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MOTION OF A ROCKET DURING THE BURNING PERIOD

Abstract

~ In thi¢ report the general equations of motion of a rocket are
developed. These equations are then apnlied to & rocket which is
subjected to an eccentric propelling force, one of the principal

The equations are first
specialized for the vacuum case of the non-rotating rocket. The
results for this case are compared with those for a rotating rocket
moving in & vacuum. A formule for the anguiar velocity necessary to
reduce dispersion is given. Finally, aerodynamic forces are con =
sidered and expressions for the yaw, angle of deviation and deflection
are set 4own.() ' '

l. Introduction

The equations of motion which govern the flight
of a symmetric rocket will be developed in a general way

‘in order that they may be used for reference purposes, and

used in the anulysis of problems associated both with the
burning period and the post-burning period.

After the equations have been set up, this report will be
primarily concerned with the effect of an imperfect alignment
of the propelling jet. The eccentiicity of the propelling
force is cne of the main causes of inaccuracy in the firing
of rockets.
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2. Notation

In setting up the equations of motion for a rocket
the following symbols and conventions will be used:

Cys Cpy C3 = unit vectors defining a right-handed Newtonian
refereﬁce fra%e. The vector S points in the direction in
which the rocket is launched.

i, J, k = unit vectors defining a right-handed moving
reference system whose origin 0 is at the center of mass of
the rocket. The vector i caincides with the longitudinal axis
of the rocket. The vectors j and k are temporarily left
undefined. Unless thesre 1s a statement to the contrary, all
vectors are consider¢d as resolved with respect to the moving

axes.

| v = (Vl’ Vs v?) = Velocity of 0.
o = (wl, ©55 mg) = angular velocity of rocket.
g = (Ql, Q5 §3) = angular velocity of moving axes.’
F= (Fl’ FZ’ FB) = resultant propelling force at O.
P = (Pl’ Pys PB) = resultant propelling moment about 0.
f = (fl, £, f3) = resultant acrodyanamic force at O.
b= (pl, Pps p3) = resultant aerodynamic moment about O.
g= (815582, 83) = acceleration due to gravity.
m = mass of rocket.
A = axial moment of inertia of rocket.
B = transverse moment of inertia of rocket.
N = axial spih of rocket relative to moving axes.
h = E(N+ Q). BQy, Bszé] = angular momentum of rocket

about 0. Since E22 = Wy 93 = 03, the angular momentum can
be written *

h = (Amlx sz: B‘DB)-




3. Genéeral Equations of Motion
In vector form, the fundamental equations of motion
are .

Ut -pereg Peope+p.

Written out at length in scalar form these eguations yield ‘

+ f

(m"vy) +'m(a)2v3 Vo3) = Fy 1 + megy

(m'vy) + m(m3vl,=fv391) = Fy + £, + mg,

(m’v3) + m(le2 -V 2) =Fy + f3 + mg,
(A @) =Py + 1y
(B&z) + Ambl - BmBQl =B, £,
(Bdg) + Boyo, - kw0, = Py + Py =

o

where the dot denotes differentiation with respedt to the
time t. The above egquations can be expressed more conven-
iently and more compactly by introducing the complex quantities

vc = v2 + 1v3 mc = m2 + 1m3
Fc = F2 + 1F3 fc = f2 + if3 g, = 8y + 1g3
Pc = P2 + iP3 p, =P, + 1p3.

In terms of these quantitles the eguations of motion reduce to
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(m vl) + m(m2v3 - v2w3) F) + £, +mg

®
(m vc) + im@Zlvc = vlmc) Fc + fc + mg

(Abl) Py + by

For certain parts of the development which follows it is
necessary tc know the moving axes components of a vector r
which 1s fixed with respect to the inertial frame. If this
vector is written

.1_'=r1.5£+r2j.+r3_1?.
the components can be found by noting that i = 0 which leads to

ry + T3 = WaTy = 0
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or, if r, =Ty + ir3 is'introduced, to

r1 + mer - c03r2 =0

r, + i(erc - rlmc) = 0.
These equations associated with the proper initial conditions

for the particular vector r determine 1ite moving axes com-
ponents rl, r2, r3

It will be interesting later to find the yaw b, (the angle
between i and v); the angle of deviation 9, (the angle between
v and ciy' and the angle 9 between i and g These angles

can be found provided v and &£ are known. The yaw is given by
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tan b.
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If r = 3 the angle of deviation is given by

