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I, INTRCDUCTION

The theory of max-min is extended to a class of functions having direct
application to the allocation of resources among strategic retaliatory systems.
The model presented below permits the inclusion of both committed resources and
"prices of admission.”

The price of admission includes development costs,and these terms are used

interchangeably; however, preliminary research costs necessary for the serious
consideration of any product or system are excluded. By its nature, research
allocation must be considered separately. Committed resources includes the value
of existing svstems and resources previously committed for a variety of (possibly
irrational) reasons.

The pioblems considered describe '"zero-sum' competition among two players.
In the absence of development costs and committed resources the model becomes a
zero-sum, two-person continuous game with a continuous payoff function. Specificaily,
we consider a payoff function for the x-player

n

(1.1) F(x,y) = )} £, (x
i=1

i’yi)

where x = (xl'otngxn) . y= (le""yn) and

0 :05x1SQi;

(1.2) fi(xi’yi) hi(xi) Poxg 29, 0« Yy < T

Bylxpsyy) ¢+ Xy 2 ay .y 2Ty
Call fi(xi’yi) the value of the ith system; 9 denotes the x-player's price

of admission for the ith system and r, denotes the y-player's price of admission.

i

Since a competitive situation is being described gi(x ) is anincreasing

1*Y1

(decreasing), concave (convex) function of xi(yi). For each 1 define

R ,,,\]M
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hi(xi) = Bi(xi’ri)

and

hi(qi) 0.
Further assume that gi(xi,yi) > 0 whenever X, > Q- The allocation of resources to
the ith system is denoted x, ory,.

Allowing Rx and R.y to be the total resources (excluding research funds)

available to the x-player and the y-player respectively, the allocation is

constrained by

(1.3 Gt dx =R oy b+ v, - Ry'

The allocation is additionally constrained by

(1.4) X. 28

12 20 3 y, 2t 20 (1 =1,2,...,n)

i i

where s, and t, represent the amount of previously committed resources to the ith
system. We assume for convenience of presentation that 8 > 0 (ti > 0) implies

\

s > 1y (t:i > ry). For physical reasons, we also assume Rx > max, q,, Ry > max, r

i1

and that ti = 0 whenever si - 0,

Since we are interested in applications where the x-player moves first, the
purpose of the problem 1s to determine the "residual value" V and "optimal

strategies” u = (ul,...,un) and w = (wl""’wh) such that
(1.5) V=F(u,w) = Maxx P(x)
where

P(x) = M:lny F(x,y)

P(x) is called the security function.

A particular example is determined by

(1-6) gi(xiﬁyi) - vi(xi-qi) exp [‘Si(yi'ri)]
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where vi and a, are constants. The zero development cost, zero committed resources

game corresponding to this example has been solved by Danskin [1]. Shere and

Cohen have extended Danskin's max-min theory to solve this example with committed resources

but no development costs [2] and with development costs but no committed resources [3].

In the following section (1.1)-(1.5) is solved in a constructive manner;
additional constraints are imposed as needed on gi(xi,yi). The final section comnsists

of observations on problems related to (1.1)-{1.5) and conclusions.

II. MATHEMATICAL ANALYSIS

This section 1s organized in two parts. The first part consists of nine
lemmas and theorems which describe the nature of the solution of (1.1)-(1.3). It
is shown by adding hypotheses related to the differentiability of 8i(xi’yi) that
the optimal strategies (u,w) are also optimal strategies of a certain game. A
scheme for determining the game and consequently (u,w) is subsequently provided.

The following four lemmas are trivial extensions of the corresponding
lemmas of [3].

Lemma 1. Let x = (xi) and n(x) = (ni(x)). If P(x) = F(x,n(x)) > 0, then

-,
X > 9 and Ny > Ty for some 1
Lemma 2. If P(x) = F(x,n(x); > 0, then X, < q implies ni(x) = 0.

Lemma 3 {Modified Gibbs' Lemma). Let fi(xi) be continuous with right~ and

left-derivatives. Let 2z = (zl,...,zn) maximize zifi(xi) constrained by

- Rx > 0 and Xy > 8, > 0. Then there exists a number A such that

Xix 1

i

f (zI) < ) for all 1;
, -—
fi(zi) 2 2 for all 1 with z, > 8¢

Furthermore, » 1is unique if fi(xi) is differentiable at X, =2y > 8, for some 1.

~ \'.”“'
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Lemma 4. Either w, o= € or wy > T

This lemma says that payment of a fraction f, 0 < £ < 1, of a price of admission
for the ith system is nonoptimal. The y-player's itlL system cannot exist unless the
price of admission, T has been fully paid. Therefore an intermediate payment
deminishes the y-player's resources without effecting the x-player. The
corresponding result is obtained for the x-player as a corollary to the following
theorem.

