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This result glves the flrst four terms of the deslred

asymptotic expansion In C.
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EVALUATION OF DEFINITE INTEGRALS
BY SYMBOLIC MANIPULATION*

Abstract

A heuristic computer program for the evaluation of real
definite integrals of elementary functions is described. This
program, called WANDERER (WANg's DEfinite integRal EvaiuatoR),
evaluates many pro.:r and improper integrals. The improper
integrals may have a finite or infinite range of integration.
Evaluation by contour integration and residue theory is among
the methods used. A program called DELIMITER (DEfinitive LIMIT
EvaluatoR) is used for the limit computations needed in evaluat-
ing some definite integrals. DELIMITER is a heuristic program
written for computing limits of real or complex analytic func-
tions. For real functions of a real variable, one-sided as well
as two-sided limits can be computed. WANDERER and DELIMITER have
been implemented in the MACSYMA system, a symbolic and algebraic
manipulation system being developed at Project MAC, MIT. A typi-
cal problem in applied mathematics, namely asymptotic analysis of
a definite integral, is solved using MACSYMA to demonstrate the
usefulness of such a system and the facilities provided by
WANDERER.

*This report reproduces a thesis of the same title submitted to
the Department of Mathematics, Massachusetts Institute of Tech-
nology, in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, August 1971.



CHAPTER |,
CHAPTER I,

CHAPTER 11,

CHAPTER IV,

TABLE OF CONTENTS

INTRODUCTION
DELIMITER

0. Introductlon
1. Definltlons and Symbols
2. Baslc Ruies and Outline of Algorlthm
3, The Limit of a Ratlonal Function
4, The Limlt of a Quotlient of RP=forms
5. Indetermlnate Forms and
L'Hospital's Rule
6. On the Sign of Infinlty
7. Heuristlcs for Comparing Orders
of Infinity
8., Examples

WANDERER~AN INTRODUCTION AND OUTLINE

1. Introductlon
2, Outlline of Approach
3, Outline of the Computatlon of Res!dues

SYMBOLIC COMPUTATION OF INFINITE INTEGRALS

0. Introductlon
1, Infinite Integrals of a Ratlonal
Functlon

L6

46
L7
51

56

56
56



B s e I LT T N L G e L S AT

TABLE OF CONTENTS (contlnued)

3.

5.

Infinite Integrals Involving Algebralc

lrrational Functlons

2.1 Evaluatlion by Resldues
Integrals Related to

the BETA Functlon
Evaluation by Trlgonometrlc
Substitutlion

N NN
&S W N

a Parameter

Infinite Integrals Involving
Trigonometric Functlons

3.1 Integrals from Minus Infinity
to Infinity
3.2 Integrals from 0 to Infinlty

InfiInite Integral Involving
Logarithm Functlons

4,1 Evaluatlon by Recurslion and
Contour Integratlon

4,2 Method of DIfferentiating and
Introducing Parameters

4,3 Integration by Parts

Infinite Integrals Involving
Exponential Functlons

5.1 Method of Substitutlon

5.2 Use of Contour Integratlion

5.3 The GAMMA Functlon and
Related Integrals

5.4 Integrals Related to the

Laplace Transform

Differentlation with Respect to

69
69
70
72
74

17

77
81

89

39
92
94
96

96
98

100
101



CHAPTER V.,

CHAPTER VI,

TABLE OF CONTENTS (contlnued)

INTEGRALS OVER A FINITE RANGE

0.
1,
2.

3.

Introductlion

Finlte Integrals of Rational Functlons

Rational Functlions of Trigonometrlc
Functlons

2.1 A Typical Application of
Contour Integration

2.2 Utllizatlon of the Perlodlclity of

the Trigonometrlic Functions

Finlte Integrals of Algebralc
lrrational Functlions

3.1 Ratlonallzing the Integrand
3.2 Integrals Related to
the BETA Function

Finlite Integrals Involving
Logarithm Functlons

DESCRIPTION OF ALGORITHMS

1.

Computation of Resldues

1.1 Resldue at a Pole
1,2 Evaluatlon of Contour Integrals
by Reslidue Theory

Obtaining Real and Imaglnary Parts
A Heurlstlc Pattern Recognition
Program

A Procedure for Change of Varlables
Solving Systems of

Linear Algebralc Equatlons
Convergence of Integrals

104
104
105
107

107
109

112
112
116

118

122

122
122
123
127

128
132

133
135




CHAPTER VI I,

CHAPTER VI I,

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

TABLE OF CONTENTS (cont!nued)

AN APPLICATION OF MACSYMA AND WANDERER

0. Introductlon

1. An Asymptotlc Analysls Probiem
and an Outline of the Method of
Steepest Descent

2. Solutlion Steps

CONCLUSIONS AND SUGGESTIONS
FOR FURTHER WORK

A FLOWCHART OF DELIMITER

A PROOF

PERFORMANCE OF WANDERER AND DELIMITER
NOTAT IONS

AN UNDECIDABILITY RESULT

137

137

139
143

162
168
170
173
178
179



CHAPTER |
INTRODUCT I ON

In recent years rapld advancement has taken place In
the art of using modern electronlic computers to faclilltate
symbol lc mathematical computatlons., Computer based software
systems for thls purpose are generally known as symbollc
manipulation systems, Such a system Is designed to aid Its
users In handling mathematlical expresslons and functions,

As the fleld of symbolic and algebralc manipulation grows
stronger and more sophisticated so do the varlous algebralc
manipulation systems. MACSYMA [16] Is a recent redesign of
earller systems Incorporating many new ldeas and results
developed in the fleld. The development of MACSYMA began at
Project MAC, MIT, in early 1969, The effort has been gulded
by Professors Martin and Moses of MIT and Involves a group
of researchers and students Including the author., Drawing
on the past work of Martin [15], Moses [20]) and Engelman
[9]1, MACSYMA soon evolved Into a system which extended the
capablilitles of automated algebralc manlpulation systems iIn
many new areas. Among these are the ablillty to compute

l1imits of functlions and the ability to evaluate definite



Integrals.,

The 1Imit concept Is basic to mathematlcal analysis,
Being able to compute 1imlits automatically greatly Increases
the potential of a symbol manipulation system In doling
analytical mathematlics. In fact the evaluatlon of deflinite
Integrals Is heavlily dependent on the limlt process, as Is
the expanslon of functlions In power series &and many other
mathematical problems. Although the computation of 1llImlts
has been studlied previously to some extent {11, 13], we
describe a 1imlit program called DELIMITER (DEfinltive LIMIT
EvaluatoR) which Is more powerful than previous programs.

It Is discussed In detall In chapter 2.

The problem of computing Indefinite Integrals
symbolically by computers has been Investigated rather
thoroughly, Flrst among the computer programs developed for
this purpose was SAINT (Symhollic Automatic INTegrator) by
Slagle In 1961, A more powerful program named SIN
(Symbolic INtegrator) [23] was developed in 1967 by Moses.
Theoretlical work In thls area include Rlchardson's
undecidahility result for a certaln classes of Integrals
[22] and Risch's declslion procedure for determining the
existence of the Indefinite Integral of a member In the

class of elementary functlons [23, 24, 25, 26)]. There Is a
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comprehensive review by Moses on the progress durlng the
past ten years In thls particular area of symbol manipula-

tion [21].

However, hardly any work has been done in the dlrection
of definlite Integration., Reported here Is a flrst definite
Integratlon program called WANDERER (WANg's DEfinite
IntegRal EvaluatoR)., Experiments wlth DELIMITER and
WANDERER are the princlpal subjects of thls thesls.

WANDERER has been Implemented In MACSYMA and makes use of
many facllities provided In iIt. Some of these facilitles
are: lInput and two-dimensional output, simplificatlion,
solution of polynomial and systems of linear equatlions,
canonlcal ratlional functlon simpliflication and the SIN [20]

Integration program.

Evaluatlion of deflnlte Integrals can sometimes be as
easy as computing the Indeflinite Integral of the glven
Integrand then substituting In the 1Imlits of Integration,
WANDERER computes lIntegrals of thls kind by using those
parts of SIN that have belng Implemented In MACSYMA.
However, many interesting definlite Integrals are not
obtalnable In this manner. In some cases they may be
improper integrals or thelr Indeflinite Integrals do not

exlst, In other cases It Is easler to evaluate the deflinlite
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Integral dlrectly than to obtaln the indefinlte Integral

flrst.

A few 1Imit and Integration problems are llisted below
to glve an Indicatlon as to the scope of WANDERER and
DELIMITER. The results obtalned hy the programs can be

found In chapters 2, 4 and 5,

2 o 6
X +AX +8B X dX
-------------- dx - e - - ---
L 2 _ 2 15/2
“® X +10X +9 O (x +x+ 1)
SIN(X) dX 4
----------------- ST 1/3
2 1 X 2 e X LOG(X) dX
- e (X + 1) o
L ax 4 dx
2 2 1/2
© X =3 3 x(x - 9)
F 3,8 ©o0
2 1/2 2
COS (X) = SIN(X) dX LOG (X) dx/ X
o i
2 4 1/72 4 1/X
LIMIT X (4 X + 5) - 2X LIMIT (A X + 1)
X->+00 X-=0
2 1/2 2
X (X + 1) X
LIMIT e - e

X-+ +00
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Integrals with an Infinlte range are discussed In
chapter 4, those with a finlte range In chapter 5.
Important routlines and algorlthms are collected In chapter

6.

An appllcation of the MACSYMA system to an asymptotlic
analysis problem Is lllustrated In chapter 7. The purpose
Is to show how such a symbol manipulatlion system can be used
to solve non-triviai problems that may occur frequently In
applied mathematlics. This application demon'strates the
usefulness of the many facllities provided hy MACSYMA and
WANDERER,

A timing experiment has been conducted to check the
performance of WANDERER and DELIMITER, The results are
Included In appendix C. Because of the 1imlted character
set of most computer consoles, some speclal symbols are
needed to denote the frequently used mathematical functions,
constants and operators. For example, * and ** are used to
denote multipllcation and exponentlation respectively.

Appendix D contains a list of notatlons we shall use.

From Richardson's undecldability results [22), we have

shown that the convergence of a class of Integrals of



T e 4 0

o.ghvs. 7 HEAT Y G RTEIT E R . Sy

13

elementary functlions Is recursively undecldable. The proof

Is In appendix E,

The remainder of thls chapter serves as an Introductlion
to algebralc manipulation systems, |f the reader is
familiar with such systems he may proceed directly to the

next chapter.

An algebralc manipulatlon system s a collectlon of
computer programs desligned to facilitate the solution of
mathematlcal problems. Such a system has the abllity to
handle both symbols and numbers. This capabllity to manl-
pulate symbols mathematically Is what differentiates these
systems from the varlous computer subroutines which

speclallze In numerlical analysls,

In using symbol manipulatlon systems such as these, one
usually Interacts with It In a time=-sharing environment via
a typewrlter-l1lke console. HNormally, data and commands are
typed In by the user. Results from the computer are sent
back to the console for display. This arrangement attempts
to provlde a user the ease and flexibllity of the pencil and
paper he Is so accustomed to, while permitting the computer
to assist him in his algebra and formal deduction from one

step to the next, |If the manipulations Involved are non-
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trivial, so much the better. Some of the manlpulatlons such
a system can provide are: GCD calculatlons, factorling, ra-
tional functlon arlthmetlc, matrlx manipulation, solution of
algebralc equations, solutlon of systems of 1lnear equa-

tlons, indefinlite Integratlion of elementary functlons.

Let us take a closer look at MACSYMA as a
representative model of other systems. MACSYMA recelves
Inputs In the form of llnear character strings typed by the
user, FORTRAN-1lke notation Is used for the input. For

example,

The user types: La(X*n2+X+1)/YQ

The Q@ sign signifles the end of a command string. As a

result of this command, a two dimenslional dlsplay s

returned,
2,
: L (X + X + 1)
MACSYMA types: - e o w e www- -
Y

Inside MACSYMA, expressions are represented by llist
structures In a prefix notatlion (common to many systems),
For example the expresslion above would be represented
Internally by somethlng 1ike

(TIMES & (PLUS 1 X (EXPT X 2)) (EXPT Y =-1))
Inside MACSYMA,
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Other forms of Internal representatlons are possible.
The cholce of Internal representatlion Is an Important aspect
of the design of a system, Of course more than one form of
Iinternal representatlion can be employed In a single
algebralc manipulation system., In fact MACSYMA has a
speclal internal representation for rational functions which
Is used to galn efflclency during certaln polynomial and ra-

tlonal functlon manipulatlions.