: C. X V
‘_ ‘.l _
tan 9 = =

-

c
1. rlvl + r,v, + r3v3

/

which for sufficiently small Tsy Ty Vy, Vg CaN be replaced by_

P
X 3 5 s J P -4
- QA/E 172 TV )V vyoryvy) _|Favermavy) (avats
vy | 11 Iy vy |
| . '
I B ol ol B ) B
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The éngle ¢ -is given by
l2 2
ixe, V%z + rj r,

For the usual burning period the above'angles are generally
small; the tangents of these angles can then of course be
replaced by the angles themselves.

L. Merodynamic Forces.

The analysis of the aerodynamic forces acting on
the riizket will be based on the assumptions and wmethods in-
troduced by Nielsen and Synge in their very important paper.*®
In accordance with these authors, it is assumed that each
componznt of f is a function of p, c, Vis Vo Vgs ©g Wys Wg5

where p 1s the density of the atmosphere and ¢ 1s the velocity
of sound. If Vo) V3) Y wa,are small the components f2 and

F 3

£3 can be replaced by the approximations

* K, L, Nielsen and J, L, Synga, Opn the Motion of a Spinning Shell,
reproduced by the Ballistic Research Laboratory bty permission of the
National Ressarch Council of Canada, 1943. .

;krlvz - r2v1)2(rlv3—r3vl)2+(r2v3-r3v2);
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f =.alv2 + blv3 + clm2 + dlm3

f3 = azv2 + b2v3 + c2m2.+ d2m3

in which constant terms do not appear since if v2l='v3 =Wy = 03 =0
then f2 and f3 must vanish, The coefficients in the approxi-
mations are functions of p, ¢, Vys 0. The cross force

’c = f2 + if3 is thus

£, = (a; + 152) v, + (by + iby) vy (ci+icé)m2+(dl+id2)@3

== = 4
or using Vo = Vo t iv3, ®, = 0, + iog

fc = 4V, ﬁlvc + Ylmc + blmc

where the coefficients are complex functions of Py C» Vyy W7.

- It is assumed now that the rocket is symmetric in the
sense that a rotation of the rocket through the angle

y = 2r/n, where n is an integer greater than 2, about its
longitudinal axis, restores the rocket to its original position.
For such a rocket the coefficients of the conjugate terms in fc
are zero. Synge and Biot have shown this in the following
way. For any given motion we can consider an alternate motion
defined by velocity vectors which result from rotating rigidly
the velocity vectors vy and o through the angle. y , about the
axis of the rocket. If this alternate motion is considered as.
referred, to theiqame axis used to describe the actual motion,
then ve.e ¥, ®, e are the new velocities. From the symmetry

of the rocket the new cross force must be f eiw and according
to the assumptions f e 1y must be equal to

iy _ 1¥ . o= o-l¥ .y oLy -1y
fce To= agv.etl + pivee +Y 0,8 + 5,88

If the original expression for fc is substituted in this
equation, it is found that

et RPN DU S
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vstandpoint it is convenient to define quantlties KDA’ and KA

21 B s1ny= 215siny = 0 ‘;
By -7 0 61 =0
and hence | ' - _ |
| fc = aivc oY%
ﬁy the same analysis L 1

Po T apVe + ¥p0.
The cross force and the cross moment can be written in '
the more exp11c1t forms
£, e [§6V1’°1)+ igZ(vl’wli] ng(vl’ml)+1g4(vl’m EI ®, 1

Pe [%5(vl,ml)+196(vl,wl)]vc + [97(Vl’wl)+198(vl’w;ﬂ @,

It is also assumed that f; and py are functions of P

Cy Vs Va5 Vg3 1, W5y ©g; but that the effects of \ZYILY
2, 03 on fl and pl can be entirely neglected. Consider then

-fl and p ‘as functions of p, c, vy, mlonly. From the dimensional

S

by means of the equations

£, = pvy* a%k

DA
p = pvpoyaty, : | | 1
where d is the diameter of the rocket and the K's are dimensionless s

functions. fl is the axial drag and Py is the spin decelerating J
moment. : ’

