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MOTION OF A ROCKET DURING THE BURNING PERIOD 

Abstract 

 *> In thii'report the general equations of motion of a rocket are 
developed. These equations are then apnlied to a rocket which is 
subjected to an eccentric propelling force, one of the principal 
causes of inaccuracy in rocket firings. The equations are first 
specialized for the vacuum case of the non-rotating rocket. The 
results for this case are compared with those for a rotating rocket 
moving in a vacuum. A formula for the angular velocity necessary to 
reduce dispersion is given. Finally, aerodynamic forces are con - 
sldered and expressions for the yaw, angle of deviation and deflection 
are set -^own. '•0 V 

1.  Introduction 

The equations of motion which govern the flight 
of a symmetric rocket will be developed in a general way 
in order that they may be used for reference purposes, and 
used in the analysis of problems associated both with the 
burning period and the post-burning period. 

After the equations have been set up, this report will be 
primarily concerned with the effect of an imperfect alignment 
of the propelling jet. The eccentricity of the propelling 
force is cne of the main causes of inaccuracy in the firing 
of rocketf. 
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2.  Notation 

In setting up the equations of motion for a rocket 
the following symbols and conventions will be used: 

—1' —2* —3 = unit vectors defining a right-handed Newtonian 
reference frame. The vector c, points in the direction in 
which the rocket is launched. 

%.* It K = unit  vectors defining a right-handed moving 
reference system whose origin 0 is at the center of mass of 
the rocket. The vector i coincides with the longitudinal axis 
of the rocket. The vectors j_ and k are temporarily left 
undefined. Unless tbare is a statement to the contrary, all 
vectors are considered as resolved with respect to the moving 
axes. 

1 = (vx 

m« (*! 
£* (ßX 
I  = (*1 
P = (Pi 

t  = (f i 

1 = (Pi 
J = (% 

V2* V'^ = velccity of °- 
co0, co„) = angular velocity of rocket. 

ß2> ^3) = angular velocity of moving axes. ' 

Fp» F,) = resultant propelling force at 0. 

P«> P.,) = resultant propelling moment about 0. 

fp, fo) = resultant atrodynamie force at 0. 

P2, p5) = resultant aerodynamic moment about 0. 

~g2' s3^ = acceleration due to gravity. 

m = mass of rocket. 

A = axial moment of inertia of rocket. 

B = transverse moment of inertia of rocket. 

N = axial spin of rocket relative to moving axes. 

_h =  |Ä(N+ Q^)"  B ß2* Bß3| = angular momentum of rocket 

about 0. Since ß„ =01., ß-=co-, the angular momentum can 

be written       *■ 

h = (Aü)^, BCD2, BCD«) . 
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3.  General Equations of Motion 

In vector form, the fundamental equations of motion 
are 

Written out at length in scalar form these equations yield 

(m'v^ + ra(a>2v3 - v2©3) = F^ + f±  + n^ 

(m'v2) + m(a>3v1 = v^) = F£  + f2 
+ mß2 

0 

(ro'vj + mCßjVg - v^) = F^ + f, + mg3 

(A u^)  = Px + px 

(Big) + Aco-^ - Bcö3ß1  = P2 + p2 

(Ba>o) + Bß,co2 - Aco^g  = p« + p. 

where the dot denotes differentiation with respedt to the 
time t.  The above equations can be expressed more conven- 
iently and more compactly by introducing the complex quantities 

vc = v2 + iv3 C0p = CD2 + iC33 

Fc = F2 + iF3 fc = f2 + if3 SQ 
= .6g * ^3 

Pc = P2 4 iP3 P„ = Po + iPq. 

In terms of these quantities the equations of motion reduce to 
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(m*v1)  +    m((D2v3 - V2ü>3)  a f^ + f    + mgj^ 

(m'vc)  + im$2lVc - Vlcoc)  = Fc + fc + mgc 

(Awx)     = Px + p1 

(RDC)  - i  (Ao^ - BP^)  coc = Pc + pc. 