One simple application of MACSYMA is factoring the

polynomial

3 2

P(X) =X + 4 X =11 X - 30
A user who wants to factor P(X) using MACSYMA types:
FACTOR(X*#3+liwX+22-114X-33)Q@

This Input command causes the factorlzatlion of P(X) over the
integers. The output Is

(X + 2) (X =3) (X + 5)

While this problem may seem easy, factorizatlion of
polynomials of higher degree can be very difficult to do by
hand. Indeed, algebralc manipulation systems can be most
helpful when one wants to manipulate complicated functions
and expressions., MACSYMA can carry out accurately with

great speed: summatlion over indlces, expansion of products
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and powers, calculation of large determlnants, lnversion of
large matrlces.
Applications In pure mathematics Include computatlions

In: number theory, group theory, Lle algebras and set

theory.

Research In the fleld of symbol and algebralc manlpula-
tlon has led to many new results, The fast GCD algorithm
(4] and the flnite fleld arithmetic polynomlial factoring
algorlithm [2] are two examples, Contlnued work In thils area
wlill, hopefully, result In computer systems whlch are

increasingly valuable to englneers and mathematiclans,
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CHAPTER 11
DELIMITER

0. Introductlon

The 1imit concept Is fundamental to mathematical analy-
sls. Baslc concepts such as the rules of differentlation
are derived from 1Imlting processes, More complex problems
such as Improper Integratlon, convergence of serles, serles
expanslion of functions and contour Integrals, to name a few,
also requlre the computation of limits In thelr solution

process,

Therefore, one can expect that automatlic computation of
1imits would greatly Increase the capablllity of a symbollc
mathematics system In doing analytical mathematlcs, The
programs described below provide such a capablllty In the

MACSYMA system [16].

Automating the computation of 1imlts has been studled
previously to some extent, Fenichel [11] dlscussed certaln
decidablillity problems of limits and provided, In the FAMOUS

system, some basic routlnes for computling two=-sided limits.
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In his thesls, lturriaga [13] worked on both one and two-
sided 1imits. 1In additlon to L'Hosplital rule, he applied
asymptotlic analysis to quotlents of polynomlals essentlally
by replacing those polynomlals by thelr leading terms. Thlis
can be done when the variable In the 1imlt approaches Infli=-
nity so that the leading term Is asymptotlically equlvalent
to the orlginal polynomial, Moreover, he dliscussed 1imits

of sequences.

DELIMITER Is more powerful than elther Fenlchel's or
lturriaga's limit program. L'Hospital's rule Is a baslc
method used for Indeterminate forms. In addition, thls pro-
gram employs a fast routine for limits of ratlonal func-
tlons. It has an efflclent algorithm for a class of expres=~
slons called RP~expressions which Involve radlcals of poly-
nomials, It also appllies the method of reducing compllcated
expresslons by replacing subexpresslions with asymptotlically
equlvalent expressions. The method of comparing orders of
Infinlty of expresslons and several other heuristlic methods
are used, In some cases, power serles expansions are employ-

ed to obtaln the limits,

This chapter Is based on a paper by the author [29]
presented at The Second Symposlum on Symbolic and Algebralc

Manipulatlion, Los Angeles, March, 1971,

B o e e PR R
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1. Definlitions and Symbols

DELIMITER Is desligned for finding the 1imit of a
single=-valued function f(X) of a real or complex varlable X
as X approaches some limit point, One-sided 1imlts can be
computed If X and f(X) are real-valued. The classes of
functions allowed by thlis program Include rational, radlecal,
logarithmlc and exponentlal functions, and also the trigono-
metric functlons SIN, COS and TAN, and the hyperbollc
functlions SINH, COSH and TANH, The general form of a user

command Is
LIMIT(expression,vartable,value,direction)@

with the fourth argument optlonal. PLUS as a fourth argu-
ment Indicates the one-sided 1imit from above, MIMUS from
helow. The absence of the fourth argument indicates no
restrictlon on the directlon of approach. One-sided limits
are not allowed for complex-valued functions or limit

polints,

If f(X) Is not continuous at X=a, the two-sided limit,
LIMIT(F(X),X,a), does not exlst. In such a case the symbol

UND Is returned by the program as an answer.,
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The following are some symbols used by this program.

ZERO+ 0+ ZERO=- 0-

UND undefined

IND Indefinite but bounded

INFINITY the point at Infinity In the complex plane

INF and MINF whll continue to Indicate respectively
positive and negatlve Infinlty. Here are some examples of

how these symbols are used Internally.

LIMIT(COS(X),X,%P1) = =1+ ZERO+

LIMITCSINCX) , X, INF) = [IND

LIMITC1/SINCX), X, INF) = UND

LIMITC1/(X=%1),X,%1) = INFINITY
The directlon from which a 1imit point Is approached Is
Important. By use of ZERO+ and ZERO-, simplificatlon rules
such as
1/(-1 + ZERO+ + 1) -—» |NF

and
1/(=1 + ZERO- + 1) —>» MINF

are possible In DELIMITER,
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2. Baslc Rules and Outllne of Algorlithm

Some of the rules used In thls program are the so-call-
ed "trivial" ones for 1imits of contlinuous functlons,
namely, the limit of a sum Is the sum of the 1imits, etc.
There Is a limlt routine for each of the functions SIN, COS,

TAN, SINH, COSH, TANH and LOG (base %E), For other func-

tlons the rule

LIMITCF(g(X)),X,L) = LIMITCFCY),Y,LIMIT(g(X),X,L))

Is used,
For one-slided 1Imlits where the varlable approaches a
point other than 0, a change of varlable Is made to bring

the polnt to the origln., For example, the 1imlit

LIMIT(F(X),X,a,PLUS)
Is converted to

LIMIT(f(a+Y),Y,ZERO+)

There Is, of course, a complete set of rules governing
simpliificatlion of the new symbols. They are all of the fol-

lowing nature
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IND/INF = 0 =1/INF = ZERO=-
- ZERQO+ = ZERO=- - INF = MINF
1/INFINITY = 0 =1/INFINITY = 0
MINF**2 = INF (ZERO+)+ZERO=- = 0

LOG(C+ZERO+) = LOG(C) + ZERO+
lle will now briefly outllne the algorlithm, and then go
Into the detalls of some of the component routlnes, Let us

conslider
LIMIT (E(X),X,L)

where L Is any number or symbol Including INFINITY, INF,
ZERO+ and ZERO-, If L = MINF, [t Is set to INF by a change
of varlable Y==X, Upon receiving the arguments, namely
E(X), X and L, DELIMITER checks whether L=INFIMNITY or E(X)
involves %!. |If elther or both Is true then a global
Indicator CPLX Is set to the value TRUE which Indicates that
the given 1imit Is to be evaluated over the fleld of complex
numbers, Otherwise CPLY Is set to the value FALSE which
signifies a 1Imit problem over the reals. |f CPLX=TRUE, all
use of INF and MINF are replaced by INFINITY and the notlon
of approaching a limit point from one side is no ]ongér

vallid.
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The followlng diagram Is a simplified overview of

DELIMITER.
DELIMITER
SIMPLE LIM|T———————>RETURN ANSWER
RATIOMAL FUNCTION=——>RETURN ANSWER
RP-FORMS =———=——=3RETURN ANSWER
BASIC LIMIT L'HOSPITAL'S SERIES ORDER
RULES RULE EXPANS ION OF INFINITY

Ele. 1

As indicated In fig. 1, DELIMITER has four stages.
Results of simple 1Imit problems are Immediately returned by
the flirst stage. Simple 1imits Include two cases: 1) E Is
Independent of X, 2) E(X) = X, |In the second stage, a fast
algorithm Is used to obtain 1Imits of rational functions.
The third stage employs an algorithm for limits of RP-forms.
If the flirst three stage:s do not produce an answer, the
glven 1imit problem enters the fourth stage which contains a

varlety of methods Including the four principal ones shown
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In the flgure, In thls stage the program wlll flrst try to
extract the numerator N(X) and the denominator D(X) of E(X)
so that E(X) = N(X)/D(X). |If both N(X) and D(X) are RP=-
forms the 1Imlit Is computed by an algorlthm speclally for
these forms (see section 5 for definition and algorithm).

Otherwlise the rule

11m E(X) = Yim MN(X) /1Im D(X)

Is applled. |[f both 1im N(X) and 1im D(X) are 0 or Inflinite
we have an Indeterminate form. In thls case L'Hospltal's
rule will be applled to E(X) with one exceptlion: when L Is
INF and 1Im N(X) and 1Im D(X) are both Inflnite and both
N(X) and D(X) contaln exponential functions of X which tend
to INF as X approaches L, In this case the method of com=
paring orders of Infinity, to be described shortly, s ap=
plied, |f DELIMITER can not find an answer iIndlcation of

fallure will be returned.

Sometimes the program needs to know the value range of
a symbollc parameter In order to compute the limit. In such

cases, the program wlll query the user at his console,

It Is Important to note that these programs do not
store any table of 1imlts Thus every limit obtalned Is a

result of computation.
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Other methods avallable Include : change of varlable,
dlscontlnulty tests and analysis of the behavior of a func-
tion near a finite point. A flowchart In appendix A pre-

sents the flow of control In a more complete manner,
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3. The Limlt of a Ratlonal Function

Let P(X) and Q(X) be polynomials In X and posslibly

other varlables and

EC(X) =P(X)/Q(X),

n =degree(P)-degree(Q),

c =leadlng coefficient(P)/leading coefflclient(q),

Consider LIMIT(E(X),X,L) where E(X) or X may be complex
valued., The followling algorithm Is used to compute the

1imit,

(1) If L Is finite then,

If P(X) = Q(X) = 0 then set P and Q accordling to
P(X)= P(X) /(X-L), Q(X)= Q(X) /(x=L),

by long diviston, then go to step (1);

if Q(L) Is not 0 then the answer Is E(L);

otherwise, the answer Is INFINITY [f CPLX=TRUE

and, If CPLX Is FALSE, the result Is INF or MINF

depending on the direction from which Q(X) ap-

proaches 0 as X approaches L, and of course the

sign of P(L),

(2) If L Is Infinlte,



SRS A SR AR R LI

Y AR Y AP AR T TR RN

27

If n=0, the answer Is c;

If n < 0, then If CLPX = TRUE, answer is 0, but If
CPLX Is FALSE then the answer Is ZERO+ provided
the sign of c*L#**n Is + and ZERO- In case the sign
of c*lL*#n s =;

otherwise, (n > 0) the answer Is INFINITY If
CPLX=TRUE, and the answer Is INF or MINF,
depending on the slgn of c*L**n, |f CPLX=FALSE,
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L, The Limit of a Quotient of RP-forms

An RP-form Is deflned as an expression obtainable by
combining polynomlals and positive rational number powers of
polynomials using the operators ¢, -, *, Here are some
examples of RP-forms,

3 1/3
f(X) =SQRT(4 X + 5 X) + (X + 1) + X + C

2/3
g(X) = A X SQRT(X+1) + X

Note that the definition of RP-forms does not allow

nested radlcals of X. For Instance the followlng Is not an

RP=-form,

2/3
(X + SQRT(X))
Now consider the 1imit problem,

LIMITCE(X), X, L), E(X) =N(X)/D(X)

where N(X) and D(X)#0 are RP-forms and at least one of them

Ils lrrational. Note that N(X) or D(X) can be a constant.

Let us deflne the operators EXPO and COEF by
EXPO(N(X))

=hlghest exponent of X in N(X),
COEF(E,N(X))

=the coefflclient of E In N(X),



29

For example,

EXPO(g(X)) =7/6,
COEF(X**(3/2),f(X)) =2

EXPO Is obtalned by a simple special purpose routine; COEF
Is computed by using the RATCOEF routine In the ratlonal

functlon package of MACSYMA (16].
Now the 1Imlit Is computed by the following algorithm,
(1) If L =MINF, X Is replaced by =X, L by INF,
(2) If L =INF, the followlng asymptotlc analysis Is
made.
1) compute a =EXPO(N(X)), b=EXPO(D(X)).

1) Let N1(X) and D1(X) be N(X) and D(X) with
polynomials under radlcals replaced by thelr

leading terms, respectlively, Compute

a'=EXPO(N1), b'=EXPO(D1),

111) If elther a#a' or b#b', then It Is usually

sufficlent to replace each radical In E(X) by
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the flrst few terms In the serles expanslion of
the radical about X=INF, obtalning a rational

functlon R(X)., The answer Is

LIMIT(R(X) ,X,INF),
Otherwlse, compute
c=COEF (X**3,N1)/COEF(X»*b,N2), If bda, return
the answer c+*ZERO+ {f a>h, return the answer

c*INF, otherwlise, return the answer c.