The 0's which appear in f and p, can be interpreted as
foll~ws., Suppose

@ =, = ®q = 0, then

i

i

i
-
g T
m‘ ""."i,»a'qu%-.
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P ,[?l(vl,o) f iez(vl,o) (v2+iv3) ‘ 1

Pe L95'(Vl,0) + 196("1,0) (V2 + iv3)'

If in addition v3 = 0, then f, = Ol(vl,o)vzé £y = 9(v1,0¥v2;

: C ey _ R .
P, - 95(vl,O)Y2h; Py = 06(vl, O)Yéf, but for this case the
motion is planar and f3 and P, must be zero. To meet these
“requirements set @, = o 92*(vl, ®1)3 05 = w105*(vl, @) .
Then for 0 T o, = w3 = Q,.VB + 0,.

")
o
n

0, (vy5 0) lvcl

= 96(V1, 0)

2]
.
!

vcl :

Dimensional conslderations then lead to‘

’ = 2 = 3 .
Ol =p vld KN 96 =pV; d Kype

The quantity lec is ‘the cross force due to cross velocity,

on the normal force, and it has the same orientation as the 4
cross velocity. The quantity Qévc is the cross torque due

to cross velocity, or the restoring torque.

Suppose now that v, = Q)wz =0y = 0. Then

]
i

and from dimensional considerations

®,0,%(0, wl),vc'

;0% (0, ml)lvc

GAKT. , .
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The quantity th is _tke ‘4dgnus cross force due to eross
velocity, and the quantity 95 vc "is the Hagnus cross torque due - - -

T e mem——

r . to oross velocity ok o
Ff . ;{ ;.hIf e v, ='.3‘- 0; L = 0y thgn' ‘,
£, = ("1’0) + 10 4,("1’ OSJ (UQ2 10,3) b i

Das = 97(v10) + ies(vl,o)](w2 + iw3)
and if la addition w, = 0, then f, =-Q4(v1, O)w3; fq = 93(vl,0)w3;

j =—98(vl, 0)w3; py = 97(vl,0)w3; but for this case the motion

is planar. Therefore f3 and P, must be zero.To meet these
requirements set 93 = w193*(v1, ml); 0g = mlgg*(vl,wl). Then

for Vg = ¥y = o, @ = 0,

| | f..
i l Cl

'pcl = 97(vl,0)‘wc|

94(vl,0)|éc|

1

Dimensional theory then leads to

= 3 =
e pvld ks 97 pvld4kH.

4

The quantity 94 ®, is the cross force due to cross spin and
the quantity 97wc is the cross torque due to cross spin. {

Suppose now thot Vo = AL = 0, 0= 0. Then

lfcl = w193*(0, wl) Iw

*
;8¢ (Q, ;) |m

and again from dimensional considerations

0, = pcold‘(’k 0g = pwldsk

XF xT

The quantity Qch is the Magnus cross force due to cross spin,
and the quantity gch is the Magnus cross torque due to cross spin.
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- It is instructive to study first the trajectory of
a non-rotating rocset which is subjected tp a propelling
force F(t) which acts parallel to the lorgitudinal axis of
the rocket at a distance of € units from that axis. In
this section the ‘effect of such an imperfect alignment of the
propelling jet on a rocket moving in a vacuum will be in-
vestigated.

.

Let the moving axes be fixed in the rocket and take the
k axis so that it coincides in direction with the propelling
movement vector. Then £ = 0; p = 0; Fy = (t); = 03

F3 = 0; P1'= 0; P, = 0; and P3 = Fje. For the particular case
under consideration, it is convenient to introduce E = vl+iv2;
G =g + ig2 and 7= ®, + im3 Taking into account the fact

that the mass of the rocket varies with the time, the equations
of motion are .

(A.“’l) -
(Bn) - i(a- B)wyn = iFl |

(mg )+ imo, £+ mv3(w —1wl) "1 +xﬁé;u

(mv3)+ m(wlv2 e vl922 = mg,

if tlmeJﬁs measured from the instant at which the rocket
emerges from the launching tube, the initial velocities are
yv=v i, w =0 for t =0.