For certain parts of the development which follows it is 
necessary to know the moving axes components of a vector r 
which is fixed with respect to the inertial frame. If this 
vector is written 

-£ = ri i + r2-i + r3K 

the components can be found by noting that r = 0 which leads to 

'  *1 + V3 ~ V2 = ° 

r2 + co3r1 - Q1r3  = 0 

r3 + ßlr2 - Vl = 0 

or, if r = r2 + ir« is introduced, to 

rl + V3 " V2 = ° 

fc + i(fi1rc - P o>e) = 0. 

These equations associated with the proper initial conditions 
for the particular vector r determine its moving axes com- 
ponents r., r2, r~. 

It will be interesting later to find the yaw 5, (the angle 
between i and v); the angle of deviation Q, (the angle between 
v and Cnjj and the angle yp" between i and c,. These angles 
can be found provided v and Q   are known. The yaw is given by 
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tan o - 
i. x v 

s 

i • I 
v2 K - vgj. 1 j4+ A _ 

If r_ = c-, the angle of deviation is given by 

\KV2 - r2v1)
2(r1V3-r3v1)^(r2V3-r3V2)" 

tan 9 = 
&i x v 

%' v rlvl + r2v2 + r3V3 

which for sufficiently small r2, r,, v2, v, can be replaced by 

r\/(rlV2-r2vlft(rlv3-r3Vl> V     ^rlv2-r2vl) .   (VZl£Z~~l 
r
lvl   *    rlVl    I i 

tan 9' 
vlvl 

"1 ' ri   vi    ri 

The angle <p is given by 

tan <p = 
i • % 

1/ 5H 

v1 -r 

For the usual burning period the above angles are generally 
small; the tangents of these angles can then of course be 
replaced by the angles themselves. 

A•  Aerodynamic Forces 

The analysis of the aerodynamic forces acting on 
the racket will be based on the assumptions and methods in- 
troduced by Nielsen and Synge in their very important paper.* 
In accordance with these authors, it is assumed that each 
componsnt of f is a function of p, c, v,, v2, v_, a>,, u>2, co«; 

where p is the density of the atmosphere and c is the velocity 
of sound. If v2, v-, a>2, a>3 are small the components f2 and 

f3 can be replaced by the approximations 

* K. L. Nielsen and J, L. Synge, On the Motion of a Spinning Shellr 
reproduced by the Ballistic Research Laboratory by permission of the 
National Research Council of Canada, 1943. 
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f2 = alv2 + blV3 + c A + V3 

f3 = a2v2 + b2v3 ♦ c2<o2 f d2co3 

in which constant terms do not appear since if v2 = v« = a>2 = ®o ~ 0 

then f2 and f, must vanish. The coefficients in the approxi- 

mations are functions of p, c, v,, CD,. The cross force 

f = f0 + if- is thus c   2    3 

fc =  (ax + ia2) v2 + (bx + ib£) v3 + (c1+ic2)co2+(d1+id2)cD3 

or using v    = v2 + iv«, co    = eo2 + i<o3 

fc = Vc * h\ + y^ + 6^ 

where the coefficients are complex functions of p, c, vx,  to 1* 
It is assumed now that the rocket is symmetric in the 

sense that a rotation of the rocket through the angle 
y - 27r/n, where n is an integer greater than 2, about its 

longitudinal axis, restores the rocket to its original position. 
For such a rocket the coefficients of the conjugate terms in £ 
are zero. Synge and Biot have shown this in the following   ö 

way. For any given motion we can consider an alternate motion 
defined by velocity vectors which result from rotating rigidly 
the velocity vectors v and a> through the angle, y , about the 
axis of the rocket. If this alternate motion is considered as 
referred to the.same axis used, to describe the actual motion, 
then vQe $,  w e™ are the new velocities. From the symmetry 

of the rocket the new cross force must be f^e * 
it 

and according 

to the assumptions fce must be equal to 

V1" - w^^iV^-W1* ♦»A«"lf • 

If the original expression for f is substituted in this 

equation, it is found that 
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2i ßj.ÄJUp.v= 0 

. ßl    --= ° 

21&sinv   = 0 

h1      =0 

and hence 

fc =   Vc + Vc 

By the same analysis 

PC 
= «2Vc + W 

The cross force and the cross moment can be written in 
the more explicit forms 

fc = 
= föL(v1,ß)1)+ i02(v1,co1) vc + ^G3(v1,cü1)+i94(v1,co1) 

