 for sove 1 and TIME > TOMAX - DTMOD 4f 1 = 1,

(3) For each 1 which dictates that the integration step bs rejected an
integration step size h; is computed.

122

) s,
Sl asio

R .

(&)

(5)

(6)

UL
(Q, -0,P) / (t, - t.P)

T™his is the step .ize which the linear prediction estimates ahould
be taken from the last valid integration step in order to exact.y
satisfy Q4 = {14.

The minimm of all the h; '3 is determined; call it h*. The atep
size HO, to use on the next integration step is set equal to h¥
sign (HO). LOOX has beer. set nonsero; this informs EXE that the
integration is to be backed up to the last valid step.

INGHOM is set to 1 whenever STGTST{3) rejects an integration step.
Within a given stage, STGTST(3) may reject an intsgration step un
account of the behavior of () at most 20 times. If this limit

1s reached the staging criteria is assumed to be satisfied (even if
it 1s not in fact) for the variable in question.

Within a given stage, each time STGTST(3) accepts rn integration
step after INGHOM has once been set io 1, INGHOM is incremented by
1. The itertion is terminated if INGHOM ever reaches 100; if
this happens, INDSTE is set to O to indizate an error in the
trajectory.

Remarks

(1)

(2)

(3)

(4)
(5)

(6)

Specifying TOMAX and DTMOD permit dealing with a maltiple valned
cutoff function; cutoff camnot be achieved until TIME > TOMAX -
DTMOD. TOMAX and DTMOD may be input; TOMAX is set to the termina-
tion time of the trajectory of the previcus cycle in CTLS. Care
should be exercised when specifying TOMAX and DTMOL.

BCDSTG is equivalenced to the second location of the CUTOFF array
(in the directory). Likewise STEST is equivalenced to Lhe second
location of the (MBAR array. (Each of these may be irput ‘n stage
data tt; define the staging variables and their desired staging
values).

Before stage data is read for a given stage, EXE proper blanks out
CUTOFF(2), CUTOFF(3), CUTOFF(4), (i.e. the BCDSTG array).

There is no restriction on the rumber of stages.
No provision is made for specifying "increasing" or "decreasing"

as an additional requirement of the termination criteria, but such
a modificaticn should not be difficult.

STGTST2 extends the stege testing function to the sezond vebicle.

STGTST2 is identical to STGTST except for the use of the second
vehicle's COMMON blccks and auxiliary routines. Eik directly
controls STGTST2. A flow chart for STGTST is presented.

i23

|

ol

il

b

i

I
3

1)
Lgﬂ

r-q

|

N

o Bl
1
i b

124

3. EXIRAN _and EXTRAN2-Driver for h-Transformation
Purpose:

To drive various ccmbinatione of the initial trans{ormation and the
h-transformation determinad by the value of the indicator INDHTR.

Msthods:

EXTRAN is a special subprogram of EXE. Its ertry points are not
atandard.

Entry Point

1 INDHTR is set to O and the number of the locaticn wf,
and the values of the state variables are saved. Values
of variables thut are to be filtered are saved by a call
to FILTER(1).

2 The new values of the filtered varisbles are picked up by
a call to FILTER(2).

3 The initial transfowmation or h-transformztion is driven
according to the v .e of INDHTR:

INDHTR
0 Ko calculations
-lorl Initial Transformation: + +
° S STFRE

2 h-transformation:

- - + +
X DIFEQ(3) ¢ FILTER(3) J DIFEQ(2)X

3 h-transformation:

£ - £ + 13 + x+
DIFEQ(8) FILTER(3) DIFEQ(2)

* TIFR(3)
L h-transformation:

- + +
* DIFEQ(8)™ FILTER(3)™

where x~ denotes values of state variables at end of last stage,

xt denotes values of state variables at beginning of current
stage.

¢~ denotss values of suxiliary varisbles (i.e. functions of
the state variables) at end of last stage.

€+ denotes values of auxiliary variasbles at beginning of
current stage. 125

Usage:

At the beginning cf the trajectory EXE proper sets INDHTR o 1 in order
to accomplish the initial transformation.

EXTRAN(1) is called by EXE at the beginning of every stage after the
first, before the stage data for that stage is read. EXTRAN(2) is
called after the stage data is read. And, of course, EXTRAN(3) is
called 2 do the initial or h-transformation in order to initialize
the valaes of the variables that are to be integrated.

Remarks:

The reason for having.several basic options for the h-transformation is
in order to achieve flexibility. It is assumed that DIFFQ{2) is the
inverse ¢f the DIFEQ(3) transformation (and vice-versa) with reupect
to the values of the state varisbles and the auxiliary variables.
DIFEQ(8) is either a transformation from the state varisbles to the
state variables directly (INDHTR = L) or from the auxiliary variables
to the auriliary variables (INDHTR = 3). FILTER (3) is the transforma-
tion equivalent to the reading of data for those variasbles that are set
up to be filtered. This permits sone simple types of h-transformations
(INDHTR = 2) to be accompliched within the dsta without the need for
iatroducing new code at DIFEQ(8), and slco permits tbe other types of
h-transformations to be modified to a limited extent right within the
data.

On & trajectory for which partials are being computed EXTRAN(3) will

be entered in the process of computing the P matrix and/or the R matrix.
This action 1s initiated by PARTS. Negative vaiues of INDHTR are to
indicate that the P-matrix for that particular h-trarformstion is the
identity and hence need not te computed.

The indicator INDHTR plays an important role in EXE proper too. ND is
an indicator which is normally 2 to denote the begl.ming of a major
stage after stage 1. If a P matrix is computed at a stage point (i.e.
INDHTR > 9) then ND is set to 3 to infurm RSV to expect a P matrix on
the partial tape.

EXTRAN2 performs the identical and h-{ransformaticn for Vehicle 2.
It is called by EXE2 ard s idertical to EXTRAN other than for use
of Vehicle 2 COMMON blocks and auwxilisry suvbrcutines. A flow
chart for EXTRAN is provided.

126

i

(INNILKOD

f

(MLLSX » {NN
(INBXIOY &Y

_

CMAVISN 'S »3

st oa

©

q
*

127

{ IANILNOD Jom—n

(k&L 3EI0ES TR
(1) NOWOIalt)mLisX
{1} X201

d

{ 3avasman: i oeje—

AR N LNOMI

ANAN I

NVIiIX 1§

e ARk dan el s Al A e gk

1L,

INTGRT , INTGRT2, and INTGRTR - Interface for Integration Routine

Purpoge:

To serve as an interface between the integration routine proper
(MIMINF or MIMINR) and any routine requesting a variable to be inte-
grated; also to backup the integration.

There are five logical functions which tis routine perfoms depending
on the status of the indicator INTCAL. For a particular call to INTGHY
one of these functicns will be enacted. Th: P array is the array of
current derivative vidues of the variables that are being integrater
The Y array is the array of the current intep.ated variable values.

Usage:

To integrate XDOT and have the resulting integrated value stored in X
use the statement

CALL. INTGRT (INTNUM, XCOT, X)

INTNUM must be a distinct call uzed in, and only in, the calls for the
integration of XDOT.

A call of the above form must be made at throe different times (when

the value of INTCAL is 2, 3, and 4), However, all of this may be accom-
plished with only one statement if the statament is inserted at the entry
point 7 of the calling program.

INTNUM is the subscript in the P and Y arrays for the values XDOT and X
respectively.

Method:

INTCAL =1 the P and Y arrays are set to 0; the number of
integrated variable 1s ast to 0.

INTCAL = 2 the subscript INTNUM is computed for the argu-
ments XDOT and X; the number of integrated
variables is updated by 1.

INTCAL = 3 the value of XDOT is put into its proper place
in the P array.

INTCAL = 4 the value of the integrated variable is picked
up from the proper place in the Y array and put
in X,

INTCAL = 5 the integration is backed up one step by resetting
the Y array to the previocus Y array (YO‘ and by

resetting T to TC.

128

INTGRT will terminate the case if more variables are requested to be
integrated than there is room for in the integration arrays; at present,
vids upper limit is 25 variables in the forward trajectory, and 300 in
the reverse trajectory.

EXE proper is the only routine which calls INTGRT when INTCAL = 1 or
when INTCAL = 5., EXE has sole control over setting the indicator INTCAL.

INTGRT2 serves as an interface between the integration routine MIMINF2
for the second vehicle and any second vehicle subroutine requesting a
variable to be integrated. It is identical to INTGRT except for use of
Vehicle 2's COMMON blocks. INTGRT2 is directly controlled from EXE.

A flow chart for INTGRT is provided.

INTGRTR serves as an integration interface rcutine for the reverse time
integration of the adjoint equations through MIMINR and the REV program.

It is identical to INTGRT other than for us: of the UPDCAR COMMON block
and subroutine STOP2.

129

it g pre] 2 - AEPRR

agba e

L ERTT

NuANi3Y

NYNL13Y

)

(NANLNDARX

A

N¥NL3Y

t

X = (WANLNDA

OQXS(NNANLANIG

NV NLIY

NuUNL3Y

|

ANIXYN < NNON).4

!

L+4NAN = WON

NNN13Y

ANIXYN 131 041 00

q

\Ml.. -

130

e —

N e e . i,

T er g e

[

15, CODES and CODES2 -~ Code Print Routines

Pyrpose
To print code names of variablas to identify the values in the output.

Usage
CALL wnm (L, Al,o . O,AL)
is an integer 0 < L £ 8 identifying the number of arguments

L
following it.

Al

: L cells each containing a Hollerith code word of at most

. 10 characters.

AL

The above call adds the L Hollerith code words to the list of code words
to be output on the next line of print. When 8 code words have boen accumulated,
ths line is printed; any excess code words are added to the list for the next
line of print. If L is O, then the codes in the existing list (the number may

be less than eight) are printed immediately.
lines accounting is taken care of within this routine.

This subroutine is designed to be used in conjunction with the VALURS
subroutine.
Codes are printed with a "5X,A10" format.

CODES and VALUES control smell secondary output buffers within the program
itself.

Normelly a call to CODES is made before any call to VALUES in oxder to
identify the valuca. Tho GALL CODES (0) is necessary to bs sure that the codes
are printed; the UALL VAIUES (0) is necessary to be sure the values are printed.

(If this is not Gone the buffers may never be flushed.)
Remarks:

A flov chart for CODES is presented. CODES2 is identical to CODES
but is required to insure correct output function for the second vehicle.

131

8(s) *at

OB

8(1) = A1 J

S DG 38 19LN)

ICOUNTs §

L___....(con'nwt)

132

1COUNTY O

&
&

e ey

~

RET

16. ITEMS and ITEMS2 - Varisble Print Routines

Purpose:

To allow printing of variables in addition to those prinued by other
subprograms of EXE at entry points 5 and 6.

Usage:
CALL ITEMS (IENTRY)

IENTRY = 5 prints BCD names of speciried variables.
IENTRY = 6 prints values of specified variables.
CODES and VALUES are used for output.

A1l variables specified on the VPRINT card will be output, Up to
twenty variables may be specified.

Remarks:

ITEMS is called by EXE.

ITEMS calls CODES and VALUES.
ITEMS2 is identical to ITEMS except for the use of

vehicle 2 COMMON blocks and auxilirly subroutines.
ITEMS2 is called by EXE2.
A flow chart for ITEMS is presented.

133

s SRR NS WA

ITEMS

(DG 301 I3t NPRINT)

CALL
COnES

ALL
goous

4——1

(CONTINYEI~

13k

(DO 091] 81N PRINT)w

AL
ALUES

ALL

“VALUE!
~

et
o

(CONTINUE)

i RETURN

o 4 g S ta i M
gy PR g

RN

17. COMBAT and COMBAT2 - Combat antrol Routine

Purpose:

To set the initial values of the combat parameters and act cs the
calling program to other subroutines for combat role and tuctics
selection

Usage:

Entry ie made to this routine by the following statement
CALL COMBAT (IENTRY)

where IENTRY is a fixed point variable.

IENTRY = 1

This is the pre-data initialization. At this entry the nominal
values are established for the following combat parameters.

MNEMONIC NOMINAL DESCRIPTION
VALUE
NGSPE 1.0 Load factor to use in the maximum specific

energy maneuver.

DLTSPE 2.0 Numbe.' of seconds "Look Ahead" used to
determine maximum specific energy path.

MSUBE 1.0 Mach number at which to start "NGSPE/2"
vath during waximum specific energy maneuver

MSUPE 1.2 Mach number at which to end "NGSPZ/2" path
during waximuia specific eneigy mancuver.

GAMSPE =15.¢ Lower bound on "“ight path angle during
‘ “NGSPE/2" portion of wmaximum specific
| enery; maneuver.

HSURE 25000. Altitude at which to start "NGSPE/2" path
during maximum specific energy rasneuve:r.

APSUBE(1) 1.0 Factor applied to ALPNG to establish lower
bound on angle of attack for subsonic
portion of maximum specific energy path.

AFSURE(2) 1.5 Factor applied to ALPKG to establish upper
bound on angle of attack for subsonic
portion of maximum specific energy path.

135

et ot o s s+

s BT

8 Ve et LB TNy

S —

ST e g s oo +

MNEMONIC NOMINAL DEECRIPTION
VALUE
AFSUPE(1) -2.0 Factor applied to ALPNG to establish lower
bound on sngle of attack for supersonic
porvicn of maximum specific snergy path.
AFSUPE(2) 1.5 Factor applied to ALPNG to establish upper
bound on angle of attack for supersonic
portion of maximum specific energy path.
INDDIV 0 Switch indicator set by prograam {Do no%
input as data).
IPCMSG 1l Print control for combat message
1 = Print combat messages
0 = Do not print combat messages
CPCON(1) 1.0 Factor applied to maximum angle of attack
(AMAXD) to establish the upper bound on
desirel angle of attack (ALPDD)
CPCON(2)
CPCON(12) 30.0 Role selection logic: attack incoming
targets when
CONBD < CPCON(12)
CPCCN(13) 60.0 Role selection logic cone angle for second
sector: offensive role when
CONBD < CPCON(13)
CPCON(1h) 1.0
CPZON(15) 0.0
CPCON(16) 10.0
CPCON{1T) 10.9 Role selection logic, take evasive action
when
ESERDT € CPCON(17)
136

R T g T 4 e gz,

factor for throttle
RAFAN = ANDOT * DELTS * CPCON(10)

MNEMONIC NOMINAL DESCRIPTION
VALUE
CPCON({18) 1.0 Tarottle factor for hard turn defensive
maneuver
AND = ANMAX * CPCON(18)
CPCON(19) 1.0 Angle of attack factor for hard turn
defensive maneuver
ALPDD = AMAXD * CPCON(19)
CPCON(20) 90.0 Teble of desired band angles for hard turn
defensive maneuver.
CPCOK(29) 90.0
CPCON(3)
CPCON(h)
CPCON(5) 1.0 Finite control rate logic: factor on angle
of ettack rate
ALPHD1 = ALPDOT * CPCON(5)
CPCON{6) 1.0 Finite control rate logic: rate adjustment
factor for angle of attack
RAFALP = ALPDOT # DELTS * CFCON(6)
CPCON(T) 1.0 Finite control rate logic: factor on bank
angle rate
BATTDL = BADOT ¥ CPCON(T)
CPCON(8) 1.0 Finite control rate logic: rage adjustment
factor for bank angle
RAFBA = BADOT * DELTS * CPCON(8)
CPCON(9) 1.0 Finite control rate logic: factor on throttle:
rate '
ANTTT1 = ANDOT * CPCON(9) ‘
(m70N(10) 1.0 Finite control rate logic: rate adjustment

137

AVEMUNIC NOMINAL DESCRIPTION
VALUE
CPCON(11) 90.0 Role selection logic, outgoing target when
PHOFD < CPCON(11)
CPCCN{30) 1.0 Throttle factor for line-of-zight vector
rotation defensive maneuver
ARD = ANMAX * CPCON(30)
CPCON(32) 1.0
CPCON(33) 1.0 Angle of attack factor for Split S defensive
maneuver .
ALPDD = AMAXD * CPCON(33)
CPCON(34) 1.0 Throttle factor for 3plit S Defensive man-
euver
AND = AMAXD * CPCON(3l4)
CPCON(35) 1.0
CPCON(36)
CPCOr(37)
CPCON(38) 1.0 Angie of attack factor for lag~pursuit offen-
sive maneuver
ALPDL = AMAXD * CPCON(38)
CPCON(39)

138

e S

MNEMONIC NOMINAL DESCKIPTION
VALUE

CPCON(L0)

CFCON(L1)

CICON(L2)

CFCOK(L43)

CPCOwW (L)

CPCON{45)

CPCON(46)

CPCON(47)

CPCON{}48) 1.0 Attacking maneuver: TC * CPCON(48)
determines the time constant for elimination
of pointing error.

CPCON({49) 1.0 Attacking maneuver: throttle control if

RP

RITTF then

AND = ANMAX * CPCON(L49)

139

MNEMONIC NOMINAL DESCRIPTION
VALUS
CPCON(50) 1.0 Attacking maneuver: throttle control if
RP € RITTF then
AND = ANMAX * COCON(50)
INDBNCi 0 Boundary control
INDBNCy = O, ith boundary violation can
not be controllied
= 1, i%h voundary violation can be
ccntrolled by angle of attack
ALPDOT 20.0 Maximum rate at wnich angle of attack can
be changed (TEG/SEC)
BADQT 45.0 Maximum rate at which bank angle can be
changed (DEG/SEC)
ANDOT .2 Throttle rate (Fraction of full throttle/
sec)
AMAXD 15.0 Maximum angle of attack (DEG)
ANMAX 1.0 Meximum throttie setting
VMINF 200. Minimum vehicle velocity (Ft/Sec)
IENTRY = 2

This is the post-data inicialization. At this entry the values of the
array CPCON is output oa unit 6.

IENTRY = 3
At this entry subroutines ANGLES, DETECT, ROLEi, HLIMIT, and CRATE are

called role selection and tc determine desired angle of attack, bank
angle, and throttle setting.

IENTRY = L

Entry for initial print.

1ko

-

IENTRY = 5
Entry to print mnemonic heedings. The following codes are printed

ALPHD1 BATT7D1 ANTTT71l ALPDD BADTD AND ALPHD BATTD AN XAIWF
YAIMF ZAIMF
IENTRY = 6

At this entry the corresponding values to the mnemonic codes of Entry 5
are printed.

Remarks:

A flow chart for COMBAT is presented. COMBAT 2 is identical except
for use of vekicle 2 COMMON blocks and auxiliary subrowvtines.

J—

SE7 asiAe
vaLedS for
ComSAr rAcioeiels

‘éwﬂ,
- e P ——————

DETECT ()
ROCES ()
MHesmZr (1)

fo TLON

;z@
N\,

cPlon (2p) = [cPeon(38)]
cacon (99) = | creon (90) i
cPeon @)= | epeanto) |
CPeon (4S) 2 [creon(es)

Vi AZVE a8
CPeon(I)
Il 30
INDFCR

ALPOD = AmAX D ll VALUES
HGL2F - HGOTF DETE T P)
goce 1 (6)
. L ; (¢
ANGLE X | Heznzs (¢)
DETECT (3) -
RILEr (3) ,
Hezmzr (3) [PE TN
CRATE i
PETLRN)
peFECT (7)
O goLE L (7)
A 000 P
" Heznz7 (7)
DETeT (%)
PoeE (¢)
My InIT () (’F 67’5/4/\/)

PET&CT ()
ROLE ¢ (2)
Hy ImIT (2)

DETECT(F)
rocer (§)

1

(VA’fﬂmu)
N

HLTmTT (F)
CootS -

0E76¢T(S) |
Rotel () g
HLIMIT () (’Péf“/"}’d>

142

18.

c R A o L % 1l S LRI A IRy ey JAR g e

MIMINF gnd MIMINF2 - Integration Routine
Purpose

To perform the calculations necessary to integrate an array of variables
by the Runge-Kutta method; to determine an estimate of the truncation
error and, with this information, to decide whether to accept or reject
an integration step; to conpute a new step size, HO, (based on the
truncation error) to be used for the next integration step.

T the independent variable for the integration

TO - the value of T at the last valid integration step
Y ~ array of current valuez of integrated variables
yo

- o array of the values in the Y array at the last valid
integration step

1 4 ~ array of current values of derivatives of integrated
varisbles

Usage:

In general, a numerical integration routine mist maice several inter-
madiate or preliminary caleculations of the integrated variables before
an integration step is actually takem. This routine is organized so
that for each basic entry point to it, one of the severai intermediate
calculations of the integrated variables is performed. The reason for
organizing it this way i2 so that MIMINF does nct have to be shackled
with the responsibility of driving other calculations which need to be
performed during an integration step; as a consequence, MIMINF itself
is virtuslly vold of complex logic.

}XE proper is the only routine which calls MIMINF. Comeumication
Letween EXE and MIMINF is accomplished for the most part by the indicator
¥TWTAS, On the call to MIMINF at which the final values of the inte-
grated varisbles for sn integration step are computed, MIMINF sets
MIMPAS = 0 in order to inform EXE that the step is tentatively all right.
After each return from & basic call to MIMINF, EXE increases MIMPAS by

1. EXE makes each basic call to MIMINF with (the absolute value of)
MIMPAS as the argument. Hemce at each basic call to MIMINF the next
intermediate calculation of +he integrated variable is performed.

Now every integration step that is made has to be double checked by
MIMINF; it is only wher th~ next integration step is ready to start that
there is etwough information for MIMINF to get a good estimate of the
truncation error that has occurred on the last integration step. Hence
st this time, EXE makes the terminal call to MIMIN? (entry point 5) for
the truncation error check. If the truncation error is too large MIMINF
(5) sets MIMPAS = -1; this informs EXE that the integration is to be
backed up and the last integration step is to be attempted again with

a smaller step size h (i.e. HO) determined by MIMINF (5).

143

Methed:

The method employed here performs three intermediate caleulations of the
integrated variables, y,, 7y, ¥g, before the finel value of the inte-
grated variables, yn+], 1s calculated,

Entry point 1: T, " In *th/25,

Entry point 2: Vg=¥at h/2 ;'rA

«Entry point 3: yc=yn+hiB

Entry point 4: Tt = Tp *B/6 (5 + 2, + 2, +F,)
(The calculation of the necessary derivatives (i.e. ¥n,¥.,¥ ,:}C will have
been done elsewhere by the time that entry point of F is called,
The general form of these derivatives is

n = £ (ynstn)

iA =f (YA’ ty + h/2)
ic =f (YC’ tn + h)

The derivatives are picked up from the P array. The vslues of thc inte-
grated variables are put in the Y array. At present, at most 25 vari--
ables may be integrated.

Entry point 5 Truncation error estimation and step size conirol

At this entry point, the truncation error T, is estimated as

T, =h [inﬂ._ic]

In+l

This is done for each integrated variable. Finally, T ¥* is defined as
the maximum in absolute valne of all the T,'s, Now there are three
possibilities:

(a) EMIN € T, * < FMAX : in this case MIMINF (5) accepts the
integration step and retains the same value of HO for the
next step.

(b) T, * < EMIN : in this case MIMINE (5) accepts the integration
step and sets HO = sgn (HO) min |2 |HO| , |mn?]

(¢) Ty* > EMAX : if |HO| = AMINER the integration step is
accepted; otherwise MIMINF (5) rejects the integrgtion step
(setting MIMPAS = -1) and sets HC = sgn (HO) max tl/2 |roj,
|AMINER|

1hk

"Variable step" integration is an option (specified in the dats by
INDVAR = 1), If IWDVAR is O then the "fixed step" option is used.
For the fixed step, the calculations of MIMINF (5) s described above
are not used; entry point 5 for fixed step is trivial; HO is set
equal to DELTS.

MIMINF2 performs the calculations necessary to integrate the
second vehicle array of varisbles. It is identical to MIMINF
except for the use of Vehicle 2 COMMON blocks. It should be
noted that MIMINF2 is called directly by EXE. Program EXE
thus directly controls both vehlcle equation of motion inte-
grations. The indicator INDNUM controls the number of vehicles
in EXE; INDNUM = 1 signifies only one vehicle is being
employed, and INDNUM = 2 signifies two vehicles are being
employed. A flow chart for MIMINF is presented.

1ks

_ 3.......8.?15:4?&.".:..@“_

S |

r

OM " SN

jasal
Jewi R * LY

NENIZN

Gavsa=

[

1 If»oor-uro0d wi=rema]

(RN =t *m.- Q@IL

J - =mSVdNIW
w.ﬁ.f.it!n (NI B b xvny -a.“.—

(runiv)
IIIII
A.:x.ﬂ:ou

t

v he = N33A
Jeowns v omG - tetnaon s (o pux ANOA A

j

tmnN"s=1 089 OO

T

tsnn -loj

CUNXS = ONAL = (N
{t1a = M P uux

fmawi=1 sezoal

[XTI

('INX+{110A = (DA

(st = (R HUX

WS4l =,
oM an
10y
!
TIPUTYY (anm ;.JTJ

¢

|

al:!.-l. 99t 00

AWINISW

RIS

Bt rto Myt e |

-

19, IIMID and TIMID2 - Step Function Routines for Time Points

Purpoge:

To compute the step function y = 7(x) given by
y = min {erI yzx}

where Y contauins the following types of elements
1) all integral multiples of DELTS

2) y; = 7,{x) where 7, is the step function evaluated by the
TbﬂOl subroutine.

Usage:

CALL TIMID (XX,YY)
where

XX is the argunent.