The equations for the components of g are

The initial values of the components of g depend upon the
choice of the inertial frame. This frame is chosen so that
S coincides with the axis of the launching tube and () is

horizontal. Let p Dbe the angle of elevation of the tube.
The components of g referred to the in  frame are then
(-gsinp , - g cosp , 0). Suppose that the tlane determined




by i and F(t) at t = O makes an angle v with the plane
determined by < and (DL With respect to the moving axss,

the initial components of g are then (-g sin u, - g COS}LCOSV, -
g cos i sinv ).
From the first equation of motion w; = 0 aad hence‘from

’ ‘ t
the second B(w,+ 1m3) = i‘;’Fle dt = 1 h(t) so that o, = 0;
(] : . .

0y = h/B. <The components of g are given by

g3 = cons't,= - g cos usin v
and . 4
o + 1 w30 = 0
from which
‘ -i};)dt =
9 =igy + igz = Cl le is(t)
whére s(t) é)[’det = @; and Cl = -gsin:p- igcosp cos v.
The remaining equations recruce to
g cosusiny *
- =L COSuUS
vy = o J(m dt h
and ‘ -
" ‘ = -1s(t)
(mE ) +im wy & =F, + mCye
from which

t

mEg = m(vl * ivz),= /[ F,e i E(T)'S(tZJaT

-]

t =
|4 -1 s(t)
+ Cl[o mdt + mV,| €

where m, is the initial mass and /8 is the initial velocity.

If r is a vector which is fixed with respect to the
inertial frame, the components Tys Ty Ty of this vector with
respect to the moving axes. are given by the equations

-13-
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; ~
B Ty -0 70 4
; r, + ©gTy = 0 |
ry =0
; {
; If = ry - ir2 is introduced, these equations become:'_;j
|
| £-10.L =0 |
| : 1y {
T3 =0 :
or
¢ = Czeis(t) |
r3, = cons't. '
‘ ‘ {
from which Vis Yy and v3 are easily determined. Applying #1
these equations to £ys85 and £q We find
Initial components - |
gy ¥ (1, 0, 0) £ = ots(t) ry = 0 ‘
So (0, cosv, sinv) g =-1 cos v eis Ty ¥ siny
. ' : ey is _ . B
€q 3 (0, -sinv, cosv). ¢ =1 sinve ry = cosv »
‘ 4 - {
If r is a unit ve'ctor, the component of ¥ allong T is
YeI = ViTy + Voly + Volg = r&(gc) + V5T Therefore the 1
components of v with respect to the inertial frame are:
.
=1




t T
Vl=%/F cos[s(TSJdT—-u%l—*-"—/mdj;‘-f—Q—
o 1 2 - (2 '

t - t

= Los v i r - BECOSg

v, o ﬁ‘l sin [s(']?ill daT = fm dt
(4 - e

. t
v3=-—-313"[p sinE(TEll_dT' . ‘
. | |

/(~—- the integrals of the above equations can
. - :

Writing M(t) =
be written

[E(t) - )| 7y cos[s(a:)]dm - g sin p./Ei(t) M(T] m(T)dT

+m v, M(t)

cos\g/i(fi(t)-M(T}l F .sin[s('r)] aT - g cos p/,;(t)—-x‘-i(‘l'-i] m(T)dT

T -
Z = - sin V/Ei(t) - M(Tﬂ F, sia E(Tﬂ dT.

A LA
Thus the restricted problem of this section is solved in terms

of quadratures. )
The deflection, and the angle which the axis of the rocket
makes with the line of departure (the (1Y axis) are given

respectively by the equations
Z%; ¢ = s(t).

d = \Y2® +
The angle of deviation, and the yaw are'given respectively by
the equations
: ‘ = 2 2 i . = 2 2
tan @ = \V3 + V3/V1 ; tan b \/,"2 + v3/vl.

.All of the above guantities except ¢ involve gravity terms.
These terms, however, can generally be neglected.
F, B, and ¢ are regarded as constants, and if

If m, g
gravity is neglected the deflection 4 is

B aai & IR et
!

;,\‘l _ o
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. Flst2
da = /( SiH ——— B at dat;

. .
F. € ' F.,e t2
1 Pl S

' j: i B dt dt 5B

the angle ¢ is

S
"

and the angle of deviztion 1s t
Fy ( Flet2
Vl tan b = == | sin

m 254t
(4

Approximate expressions for d ande are .

