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I. INTRJDUCTION

The theory of max-min is extended to a class of functions having direct

application to the allocation of resources among strategic retaliatory systems.

The model presented below permits the inclusion of both committed resources and

"prices of admission."

The price of admission includes development costs, and these terms are used

interchangeably; however, preliminary research costs necessary for the serious

consideration of any product or system are excluded. By its nature, research

allocation must be considered separately. Committed resources includes the value

of existing systems and resources previously committed for a variety of (possibly

irrational) reasons.

The pcoblems considered describe "zero-sum' competition among two players.

In the absence of development costs and committed resources the model becomes a

zero-sum, two-person continuous game with a continuous payoff function. Specifically,

we consider a payoff function for the x-player

n
(1.1) F(x,y) _ fi1 xiiy)

i-l

where x = (Xl, .... n) , y C (yl,.',yn) and

0 : 0 • xi I qi;

(1.2) fi(xitYi hi(Y xC - qi 1 0 yi <
gi(x i Yi) x i ?: qi I Yi ?_ r V

Call fi (xiyi the value of the ith system; q denotes the x-player's price

of admission for the ith system and ri denotes the y-player's price of admission.

Since a competitive situation is being described gi(xiYi) is an increasing

(decreasing), concave (convex) function of xi(Yi). For each i define
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h (xi) d £1(xi,r )

and

hI(ql) 0.

Further assume that gi(xiy 1 ) > 0 whenever xi > qi" The allocation of resources to

the ith system is denoted xi or yi.

Allowing Rx and R to be the total resources (excluding research funds)

available to the x-player and the y-player respectively, the allocation is

constrained by

(1.3) xI + ... + x n -x yy+...+- R

The allocation is additionally constrained by

(1.4) x i aý si ý- 0 ; y$ i _ ti 1 0 (1 - 1,2,...,n)

where si and ti represent the amount of previously committed resources to the ith

system. We assume for convenience of presentation that si > 0 (ti > 0) implies

si > qi (ti > ri)" For physical reasons, we also assume Rx > max, qi, Ry > maxi ri

and that ti - 0 whenever si = 0.

Since we are interested in applications where the x-player moves first, the

purpose of the problem is to determine the "residual value" V and "optimal

strategies" u - (Ul,...,Un) and w - (wl, ... 1wwn) such that

(1.5) V - F(u,w) - Maxx PWx)

where

P(x) = Min F(x,y)

P(x) is called the security function.

A particular example is determined by

(1.6) g1 (x ,yi) = vi(xi-qi) exp (-ai(yt-ri)]

2
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where v and ai are constants. The zero development cost, zero committed resources

game corresponding to this example has been solved by Danskin (1]. Shere and

Cohen have extended Danskln'smnx-min theory to solve this example with committed resources

but no development costs [2] and with development costs but no committed resources [3].

In the following section (1.1)-(1.5) is solved in a constructive manner;

additional constraints are imposed as needed on g(xil,yi). The final section consists

of observations on problems related to (1.1)-(1.5) and conclusions.

II. MATHEMATICAL ANALYSIS

This section is organized in two parts. The first part consists of nine

lemmas and theorems which describe the nature of the solution of (1.1)-(1.5). It

is shown by adding hypotheses related to the differentiability of gi(xi,Y ) that

the optimal strategies (u,w) are also optimal strategies of a certain game. A

scheme for determining the game and consequently (u,w) is subsequently provided.

The following four lemmas are trivial extensions of the corresponding

lemmas of [3].

Lemma 1. Let x = (x i) and n(x) - (ni (x)). If P(x) - F(x,n(x)) > 0, then

Xk > qk and nk > rk for some i =I.

Lemma 2. If P(x) = F(x,n(x)) > 0, then xi • q1 implies ni(x) = 0.

Lemma 3 (Modified Gibbs' Lemma). Let f i(xi) be continuous with right- and

left-derivatives. Let z - (zl,...,zn) maximize fifi(xP ) constrained by

E xi - R > 0 and xi t s8 _ 0. Then there exists a number X such that

'+
fi(zi+) I X for all i;
ii-

fi(zi) ? X for all i with zi > i.

Furthermore, X is unique if f i(x i) is differentiable at xi - zi > si for some i.

3
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Lemma 4. Either vi - C or wi > ri.

This lemma says that payment of a fraction f, 0 4 f < 1, of a price of admission

for the ith system is nonoptimal. The y-player's ith system cannot exist unless the

price of admission, ri, has been fully paid. Therefore an intermediate payment

deminishes the y-player's resources without effecting the x--player. The

corresponding result is obtained for the x-player as a corollary to the following

theorem.