YY is the answer.
EXE is the only routine which calls TTMID; it doss s¢ tv compute the
next stage time point that must ve hit as a function of the current
stage time. In order that TIMID not return a stage time point which
is "too close" to the current stage time, EXE calls TIMID as follows:

CALL TIMID (TIMES + AMINER, TIMPT)
Remarks:
TIMIN2 computes y = T(x) for the second vehicle. TIMID?2 is
identical to TIMID except for the use of vehizle 2's COMMON

blocks and auxiliary subroutines. A flow -<hart for TIMID
is presented.

147

TIMID

(START

YY » xx + |DELTS| -xx MoOD |Dv LTS |

YY = AMIN(YY,YBOUND)

{
FRETURN
—

148

I T A N —

20, YALUES and VALUES2 -~ Value Print Routines
Purpose
To print the valuss of floating point variables.

Usage
CALL VALUES (L, X1,...,XL)

L is an integer ¢ £ L £ 8 identifying the number or
arguments following it.

.o}

. L cells sach containing the value of some floating
. point variable to be printed.

IL

The above call adds the L variable values, X1,...,XL, to the list of
values to be output on the next line of print. When 8 values have been
accumlated the line is printed, any excess values are added to the list for

® next line of print. If L is O, then the values in the existing list (the
numbsr may be less than eight) are printed immediately.

ILines accounting is taken care of within this routine.

This subroutine is deaigned to be used in conjunction with the CODES
subroutine.

Values arc printed with a "1PE15.7" format.

CODES and VALUES eontrol small secondary output buffers within the program
itself.

Normally a call tc CODES is made before any call to VALUES in order to
jdentify the values. The CALL CODES (O) is necessary to be surc that the codes
are printed; he CALL VALUES (0) is necessary to Le sure the valuss are printed.
(If this is not done the buffers aay never be flushed.)

Remarks:

A flow chart for VALUES is presented. VALUES2 is identical but is
required for corr.:'t outpet zu-:tiun for ihe second vehicle.

1k9

o)

VALUES

S TART

B(IA]

12 345 87 '
B(7)s A7

————-F(uos; 11N)

ICOUNT=ICOUNT+1
C(ICOUNT)=B (1)

IC0QMTsp

————— ——{canTiINuE)

ICOUNT>0

gy

MISCUT and MISCUT2 — Aburtion Routine

Furpose:

To terminate the trajectory if any specified variable lies outside a
specified upper or lower bound for thal variabls.

Usage:
CALL MISCUT

If a specified variable iiss outside a specified upper or lower bound,
TIME is set to 1.E36. TMAX shculd nct be greater than 1,E36 when use
of this routine is specifisd. Thus the trajectory will terminate on
MISSED CUTOFF.

Up to nine variszbles may be specified for bounding on the MISVAR card.
Values for bounding the variables appear in the corresponding positions
on the BOUNDS card. Testing of the boundaries is determinsd by the
LUBGIB card.

The integers appesring on the LUBGLB sard are of the form
iJ
3 specifies that the jth variable on the MISVAR card will be checked.

when i = 0 the jth value on the BOUNDS card will be ignored and no
check made,

When i = 1 the jth value on the BOUNDS card will be an upper bound
for the jth variable on the MISVAR card.

When i = 2 the jth value on the BOUNDS card will be a lower bound for
the jth varisble on the MISYAR card.

Remarks:

MISCUT is called by EXE, MISCUT2 terminates the trajectory if any
gpecified second vehicle lies outside specified upper and lover
bounds. A flow chart for MISCUT is presented; MISCUTZ is identicsal
except for use of gecond vehicle COMMON blocks.

151

N

MISCUT

BEGIN

(DO 40 [=1,9)

1-—-————-—-‘; LuBGLBLD

o By
£~

/ WRITE
e
%

o o WS—————

181UBGLBI [10

Y

-;f.__._...-——--—-\

4”“""0“'{\ 18
""'?0'

A

iT-LUBGLB(I)

-18.10
LOC:=MISVARUT)
v ARVAL=COMON (LOC)

-y

-5t

Y T
{ VARVAL> BOUNDSUT?, Tola
Ny " .

=2 F
"’"’(V'A RVAL<BOUNDS(IM?

* fo "'r IME‘H&SL!

RCLTURN)

40 _

e sy et o e

(CONTINUE)

__RLETURN

22, ONLINED - On Line Display Routine

Purpose:

To display a thirty-nine charucter message on the CDC display
station of a CDC 200 user terminal.

Method:
The system routine encode is used to construct the message line,

and the sy_tem routine scope is used tc display the message on the
CoT device.

Usage:
Entry is made to this routine with the following statement:

CALL ONLINED
Subroutines Called:
ERCODE
SCOPE
ONLINE D

M =ANCYeLE

i

ENCobE (w0, messhar)
ESERD, £5éRdT, Mo,
VYCRAF 93T ° ?

ENCOLE (¥0, MESSACS)
SCorE 6,,5%[) it PSTARC) IxSTAR(51)

LTt

23.

DIFEQL and DIFEQ2 ~ Point Mass Equations of Motion

Purpose:

For performing all calculations necessary for the three-degree of freedom
trajectory equations.

Method:

DIFEQL has several subprograms; in general the subprograms are respon-
sible for performing the calculetions made necessary by certain physical
attributes of the vehicle, the trajectory or the envirorment, DIFEQL
may be called from EXE, EXTRAN, and PTBEQN (by first passing through the
interface routine DIFEQ).

Subprogram
HETS Temperature and heating parameters
TFFS Thrust force; mass flow
FPPS} Control variables as functions of already computed
FPPFG variables
SACS Wind axes aerodynamic forces on vehicle
ATMS Atmospleric parameters
GVSP Local geocentric gravitational force components
LATS Conversion from geodetic to geocentric latitude and
vice-versa

In addition to the vehicle and planetary characteristics subprograms
above, DiFEQL is broken down into a sequence of control subroutines.

Subroutine:

DEQPRE Used at Entry 1 from EXE
DEQINI Used at Entry 2 from EXE
DEQBCI Used at Entry 3 from EXE
DEQACI Used at Entry 3 from EXE
DEQSPI Used at Entry 4 from EXE
DEQVAL Used at Entry 5 from EXE
DEQCOD Used at Entry 6 from EXE
DEQIV Used at Entry 7 from EXE
DEQHT Used at Entry 8 from EXE
FIRFUN Control computation of fire control functions

154

. vtm N g DR R SRR e T
S TR YD R T Pt Y 4T

GAM91 Controls flight through the vertical

CTLITR Controls instantaneous control varisable
iteration process.

»
With DIFEQL itself there is a considerable amount of code that may be
by-passed depending on the type of problem being considered. Many of
the calculations done at DIFEQL (3) would be purely auxiliary. Therefore
for calculations of this type, there are indicators which may be input =
0 if it §5 desired that a »r. icular calculation be performed. Since
DIFEQL (3) has to be called so many times during a trajectory, any dele-
tions of calculations which are not essential will help to cut down on
the machine time,

A general dasscription will be given of each entry point associated with
DIFEQl. Detailed information can be obtairied in the user's manual for
each entry point used by DIFEQL.

DI 1

At this entry point nominal values of indicators are set ani the values
of the integrated variables are initialized at O. Also, nominal values
are set for the standard constants used in the equstions. (e.g. polar
and equatorial radius or the earth). See DEQPRE.

DI 2

This is the initial transformation. It is always performed at the
beginning of a trajectory; it may be performed at the beginning of a
major stage (see EXTRAN). Also, it may be used in certain combinations
for the h-transformation (see EXTRAN). See DEQINI.

DIFFQL (3)

The main body of the calculations in DIFEQl appear at this entry point.
The primary purpose at this entry point is to compute the derivatives
of the varisbles that are being integrated. See DEGBCI, DEQACI, and CTLITR.

DI {

At this entry point the varisbles computed at either the initial trans-
formation or for the h-transformation are printed. See DEQSPI.

DIFEQ1 (5)

At this entry point, the codes are printed, the codes identify tle
variables printed at DIFEQL (4) and DIFEQL (6). See DEQUAL

DI 6)

At this entry point the values of the variables computed at DIFEQL (3)
are printed. Also, ths values of the state variables (and perhaps
clher inbr ruted viiables) are printed. Fntey ia made to DIFRQL (6)
only at 'ralid integration steps. In some cases the value of & variable
is printed only if the correspunding indicator is set in the data., See
DEQCQOD.

155

s p———

et A & e i

DIFRQL (7)

At this entry point the variables to be integrated are defined by making
a call to INTGRT for each variable to be integrated. In some instances
this will be done only if the appropriate indicator is set. tee DEQIV,

DI 8

At DIFEQL (8) an h-transformation is made. This transformation may be
performed at a stage point (see EXTRAN). See DEQHT.

Remarks:

Subroutine DIFEQR is identical in form to DIFEQL. DIFEQZ2 controls the
vehicle 2 equation of motion calculations using sppropriate COMMON

blocks end auxiliary subroutines, A flow chart of DIFEQL is presented.

For user convenience, the original single vehicle equation of motion
routine, DIFEQl, is also presented.

156

L

SO TR TR e n AR TS TR T AR e

Q

007

®

DES PRE
FIRFUN(7)
GA) (1)

RET 1N

i

2000

DEQAINI]
FIR Fun(2)
GAnI9/(L)

A

4

KETURN

DEQVAL
FIR FUN {¢)

DERBCT
FPPS(3)
GAMYI (3
CTLIT
oFeACT
FPPG(3)
FIRFUN (3)

(féfu(n')

!
(RerurnN)

0
[DER c¢d
FIRFM (5)

(PEsenmcn))

151

DER XY
FIRFUNI(T)

1

(/Fg'z?/ﬁ’/t/)

\Wod

DEQH T

LET A

Nyhita

(F110001)%0™ 440N}

(8)89¢3
t8) 2w
18) 8444
(1) s4dL
(3 sam

e

JO!I 7

Tosery vy’
Tpwea ey .2y

L] o.—O- ¥

¢ omy MmNy

_WIM s lesan. Yo,

sve Bp .8y
sy bt
» 001 4 sr Bty

1

{ ximyy

stxv » INODY R
Sy ANOWY (2-0)
HEV ELAORY (Y 40 -2
1 ca0w
1eivm {v1): §ile@0D

llllV‘J,

. ows
4 ron Lo
fo
Svemve |
Tigees Sy em
Toees T, e
L]
VYR O W “

B —

SNOTIVNDA AToLHHA HTONIS TYNIHIHO

—

L]

O e 8, 9%
WINIIONG = [D8em Oiem 8,08
31206008 [aemrSirer 0,90

L
1171y "l 0y
Y -8 -t
WY Ypaly

YA RN
T T
eyser 8/, gren s, .8
A LR LT

1

it Yadd a1 1} '

PR FL

vt Plgem

‘M-t
“.x
-!18-0—#.

s —

“t

insavs
18) 244
(H) S
[1R2 ZI7Y
(I3 X% L

P SATRONY
o 108,08 IRV
LN1E s 1

WA retnaory

19 M) Prealte
I -~ T &
(o tsw-a8)romets

R It N lc:.t.muw.ﬂl..
Ay I PP
M. Ta- 1,‘??9 A

¥) iS008 nIGOAY

o i Wi i L e >~ M B> A o o . . o

| SR

2T Tt
TSN - Ay
€5 P3 il L ~a

oqize S

)

{1 103410

JH
Wil

158

By poc. .

ot 9)

& v

R, 0 P NP~ AR O A AW Py a9 S0

c-cod (%)

LSl W
O ~ O muize

4 R Y [—

WANET v

DIFEQ) (2}
® ®
W 1L
(L1

v
“ ~ ;. oHAT Cinca
AXTTIH. . mano e
LPecol'|un gy no, e :u\uoq‘cu

BB e in v,
Yao vy Ry Lbar

r

: u:‘%u.) b_“@%.D oown ama canss

by
. S T |
Ry Yo it (s (0 o, Duars) |
1 rouk ol | SEMTIIELTY) I
¢
nlvo--m ": To oremirs
& tin Y cone
L e v 08 Y e
Taey owin
cumu[n-‘fum: .
ROTATE: Y4(iuouar <1) WMP =1 1P INDVAN = §
(-m & T yaxie T T ER]

(o -c Jamoursans
{ ¢ Jasoursaxs

e Oy (LATS)
Mady-h

=Ry 16 INDWS < 3

g,‘-t..-.u +1g e 20

*
con & un by
weC s €

i"‘l,u-l‘ + tgem ad

|
vl !

g - F (Tawr Jwrase

toma § (vewr)whne:

toww § (Teas) wnmes
—_

¢°-|-" (i’”%)

VarVitg- Tl e (Y 5"’("1..)'

vA-ui' {1 lv.‘_gi)
a .

= mr{u

G) by -tgm

g,]

MACH =
0 WV "e

l“["“' ‘.J v

I FPPOD l

®

ORIGINAL SINGLE VEHICLE EQUATIONS

159

)

o
.
¥y | TO mADIANS]

sy oa o8 o

v B o B

COMPUYELwvw | MATRIX
nOTaTE
€ w 14M0UT , AXIS
8 mpoa7 2 AXIS
8 Apure AxIS

—_— e e

con ¥

W‘___J

r- TurX
commre [v s ot) mavmix

ROTATE
€8y) ABOUT 1 AXIS
ya) apouY , Anis
(ra) ABOUT: ANIS

un Ba res By

MRYA gen g

N g ces sy

HETS 1D
TFFS (3}

SACS (3)

womon
ma Mugn IDALTS)
;‘g

‘g""ﬂ
T T cesay
Ty T tes by vinar
T T sineysinay
{COMPUTED $~ Tr¢

I 71

T =] v y
n Te
-

PIFEQY

(3

‘ X CO8 &t sin wyy X, tup¥,
V=] sin vyt coe wyt o] Ye “p¥e
2 . ' 1] &

|

i=cokV (con fy sin o

v oo
LIRAIT]

b= ‘.-I[tm o e, ‘l]
cas "

R R)

4

=@y - v
v 153" (1andy [ous o}

T

CRIGINAL SINGLE VEHICLE EQUATIONS

B

€0

®
g

-

L.
1 inoanr
y

!rmmv'l* u)

G m MV|’4 U’

DIFEQ!

INDADG

TN IF INDADG =1
Nz IF INDADG*4

2K, IF INBADG +3
=N, IF INDADG *4

Aans V6 (rewe)

(Y Lu)

(Wrasos)

b

1ep6 (3)
ORYGINAL SINGLE VEHICLE EQUATIONS I

161

i'rm-- l;' sin Yy

Va * IM’ {cosa-t)

Vo *Vineo * v.,.,,w,.Vj

Iy (i° ky"¥) Gp+ Tel ng iy

vi ¥+

¢z Vo (""‘il,)'V’(i‘ﬂ.oi.v‘)

ko (4§ + W)

" |

RETURN

LILE L ANT))
489

ACCOwRY fom 3
LINES

st
1NONET ImparIl
INDANTY INDTFF

)

P RINY —_]

ENITIAL PRINT

FOR OIPFERINT AL
JQUATIONS

HETS (D)
Tors (6)
s 8}
996 (3}
#ACE (0

%1
A

TRIWT FODIS
e CAATA
MO CTINOM'
“tAnca”
,T.____J

PRINT VALLES

. .

. LA

i‘_‘“
Lo LT
H 01FEQ"

PRINT saLULS)
p.

At conts
“PMROT “YHLID"
WELH T CRrTYIE
»1Ir1 TR
TIQTIFY ABACH
WAYTET DYNPP

Lo |
i

" _meirAt e

Cap Bie1D”

i

18 _INDVPR T § I

MT'S_'L

oIFEQ1 (5

]

o_1NDSPLE S
Vi e
"VORVE™ “yDnE”

TNGPRET DRLVE”

1_inDoRg 28
‘QRNATEY TRATS

AL " TIXX)
“PWGT" GAMDD™

“S1600°

1#_1DADG 3 ¢
ADTIGL” "AD 167

q__nDMy ¢ ¢
YO

i _wossase
TROTINT Cvgrre

[T ki)
TERERF”

W_WOEHF e
EITIET

I INOVCE 3 @

1

CVCITFT

1 IDLDF3 S i
ANxe anvare]
ANZBIGT TANTOTGT,

—

R S

W __mogcRse
CHGTIN 1F_1MOSPE S 8
“eseer
1 MoocRzS: — ¥
_ 1t INOXYGE = 1
ADTIN “YLIIN S——

RGBT WG

PRINT STATE

VARIABLE COOtS g
NETS (3)
YIS (8)
spPgte)

FPPGIY)
SACS (3)

!

RETURN

CRIGINAL SINGLE VEHICLE EQUATIONS

162

0iteQr ()
LAINT YALVIS
Y
L] [] :
L T
is -
- -« v
v i
" L3
I Y %
If_wpEPa g [TV
v - ‘ ‘
1 i
" moreR t e o _woreR 3 o
* ¢ é [}
17 MOGIPe e I WOADG s ¢
“ » HUEN
%
1" oERy 4 0
= |
® Inetir 0
g
1F_INOGSR 4 0
o i hd ¥ MoveF e 8
v,
e moeca s o 4
t (™ I7_OLPE + 8
(l
r_jugoce®
In Y
[13 I.'D“" L)
I— AMT STATE
hod VARIABLE VALUES
1 moroese: HETS (8}
LY Ny TEFS (8!
" " rersiel
rrec e}
|— SACS (8
RETURN

L o

o= -t

e

R oresst)

%" valia- %)
y- ...*(W/--,) ey

¥~ YO cOgRies

+ e tfe™r 1
A Yl 7= rx]

T R
’

= S 1Y Ta)agmled

P
.ux[;.:—:(mi »-‘-a—nu)} =7
"tTonN

ORIGINAL SINGLE VEHICLE EQUATIONS

163

..;_ Seastr WOSTIR

-)} el ORTH

- .Mbun—q . %
.#)‘um " RUXAnt

- s () ¥ o)

lea} u;‘.a') o) ¥ Vaea; ruma

omen (o, 8)

ReTURN

24, DIFEQ3 - Dummy Subroutine

DIFEQ4 - Dummy Subroutine

DIFEQS - Sample Arbitrary Differential Equations

This is intended only as an example of how a new set of differential
equations may be programmed for use in conjunction with the optimization
program, The equations of this example are in cylindrical coordinates
and describe a two-dimensional point mass with constant thrust in a
vacuum having direction of thrust as a control variable. No flow chart
is included with this subroutine.

DIFEQ6 - Dummy Subroutine

164

25. TLUREV -~ Two Dimupsional Table Look-up Routine (Special)
Burpose
To linearly int»rpolate in a table which has just two points,

Usage
CALL 1LUREV (X, C, Y, IER)
vhere
X is tue argument
Y is the functional value
IER is set to 1 if extrapolation was necessary

C iz the array containing the points of the table according to the
following format

C(1) = Not used

c(2) = %,

¢(3) =1,

o) = X,

c(5) =1,

It is assumed that X; < X

Remarks
MANTGT and REV are the only routines which use this routins.

165

TLUREYV

START

(C(5)—~C(3)) - (X-C(2))
Y =€+ ca) - ¢

IERR 1

166

26, ACOS - Arc Cosipe Routipe

Purpoge

To compute the arc cosins of a normalized floating point argument, X.

Mythod

For l X | < 7.4505806 x 10~7 the arc cosine is set equal to n/2. For x = 1.
arc cosine is set equal to zero and for X = -1. arc cosine is set equal to m.
When the argumert X # T 1. the routine gives the arc cosine in radians from O to w.

Usage

The arc cosine is computed using the statement

Y = A00S(X)

where, ix l £ 1. and Y = Cos™1x.

Bemarks

No error returns are provided.

167

FUNCTION A0S

(ABS(X)

*1,

—
RETURN

X

ACOS:3.1445¢

Xe=(2°X1"* "2)-1,

FT Y. A {add)

AA+sat2 *{1-1-1)

Xi*»Xx8

1‘:

ACDE = 1.4418928°A

RETURN

168

s e T A e ST TR L S T

27. ASIN - Arc Sine Routipe
Pyrpoge
To compute the arc sine of a normalized floating point argument X.
Upage
The arc sine 1s computed using the atatement
ASIN = 1,5707963 - ACOS(X)
Y = ASIN(X)
where |X|s 1. and T= sinl X
Bomarks

No error returns are provided

169

28. wand TIU2 -~ Two-Dimensional Table Look Up Routine
Purpoge

Given an argument X, to compute Y = £{X) from a table of X and Y values by
linear interpolation.

Mathod

The table of X values is searchea until for some i, X, < X <X 141° Linear
interpolation is then performed. 1If, for some 1, X = X; then Y i sot to Y.

Uagge
Entry is made via the statement,

CALL TW (X,C,Y,IND)
whare, X = Variable name of the argument.
C = Array name of the curve being used.
Y = Variable name of the interpolated valus.
IND = 0, no errors indicated.
1, limit of the curve has been exceeded and the result ‘s an
extrapolation using the last two points.
The curve C must be stored as follows:
¢(1) = N = Number of points in curve (fixed point integer)
c(2) = %y
c(3) = b4y
C{4) = X,
c(s) =Y

2

C(2n) = Xy
C(2N+1) = YN

Remarks:

A flow chart for TLU is presented. TLU2 is identical to TLU except for

use of vehicle 2 COMMON blocks.

170

TLY

lloczmizLoz -1

(z:cuocg

DO1 Is 1, N

[s:2-1+L0cZM 1“]

1
R

1

CONTINUE l—»——f—{r (l.oczmwz)—l—1
I

IJ‘4+LOCZM1 i
-

CALL ERROR

Loc 2
L____‘_.

Y=C .
[N !
!
" ‘L'J ,
v RITE
RETURN ./ 10
|
)
— K
- C; ~Ciq} -
R +(6‘-*—‘€:‘f}(" 19 |
’ i
FETURN

in

o

29. ATAN2 - Arctangept Routine

Purpoge

To compute the arctangent of the quotient of two normalized floating
point quantities, A/B, with proper quadrant control.

Method

The routine conputes the quotient X/Y. The arctargent is computed with
quadrant according to the sign of Yand X. If X =0 and Y # O, the routinc
computes

Y = tan™t (1/%) =

ISI

X .
|7l
If X=0and Y = 0, it cuputes
T =tan™ (¥/X) = 0
Unage
The ar-tangent of ¥/X is obtained via.

Y = ATAN 2 (Y1,X)

172

FUNCTION ATANRY.X)

To

ATANZISIGN(PIOV 2.Y)

RETURN

RETURN

A |
INDIC3({ X 4T.0.0)

)
1 3
1 Ki-2
[Prentn | ATANZaPIOV 2

1F (CNOT. INODIC)

RETURN

™ 2

A

ATAN 20ATAN2 -ONEM

ATANZ-R |

+ONEPI I

ATANIATANZ

RETURN

173

30 . TLUl - Tyo - Dirensinngl Table lLook-uyp Routine
Purpoge

Given an argument X, to compute Yi = f(X) by linear interpolation, where
i21.

Method
The table of X values is searched until for some i, X. < X < X.,,. Linear
interpolation is then performed on the number of curves requested. "It for some

i, X= Xi’ then the Yi are set to that corresponding value of the dependent
variable,

Usage
Entry is made via the statement.

CALL TLU1 (N, TAPLE,TIME,NDEP,ANS,IND)

where,
N = The number of points in each curve.
TABLE = Tiic array name containing the sets of curves.
TIME = The variable name of the argument.
NDEP = The number of curves contained in the array CURVE.
ANS = The array name irto which the NDEP answers are to be stored.
IND =0, no errors ind“cated and all interpolations seem to be good.

1, the argumen* X lies outside the range of the independent
variable. 1f less than the range, the first points were
used. Tf greater, the last points were used.

The table "CURVE" must have been set up as follows:

CURVE(1) = X
CURVE(2) = X,
CURVE(3) = X
CGRVE(N) = Xy
CURVE(N+1) = Yll
CURVE(N+2) = le
CURVE(N+3) = Y
. 3

17k

CURVE(2N) = "1N

CURVE(2N+1) = 121
CURVE(2N+2) = 122
CURVE(2M43) = Y,

3

2y
CURVE{3N+1) = Y
1

CURVE(3N) = Y

CURVE((NDEP+1)#N) = YNDEPN

Remarks

No other routines are called from this rouvtine.

175

TLUY

DOSI=ZI,N

TABLE()-T!ME)
]
] 15 _

CONTINUE

14

NI =t

IND= 1 l
IND = 1

N! =N

——

s
DO 9 K=1,NDEP

TEMP =[TABLE (I-1)—-1’|ME]/ [T ABLE (1-1)-TABLE M]

1 DO 20 K =1, NDEP

NSUB:=-KeN N1 l

NSUB : K.N+ |

ANS{K)z=TaBLE (NSUB)

20

ANS(K)-=TABLE(NSUB-I4TABLE (NSUB)-TABLE (NSUB-1)TEMP

!
RETURN

Ke TURN

176

31. TIMREV and TIMREV2 - Time Point Collection Routine

Purpose:

During the forward trajectory, to build an array of stage time points
thet must be "hit" during the corresponding stage of the reverse
trajectory.

Usage:
CALL TIMREV (TIMRS, TOL)

TIMRS the stage time point that is to be added to
the list of points that must be hit in the
corresponding stage of the reverse trajectory.

TOL a tolerance: if a previous point of the list
differs from the current point to be added by
less than TOL, the current point is not added.

The name of the array of points is TIMESA. The TIMESA array is built
in monotonically increasing order. If for any reasen TIMRS is leas
than a point in the TL{ESA array, all points greater than TIMRS in ihe
TIMESA array are annihilated. NPT is the current number of points in
the array. NPT must nct exceed the dimension of the TIMESA arrgy; if
it does the case will be terminated. The first point of a stage will
always be inserted in the TIMESA array.