Flzet4
d = S
; 24 m B
2 ]
o = Flst
6 m BY

The yaw is the difference ¢-8. Thus it is seen that the
quantities d, ¢, © & are approximately directly proportional
to the eccentricity factor e.

6. Roteting Rocket Vacuuin Case

If a rocket is caused to rotate about its longitudinal
axis with an angular veloclty wl, it is not unreasonable to

suppose that ©) will tend to overcome any eccentric action

of the propelling forces. In order to investigate this suspected
stabilizing effect of ®y 5 consider now the motion of a rotating

rotket. For the time being suppese that the motion takes

place in a vacuum, and suppose that the effect of gravity

can be neglected. Let the propelling force F and the pro-
pelling moment P be arbitrary functions of t. Let the moving
axes be fixed in the rocket, and take k on the plane deter-
mined by P and i. Choose the inertial frame so that ¢ coincides
with the axis of the launching tube, and c, is horizontal.

Let the rocket emerge from the tube where % = 0. and assume

that for t =0, ¥ = Vi i, o = o, i.

The gquations of motion are

(Aél) = Py

NN L AT AR W e
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1

(Bmc) -.i(A-B)mlwc = 1P, N
(mvy) + o (m2v3 - v2m3) = Fy

‘(mvc) + oy mv, - imvyo, =F ¢

‘ From the first equation - ,

t
=L

Regarding ch as dependent variable in the second eguation,
the solution of this equation is easily found to be
t t t
-1 f ko at 1/ keydt

=
wc LA e | e P3 dat

et it e

4
where k = 1 - A/B. Since F; and P3 are small in comparison

with Fy and'Pl respcctively, the quantity WaV4 = VY 0g Can be
neglected in the third equation which then yields

t
- N
The solution of the fourth equation can now be found. It is ‘

! t ¥ ,T t
- t t : !
-1 fo, dt f ifw dt , ifwldt f 1 [wld',
e * ¢
(/] °

o
u
Bl=

T - 44 .
e | rcdt + 7 € e mvlwcdt 4

The moving axes components of a vector r which is fixed
with respect to the inertial frame are given by

rl + m2r3 - w3r2 =0

i
o

rc + iov. T - irlm

lc c

Ifr= (2 and ®,T3 = w3r2 is neglected,

-15-
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= LK A
. rl cons't

. l t . 1 t .t
5. = -1 [ odt [ 1 [ ©,dt
y ‘ ie e

< -

"o dt.
r] , v e

Expressions for the yaw, the angle of deviation and the
deflection czn now be set down. The yaw & is determined by

. t ’
t (T t AR
. 1fo at mv, 1 [(l-k)coldt [ 1af kojdt
—| le cht‘-o —3— e P3e , dt dt
. . 0

mv
lo

Ve

tand =
¥

and the angle of deviation is determined by

¢ ¥
1{“’1?11’

—_— e F 4T
nvy c

v T
L __Cc|"-

tan @ =
' LA |

T S
i}kl—k)w dr ;[kwlas
o

jﬁn(t)\'l(t)—m(T)xl(T)J

B(T) e P3dsd1

{

The component of v perpendlcular to < is vy tan 8. The
deflection d is then j vy tan @ dt.

Suppose that m, B, Fl’ e are constants; ana suppose Fc=0,
(Dl=0, PB" Flso Then ’

Fl t i Fiet?
v, tan @ = B (t-T) | ds d'.l? S ET

o [
and
F2 eth
d = 5758
-16- h

T e G kA S e R i) rl“m

SUR Y

ande o M

i
l
l




PP L S

These results check with thoge found in the previous section.

Suppose now that m, B, A, Fl, € are constants; Fc=0,
= Fye, bul that o) 4 0. Then if f wydt = s(t)

| | . |
pee | (T 1(1-1)s(r) [ iks(x) |
tan 0 = = | | (t-T)e dx 4T
Vl A - mB e . X .
0.

o

Py

the integral which appears above can be appraiéed_: as follows.
‘ntegration of the inner integral by parts leads to

sy L(1-k)s(T)
S.@.—l)ei mdm ((t

daT
ikwl / ‘a inu Oy

Fie 0

f 1(1 k)s(T)[ iks (x)
(t-T) —z A dx dT

(V]
(e

Noting that the absolute magnitude of a sum is equal to or less

than the sum of the absolute magnitudesof the terms of the sum,.