If L = INFINITY then

Carry out steps (2-1) and (2-11), |If aga', b#b'
or a=b, the answer Is UND, Otherwlse, If a > b
the answer Is INFINITY, while If a < b the

answer Is 0,

If L Is finlte, compute N(L) and D(L), then

If N(L)=D(L)=0, apply L'Hospital's rule. Slnce
L'Hospital's rule can not succeed In case each
term in N(X) and D(X) has a branch point at X=lL,
that Is, N(X) and D(X) have a common factor (X=-
L)**(a/b) with a and b positive Integers. In

this case the factor Is removed from N(X) and
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D(X) before using L'Hospltal's Rule.

If N(L)=0 and D(L)#0,
the answer Is 0 If CPLX=TRUE, otherwise the be-
havior of D(L)*N(X) at L Is examined to declide

whether 0, ZERO+ or ZERO- Is the answer,

If D(L)=0 and M(L)#0,

the answer Is INFINITY If CPLX =TRUE, otherwlise
the behavior of N(L)*D(X) at L is examined to
declde whether INF or MINF Is the answer.

Otherwlise, the answer Is E(L).

For large X the serles expanslon

2 1
SQRT(X + 1) = SQRT(== + 1) X
2
X
1 1
a X (1 ¥ S =l SRl = * . .)
2 b
2 X 8 X
1 1
A (I A B R O
2 X 3
8 X

Is convergent. It Is clear that this expanslon method can
be appllied to an arbltrary polynomial to a positive frac-
tional power, This fact establishes the validity of step

(2"'")0
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5. Indeterminate Forms and L'Hospital's Rule

L'Hospital's rule Is applied to an Indeterminate form
E(X) of the form 0/0 or INFIMITY/IMFINITY. It first
calculates N'(X) and D'(X), then,

If D'(X)=0, L'Hospital's rule falls, otherwise, simplify
N'(X)/D'(X) and evaluate

LIMIT (N'(X)/D'(X),X,L).

The expression N'(X)/D'(X) can be more complex than
E(X) and successive appllication of thls rule may lead
nowhere, Therefore the number of times thls rule Is called
successively Is counted and the relative complexity of
N'(X)/D'(X) to E(X) s tested to decide whether to contlinue
thls approach. Our criterlon of complexity Is based on the
number of distinct nonrational components of an expression,
If thls number grows for three consecutive times, the ap-

plication of L'Hosplital's rule Is halted.

The Indeterminate form O*INFINITY Is transformed to
either 0/(1/INFINITY) or INFINITY/(1/0), depending on which
Is simpler, before applying L'Hospital's rule, Other In-
determinate forms such as 1**INFINITY, INF**0 and O+**0 are

handled by the logarithmic reduction :
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F(X)waG(X) = %ZE**(G(X)*LOG(F(X))),

Theoretlically the indeterminate form (INF - INF) can

always be reduced to 0/0 by rewriting It as

(1 (1/INF = 1/INF)/(1/INF*INF),

but thls method often makes the expression much more
complicated, It Is useful, though, for expresslions

Involving trligonometric functlions as can be seen In

1 1
LIMIT(= = «-ma-- .X,0,PLUS) = 0,
X SIN(X)

DELIMITER transforms the glven expression In thls example to

SIN(X)=X

X SIN(X),
then applies L'Hospltal's Rule to obtaln the answer 0.
Therefore, the method (1) Is used for expressions involving
trigonometric functions. Other types of expressions can he
dealt with more readlily by comparing degrees of Infinity of

the subexpressions or by serles expanslon.
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6. On the Sign of Infinity

If a function f(X) Is discontinuous at X=a, another
function g(f(X)) Is not necessarlly dlscontlinuous at a.
For example

1/X A
LIMITCCA X + 1) s X,0)= 3E

Therefore, dlscontlnulty may be encountered tn the course
of computing a limlit of a continuous function., Consider

1/E(X) with E(a)=0 and the 1imlt problem

LIMIT(1/E(X),X,a),

If CPLX = TRUE, the answer Is INFINITY, Otherwlse, a rou-
tine named BEHAVIOR Is used to analyze the hehavlor of E(X)
near X=a., |If E(X) approaches 0 from above or below as X ap-
proaches a, then the answer Is INF or MINF, respectively.

Otherwise, the answer lIs INFINITY,

The BEHAVIOR routlne uses differentiation to analyze
the behavlor of a function near a point by Investigating Its
slope or concavity at the polnt. Thls routine ts also used
by other programs., One of these ls the program which com-
putes 1imits of the trigonometric function tangent. In case

the argument of TAN approaches %P1/2, say, It is Important
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to know the dlrection of approach.

7. Heurlstics for Comparing Orders of Infinlty

Let f(X) and g(X) be two real-valued functions which
become posltively Infinite as X approaches INF, We deflne

the symbol >> by

Definftion : g(X) > f(X) If

LIMIT(F(X)/g(X),X,INF) =0,

Using this symbol we can make the following brlef
table.
coe ZE®RZERRXD>ZE*XDD>X**nd>>log(X)>>log(log(X)) ...

Many 1imit problems with the variable approaching INF
can be solved very efficlently by using thls concept. Some
of these problems can be difflicult to solve by other me-
thods., For example, L'Hosplital rule falls to compute the

limit

LIMITC(ZE+L) waXwew2/%ExxX X, INF),

while the answer Is obviously INF, \le Incorporate this con-
cept by a routine, STRENGTH, It can classify the order of

Infinlty of the argument according to the followlng rules,
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STREMGTH(c)=(c)
STRENGTH(LOG(R(X)))= LOG
STREMGTH(A*+B(X))= EXP
STRENGTH(P(X)**(m/n))= mwxd/n

where ¢ Is Independent of X, m and n are positive Integers,
d the degree of the polynomial P(X). Note the STRENGTH of a
constant Is denoted by that constant Inside parenthesis and
the STRENGTH of a polynomlal Is a constant. B(X) and R(X)
can be any functions In X, except those which can cause the
relevant argument of STRENGTH to be simplified Into one of
the other three cases. \le can assume A to be %E for If A Is
any other expression It Is always possible to change the
base to %E. STRENGTH of 3 sum Is the maximum of the

strengths of the terms In the sunm,

There is a basic comparlson routine whlich knows the re-

lations between the strengths of functions,

EXP>>a>>L0G>>(b) and c>>d If c>d

where a, b, ¢, and d are constants,

Let N(X) and D(X) be two products satisfying

LIMIT(N(X), X, INF)=INF
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and

LIMIT(D(X),X,INF)=INF

and no factor In N(X) or D(X) Is a sum or a trlgonometric
function, To compare the relatlve order of Infinity of
N(X) and D(X), the following method Is used. The answer 1
Iindicates N(X)>>D(X), =1 Indicates D(X)>>N(X), 0 no

declislon,

Algorithm COMPARE(N(X),D(X)):

1) Remove from N(X) and D(X) any commop factors.

2) Apply the STRENGTH routline to each factor of N{(X)

and obtaln the maxlimum strength SN,

3) Do the same to D(X) and obtaln Its maximum strength

SD.

4) If SN>>SD the answer Is 1, If SDC{SN the answer ls =
15

Otherwlse,

1) Let
N1(X)=product of all factors with strength SN In
N(X).

D1(X)=product of all factors with strength SD In
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D(X).

iIt) If SN=SD=some constant, set

SN=STRENGTH(N1) and SD=STREMGTH(D1).

If SN>>SD, the answer is 1, If SNCKSD the answer Is
-1, If both N1(X) and D1(X) are polynomials In X,
the answer Is the leading coefficlent of the
polynomial N1(X) - D1(X), Otherwise If che varlable
INDICATOR has the value 1, thls means each of N(X)
and D(X) Is an exponent of an exponent of an expo-
nentlal expression and they come as a result of
recursive calls to COMPARE, For example N(X) may
come from %E+**3E#*N(X)., In thls case, the aigorithm
goes as follows. Flrst INDICATOR Is set to 0 then
E=LIMIT(N(X)-D(X),X,INF) Is computed and the answer
Is 1 If E>0, =1 If E<CO, 0 otherwise,

If SN=SD=EXP,

The exponents A(X) and B(X) of N1(X) and D1(X)
are computed, That Is N1(X) =%E**A(X) and D1(X)
=%E*+B(X), If both A(X) and B(X) are polynomials In
X, the answer s the leading coefflclient of the
polynomial A(X) = B(X) If this polynomial Is not a

constant, 0 If It Is. If Aor B Is a sum, A Is set
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to LIMITC(A(X)=-B(X),X,INF) and the answer Is 1 If
A=INF, -1 If A=MINF, 0 otherwise., In case nelther A
nor B Is a sum, If both A and B are of strength EXP,
set the varlable INDICATOR to 1. The answer Is ob-
talned by evaluating COMPARE(A1(X),B1(X)), where
A(X) = %E#»Al(x) and B(x) = %E=»Bl(X).

If SN=SD=L0G,

If N1(X) Is LOG(f(X)) and D1(X) 1s LOG(g(X)) then
set SMN to STRENGTH(f(X)), SD to STRENGTH(g(X)). MNow
the answer Is 0 If both SN and SD are constants, 1

If SN>>SD, -1 If SNK{SD, The answer Is 0 otherwlse,

Wle shall next discuss the Indetermlinate form (INF=INF)
and see how COMPARE can be used In such situatlions. Let
?
FCX)= ), £ (X)
131
where
LIMIT(fi(X),X,INF) =|NF or MINF
fOI‘ l’llz'llan
LIMITCF(X),X,INF) becomes Indeterminate when there exists |
and j such that
LlMIT(fi(X),X,INF) = |NF

and
LIMIT(ﬁi(X),X,INF) = MINF
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The method of orders of Infinlty can sometimes be ap-

pllied to thls problem. The algorlthm used Is as follows,

The program forms two ilsts L1 and L2 of the f;'s which
go to INF and MINF respectively. Then from each of L1 and
L2 a member of maxlmum order of Infinlty can be obtalned.
Let these be r(X) in L1 and s(X) In L2, Now If r(X) >>s(X)
the answer Is INF, If s(X)>>r(X) the answer is MINF, Other=-
wise, the problem can be very difficult., However the pro-

gram trles to evaluate
INF*LIMITCF(X)/s(X),X,INF),
which sometimes producés an answer.

Now we will follow the major steps of the solution of a
problem In a more detalled manner, Let
2
X*SQRT(X + 1)
A(X) = %E
‘ 2
X
B(X) = %E
Consider the problem LIMIT(A(X)-B(X),X,INF), Flrst the
Indeterminate form (INF-INF) [s encountered through the fol-

lowlng steps.,

LIMIT(A(X)-B(X),X,INF)
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LIMITCACX) , X, INF)=LIMIT(B(X) ,X, INF)

LIMITCACX) , X, INF) =%Ex*INF =INF

LIMIT(B(X),X,INF) =%E**INF =INF

INF=INF
Then COMPARE s applled to A(X) and B(X), only to
arrlve at no concluslon 2bout the relative order of Infinity

of A(X) and B(X),

COMPARE (A(X),B(X))

STRENGTH(A(X) )=EXP

SiRENGTH(B(X) )=EXP

2 2
COMPARE(X*SQRT(X + 1),X )

2
STRENGTH(X*SQRT(X + 1)) = 2

2
STRENGTH(X ) = 2

Now the problem Is converted to the following form and the

answer Is INF,

INF*(LIMITCACX)/B(X),X,INF)~-1)

2 2
LIMIT(X*SQRT(X + 1) - X ,X,INF) = 1/2



b2

INF2(%E**(1/2)-1)

INF

8. Examples

A number of 1Imlt problems solved by DELIMITER are
Included In this sectlon., They are presented In the form of
actual Inputs and outputs of the MACSYMA system., Lines
labelled (C1) are input or command 1ines and (D!) output

1ines or answers,

(C1) LIMIT(X*=LOG(1/X), X, INF)@

(D1) 0
(C2) (COS(X)=1)/( %ZE==X#»»2 -1)@
CoS(Xx) -1
(02)  ee;eeeaa-.
2
X
2 =1
1
2
(CL) (1+A=X)»=(1/X)@
1/X
(D4) (A X + 1)
(C5) LIMIT(DL,X,0)@
A
(DS) %E

(C6) X*w2x(hxXwnlh+5)xn(1/2)=-24X*24(
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(CE) X#w2n(LaXwali+5)wn(1/2)=24X*#LQ