This routine was written in anticipation of the need to hit stage time
points in reverse for a mmber of different reasons. In particular,
the routines PARTS and CTVS call TIMREV. It is imperative that PARTS
(3) call TIMREV with the current stage time and a tolerance of O.

TIMREVZ2 builds the array of stage time points for the second

vehicle reverse trajectory. It should be noted that all variational
optimization prcvlems must be phraused in terms of the first vehicle
data. In cooperative variational optimization, a program modi-
fication setting second vehicle control variables to names in the
first vehicle directory is required. A flow chart for TIMREV is
presented. TIMREVZ is identical to TIMREV except for use of the
second vehicle's COMMON blocks.

77

TIMREYV

START

g

ND=1 F
T

TIMRS 2 *nmesmeJ;T
Fl

NPT=NPT-1

l—@MRSsmMESA(um +TOUL)

F

NPT<NPTMAX)}
F

Y
INDSTE = 6 |

ReToRR)

'

NPT = NPT + 1
TIMESA(NPT)=TIMRS

RETURN

178

[k B

32. PSUBR-Evaluation of Partisl Routine
Purpose:
To calculate matrices of partial derivatives mumerically.
Usage:
This is a general routine; it 1s used in the following manner:
suppose y; = £3(x;, ..., Xy)
}m = (X1, oees Xp)

and we want to compute

B A
EE e
S
A Ty
R 3%y

then a2 call tc PSUBR should be made as follows:
CALL PSUBR (N1,LX,LXST,HB,N2,LY,ANS,JP,P,LFCNS)
where Nl is n

IX is an array containing the COMMON locations of the
variables X1s sees Xpe

LXST is an array containing the COMMON locations of same
variables xl*, ceey xn* to be used in determining
perturbation slzes.

HB is an array of the minimm perturbation sizes to be
used for the respective variables X}y eves Xpo

N2ism

LY is an array of the COMMON locations of the variable
Tys eoos Tpe

ANS is J, the array in which the answer is to be stored
(this must be dimensioned 15 x 15)

JP is an array of indicators one for each variable x,, ..., x;

JFj = 0 means that the i'th colum of J is known To be O.

179

P 1s a constant used to determine the perturbation sisze,

LFCNS is an indicator used to direct PSUBR to the code for
the functions fl, sevy Tpo

Method:

The elements of J are computed a colum at & vime by the following
approximation

3¥s = £3(X1, ooy X3+ Byy vouy Xq) = £30x), <00y X5 = R4y eury Xp)
aXJ 21’13

where hy = max {HB,, |x3*| 107P)

If JPJ = (0 then __a%';i is set =0 for i =1, ..., m. This eliminates the
%3
need for calling the routine to calculate the f {unctions for columm J.

The veriables in PSUBR are dimensioned to compute a 15 x 15 matrix of
partials; PSUBR stores the answer in ANS which it expecis to be dimen~

sioned 15 x 15.

After ANS has been computed and before returning PSUBR makes a final
call to compute the f functions with the original values of the x's.
This is intended to insure that values of variables after computing
partials are the same as the value before computing partiels.

Remarks
(1) PSUBR is called only by PARIS.
(2) P is PEXN in all calls; PEXN is irput.

(3) HB is either HBARN, HBARM, HBARI, OR HBART depending on
the call; all of these are input.

PSUBR charges the routine PIBEQN with the responsibility
for driving the calculations of the f functions specified

by LFCNS.

The basic state variables for tle secund vehicle may be
rerturbed through PSUBR. Appropriate transformetions to
permit such perturbations are introduced through subrou-
tines ONEIWO and TWOONE.

Perturbation of vehicle two's control variables in a
cooperative variational optimizntion requires a program
modification in ONETWO and TWOONE.

Lalindi

b Al

@

—$=(DO 100 1=1,N2)

—8(DO 198 S=1,N1)

.
ANS(),J)= ..——]

__‘_.__’_.JCONTINU[)

.

o()=-1.

o(2)=1.
sC=19.

————$»¢00 181 I=1,NY)

J=LX ()
SNOM(I} = STAVAR()

L———‘_—“(C()N*INUI)

(DO 157 t= 1L,NY)

Tsnomn se[]

atsl =1?

J:AXST (D)
n,-|co-on(u|»sc

_{CONTINUE)

‘————"—NDOHS N =1,N2)

J = LY
Y(L1, £} = STAVARU) I ‘
L *] ANSINI) = (YN, 2) YNt
—-(DO108 LY =1, N2} TNOH

—(CONTINUE)

1

SNOW() = SXt

o—
A

"
(CONTINUE)

)] !
STAVARLS) » SNOMULY) | ‘

(CONTINUE)

— e

‘ o ——piO128 Lz 1N

!

4 = Lx{L)
STAVAR(S) s SNOM(L) ‘

L p-0O1es L1= 1,81

[:NOI(I) = §Xit i D(L‘]

.
L t,2) ——(CONTINUE)

e

|sx| = sNomU)
)

CALL
PTSEQN
~

te
Cry

L
(N(l:l(l) }—'—T ‘.{H - R I

181

33. PRPAGK - Blocking Routine for Partial.
Purpose
To enter values into an array for output to taps.
Method

All non-zero numbers (integer und floating point) are packed into a large
array before being cutput to tape.

Ugage
Linkage to this routine is made vii the statement.

CALL PRPACK (MCONT,NPOINT,NSTATE,IFM,IGM,TT,ND,IALP, IDEL, IWA,
TWAT , TWBI, INDPMT, TPARTS, I, TENTRY)

where,

MCONT is the number of control variables.

NFOINT is the number of values in CTABLE.

NSTATE is the number of State Variables.

IFM is a (NSTATE#NSTATE) Matrix,

IGK is a (MCONT*NSTATE) Matrix.

IT TIME

HD i3 a control that is passed to the reverse, segment O at
the beginning of the trajectory, 1 within the stage and
2 at the end of the stage.

IALP CTABLE points for that tims.

IDEL TIME step.

TWA Weighting Matrix indicator

IWAI Constants used to construci the W' Matrix.

IWBI Constants used to construct the W' Matrix.

INDPMT Number of end constraints.

IPARTS array of terminal partials

IK not used.

IENTRY serves as an entry point to the subroutine.

COMMON References

CTABLE in numbered COMMON of 1

Subroytines Called

TZERO

FORTRAN I/0 routines.

R T T R R ey TR R AR e R

S e o At Rt e St ik

!
'

g TLIt T

ln‘..
visn's«1 T 0@
£ on nme
FAVAiOM 1w TON™
Lol 100 -
= ODDIINVL
VIO o e o OOOIBVLL _
1IVSNS VEN S VSR WXL Xie MM o
LeIvSN o ve = vom
1e 65,/ vSwsivem
te 1o 65 SYswaivem
1+ JAVLSH0 LINIOMI 3 LY LI C* VSR Co t2IVISHIC VI ik
-~ taysmovIm *
P
1ehy Svgw ey
“2*o__.(...::.ou.l.nu;.\c»wlu H
.. o’ 124 - Z
T -+
LY FU 313

[1 1) Sekebiaia” gy | 23
MNIVdud

34, FLUSHA and FLUSHA2 - E f£fer Plugh Houtine for PRPACK
Pyrpose
To write on tape a partially-filled wuffer.
Method

To teat and determine if a buffer is partially filled and if so to write
that part out on tape.

Usae

Entry is made to this routine by the following s*atement:
CALL FLUSH1

Remarks

"aly the normal I/0 FORTRAN routines are used by this routine. A flow
chart for FLUSH1 is presented. FLUSH12 is identical except for the
use of vehicle 2 COMMON blocks and units.

184

FLUSH1

oK e 1 RETURN
XA = IXA-1
WRITE
12

RETURN

185

35.

SETGRD -- Paper Plot Grid Si.» Routine

Purpose:

To establish maximum and minimum dimension for x and y
axes for each paper plot.

Usage:

Call SETGRD (XMAX, XMIN, YMAX, YMIN, IIC)

XMAX
XMIN
YMAX
YMIN
NC

Maximum value
Minimum value
Maximum value
Minimum value
Number of curves to the plotted

in the X array
in the X array
in the Y array
in the Y array

SETGRD
Y

DX = |YMAX - XMIN| * .075
DY = |YMAX - YMIN! * .075
YR = XMAX + DX
XM = XMIN - DX
YB = YMAX + DY
YM = YMIN - DY
NT = NC

¢

RETURN

186

L g —

36.

PAPERP - Printer-Plot Conirol Routine

Purpoge:

To provide on-line paper plot capability during equation of
motion computation.

Usage:

Call PAPERP (X, Y, NX, TITLET, TITLEB)

Where

X

NX

TITLET

TITLEB

is an array that contaius the values of the
independent variable to be plotted

is an array that contains the values of the
dependent variable to be plottced

is the number of data points to be plotted

120 character title that will be placed at
the top of the »>lot area

120 character title that will be placed at
the bottom of the plot area

PAPERP

k'_

NWT 12
NWB 12

—

VALL PPLNLN

v

RETURN

n#

187

37. DETECT and DETECTZ - Sensor Contrc. Program

Purvose:
T> control the sensor and vision routines.
Remarks:

A flow chart for DETECT is presented. DETECT2 is identical except
for the use of vehicles 2 auxiliary sul-otines,

188

T -

SENS0¢)
VIszon (1)

—

B 72 RV

\

SE sl (¢) |
VISzon Cu)

Jpu—
1%

SENsoQL?)

vIszor (7)

/__J TN

(Zereed

)
/”/
s /

—

/- ™~ _
_Té’,ur,ef;/ /‘g-—-—-————-{(;ao)‘
\\.———v— L mea ~ .
t" N ~
\
\

~

DETECT

‘
i

rd
/

SE~sOR(2)
vision (2}

‘v\fé Feeen))

l@

SENSOR (S)
vIszon (5)

(Kereen)

; senso (8)
l vISren (%)

(2@"77;/1/)

| sErse (3)]
VIS2 M (3) '

|
|

SETURY

‘l!’ of

> (i

SENSOR(E)
viszon (€)

S
| &y
N
N
\
kY

38. RCLEl and ROLE2 - Role Selection Subprogrsm

Purpose:

To det'ine each vehicle's combative role on the basis of instantaneous
vehicle states.

Method:

Each vehicle role is selected on the basis of their relative states.
Role selection includes the following:

a. ATTACK
b. OFFENSIVE
¢. DEFENSIVE
d. EVASIVE
An override permits selection of a fifth role
€. PASSIVE
The subprogram contains the standard EXE ZENTRY points.

A flow chart for ROLElL is presentea. ROLEZ2 is identical except fer
use of vehicle 2 COMMON blocks and auxiliery subroutines.

150

'
(Brre fn)

INOROL =

!

PASSY! (1)

OCEFENY (1)
EVADEY, (1)
OFFENY (1)
AZ7Re101)

PASSV I (2)
OCFENI (1)
EVADE 1 (L)
OFK ENY (L)
ATIACY (1)

(FEreamn)

MASVI (%)
D&:gmry)
EVASE ! (¢)

L EFFENI(Y)

WlaZIs7

B

KT RN

¢

Aasy1/s)
PEFENT(S)
EVADEIS)
OLEEN/ (5)
ATTAct (S)

CodEs (5, fIwFD,=
CoNab, E56ADT,
ESERD, ¢ FeRD

191

VAEs (o Prord, |
ComBb, ESEaDT,
€SCAY, gFean

—

o0 0

FAssvr (7)
DEFEN (7)
EyAoc(3)
OFFEN! £ 7)
AT,CACT (?7)

})455 v,/ @)

fETeeon/

OEFENMICE)
EVRLE 1/ F)
CEL A7 &)

A77Acs (®) |

\

Mssvi(l)

Noreaitle)

EVROE 7 &)

QFFENI(S)

|arrac /el
T

V73 TuweN

3

INDOLD = Jap RVL

YE'S 1’;‘;""\

Q

NO

IR0LE < f14:0800/ I

o

INDI?.)‘ 2

192

OFemg - .o

JAITAC < JATTAC 4

|

00

i

ArTAc 1(3)

(cErae

T e R L

oL ¢

lPFEN’S /0 [INDROL: o

-

NI B Y7 ST VIT)

¥

OFFEN/(3)

RETW RN

T
t

193

JDEF . J=JD€F.uoll

DEFENI(3) l
b

(RETLIRN)

lllvb Ro;, =3

390 3

DEENIR: /.0

l.

Evape 1 (3)]

HE TURN

39, HLIMIT and HLIMIT2 - Minimum Altitude Comstraint Routine

Purpose:
To force a pull-up maneuver when & mininmum altitude boundary is violated.
Method:
A minimum altitude is defined as

a. Constant

b. Fuwmetion of vy

¢. PFunction of v, V
When this minimum altitude limit is not satisfied, the angle-of-attack,
bank-angle combinavion,which maximizes vertical force component, is
used. Whenever the altitude limiter is employed, an appropriate message
is printed by MSGONE or MSGONE2.

Remarks:

A flow chart for HWIMIT is vecesented. HLIMITZ is identical except for
the use of vehicle 2 COMMON blocks and auxiliary subroutines,

194

17308

oy 22 —(Zer TRy} &

Locris&E M T8O/

HeTE 82

ZEWTAY > s

CE7erCN

INOHL?? = O
HLOWF = -).0€70

RE resme v

1
NAHIAC = & j

1
ORLFPBA
MS3SGonE

PETumenN

FNONLIT =/ foliidiihtin
z { tvorem 2L j:uza)

TmOMems 3 TLu

(G4m0, miowr)

REjurN)

| 2o 2
Lcﬁm 70' v£)7f)

HeowrF)

195

Lo,

ANGLES and ANGLES2 - Relative Angular Orientation Routines

Purpose:
To compute the relative angular orientation of the two vehicles

In body axes and to compute steering errors from the refereuce
vector and associated functions.

Usage:
Called from the .ombat logic during equation of mction computations.
Remarks:

A flow chart for ANGLES is presented. ANGLES2 is identical except
for the use of vehicle 2 COMMON blocks.

196

In

* 8" = tan~! [sinB cosa/cosB]

K 2

TMTX:
Compute [U, V, W] matrix
Rotate:
(-a) about y axis
(B') about z axis
(o) about x axis

TMTX:
Compute [r, 8, t] matrix
Rotate:
(-Bp) about x axis
(-vp) about y axis
(-op) about z axis

I

TRNPOS:
i, 3, k1T = i, J, k1"

18

MULT31
Axg = T Axe
byg (i,J,kl Aye
Azg Azg
TRNPCS:
[r, 8,87 = [r, s,t]"
MULT31
Ay = [r, 8, t] byg
Azp Azg
TRNPOS:
(u, v, w]T = [u, v, wl!

197

e B Sy G R o L L R T

A

¥ 7

® Target Angles in
Body Axis System

® Steering vector

MULT31
Axp Axp
Ayp = [u, v, w]T Aya
AZB AZA
8potm = tan [Ayp/Axpg)
- _ 2 2
gy = tanl Azp//Axg2+Ayp?)
= 24 p0nl
® CONE tan [VAyp2+Azp?/AxB)
xAIM = Xe t Xes
Yagm = Ye * Yes
2y = Ze * Zeg
Yes = Axe + Cpg * (Axpa-Lxe)
Yes = O8ye * Cp); * (byra-aYe)
Zeg = AZe + Cpls * (AZLA-AZe)
"rg = Xeg +yes tzeg
FT - FXe +Fye +er
€g = cos'l[(xes-ue+yes-ve+zes-we)/(v.vs)]
Fgry= (Xes'Fx t*Yeg:'Fyetzeg Tzg) /Vg

= g1
€¢ cos [FSTV/FT]

¢off

=180 - o

ASP

'

RETURN

198

e g R R LA M 5 AR ot AT T s AN v S ey T

41. CRATE and CRATE2 - Finite Control Rate Routines

Purpose:
To introduce a finite control rate capability lioto combat simulations.

Method:

Desired control vector components are defined by either combative logic
COMBAT and COMBATZ2 or the flight plan programmer routines, FPPS or FFPPS2.
The inetantaneous control exror is then used to define an error magni-ud-
dependent control rate. Control values are obtsined by integratica of
their rates. Logic to maintain controllablie inequalities is incorporated
in the finite control rate option.

Remarks:

A flow chart for CRATE is presented. CRATE2 is identical except for use
of vehicle 2 COMMON blocks and auxiliary subroutines.

199

ALPPP 2 ALPHE

YES

SAVQL = AclPH D
SAVBA : BA72D
[sayan = A

[‘Fﬂp.s'/f)

SAVAL
CNE.
ALPHD

NO

EADID:=BARD

YES

SAYEA

MNE.
A)2D

ND

ANnD = AN

YES

SAYAN

./:i////
~ AN
N

NO

/

AN =5AY Al

ALPYD =savAL
BA 22 = SAVEN

200

)

oo /S50
Z°= Iy ZMOIFC

ALFCS1(2)
ves L
2.000/

N

NOBNC (X) yes

L8
!

NG oAt =/

& l

| 150 CONTINUE |

IcALL YES
L E8-
o
NO
NFPHIAC= D
!
OPP BA
ALPHO=ALPOD
c7TerTk ;
ALPHO) = 0.0
GAMDI:0.0
ANV 0.0
cnrrﬁ ALAHO = ALPOD
8A2D 2AD?)

AnD = AN

SOETIRN

201

&)

ALPHDI = ALPDOTw CRaNIK)
82207z BADOT %¢Peos(7)
AN 2721 2 ANOST$ CRLons (9)

!

EAP e [acooo-purunf

284z [8ROID- R 220]
EN: fAND - AN/

RAFALP = QLPDOTNDECTS # (1700 (6)

PAFEA - FADOT % DELIS xefcsn (8]
RAFAN = ANOOT YDés™ ¢ 4epLon (i)

""‘i jf’ YES
AALP
NO ALPHD) = ALPH DI v (€ ALP/RAFUEI 2

ALPpIN - 6/92/"/([.0»’1'475)

ALPKDI = ALPHrITS

L_A PO = A PHDY

202

BA275/: BAZ 7014 (£B4/RAE gAY 2

l

2

84270¢ = BAMIA

'

8A2722) = -BA22

ANT77/2 AN 772/ % (4.0 058)38 2 J

AN 227/ = RANMIN

14

4

ANI227 = -AN 272/

l

Aereen

203

42, TIMO1 and TIMO012 - Tabular Time Point Routine

Purpoge:

To provide additional timé points that the integration routine must "hit"
in the forward trajectory.

Isgge:
CALL TIMOOL1 (VAL,TPT)
VAL is the current time value.

TPT is the next time pcint larger than VAL which should be "hit" in
addition to other time points normally “hit" in the forward trajectory.
TIMOO1 performs a table look-up on specified 2-dimensional tables to
find the smaliest tims value in these tables which is larger than VAL.

If no tables are specified TIMOOl returns 1.E36 for TPT.
TIMOOL will use the tables specified on the TIMTAB card.
Remarks:

TIMOOl is called by TIMID. TIM0012 is called by TIMIDZ and provides
for additional time points in the vehicle 2 trajectory. TIMOO12 is
identical 4o TIMOCl except for the use of the vehicle 2 COMMON
blocks. A flow chart for TIMOOl is presented.

20k

TIMOOI

ENTER

TPT =1. x ﬂb!E l

(DO3 121, NTAB)

'

LOC! 2 LOCTAB(I)
NEND -LOCI+2 -NVAL (LOCI)
LOC! = LOTI-1

'

LOCI = LOCI+2

LOCI > NEND
F

TVAL > COmM3(LOCY)

TVAL= 1. x 193¢

v

TPT = MIN, OF(TPT, TVAL)

RETURN

205

A7

o

43. DEQPRE and DEQPRE2 - Equation of Motionm Pre-Data Initialization

Purpcse:

Perform the DIFEQL(1) and DIFEQ2(1) pre-dats read functions for
vehicle 1 and vehicle 2.

Method:

Naminal values of indicators are set, ard the integrated variable
values are set to zero. Nominal values are set for standard con-

straints gsed in the equations (e.g., polar and equatoriel radius
of planet).

Pemarks:
L flow chart tor DEQPRE is presented, DEQPRE2 is identical except ror

uge of vehicle 2 COMMON blocks and auxiliary subroutines and sub-
programs.

Subroutine DEYPRE

206

i R AU o B i L T RN PN ulieS S AR R et s ety !;ﬁs.&:ﬁ:v"v,Av‘x,‘yw‘,'a'o‘vy‘:"-’:{'*m}_ SRS

44, FIRFUN and FIRFUN2 - Fire Control Subproram

EI_LI:EOBe:

To compute selected fire control function effective time maneuvers,

Method:

The fire control subroutines integrate the period of time that eachn
of three fire control characteristic function constraints are
satisfied. The three fire control functions for each vehicle may
involve a combination of up to nine trajectory varieble values.
FIRFUN and FIRFUN2 have the standard EXE entry points. The subpro-
grame are called by DIFEQ and DIFEQ2, respectively.

Remarks:

A flow chart for FIRFUN is presented. FIRFUNZ is identical to
FIRFUN except for the use of vehicle 2 COMMON blocks and auxiliary
subrout:nes.

o 27

FIRFUN

J JENTRY

VOWEDL = 0O

FIRED, = 0.0

Ffﬂgxf o0
£=13

s i
Locate
FRTAB] «+ «
FRTAB8Y

|

FEREDV,: Brank FIREDV(X)
FIREIVE = BLANK FIRE zV (1)

COUES (<,
FIRE! FINSL ; £re6r
FIRE Y, FxRc 1T,

7. J
o

5)('522 ¥)

MNFEIRE = NEIRE +/
1744
i

Y€3

| 4

MNWEPON, InDuel;
PREIRVIT YT

FrrRFe

)

I2:= 27 4INDWERPT) -II

F2R€ (T} 1.0
= I

——

Lz dLocrvrr)
FIv:Comaw (¢)

Vrau(eav,cerrrécn , £ ov) 1

Lz s0cdv(T)
F v Comnes (1)

rFIRtb MA): ©.0 J

1

-

209

AT T e

V.120777.4%

Mo

VALues (e,
FIREY Li=43
FIRED, 41,2

KETUL/RN

Z=TI+y

RETURN)

210

A

L5,

GAMYl and GAM92 -~ Flight througn Vertical Routines

< Ogée:

To permit each vehicle to fly through the vertical without "locking
on" to the wind axis.

Method:

Whenever programmed logic indicates that a vehicle has flown through
the vertical, a 180 degree rotation about the velocity vector is
introduced. This rotation is combined with the 180 degree rotation
introduced by the wind axis transformation at flight through the
vertical. The resulting combined rotation permits a smooth passage
through the vertical, and Immelmann~ or Split S-like maneuvers can
be pertormed.

Remarks:

A flow chart for GAM9l is presented. GAM92 is identical except for
use of vehicle 2 COMMON blocks.

211

e e T—————

5I60L0:57420
PELBA = O.0
TVreAat = i

REJuaN

TEvrey =/

SIGoLd : 5567
TVICAL < TTE

PELSIG T AYS(526 20 3¢ 0 41)
DELSIG : AMIA (06¢516,240.)

DELsTe = 360. ~ Dé¢Sre

IEIJaw = SI& 24

FLIGHY rm€ousH vERTICAL
TVIcAL = TIniE
DELI8A = DeLSA+180,0

De¢8A - ABoD(bEBA, 700.)

NO

YES

[oor@ur “Fedcur
THRNGCH THE

yeericae”

DELEA*
TIME -

212

{

FETURN

46. DEQINI and DEQINI2 -~ Equation of Motion Post-Data Initialization

Purpose:

Perfrorm the DIFEQL(2) and DIFEQ2(2) post-data read function for
vehicle 1 and vehicle 2,

Method:

This is the initial transformation. It is always performed at

the beginning of a trajectory; it may be performed at the
beginning of a major stage (see EXTRAN and EXTRAN2), Alsc, it may
be used in certain combinations for the h-transformatiocn (see
EXTRAN and EXTRAN2).

Remarks:

A flow chart for DEQINI is presented. DEQINI2 is identical except
for the use of vehicle 2 COMMON blocks, auxiliary subroutines, and

subprograms.
L
- S
:;-“' 4 }v-wm--
om0, oty
':‘l.“"t.
e 4-.“
3’ SUssm SOOSTER - et
ne one
s R T
.ﬁw - :::::u-l AR
o} sanats) v*- ar, .0} :;-gl M :'n't.::
- e AROwTs are
-‘n}-:(_:‘t’..yh.., (roma cran >
L
e T
e w.ﬂl""
Ty e
ter wymae
i 8
:"nvum:‘ r
Cowy -y .
o~ o & '] [.
g, 3t L
::‘ ..::. ’0] l l %
S— T &
N N
@;Qm—ﬁ—a = O
— B N
:_"_\‘ R Veee Nt': N
ey, LLaTR 6
g™ tecigumag] Ms0eeTC [Q@
Yo' wmig vagy] —smciurme
ot Ny ey D
Vo alim Croney Q
e .—0‘
e
o 1 ()
v bty YA
Fl:'\;. .;‘I-l-|'.ll I
R @ AN Y

SUBROUTINE DEQINI

213

. DEQBCI and DE@ECI2 -~ Derivative Calculation Before Control Definition

Purpose:

Perform that part of the equation of motion derivative calculation

wHch precedes the vehicle control definition.

Remarks:

A flow chart for DEQBCI is presented; DEQBCI2 is identical except for
the use of vehicle 2 COMMON blocks and auxil’ ary subroutines.