4 t
O [(t—T)dT +f(t-T)dT
ku)l kwo .

+-[(t T)f-c% dx dT

Integration then yields

14

=

ie t2

<

tan @

1

mBkw o

@)
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If this result .is compared with the corresponding
result for the czse of no rotation, viz., vltan Q= Fleta/émB,

it can be easily seen that if the angular velocity is to be
effective in reducing the angle of deviation then

1 3t
ko 6
or d
0 46
o kt °

It should be noted that if the above procedure for the
appraisal of vy tan @ is applied to the expre531on (4) a

o At e S eiiag”

better estimate can be obtained, namely ;

i NTETETF) -v-~'—r
B

. < t2 2t At?
.Vl tan G = %o + kﬁ)g + 'E? 3 .

w
0

s Rotating Rocket Subjected to Aerodynamic Forces,

The motion of a rocket during the burning neriod
will now be investigated uander less restrictive conditions
than have hitherto been improsed. Three of Llhe aerodynamic
forces will be admiited into the eouations of motion of a
spimning rocket, namely, the drag = pd“KD = J v?,
the 1ift = pd“KLv2 sind = va sind, and the rlohtlng moment =
pdaK\iv2 sin = J v blnb, where & is the yaw. Only these forces

are admitted because they are the most important. It is to
be noted, howvever, that even if all the aerodynamic forces
are admitted, the equations of' motion can be solved in the
manner discussed below.

" Let the inertial frame be chosen as above. Let the
moving axes be fixed in the rocket with i coinciding with
the axis of the rocket and k in the plane determined by i
and P. Suppose that the rocket emerges from the tube when

= 0; and that for t =0 v = vol, ® = mo;.

Using the terminology introduced earlier, the axial
drag fl is equal to

£

L

2 2 2
1 JLv sin®d - JDv ces &

D i sind

n

J.v? tan®b - J.v

L
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the normal force, or cross force due to cross velocity 1is

2 T w2 i
Iell v, JLv siné cos ® + ;Dv sin

Gl JLV cosd + JDv = JLv1-+'JDv1 secd

-and the righting moment, or cross-torque due to cross velocity
is . 0 a T aem e cmen
PRI S T e ]

= Jpv® sind] £y

WO ':rrj:f-a-j;-?;—f-f;,-;‘;:ﬂr—vm-_—"- .

Ve

&

|961 JMv =J vlsec&

M
s K
Therefore
£ g = -(JLvl + vy ;ecb)vc
1 iJlesecb Voo

.The equations of motion are

H

oS N = an®h - 2
(mvi; + m(w2v3 - v2m3) =F + (JLtdn b JDsec&)vl + mgy
(ﬁ%c) + loymv, - imv,e, = F, -(JL + Jy secd)vyv, + mg,

(ko)) = Py

(ch) + 1ko, Bo, iPy + i(;M sec d) ViV
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and the equations for the determination of the components of
£ with respect to the moving axes are
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gy + m2g3 - m3g2 =0
B, + imlgc - iglmc = 0.

No attempt will be made here to solve the above equations
of motion in a general mammer. Instead, the analysis will be
confined to the 51mpllfied equations which result from
assumlng waV 3~ V,0gs and the effect of gravity both negligible;

and assuming m constant and & small. The equations then become

., F J

heR 2y .
;c + io)v, - v, f gg = (JLm JD)vl
-‘512;(1' |
&; + ikwlwc = E%i + % Jlenc. ‘ |

The first and third equations of this set can easily
be solved. The solutions are

F v JDF

. l ' 4
vy =\F coth (———=t -b), } '
H D )
where the constant of integratiqn b is determined by :
P
v, =l <= coth b;
o] 'JD 4
and , 3 ' t
Py

o

The second and fourth equations are not easy to hundle
because of the variable coefficlents. It is interesting to
. note, however, that they can be solved explicitly by assuming

®) = avy and introducing the new variable s defined by ds = v.dt.
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The assumption w0y = avy is _perhaps a dubious onej; but it is