2 4 L
(D6) X SQRT(H X + 5) = 2 X
(C7) LIMIT(D6,X,INF)Q
5
(D7) -
L
(C8) 1/X-1/SIN(X)@
1 1
(Ds) - o womeoae
X SIN(X)
(C9) LIMIT(DS8,X,0,PLUS)@
(D9) 0
(C10) ZEw*(Xw(X**2+1)*x(1/2))=%ExnX*%2Q
2 2
X SQRT(X + 1) X
(D10) %E - %E
(C1l1) LIMIT(D1,X,INF)@
(D11) INF
(C12) (ZEx»X+X*LOG(X))/(%Exn(X*n3+1)*n(1/2)+LOG(X*»L1+X+1))Q
X
%€ + X LOG(X)
(012) = =emeseseccceccceccccecceccea-a--
3
4 SQRT(X + 1)
LOG(X + X + 1) + %E
(C13) LIMIT(DL,X,INF)@
(D13) 0
(Clih) 1/(X*x3-G¥X**2+112X-6)Q



(D14)

(C15)

(D15)

(C16)

(D16)

(C17)

(D17)

(C18)

(D18)

(C19)

(019)

X =06X +11X -6
LIMIT(D1L,X,2,MINUS)@
INF
(X*SQRT(X+5)+1)/(SQRT(L#*X**3+1)+X)@
SO C F

SQRT(4 X + 1) + X

LIMIT(D16,X, INF)@
1

2
TAN(X)/LOG(COS(X))@

TAN(X)

LOG(COS(X))

LIMIT(D18,X,%P1/2,MINUS)@

MINF

by
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(C20) (Z-%1#%P1/2)%Z#(Z~-2%%P1%%1)/(SINH(Z)-%1)@

%P1 %1
2(Z -2 %P1 %1) (Z = w=wee=- )

(D20) = es=emecceeccececceccccecccee--
SINH(Z) - %I
(C21) LIM(DIFF(D20,2),Z,%!*%P1/2)@

(D21) - 2 %Pl

e i s i e Pt e i
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CHAPTER 111
t!ANDERER=AN INTRODUCTION AND OUTLINE

1., Introductlon

The prescnt chapter and the three subsequent ones are
devoted to a complete description of WANDERER, a heurlstic

program for evaluating deflnite Integrals over a real range.

WANDERER cannot solve all definlte Integration
problems, but It can certainly obtaln solutlons to a large
number of integrals. Many examples presented are actual
problems taken out of graduate text hooks [1, 5)]. The baslec
approach, in WANDERER, for evaluatling an integral Is by com-
plex contour Integratlion and restdue techniques. This Is a
very general method particularly useful In evaluation of
Infinlte Integrals. Some other methods avallable to
WANDERER are: substlitution, Integration by parts, diffe-
rentiation with respect to a parameter, pattern recognltion
and table look=-up, finite-to-inflnlite conversion, Introduc-
tion of a parameter and partition and transformation of the

range of Integratlon.
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The user's command In MACSYMA for definite Integratlon

Is the key word DEFINT, DEFINT takes four arguments as In
DEFINT(exp, var, a, b)

where exp Is the integrand, var the varlable of Integration,
a and b the lower and upper limits of Integration. There Is
no restrictlon as to what types of Integrands are allowed as
Input, as long as they remain elementary functlions.

However, WANDERER requlires the Integrand to be finite In the

Integration range except possibly at the end polnts a and b.

A few speclal symbols are used In WANDERER for some
branches of the logarithm function, They are listed In

appendix D,

2. Outllne of Approach

Before going Into the detalls of methods and algorithms
for evaluatiom of the many types of definite Integrals which
will be dlscussed In the next three chapters, a quick look
at the whole picture with emphaslis on the flow of control Is

In order.

WANDERER Is a heurlstlc program vhich computes definite

Integrals by trying to apply one or more of the methods or
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algorithms built Into tt., The clues as to which of the
methods to apply are obtalned by examining the range of

Integration and the form of the Integrand,

Fig. 1 on the next page serves as a simple outline of

the flow of control in WANDERER,
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HANDERER
S=success
F=fallure
simple Integrals—sreturn answer
F
i
normalization
of Integrand and
Integratlion range
methods for me;hods for
infinite Integrals, finite Integrals,
applied according to Including proper and
range of integratlon Improper integrals

more general methods

return answer transformatlon,-————-return answer
change of varlable

F

divergence test

Fig, 1

As Indicated In flg., 1. WANDERER can bhe said to have
five stages. In the first stage simple Integrals are com-
puted which Include cases such as a constant Integrand, an

integral with equal upper and lower limlits of Integratlion

49
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and, If the varliable of Integratlion Is X, Integral with
integrands which are polynomlials In X or %E##*X, The
normal zation stage wlill make sure, by transformation If
necessary, that (1) the lower limit Is less than the upper
1Imit, and (2) constant factors, If any, In the Integrand
are removed to he multiplied Into the final answer of the

integral,

The thlrd stage comprises most of the methods that wiil
be described in chapters 4 and 5 and Is the work-horse of
the whole program. Many methods In thils stage are grouped
accordlng‘to the Integration range In which they are
approprlate., Finlte Integrals of ratlonal functions are
transformed Into infinlte Integrals which will be evaluated,
For other finlte Integrals, an effort Is flrst madelto
determline whether they are Improper Integrals, The absolute
divergence of a finlte Improper Integral Is tested hefore
any attempt at evaluation. |If the thlrd stage falls to
obtaln any results, the given problem enters the fourth
stage which contains more general methods approprlate to
varlous types of Integrands. A transformation or change of
varlable is often done In thls stage. \lhen VANDERER runs
out of methods, the convergence of the given Integral will

be challenged, In case It Is divergent, WANDERER will so
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Indicate in the output, Otherwise, Indlcation of failure
will be returned. It may be argued that tests for
convergence should be conducted before evaluation, but this
ls not necessary because WANDERER Is so deslgned that
whenever It produces an answer, the given Integral Is
convergent. That Is to say each indivlidual method has its

own convergence and divergence conditlons bullt In,

The limit program described In the previous chapter Is
used whenever a limit computation Is needed in WANDERER, It
may often be required In changing the variable of Integra-
tion, computing resldues and testing for convergence or

divergence.

3. Outline of the Computation of Resldues

One of the most powerful methods In evaluation of
deflnite Integrals Is the use of contour Integration through
residue calculations, The Importance of contour Integration
and the resldue theory In the sequel war}ants a brlef

summary of relevant facts from complex analysis [5]).

(1) The Cauchy Integral Theorem: Let D be a simply
connected domaln and let f(Z) be analytic In D. Let C be a

closed contour In ['. Then
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jf(Z) dZ = 0
Y

A simply connected domaln Is Intultively an open set of

points with no holes or cuts In Its Interlor. For example

the disk |Z| ¢ 0 Is slmply connected while the annulus 1 ¢

1Z| € 2 Is not., The Cauchy integral theorem Is one of the

most Important tools In complex analysis, It Is by use of

thls theorem that path of integratlon can be deformed.
precisely,

More
If C1 and C2 are two dlfferent curves In D lead-

Ing from the same starting polnt v to the same end point w,

as shown In fig, 2,

v

Ele. 2
and f(Z) Is analytlc In D, then

ffm 4z = ff(Z) dz.
ot ¢2

Therefore, the contour Cl can bhe deformed into C2. The

above Is an Immedliate consequence of Cauchy's Integral

theorem which glives
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ff(Z) dz -[f(Z) dZ = 0
¢l c2

(11) Definitlon of Reslidue: Let f(Z) be analytic In the
punctured nelghborhood of a polnt p. Let Cp be a small
positively orlented clrcle with center at p. Then the

residue of f at p Is deflned as

1
--;[f(l) dZ
27

Cp

The value of this Integral Is the coefflclent of the
term
-1
(Z - p)
In the Laurent expanslon of f about the point p, so thls

coefflclent can also be regarded as the residue of f at p.

(111) The Resldue Theorem: Let C be a simple closed
positively orlented contour, Let D he a simply connected
domain contalning C and Its Interior., Let Al, A2, . . ., An
be points Inside C. Except for Isolated singularities at
Al, A2, . . ., An, let f(Z) be an analytic function in D,

Then
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n
ffm dZ = 271 ). (Resldue of f at AJ)
¢ J=1

The algorithm for resldue computatlion used In WANDERER

will be described briefly here. Detalled discusslion of thls

algorlithm can he found In sect. 6-1.

Let f(Z) be a function of a complex varlahle Z,
analytlc everywhere In a domaln D except for a number of
poles In D. Suppose F(Z) can be written In the form

f(Z) = U(Z)/V(Z)
such that U(Z) Is analytic In D, This means, that poles of
f(Z) are zeroes of V(Z). Suppose p Is a pole of order m of

f(Z), the resldue of f(Z) at p 's computed by the followlng

algorithm,
RESIDUE ALGORITHM:

If m = 1, compute as answer
Utp)/Vv'(p)
otherwlse, If V Is a polynomlal,
(1) Set V to the quotient of V(Z)/(Z = p)**m
vhich Is computed by long division,

(11) Return the result computed from

m=-1
1 (21 u(z)
(m - 1)! |dZ v(Z)

Z=p
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otherwise, (m > 1, V not a polynomlal) compute and
return as answer the limit

m-1
1 d m
Lim| =——————— e (Z - p) f£(2)
Zep| (m = 1)! \dZ

DELIMITER Is used In obtalning such a 1imit. Methods
for Infinite Integrals are discussed In the next chapter,
Those for finite Integrals are Included In chapter 5.
Important algorithms and algorlthms common to many methods

are detailed In chapter 6,
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CHAPTER 1V
SYMBOLIC COMPUTATION
OF INFINITE INTEGRALS

0. lIntroduction

The alm of thls chapter Is to give a detalled account
of the methods ermployed by WANDERER for Improper Integrals
with an Infinite range. Contour Integration and residue
computation play a very Important role in many of the
methods. The algorithm for Integrals wlth rational
Integrands, which will be discussed flrst, Is the most com=
Plete. Sections are formed according to the function types
of the Integrand and ordered roughly In Increasling com=-
plexity. Qulite a few aoxamples are Included, some of them

with references to books or Integral tables Indicated.

l. Infinlte Integral of a Ratlonal Functlion

In this sectlion methods for evaluating Infinite Inte-
grals of a rational function will be presented, The range
of Integration Is from either 0 or minus infinity to

Infinity. Other possible Infinlte ranges such as (a INF),
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(MINF a), where a Is finlte, can be converted to (0 INF) by
a change of varlable In the Integral,

First let us conslder

@
L iJ[ R(X) dX, R(X) = P(X)/Q(X)
-0

where P(X) and Q(X) are polynomlals In X over the fleld of
complex numbers,

WANDERER requlres deg(N(X))-deg(P(X)) = 2 to Insure the
convergence of the glven Integral. |If R(Z) has no real

poles, then The integral L can be computed by evaluating the

J =[ R(Z) dz
C

around a famlllar semli=circular contour In the upper complex

contour Integral

Z-plane (flg. 1), One can easily prove that L = J as T

tends to Infinity.
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Therefore

(1) L =2 %P1 31 Y Res(R) over poles of R Inside C)

The residue subroutine outlined In the previous chapter Is
used to compute the resldues needed In thls formula. |If
R(Z) has pcles on the real axis then L Is dlvergent.
However, If the real poles of R are all simple then the
Cauchy Principal Value of the Integral L exlsts, and can be
obtalned by indentlng the contour C at these singular polnts
on the real axls. For such Integrands WANDERER will compute

this princlpal value, which Is gliven by
(2) (P)L = 2 %P1 %1( ) Res(R) over poles of R Inside €)

+ %P1 %1( Res(R) over simple real poles of R),

as an answer to the Integral L., (P)L stands for the
principal value of L., Whenever the answer Is a principa!l

value, the message PRINCIPAL will be sent to the user first.

Here Is an example solved by WANDERER
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(C1l) (X*w2+AwX+B)/(X®*4+10xX*w2+9)Q

(D1) = eseecccceccae--

(D2) =  eseccccacae.
12

The expression D1 has four simple poles: X = %1, -%I,
3 %1 and -3 %1, Usling formula (1), only residues at X=%I
and X=3 %! need be computed., The residues are
at X=%l (B=-1+A %1)/(16°%1)
at X=3 3%l -(B=9+3 A %1)/(u8 %1)

These values are computed by the residue algorithm given In

the prevlous chapter.