DéqBer

4

e-cu‘,("‘,,
vy

b Sl WO

W~ O et

L4
LN 170 oqenats

1

compyre(i .'n.)' 'nv-u

MFTATL

(—}'rﬁ)mv y AXty
(o -¢ Janours ans
(o Jasoureaxis

*
soe b um by
el wa €

r-"'. r- el "1
|)
Wil . b
L1 . t'.l

2 L.
“* tead *‘:
h-!-l.‘

Ll

®
[v |

Yaavy

%
¢ - taat (?'_)
v e .d(:{')

‘a

ey

1

:: Y0 Disnsts

we Y cone
"o ooy

e by LiaTH)
Mm by -y

a.‘!i'('Y.ﬁ)

e lgeee b tlgvatd
Loy "Ryrindé b louedd

vy

|
|
|
J

21k

Ry =L P’

.

sin () ~ Joor é, con
[1™ e e @ "t

vorwsia! (v (¢ o Vuatr)

]

rood o [TSR |
I"I:E‘)

WMP =1 (F INDWAN =V

CLYLE o []
=g ¥ INOW 2 =)

P
Lowe F (Teme)wrase;
tows F (Tume) wraner

lgw~ § (Tune) wranes

+
'l"/f'!- Roate (8- &-7‘-(',!..)'?
‘h"‘“ [-‘ l.'-l.:)] i
.._!.i‘{z_’__'E_j J

O l
YL L.

eRjPeygs Y v

8!

'

Rérvaw

i, ot ke o

g O

48, FPPS__end FPPS2 -~ Flight Plan Programmer
Purpose:

To provide an alternative for computing a varisble (which would other-
wise be a control variable) as a tabular function of any variable already

computed,
Method:

It is legitimate to use FPPS only tc compute those variables which are
allowed to be control variavles. Up to six different control type
variables may be computed through the use of FPPS, FPPS is a subprogram
of DIFEQL; it has the standard entry ;;oints. The data for FPPS may

be changed at any major stage at which DIFFQL(2) is called, FPPS will
be active only if there is data for it and only i¢ INDFLT is input non-
gero,

Example

To compute a = f (Mach) the function f is defired pointwise by
a two dimensional table (in the standard mammer for zetting up
tables). It is imperative that Mach have bsen computed before
FPFS is called to evaluate o .

¥hen using FPPS, it is i~merative to check the coding to be sure that
the independent variable of the "f" function has actvally been computed
at the time FPP. 3) is called; if such is not the case then it is
somstimes possible to permmte the order of calculations in such a
marner that this criteria will be satisfied.

Input Date

This data must 30 in the stage data. The data may be inserted at any
stage at which the initial transformation is executed.

Examplo
YPPIV B 2STGTDP AMACH
YPPOV BCD ZBATTDPALPHD
FTABOCL 4,-90.,,180. ,-.1,180.
FTABO2 2,0.,10.,2.,5.
INDPLT 1

FPPIV dofines the names (at most 6) of the reapective inde-
pendent variables for the tables FTABOL through FTABO6.

215

FPPDV definea the names of the respective dependent variables
for the tables PTABOl through FTABOS.

FTABO1
. two dimensional tables ¢ rresponding to the definitions
. set up in FPPIV and FPPLV.

FTABOS

INDFLT ¥ O turns on FPPS
= (O turns off FFPPS

Great care mist be exercised in how FPIS is used.
Pema:- .8:

A flow chart for FPPS is presented. FPPS2 is identical except for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

216

Mﬂ.;:. I%
| T
{3aN1an02)— (3AN1LNOS)— %

G

NuRARY

qual_hlj

(D ADY
(DAY 1Y

(4d1aNI'Lel 01090Q AL

%
..;.._»...o.J

fdasani’ses $uot 00fg- , (e -inraaas) (0'vmr o o.Thl*
(o's1 ..:ot

nINZL
[¢ -ddsonmi] Yo

HJudSO
vd

H

T AuindI .1] ="

217

A
N

9.

ONETWO - Transformation of Selected Vehicle 2 Variable to
Vehicle 1 COMMON

Purpose:

ONETWO takes variables having a unique name in vehicle 2's COMMON
and transfers the variable value to a specified location in vehicle
1's COMMOii. The routine is used for the inverse TWOONE transfor-
mation when vehicle 1's perturbation equations are employed to
perturb a vehicle 2 function, or when a variational problem is
terminated. Additional variable transformitions may be introduced
by simply adding the transformations to both ONETWO and TWOONE.

ONETWO

?tor? m, m, P.Ce, Jes zes
Xe, Ye,» 8nd ze from
vehicle two's COMMON

into vehicle one's COMMON

store fire functions and

fire function derivatives
from vehicle two's COMMON
into vehkicle one's COMMON

RETURN

218

50.CTL1TR and CTLITR2 - Control Dependent Derivative Calculation

Purposge:

CTLITR and CTLITRZ2 control the calculation of the portion of the
5 derivative calculation which depends on the instantaneocus control
H variable values.

Method:
Angle-of-attack and sideslip functioas including the (u,v,w) matrix

are computed directly. Throttle effects are computed through ANITR
or ARITR2. Bank angle effects are computed in BAITR or BAITRZ2.

Remarks:

A flow cnart for CTLITR is provided., CTLITR2 is identical except
for the use of vehicle 2 COMMON blocks and auxiliary subroutines.

CTLITR
:. { YO mADA R

1

A T

1

TETX

comrurgluvw | marmx:
"otare
{-o 'ABOVT , AXIS
€ A eyt r ARIS
& ASOUT s AXtS

IAﬂrre
léhfre

v

KETuAN

(Lo

219

51.

DEQACI and DE@ACI2 - Derivative Calculation after Control Defirition

Purpose:

To carry out secondary derivative calculations following computation
of the control dependent functions (e.g., Yand o computations).

Remarks:

A flow chart for DEQACI is presented. DEQACI2 is identical except
for the use of vehicie 2 COMMON blocks and auxiliary subroutines.

220

DEQACT

|

i,' .'} -2 qv.o-.l;'

-)
A RE R TR

6 Y

[0

s @yl sin wp) [} n oy,
et see w) Yo wpTe |
L] L ‘l

]

3

V‘" XYl

Bptx - wpt
9y 1 00

v k! [""l " ‘t]
e,

F

- tad! (uuat,..,')

B S
oy
LT PN
o

1

due-o,
vor VR

Vsoert'y -v,

I

344
(iwosm)
[}
Vineo ¥ Y0
o -2
v, z PA,

9.,..-- lg. sinvy
Vi * o (seee)

v‘ - v'h.. + Voray* V'Q-j

T ¥ INDADG =1

als IF INDADGA

=My (¥ INDADG -3
*N, IF INDAD } ¢

*

A V4 (remw)
{1Ly)

(wragos)

221

ik

ty (habaie Yyriake) -} iy

ve VTIJ + 142

on Y ('0' . v)' i,'(!.v. s tg¥y)

i'(if' - '.')

4
v

RLTURN

52. FPPG and FPPG2 - Gamma Command Flight Plan Programmer

Purpoge:

To provide the capability for flying a specified flight path angle
(v) time history by computation of the angle of attack,

Method:

The change in angle of attack is computed to correspond to the second
term of the Taylor expansion of « (v) plus & small correction term.

@ =a +¢ (v, - v) * G =)
where

C

m V, /(T cos @ + L/w)

v, = [(vc)t - (o), _ At]/At.

0t is set equal to 1. second by the program.

@; is either an initial input value of o, o: the value
remaining from previous computation at the entry into FPPG(3).

@ is then limited between a maximum value (ALIMG) set equal to 2,°
by the program, and a lower limit (ALIML) set equal to =4~ by the
program.

Remarks:

A flow chart for I'PPG is presented. FPPG2 is identical except for
the use of vehicle 2 CCMMON blocks and auxiliary subroutines.

222

¥
s
5
H
«(.
i
£
3
E
L4
H
F
=
kS
£

s AR

EES

¥¥dIY

JLLVA

1MV 'OHIVIXVRY = OMdY

“11y + (WHIV)S0D « diLIL

-3
. SSYNY

(ON:TY 'GNETIVIININY = GHETY *x
DIC+ YHLTIV = OHdIY
L __(SNLWYD -ULMYD - 1N IKYD+ USWYD) I+ HKIIV ~ WHJTY —

E OV » GONYD =~ N3T' VD

[PRI

QY * (dQONVO-QINYD)

= LEOWYD

J

'TIYSH)

s$=174aN1

ANiND;

amLY4Q ML

NuNL3YN

223

9ddid

53.

DEQSIP and DEQSIP2 — Derivative Evaluation Initial Point

Purpose:

To provide an initial print heading for the differential equations
of motion outgut.

Remarks:

A flow chart for DEQSPI is provided. DEQSPI2 is identical except
for the use of vehicle 2 COMMON blocks and auxiliary subroutines.

SIPAQY (4}
L]

1114
1T, innatn
SMONT, INNTIF

I AgcovuT ron |

raInT:

“twiTiaL Print

18 MIIFIAENTIAL
teuations”

}

s
vers iy

Ll X
fore L)
sacs W)

KN

a2h

sk, DEQCOD and DEQCOD2 - Trajectory Code Print

Furpose:

To provide a trajectory history code print for the selected output
variables.

Remarks:

A flow chart for DEQCOD is presented. DEQCOD2 is identical except
for the use of vehicle 2 COMMON blocks ani auxiliary subroutines.

ouveey sIreaY ()

NN wann

ISV Camagw”

‘WArYeT wymep

‘vavie” i

N_mespte:

T ‘et ven

1" _mpteat e ‘voAve vene

Samp’ et ‘verars maLvm
r T

1 _inpeont o 3

‘QRATE” NaATY"

®_wegrre s o ERALS
“PNST ganes” WYL
408"

o e 48
Ay

W GBbCh ¥
TERTIN YO

w_pEvee = 4
“HEEN T “webrr

»_wmowat t ¢ 1

w weiee gt —]
- . e e in
daxen Tmiore] vrre

i

SUBROUTINE DEQCOD

225

— P ”

—

——

R AL T PR (BT 8 4 st

55, DEQVAL and DEQVAL2 - Traj:ctory History Print

Purpose:
To provide a hintory of selected variable values along a traj)ectory.

Remarks:

A flow chart for DEQVAL which generates the first vehicle output
values is preseated. DEQVAL2 which provides the second vehicle
output values is identical except for the use of vehicle 2 COMMON

blocks and auxiliary sub:zoutines.

O,

[17 TN8)
CRINY YALWER.
I % &
Y . !
L4
i ",
- L]) F
v : i
e %
JIRTT 11X e G
o % m
} —
1" mBPRA e [“'PI!.
] ¢ L)
" w0aREs ¢
M A

.,
PAMY STATE
VARIAGLE VAL OZ

r_.l'; "

oSN (o)
estd)

soPg el
$AC" (0

SUBROUTINE DEQVAL

225

S e R AR RTINS Ry L S e, o s £ R Y e

56. DEQIV and DEYIV2 ~ Integrated Variable Specification

Purpose:
To define active integrated variables,

Remarks:

A fiow chart for DEQIV is presented. DEQIV2 is identical except
for the use of vehicle 2 COMMON blocks and auxiliary subroutines,

SUBROUTINE DEQIV

227

5T.

DEQHT and DEQHT2 - Trajectory H-Transformation Subroutines

Qse:

To carry out specified h-transformations at selected stage points.
Remarks:

A flow chart for DEQIT is presented. DEQHT2 is identical except
for the use of vehicle 2 COMMON blocks.

ol1reoy (o,

r_——‘-‘?‘ .al Reeptn 08 TIA
b Wk .—| . r:_-tmp wonry

—T e

Wy .*3':;—: " nema et
et wp= mas (a) v o}
\J .
CENE e -].-.I»ai(ooy ¥ Vieas mana
W *--u(ﬂ.'a,)
v ol

ade L
Taotaa \ -0 e ¥,

torea' ZaYom v,
et sos s

1

[X B) L 34 1T}

n e siRa-et)

%o Ve
? - i WE P Ay,) ugal s erat) |

¥~ TO saimiNn

.y

.. -Q[. H
AR b

e s
[y

LY T 728 Aysersl]

SUBROUTINE DEQHT

—d

P
j e meand] J

ety

l

avvese

228

58. ERROR and FRROR2 - Geperal Table Er -or Routipe
Purpoge

To provide a method of indicating the table which may possibly contain
an error.

Mothod

Given the suiscript of the curve in error, the routine will search the
subscript tabls and find the corresponding BCD word. This w>rd will then be
printed as:

"TABLE ERROR AAAAAAY

where AAAAAA is the BCD names of table. If the nems cannot be found in the
directory

"TABLE ERROR
... location of tabls not listed in directory..."

is printed and a returr tc th: calling program is made. In either cine INDSTE
is set to zero.

Usage
Entry is made to the routine with the following statement:
CALL ERROR (10CZ)
vhere 10C7 is the table subscript.
Subroutines Called
LINES
ASRCH
Normal FORTRAN I/O routines.
Rew.wokss
A flow chart for ERROR is provided. ERROR? is identicel to

tRROR except for the use of vehicle 2 COMMON tlocks and auxiliary
subroutines.

229

ERRCR

'

INDSTE=0

st

CALL LINES
(2)

CALL ASRCH
LOCZ, NAME

F [NAME = IBK

WRITE WRITE
6,1 6,2
RETURN RETURN

230

59. PTBEQN and PTBEQNZ - Driver-Routines for Eguations

Purpose:

To duplicate the sequence of calls to subprograms made by EXE for
entry points 2 and 3.

Usage:
CALL PTBEQN (IENTRY)

TENTRY = 2 nake calls to entry points 2
IENTRY = 3 make calls to entry points 3

PTBEQN is called only by the P"UBR routine, IENTRY is an argument

in the call to PSUBR from PARTS; PSUBR transmits it to PTBEQN. PTBEQN
may be looked upon as that routine which drives the particular function-
al calculation necessary for computing partial derivatives numerically.
The indicator INDEQN is set to 1 upon entering PTBEQN and is set to C
upon leaving; this indicator is not essential to any of vhe logic but
is designed only for diagnostic purposes.

When IENTRY = 2, PTBEQN only calls EXTRAN (3). EXTRAN(3) takes csre
of evaluaving the functional calculation for the initial transformaticn
of major stages (either initial conditions or n-transformation).

PTBFQN controls the transformation of selected vehicle 2 functions
into unique vehicle 1 functions for use in two vehicle variational
optimization problems. This is achieved by use of the transfor-
mation subroutines TWOONE and ONETWO. The selected vehicie 2
functions are perturbed by PTBEQN2 which is called from PTBEQN.
Flow charts for both FIBEQN and PTBEQN2 are presented.

231

PTBEQN

BEGIN

LINJ;;>

o>

AL
PENA

INDEQN=0

232

PTBEQN2 (IENTRY)
ONETWO

PTBEQN 2

RETURN

60. IWOONE - Transforma*ion of Selected Vehicle 1 Variable to Vehicle 2
COMMON

Purposge:

TWOONE takes variables having & unique name in vehicle 1's COMMON and
transfers the variable value to a specified location in vehicle 2'=z
COMMON. The routine is used for the inverse ONETWO transformation
when vehicle 1's perturbation equations are employed to pertwurb a
vehicle 2 function. Additional variable transformations may be intrc-
duced as discussed in the ONETWO write-up.

TWw o ONE

adone 7, 7, Xe, Ye, Ze
73) YC. and 2‘ Lot
arehAecle ornen DT

nto veliale Pevrl
loaITIIITL .

ata LOINIP LI
| reAiede Cevol
L (o2)

23k

61. JZERQ and IZERO2 - Pucks Non-Zero Numbers

Burpose
Test the argument for non~zerc and set up indicators for packing.
Methed

The argument is tested for gero and a sxitch i. set for vach word. The
switeh is on for zero and off for non~zero,

Usage
Entry is made to the routine with the following statement:
CALL IZERO(IA)

where
IA = The numbsr to be packed,

Remaxks
No other subroutines ars called from this routins.

235

'
= MM+t J

i

ﬂ'rn

L

LEGS) = 1A |

4

|le ZIXATY !

v

Efumm)

= TABLE (KK} +ISWIT(LL) !

KX s KK+ 1
LL =1

RETURN

236

ITARLE(KK) = ¢

R

62. PPLNLN

- Main Paper-Plot Routine

EEEOBG:

To control scale size, construct grids, plot points, and
title each paper plot.

Usage:

Call PPLNLN (X, Y, NPTS, XMAX, XMIN, YMAX, YMIN, NPLTS,
TITLE, IWORDS, TITLEB, NT)

NPTS

AMIN

YMIN

RPLTS

TITLE

IWORDE

TITLEB

is the array that contains the
variable to be plotted

18 the array that contains the
variable to be plctted

number of points to be plotted
maximum value of plot gril for
minimum value of plot grid for
maximum value of plot grid for
minimum value of plot grid for
number of curves to be plotted

title to be prirted at the top

values of the independent

values of the dependent

x axis
X axis
¥y axis
y axis
on this frame

of the plot

number of ten character words in TITLE

title to be printed at the bottom of the plot

number of ten character words in TITLEB

237

T e et) S R o A AR BT < 8

N=NPLTS

NWORNS =510 No Yar

I =100 !
NCHAR = S100 _
g;m= lg PLOT= TPLOTe
= YMAY-XMI)

¥
N= YMAR-YMB (Ci‘“‘ PLCP@

Go>— mete

-

DY=O>——‘ W=1.0 ,
J Yoo

2l =0 KIP PAGE
XSCALE = DX /0.0 No
YSCALE= DY /8.333%3 .
XP= 100. /dX WRITE: PLoT
YP= 100./Y
TFLAG=O

NT+0 i i |
(eaLL ceinvr) I

WRITE: “SeALES”
¥
NFRAME ~NF2AME +

!
WRITE: * nalrame*

'

RETEEN

238

63.

S B S s AT i 3 TRl e S

SENSOR and SENSOR2 - Vehicle Sensor Routines

Purpose:

To supply each vehicle with a system of sensors for detection
of an opponent. Each vehicle may employ up to seven inde-
pendent sensors.

Usage:

Given the opponent's position each sensor is checked
sequentialiy to see whether or not the opponent can be
observed. In the present program an opponent. is observed
when the target's cone angle (in body axes) is less than
the sensor half angles and the target's range lies between
minimum and maximum 1imits. The time each sensor

observes an opponent is integrated and the time at which
& sensor loses an opponent is preserved.

A call to SENSOR or SENSOR? .s made as follows:
CALL SENSOR (IENTRY) or CALL SENSOF2 (IENTRY)
IENTRY is tl.2 standard EXE entry point indicator.

A flow chart for SENSOR is prcvided. SENSOR2 is identical
to SENSOR except for the use of vehicle 2 COMMON blocks.

239

o

Set Nomine\ Seusor
Hall awa les to 50?60:
%°, 1207, 20", 40°, &0.
S(L\' MM:;:um Sev\iol'

Run:q % 0, Mucnam
QM“AQ t toooco’

SL\' F\l‘ s\' ‘Tw(SQ!\‘»DF
\’o Ctﬂ\mm)‘ \.oo\d\"‘ %—

Luck Thee. o AEt Lok,

Sd’ o()‘"ﬂf‘ui&\u\ L\-mkcx’:
o Zeco.

r&,\’ T\\w_ k(u“u.\m& o

'(\MQ‘ _o.Q\ ng. \'o tn i

Seb Tome Mhezrad o &
&fw&kw{, \-o 2&(‘0 .

SENSOR

@Aaoo

\’Q\‘E‘. NBSEN'“?M)\M\
(\'\.m..\‘cnsbls l&&..lu%'
L SNDIR;, SNHAD; , SIeE,

(RETURNY)

> Do 3500 ¢=/, INDSEN

|

CTEST= CONBD

Yes

CTEST=180- (ONBD

NDIR ;.
= AFLOK

»

e

TNQK = T\f{

3500 C‘ﬂ"\g“

2o (RETURN)

i
0BRSS 2 T0BS

Do 700 =1, INDSEN

m «t\]\m&rcéwto@i
3

o0 CmHv\ua.

|

TbTLS‘:0.0
——PDo 7200 L=, INDSEN

| OUS=T,, + TS
i obbs,

1200 (onbmue

(ReTueN)

()soo
(ReTuRN)

2kl

or}

6k .

VISION and VISION2 - Pilot Visicn Routines

Purpose::

To supply each pilot with a visual detection model. Visual
scans are made at specified time intervals.

Usage:

Given the opponent's pocition e periodic visual check is
made to see jf the opponent lies between tabular upper and
lower elevation limits as a function of target azimth., If
the opponent iies in these eievation limits and is in visual
range, it is assumed that he will bz detected. A flag is
set whenever an opponent is lcst from sight and at all times
the last two visual sightings are recorded in time,azimuth,
elevation, and range senses.

A csll to VISION or VISIONZ2 is made as follows:
CALL VISJON !1ENTRY) or CALL VISION2 (IENTRY)
IEWTRY is the standard EXE entry »cint indicator.

A flow chart for VISION is presentad. VISION2 is jdcntical
excent for the use of vehicie 2 COMMON blocks.

ch2

VISION

(‘)SOQO

INDVIZ=O

RETURN

TLookV =TIME
DIVI2 = DELTS+ (IVONT+
¥(m\ \0(.«»\"& D& VTAP)O(

and NTARO2

Qeb mnitmam ol tzidea Q
: v Yo~ AR>
Q,'&\M\.\\\\u NS c.m%\Qb %mv\ RVISON

Vislow '*u'u\e.& . T °

‘:mc,\:
O a2 B

\uwg\'\w o% (‘\ng u\m&%..

(NTA8O! sud VTAROZ)

e

[’e 3

CODES:
f,,tz, dn) dn euez;R:)Rz

(RETRN)

Yay

&/ L‘ RETURN H INDVIZ-2 |—
@Lv‘e TRV +DTVIZ J
.)

243

65.

PASSV] and PASSV2 -~ Passive Tactics Routine

Purpose:

PASSV1 and PASSV2 gerve to interface flight plan program options or fixed
control history flight paths with the combat logic. In particular, it
converts all such control specifications to the finite control rate
option at the analyst's request. A flow chart for PASSV1 is presented.
PASSV2 is identical except for use of vehicle 2 COMMON blocks.

2Lk

Z000

Y 2

7000
AETURN

ASSY I

rIsGoneE

" e .

ALPAD = AP D
8025 =64970

AN = AN

'
(fLrwon)

4200
AT en

2ks

66. DEFEN] and DEFEN2 - Defensive Tactics Routine

Purgose:

To select each vehicle's defensive tactic.

Method:

ROLEl and ROLE2 have selected each vehicle's role. When a defensive
role is selected, DEFEN1 and DEFENZ2 define & specific defensive tactic
for vehicles 1 and 2, respectively., Defensive tactics may be selected
in random or ordered manner. An override to another specified role

is also possible by use of FIXEDR or FIXEDR2. The analyst may also
specify a minimum elapsed time between tactic changes.

Remarks:

A flow chart for DEFEN1 is presented. DEFEN2 iz identical except for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

2L6

e

MJéFfﬂ_’é = TPZek(7)

L=/ 70

'

JFDEFEN= I
TOEFEN~ 000,

f

CPCON, = 90,0

3000

TC HME = T1mE +TOEFEN
TDEFEN =TDEFEN +1

DEFENT

TENTRY t-w._@

of

@

. !
TCHMG = TIrIE + TOEFEN ‘

1

#IIGFEN Y > D pMIOEFENS = IPTCK (2)

MOcFENE =0 MOEFEN, = TFICK())

MIDEFEN, £=8 MOEFEN, = ZPICK (1)
L2710

Tskcw (BTABV), Locgor)

1

J=20c301 +4ie2
Kz19+a
TADLE (3): CPeon(R)

f
(

{

L L= 110
(Ferurmen)
MIDEFEN »

JDEFEN =)

]

2W7

DEFEN 1/

KETURAN

DEFENTL ‘

ETL/AN

2

JDEFEN = MOEFEN (TOEFEN)

FIXED R (1385 (10€ FEN))

DEFEN 17

DEFEN I3

(:?Erumv Reruenr

!

DEFEN 1Y

243

DEFEN 16

gmé
(l/?E nMAD

WHETAEN

67. EVADEl and EVADE2 -~ Evasive Tactics Routine

Purpose:

To select each vehicle's evasive tactic.

Method:

ROLE1 and ROLE2 have selected each vehicle's role. When an evasive
role is requested, EVADEl and EVADE? define a specific evasive tactic
for vehicles 1 and 2. Tectics may be selected in random or ordered
fashion, An override to another specified role is possible by use

of FIXEDR or FIXEDR2. The analyst may also specify a minirum elapsed
time between tactic changes.

Remarks:

A flow chart for EVADEl is presented. EVADE2 is identical except for
vse of vehicle 2 COMMON blocks and auxiliary routines.

249

]
s
,
:
f
‘

0c o

PIEVADE ;= TPICK (6) TNEWBA = 71.2€
TCHNG = TIME+TEWIDE

£ /0
o {
[Tevade = 1/ MEVADE; PG - MEVAIE, * TPICA(G)
[T EVADE <1000 MMEVAIEL = O ANvAdE T T Frex (é)
MEVADE, €8 IIIVADEY 2 TPICA (6)
<=/ /0
Keren
KETLEN
!t Jooo
|
i YES
| e

» TCHNGE =T1rE + TEVADE
F TEVROE = TEVADE +/

N

ETURN

>

JEVADE yes —————
i | JcYADE = 4
10

]

250

&)

\jﬂ’ADE 2 MEYRIEBEVALE)

)

EVADE 13 J

EVADE /2 —_ :
4 [fPET Lt \ (RETLURN
S - _/)

68. OFFENl and CFFEN2 - Offensive Tactic Routine

Purpose:
To select each vehicle's offensive tactic.