- not pointless to solve the egquations on the basis of this
assumption for if a = 0 1s substituted in the solution so
obtained it reduces to the splution for the non-spinning case.
If there ©, = avy, and s =fvldt are used, the second and

fourth equations become

!

dv J., + J : F
e 3 ..._I‘___.._.I_). = =) _C__
ds + (ia + m . ) Ve i_wc. mv,
do 3 ip
c iJg.v. _ )
=+ jkaw - Mc¢c = ==
d; c 5 Bvl'
which can be solved readily. The solutions are j
. a8t ' -
. 1 f -%s o F, ikaF P, |
T 18 e . 8
e AR ( = G = - )dt _
T E , . = .
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2 2 “2Fc ikap p_
-e ) e (T + — - e, dat
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where
N

£ - ja@e1) + (iéfgﬁigﬁ

-
H

J J;, +4d
Bﬂ - ka® + ika GJL———Q)

22

The above solutions can be used to calculate the yaw,
the angle of deviation and the deflection. For example, take
the syecial case for which ®; = 0; Fl = cons't;

Fc = 0; Pl = 0; P3 = Fle; JL = JD = 0. The roots %y and a,
are then . '
' J, ‘ A
o5\ - i\
= \/B % = -1y3
and hence ‘
Fle J“ 5
V== sin Eh s(t) - s(T)| dT
J. B
M %
t
F.e J '1
- 1 M -~ m
o0, = 5 f cos \/g~ .[;(t) - s(i_)j dTl
[o)

Using the above equations, it is easy to verify that
0, = O; v 3 = 0. The motion is therefore planar, and it can

be assumed without loss 4f generality that the rocket moves
in the £y &5 plane.

The yaw is given by
vc

tand =
vy

V

Thics can be written in a simpler and more usable form by
introducing
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\/—gvl =‘/§(Gt + iro) = L/;z

f(GT+v) \ﬁrx

The expression for the yaw then becomés

4
tan & = —=%  )r sin %(22- x?) dx.
2 K
pklz i -
" .
The angle ¢ is glven by tan ¢ = or (see last
section) by tan ¢ = |1 j o dt|= | Vir J’ wydzl  Now
- iGe L r T 2 2
0, = = V e f, cos 2(z - x®)dx.
i 2 '

]

An integratlon then yields

2
[ LA 2 |
tan ¢ = %ﬁzg i;féos % x? dxy + 4\sinZ 2 x® ax{ | .
1 3 i 4
.

For a more detailed analysils of the last results see the
report by I. Bowen, L. Davis, L. Blitzer: The Effect of Fin

Size, Burning Time, and Projector Length on the Accuracy of 1
Rockets, - HDRC, CIT-JPC3. : '
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peiling force.
formulas are glven for anyguiar velocity necessary to reduce disoersion.
soeclalized fnr the vacuum case nf nonrotaling rockets

yaw, angle of deviation, and de{lection are comouted.

Spaee
DISTRIBUTION: <pFEC[AL. All requests for copies
DIVISION: Army MItereT(zT) 2 3 - - | SUBJECT HEADINGS:
SECTION: Army Ordnameetn -

General equations of motion of a symmetric rocket are developed and apolied tn an eccentric pro-
Effects of the resulting Imnperfect aiignment cf prooeiling jet are discussed, and

and the results are compared with thase
for a rotating rocket in u vacuum. Aerodynumle forces are considered and expressions for the

mmmmﬂm.wgg_z___
2ockets - Trajectorles (82833)
Rockets - Aerodynamics (82348)

f == 2
I ATI- 4992 i
TITLE: Mation of 4 Rocket During Burning Period Hvision '
{Nnne) 0
AUTHOR(S)  : weters. A.S. ey
ORIG. AGENCY : Aberdeen rroving Ground, Baliistic Research Lab,, Aberdeen, Md. W— |
PUBLISHED BY {Same)
{Same)
o 0OC. CLASY I counTey 1 reen I 22085 | niwsieanows
L ____ 1Ls Eaglish {Nons)
ABSTRACT:

The equations are also

AT! SHEET NO.: N
Central Air Documonts Office AR TECH T INDEX
{__Wiight-Potterson Air Force Base, Ooyton, Ohio —

5 B . - - o