= |95(v1,ü)1)+i96(v1,(o1) vc + r©7(v1,ü);L)+i98(v;L,ü);L) CD 

It. is also assumed that f, and p, are functions of p , 

c, v,, v„, v,; CD,, cop, co-i but that the effects of v2, v^j 

cop, CD« on f, and p, can be entirely neglected. Consider then 

f^ and P^'as functions of p, c, v,, co,only. From the dimensional 

"standpoint, it is convenient to define quantities KnA, and K. 

by means of the equations 

fl=Pvl2d2KDA 

pi= PWS 

where d is the diameter of the rocket and the K's are diraensionless 
functions, f, is the axial drag and p, is the spin decelerating 
moment. 

The 9's vrtiich appear in f and p can be interpreted as 
follows. Suppose 

ox.  = to, s a, = 0, then 
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pc = K(vl,0) + ie6^vl'°)l (v2 + ivJ 

If in addition v.  = 0, then f2 = O^/v^O)^ f, = 0(v1,0fv2; 

P2 - 0* (v-,, 0) Sr^.. j Po = ^(v-^, °) *£,.-> Dut for this case tne 

motion is planar and f^ and p2 must be zero. To meet these 

requirements set Op  = toj ®o*^vl' ^l^' e5 = ^l0?*^!' £0]) • 

Then for to-, - ü>2 
s <*>« = 0, v, 4 0,. 

= e1(v1, 0) 

t). = e6(
vi» °) 

Dimensional considerations then lead to 

el = P vld*KN 96 = P vl d' KM- 

The quantity 9, vQ is the cross force due to cross velocity, 

on the normal force, and it has the same orientation as the 
cross velocity. The quantity ö^v is the cross torque due 

to cross velocity, or the restoring torque. 

Suppose now that v, = (^co-j = co, = 0. 

= c&,Q2*(0, co-j^) 

Then 

= ttjÖJ (0, c^) 

and from dimensional considerations 

62 = pCDld3KF 05 = po>1d'4KTV 
<f 
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The quantity 90v is „tfce-Magnus.-cross force due to cross 
Velocity, and the "quantity ,0^:,:vc' is the Magnus cross torque due 
to cross velocity.,   . iv .--*'' c .,-■■ 

X :.  

If v2 = v« =0; <o, = 0, then 

fc = = ^3^,0) + i9^(vv 0)   (d)2 .+_ 1©3) * *—~~ 

pc =[e7(vi°) + i08(vl>°) ^2 + iü)3^ 

and if in addition o>p = 0, then f2 = -6/0^, 0)ci>o$ f^ ~ ^O^O)0^; 

P2 
=-9g(vi> O)®«* P3 = Ö7(v-i»0)w3J Dut -or this case the motion 

is planar. Therefore f- and p~ must be zero.To meet these 
requirements set 9, = <o,9.a*(v,, ci>,) j 9g = <ö..9g*(v, ,ü>,) . Then 

for v2 = v3 = °> ®i = 0, 

= 94(Vl,0) 

= 97(v1.,0> 

w„ 

Ü) 

Dimensional theory then leads to 

'3* 9? = pVjd^kjj. 94 = pVld^s 

The quantity 9, GO is the cross force due to cross spin and 
tne quantity 9„a> is the cross torque due to cross spin. 

Suppose now that v« = v- = 0, v,= 0. Then 

fc  = wlö3 (°» "l^ 

= <oxQB  (0, a^) 

Ü). 

CO, 

and again from dimensional considerations 

Ö3 = P^d\F 68 = PcOid
5^ 

The quantity 9,oy is the Magnus cross force due to cross spin, 

and the quantity 9ßa>c is the Magnus cross torque due to cross spin. 
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5.  Vacuum. Oase *~ > 

It is instructive to study first the trajectory of 
a non-rotating roccet which is subjected tp a propelling 
force F(t) which acts parallel to the longitudinal axis of 
the rocket at a distance of e units from that axis. In 
this section the effect of such an imperfect alignment of the 
propelling jet on a rocket moving in a vacuum will be in- 
vestigated. 