Method:

ROLEl and ROLE2 have selected each vehicle's role. When an offensive
role is requested, OFFEN1 and OFFEN2 define a specific offenesive tactic
for vehicles 1 and 2, respectively. Offensive tactics may be selected
in random or ordered manner. An override to another specified role is
also possible by use of FIXEDR or FiXEDR2. The analyst may also specify
a mipimum elapsed time between tactic changes.

Remarks:

A flow chart for OFFENl is presented. OFFEN2 is identical except for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

OFLEN 7

/20 2

PIOLE M, TPICK 13 |
‘ e IrIcK TOHNG = TIME + FOFEEN
l AN N
' S -
. MOEEEN, > 3 MOLFEN T TFI0K (3)

JofF st 1/

TJOF fEMN- 1277 MOF £ EA, 2C

MIFFEM; =5~

I _<he

/;"457//,&}4/ \}

~IOFFEN; = IPTEKR (3)
PMIOFF N - 2 rICKE)

~— Y

i

e N
@ oo 0)
N =52 S ‘\, TIrE
~

| LT, N
//j' N Tepng
N

P T

(zrwer \
N

YES

- R

P KE 71'//?/\// U 7eHNG = 73096 + Toreens
b {.Jar,cu/ s JoFfen +1
450::)
; /()ff(/'(j»/ Jofre ™ —m—
\ < G >-—’W JOFFEM = ,_]
¢ l
- |

253

e e it maninn

@

TOFFEN = MEFFEA T HFEN)]

!

N,

NO

VFENII

(’FE}' z//ﬁvj

I

KETwin

" -
/A:s:k ves
2 NE.

/

|

OFFFEN12.

(/?e_r;c_/-@u)

254

FIXEDR (JAGS (Tors&m))

C?én/(ﬂ)

N
OFFEN 13

CQ—(‘;(./IA/

69, ATTAC1 and ATTAC2 - Attacking Tactics Routine

Purpose:

To se’:ct each vehicle's attacking tactic.

Method:

ROLL1 and ROLE2 has selected each vehicle's role, When en attacking
role is requested, ATTACl and ATTACZ define a spzcific attacking

tactic for vehicles 1 and 2, Tactics may be selected in random or
ordered manner. An override to another specified role .3 aulso possible
by use of FIXEDR end FIXFD32. The analyst may also specify a r.inimum
elapsed time betweer tactic changes.

Remarks:

A flow chart for ATTACl is presented. ATTAC2 is identical except for
use of vechicle 2 COMMON blocks and auxiliary subroutines.

/IIJJ
X

W ker T LA
AC, T LFCK)

.

A=/ /0

4
3f2700€C = 1t
7. _}7-7-/15 T2,

@_‘72//(}/\/

SNMATTA C

KE remen)

JCM S S TS ¢ T 2
. e e

1

MATTIE DY
MINIIAC; = O

AMATIAC, € -5

WAAITAC 2 TRICK(Y)
M 2 TR K)

A am s T '
TRCy L Irlex)

«< /70

TCANG = Tir€y JTATFAC

TATTAC = Ta7rAacC +!

NO

VES

@

LIATTAL: MIQTTAC CIATT7E)

ZATIAC yé‘s - ' l
< L FINEOR (IAas(.zmmc))_‘

N/
NO]
LY 224
-/ =Y Lac 19 ‘
- ZATTAC A27AC G

AFTAC/

fET e

CAROHIG (1) ‘ Foo0
CAL0MG(2)
CAPCil 6 /3)

257

70. OALPBA and OALPBA2 - Sulpros.-am for Instantaneous Control Vector Iteration

Purpose:

To define instantaneous angle-of-attack and vank-angle on the basis of
local optimization and constraint criteria,

Method:

A local minimization criteria, ¢(t), ani local constraints criteria,
¥i(t), are created where

¢(t) = ¢(a: BA) and Wi(t) = 'Pi(a, BA)

An inner loop parameter optimization procedure, CTLOPT, is used to

define the angle-of-attack and bank-angle combination which satisfies

the resulting local (t = constant) optimization problem. The local miri-
mizfs _ion criteria involvrs a variety of ccmbat guidance laws. Constrainis
incluvde a miniimun speed override on angle-of-attack, which reduces the
angle-of-attack search range and any in-flight inequality constraint de-
fined by IFCS which in directly affec"ed by the contrcl vector (INDBNCi=1).
Final steering anG force vector errors are alsc camputed in OALPBA and
OALPBA2.

Remarks:

A flow chart for OALPBA is presented. OALPBA2 is identical except for
use of vehicle 2 CCMMON blocks and auxiliary subroutines.

258

QALLPEA

AL 7macanl asanch Lend'e
anple ana’
m;k "’/- L1 4L V¥

Wani macwt dpeesd Limit
el Stevweceds vearneh Linubo
for ko octack

CTLORPT

A

OPTLIrVIRATION Loos

aat Lok m,a ard angle-
- attact ghom "AEsor
mnan el vecl At

*CIféX/

NPHIAC

259

FUNCTNC) =

, /

= /LO‘S-r x

ONERC

Foncinv(e) =
- /lﬁr b ¢ /Tr/

G-

{

L

A

x

6 Chakl
' ~

FOACIN(Y) =
- &

S

Comgect e

%
:
b
|

Ly
o
[\Y

FUNCTAN (5) =

A - amNYSe

900

FonerA (9)
—ALPuA (1)

¢

3
N
— N
"

r
FINCY

1
3
X

Vel

O F

Fuwnern Cro) =

2

APIASS 6 CHELA

}?’FM# rmesfe s
!

rﬁarvcr/v (7=
! "‘Ff‘{r/' Vs,

e

oo

Aencram £3)=
FRG2P

;
260

AT MBIng

< AQGLé-or
N r7ecK

U zreses

FUNCIA (nPHEAC)
N = 1L0£39

I =I* YES

st obeis rat o

Ongte e wpte- -
Y, | atteck feurr Résol
Cropute 40

261

T1. - - N- ble Call Routine

Purpoge

To set up the NA array and Z location of tables with dimsasion from 3 to
5 as recuired by the calling sequence t0 NOTLU which is

CALL NDTLU (ND,NA, X, 2, XA, Z¥. 1€, NEXTR),

to make the call to NDTILU, and return the function value or data on a table
read erroi.

Usage
Linkage to the subroutine is made via the statemsnt
CAIIIJ HIm (n, mcz, m’ “xz’ & Y ka’ mm, m, nAm,

X4LARG, A)
where,
N = Dimension of table look-up. When A = £(X) N = 2,
10CZ = Jocat:ion of the first value in the table.
NX1 to X1ARG = Location of nmmber of points in the X1 to X, arrays
of independent variable wvalues.
mm; to X4ARG = Name of X1 to X, argument or a dummy location if N < 5.
= Josation of the depeident variable.
Subroytines Called

NDTLU, ERROR, LINES
Normal PORTRAN 1/0 routines

Remarks:

2 flow chart for HIHO is presented. HIHO2 is identical except for the
use of vehicle 2 COMMON blocks.

26¢

XA 2):=X2ARG

llA(lhl)AlO

>

XAl¢}s X4ARG

[W"-Yl (l.'ﬂ
[

NA(2)sMX2

NA(3)eNX]2

NA{4)aNX 4

/—————>(|F (v-0) 33, ,‘1_3______,
<

H 3 4
FAT.nﬂ»n(ﬂonA(&uul)] l!uh-lufwu (1)] lur.unnu {2)4 NA °J

11aNaT#IOCE

1P (1ILARON .€Q.0) RETURN ,

CALL FRAOR (mcxﬂ

-

WRITE (.atu)
M IXA() 1et NY

KARG: NARG+NAU;
|nnsl-uul NAQ
WHRITE (8,31}
LASLGCT ¢ NARG-Y

LVelTHNTAB -
-1

\ D

72. IMIX - Tranaformation Matrix Roytine

Byrpoge

To calculate the transformation matrix, M given the angles of transform-
ation 0., O, 6, and the desired axes about which rotation is to occur.

12 "2 3
Mathod
w=TT A,
gmp 471
whers A; is a matrix determined from angle 6,. If @, =0, A; =1 (identity
matrix)
"i iz deflnsd an follows:
1 ¢ o]
= o Q = .
L A 0 boi %, X axis rotation matrix
4] -5 C when K. =1
i °i 0i] by
C 0
°i -soi
Ai = 0 1 0 =Y axis rotation matrix
i S Y ¢ when K, = 2
A i Oi (N] i
C. %, ©
i i
Al = -3Oi CQ: 0 = 7 axis rotation matrix
Usage

The tranaformation matrix routine is enter2d by the statement:
CALL TMIX (8, Ky, @, Ky, 0, K3, M, V) where:
1. €, 9,, 9, define the transformation angles

2. Kl, K2, K,, as indiccted above, determine the axis to which the
corresponding Oi refars.

26k

e

3. V is a l-dimensional array comtaining past values of the foliowing:

9, 5ind;, 0089,,9,, Sinv,, C0S0,, €;, Sinb, (0S8, (in that order)

4. Mis the 3 x 5 urray where the resuitant transformation matrix is to
be stored.

V rontains the last computed values of each Oi, SinOi. If the current 8; presented
by the call statement is such that

SE, E=1.E6

lgnew 1~ % i,
then S5inG,, CO are not recomputed. If all ©.'s are such that I © rewi -~

59
©0ld i | i E, then M is not recomputed at all.” Any recomputed values are
stored in the V array.

L To avoid possible errors in the E-test, V(1), V(4), and V(7) should be
initialized to angles which would never be encowiiered in the user's orogram
before the first entry into TMIX.

L Note: For any given transformation, it is assumed that the order of rotation
about the 3 axes will not change,

When 91 =0, K_.} "8 ignored.

e

11 A, 5, AR MR S RS

s g Pt AN R

R

L3 OMFOB

DA S NMLADA TWH 140D Y
DoPA ‘.i5l!3>'=.ii 2 ("W
dWdA W (30

ey fI00

ORI

s 5%

ign stou

¢

e

t & MR

‘8 (DA

QBOI LA

B8 A,

FUTY N ¥ GPOABIIDA 8 duil

Ge7IABa N AR WM B (370N

amds s (WM

INA $(3 0N ¢ L pNAGLUINN & 4ndL
(A @I = (1 $FIA P irmm s (5w

dmaL # (0w

_ —

{

tonIe s (DA

728008 (WA
Tanis s (DA

73. TENPOS - A 3 x 3 Matrix Tranapose Routins
Purpoge
To transpcse a2 3 x 3 matrix A to obtain the 3 x 3 matrix A'.
Method

The resulting transposed matrix is stored in a separate . All elsments
of A must be stored in the normal PORTRAN sense (i.e., c¢olumnwis ;

Unage
The transpose of a matrix A is obtained by the statement,
CALL TRNFCS (A,B)

where,
5' A = Ths variabls name of the 3 x 3 matrix A.
B = The varisble name of the 3 x 3 matrix A"

Remarks
This routine calls r.> other routines.

TRNPOS

| '

DO ! im 1.1

DO 1j=1,3

RETURN

267

it

o

Th. MULT3L = A Matrix Multiplication Routine
Purpoge
To post-multiply a 3 x 3 matrix by a 3 x 1 matrix.
Mothod
The resu.t of [A] [B] = LC] is conputel using single precision floating

point arithmetic. All elements must be stored in the normal FORTRAN sense
(i.e., columnwise).

Usage
The matrix mmltiplication is obtained by the statement:
CALL MULT31 (A; B, C)
whare,
A = Array name of the 313mtrix[1\]
B = Array name of the 3 x Il matirix [B]
C = Array name of the resulting 3 x 1 matrix [c|

This routine ¢3lls no ovtaer rouiine. ‘

MULT31

DO 1 i=113

'

268 RETURN

75. HETS and HETS2 - Heating Computations

Purnose:

To monitor a characteristic structural temperatuie and/or aerodynamic
heating rate,

Method :

This subprogram has all the standard entry points of EXE.

INDHET = 0: = No computations made.

INDHET = 1: Wedge skin temperature canputed.

INDHET = 2: Hemispherical nose temperature computed.

INDHET = 3: Both wedge skin and hemispherical nose temperatures
computed,

DLTSF = Q: Equilibrium temperature computed for wedge skin.

Transient temperature computed for hemispherical nose.

DLTSF # 0: Transient temperatures computed for both wedge skin
and hemispherical nosa,

Remarks:
The following quantities are computed at HETS(3):

QDOTS Convective heating rate of the wedge skin,

TS77RL Rate of change of wedge skin temperature (set equal
to gero if DLTSF = 0).

TSTTR Wedge skin temperature,

QDOTE Convective heating rate of the hemispherical nose.

TSTGR1 Rate of change of hemispherical nose temperature.

TSTGR Hemispherical nose temperature.

RN2 Reynolds number at edge of boundary layer.

RNCR Critical Reynold's numher at edge of boundary layer.

A flow chart for HETS is presented. HETE? is identical to HETS except
for use of vehicle 2 COMMON blocks and auxiliary subroutines.

259

Nun,de

SINIVA
v

Neniaw

el IIM.JIJ

ﬂ LA e o = xvw
sm_ ") wunise -4z = asoNy

‘t = LAY

t- o

WMEIWTY) 503} = §¥ .

(NEWIV) iYL - 2L = wY ‘61E * 4OLSL

GENIY - LLSVLIO” = MMV o - ssal

Y RPRORY T Iy
#3470 « $134D * 430OMS = B4YOR .

. §19 = WY

542 - g .0 MLYE MY iolid

2549Q * Wi84D " JSONE = S4VON

= atdd
— @ = L2N0M

LELIE]

16 = 01343
1o = 45270
Ve anve
o]
0 - DOHeIY
‘0= = 0a WY
L~ 08dVIH

‘1 = 0BdVIM
#=54voM

- 20vIH
sesin

o= uvers

OV
AXAM

o d SR 3

<

AuAND

(1) siad

270

39vd
A1XIN

SIV/FLNNY - SLLVA - SYOHN =TtY

(JLLAWTLY - L6L" +1) - *:hlll\s—d *MvIoi/L

Tiy Nso 4z =iy
MITR LS L]

rIV/SVOnrY = Lty
(Plw/CLy) - 8591100° = W
riv - Sly =€y

i

ala
L i 4 _

iy - 0L -SSOSNT + 01 - BEVYE =TIV

Ly +2)- gO1 - 61Z0°) = TNy

_.‘ MLLLL - PIV)/0dTLd © SLISETL + 21~ =TV

[

I

o=y
GEIV S20° - Ty TS - 1) -

dECYA - LY K= ay

=ty - D3y =Ty

YLy 9L = Qv

§ sty =21y

x?ﬁsc - odtra) wTsey- Ly

)
b

Siy - Ply =Ny

(2) SL3H

dNBO
1™V

i== b |

U=t U sy - PU 1) -2y = 0dELd

tiv

HY/1608° + 15080 = LIV

A9V
AXBN

iy =lly

pULLNL = vy
wnizauves v
iy Z
TIIv gantva - M
v -y

271

0 =454V

0> §
a
i

SLNHY - (US4IY = 0045711 + JLLHY = dRIKTWY

0=¥sdY

=

ASdIV - ELEVLLY = WS4V
QL44Q + GULTIY = ASdIY

39vd
LX3N

39vd
Pii il

(LI = S244W) - H= 21000
WL “H=]
SivEIV) v re) = aue
Tv -0 + Ly > Ty
r
ﬁ -
“ o=¢ly _ S8z ={iv
¥
£ELV - £EC900" + > ks
glv - 20"+
4 e o] tly - i
€1y - IR+ -~ t=> ...U
£6r- =Ly

Ly - BLITLO -

NY - 19NN +
Sly - 169920 -
riv - wouz -
€ly - T9L0800° -
€L6IS = PlY

€Ly - 9y = Ly
€IV * Slv =Y
Ely - rlvy =S1ly

Y =iy

(€) S13M

i T

0=riy

212

NINL3Y

|

FdVOR/ ((EY ~ vﬂh(lcv * LY = 31000) = 12LVAD

N NLAY

39vd
SNOIAING

"1..§n_ ‘WLLSL) NN = MLLSL

SAVND - $1000 = SLEND
(zsdd '1543) NIW = Sd3
cYust c oy o 317133 * 'y =isdd

10' = 31720

[%2 [-at _ sava¥d + 51000 “ =iSd2
100" = ¥01A0Q

(€v -~ vcgm: * 6Ly =SA7¥0

[Rl T7278

(S) 513K

1

S4YOH / ((gv - v:nunt s 6LV = SLLAL) = IWLLSL

SuD * $1000 = 51000
L+ HIOVWY/LLLY * TIX + 1LY * ZIX) /TV = SUD
ASVTIH/JLLSH = 1LY

1
Iu(i«(llu ﬂ‘v\n(...plu(L

g S

273

Hy * gy =2gv
LY - S4TPY ¢
iy - 806l -
Tiv - Cuw ¢
LY - 62002 +

Y0NS = 1LY

LY Sty =y

LY - Zv =1y

gy =Ty

SLLLW/SLISH = 1LY

4ELY = X+ ZIHOVAY = 2V
(42154 ~ JLAVH) M = $10GD
WYIH+ BN

b3

o

PR

PVt

axan \

%y Moo Tma -2y - o7 = quman
(L g 3121 TEIP MY = iy
IM/EOm - Ny = iy
IV/4BINW " TWA TV Y

S431S - VW ~ SEfLW) = w

y&VBA -2v - Ly} - M7 =W

=
5

?

auisn 7+
VIR +
SAYM I =Sty
= “
TANoN/tLy "2y =Y

SSVEN - By = 1)+
SLLAN - SiY = diavK
EL IRIY LR 11

S4B - 120 =Ly

- iw

iNodxg-® "t = demas

W (XM ~ TI) - AVY = AMOSXB

G SIV FUET “ETIWD) - Sv - , XNy ~ WO
[e - tovev | - sty

©

o) siamn

?

— 7
Iv ' tv » irmos
w-b - tovev - tx
FIV.TWA = POV
FRMY C T - s
v 2 WACIV. Trem

k-]
T2

im- »

TP TBA < ALLN - #EVER

Wy -ty -+t v~ oae
QAW = 1) 0¥ - 4Li¥A > TIA
- MOVNY - A . Al liv

T@

s

QHaTY - O

T S e s
wlaaanv v 21 Jaesene -y
oW erye W

vie oy
oo -

IR
eI s63 = v
Wi - oy

e e b

S

27h

NNLTY

I

A4VOM / ({EY - QUP<IG~ *Sty - 31000) = 131V¥D

NINL 3N

a9vd A W
SNCIAINY

0308t ‘WLLSL) NIW = ¥LLSL

SOVED ~ SL0GD = SLAND
(T543 '15d3) NIW = $43
¢Y¥4454 ~ 6LV < 217720 * Y = I543

10> 31730

2/30720 - | savV¥d + 51000 | = 1543
100" = ¥020

(€Y - ML) * 61V * SAVED

0 = LSy

(S) SL3H

t

SdYIOM / ({EY - vltnt 6Ly ~ SLOQD) = 1¥LLSL

S¥D * $104Q0 = $1L040
:;tui.\f:< CTUX + LIV - ««.5 /TY = SuD
ASYTIM/BLLSH = LIV

] L 1

t«(l«(~ “ IV L=TY —

i Sy

Y Ty =2v
LY - SIYP +
IV 0SL6L° -
TIV “CLLoe +
LY - 62007 +
PILOYO° = LY
LY Cive=riYy
Hy cwv=g1v
iy =y
SLLLW/ SLISH = LY
in—«. - Ux - N«!U(’(-ty
(4LLSH = JLAVYH) H = $L0GD
WYTH*H=H

G iy

T6.

TFFS and TFFS2 - Single Engice Thiust 2nd Fuei Fiow

Purpose:
The single engine tlrust and fuel flow program provides the means of
introducing the engine thrust snd propellant flow rate data. It

corrects the thrust for simostheric effests and reaoives the thrust
vector into its compounents.

Usage:

Linkage to TFFS is aceomplished via the genersl statement:
CALL TFFS (IENTRY)

where TENTRY is a fisced point variable.

TENTRY = 1

This performs the pre-data initialisation. At this entry the subecripts
for all tables are computed and the following data is initislixsd.

INDTFF = O = thrust option indicator
N =1, = throttle setting
BURNRS = 2. = mumber of identical engines

In sddition, the data initialization of TFPM when its IENTRY is 1 is
performed under this entry.

YENTRY = 2

This performs the post-data initialisction. At this entry the
following data is initialiged:

m =0 = rate of change of vehicle mass
m, =n = mass of vehicle
Bp =0 = fuel used
Ty =0 = thrust component along x-axis
Ty = = thrust. component alcng y-axis
T, = 0 = thrast component. along g-axis
7 = = thrust after atmesphe ‘2 effects correction
TVAC! 0 = vacuum thrust of engine
mp =0 = fuel flow rate
276

[

IENTRY = 3

At thir entry the thrust componets and fuel flow are computed, If
INDTFF = O no cowpatations are performed. For values of INDTFF of 1

through 5 the ‘follmd.ng computstions are performed:
0
T=HAX | Tyac - P Ay (= total corrected thrust

. v

ny -_-xnt = total rate of change of vehicle mass

Tyac and my are input as tabular data. The functional relationships
for the varicus options are aa folliows:

Value of Puactional
INDYTF Option Relutionship
k2
1l Single Engine Noncontrolled m = £(r8)
2 Single Engine Controlled m, = £(N),
3 Sing 2 Fngine Air Breather m = £(N,h, o ,My)
TVAC - f(“;hs a,%)
4 Froctional or Multiple my = £(h,My,N)
Identical Engine Tyac = £(h,X ,N)
h 2
5 Simplified Single Engine m, = £(N,h)
Toyc = £(N,b)
NOTES:

While it is possible to change from the single engine option (TFFS)
in a given stage to the mltiengine option (TFFMM) in & later stage,
the opposite is not possible.

271

e

N T T

(w) :.92_/.

/

LR ISR |

st - v
SAKYONY-2TY 20y

THTH 1

1avgi :
NV HOYWY iy

gievis
(NY'RIVWY Y ¢ IV r:t-:..tu

N3¥ni13¥d

w=0y fu

3

FECU TR L TR
cpistgyses -4y
LA 802y
(4= 01 yw= g
Figae PYAY n.~ ot
*yg=Y,

004¢

G0ri Ty 0=1
TOHTHT ™) TG HIET T T 0="4
Heviy ! 1dvLL oevl: | 0="1
MINY b ! HOYWY 'O 'Y 'NY) =t b Uyp=d%ay 9=
cravil | 0j9VLL LosviL, | s 0=
LA _ (HDYWY ' Ny §=27° ﬁ (NY) g tw) S W =0y
dﬂﬂd{ o OOﬂﬂ’ a\.l . — 0: w
_ .
! I le
- - UL ﬁ_,ﬁw,:oz__ex(z
’ = 441N
NENLA N
00y e meeed .il.wmm..%L
_ . — C T e
. T R s I T ZURTA
(nkllia e e 7CATARAL e - -
S [TE
Nun1dge—{(Aa I RN CIILYHATD
Sd441
il TPREPy Loy L l.a._ﬂﬂi. L e A A

NENLIIY

{LIWd441
_Mumuzuna
1= NV
=3341ON 1

o

TN
1317143431 0%
108V LL HOESL

N 11vYD
~vor

278

T, e T e L e P S Y g R N

T7. SACS and SACSZ — Aerodynamic Routines

Purpose:

To ¢ te the aerodynamic forces, side force (SIDEP), drag force
(DRAGP) and 1ift force (ALIPTP). SACS is used for vehicle 1; SACS2,
for vehicle 2.

Usage:
Linkage is made via the general statement:

C4. . 52CS (IENTHY)
where IENTRY is a fixed point number.
IENTRY =1

At this entry curve read subscripts are found by cailing subroutine
TSRCH and the following variables are initizlized

INDAER =]

DOBAD = 0

L ANIFTP = 0

D DRAGP = 0

Y SIEP = O

Cp comu = o0

Cy coeu = 0

oL cmew = 0

hgero MMAXH = 106

max

AMAXA = 300000,
AND = 1
CPAKL = 0
CPAK2 = 0
DAL = 0
A2 = O
A3 = 0
DAL, = O

219

INDAIO =
INDALL =
INDA12 =
INDAL3 =
INDALYL =
INDAL? =
INDA2L =
INDA25 =
INDA26 =

INDA3ZL =
INDASO =
INDASO =
INDA9L =

©O O ©O O © O O O O O O O O o o o o

INDA92 =
IENTRY = 2
Checks to see if INDAER is less than O and if so sets INDAER to O.
IENTRY = 3
If INDAER is O no camputation. If INDAER is nonzero a check is made on

altitude (HGC7F). If altitude is greater than AMAXH theu the following
variables are set

ALIFTP = 0

DRAGP = 0

SIDEP = 0
280

E If altitude is less than AMAXH a test is made on t he data input value
(AMAXA). If altitude (HGC7F) is greater than AMAXA then the following
variables are set before ALIFTP, DRAGP and SIDEP are computed.

: CA = CDMNU CYA = CYMNU CL = CIMNU
L If the altitude is less than the input value AMAXA the following variables
] ars sget.

CA=20 CYA=0 CN=0

at this tim= a test is made on the INDAER for the option chosen.

k INDAER = 1
: If INDAGO is O then CN is unchanged;

If INDASO = 1
o = £ (ALPHD,AMACH).