The full algor!ithm depends on finding the poles of R,

How this Is done wlll be discussed in detall after conslider-

®
K=[R(X) dX
o

If R(Z) has no real pole which Is positlive or zero,

ing the next Integral.

this integral can be evaluated by Integrating the following

contour Integral [30]
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J =[ f(Z) dz, f(Z) = PLOG(-Z) R(Z)
¢

where PLOG denotes the principal branch of the LOG functlon,
i.e., the Imaginary part of LOG(-Z) lies between %Pl and -

%Pl. The contour C consists of clrcular arcs of radi! a, b,
and two straight 1lnes jolning their end-points as shown In

flg. 2.
Y

rr
X

Cs

(g1

One can verify that contrlibutlons from the two clrcular

arcs of C vanishes In the 1imlit, Thus,

- 0 2 %P1 31
J =f PLOG(-X) R(X) dX + f PLOG(-X $E )y R(X) dX
© (-0}

(-} [ -] rw
=‘[ PLOG(X) R(X) dX i].PLOG(X) R(X) dX = 2 %Pl %1] R(X) dX
-] -]

o

= =2 %Pl %1 K
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Hence the value of the Integral K Is glven by
(3) K = -(E: Res(f) over poles of R inside .C)

Therefore, the value of K Is =1 times the sum of
resldues of LOG(=Z)R(Z) In the complex Z=-plane cut along the

positive real! axls.

It may be of some Interest here to mention that a
theorem In {30] gives a value for the Integral K which

differs from the correct formula (3) by a sign.

Now suppose R(Z) has poles which are real and positive,
then the Integral K Is dlvergent. But Its Cauchy principal
value exlsts If every such pole Is of order 1, This value
is given by =1 tlmes the sum of residues of LOG(=Z)R(Z) In

the entire Z=-plane punctured at Z=0, as given In
(b (P)X = =( ) Res(f) over poles of R).

K diverges if R(Z) has a pole at Z=0, The following
examples were computed by WAMDERER., For ease of reference,

expression (D1) Is repeated here
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(Dl1) = eecacccccccaeas

(C3) DEFINT(D1,X,0,INF)@
2 %P1 B + 6 LOG(3) A + 6 %Pl
(D3) = esceccccccccccccccccccncccas
The answer in (D3) Is obtained by locating the four

simple poles of (Dl1) and applylng formula (3).

(CLU)L/(X*x2+X+1)Q
1

(o) ee;ececceeeccas- -

2

(X + X +1)
(C5)DEFINT(D6,X,0,INF)@
2 3Pl
3 SQRT(3)

Now let us turn to the problem of finding the poles of
R(Z). The SOLVE [16] program in MACSYMA knows how to solve
a number of types of equations, Thils routline Is used In
obtalning the locatlons and multipliclties of the zeros of
Q(x), the denominator of R(X). The SOLVE program does thls
by factorling Q(X) over the Integers and applylng formulas to

each lrreduclble factor of degree less than 5. For factors
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of higher degree only those of the form aX*#n+b will he
solved, Thls facllity can be augmented by Includlng more
speclal cases for polynomials of higher degree. |If the
Integrand Is not ratlonal, the problem of finding poles can
be much more difficult, although SOLVE can fInd some of
these also. In any event, the method of resfdues can be

successful only If all relevant poles can be located.

Let p be a root of Q(X) = 0 of multipliclity m which Is
obtalned employing SOLVE., It Is not necessarlily true that p
Is a pale of R(Z) of order m. This Is because the rational
function package [10] in MACSYMA does GCD cancellations only
over the integers while R(Z) Is a rational function over the
complex numbers, Therefore p may not be a pole of R(Z) or p
may be a pole of R(Z) of order less than m. Fortunately
WANDERER can pretend that p Is really a pole of order m and
proceed with the algorithm for computing residues which will
produce a 0, If p Is not a pole, and the correct residue, In
case p Is a pole of order less than m. More dlscussion on

the computation of restdues can be found In Sect. 6-1.

Thus, as the reader can easily verlfy, (D2) of example
(C2), In page 57, Is valld even If A=0 and B=1 (or A=0 and
B=9). As another example, correct answers were obtained In

the following Integrals even If %!, the square root of -1,
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Is treated as a simple pole of the iIntegrand,

(D6) = eeecececcccececaew

(C7) DEFINT(D6,X, MINF,INF)
on  eeee-
(C8) DEFINT(D6,X,0,INF)

21 LOG(2) + %Pl
(D) = eeecsccccccccae-

A speclal case check Is provided as an auxiliary to the

above algorithm,

P-1
K dX
N M
© (A X + B)
P/N - P/N+M=-1 3P
8/8) | ]| =emeesee- e
M -1 M

B M SIN(3PI P/N)

for M, N, P positlive Integers, M > P/N, P not divisible by N
and AB > 0.,
For the case M=1, AB<0, the following Cauchy principal

value s used.
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A 1-P/N %P %P1 P
-(- =) (--=) COT(===-- )
B AN N

This speclal case Is not necessary for the algorithm
but It Is very helpful as far as program efflclency Is

concerned, especlially for large M or N.

Somet Imes substantlal computing time can be saved by
application of differentiation techniques iIn Integration

problems, Consider the Infinlite Integral

@® dX
(5) J 2 | eeccccaccccaaa :
| 2 10

® (X + X +K)
If the algorithm for rational functlons were used stralght-
forwardly, differentlation would have to be carried out 18
times to obtain the sum of residues In case both poles lie

above the real axlis. But since

it Is only necessary to differentlate a quadratic expresslion

once to obtain the sum of residues to evaluate the integral
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2 dx
2
® X

[ + X + K
After this is obtalncd, 9 more differentiations with respect

to a parameter K are needed. It means a saving of at least

8 differentlatlons.

In fact, whenever the denominator Q(X) of the Integrand

Is of the form
v(X)*en
with v(X) a polynomlial and n 2 2, this method of diffe=-

rentlatfon may be applicable If the degree of Q(X) Is large

compared to that of the numerator P(X).
lle have Included this technique In WANDERER, Let

n = deg(P(X)),
s = deg(v(X)),
Q(X) = v(X)w*m,

Here Is a brief description of the algorlthm.

If 2 2 mes=n, this algorithm Is not applicable,

otherwise (mws=n > 2)

(1) Set r to the least Integer 2 (n+2)/s
(1) 1fmd>r

(a) compute the original Integral with m
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replaced by r and v(X) replaced by v(X) + ZP
where ZP Is a new parameter Introduced Into the
problem. Let the answer thus obtalned be
ANS(ZP).

(b) Return the followling as the answer

m=r

) ANS(ZP)

(m=-1)! ZpP=0

m-r (r-1)1 d
dzP

(i) otherwlse (m=r), the algorlthm ls not necassary

and thus will not be applled.

The parameter ZP used In this algorithm makes the
symbollc differentiatlon In step (11-b) posslble at all
times. The flnal answer Is obtalned by setting ZP to zero.
Such a parameter wll]l be used agaln later and will be

referred to as the zero parameter.,

For example,

) |
(b)) = eeeececceccea-
2 3
(X + X + 1)
(C10)DEFINT(DS,X,0,!INF)@
b %P1 1

9 SQRT(3) 2

In thls example, we have n=0, m=3 and s=2. Thus r=1



and the value of

Is computed flrst,

+ X + 1)

68
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2. Infinite Integrals Involving Algebralc lrrational Func-

tions
2.1 Evaluatlion by Resldues
Let R(X) be a rational function, Conslider
[ ]
D -J( X=*K*R(X) dX, =1¢ K ¢ 1
o

I f
LIMIT(X»»(K+1) R(X), X, 0, PLUS) = O,
LIMIT(X*w(K+1) R(X), X, INF) = 0,
and R(X) has no poles of order greater than one on the
positlve real axls, then D can be evaluated by applying

resldue theory to the contour Integral
Jf f(z) dz, f(Z) = (=Z)%*K R(Z)
e

around the contour C shown In flg. 2. The 1imit condltlons
glven above are convergence tests for D, They are computed
by DELIMITER, |In computing these Integrals, the Integratlion
program will flrst obtain two sums of reslidues S1 and S2 of

the function f(Z) by executing the followlng two steps.

If R(Z) has prles off the positive real axls, set Sl

to E:Res(f(Z)) at these poles, otherwlse set Sl to
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0.
If R(Z) has slinple positive poles, set S2 to

§:Res(f(2)) at these poles, otherwise set S2 to 0.
Now the answer to the Integral D Is given by

3P1 S1
---------------- - %P1 COT(%PI (K + 1)) S2
SINCZPI (K + 1))
For example, MACSYMA produced the following result,

(C1) 1/((1+X)eX*%(1/2))@

1
3:1 0 N T e S
SQRT(X) (X + 1)
(C2) DEFINT(%,X,0,INF)Q (3]
(D2) 5P|

2.2 Integrals Related to the Beta Functlion

From the deflnitlon of heta functlon
i
BETA(K,S) ijr Xew(K=1l) (1=-X)*»(S=1) dX,
0

where K > 0 and S > 0, One can deduce the followlng rela-

tion
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where CD > 0 and S > K > 0,

By a further change of varliable In thls formula, the

followlng very useful relatlion Is obtalned.

K =1
2 ¥ BETA(A,B)
(a) cmmmeman X B ececcacee- - r>o0
= r S A B
(CX +D) cC D r

where A = K/r > 0, and B = S=A > 0.

This rather general formula covers many Interesting
Infinite Integrals Involving algebralc Irrational functlions,
This Is bullt Into the programs by using special purpose
pattern recognltion routines (see chapter 6) to examine
whether the Integrand Is of the partlicular form (a)., A
simpliflcation routine for Beta furctlon was also needed to

put the results In a simpler and better looklng form,

K
X
X +3
(C4) DEFINT(D3,X,0,INF)@ [12]

IS THE EXPRESSION
K+ 1
POSITIVE, NEGATIVE, OR ZERO
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POSITIVEQ

IS THE EXPRESSION

PBSTTIVE, NEGATIVE, OR ZERO
POSITIVE@

X
(D4) 3 BETA(K + 1, = K)

2.3 Evaluation by Trigonometric Substitution
If R(X,Y) Is a ratlonal functlons In the two varlables
X and Y, then an integral of the form

@
u =‘/‘R(x, SQRT(X*#w2-A%»2)) dX
o

can be transformed to an Infilnlite Integral of a rational
functlion which has been discussed In Sect. 4=1., The trans-

formation below Is easy to verlfy.

Let
2 4
SART(X = A )
Y 2 ececcccccwa. -.
X + A
U becomes
2
riA(Y+1)2AY Y dy
uA R( ---------- o = ) ------------ P

J 2 2 2 2
° 1-Y 1-Y (1=-Y)
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Mow let Z = Y/(1 - Y) In the above Integral, It can be shown

that U Is equtvalent to

Although the above Is all that Is needed for the glven
Integral U, It Is sometimes more efficlent to transform U
into a finlte Integral of a rational function of the trigo-
nometric functlons. That Is, by setting COS(t) = A/X In U,

ohe may deduce that

w2 A SINCt)
(it) U=A R(=====- JA TAN(t)) (===c==- ) dt
cos(t) 2

cos (t)
doth of these methods (1) and (1fi) have been Included
In the programs. Our heuristlic rule for applying these

transformations ts as follows.

Apply (11) If It transforms the given Integrand Into
the form
COS(t)*»m SIN(t)wwen,

otherwise apply (1).

For example,
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(DS) = eeeccccccccacae-
X SQRT(X = A)

(C6)DEFINT(DS,X,0,INF)@
1
(D6) --

2
A

2.4 Differentlatlion wlith Respect to a Parameter

Ve have Included two formulas In WANDERER for Infinlte
Integrals Involving algebralc lrrational functlons, They

are

@ dX 1
----------------- 2 memmmcecmmecesceaeeea= = [J(A,B,C),
2 3/2 SQRT(C) (B/2+SQRT(AC))
® (AX + B X +C)
with A20, C> 0, and B > -SQRT(AC), and

it X dX 1
................. 3 mmemceesccccceccecee== = {(A,B,C)
2 3/2 SQRT(A) (B/2+SQRT(AC))
© (AX + B X +C)

where A > 0, C 20 and B > = SQRT(AC),

They are Included because any Integral of the form
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@ X dX
(111) | =mecccccccccccccae-
2 N+3/2
0 (AX + B X +C)

can be computed from these known results, Our tool In dolng
this is differentlatlon with respect to an appropriate

parameter, Let Z1, Z2 and 23 be three zero parameters and

N SQRT(%PI)/2
H= (=]l) =cccecacecc-. .

GAMMA(=- + N)
2

The algorithm is as follows.

Upon deciding that the Integrand Is as gliven In (111),
WANDERER has obtained the values of M, N, A, B and C, The
answer to the given Integral Is then computed using the
simple procedure:

If M=0and N = 0, return U,
IfM=1and N = 0, return V,
If 2N+2 S M, the gliven Integral Is divergent.