Theorem 5. Let us suppose, for each i, that gi(x ) is a strictly increasing

191

function of x, over the domain 0 < x, < D. The residual value V of (1.1)-(1.5)

i i
is a strictly increasing function of Rx on (q*,D] where q* = mini qi.
Proof. Suppose that R; < Rx’ F(u,w) = V and F(u*,w*) = VX, Agsume that V(R;) 2 V(Rx)'

Select £ as any point such that Zi Ei =- Rx and 51 > uI for each 1. Defining n by:

F{f,n) = Miny F(E,y) = P(E)
it 1is noted that
F(E,n} € F(u,w) < F(u*,w*).

From Lemma 1, uI > q and consequentlv Ei > q for some {. By the increasing nature

of gi(x ) for every 1,

1°Y1
F(u*,n) < F(g,n) < F(u*,w*)

contrary to the definition of w*. Hence V(Rx) > V(R;).

Corollary 6. Under the hypotheses of Theorem 5, either u, = 0 or ug > qq.

Proof. Define I =z {1 : G < ug < qi}' If I is nonempty then z = Iy, > 0.

Define u* by u} = ui(i ¢ I) and u = 0(1 ¢ I). Then
V(R ) = P(u) = P(u*) < V(R -2).

Since Rx > q*, 0 < V(Rx). If Rx - z > q* we have a contradiction to Theorem 5

and 1if R -2z% q*, V(Rx-z) = , go again we have a contradiction.
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After introducing some notation two lemmas are presented; these lemmas
are used to reduce the solution of (1.1)-(1,5) to the solution of a zero-sum,
two-person continuous game {with pure strategy).

Notation. Let (u,w) be a solution of (1.1)-(1.5) and define:

A=z {{: u, > si} n iu: w, > ti?; : :
B={i:ty =s1N{L:vw =th i
fElizu >8}N{ v =)

D={i:uy =5 >01A{L:w >t}

4
m

{x = (xl....,xn) Px, 2 max(si,qi) for 1 ¢ AVC,

x, =8, for 1 € B¥D and ZAMC x, =

Y= {v= (yl,...,yn) iy, 2 max(ti,ri) for 1 ¢ AUD,

R, - si};

yi-tiforieBUCand IAIIDyi.Ry-rBlCti'

Define the game:

(2.1) Given: &yy(x,y) = I, g, (x.,y,) + I £.(s,,t,) + %, 8, (x,,t,) + 5 g,(s;5v))

(2.2) Constrained by: xe X , yeY

(2.3) Determine: Vg = Maxg PXY(x) = Maxy Min, GXY(x,y).
In (2.1), replace 31‘“1"1) by hi(xi) whenever t, - c.
Lemma 7. PXY(x) is a concave function of x in X.

This lemma is given in greater generality by Shiffman [4]; because of the
inaccessibility of that reference the proof is given below.
Proof. Let x, x* ¢ X and C £ o < 1. Then PXY[ux + (l-a)x*] = MinY GXYIax+(1—&)x*.y]
z Min[a GXY(x.y)+(1-a)GXY(X*,y)] 2 aP o (x,y) + (l—u)PXY(K*,Y)-

Hitherto there has been no restrictions related to the differentiability of
gi(xi’yi) and hi(xi)' For the remainder of this section we assume for each 1 that
h;(xi) exists and is continuous, and we assume that 3gi(xi,y1)/3xi exists and is

continuous in its variables taken together. The following lemma can be proved by

appealing to the definition of the directional derivative and modifying slightly
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the proof of Danskin's corresponding theorem [1, p. 19-22].
Lemma 8. Let T' be a hypercurve in X and assume that X is not a single point.
Let Dr denote the directional derivative along I'. For each x e T, DPP(x) and
DPPXY(X) exist.

Theorem 9. The strategies (u,u) are optimal

ny(x)
strategies for the game (2.1)-(2.3).
Proof. Suppose to the contrary that (u,w) P(x)
is not optimal for (2.1)-(2.3) and let —_— -
x'u u% r

(u*,w*) be a solution of (2.1)~-(2.3).
Figure 1. Typical Security Functions

Define I as the hyperline segment formed by

the intersection of X and the hyperline passing through u and u*. Either X consists

of one point, in which case u = u*, or u lies in the interior of I'. Since P(x) is

maximized at x = u and Dr[P(u)] exists, DP[P(u)] = 0. Since PXY(x) is increasing

as ' is traversed from u to u*, DTF?XY(U)] > 0, This means that PXY(x') < P(x")

for some point x' such that u € (x)u*), as illustrated in Figure 1. This

conclusion contradicts the fact that P{x') is minimum over a space which includes

Y. Hence u = u*, Define n*(x) by F(x,n*(x) = P__(x). Since n*(x) is well-defined

XY
on Y [cf. 4], w* = w.