Let the moving axes be fixed in the rocket and take the 
_k axis so that it coincides in direction with the propelling 
movement vector. Then f = 6; jo = 0; F, = F,(t)j F2 = 0} 

F3 = 0; P-, - 0; P2 = 0; and P., = F,e. For the particular case 

under consideration, it is convenient to introduce 5 = vi+iv2» 

ff = g^ + ig2 and    r\ = co2 + iooo.      Taking into account the fact 
that the mass of the rocket varies with the time, the equations 
of motion are 

(Aa^) =0 

(Bn) -'i(A-B)(Dnn = iF^ 

(m*5 )+ ima)35 + mV« (ü^-ia^) = F-^ + ma;; 

(mv3)+ m((ä1v2  -. v^) = mg3 

If time is measured from the instant at which the rocket 
emerges from the launching tube, the initial velocities are 
v = v i: co = 0 for t = 0. —   o— * — 

The equations for the components of £ are 

- icc^) = 0 

g3 + o1g2 - co2gl    =» 0 

o  + ico3 G   + g3(o2 

The initial values of the components of & depend upon the 
choice of the inertial frame. This frame is chosen so that 
cu coincides with the axis of the launching tube and c~ is 

horizontal. Let p be the angle of elevation of the tube. 
The components of £ referred to the in     frame are then 
(-gsin n , - g cos fi , 0). Suppose that the jjlane determined 
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by i  and F(t) at t = 0 makes an angle v with the plane 
determined by c, an4 £o* With respect to the moving axfis, 

the initial components of £  are then (-g sin 11, - g cos jx cos v, 
g cos n sinv ). 

From the first equation of motion to, = 0 and hence from 

the second B(eo2+ ico~) = i J  F^e dt = i h(t)  so that co« - 0; 

to- = h/B. i'he components of g are given by 

g- = cons't.= - g cos (isin v 

and 
cr + i <a~a      -  0 

from which 

co„dt 

where 

!  = gx + ig2 = Cxe    I   3U" = c^e"1^*) 

s(t) = I to-dt = cpj and C-, = -gsin jx- igcosji cos v. 

The remaining equations recuce to 

s- z£_cosji_sjji V 
m r. dt 

and 

(m£ ) + i m co- 5 = F1 + mC^e 
-is(t) 

from which 

m g  = m^ + iv2) = J Fxe * [»<*>-«(*)] 

m dt + m vA o o 

dT 

e -i s(t) 

where mQ is the initial mass and v is the initial velocity. 

If r is, a vector which is fixed with respect to the 
inertial frame, the components r,, r«> r- of this vector with 

respect to the moving axes are given by the equations 

-U- 
 mmmmmtmHHHKKKM 



rl - V2 

r2 + a)3P1 

0 

0 

0 

If C = r, - ir2 is introduced, these equations become.-. 

t, -  i co« C =0 

or 

r3  =0 

C = C2e 
is(t) 

r* = cons't. 

from which Vp v2 and v„ are easily determined. Applying 
these equations to c,,^ and c» we find 

Initial components * 

(1, 0, 0)        < = eis^) -1 ' 

-2 ' 

£.3 • 

(0, cos v , sin v ) t,  = -i cos v e is 

(0, -sinv, cos v ).  £ 3 i sinv e is 

r3 = 0 

rg » sin v 

r« = cos v 

If £ is a unit vector, the component of v along r is 
v . r = v-j^ + v2r2 + v^r, = I^UO + 

v3r3« Therefore the 
components of v with respect to the inertial frame are: 

-12- 
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'i - ij\ c°*[s(T!dT - B^L[■d*♦ ¥"- 

v     . cos V 
v2 "    m 

v3 = - 

vk   sin [s(T)j dT - Ä-S2SM m 

t J ° 

dt 

Writing M(t) = / •— the integrals of the above equations can 

he written   '" 

X = J   M(t) - M(T)1 F1 cos[s(T)JdT) - g sin |i/JM(t)-M(Tfl ra(T)dT 

+ m0v0 M(t) 

Y  = (t)-H(lj Fx sin[s(T)J dT - g cos fx| fc(t)-M(TN m(T)dT 

Z - - sin v I M(t) - M(T)| F±  sin E(l1 dT. 