If INDAYO = 2
N = £ (ALPHD,AMACH ,EGC7F)

If INDAGL is O then CA is unchanged, i’ not
CA = 1 (|cw|,mmach).

CYA is set to O,

If INDAO1 is O then DELCA is set to O, if INDAOL is nonzaro then
DELCA = £ (AMAGH).
CA = £ (CA + DELCA).

If INDAO2 is O then CPAK1 is unchanged, if INDAOZ is nongerc then
CPAKY = £ (AMACH).

If INDAO3 is O CPAK2 is unchanged, if INDAO3 is nonsero then
CPAKT = f (AMACH).

Cockpit and pitch angle are computed as awdliary computations as follows:
CPATD = Cockpit @ = CPAK1L ., @ + CPAK2

PATTD = Piteh angle = ¥ + a coz B, - AINCD
After this computation ALIFTP, DRAGP and SIDEP are computed.

281

it

INDAER = 2

RN - VA77F /ANUATF where
RN = Reynolds Number
VATTF = Velocity, VA

ANUATF Kinematic Viscosity, v
If INDASO is 0,CAy= CAVAH = 0, if INDASO is nonzero then

CAO = CAVAH = f£(RN, AMACH)

If any of the following indicators are nonzero, then the respective
coefficients are computed as & function of Mach number.

INDAOL CAALPH = CAy = £ (AMACH)

INDAO2 CAALSR = CRg? = £ (AMACH)

INDAO3 CABETA = CAg = £ (AMACH)

INDAOL CABTSR = CAg? = £ AMACH)

INDAO7 CAALBT = CAag = £ (AMACH

INDAIO CN1ZER = CN, = £ (AMACH)

INDA1L CNIALP = CNg - £(AMACH)

INDAL2 ONASQ = CNg? = £(AMACH)

INDA13 CNLBET = CNp = £ (AMACH)

INDALL CMIBSQ = CNg? = f(AMAGH)

INDAL7 CNLALB = CNag = £ (AMACH) !
INDAZL CYZERO = Y = £ (AMACH) |
INDA25 CYALH = Cla = £ (AMACH)

INDA26 CYALSy = O % = £ (AMACH)

INDA27 CYBEA = CiIg = £ (AMACH)

INDAZ® CYBTSQ = CYg? = £(AMACH)

INDA3L CYALBT = Clgg = £ (AMACH)

282

From these coefficients CA, CN and Cy, are computed as:
A = ja|Chy +CAy+ aZA 2+ |Blcag + p%oAg2 + Chagla|iB |
O ~ac, +y+ alaloN,2+|p| vy +p2mg2 +|Bla Muyg
CTh = |a| OTg +OY, + 020" + B Ct5+|8| B Cp2 +|a|p Cr, g

After this computation ALIFTP, DRAGP and SIDEP are computed.

INDAER =

If INDA9O, INDA91 and INDA92 are O, CA, CN and CYA respectively are
unchanged but if either indicator is nonzero, the coefficients are computed

as follows:
If INDA9O ¥ 0 CA = £(ALPHD,BETAD,AMACH)
INDA9L ¥ 0 CN = £(ALFHD,BETAD,AMACH)
INDA92 # 0 CYA = f£(ALPHD,RETAD,ANACH)

The routine then r:mputes lift, drag and side force.
INDAER =

If INDA9O, INDA91 and INDA92 are O, then CA, CN and CYA are unchanged. If
any of the indicators sre nonzero, the coefficients are computed as

follows:

If INDASO ¥ 0 CA = £(AMACH,ALPHD)
INDA9L ¥ 0 CN = f(AMACK,ALPHD)
INDA92 ¥ 0 CTA = f(ALPHD,BETAD,AMACH)

With these coefficients 1ift, drag and sideslip are computed.
INDAER =

If any of the indicators listed are set to O the respective coefficient is
unchanged. If any indicators are ronzero the coefficients are computed

as follows:

If INDALO e 0 CAMIN = f{AMACH)
INDALL $] ELPRIM = f£(AMACH)
INDAL2 ¢ 0 ZX = £(AMACH)
INDAL3 ¥ 0 CLZ = £(AMACH)

I

INDABO v 0 CN = f{ALPHD,AMACH)
INDAOL 4 0 DELCA = f£(AMACE)
INDACR # 0 CPAKL = £(AMACH)
INDAO3 # 0 CPAK2 = £(AMACH)

C4 = CAMIN + ELPRIM (CN-CLZ)? + 7ZK(CN-CLZ)® + DELCA
CYA=0
Cockpit alpha and pitch angle are computed as auxiliary ccmputation.
CPATD = Cockpit o = CPAKlo+CPAK2
PA7TD = Pitch angle = vy + o cos BA-AINCD
with the above computation lift, drag and sideslip are computed.
INDAFR = 6

If INDA9O and INDA91 are O, CA and CN are unchanged. If INDASO and/or
INDA91 are not zero the coefficients are computed as follows:

A = (ar2 + /%) 2
INDASO # 0 CA = f{A.AMACH,HGC7F)
INDA9L # 0 CN = f(A,AMACH,HGC7F)
CN = CN Jﬁd
(54
INDAER = 7

If INDASO and/or INDALO is zero then CA and CN are unchanged.
If INDASO # O then
CA = £{HGC7F,ALPHD)
If INDALO # O, then
CN = f(ALPHD)
LIFT, DRAG, SIDE FORCE
If INDBAD is # O, the following ccmputalions are made.

CD = CA CY = CYA CL = CN

If INBAD = 0, the following computations are rade.

-CD ~CA
CI] = |uvw CYA
~CL -CN 284

B T ——

With these coefficients 1lift, drag and side force are computed as follows:

LIFT - ALIFTP = g S(€CL+ €,)
DRAG = DRAGP = q 5(€40+ €,)
SIDE FORCE = SIDEP = g S(€5CY+ €¢)
g = dynamic pressure

€1» €3 €3, €,,6, and € are input error constants
S = reference area.

IENTRY = L

Not used.

IENTRY = 5

A test is made on INDAER if O, no computation. If INDAER is equal to 2
the following codes are printed.

CAVAH CL ch c¥ LD
If INDAER = 1, the following codes are printea

CL ch CY L7D PATD CPATD
If INDAER = 5, the following codes are printed
CL CD cY L7D PATD CPATD

For any other value of INDAER ¥ O, the follcwing codes are printed
CL CD CcY L7
IENTRY = 6

With this entry the corresponding values to the code in entry 5 are
printed,

CL - 1ift force coefficient
1)) = Drag torce coefficient
cY - Aerodynamic side force coefficient

LD = This will be O if CD is O, if not L7D = CL/CD
PATID = 7 + cx cos, ~ATHCD
CPATD = CPAKI'e + CPAK2

285

v TR " 4 Tt

286

el e L s o

(178]

¢

(854 W3bory mgd ot IV
1% + 8topy waovue
%+ Aoty =armis

[V X33

[

ol i+ $FAO0101

+PA3g 43033 4 BA) 4 WAy, 14 TRy
Lot TN EFLLT 2

P[] 39D (o] = o B L oy . LN
(L L R AT 1

% [+ *Yogv~ HVAYD + "¥ . (o) «¥D

|

ﬁ

A% AT A stvem
¥ x8A%= g3 sgven!
viisade Ay Lvem
S8IVAI = IV sxwem)
HeTHAD= Wiy grvew:
uITAI- %3 yrvem
Mviny =%y ovaEr
osein3 =™ e
ANmiNd® M3 civam
oV T SNy gsvemt
awviaz e > vem
(218 LRLL W P
2mvese %% vem
V819V ~ % revem
warevy » % wven
SEITYI~ D evemt
NEYYYI= "V jeveem

NIVEY 10 301ismay
2 99 PRAGmer Sou BIQEISEn BY) wou)
Ssu SiopEspe| fuimensy ou go Swe N

VA mtmems w3 = 39
¥3- = w3 = A
v = @
t onse (131
"ot sIvs

287

-

78. LATS _aud LATS2 - Geodetic-Geccentric Conversion

Purpose:

To campute the geocentric latitude in terms of the geodetic latitude
and vice versa., LATS is used for vehicle 1; LATS2, fcr vehicle 2.

Usage:
CALL LATS (IENTRY, PHIC, PHIG, THMP)

TENTRY = 1 compute geocentric latitude in terms of geodetic

latitude
=2 corpute geodetic latitude in terms of geocentric
latitude
PHIC the geocentric latitude (degrees)
PHIC the geodetic latitude (degrees)
™P an array of dimension > 7 for temporar” calculations

The COMMON varlables HCC7F, RP77F, RET7F, R777F ere used also.
Msthod:

IENTRY = 1: h, Rp, Res (bg given

¢! = tan! [<52> 2 tan ¢]
Rg 4
Rd)l = ‘rRaEL:ﬁumI:Z_
A (Bp co8 ¢~)" + (Rgain¢™)

Rgpl sind)l + h sin d;&
Rpl cos él + h cos d)s

b ™ tan™ [

IENTRY = 2: R, Rp’REr ¢, gvan
Up =1

(R\ I"REZ-RE

[l U _}
2 2 D n-l _
FlE) + !_RE'*’ R][cos<d o + rUrT—lsin‘bc)z ~n 1,..,3

U Ul U3 - U22
* Ul + UB - 2U2

R
® tan-l |-E
$q = tan l- Ugtan 4 c]

-

Un

LATS

Y
—_— e oA GO TO (1080.2008) |ENTRV’—--r-——'

1089

VM) SIN (PHIG “E

T p(2)* GOS8 (PHIGYRA

rﬂum;» Amn(mm'-z)'mmﬁpnm :_7:'(2)

R ad

E_ﬁﬂ_‘\inulvupmtj

Tuarfs} ccos(rme i)

| '
: EM)-lnrnnmm)»zmzm-vnre)u: l ;
‘ WP) = RPTTF /RETTE 4 THMPTISTMP (1= D) /
\sontﬂu«)u 2+ (TMP{-1) STMPLS)#42)
i
)
1

T™™PLS) VMPIA]S TIPS HHGC TF¥ TMPIY)]
I F;m-(-maumm—mm) --2G

——
TMPE) : THP() ST (8] - HGCTER THP(L)
F:nn-(twm rTHeis] - 2. eTMPD
-

IR _
Wl RETTF dmprTE/sORT(TMP Y |

}-u —
HICs ATANZIYMP), TWP() ®DEG -
PHIG = Atmzl,nennmunwr(n ,RPTIF STMP(1) suv(m]
" ::_,_.__— e

PHIG » PHIG ® DEG

RETURN

289

79. ATMS _and ATMS2

- Atmosphere Selector

Purposs:

To enable the user to selsct which aimosphere (1959 or the 1962 atmo-
sphere) that will be used by ths program.

Usage:

CALL ATMS (HGC7F)

HGC7F = The initial altitude that wiil be used by ATMS53 or ATMS62.
INDATM = 2 selection of the 1962 atmosphere.

INDATM # 2 selection of the 1959 atmosphere.

Remarks

ATMS59 or ATMSO2 is called only by DIFEQL., A flow chart for ATMS is

presented. ATMSZ is identical except Ior the use of vehicle 2
COMMON blocks and subroutines.

ATMS
N(iNpaTM=2 } -

ATMS59 {HGC7F) ATMS62 (HGCT7F)

RETURN

290

8G. G¥SP and GVSP2 - Gravitational Rovtine
Purpoge

Tc compute the components of gravitational acceleration within a local
geocentric coordinate system.

Usage
CALL GVSP

The equations used were adapted from the gravity potential equation. The

number of spherical harmonics included in the computation is determined by
inputing an integral value from O to 4 for INNGVT. The nominal value for

INDGVT is 4.

The equatiims pertain to the planet Earth; however, it is possible to use
thess same equations for any other planet. For this reason, the values of the
coefficients ore ., ammad as an input to the program so that the applicable
coefficients may be inserted for the planet under consideration. The following
glve the necessary planet change as well as the nominal values for the planet
E»»th.

KET7? =R, = 20926428. ft. = equatorial radius
RPT7F = ?;‘.' = 20855965. ft. = polar radius

AMU = = 1.407698 x l()l6 ff?/secz = gravity constant
BKGRAV =K =6.37 5 1070 = 3rd spherical harmonic
G =H =6.04x1076 = 2nd spherical harmonic
AJG =J =1.62341 x 1072 = 1st spherical harmonic
Remarks:

A flow chart fox GVSP is presented. GVSP2 is identical except for
the use of vehicle 2 COMMON blocks.

291

Gvse

GXGTF =0.
UGVIFs O
GIGIF =0.

=0
INOGVT RITURN
 Jd
KOR1 “RETTF /RINIF

ROR2 = ROR? » ROR1
COR *M/RT1NIF

6267¢*{G2GIF+1.)-CORR
UGVTF ocv1r+1.)-con

CORR =coa/a 17F GXGTF*GXGIF-CORR-ROR 2
at
INOGVT) ’l
'

g A

=81 P271.-3.¢SPHI £
2:: =§$2 :‘ GXG7F sGXGTF = 2J+P3
PS 35PHI- CPHI UGVTF UGVTF+ JAROR2 > P2
SPHI2"SPHI+SPHI G07f *G2GTF+MRORZ »P2

—

P4 sSPHI2 (35, °SPHIZ-30.) 43
P71 +ps. (1.5PH12-1))

GZGIF * K¢ .ROR? “ROR2 P4

UGVTF = Ky ROR 27 ROR? * P4
GXGIF » fi55° ROR2 *P7

P3 = SPHI -{(3.-5.-spmz)
pe=cPHI =(1.=s.sPHI2)

GXGTF *GXGTF + 44 H*RORI*ROR2 - P}
UGVTFzUGVIF t%’aom *ROR2+P3
GIGTFIGIGIF +Y4H "RORY *P§

292

roreL

Vb

81. ARITR and ANITR2 - Throttle Dependent Derivative and Thrust Vector
Calculation

EEEOBG:

ANITR and ANITR2 compute that portion of the cerivative calculation
which directly depends on the thoottle setting end thrust angles.

Method:

Propulsion system effects are ~omput=4 from TFFS and TFFS2. A thrust
vector transformaticn accounts for the possibility of thrust vector
control, Load factors are ontionally computed. Heating and aerody-
namic routines HETS, HETS2, SACS, and BACSZ2 are called from ANITR and
ANITR2 in anticipation of subsequent requirements to account for
propulsion system interaction on aerodynamics and heating.

Remarks:

A flow chart for ANITR is provided. ANITR2 is identical except for
the use of vehicle 2 COMMON blocks and auxiliary subroutines.

ANITR
)

RETS (3)
TEES (3)
SACS (3)

|

Wz Grog
]

g : Sayn (0ELYS)

Ta =¥ cosdy

Ty T s 0y alaay
Te °F stadyumay
WCOMPUYED BY TPP

s
——
-3
SRS
[VR)

A,
ékzzb%y
[AY;

g Tey- B

! Fra =Ty, 7

URE RN

T

ﬁZEﬂ#Hth————J(:E%E;:)

o o "-/w.]

AEL
O ‘5ﬁw

}

CETven
293

e gt

e oy g e, e ot

"

82,

BAITP. and BAITR2 - Bank Angle Dependent Derivative Calculation

Purgose:

Tov carry out that portion of the derivative calculation which is
directly dependent on the bank angle.

Method:

Computes the (r,s,t) matrix through TMTX or TMTX2 then computes
total force components in the rotating earth-centered coordinate

system, (XE, Yoo ZE)
Remarks:

A flow chart for BAITR is provided. BAITR2 is identical except
for the use of vehicle 2 COMMON blocks and auxiliary subroutines.

BAXTR

|

vni-:
comrt {v s 1] marmix
ROTATL:
=8,) ABOUT xAXIS
74) ABOUT y AXEy
Goa) ABOUT: AXIS

" TA e Yy
W s CONgp

$
1w Ba cos By h

{'.::?.{-ny] y
L"rJ l [l % g
4%?5«1/
i
29k

83.ASRCH_and ASRCH2 - Directory Search Routices for BCD Characters

Purpoge:

To provide a BCD word look up from a subscript.

Mothod:

Given a subscript the routine will search the directory for the BCD word

corresponding to that subscript. If the subscripts do not compare the
BCD names is set to blank and return to the Calling Program is made.

Usage:

Entry is made to the routine with the following statement:
CALL ASRCH (LOC1,SYM1)

where,
I0C1 = subscript being searched.

SYM1 = The variable name int¢ waich the routine is to store the
correaponding BCD nama.

No othsr routines are calicd from this routine.
Remarks:

A flow chart for ASRCHE is presenved., ASRCH2 is identical except
for use of vehicle 2 COMMON blocks.

R - .

F

v

ASRCH

DO 2000 I = 1, MAXT

10C1 # LOCS())._T___

SYM1 = STABLE(})

v

RETURN

'

2000
CONTINUE

'

F e PR, i e RN Sy B N S b Ak
* A = . P e = - CSn B

SYM1 = BILANK

'

RETURN

296

Fa

Scr s

8k,

GRIDXY ~ Paper Plot Grid Routine

Purpose:

Tc set up the grid for paper plots

Call GRIDXY (PLOT, XMIN, XMAX, YMIN, YMAX, DX, DY)

Where

PLOT is an array into which the plot characters and
grid characters are placed to produce the finished
plot. The finished plot will contain 51 lines of
102 characters per line.

XMIN minirum » value for the grid

XMAX maximum x value for the grid

YMIN minimum y value for the grid

YMAX msximim y value for the grid

DX number of divisions on x zxis

Dy number of divisicuns on y axis

297

S S EE il oot

R e

| W

_ %
[PLOT = blak |, L=NwORDS

GROYY

TCMAR=1C\ _]

—

[Feuan=-((xAnl/ods 100) +L49D] &

|

4

1% <cau- Pv

YMAX >0 cune=|

<

[1cune= (CMAYAN e N +1.4090 |

\ 4

—alo 450 = TENMRIUP &1 o ¢ TchL

—-[Ko ol boT
$

| o= MOB(TGHAR s lo_)_J

[Tx (F8-1) + Ix

l

$340 _
o= (TCHAR-1) ¢TCPL +\
JE = JB+100

Do 350 1= TB,IE
$,
DsSO CALL POT ——-{m-_mu(num.e\

T6- T(MAR +(TM-1) + Lcojt

Do SO \® T ,JE WO
4
S0 calLL boT
+

{ iz T3+ TMag -\

ILALL PUT }-————» RETURN)

298

85. PLCFTS - Paper Plo: Point Placing Program

Purpose:
To place plotted pcints on the grid formed by GRIDXY.

Usage:

Call PICPTS (PLOT, X, Y, NPTS, IPATH, IPLOT, NFRAME, IFIAT,
XMIN, YMAX, XP, YP)

Where

PLOT is an array into which the pic- characters and grii
characters are placed to produce the finished plot.
The finished plot will contain 51 lines of 102
characters per line.

X is the gsrray that containg the wvalues of the inde-
pendent variable to be plottec

Y is the array that contains the values of the
depend :nt varisble to be plotted

NPTS numbe: - of points o b2 plotted

IPATH not used

IPIOT subscript used to select plot symbol

NFRAME frame number to be printed at the bottom of the plot

IFLAG flag set equals 1 if points have fallen off the
plotting area

3 XMIN minimun, x value
XMAX maximum y value

wr X piot inerement

1P ¥ piol increment

299

PLCPTS

LMK = IR
NRDPTS=0
IPT= 1P (1AL0TD

Bo 600 nxi,NPTS

[¥£= (MR Y)Y =YP +1.4999

NT<NI+ 000001 F—r&<T<0.0

He

&
>,

I-Y1
XI= XN -XMIN ISP +1, 4999

ﬁ@
e

CALL GET WRITE: “ 1PLDT, NFQAME

ﬁcumis*a-a} +IcoL |

v

TeHe -
CIA™ T 10

Yas '
WRITE:" N X, Y.,

!

No
K :
CaLl AUT aatl POt NBDPTS = NBDPTEA
IFLAG =] :
v
600 Cinloue
RETURN

299a

86.

IPICK -~ Randcm Tactic Selector

Purpose:

Subroutine IPICK nominally £ills both vehirle 1 and vehicle
2 role selection tables with random arrays). tactics.

Usage:
CALL IPICK(N)

vhere N is the number of random tactics to be selected.

ZPICK (V)

?: fg//v_rf (/.O)

B !
|

T FLOAT(Z)/ FLOAT ()
B o

Yés

L= L +1

300

AT T IR e P TN 1 F RN T

87. DEFENl1l and DEFEN2]l ~ First Defensive Tactic

Purpose:

To steer each vehicle along a path givirg a maximum rate of turn.
The tactic is a hard turn in the vertical plane,

Remarks:

A flow chart for DEFENl1l is presented; DEFEN12 is identical except for
use of vehicle 2 COMMON blocks.

DEFENL12 and DEFEN22 ~ Second Defensive Tactic

Purpose:

DEFEN12 and DEFEN22 are ENTRY points in DEFEN1l and DEFEN22, respec-
tively. The tactic is a hard turn into the cpponent at an altitude

dependent bank-anglie. A flow chart for DEFEN12 is presented. DEFEN22 is

identical except for use of wvehicle 2 COMMON blocks.

DEFEN13 and DEFEN23 -~ Third Defensive Tactic

Purpose:

DEFEN13 and DEFEN23 are ENTRY points iu DEFEN1l and DEFEN21, respectively.

The tactic restates the target's line-of-sight vector at & maximum
possible rate. Local angle-of-attack and bank-angle perturbations
determine control values which maximize the vector product megnitude,
|LOS,, x Fyy|
where Ff is the total force vector, and LOST is the target's line-of-
sight vector, A flow chart for DEFEN13 is presented, DEFEN23 is
identical except for the use of vehicle 2 COMMON blocks and auxiliary
routines,

DEFEN1L and DEFEN24 - Fourth Defensive Tactic

_Purposge:
DEFEN1l and DEFEN24 are T'TRY points in DEFEN1l and DEFEN21, respectively.

The tactic rotates the target's lead-pursuit vector at a maximum rate.
Local angle-of-attack and bank-angle perturbations determine control
values which maximize the vector produzt magnitude

Ay x Fyl
where Fr is the total force vector, and EK& is the farget's .ead-pursuit

vector. A flow chart for DEFEN1k is presented. DEFEN2L is identical
except for use of vehicle 2 COMMON blocks and auxiliary subroutines.

301

.DEFEN15 and DEFEN25 — Fifth Defensive Tactic

Purpose:

UEFEN1S and DEFEN25 are ENTRY polnts in DEFEN1l and DEFEN21, respectively.
The tactic rotates a proportional vector, VR, which is a linear combi-
nation of target’s lead-pursuit angle and target'’s line-of-sight vectors
&t a maxjmum possible rate. ILocal angle-of-attack and bank-angle pertur-
betions determine control velues which maximize the vector produce

ma ;s 2Lide

7, x |
Here, FT is the total force, and VR is the target's reference vector.
Remarks:
A flow chart for DEFEN15 is presented. DEFEN25 is identical except for

use of vehicle 2 COMMON blocks and auxiliary subroutines.

DEFEN16 and DEFEN26 - Sixth Defensive Tactic

Purgose:

DEFEN16 and DEFEN26 are ENTRY points in DEFEN1l and DEFEN21, respectively.
The tactic performs a "Split-S" under an opponent., The initial maneuver
through the vertical is a simple Split-S. Once through the vertical has
been accomplished, the reference vehicle maintains the Split~S but banks
underneath the opponent,

Remarks:

A flow chart for DEFEN16 is presented. DEFEN26 is identical except for
use of vehicle 2 COMMON blocks and auxiliary routines.

DEFEN1T and DEFEN2T - Seventh Defensive Tactic

Purpose:

DEFEN1T and DEFEN2T are ENIRY points in DEFEMN11l and DEFEN21l, respectively.
The tactic develops a maximum specific energy path in a vertical plane.
Angle-of-attack,which maximizes E at time AT ahead along the predicted
flight path,is determined by local control perturbation. The tactic in-
cludes logic to force a transfer to supersonic conditicns. A flow chart
forDEFEN1T is presented. DEFEN27T is identical except for use of vehicle

2 COMMON tlocks and auxiliery routines.

302

(2esens

rISG ovéE
“omaximum rare of Lenrr”

!

BeD70 = ST6s (Vv0. | 342 22)

ALPDY = ANIQLN
Ard) = AMTIAX

—

OEFEN 12

NViSsonE

o Counm'

¥

AND = ANNMAX % CPCON (18)
ALrdY = AMAXD* cleon(19)

e — -
{

TlU(Hec 7F, LocBor, GADI D)

i’

BADYID = SxGN (8AD7D ARI B D)

AL TR

303

DEFEN)5

MSGONE
'm%émum £ine- A-aight vectse nOtALioN

'

AND = A N VIAX 3 CACON(30)

NPHIAC = ¢
o |
OALPBP By = DRI

(DEFENY)

MIS7ONE
" ximum ./ma’ﬁuu,w't veelon JUUQMJ

]

AND = ANNMAX K CPLIN (3])
NPHIAC:2

I ;

OALPBA ;z,,.s.._:Mx[\CAx k1)

L R

i
RETURN

304

DEFEN 15~

' P?SGONE
AR mur) pRdpevcidapal Vacoar Rotextion

#

ANO = ANPIX % CACON(32)
NPHIAC = 3
e e m e m e -

L .