Theorem 5. Let us suppose, for each i, that gi(xipyi) is a strictly increasing

function of xi over the domain 0 1 xi s D. The residual value V of (1.1)-(1.5)

is a strictly increasing function of R on (q*,D] where q* Z mini qi'

Proof. Suppose that R* < R , F(u,w) = V and F(u*,w*) - V*. Assume that V(R*) X V(R ).
x x x x

Select E as any point such that E E, R and > u* for each i. Defining n by:i I x %
F(ý,n) - Min F(&,y) - P(E)y

it is noted that

F(E,nl/ : F(u,w) :5 F(u*,w*).

From Lemma 1, u* > q and consequently E > ql for some i. By the increasing nature

of gi(x1 ,y 1 ) for every i,

F(u*,n) < F(&,n) £ F(u*,w*)

contrary to the definition of w*. Hence V(R ) > V(R*).x x

Corollary 6. Under the hypotaesmof Theorem 5,either ui - 0 or ui > qi"

Proof. Define I F {i : < • ui S q1 }. If I is nonempty then z E Zi ui > 0.

Define u* by u* = ui(i 9 I) and u* - Oci £ I). Then

V(Rx) = P(u) - P(u*) : V(R -z).
x x

Since Rx > q*, 0 < V(R x). If Rx - z > q* we have a contradiction to Theorem 5

and if Rx - z 1 q*, V(R x-z) - C so again we have a contradiction.

4
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After introducing some notation two lemmas are presented; these lemmas

are used to reduce the solution of (1.1)-(1.5) to the solution of a zero-sum,

two-person continuous game (with pure strategy).

Notation. Let (u,w) be a solution of (1.1)-(1.5) and define:

A fi ui >3si11 {i : wi > ti.;

B- {i : u, M s} n {i :w, ti);

i iý7 E. -i :ui > si} n• fi :w, til;

D {i ui . si > o) n i : wi > ti);

X - {x = (x 1 ,... ,xn) : xi > max(si,qi) for i c AUC,

x, a si for i c BVD and EAMC xi -RX - 'WD s;

-= ( 'n) : yl t max(t,,rI) for i e AUD,

Y, = t for i £ BUC and EAUD Y Ry - t i

Define the game:

(2.1) Given: CX(xy) - EA gi(x',yi) + ZB fi(si'ti) + 'C gi(x1 ,ti) + D gi(si,yi)

(2.2) Constrained by: x £ X , y c Y

(2.3) Determine. VXy - MaxX. Pxy) W MaxX Miny Gxy(x,y).

In (2.1), replace gi(xi,ti) by h ix() whenever ti - 0.

Lemma 7. P xyX) is a concave function of x in X.

This lemma is given in greater generality by Shiffman [4]; because of the

inaccessibility of that reference the proof is given below.

Proof. Let x, x* e X and C • a <_ 1. Then PKy[ax + (l-a)x*] - Miny GXY[ax+(l-c)x*,y:

t Miny[,E GXy(x,y)+(l-a)GXY(x*,y)] x aPxy(x,y) + (l-a)PXY(x*,y).

Hitherto there has been no restrictions related to the differentiability of

g1 (x 1,y1 ) and h i(x i). For the remainder of this section we assume for each i that

h(x i) exists and is continuous, and we assume that agi(x 1lYi)/ xi exists and is

continuous in its variables taken together. The following lemma can be proved by

appealing to the definition of the directional derivative and modifying slightly
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the proof of Danskin's corresponding theorem [1, p. 19-22].

Le--a 8. Let r be a hypercurve in X and assume that X is not a single point.

Let D denote the directional derivative along r. For each x c r, DrP(x) and

Dr PX x) exist.

Theorem 9. The strategies (uw) are optimal

strategies for the game (2.1)-(2.3).

Proof. Suppose to the contrary that (u,w) P)

is not optimal for (2.1)-(2.3) and let

(u*,w*) be a solution of (2.1)-(2.3). X U u* r
Figure 1. Typical Security Functions

Define r as the hyperline segment formed by

the intersection of X and the hyperline passing through u and u*. Either X consists

of one point, in which case u - u*, or u lies in the interior of r. Since P(x) is

maximized at x - u and Dr[P(u)J exists, Dý[P(u)] - 0. Since Pxy(x) is increasing

as r is traversed from u to u*, DýFPXy(u)] > 0. This means that Pxy(x') < P(x')

for some point x' such that u e (xu*), as illustrated in Figure 1. This

conclusion contradicts the fact that P(x') is minimum over a space which includes

Y. Hence u - u*. Define n*(x) by F(x,n*(x) - Px(x). Since n*(x) is well-defined

on Y (cf. 41, w* - w.