Thus the restricted problem of this section is solved in terms 
of quadratures. 

The deflection, and the angle which the axis of the rocket 
makes with the line of departure (the c* axis) are given 
respectively by the equations 

d = \|Y
Z
 + Z2;  (p * s(t). 

The angle of deviation, and the yaw are given respectively by 
the equations 

tan 9 = \/v| + Vl/V-L ',      tan & = y/v| + V|/Vr 

All of the above quantities except <p involve gravity terms. 
These terms, however, can generally be neglected. 

If m, F, B, and e are regarded as constants, and if 
gravity is neglected the deflection d is 

-13- 
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■*{£ - * 
F,et2 

d=iTj   L    sin-^-dt dt{ 

the angle <p is     yV1 

^ o 

Fj^e       Fxe t
2 

"B" dt dt = -2B~ 

and the angle of deviation is  t 
F, ( F,etJ 

V1 tan 9 = —I sin-gg-.dt. 
4? 

Approximate expressions for d and 9 are 

F1
2st4 

d =  24 m B 

F|st3 
6 = 6 m BV  * 

The yaw is the difference <p-9. Thus it is seen that the 
quantities d, <p, 9 & are approximately directly proportional 
to the eccentricity factor e. 

6.  Rotating Rocket Vacuum Case 

If a rocket is caused to rotate about its longitudinal 
axis with an angular velocity to-,,. It is not unreasonable to 
suppose that co, will tend to overcome any eccentric action 
of the propelling forces. In order to investigate this suspected 
stabilizing effect of co,, consider now the motion of a rotating 
rocket. For the time being suppose that the motion takes 
place in a vacuum, and suppose that the effect of gravity 
can be neglected. Let the propelling force F and the pro- 
pelling moment P be arbitrary functions of t. Let the moving 
axes be fixed in the rocket, and take k on the plane deter- 
mined by P and jL. Choose the inertial~frame so that c, coincides 
with the axis of the launching tube, and c* is horizontal.- 
Let the rocket emerge from the tube where t = 0. and assume 
that for t = 0, v = v^i, CD = CD i. 7  —  o—' —  o— 

The equations of motion are 

P (Acox) = 1 

-14- 
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(Bic)  - i(A-B)a)l£oc = iP3 

(mv^ + m (co2v3 - v^)  * Fx 

(mVc)  + i(o1 mvc - imv^    = F£ 

From the first equation 

mi ■ i r pi dt + co . o 

Regarding Bco as dependent variable in the second equation, 

the solution of this equation is easily found to be 

<°c s Be 

-i [ ko^dt rr iy ka^dt 
P3 dt 

F. and P~ are small in comparison where k = 1 - A/B. Since 

with F, and P, respectively,' the quantity WpV- - v^ffi- can be 

neglected in the third equation which then yields 

'i * i j h 
I» 

dt + v . o 

The solution of the fourth equation can now be found.    It is 

-i/ijdt r1    ifci^dt ifodt   rX   i/o^d', 
v„ - i e    * e    * F- dt + J e    " e mv,< cm / cm / 1 

'b fe 

to dt c 

The moving axes components of a vector r which is fixed 
with respect to the inertial frame are given by 

rl + V3 - ü)3r2 = ° 

rc + *Vc - ^c = °- 

If r = c, and tü2r3 - co^ is neglected, 

-15- 
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r,  = cons't» 

K 
*       Jt 

C   _ 
-i/cojdt r    i/o^dt 

= i e CD dt. 

Expressions for the yaw, the angle of deviation and the 
deflection can now be set down. The yaw b  is determined by 

tanb = 
vc 
vl 

1 
mvl 

^ifc^dt f ij(l-k)a)1dt ^    i/ta^dt 
e  '     Fcdt -J "IT e  ' J P3e ' dt dt 

and the angle of deviation is determined by 

tan 0 
vl  rl 

1 
D.V, 

t >T 
i/ü>,dT 

e    F dT 

+ / to 

\ ^    IKl-kWdT /   i/kco, 

-- g^ e e    P„dsdT 
5 

\ 
The component of v perpendicular to c.-, is v, tan 9. The 

rt deflection d is then     I    v,   tan 9 dt. 
/; 

Suppose that m, B, F-., e are constants; and suppose F =0, 

^=0, Po= F1e.  Then 

Ffe r 
vi tan e = w 

J 

rr 

(t-T) ds dT = 
F|et3 

6m B 

and 
2 „4.4 

d = 
F£ et 
2-4mB 

-16- 
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These results check with those found in the previous section. 