QALPEA | | @Bz ruxliTexryi] |

OETURN
(LEFEN 16

' IISEONE |
Aplet S 2t Shporcat”

NO YES
MSGONE
DEFNIS yES /JJ/t vearr ChHe renticald i
GT- - VPV AZcesr Lenenth o ppcrrent]
0.0 * '
NO ’BAmo = SIer(19, JATID) FLPOD = ArIAX D¥ P pans (33)
AND = ANMAX e CrCon (37)
_.___j NPHIAC = 2
DEFNI = o.o r--_-F;V-s ‘: * ;
AAPOD = qraxp 'BM»‘ MAX W‘] ! l el J'
AND = AMAIAX : s !

""""" ' i
,__H (RE 11/8N)
(R& 70/ D

305

) | (26FeEns7)
2
VISGIONE

Maimirn Apeoific NNy patA

YES
INDOIY = ©
ALPDD = ArIAXD
NFPHIAE = 10 y
APOD : AmAX D
NPHIAC= to
OALPBA l
ALPDD = AMAXD OAarEA
NPHIAC: 4 4
\ J R , ALPDD = ALPID /2. o
O9ePBA __| @y Max[E] INDDIY = |
\
. Ve
GAM),
RETLRN e YES / 2
LT
SOMSAE
I

306
RETLRY

g

88 FIXEDR and FIXEDR2 - Fixed Role Selection Routiane

Purpose:
To provide a mears for overriding the combat role selection logic.
Method:

When the tactic selection indicator, MOFFEN; is negative, the role
selection is overridden,and the role is selected on the basis of
MOFFEN; as followa:

MOFFEN; = -1, Passive
= -2, Defensive
= -3, Evasive
= -4, Offensive
= =5, Attacking
Remerks:

A flow chart for FIXEDR is presented., FIXFEDR2 is identical except for
the use of vehicle 2 COMMON blocks aud auxiliary subroutines.

FIXEDR
PASS VI ATr7ACI(3)
1 | DEFEMI(3) [OF FENI(3)

l EVADEI(3)

89. EVADEll and EVADE21l - First Evasive Tactic

Purpose:

To steer each vehicle into a hard pull-up maneuver., A flow chart for
EVADE1l is presented. EVADE2]l is identical except for use of vehicle
2 COMMON blocks,

EVADEl1l2 and EVADE22 - Second Evasive Tactic

Purgose:

EVADE12 and EVADE22 are ENTRY points in EVADEll and EVADE21,respectively.
They steer each vehicle in a random weaving maneuver. A flow chert for
EVADE12 is presented, EVADE22 ig identical except tfor use of vehicle 2
CCMMON blocks.

EVADEl3 and EVADE23 - Third Evasive Tactic

Purpose:

EVADE12 and EVADEC3 are ENIRY points in EVADEil and EVADE21l. They steer
each vehicle into a Split-S. A flow chart for EVADE1l3 is presented.
EVADE23 is identical except for the use of vehicle 2 COMMON blocks.

EVADEll4 and RVADE2L - Fourth Evasive Tactic

Purpose:

EVADElk and EVADE24 are ENTRY points in EVADELl and EVADE21. They steer
each vehicle in a random sequence of hard turns. The direction of the
turns is changed at intervals of TNEWBA. A flow chart for EVADELL is
presented, EVADE2LK is identical except for use of vehicle 2 CCMMON
blocks.

EVADE1S and EVADE25 - Fifth Evasive Tactic

Purpose:

EVADE15 and EVADE25 are ENTRY points in EVADEll and EVADE2l. They steer
each vehicle towards a vertical dive. At y = 90 - apgy, the maneuvers
become zero lift dives. A flow chart for EVADELS is presented. EVADE2S
is identical except for use of vekicle 2 COMMON blocks.

EVADE16 and. EVADE26 - Sixth Evasive Tactic

Purpose:

EVADE16 and EVADE26 are entry points in EVADELl snd EVADE2)., respectively.
They steer each vehicle into a random rolling maneuver with maximim angle-
of-attack and sideslip. A flow chart for EVADE16 is presented. EVADE26
is identical except for use of vehicle 2 COMMON blocks.

(&vave 11)

. MSGoONE
Hard putd o’

'

AAEPDY = AriAx D

AND = ANMAX
8AD?D§ 0.2

(Az706n)

ALPDD = Arsax d
Ard = ANNMAX
BETDLD = BEMXD
Rz BUNIF (1:0)* 2,0 < 1.0
BADIL = BAT7D 451(,5)0800.)52)

309

EVADE 13

, MVMISGONE .

4plié S

l

SND = AN rIAX
ALPDD = AMAXD
BAD?D = S1gn (180 ,8A77D)

-

FETURN

{

MSGONE

“hand tteren”

!

/AL POD = An1AX D
AND = ANIAX

RETLRN

TNT' 53 = Treew 34 ¢+ TEYADE
R=RUNIF(10)w 2.0 -1.0
BADIWD = SJGN(’O., R)

310

ENADE 15~)

° .MSc onveE
werbital dove

{

BADID =Siaw (150. ,3477D)
ALP LD = ArvAax)
AND = AvMAX

. _,/.')4”’70 YeSs
. AT —
- 90, -AMAXD ALPOD = c-0
1
=) RETLepy
-
. ,
: EVADE 16
! . M{GONG
X i
T
Y
ALPPO = ¢ AComS() 3 spnany,
EETPO = (Peons (e Berxd
/_——_ﬁ
- ReTeen)
N——

G- RUNIF (r0)a)0 =22

8‘?070 B M??C‘*SJ‘V(I"‘.))

, K

311

90. OFFEN1l and OFFEN2] - Lag-~Pursuit Offensive Tactic

EEEOSG:

To steer each vehicle along a lag-pursuit course.

Method:

When the first offensive tactic is selected, a vehicle flies a lag-
pursuit course determined by force maximization along the lag-pursuit
vector, Instantaneous bank-angle perturbation defines the desired

control variable values.
Remarks:

A flow chart for OFFEN1l is presented. OFFEN21 is identical excent for
use of vehicle 2 COMMON blocks ané asuxiliary sabroutines.

(OFF&EN 17)

F

MSG oONE

o

i
ALPOD = Aroax D+ CPLo1(37)

ALFPPY = [E3ELD]

l

NRPOD = ALPOY+ CPCMN Y 3) l

ANVD = Gas AN % CPCoN (29)
NPT = 3

Boo = MAX [Fr Vg /1wy] :

1
)
RIS L !

312

e

91, OFFEN12 and OFFEN22 - Leed-Pursuit Offensive Tactic

Purpose:

To steer each vehicle elong a lead-pursuit course.

Method:

When the secona offensive tactic is selected, a vehicle flies a lead-
pursuit course determined by iforce maximization along the lead-pursuit

vector. Instantaneous angle-of-attack and bank-angle perturbations
defire the desired control variable values.

Remarks:

A flow chart for OFFEN21 is presented. OFFEN22 is identical except
for ase of vehiclie COMMON blocks and auxiliary subroutines

OFFEN12 and OFFEN22 are ENTRY points in OFFEN1l end OFFEN1Z2.

. M SGONE
L&'z e - gt aight- puraccit

ALPDL = ArIAXD + CPcoN (¥1)

Acrob - J€séro |

I

ALLOD = /AP DY % ¢ PCON(¥0)
AND = ANrMXn CPCON (42)

NPHI/?C:G
FmTm T T o T
Laf;(.pezq ' Ban- Max[Fivs Z1vst] |
"*‘T—‘"——'—' b e - - e - - J
RETURN

513

"

92, OFFEN13 and OFFEN23 -~ Reference Vector Offensive Tactic

Purpose:

To steer each vehicle along a reference vector course which is a linear
2combination of the lead-angle and line-of-sight vectors.

Method:
When the first offensive tactic is selected, a vehicle flies a reference
vector pursuit course determined by force meximization along the refer-

ence vector. Instantaneous angle-of-attack and bank-angle perturbations
define the desired control variable values.

Remarks:

A flow chart for OFFEN13 is preseunted. OFFEN23 is identical e.cept for
use of vehicle 2 COMMON blocks and auxiliary subroutines.

OFFEN13 and OFFENZ3 are entry points in OFFEN1l e 4 OFFENZ21.

AMSGoneE)
Vecto-t. e

'

ALPDD =8 /MAXDKCACON (vS)

-

’ D}

<, reT ALOLD: JESERD]

%5&0/

ALPDL = ALPOD % CACOM(Y0)
AND = ANPIAX % CPCON(YC)

NPHNIAC =2
O0RLPBAH \ Bao: 17X A L I]
e e - e f m - o]

Rereen

31k

R

93. ATTACll and ATTAC2)l -~ First Attacking Tactic

Purpose:

To steer each vehicle along a path which simultaneously tracks the
firing pcint and eliminates any steering errors.

Method:

When the first attacking tactic is selected, a vehicle steers in a
manner calculated to eliminate steering errors and track the firing
point. Instantanesous bank-angle perturbations define the desired
bank-angle; angle-of-attack is determined by subsequent minimization
of the difference between force magnitude and force magnitude
required.

Remarks:

A flow chart for ATTACll is presented; ATTAC21 is identical except
for the use of vehicle 2 COMMON blocks and auxiliary subroutines.

315

9h4. ATTAC12 and ATTAC22 - Second Attacking Tactic

Purpose:

ATTAC12 and ATTAC22 are ENTRY points in ATTAC1ll esnd ATTAC21l, respectively.
The second attacking tactic is identical to the szecond offensive tactic.

ATTACl13 and ATTAC23 - Third Attacking Tactic

Purpose:

ATTAC13 and ATTAC23 are ENTRY points in ATTAC1l and ATTAC2l, respectively,
The third atcvacking maneuver is identical to the third offensive
maneuver,

ATTAC1L and ATTAC24 — Fourth Attacking Tectic

Purpose:

ATTAClY and ATTAC24 .re ENTRY points in ATTAC1l and ATTAC2l, respectively.
The fourth attacking maneuver is identical to the first offensive
maneuver,

316

- V]
/T)?/‘J,J " ZM‘)I‘I((— L) [] @

JAGETL RELATIVE yeroct7)

w: i [orrenrz
/io/l |
(frwen)
Ip/Jijﬂ/é‘ & P70 \
E - Cﬂ.;‘(\-/: R
WIIRY s)
L;;) v N X é' ‘
2 . = - ‘;Ffé/w.?__
v x &'l Cfm'/(‘/i)_‘ |

ENCODE (m36) (3, o,

MSGonéE (MS(.)

REQITE O R0IATIT oAd |

OF Yicde? rd Yicron ‘]
» » OFFEN /)
0= W, +w,

b

‘ AND = ANTAX « OV (%) i (_/(L:TL/A’N >

i o % T B

AND = AV IAX * C Pcowm(S0)

-—_———- —— 777
.

E‘“‘"“Wl‘:’) - Fr) _

———— ——

‘ OPTBA - NPHIAC =)

l

-

| Sl rj
WHZA('- Ny | o9LPBA E T LI
T e = m =T 1
- -
Edd : "_I.NLFT_: imlvl: \fi.\]—;

317

95.

CTLCPT - Internal AESOP Optimization Loop

Purpose:

To provide an internal parameter optimization capability independent
of the outer irajectory or design optimization loop.

Method:

A control program essentially identical to the AESOP control program
is created. The outer parameter optimization data base is preserved
on tape at trajectory commencement and is retrieved at trajectory
termination. During the trajectory CTLOPT through IMAINOF permits
independent access to the AESOP optimization rcutines. Optimization
functions are defined by a variety of control programs embodying com-
bat guidance laws and local inequality information. CTLOPT is used by
either vehicle.

318

FALSE t’
] ‘\/

MENTRY = /

INTTD L
\
BES7AF(3)

FUNCTN (NPIT) = Fit. SN (AWPVIAC)

-‘—————-____—._? *
IMA p ESTAF (3)
MAI NO

BESTAF (2) j

ZEONS = FALS'E.

y

r
N O]
—_

i - | BESTAF (1)
(RETURN

4 -
RANERSESIE AT -——-—{i&ans:.mj&] NSR=/ _]

/?g TN

319

96, NDTLU -~ M ~ Dimepaional Table Look-up Routipne
Purpoge

To provide a method of linearly interpolating in a table of n independent
variables.

Method

Given the arguments X(1), X(2), X(3),..., X(N-1), the :outine computes
Y = £(x(1)), x(2), x(3),..., X(N~1) by linear interpolaticn from a table.
Extrapolation beyond the upper and lower limits is optional.

Usage
Entry is made via thc statement:

CALL NDTLU (ND,NA,X,Z,XA,ZR,IE,NEXTR)

ND = Dimension of look-up when Y-f(X). ND = 2

NA = An array of length ND-1. Numbers of values of each
table of X. The tables are listed by size, the largest being
first.

X = Tahles of each X in order.

Z = Function values. If A = £(X,Y,2) the dependent variable array
mist be in the following order

Asgume X =4, Y=3, Z=2

Z(1) = £(xa,11,21) 2(13) = £(x1,11,22)
7(2) = £(x2,0,21) zZ(L) = £(x2,11,22)
2(3) = £(x3,11,21) 2(15) = £(X3,11,22)
Z(‘#) = f(XA,Yl,Zl) 2(16) = f(x&,n,ZZ)
2(5) = £(x1,Y2,21) z(17) = F(X1,Y2,22)
2(6) = £(x2,12,21) 2(18) = £(X2,Y2,22)
2(7) = £(x3,Y2,21) 2(19) = £(x3,Y2,22)
z(8) = £(x4,Y2,21) 2(20) = £(X4,Y2,22)
2(9) = £(,¥3,21) 2(21) = £(x3,Y¥3,22)
72(10) = £(X2,Y3,21) 2(z2) = £(x2,13,22)
z(11) = £1(x3,Y3,21) 2(23) = £(13,13,22)
2(12) = f(XA,YB,ZJ) 2(21&) = r(Xh.YB.ZZ)

ZR = Results

NEXTR = 1 Extrapolate
= 0 No extrapolation
1E = Error code
U no error
-1 X array too small

1 X array too large
2 array not in ascending order

-

P TR ST, M

Lot n be number of irdependent variables, then the table is called an "(n+l)
dimensional table.”

Z= f(xl,....,xn)
Pregram
To use a table of dimension > 3 ard £ 5 a call to HIHO should be made with

the 1li.t of arguments in the calling sequence in the same order as the independent
variables are numbered.

NOTLY SUBRCHUITINE

] 0018 I-!.(ll.l—)

Lo~ - K xews 6wty |

’u NI NE

'L—L':{wb’ﬂ“ -1) fmaw) ~wup -1)))'m:_j

Ry

(AETYRN)

322

97.

CHEMP and CHEMP2 — Chemical State Computation

Purposge:

To provide the thermodynamic and transport properties of air downstream
of the shock.

Method:

Linkage to this subobrogram is achieved by a statement of the general
form:

CALL CHEMP (P,H,T,RH0,AMU,SS,K)

K =0: The pressure and temperature are assumsd 1o be
defined, The enthaipy, density and coefficient of
viscosity are computed.

K=1: The pressure and enthalpy are assumed to be defined,
The temperature, density and coefficient of viscosity
are computed.

K=-21: The same as the case where K = 1 except that the speed
of sound is also computead.

Remarks:

INDGAS = 1: Real gas effects considered.

INDGAS = -1,0: Perfect gas assumed,

323

CHEMPF 1)

ENTER

H=6008.+ T

4#

= H/6008.
P =1.232819
*» P/T
Bz 2.27410 i

1.)
o 5 .
T1198.6

L i RETURN

32k

|

3%
.ﬂ:#.l—ﬁl?.ln.z'/

o

| IJ‘.l.l_

Ny, te Oy

[l DA AM X e w

tsu.—uﬁ

vll.ixm.x-:.fv:-& j u«‘n&

Syaty
o=ty
-2 =Sy

Tnifoqloc(f) e

L1
N

:du-mu v.u—!::.,- +40204 |

_J
m

NOTAVNIL) JUNIVUEIGNILL

t

*: (tfa+is)e-Ju-3)Tv-ae0L
Yy yly. By by - by Ty =3
ENOILVLININOD ONNOS 20 IS 2207 -Wey) s Bvlv-Reiy yiv am
* P RYTR VRl
— ¥

-2 &
3 -ty
BY-oepel - Sy
Sy+52 =TV
(1-oe-sv)Sv=tv
-ty by
X
Tivems -y
2 -

t

SHOIAVINGNDD /ATYMINS
1

g fartavsy -1
(ve-vrymna =t
(1- 3 UV - Ze

o ! Y
o

93. CONY - Nop-Linear Equatiop Solve;:
Purpoge

To find & zero of the equation g(x) = O where g'(x) exists in the viciniiy
of the zero

Method

The method of false position is used with the Aitken 82 process to improve
the rate of convergence.

Let

F(r,s) = rﬁ-:—;—:—ggg-} (False positicn)

- g)2
Mr,s,t) =t - (t - 38) (52 - process)

t-28 + r

Given an estimate X9 of the zero, the following steps are execut:d:

1,
2.
3.

This procedure is repeated until

x, = (1.0001)x1 or x, = x; + .0001, whichever is larger
x3 = F(xy, x,)

be the X) or x, which produces a g whose sign is opposite
that £ g(x g If theére is no suca x;, let x %(be the xl or x
e 8

producing t. mallest value of g. Let. x5 = Flx, xh

- 2
let z = X) or X, which was not set equal to x;. x¢ = Xg —3(-5-—_-3-)-?2 =
Diz)5%5,x5) 2,

Lat, = Xg and Xy be the 2 xg or Xg producing a g whose sign
is opposite that of g(xg). If 6 such’x exists » let xy = x5. Return
to Step 2.

g(x)l < €, ¢ a given tolerance.

Usage

Given an X and g(xn), the routine computes a new value Xp+1°

Entry CALL CONV (EPS, MAX, GXN, XN, IND, K)

An initial call is made with K = 0, This is done only once in
the program, prior to the second entries first call, and
initializes EPS, MAX, an¢ indicatcrs in the routine. EPFS is
-h2 convergence tolerance, ¢. MAL is the maximum numbsr of
interations allowed before an error return is made.

After every calculation of (x,j) , a call is made with K =1,

and the current values of gl(xp) and x,. Return is mede with
a new estimate x,4), and a return indicator IND, where

326

1, Calculate g(x) again
2, Successful convergence (i.e., |g(x)| <e)
IND =(3, Error return, division by zero was
irminent, returns with old value of x,.
4, Allowed maximum number of iterations
axceedud.

GXN = value of g(x,)

XN = current estimate of x. This is the value x,
corresponding to g(x,) when the call is made,
and is either a new estimate x4, on return
from CONV with IND = 1, or is the old value
X, on return with IND = 2,3,4.

The user first gives the call statement with X = O for initialization.
Then he establishes an initial guess, x, evaluates g(x,), and gives the second
call, with K = 1. If convergence is not obtained; the routine returns with IND =
2 and a new x-guess in XN. The user must now re-cvaluate GXN using the new x-
guess. The process continues until IND = 2, 3, or 4. For IND = 4, no con~-
vergence in MAX tries.For IND = 3 a division by zero has occurred. For IND =2,
the correct x-value is in XN. The following flow diagram is intended to cluarify
the.use of CONVRG.

Begin

v

Cont.
v A
Initialize 1
independent _—
variable, x Convergence

has Alowed Max. No.
1 occurred Iterations
- Fxceeded

lCommﬂe

lit(X)
CALL
CONV
(F,MAX,2(x),x,1)

L

32T

yx-a

SN-PHE= D

vx:=40

TX -oX =V
TS

NunLIY

(4

LX=@Q
INI-CLXI =D
XS =8
-tX=v

134

10>,
£X4/1X
(A
X +EXNT-SA=
> eX4=4X4 ’ t =SSVl
EX3/IX SIA X=X ——aiW
™ b
-8>
X3/ TN gy B
ax=
oN .
(wmiwn)
EXd=4X4 ANOD

X=X

328

99.TFFM_and TFFM2 - Multiengine Thrust and Fuel Flow

Purpose:

The multiengine thrust and fuel flow program provides the means of
introducing the data for the various engines. It corrects the thrust
for atmospheric effacts when appropriate and reasolves the thrust
vectors into their components.

Usage:

Linkage to TFFM is accomplished via the general statement:
CALL TT'™ (IENTRY)

where IENTRY is a fixed point variable.

IENTRY =1

This is the pre-data initialisation. At this entry the subscripts
for ail tables are computed and the following data is initialiged:

INDTFF = O = thrust option indicator

Ny = 1. = throttle setting

CNVMy = 1. = mass rate units conversicn factor
CNVT; = 1. = thrust units conversion factor
INDENGi = 0 = engine option indicator

‘Tli =1, = propellant mass flow ate factor
szi =1, = gpecific impulse factor

:-..:.31 =1, = action time factor

eTl‘i v], = propellant loading factor

61.51 =1, = perturbation factor

eTéi =1 = perturbation factor

‘bi =0 = ncsyle rotation about x-axis

A 4=0 = noszle swivel angle from x-axis
PR’l =0 = thrust reference pressure

where 1 as used above is the set of integers 1, 2, 3 corresponding to
the three engines.

329

IENTRY = 2

This 1s the post-data initialization. At this entry no computations
are performed :f INDTFF = O, If INDTFF ¥ O the number of enginer is
determined from the indicator INDENG. If no INDENG has been loaded,
an error exit occurs.

IENTRY = 3

At this entry the various computations are performed. If INDTFF = O,
no computations are performed. When INDTFF is 10 or 11 and INDENG is
defined,for a given engine, the following computations are performed
for that engine:

INDTFF = 10 when INDENG = il give: the Muitiengine, Noncontrolled,
Perturbed Thrust Option. For this option the tabulated data functional
relationships are:

TR ™ £(7)
Ap =1(17)
and the computations performed for the engine are ae follows:
8¢
r =l Tla reference time as a function of stage time
€ro €13
n- Ta(7) emep, _ fuel flow rate + internal
EXG GWISPRmG €12 inert prcduct flow rate

T=eey Ta(7) = (P = Pp)A, = total corrected thrust

mo=- (R.H'JNG + Ap) = total mass flow rate

INDTFF = 10 when INDENG = i2 gives the Multiengine, Controlled,
Perturbed Thrust Option. For this option the tabulated data functional
relationships are:

x;f = £(N)

A, = £(7®)
and the computations performed for the engine are as follows:

me = mr €rs = perturbed mass flow rate

T' = GmISP%NGmf = perturbed thrust

T =~ ‘Tl‘TLT"(P - PR)Ae = total corrected thrust

l;lt' =~ (mp + A,p) = t5tal mass {low rate
330

IUDTFF = 10 when INDENG = i3 gives the Mnltiengine, Air Breather,
Perturbed Thrust Option. For this option the tabulated data
functional relationships are:

Tgp = £(N;h, a,My)
-
g = £{N,k, a,My)

ana the computations performed for the engine are as follows:

mé =m €T6 = perturbed mass flow rate
T = Tp €pg = perturbed thrust
m, = qné = vehicle mass flow rate

INDTFF = 11 when INDENG = il gives the Multiengine, Noncontrolled,
Perturbed Thrust Having Alternate Table Format. For this option the
tabulated data functional relationships are:

-

i

mp = f(TS)
S
A, = £(9

The computatione are identical to the computations in the Multiengine,
Cont.rolled, Perturbed Thrust Option, i.e. INDTFF = 10 when INDENG = i2,

NOTES :
While it is possible to :narge from the single engine option (TFFS) in

a given stage to the mu'tiengine ~pntion (TFFM) in a later stage, the
opposite is not possible.

A flow chart for TFFM is presented. TFFM2 is identical except
for tne use of vehicle 2 COMMON vlocks and auxiliary subroutines.

3

332

100.ATMS59 and ATMS502 ~ 1959 Atmosphere Calculation Rou:ine
Purpcsa:
To compute the atmosphere characteristics: density, speed of sound,
pressure, temperature and kinematic viscoaity. All are a function of
altitude.
Method :
All atmosphere characteristics are computed using the 1959 ARDC model

atmosphere. Values of the atmosphere are computed for positive altitudes.
If this altitude is negative, the sea level values will be obtained.

Usage:

Linkage is affected by
CALL ATMS59 (HGC7F)

where

HCCT7F = altitude in feet.

Hemarks:
AT 2.9 ang ATIMS59Z are identical except for the use cf differing
v-rcle JOML.L0 tliceks.

333

_
SR]

L S A LT
b VS &) 4 RATLLLFY

_{avy L T T

_ TR
LZLIL R T L TR DT Y LY

WO UY) (SN SNV o)

RaviFHvey
(A1) ¥dy

T (M) sonu, Q k

_ o ?«J“; W;s- (AVI)80MHYe ¢
oy o 4

h_qg~ Tom, (avyPded

:z:zou_

._>3
,:-x Dy

—-._ 113 00

rxmﬁi

MIAY Y woel HVIS

¢

o R T TR RRE TR PR TR R L A e e

20

o9l <90y

u-..!.o:oz _
..... < .P.

e
3
2
%
%
2
o
4

‘ (B fy - e < _
0 oA QA SZIITO%Y A

I

NENL DN

LIS

{

eocecos
>ra -«

s
.

| L

e
L

" avllll»lhl.o. xe by M..J»mQ...JV.i.

.mn“..(

|

.....ﬁ_..,.....“L
LN IS TN

]

A eeamA drimusu'y 4L NMNY

punes jo peess . 4iL8A R
faeueq . SYOMM ¢
oinpiadwie. ¥LLVL L
iy - dilve 4

WALV - JLIOM Y

334

101. ATMS62 and ATMS622 - 1962 Atmosphere Culculation Routine

Puipose:

To compute the atmosphere characteristics: density, speed of sound,
press're, temperature and xinematic viscosity. A1l are a function

cf altitude.

Method:

All a2tmosphere charscteristics are computed using the 1962 ARDC model

atmosphere. Values of the atmosphere are computed for positive altitudes.
If this altitude is negative, the sea level values will be obtained.