Although Theorem 9 reduces the solution of (1.l)-(1.5) to the solution of

a game (2.1)-(2.3), the spaces X and Y (or equivalently the sets A, B, C, D) are

not a ptioAi known. After establishing further notation a method for determining

X and Y is provided.

Let R - (A', B', C', D') be a partition of (1,2,...,nl constrained by

"i c D' implies si > 0." Define X' and Y' with respect to R in the same manner

as X and Y are defined with respect to A, B, C, and D. Let 0 be the set of all

such pairs 'X',Y'). Finally define V(X') S( (X',Y') c 0).

6
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Lemma iC. For each (X',Y', c 0 let Vxfy, be tl.e value of t'!e game (2.1)-'2.3)

with (X,Y) replaced by (X',Y'). Define

V X, iy,(. VX1y,"

Then for some (X,Y) E f,

V = V -V.
Wy x

Proof. By Theorem 9, V - VXy for some (X,Y) e 0. Suppose that VXy > VX = VXy

Then

(2.4, P(u) - PXY (u) > P ,(U') ( Pny,(u)

where u' is the x-player's optimal strategy for the (X,Y')-game. The inequality

(2.4) is inconsistent with the definition of P(u). Hence VXy = VX = V.

For the case of no committed resources it is shown in [3] for the example

(1.6) that X = Y. Unfortunately, there does not appear to be a similar result for

the committed resources problem. The following crude procedure shows how CI.l)-(l.5)

can be solved.

Algorithm 11. (i) For each (X',Y') e t determine VVy, = PXIy,(Ux,y,).

(ii) Find Vx, for each X'.

(Iii) Define U E {uX,y* : PXty,(Ux~y,) - Vx, - P(Ux,y,)).

(iv) Find P(u) - Max {P(uX,y*) : UXY* C U).

(v) Determine u - •,y,, w = wx,y* and V - VX, from step (iv).

It is noted that U is nonempty and whenever PX,y*(Ux,y*) 0 P(Ux,y,), this choice

of X' could not have been optimal.

III. OBSERVATIONS AWD CONCLUSIONS

There has been no discussion in the preceding sections on how Vxy,, •,y,

and w Xy, are determined. By imposing the additional hypothesis that ;gi(xyi)/Dy

exists and is decreasing in xi for each fixed yi, the "Gibbs' lemma approach"

7
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of Danskin [1] can be used. The necessary generlizations for the application of

this technique are straightforward. A class of functions which satisfy all of

preceding hypotheses is:

n ImiF(xy) - i (xi)Sij(yjJ = [
where anj and 0ij are respectively concave-increasing and convex-decreasing for

xii
x > q ndy > r J* Set a i (x i - 0 whenever 0 i x~ i and 0 =(i 0

whenever 0 ! yj S r . An example of a concave-increasing, convex-decreasing

function which does not satisfy the above hypothesis is:

g(x,y) - (xy)-1 + 2 tn x.

If the x-player has previously committed resources of v of n systems, at

most 3n-v 4v games must be solved. Although this bound grows quite rapidly, in

practice n is small. For example, if n - 9 and v - 5 there are 82944 games to be

solved compared to 19683 games for the corresponding problem with no committed

resources (v - 0). At the rate of 0.05 seconds of computer time per game, an

upper bound of over an hour of computer time per choice of parameters is obtained.

This illustrates the need for both careful programing and for a consideration of

additional special properties a particular problem may possess. To consider a large

number of systems there is a need for a more direct method of solving (l.1)-(1.5).

There are several other problems related to (1.1)-(1.5); for example, suppose

that some of the gi(xliy 1 ) were convex-convex. This additional complication may be

treated by showing that additional investment should be made in at most one of

the convex-convex systems. The analysis can then proceed by using the approach

of Danskin [1, p. 52+J. Functions gi(xi,yi) which are concave-convex for some

uncomplicated regions of xi and convex-convex elsewhere can also be considered

without excessive difficulty. Of course, the additional complexities increase

the computer time.

8t
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Additional improvements in mathematical modeling are also needed. We

end this work by posing two open questions. How can operational costs be separated

from procurement costs? How does the time phasing of procurements affect the o
result?
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