Suppose now that m, B, A, F-i, e are constants; F =0, 
P3 = Fle> but that ^i^0. Then if J  co-jdt = s(t) 

F2£ 
vl tan -8 = iß" 

-r ' /T 
i(l-k)s(T) (   iks(x) 

(t-T)e te      dx dT 

Che integral which appears above can be appraised ■ as follows, 
integration of the inner integral by parts leads to 

rz     isfT)      r;. . i(l-k)s(T) 
(t-T)e          dT -   ) ^±i£                         dT 

J ikcDl                       '*.      o 
Fje t> 

v, tanQ T 
1 ma 

f\           i(l-k)s(T) iks(x) 
a 

t 

Sf                         XdXdT 
w 

Noting that the absolute magnitude of a sum is equal to or less 
than the sum of the absolute magnitudes of the terms of the sum, 

<  P?e 
vl tan ö = W 

(t-T)dT    + 

r 
ka) I 

(t-T)dT 
kca 

+ M(t-T) j h dxdT 

Integration then yields 

f2r  4-2 <  F?e ts 

vl tan e    = ilkST 
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If this result is compared with the corresponding 
result for the case of no rotation, viz., v,tan 0 = F£et3/6mB, 

it can be easily seen that if the angular velocity is to be 
effective in reducing the angle of deviation then 

1 < t 
ko>   Z o 

>6 
"o = St • 

It should be noted that if the above procedure for the 
appraisal of v, tan 9 is applied to the expression (A) a 

better estimate can be obtained, namely ] 
- v.t«i—. 

o    o     o 

7.  Rotating Rocket Subjected to Aerodynamic Forces. 

The motion of a rocket during the burning period 
will now be investigated under less restrictive conditions 
than have hitherto been imposed. Three of the aerodynamic 
forces will be admitted into the equations of motion of a 
spinning rocket, namely, the drag = pd2Knv

2 = Jn
v% 

the lift = pd2KLv
2 sinb = JVv2 sink, and the righting moment = 

pd3KMv
2 sin = JMv

2sinb, where b is the yaw. Only these forces 

are admitted because they are the most important. It is to 
be noted, hov/ever, that even if all the aerodynamic forces 
are admitted, the equations of motion can be solved in the 
manner discussed below. 

Let the inertial frame'be chosen as above. Let the 
moving axes be fixed in the rocket with i  coinciding with 
the axis of the rocket and k in the plane determined by i 
and P.  Suppose that the rocket emerges from the tube when 
t = 0; and that for t = 0 v = v i, o> = oo i. ' —   o—'    ca- 

using the terminology introduced earlier, the axial 
drag f-, is equal to 

fl = JLv2 sin2k ~ Jnv2ccs b 

= JjV2 tan2b - JDv? sinb 

-IS- 



the normal force, or cross force due to cross velocity is 

e, = J,v2 sinb cos b  + JDv
2sin b 

®1 = JLV cos^ + JDV = JLV1 + JDV1 sec^ 

.and the righting moment, or cross torque due to cross velocity 
is .  ,  

G 6 v. = JLv
2 sin&/{ 

*„*.—,i«i,i. 

96|= JMV = JMVlSec5 

Therefore 

Vs "(JLV1 + JDV1 3ecb>vc 

pc =        iVlsec5 V 

The equations of motion are 

(mv.) + m(<o2v3 - Vpü)^) = F,   + (J tan26 - JDsec6)v2 + mg, 

(mv ) + ico1mvc - imv1coc = FQ -(JL + JD sec&Jv-^ + mgc 

(Afl>x)  = Pj. 