Usage:
Linkage is affected by

CALL ATMS62 (HGC7F)
where,

HGCTF = altitude in feet.
Reme.'53:

ATMSE22 is identicel to ATMSA2 except for the use of vehicle
2 COMMON blocks.

'

JUNLVNIANIL LNVISNOD ¥ 81 SIHL 4t ININNILIC

- _ﬁ,..mm,,b _ H

ANVISNOD LOK IMNLYYDIINIL

vy h

1+ {AVVIENY-2X DREdWL AV INY-) a4, (AT =d
CdlL, (AVY)RdNe VHINV-)ope o 2L « (AVIROMY =9

EOML o (AV IBOMY - v

.

dNLe (AVTIEL md

L AV V1M Y
Avnom- ..fte..

j Ij:l_btc(

__ —:-.I t&
L.

'n i :my

00 Fut D -4 OH K V1V 08~ (Wiv)s 2ol

(1o 4TLOI+1))1 7, 1} Q=D000ITS m o

o’ A ¢
LAY LR

105990 = BA
1) Lu08 = 4iiviy

._

e

¥
2
(¥
.J 2
2
%
%

R
L.

DBIA HAVRINMSLYINY = -

QNN0S 40 QXS = ditgn A
E - ALIBNROL SYOME = o
S0410T 2Y 42 0 MivON) 4 — BN AY MDA n LV e s
NS AN - diiva- o

BORLAIVE 4LIBH « yq

I 0miy

336

102 PUT - Character Manipulation Routine

Purpose:

To replace the Ith character of a string of characters with the
first character of ancther string of characters.

Usage:
Entry is made to this routin. by the following statement:
CALL PUT(P, I, L)

where the Ith character of string P will be replaced by the first
cnaracter of string L.

337

103. GET - Character Manipulation Routine

Purpose: .

To replace the first character of a word with the 1th character
of a string of characters.

Usage:
Entry is made to the routine by the following statement:

CALL GET(P, I, L)
where the first character of the word L will be replaced by the

IR character of string P. The remaining nine characters of word
L are replaced by blanks.

338

104, OPTEA and OPTBA2 - Bank-Angle Iteration Routine

Purpose:

In define instantaneous bank-angl: o2 the basis »f local optimization
criteria.

Method:
A local minimization criteria, (t), is created where

$(t) = ¢(Bp)
An inner loop parsmeter optimization procedure, CTLOPT, is used to
define the bank-angle value which satisfies the resulting locsal
(t = constant) optimization problem. The local minimization criteria
is selected from one of several combat guidance laws. Final steering
errors and force vector pointing errors are also computed,

Remarks:

A 1low chart for OPTBA its presented. OPTBA2 is identical except for
the use of vehicle 2 COMMON blocks and auxiliary subroutines.

339

ORT BA

At AdoarncA Lemita
on Lonk angyle

| creorr |

OPTIMIZATION LOck

BA27D - ALPHHC)¥5avE4
BAIIR = £apr BA2I0
BAPIR = (24770 + &eebA)#RAD

¥

BAI7TR
& z! NPHIAe —% -
FUNCTN(CI) =
[(Ax)F]
Funerm () = FuweTnN (3) =
- (FVv:)Avl “(5 %)/ 1v%|

b

CTLolPTr

fﬁ&ﬂ?m EIR 7 17:7]
FA178 = Rad» 8BAND

BA02D : ALPHA() +5% 84

NS #
NoO YES
B, \

l BAPIN: (BANG 106 BA RAD \//

/
BAITR

g cele .dzcew,

L tore and

/o'ace CRAN.

1

340

V

105. IMAINOP -~ Internal Parameter Optimizaticn Interface Routine

Purpose:

To act as an interface between the two vehicle trajectory equations
and the parameter optimization routines.

Method :

Core size requirements limit the internal optimization capability
to

a. 3Sectioning search
b, Creeping search
c. Pattern ssarch

IMAING? interfaces the trajectory equations to these three seaich
optiorns.

341

(#)

o7 = &2

TOrP7 -20F7+)
POENIRY = T

BESTAF (2)
Al FLZ 7

Mo

MENTRY = 3

MENTRY: 9

PATERN

LM_{NIKV 4

IscLecT .‘

BESTAF (2)
FNVEVAL

NSR

NSK - O

SE T

YES

INEVAL

YES

JI3
JhE

NO

NSR

£Q.
/

No

TICY = 10PT
JorRPTr =0

TJoPT - JOPT +I

NOCYCL=J0fT,

FIETHOb =17ETHORGOLT)

KESET (PERIMI)
SAVALF
BESTAF ()

FESET(FeREMI)
T

106. ISELECT -~ Interval Search Selection Routine

Purpose:

To select either sectioning or creeping search in the internal
parameter optimization loop.

IS&ES cer

METYOD

SECC onN ,?57“(/‘(”

343

107T. MULT33 - A Matrix Multiplication Routine

Purpose:

To post multiply a 3 x 3 matrix by a2 3 x 3 matrix.
Method:

The result of A B = C 1is computed using sirgle precision

Hsage:

The matrix multiplication is obtained by the statemrnt:

CALL MULT32 (A, B, C)

whlere

A = array name of *he 3 x 3 matrix A

B = array name of the 3 x 3 matrix B

C = array name where results are tc be stored as the
3 x 3 matrix

Remarks:

This routine calls nc other ro..tines.

MULT33 >4
DO1 k= 1,3 e
D01 i=1,3¢— l
+ r n : .
DO1 J=1,3¢— 161, = %15 ¥ Ak B B
€37 RETURN

34N

SECTION VII
PROGRAM CTLs

Program (Tl contrels the variational optimization option. The
tnsus performed by the CTLS program include the folilowing:

1. Print the CTLS suamary, which includes the values of ths optimiza-
ticn functions. (E)

2. Evaluate the forward trajectory by considering the improvement or
deterioration of the optimization functions. (E)

3. Decide whether to accept a forward trajectory as a valid step, or
to reject it. (E)

L. To determinc the o-perturbation to use on the next forward trajectory.

5. To put together the o-perturtation that is desired by using the infor-
mation from REV on tape ILTAP, constructing the CTABLE and putting it
out on tape IATAP.

6. To output the restart cards for trajectories which are accepted as
valid steps. (E)

7. Housekeeping - e.g. updating the pass number and cycle number, FHBRST,
PSBRST, etc.

The CTLS segment is entered either from WXE or REV. The "E" desigmates
those tasks which pertain only to entry to CTLS from EXE.

CTLS proper allows the user ¢o sglect which control system will be used in
the ortimization program.

Usage
CALL CHAIN (CTLS)
Hemarks

INDSEL is cf the form 10j. i determines which contrcl system will be
used with the optimization program, For i =1, CTLSl is used. For i= 3,

CTLS2 is uged,; i also determines which decision subprogram will be called.
Currently 1 = 1 and 1 = 3 are the only usable options. J determines which
equations subprogram will be used.

CTLS calls CTLSL and CTLS2.

345

SLNIOd A¥LANI 37dILINW SILVYNOISIA,

[owvw] [[meme]

LMIANI _ ﬁ: Y TE _><._...m_o_ %

346

, to1030

\\ / 51V

+S142

3g1213

11D 10} 410y |proyipziunbiQ

3

1. CTLS1 - Originul Control System

The control system is a predictor—corrector method of control over the
convergence of the end constraints and payoff function. A linear prediciion
of the changes in end ccnstraints and payoff function; due to a change in the
control variable(s), is made and attempted. If the trial is near encugh to
the linear prediction, the control variable is changed to give the best change
in end constraints and payoff function, and ‘he final valves of the functions
(for the cycle) are computed. If the trial is not nezr enough, the change in
the control variable(s) is reduced and another prediction and attempt are made.
If the snd points and payoff function are too near the linear prediction, the
amount of change is increased. Under normal circvmstances, the conirol will
never take more than six passes but if for some reason the INDERR is set
positive more passes can be taken. If six or more passes are made by the con-
trol system then INDSIC is set to O and)ﬂi and YTOLi are resset. On return

from the reverse integeratior if) dB; I;i‘ dﬁi is negative then D2 = 1.1 Dpzzx-l
and only the CYi corresponding to the constraints «hich are diverging are decreased.

There are two entries and two exits in this program. One entry is from the
program which computes the functicns and matrices of partizl derivatives (DIFEQ);
;his entry is tc the portion of the contrel system which compares the linear
predictions to the actual values of the end poifit and payoff function changes.
An exit is made, after each cycle is completed, to a program which computes the
[1] mairices and other values needed tc compute the mode shape of the change in
+he control variable(s) (REV).

Another entry is made from tusi program (REV) to the portion which checks
for the conditions needed to terminate and computes the contrcl variable change
for the first trial of a new cycle. The second exit is to the program which
computes the functions and matrices of partial derivatives (DIFEQ).

34T

s -

s4 2 Ay,
- Ome,,

'21saNI- *N

:.«

N« ison = oisanl]

sz« [(QMiy

§ . fame,;

'

—

o< | 'oson|

§hx :0353

l
520 «'(OME,,

G,

bt {OMB 4y

L < W)l
i
v o< o)
ue
$T Y omiy
§ = 1Oy
T .|
"
- 210N1LN0 D}
STLO

(@)

1400 s ha =0
(1''42) wITIYNS ='40

AWAGNI'E] aaL 00
»84

3 0 = LIN4QNI T

349

s
©
-
[
o)
S
%
W
e
©
2

r

Piar SgLOU

*
[11] —N’I«l\:.\\d

[A X
: . * [] .”

4 o= 2maan)tg

1wV =l N

(X} lh—

v

—.qao_ﬂw s -.—nﬁuﬂﬁv

o =¥l ...3

_
*T::.»:o@‘l L
&

ﬁr 2A2GNI > 112404

-
(73
i

L ofandtivode
-

(€)

¢
IML » XYNOL
¢ s NuIONI

o = ANLONI

I

[/ %s 0% |

_ L APLT RO
.m.m.:r..)

02 = MOLMSI

|\ 2NNIANOI)

—————— (e s -

SO |

350

$1008° 1LOOMUIBY s o]

n

£1 1%
xhlﬁaﬁuwhuxnu New oL

4018
I
4

351

T 80 l!:._"

ﬂlpwhb}m

4 AQVYIME -d W
L - 1
v

u

;..Ho ou's So'.:w..‘uD s ¢

IL-0d Qﬂvl!!w

>°(.XL LO& H:.4‘ —

L

1.2t !
. :xm_x; AQYInd

znu_xu B

—

n

|||]_

f (TA00W' L100N 9 ¥IDWVY: ON

()

-y
X2
LR !n!_ NONI «'\'
N‘LCI‘\._

YA LONI + DYHONE - DVHON
(L}
mm. ‘ALow.
(133 :

e (INNILNOI) S

lw

1&%!1

AN31D144300 ATIS
4318 v ONi4

GIAQBIN SLNIOL

VA LONI

LWdONI'} | GRLOC

[

- b .
- toz_

ST
€045
.: .

1s40W T
m

VOTTIRN

L3

(ELLIPY [k}

L.

NNTe N TR IFUL]

352

st «l

| v~ SSvan- sV ~|

353

Mo]

0 -1 fo.monsa momtg
‘o4, 4% ¢ Nearmnl
Qro) u

MYNY AL

354

CTLS1 @)

¥ iNopmr=9)}
e

t’fiﬂ

[P =(9)pk-1 |

")k =0

-

INDFST =1
ICHANE(2) =2

r —\\
TeALL \
. CHAIN |
“_(EXE)

CTLS1

e Akt F b ot et

(9)

o

535
——=([a0 -10¢|-05 J——r

s

T -4 \f
~T- newom > 1., 10 1

eALL

| Y] LINES ()
A -
1INES
NS 13
’! ~ B
P Limre
WRITE sete)/

6. 618 I
I R
INDCYC *RCYCLE [

[

DQARK_ 1=

o

L0, e,)T "
anI I

j
;

s70 J
e]oo-lo‘l‘J;',—_ re s f]

79

[e -

3590

2. CTLS2 = Arbitr.yy -veiro. System
Purpoge ¥

To serve as ar. "arbitrary" control system; namely, to perform the routine
chores that must be done in the CTLS segment, but to defer the important decisions
to subprogram DECIDE.

Methad

The flow chart provides the best description of those tasks performed in
CTLS2. CTiS2 may b= entered at two different parts of the program: when segment
CTLS is brought in after segment KXE or when segment CTLS is brought in after b
segment REV. At every pcint where a critical decisicn must be made, a call i3
made to DECIDE with a particula. entry point.

There are four primary decisions that must be made by DECIDE:

a. The 8§ mode shape to use.

b. Whether to accept a pass as a valid step.

¢. If the decision concerning (b) is negative, the step cize to use
for the nexi pass.

d. Whether to conpute partials on the next pass.

357

10

11

13

Situation

20 passes have been made; decide whether to
terminate.

Initialize parameters on the nominal trajectory.

A pass for which partials were computed has missed
cutoff.

A pass for which partials were computed must be
accepted or rejected.

To output additional restart cards.

A pass for which partiais were not computed has
missed cutoff.

A pass for whic: partials were not computed must
be evaluated.

Initialize parameters for each cycle (after REV);
set dp.

The mode shape must be approved (if not, determine
a new dg).

After a pass, to set the number of literal con-
straints, INDCON; this will be the same as INDPMT
if it is not set by DECIDE.

To print any information after the perturbation
has been made (i.s. after DALCAL).

DENOM =1 -I I3 I <O (This situation is
PP Yo YY
theoretically impossible.)

To set INDCON (see 10) after the reverse inte-
g~ation., Also, to invert IYY'

358

1 -

-TLS2 “akes care of the following important chores itself:

1.
2.

1C.

11.

Updating indicators, e.g. INDFST, NCYCLE, NPASS, etc.
Outputting the CTLS Summary print.
Outputting restart cards for CTABLE and DELP2.

Updaeting PSSTAR, PHSTAR, PSBRST, and PHBRST tabies. These tables
contain the values printed under "CTLS Summary®.

Calling the next segment (either GRAPH or REV).

-1
Computing DENOM = I =1 I nd SSIPH=1I I and
=P ,8 oY Yo YY IYtp 8 Yo VY
b 4
Recalculating parameters (e.g. dB) to be compatible with the change
D2 determined by the value of COEFK which is set in DECIDE.

pP 31"‘ dp

1 =
SSIDS = dp IY

Computing HADIC)
"'cpq: - Ian IY‘Y IYq:

Calling DALCAL to either compute a new mode shape for gg or to
change the amplituie of the existing mode shape.

Terminating the case when it is impossible to continue.
Making sure that DP2 - d8 IJ3dB is not negative. DECIDE will

be called repetitively with entry point 9 until this condition
is satisfied.

Communication betwsen CTLS2 and DECIDE is accomplished through the
calling sequence, primarily. There are three indicators used here which
need clarification:

INDAMP: Decide sets INDAMP 0 if the desire is to change the amplitude of the
current perturbation (by multiplying the perturbation by COEFK).
INDAMP is set to O by DECIDE if a new mode shape is to be attempted.

ITBAL: ITBAL is updated by CTLS2; it is the number of calls made to DECIDE
(9) in orier to attempt to find a feasible mode shape.

INDBAL: INDBAL is set #0 by DECIDE(9) to inform CTLS2 that it is satisfied
with the mode shape.

Remagks

Changes in the step size made by DECIDE, must be done by setting COEFK;
52 will set DELP2 = COEFK<2* DELPz.

CTLS2 (1)

— FIOM A TRAJECTORY WHICH
COMPUTED PARTIALS
JCHANE,

W

PRINT
CUTOFF FUNCTION |
OuUTSIDE TrmE -]

ICHARE, » 3

I1nC L]
INDCON = INDPMT
LimiTs”

— N

A
XM (OR MiNiM)

INDAMP »fconringe)

st
muu,t e

[34%]

[]
PRINT

veLe « INpcYe MO

17}
PriNT
"RESTART CAROS u::::,
FOR STAGE™ WS seansT

IERO.
PHSTAR
PSSTAR

AR,
PIURST,
PRSTARy [‘13
= 1= 11IPNT

INDERR ~
TOMAX .

.
Timg

o
nlu,! =10 up
oELy

cARDS (REwinn) |
P | —
Ennw:vnm QECIDE (3) l
!
i
|
J

CAROB{NPOIIT

WE=NE- 1 3 —_
_.__.___J K 05 (0ELPZ) _]

CANDSINCYCLE)

i =

360

cris2 (2

ROM A TRIAL TRAJLCTORY

1080
>

PRINT:
“CUTOSF FUNCTION
ouTSIDE TiME LT

INVERY lge

cnansi
DELPE - COUPN, -OALPL
mn-uy'm oxAU » COLInT - oxmuN
pPul =C. 10K - 48

BAGHIC “Euwen

ITERATE FOR
#OOE SHAPE

MU OfLPL-D F VY
RADIC~,

00y = RADIC DEnOM
a4 = ddy+édy

TpALCAL ()

361

3.

DISPLAY - Console Display Routine

Purpose:

To output data to the display console on the 10-inch display tube.
Method:

By setting sense »witch é a peripheral processor 1s selected and the
CTLS summary is displayed on a 10-in’h iisplay tube

Usage:

Entry is made to the routine by the following statement
CALL DISPLAY (IPAY,ITIPMT)

where

IPAY is payoff function
IIIPNT is the number of constraints.

362

L,

SEARCH - Search Routine

Purpese:
Compute a nominal starting trajectory for the optimization program.

Method:

The search routine allows the user to vary a control parameter to
satisfy any single end constraint in the hope this is a better nominal
trajectory. Any parameter used in the initial condition optimization
or any half point in the CTABLE may be used by the search rcutine as

an adjusting variable. Any trajectory the search routine finds may or
may not be a good trajectory for the optimization program. In fact,
sometimes what appears to be a good starting trajactory by inspection
turns cut not to be a good nominal trajectory for the optimization
program. Therefore, if one fails to get started with the first nominal,
a second attempt should be made with another nominal,

Assume the same test case as before but now set a half point in the
CTABLE as the adjusting parameter.

Example:
NPOINT 3
CTABLE 0, 1¢o,, 300., ~L., 2., O

If the abuve table is assumed to be o then it has the shape as follows:

0 100, 200 300
Time

LIMDER BCD 1QEXN

DESIRE BCD 1HGCTF

CONVAR 2.

SECLIM 1.

KPOINT 5

LIMIT 2000.

JEXN 270000.

A hulf point aipha at Lime 100, seconds is the control variable.

LIMDER, CESIRYE, LIMIT, and QEXN are unchanged from the previous example,
CONVAR is set equal to 2. SECLIM is set to 1. and on the second try
vhe a history would appear as the dotted line. ADJUST is not needed
when working with the CTABLE. KPOINT is set equal to 5 which is the’
5th location in the CTABLE.

363

Assume that conditions exist such that one would like to have a trajec-
tory that would terminate at 270,000 feet altitude * 2000 feet tolerance
by adjusting the initial Y
Entry is made to the search routine with one data card.

INDMOD 1

Other data is expected if the above data card is included.

LIMDER BCD 1QEXN
DESIRE BCD 1HGCTF
ADJUST BCD 1GAMTD
CONVAR 0
SECLIM 2,
KPCINT 0

LT 2000.
QEXN 270000,
GAMTD 0

LIMDER contains the BCD word o? some urmsed sell in core. QEXN contains
the required end value of altitude, DESIRE :ontains the BCD word of the
end constraint. ADJUST contains the BCD word of the control parameter
being varied. CONVAR should aave the same iritial value as the control
variable. SECLIM is the value of the control variable on the second

try. KPOINT is the location of the half point in CTABLE to he varied.

In this case Y is the control variable and KPOINT must be set to zero.
LIMIT is the tolerance on altitude. A + or - is assumed on the tolerance.

by location in CTABLE may be varied the same by changing the necessary
data.

Remarks:
A1l data for the search routine should be in DATAl.

The CTABLE must be put in DATAl as a function of trajectory time
(INDCTA = 0).

364

BIANG
‘IYANOD

N0
NGORLILLE)

0=4ADAM!
O=1NICd -

WI1335 MVANOD
2 - MNOON}
& = 4NAQWI

365

DONGNOS ~ WALSIL

WYANOD = (S)SPBV.LT
NALS3L=(1S00VLT =meemvil et
BYANOD = (WINNT] AU ‘M 381830

(g 7e=1-1 44

=L

V_ﬁjﬂﬁul

N¥NLIW

SEARCH (2)

{ T
\ZTABOS(‘)(RCONT *'
¥

F

{~

F
r \{rss*rvn « RCONT
]

F
_‘GCONT < I1TABOS(2)

RCONT<TESTVR

13

14

11

ITABOS5(4) ~ TESTVR
ITAB05(5)= CONVAR

ZTABAS(2) = TESTVR
ZTAB55(3) = CONVAR

CALL DSERC
LIMDER,M,
1ER

F
r"GESTVR < DUM(M)

16

ITABOS(U)=TESTVR ITABOS(2)=TESTVR
ZTABOS(S)=CONVAR ZTABO5{3)=CONVAR

\Y

366

CARDS - Restart Cards Routine
Purpose:
To output information which may he used io rastart the program,

Usage:

CALL CARDS (SYM,VAR,N,ITAPE)
SYM = symbol to be output or signal to rewind card tape.
VAR = Jocation of values to be output.
N = mmber of values to be output.

ITAPE = tape on which printed output occurs or signal to pluce
end of file on card tape.

Restart cards for each cycls are output on the output tape ITAPE.
Restart cards for the last completed cycle are output on the card tape
KTAPE. ITAPE=6 and KTAPE=15. All values are output in O"TAL.
Remerks:

CT.S1 and CTLS2 call CARDS.
CARDS calls LINES.

367

s

KTAPE™ 15
, NO
(sym » REWYND ?)————']
s NLOOP = i +1
(rape=12 SPACE (1)= BLANK
SPACE {2 J=COMMA
SPACE (3)5COMMA

—n-(00 ui 13,NLOOP)

LEFT#N- (1-1) 2
KT2

SPACE(KH) =BLANK
Le(l 1) 241

368

6. DALCAL - Delta Alpha Calculation

Purpose:

This subprogram of CTLS computes 8 and 8x, by combining the various
linearly independent sclutions to the adjoint equations computed in REV.
It is necessary that this task be deferred until this time because the
coefficients in the lirear combination for comruting 8~ and 5x, are
determined by the control syrtem and hence are not available during REV.
Also, depending on the control system being used, it may be necessary
to change the coefficients from one pass to the next. The values of the
coefficients (I;} d 8= SSIDS) determine the mode shape of the perturba-
tion. This subprogram not only computes §» (DEALPH) but it updates
(CTABLE) with thi: perturbation. Pecrturbations, §xo (DELI), to initial
conditions, x5, (VALINS), are computed and the initial conditions are
updated here in a manner analagous to the 8« computations.

Method:

There are two entry points to this subprogram. The first entry point is
for computing the perturbation for the first pass of a cycle or for any
pass where the mode shape is being changed. The second entry point is
for changing the amplitude of the previous perturbation.

This subprogram will terminate the case, if, for any gi‘en stage, the
history exceeds the limits of the dimension of CTABIE.

At entry point 1,8 a and §xo are computed according to:

2 A
N S VR U, | [DP-dBI 4B 4y lars 7 -1
bo [w G e ™ M ylyy Toa \] WG ey 98
1 -1 I 71
& YE Yy e
)
(o lans glenys (L7 0P? diviids 4 ylpy p ol
8%, [U Mail BVyolyy Yyo|W] T 1 N Myatyy 9P

af yEvy Ty

In the above expressions, the radical (RADIV) is available since it has

been computed in CTLS. Also Iy -lgp= S5SIDE,; and Ty -7 o = SSIFH
. YY Y

have been computed in CTLS.

§» calculations will be made for each major stage. 8% calculations are
made only for the first stage.

3€9

The outline of the subprogram follows:

Entry Point 1

(1) Get ApGWL and AyaGW™L, o, and WL for the ith major
stage from tape TLTAP (last stage comes first).

(2) Compute 8 from Ag,,GWL, Ay GW~", RADIC,SSIDS, and SSIPH.
(3) Compute the new 0: @ =« + & a,

(L) Plot a, 8o and WL if requested.

(5) If more stages go to (10); otherwise go to (6).

(6) Get Agyq RUL, Ay RUL, and x, from tape ILTAP.

(7 gg?gﬂxte 8%, from Mg R, AyqRU~L, RADIC, SSIDS, and

(8) Compute the new Xo: X, = Xo + 8%g.

(9) Print the x5, #X,, U™ if requested.

(10) Put o, W1, g0, Xo, UL, 8%, on IATAP (all in one record).
(11) If there are more major stages to go (1); otherwise return.

Entry Point 2

(1) Get o, W2, o, x5, UL, 8x, from tape TATAP.

(2) Recover to the last good a: o = o - b~

(3) Modify 8ar: 8o =k - 8o

(1) Compute the new a: a = o + 8a

(5) If more major stages, go to (9); otherwise go to (6).

(6) Recover to the last good x,: Xo = X - 8%,

(7)) Modify bx,: 8X, =k * bx,

(8) Compute the new Xo: Xo = Xo + 8Xg

(9) Pat @, WI, 8o, X, UL, 6x, on tape TLTAP (all in one record).
(10) If more stages go to (1); otherwise go to (11).
(1) Switeh TATAP and ILTAP and return.

Once entry point 2 has been called, entry point 1 may not be called
again until the next cycle because the information it needs on ILTAP
is gone,

The information from REV on ILTAP is blocked. Reading this tape