Although Theorem 9 reduces the solution of (1.1)~(1.5) to the solution of
a game (2.1)-{2.3), the spaces X and Y (or equivalently the sets A, B, C, D) are
not a prioni known. After establishing further notation a method for determining
X and Y is provided.

Let T = (A', B', C', D') be a partition of {1,2,...,n} constrained by
"{ ¢ D' implies 8 > 0." Define X' and Y' with respect to I in the same manner

as X and Y are defined with reepect to A, B, C, and D. Let & be the set of all

such pairs (X',Y'). Finally define ¥(X') = {Y' : (X',Y') ¢ ¢}.
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Lemma 1C. TFor each {X',Y', ¢ ¢ let V be t.e value of tie game (2.1)-{2.3)

X'y'
with (X,Y) replaced by (X',Y'). Define

VX, E Min'Y'c‘l’(X') Vlel'
Then for some (X,Y) ¢ ¢,

V= VXY - Vx.

Froof. By Thecrem 9, V = VXY for some (X,Y) € ¢. Suppose that V_,, > V, =V

Then

(2.4 P(u) = (W) > P, (u') 2 Pryr ()

PXY
where u' is the x-player's optimal strategy for the (X,Y')-game. The inequality
(2.4) is inconsistent with the definition of P(u). Hence VXY = Vx =V.
For the case of no committed resources it is shown in {3] for the example

(1.6, that X = Y. Unfortunately, there does not appear to be a similar result for
the committed resources problem. The following crude procedure shows how (1.1)-(1.5)
can be solved.
Algorithm 11. (1) For each (X',Y') ¢ ¢ determine VX'Y' = PX'Y'(uX'Y')'

(14) Find Vx, for each X'.

(111) Define U = {uyyyy 1 Pragalugeg,) = Voo = Pluy i)},

e U},

{iv) Find P(u) = Max {P(ux,Y*) P Uyiya

(v) Determine u = Ugrgas ¥ = Yygiya and V = V_, from step (iv).

Xl
It 1s noted that U is nonempty and whenever PX'Y*(“X'Y*) ¢ P(“X'Y*)’ this choice

of X' could not have been optimal.

III. OBSERVATIONS AND CONCLUSIQONS

There has been no discussion in the preceding sections on how Vx.Y., uX'Y'

and Wyry? are determined. By imposing the additional hypothesis th:at ?gi(x

exists and 1is decreasing in x

RIULA

1 for each fixed Yy the "Gibbs' lemma approach"
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anlintaha

of Danskin [1] can be used. The necessary generlizations for the application of
this technique are straightforward. A class of functions which satisfy all of

preceding hypotheses is:

) mii
F(x,y) = a,,(x)8,.(y)
1=1 [g=1 ¥ 117

where a,, and B1 are respectively concave-increasing and convex-decreasing for

1] 3

and vy > T, Set uij(xi) = 0 whenever 0 < X, < q and Bij(yj) =0

< r,. An example of a concave~increasing, convex-decreasing

h| ]
functicn which does not satisfy the above hypothesis is:

X >y

whenever C < ¥y

gix,y) = (xy)_1 + 2 Bn x.

If the x-player has previously committed resources of v of n systems, at

most 37V 4Y

games must be solved. Although this bound grows quite rapidly, in
practice n is small. For example, if n = 9 and v = 5 there are 82944 games to be
solved compared to 19683 games for the corresponding problem with no committed
resources (v = 0). At the rate of 0.05 seconds of computer time per game, an
upper bound of over an hour of computer time per choice of parameters is obtained.
This 1llustrates the need for both careful programming and for a consideration of
additional special properties a particular problem may possess. To consider a large
number of systems there is a need for a more direct method of solving (1.1)-(1.5).
There are several other problems related to (1.1)-(1.5); for example, suppose

that some of the gi(x ) were convex-convex. This additional complication may be

171
treated by showing that additional investment should be made in at most one of

the convex-convex systems. The analysis can then proceed by using the approach
of Danskin [1, p. 52+]. Functions gi(xi,yi) which are concave-convex for some
uncomplicated regions of Xy and convex-convex elsewhere can also be considered
without excessive difficulty. Of course, the additional complexities increase

the computer time.
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Additional improvements in mathematical modeling are also needed. We
end this work by posing two open questions, How can operational costs be separated
k-4
from procurement costs? How does the time phasing of procurements affect the *

result?
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