(BCüC)  + ikcOjBoo = IP, + i(JM sec b) v,vt 

k-i-f 

and the equations for the determination of the components of 
£ with respect to the moving axes are 

-19- 



gl + °2g3 ~ W3g2 = ° 

gc + icülgc - igl(0c = °- 

No attempt will be wade here to solve the above equations 
of motion in a general manner. Instead, the analysis will be 
confined to the simplified equations which result from 
assuming «pV- - VJ£>'$>  anci the effect of gravity both negligible; 
aiid assuming m constant and b  small. The equations then become 

vl " m " m vl 

V„ + 10), V  - IV, CO  = „, c    1 c    1cm 
c   JT + Jn 

m lvc 

.   pl 

iP 
to + ikco,o> = x, c    1 c   B 

1 + 3 VlV 

The first and third equations of this set can easily 
be solved. The solutions are 

v, 4r coth c x     • D 

<j JnF, 

where the constant of integration b is determined by 

o r JD 

and . „t 

o)1 = -~  dt + (0 . A       O 

The second and fourth equations are not easy to handle 
because of the variable coefficients. It is interesting to 
note, however, that they can be solved explicitly by assuming 
to, = av, and introducing the new variable s defined by ds = v,dt. 
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The assumption to, = av, is perhaps a dubious one; but it is 
not pointless to solve the equations on the basis of this 
assumption for if a ~  0 is substituted in the solution so 
obtained it reduces to the solution for the non-spinning case. 
If there <o, = av,, and s = /'v,dt are used, the second and 
fourth equations become 

1 

dv( 

ds + (ia + ^H
2) vc - ico = ± m c   mv-, 

IT * U-c - 2g* -   B^ 

which can be solved readily. The solutions are 

a, s 

v. = c  Va2 

1   Je"V (^ + i2!c_ £* 
m    ia    B ' 

a„s r -a„s v2" / ~"2~ a^\   ikaF 
-e  / e   (-4-^ + c 

m r) dt 

:>-t 

.. --1 
c  1 «2 

axs   -ais 
e   ye 

a2s /- -a. 
-e  y e. 

m 
'M c 
Bm -a + laj ^_ dt 

tt-F.  1 i(JT+Jn)      } P3 
- a + ia y -* 'M*e , ^ *.\"LMV 

Bin m *2 B dt 

in which . -ii+ir^ 

a2 = -•-Jbt-C^i 2 
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where 

^ = ia(k+l) ♦ (i-1^ 

Jj2 = ^-ka* + ika (^4^) 

The above solutions can be used to calculate the yaw, 
the angle of deviation and the deflection. For example, take 
the special case for which a>, = 0; F-,  =  cons't; 

F = 0; ?, = 0; P, = F,e; J, = J^ = 0. The roots a, and a2 

are then 

«!^#     \--^ 

and hence 

vc = 
F±e. 

in/^ [s(t) - s(T)| dT 

"c = B f\os\^    [. (t) - s(?j dT 

Using the above equations, it is easy to verify that 
co2 = 0; v~ = 0. The motion is therefore planar, and it can 

be assumed without loss df generality that the rocket moves 
in the c, c_2 plane. 

The yaw is given by 

tan& = 
v rL 

V,/J3\ I'M o 
sin m_ 

2F2 VB # 

F,t       2    F,T       ; 
v m   o'  V.m   o' dT. 

This can be written in a simpler and more usable form by 
introducing 
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- i , -1§ m       ^        ' B 
k2 B 

m 

|v^flttV^ 

l/f(G T + v )   =    tf*. 

The expression for the yaw then becomes 

tan b - 
ixkfz f sin f (z - x2) dx. 

The angle <p is given by tan (p =   IrVr-jl or  (see last 
section) by tan (p = | i j co dt j =   j 1/TT/JX G (* co dz.      Now 

o> iGe 

k2 ]/fs f -' f (z2 - x2)dx. 

An integration then yields 

tan (p = E7T 

2fik4 

r 

cos f x2 dx> + sin | x2 dxf 

For a more detailed analysis of the last results see the 
report by I. Bowen, L. Davis, L. Blitzer: The Effect of Fin 
Size, Burning Time, and Projector Length on the Accuracy of 
Rockets, NDRC, CIT-JPC3. 

^U^^^U^i^ 
Arthur S.  Peters 
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