If N2 M, return

o
——

Hi S e aoeis = UCA,B+22,C+Z3)
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If M = N+1, return

N

d
H - V(A,B*Z2,C),
dz2

If 2(N+1) > M > N+1, then

(1) If M Is even set r = M/2, return the answer

e UCA+Z1,B,C+Z3)

\ )

H { ---------- -=  V(A+Z1,B,C+Z3)

(D7) = emceccccceca--

(X + X+ 1)

(C8) DEFINT(DZ7,X,0,INF)@

(08)  ee==e—-a-
6567561
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3. Inflnite Integrals Involving Trigonometric Functlons,
3.1 Integrals from Minus Infinlty to Infinlty

Let R(X) be a ratlonal function which has no real poles

and
LIMIT(R(X),X,INF) = 0,

The Integral

® (%1 o X)
L = %E R(X) dX, m>» 0
-

Is convergent, |ts value can be obtalined by evaluating the

contour Integral

(%1 m 2)
J =[ 3E R(Z) d2
¢

around the contour C glven In flg. 1,

Let Cr be a clrcular arc with center at Z »~ 0, radius r
and argument t, tl ¢ t < t2, Jordan's Lemma ([7] shows that

If f(Z) approaches 0 uniformly on Cr as r approaches INF,

(2! m 2)
LIMIT b4 3 f(Z) di=0, for t1 20, t2 & %PI
T+ t00 c

r

and that
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(=%l m 2)
LiMIT 2E f(Z) di=0, for tl BZPl., t2 = 2%PI1.,
¢ .

v => 400
r
Therefore L = J as r tends to Infinlty and the method
of residues can be applled, Moreover, for m < 0 one may
use the same method by using a contour similar to C In the

lower half complex Z=-plane,

For real m, n and p, let T(X) be SIN(mX), COS(nX),
2E+x+(%1 p X) or a functlon Involving sums and/or products of
these functions. In complex exponentlal form T(X) Is a sum
of constant multinles of functions of the form %E*=(%1 k X),
k real.

Therefore

oo
[T(X) R(X) dX
~00

can be Integrated using complex contour Integral. In doling
such a problem, terms In the Integrand are sorted into two
parts. One part requlires a contour Iin the upper-half Z-

plane, the other a contour in the lower-half,

Before dlscussion of additional methods, let us see a

few examples computed uslng methods dlscussed so far.
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CoOS(X)
(o1  emesa-
2
X +1
(C2) DEFINT(D1,X,M!INF,INF)Q [12]
sp|
(D2) -
$E
(C3) X*SIN(X)/(X**2+1)Q
X SIN(X)
(3  emeesea.
2
X +1
(C4) DEFINT(D3,X,MINF,INF)Q (12)
Spl
(D4) ==
SE
(C5)X*COS(X)/(X*»2+1)Q
X COS(X)
()  emeceeee
2
X +1
(C6) DEFINT(DS,X,MINF,INF)@
(D6) 0
(C7) X#*COS(X)/(X*22+X+1)@
X COS(X)
(7  ee=eeceeca-
2
X + X+ 1

(C8) DEFINT(D7,X,MINF,INF)@
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(08)
1 (SQRT(3) = %1)/2
(5P1/2) ((= ======= - %1) %
SART(3)
1 (- SQRT(3)- %1)/2
® (F] = sSewena ) %E
SQRT(3)

(C9) 1/(ZEww(%1=X)n(X**2+1))Q

1
(D9) = eecceccccaccaa.
X @
%E (X + 1)
(C10) DEFINT (D9,X,MINF,INF)Q@
sPl
(D10) -—-
%E
(C11) SIN(X)=*D9@
SIN(X)
(D11)  esecccecccaana.
31 X 2
3E (X + 1)
(C12) DEFINT(D11,X,MINF,INF)P
apl
(D12) -
%E
(C13) D11#(%E#x(-~-%12X))
SIN(X)
(D13) =  eeesececcceccceccees
2 %l X 2
%E (X + 1)

(C14) DEFINT(D13,X,MINF,INF)@
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%P1
(D14) -
2

3.2 Integrals from 0 to Infinlty

Let us now dlscuss some Integrals Involving trligonome=-
tric functlons over the range (0 INF), Flrst conslder the

Integrals

[+ ] n
1 =f cos(k X ) dX

Q

@ n
and 12 t]. SIN(k X ) dX

o

where k a nonzero real constant and n > 1.

Here agaln, the residue theory can be applled to
evaluate the Integrals. This time the shape of the contour
Is slightly different. The contour Is a sector of a clircle
conslsting of a portlon of a clrcular arc with center at the
orligin and two stralight lines jolning the end points to the
origin, (fig. 3) The sector angle depends on n and lIs

%P1/(2n).

Without loss of generallty, let us assume that k > 0.
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n/in

4;,.3

By Cauchy's Integral theorem,

n
(21 k 2 )
%E dZ = 0.
¢

Since contributlon from the clrcular arc vanlshes as r
approaches INF, It can be shown that

n

o
(%1 k Z)
2E dZ
o

® n
%1 %2P1/(2 n) -k r
= 3E %E dr
(-]

The Integral In the right hand slde of thls equatlion can be
expressed In terms of GAMMA functlon (see Sect. 5), Let us

assume that



Therefore, taking real and Imaginary parts of the above

relation, we have

11 = COS(%P1/2n) G

and 12 = SIN(%ZP1/2n) G.

For example

13
(D15) cos(9 X )
(C16) DEFINT(D15,X,0,INF)Q
3 3 %Pl
3 GAMMA(=) COS(====- )
7 14
(D16) L DR TR
3/7
79
(C17) SIN(OwX**(7/3))@Q
1/3
(D17) SIN(9 X )
(C18) DEFINT(D17,X,0, INF)@
3 3 %Pl
3 GAMMA(=) SIN(--=-- )
7 14
(D18) = emeee;ccececcccccoae-
3/7
7+9

Incldentally, if n=< 1, 11 and !2 do not converge.

83
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A more general Integral than |1 and 12 is
D n
J = X EXP(%I k X ) dX
o

where n > -0, R1(m) > =1, k real! and nonzero and n=-R1(m) > 1.
We shall consider the case k ¢ 0, The case k > 0 Is
entirely analogous, Let us take a sector-shaped contour In

the fourth quadrant as shown In flg, &4,

By Cauchy Integral theorem,

n
m (%21 k Z2)
Z 3%E dZ = 0
¢

which Implies that

a
m n

J = EXP(=%P!I Zl(m+1)/(2n)i/— R EXP(k R ) dR
o
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s
= EXP(=%Pl %1 (m+1)/(2n)) GAMMA(======- )
S
n(-k)
where s = (m+1l)/n.
Let us look at an example.,
(2 %1 + 3)
X
(D19) =  meecacccaccee-
3
(%1 X /7 2)
%E
(C20) DEFINT(D19,X,0,INF)R@
2 %1 + 4
GAMMA(==e=ce== )
3
(D20) =  emscccccccccccccccccce-a
(2 %1 +4) / 3
3 (%1 /7 2)
A similar result for k > 0 Is glven by
(m+1)/n
J = EXP(%P! %1 (m+1)/(2n)) GAMMA(==wccucaccx ).,
(m+l)/n
n

The followling Integrals can be obtalned readily from

the abhove relatlon,

= n m @ n m
COS(k X ) X dX and SINCk X ) X dX
[

0

For Instance,
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(C21) SIN(P*X)/(X**(1/2))Q

SIN(P X)
(p21) eeeceaas
SQRT(X)
(C22) DEFINT(D21,X,0,INF)Q (3]
SQRT(%PI)
(D22) = eemeceacececacce=s

SQRT(2) SQRT(P)

Many of the foregoing results depend on the verifica-
tlon of the fact that contributions from certaln parts of a
contour vanlish after taking a limit. \le have omitted these

proofs. A typlcal such proof Is to show

ff(Z) dZ =[ T(Z) dZ = 0,
CR ¢

The above derlvatlon has relied on thls fact. The proof Is

in appendlx B,

Another Interesting Integral Is
@ K -N
u =-/; SIN (X) X dX
where N and K are positive integers, K N > 2 and (K + N)
even, The Integral U can be evaluated by use of the

recurrence relatlon
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@® -s P (r=1) [® =2 -(s-2)
SIN (X) X dX 2 =erceecce=- SIN (x) X dX
= (s=1)(s=2) Jo

2

. @ ¢ -(s=-2)
$ emmcemwe- -— SIN (X) X dx,
(s=1)(s=2)Jo

where r > (s=1) > 1, As onhe can see, repeated application
of this relation will reduce U to a sum of Integrals of the
same form as U but with N = 1 or 2. For N=1, AUDITOR uses

the followlng formula

® %2
P -1 p-1
fsm (X) X dX =f SIN (X)) dX, p> 0 odd,
o

o

The integral on the right hand side can be evaluated easlly,
Integrals of thls type are consldered In Sect. 5-2.2. For

N=2, we have

q =2 %P1 [q=3/2
SIN (X) X dX = =--
0o 2 q’l

where q s an Integer =2, For example

SIN(R X)
(1) emeemaaa



(C2) DEFINT(%,X,0,INF)Q
(D2)

(C3) SIN(QeX)ww2/(X%#2)Q

(D3)

(C4) DEFINT(%,X,0,INF)@
(D4)

2P

2
SIN (Q X)

88
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4, Infinite Integral Involving Logarlithm Functlons
4,1 Evaluatlion by Recursion and Contour Integratlion

Let R(X) be a ratlional functlion which Is even In X.

The Integral
@ N
V(N) ijr LOG (X) R(X) dX, R(X) = P(X)/Q(X),
o

with deg(Q(X))=deg(P(X)) 2 2, can be evaluated by applyling
residue theory In a recursive manner., Recall that LOG is an
abbreviatlon of PLOG when the argument !s real and positive.

Conslder the contour Integral
N
J(N) = | F(Z) dz, F(Z) = PLOG (Z) R(2Z)
¢

where C Is the Indented contour iIn fig. 5. As y approaches

19

Ce
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INF and € approaches 0, contributions from CR and Cgvanish,

Therefore

8

N %PI %I

J(N) = R(t) LOG (%E t) dt + V(N)

N
R(t) (LOG(t) + %P1 %1) dt + V(N)

\o\\‘ﬁh

@ N, In K K N-K
RCt) z sPI %1 LOG (t) dt +2 V(N)
K

K={

N
where ( ) Is a blnomlal coefflclent. Thus,

K
JON) N
V(N) = ==== = - ( ) 9P| zl V(N = K)

where J Is obtalned by resldues. Therefore the result

for N 20,

obtalned here Is

V(N) = %P1 %1( 5: Res(F) over poles of R inslide C)

1 b
R
KoL

Based on thls recurrence relation, V(N) can be com=-

K
%1 V(N = K),

puted, Such an algorithm has been Included In the programs.

The following Is an outline of thls algorlithm,
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1) Declare each of AV and AJ to be an 1 X N array
2) Set | to 0 then go to step &4

3) Set AJ(I1) to J(1)/2

) 1f t = N, return the answer V(N)

5) Set AV(1) to V(1)

6) Set | to i+l then go to step 3
Computation of V(1):

If 1 = 0, return the value of the ’'ntegrai

@
fR(X) dX,
o

(storing away Information about poles and
corresponding resldues of R(Z) for computation of J),

otherwlse, compute from the formula

1 (1 K K
VC) = AJCE) - -Z() sPl 31 AV(I = K),
2 K
K=

Computation of J(l1)/2 :
Using existing Information of poles and resldues of

R(Z) compute by residue theory from the formula

sP1 %1( 2: Res(F) over poles of R inside C),

For example,
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2
LOG (X)
(1)  eeeeee
2
X +1
(C2) DEFINT(D1,X,0,INF)Q (1]
3
b{d
(D2) ----
8

4.2 Method of Differentlating and Introducing Parameters

A very useful method for Integrands Involving LOG(X) ts

differentlatlion. Consider an Integral of the form

@
K
A(K) i/. R(X) X LOG(X) dX, K#0and -1 <K <1,
o

where R(X) Is ratlonal In X and k Is a parameter which

occurs nowhere else In the Integrand. |If the Integral

Iie) K
B(K) =‘f RCX) X dX
o

ls convergent and can be evaluated, then A(K) Is glven by
d
A(K) = <= B(K),
dk
This method of differentliation Is valld because B(K) is
convergent and A(K) Is uniformly convergent for every closed

Interval contalned In the set of polnts (K | Kf0 and ~f<K<{)
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For example

K
X LOG(X)
(p3y eeesceae-
X + 3
(C4) DEFINT(D3,X,0,INF)Q [12]
K K D
(D4) LOG(3) 3 BETA(K+l,- K) + 3 (-=-BETA(r, - K)
Dr ra(l+K)
D
- -=BETA(K + 1,r) )
Dr r==K

In the foregolng discussion, K has been assumed
symbollic. Yet, In solving actual problems K may very well
be a number., This difficulty can be overcome by Introducing
a zero parameter ZP, \le first replace Xx*k by X##(k+ZP) In
f(X). This permits us to proceed as above and then diffe-
rentlate with respect to ZP, After differentlfation the

resulc¢ Is then evaluated at ZP = 0.

The property of the logarithm function
-LOG(X) = LOG(1/X)

can sometimes be used In evaluating Integrals of the form



9%

o0
U =[f(X) LOG(X) dX.
°

In fact, If a change of varlable Y = 1/X Is made In U

and If the new iIntegral happens to be

o
ff(Y)LOG(Y) dyY,
@

then the value of the glven Integral U Is 6., For example
1/3 - 1/3

(ARCTANCX ) + ARCTAN(X )) LOG(X)
(D5) ==ece;ceeceeccaececccececcssesssecea-as

(C6) DEFINT(DS,X,0,INF)@
(D6) 0

4,3 LItntegratlon by Parts

Another nice property of the logarithm functions Is
that thelr derivatives are often simpler than the functlon
themselves. Because of thls, Integration by parts Is
frequently a sultable method for Integrals involving them,

If the Indefinlte Integral

Uu(x) = ff(X) dX

can be obtained and the Integral
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b
J =j. LOG(g(X)) f(X) dX
a

Is convergent, then

b [P ueng'(x) dx
J = LOG(g(X)) UCX)| =] (=m=cememcna- ).
aJa g(X)

The SIN Integration program [20] In MACSYMA Is used to

compute the Indefinlte Integral U(X). WANDERER uses this

method to evaluate Integrals of the form

-l a
X LOG(1l + X ) dX, a+l > L > 1.
o
Here Is an Integral evaluated by the method of Integra-

tion by parts.

(D7) = eeesccecanee-

(08) = eememeeea-
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5. Infinlte Integrals Involvling Exponentlal Functlons
5.1 Method of Substltution

Integrals with Integrands which are ratlonal functlons
of %Ex»(K#X), K real and non-zero, are relatlvely easy to
compute, WIithout loss of generality, let us assume K > 0

and conslder

o
(1 fR(’/,E**(K*X)) dX.

o

|f one makes a change of varlable

(2) Y = ZEwe(K#X),

L4 0]
(1/K)[ R(Y)/Y dY.
o

Thls Integral converges If (1) does, That Is to say

then (1) becomes

R(Y) has Y as a factor If (1) converges. For the integral
@
(3) fR(zE**(K*X)) dX
]

one can make a simllar change of varlable
(4) S + 1 = %Exw(KeX)

which glves



97

a
(5) [R(s+1>/(s+1> ds.
o

Integrals of the form of (3) and (5) can be evaluated
by contour Integral and residue theory as indicated In sect,

1. The methods (2) and (4) can In general be appllied to any

b
f f(g(X)) dX
a

and the resulting Integral may be much simpler. For

Integral of the form

Instance
1l
(D1) =  =eccecccccecacescs
X/3 5
l.E (m==== + 7)
X/3
%E
(C2) DEFINT(D1,X,0,INF)@
7
3 LOG(=~)
12
(D2) e m m————
5
X/4
%E
(D3) = cecccccec=.
X/2
9 %E + 4

(C4) DEFINT(D3,X,MINF,INF)@Q
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P
o

(D4)

5.2 Use of Contour !Integratlon

A somewhat more Interesting Integral lIs

@
| i/” R(ZEw»+X) P(X) dX

o9

vhere P(X) Is a polynomial and R(X) a rational function with
complex coefficlients such that
LIMITCR(SEw»X),X,INF) = 0
and
LIMITC(R(ZE»=X),X,MINF) = 0.
Let us flrst determine a polynomial Q(Z) with complex
coefflcients such that
(6) Q(x) = Q(x + 2 %P1 %1) = P(X).
Q(Z) exlsts and can be computed by the method of

undetermined coefflclents., Now consider a contour Integral

J =f R(ZE**Z) Q(Z) dz
¢

taken around a rectangular contour as shown In fig. 6.
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A
2 c
|
- 5 - X
h;.e

As the absolute value of X approaches Infinlty,
contributlons from the vertlical segments of the rectangular

contour vanlsh, Hence,

o w
J =f R(ZE=*X) Q(X) dX -f R(%E*+X) Q(X+2 %Pl %1) dX,

o0 @

It follows from (6) that I=J, Mow the problem of evaluating
the Integral | has been reduced to finding the residues of
ROZE**Z)Q(Z) for 0 < Im(Z) < 2 %P1, To do this, the poles
of R(Z) are obtained flrst, If w Is such a pole then
GLOG(w)

where GLOG stands for the branch of LOG with Imaginary part
between 0 and 2*%Pl, is a pole of the same order for
R(ZEx#»Z)*Q(Z) Inslde the closed contour. All such poles can

be obtalned In this manner. One example Is

(DS)  ecececccceaas
SINH(X) = %I

(C6) DEFINT(D5,X,MINF,INF)@



100

(D6) %Pl

Note that the Integrand (D5) has a pole of order two at

Z = %Pl %1/2.
5.3 The GAMMA Functlon and Related Integrals

A very Important functlon closely related to the
evaluation of Infinite integrals Involving exponentials s

the GAMMA functlon generally defined as

oo
GAMMA(Z) i]ﬂ 2Ewx(-t) t*x(Z-1) dt, R1(Z) > 0.
o

Also of use Is Its logarlithmic derivative, the PSI

functlion

d
PS1(Z) =(-- GAMMA(Z))/GAMMA(Z),
dz

A slmplification routine for GAMMA functlon has been

written to make use of the many propertlies of thls function.

From the deflnitlon of the GAMMA functlon, one can

derlve the followlng very useful relatlon
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where a = (D + 1)/B, RI1(A) > 0, RI(D) > -1 and RI1(B)
nonzero.

WANDERER has programs deslgned to recognize this form
and return the result. Of course these programs have to
examine the signs of the relevant quantities carefully

before generating an answer,

For example:

2
-X
(D7) %E
(C8) DEFINT(D7,X,0,INF)@
SQRT(%P1)
(8)  ememaeaaa
2

5.4 Integral Related to the Laplace Transform

Let f(t) be a functlion of a real variable t, then Its

Laplace transform L(f(t)) Is defined as

D (-t s)
LCFCE)) = F(s) = 3E f(t) dt,
[}

Many of such Integrals can be evaluated by the pro-

grams, Here are some examples produced by WANDERER,



(Dg) ------ - onws @ w
ST
SQRT(T) 2%E

(C10) DEFINT(DY,T,0,INF)Q
IS THE EXPRESSION

S
POSITIVE, NEGATIVE, OR ZERO

POSITIVEQ
SQRT(%P1)
(D10)  ememmeee-
SQRT(S)
(C11) SINCS*X)/(3E**X)@
SINCS X)
(p11)  emeeeea-
X
$E
(C12)DEFINT(D11,X,0, INF)Q
S
(012)  =eee- -
2
s +1
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When f(t) Involves trlgonometrical or hyperbollc func-

tlons, they dare expanded Into exponentlals before L(f(t)) Is

computed, \When LOG(t) Is a factor of f(t) the method of

differentiatlion wlth respect to a parameter can be applled

If £(t) also has X*»*k as a factor, R1(k) > O.
a new function g(t,ZP) 1s constructed by replacling LOG(t)

with t**ZP where ZP Is a zero parameter that has been

In this case
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speclally Introduced. The Laplace transform of g(t,ZP) will
be computed flrst., Suppose G In
@ (-t.s)

G(s,ZP) = L(g(t,ZP)) =J[.g(t,ZP) 2E dt

-]

has been obtalned. Now, as mentioned before In sect. 4, all
that needs to be done to obtaln L(f(t)) Is to compute
dG/dZP, That Is

LCF(t)) = dG/dZP at ZP = 0,
This Is true for

f(t) = dG/dZP at ZP=0,
and the fact that there exlsts some suffliclently small
closed Interval contalning 0 In which the following Integral

Is uniformly convergent:

D (-t s) dé
%E i dit,
5 d 2P

For example,

=S T 1/3
(D13) %E X LOG(X)

(Cl4) DEFINT(D13,T,0,INF)Q
b 4/3

1
(D14) = GAMMA(=~) (LOG(S)=- PSI(-) ) /(6 S )
3 3
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CHAPTER V
INTEGRALS OVER A FINITE RANGE

0. Introductlion

Many finlte Integrals are proper Integrals whose
Indefinite Integrals exist In closed form and can be com-
puted rather easily, For such an Integral, the evaluation
method is very stralght-forward. WANDERER simply obtalns
the corresponding Indefinite Integrals and then substitutes
the limlts of Integration, The antlderlvatlives are computed
by use of SIN, This method will be referred to as the antl-

derlvative method.

A finlte Integral

b
‘/ﬂf(X) dX
2

Is Improper If f(X) becomes Infinlte at some point c,

b=c =a. In order to avold having to spend computation
time 1looklng for an unknown number of singularitles of f
between a and b, WANDERER wll1l assume that integrands of

finite Integrals, wlith the exception of ratlional Integrands,
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can become Infinite only at the end polnts of the range of
Iintegration, This Is not a severe restriction and does not
decrease the number of Integrals It can handle. This Is
true In the sense that any glven range can be subdlivided to
conform to the above conventlon. Thls conventlion makes It
easy to determine whether a given flnlte Integral is
improper, WANDERER simply checks the value of the Integrand
at the limlts of Integration, If the glven Integral Is
Improper, Its divergence ls tested before any attempt at
evaluation. WANDERER uses a limit test for absolute
divergence which Is discussed In Scet. 6-6. If the given
Integral dlverges, WANDERER wlill so Indicate In the output,
If the antiderlvative can be computed, then the answer lIs
sometimes obtalned by employing a 1imiting process when

substlituting the upper and lower limlts of Integrattion,

In thits chapter, attention will be focused on the
definite Integrals whose corresponding Indefinite Integrals
are difficult to compute or do not exist,

l. Finlte Integrals of Ratlonal Functlons.

For Integrals such as
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where R(X) Is ratlonal In X, a and b are finlte, WANDERER
computes U by transforming It Into an Infinlite Integral by a

change of varlable,

Let us write

(X = a) (a + Y)
(1) Y 2 weceeee P x 8| _iswles esiselenianlen »
(b - X) (1 +Y)
(b - a) dY
dX 8 ececcece=- -
2
(1 +Y)

Thls integral can be Integrated readlly by methods of con=-

tour Integration and other means discussed In sect., 4-1.

As an example let R(X) be the expression (D1)

(D1) e
X -3
The Indeflnite Integral of R(X) from 0 to 1 computed by
the substltutlion method above ts glven by

(C2) DEFINT(D1,X,0,1)Q
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LOG(2 - SQRT(3))
(D2 = ewecscccccaccce-s
2 SQRT(3)
One knows that the Indefinlte Integral of (Dl) exlsts,
In fact the following has been obtalned using the command
INTEGRATE In MACSYMA

(C3) INTEGRATE(D1,X)@

(D3) (LOG(2 X = 2 SQRT(3)) = LOG(2 X + 2 SART(3)))
/(2 SQRT(3))
The reader may easlly obtain a result equlivalent to

(D2) by Substltuting In (D3) the limits of Integration.
2. Ratlional Functlons of Trigonometric Functions

2.1 A Typical Appllication of Contour Integration

If R(X,Y) is a rational functlon In two varlables X and

Y, an integral In the form

2K
U =.]‘R(COS(X),SIN(X)) dX
o

Is easlly transformed to an integral around a closed con=

tour. By settling

COS(X) = ===m=- : SIN(X) = =====e ’
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dz
and dX a8 ====,

¥ 4 I 4
the glven Integral U becomes

2 2
1 Z+1 2 -1 dZ
e F( ------ T ) e
vy 22 ‘2312 2

where C1 is the positively orientated unit circle with
center at Z = 0. This contour Integral can then be

evaluated by finding the sum of residues Inside the circle.

Actually this transformatlion can be applied In general

to any Integral In the form
22X
j'R(zE**(%l X)) dx
-]
where R Is ratlonal, by the change of variable
Z = E*x(3%l X)

The transformation process lIs simple. The key polint In
this algorithm Is the determinatlion of whether the Integrand

Is In fact a rational functlion of %E*=(%l X).

In calculatling the sum of the residues, only poles
Inside the contour contribute. Slimple poles on the unit
circle, i.e, those with absolute value 1, cause the

principal value to be computed, The Integral Is dlivergent
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If poles of order greater than 1 happen to be on the clrcle.

Examples:

(Cl) COS(X)*w2-SIN(X)@
2
(D4) COS (X) =~ SIN(X)

(C5) DEFINT(D4,X,0,2*%P1)@
(D5) %Pl

(C6)  ZEwx(2#51%X)/(ZEw*(31%X)+3)G
(06)  mmmemmme--

(C7) DEFINT(D6,X,0,2=%P1)Q
(D7) 2 %Pl

2.2 Utillzatlon of the Perlodicity of the Trigonomerric

Functlions

In thls sectlon Integrals of functions Involving trigono-
metric functlons over a variety of ranges will be

consldered,
Let T be a functlon of X defined by

M N
T(X) = COS (X) SIN (X)
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where R1(M) > =1 and R1(N) > =1, The following formula can
be deduced from the definition of Beta function., (Sect. 4=
2.2)

M+1 N + 1
/2 GAMMA(--;--) GAMMA(---Z---)
(1) T(X) dX =2 =escccceccencacccnccccca= -
o 2 GAMMAC(N + M + 2)/2)
A simple example Is
1/3 1/2
(08) CoSsS(X) SIN (X)
(C9) DEFINT(DS8,X,0,%P1/2)0@
2 3
6 GAMMA(=-) GAMMA(-)
3 i
(D9) = esseecccccac-ces LI
5
5 GAMMA(==)
12

The usefulness of (1) Is Increased by the fact that It
Is possible to express definite Integrals of T(X) over a
varlety of ranges In terms of that of T(X) over (0 ?P1/2),
For Instance, the followlng relatlons are true for any func:

tlon f.

T
‘/' fFISIN(X),COS(X)) dX =

o

72
/‘(f(SIN(X),COS(X)) + f(SIMN(X),=-CO0S(X))) dX;
o
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j F(SINCX),COS(X)) dX =
(«]
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® /2
[f(Slrl(X),cos(X)) dx+[ f(~-SIN(X),=-C0S(X)) dX,
(+] o

More generally, let f(X) be a pertodic functlon of X
with period 2%Pl., That is
f(X + 2%P1) = £(X),

An Integral of f(X) over some range (a b),

b
S = f f(X) dX,
a

can always be v+~ «r~n as a sum of Integrals In the form

2R (4 d
(2) nf £(X) dX +ff(X) dX -ff(X) dx
-} o

(-4

for some Integer n and 2%P! > ¢, d 2 0. This s true for

there exlst Integers p and q such that

a=2p %Pl + d,

and b =2 q %Pl + c.
Then S Is equivalent to the sum (2) with n = (q - p).

Programs have been wrltten to perform this reduction
and they are appllied when the Integrand has a period 2%PI

and the difference (a - b) has %Pl as a factor. some
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examples computed by WANDERER are
1/3 2
(D10) CosS(X) SIN (X)
(C11) DEFINT(D1lO,X,=%P1/2,%P1/2)@
2
18 SQRT(%P!1) GAMMA(=)
3
(D11) L EL L L L L T -
1
7 GAMMA(=)
6
(C12) COS(X)*w3xSIN(X)»=2Q

3 2
(D12) Co0S (X) SIN (X)

(C13) DEFINT(D12,X,3%%P1/2,3*%P1)0Q
2
(D13) -
15
3. Finlte Integrals of Algebralc lrrational Functions

3.1 Ratlonallzing the Integrand

If R(X,Y) ts a ratlonal functlion In X and Y, the Inte-

eral

c 2 2
(1) K =f R(SQRT(A = X ),X) dX,
b

where A =2c¢c > b 2-A, can be rationallzed.
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Let us write

A - SQRT(A = X )
(2) Y = meeememeeemaeaea- = v(X),

which glves

(3) X = mmeea-

Substituting (3) for X, (1) becomes

2 2
VE AL =Yy 2AY  (1-Y) dY
K=2A R(===m=mn=- ,em———— ) c=cccemanaa
2 2 2 2
v Ly 14y (1Y)
which Is an Integral of a ratlional function. Integrals of

this type have been discussed In Sect. 1.

Similarly for the Integral

¢
2 2
J =f RCX,SQRT(X = A )) dX
b

where ¢ > b 2 A > 0, the change of variable

2 2
SQRT(X = A )

can be made to convert J to



which Is also an Integral of a ratlional functlon,

two such Integrals evaluated by VWANDERER,

(D1) = eeemcceccccnce=-
X SQRT(X = 9)
(C2) DEFINT(D1,X,3,4)@
-3l 3 + %1 SQRT(7)
(D2) -;- PLOG(===~==~ Somee r)

(C3) 1/((X+1)w(L-X#n2)%%(1/2))Q

(D3) = esssscacccccaccce-- -
(X + 1) SQRT(L - X )

(C4) NEFINT(D3,X,0,2)@

L0G(2 + SQRT(3))
(D)  emesececccccccess

SQRT(3)
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Here are

(12]

Another method Is to try to transform the given Inte=-

gral to an Infinite integral by the change of variable glven

in (1) of Sect. 1. For Instance the Integral

B
‘/fR(X,SQRT((X - A)(B = X))) dX
A
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can be converted to

The method of ratlionallzatlion can also be applied to

b
[R(X, (CX + D)»»(1/Q)) dX
Q

where Q Is an integer, C and D are constants.and the range

of integratlion needs not be finlte,

For Integrals of thls type the substitutlon

1/Q
Y = (CX + D) ’

will convert the gliven integral Into that of a ratlional

function In Y.
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The princlipal task In thls conversion method Is to
recognize that the glven Integrand Is of the partlcular form
and to obtaln the Integer Q. !n essence, the algorlithm for

doing this Is

(1) Obtaln a list L of all distinct lrrational
parts In the glven Integrand,

(I1) If elements In L are fractional powers of an
ldentical l1lnear polynomlal In X, the pattern s
matched and Q Is set to the lcm of the denomlinators
of all the exponents of the linear polynomial,

otherwlse the pattern Is not matched,

3.2 Integrals Related to the BETA Function

The BETA functlon Is deflned by the Integral

1 -1 L -1
BETACK,L) = | X (1-%) dx

0
for R1(K) > 0 and RI(R) > 0. From this definltion one may

readily deduce the relatlon

-4 cL-1 1 K
(3) X (1-X) dX = - BETA(-,L),
o c c

WANDERER applies thls formula by recognizing the form

of the glven Integrand. In chapter 6 some techniques and
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programs for pattern recognltlon are discussed. For inte-

gral, In the form

B
K=-1 c cL-=-1
(X = A) (B =X) dX,
A

a simply substltutlon,

Y = (X - A)/B,

will transform it Into (3).
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4, FInite Integrals Involving Logarlthm Functlons

When the Integrand Is a function of LOG(X), a given
Integral may, In many cases, be evaluated by transforming It

into one which tnvolves exponentlal functions. Conslider

b
u =f £CLOGCX)) dX, b>az=0,
a
the substitution
-Y
(1 X = %E for 1 > a,
or
Y
(1 X = %E for a 21,
converts U to
s -Y
ff(-Y) 5 dY, r= =LOG(b), s= -LOG(a),
r
or
s Y
‘[f(Y) %2E dY, r=L0G(a), s= LOG(b),
*

respectively. In case a = 0 and b = 1 (or INF), the use of
(1) or C(il) will result In an Infinite Integral which can
often be evaluated readlly using methods provided In

WANDERER., For instance by use of (1) the Integral

4 q
fl.oc(x ) dX
0
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becomes

o0
q =i
f(-v) $E dY,

o

which Is an Infinite Integral already studled (Sect. 4-5.3),

The method (1) or (11) can also be applied to Integrals of

b
r
fx f(LOG(X)) dX,
a
as In

4 @
S1 R S -RY =1
LOG (=) X dX = Y %E dyY.
o X °

For Integrands Involving LOG(f(X)), It may sometimes be

the form

possible to simplify the given Integral by the substlitution
Y = f(X), X = g(Y)
where the functlion g Is the Inverse functlion of f. A very

simple application of this method Is conversion of

o0
[ X 2L0G(SQRT(X)+a) dX
a

2
® 2
z[ (Y-a) LOG(Y) dY.
o

Techniques of dlfferentlatlion with respect to a

to the integral

parameter, as detalled lh Sect. 4-4,2, can be employed for

finite Integrals with a factor
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K
X LOG(X), RI(K) # 0,

in the Integrand,
Examples

K
(D1) LOG (X)

(C2) DEFINT(D1,X,0,1)@Q [12]
K
(D2) (=1) GAMMA(K + 1)

(C3) LOG(X)»«(1/2)/(X%»2)@

SQRT(LOG(X))
(D3) = ececccacec-s
2
X
(Ct) DEFINT(D3,X,1,INF)@ [12]
SQRT(%PI)
(D) = eeeccmeea-

(C5) X»x(1/3)*(-LOG(X))*=(-1/2)@

(DS) = esmcececccccacocacces
SQRT(=1) SQRT(LOG(X))

(C6) DEFINT(D5,X,0,1)@Q

SQRT(%P1)
(D6) - mmmmemnan
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(C7) LOG(X)*((1-X*»(1/2))/X)%=(1/2)Q
SQRT(1 - SQRT(X)) LOG(X)

(D7) = emseccccecccscccaccccca=e
SQRT(X)
(C8) DEFINT(D7,X,0,1)0@
D 3
(D8) L (--BETA(r,=))

Or 2 r=1
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CHAPTER VI
DESCRIPTION OF ALGORITHMS

1. Computatlon of Resldues
1.1 Residue at a Pole

For convenlence of reference the algorithm for computa-

tion of resldues Is repeated here,

Let f(Z) be a functlion of a complex variable Z,
analytic everywhere In a domaln D except for a number of
poles In D, Suppose F(Z) can be written In the form

f(Z) = U(Z)/V(Z)
such that U(Z) Is analytic In D. This means that poles of
f(Z) are zeros of V(Z). Suppose p Is a pole of order m of
f(2), the resldue of f(Z) at p Is computed by the following

algorlithm,
RESIDUE ALGORITHM:

If m=1, compute as the answer
U(p)/v'(p)

otherwlse, If V Is a polynomlal,
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(1) Set V to the quotlent of V(Z)/(Z = p)e*m
which Is computed by long dlvislon,
(11) Return the result computed from

m=1

1
(m - 1)!

d

dZ

u(z)

v(zZ)

Z=p

otherwise, (m > 1, V not a polynomial) compute and

return as answer the limlt

m-1

1 d m
LIm (-ﬁ (Z - p) f(2)
Z*p (m - 1)! |d

1.2 Evaluatlon of Contour Integrals by Resldue Theory

In order to evaluate an Integral of f(Z) around a
closed contour C by reslidue theory, It Is necessary to
locate all poles of f Inside C. After thls Is done, the
remalnlng problem Is to compute the sum of reslidues of f at
these points efficlently, The difficult part Is flnding
poles. WANDERER employs the SOLVE routine In MACSYMA to
soive V(Z)=0,

For V(Z) a polynomlal In Z, SOLVE finds Its zcros by
factoring over the Integers and applylng formulas to each
factor of degree less than 5. For factors of higher degree

only those of the form a*Z#»*n+b will be solved, The problem
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of factoring large arblitrary polynomlials Is non-trivial, to
say the least., The development of a more powerful factoring
algorithm which will factor polynomlals over a larger ring
than the Integers would certainly be helpful to SOLVE and
WANDERER. The locatlon of zeros Is usually more difficult If
V(Z) s not a polynomial in Z but some more compllicated
functlon, In such a case, WANDERER usually uses methods
other than the resldue theory. An exceptlion Is when V(Z) is

a polynomlal In %E+*+*Z which has been discussed In Sect., U~

5.20

Thus within the Yimltations of SOLVE, V(Z) will be
solved and Its zeros sorted Into a list of palrs. Each palr
contalning a zero and tts multiplicity, such as

L= ( (Z1,m) , (Z2,m2) , (Z3,m3) , ...)

L ts then sorted Into two lists L1 and L2, discarding

poles outside the closed contour C, such that

L1 = a 1lst of all simple poles
L2 = a 1ist of other poles palred with thelr

multipliclties.

At thls point, we can apply the RESIDUE ALGORITHM to
obtaln the deslred sum. To avold repeated calculation of

v'(Z), the program checks whether L1 1s empty. If L1 Is not
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an empty 1ist, V'(Z) will be computed and stored for

possibly repeated reference later In the computation.

Note that It has been assumed from the beginning of
thls sectlion that a pole of f(Z) would be a zero of V(Z),
This assumption Is quite reasonable for almost all of the
applicatlions In evaluation of definite Integrals of
elementary functlions. However a zero of V(Z) need not be a

pole of f(Z)., For Instance Z = %| ls a zero of

but not a pole of

(Z + 21)

M
(z - 1)

For each zero p of V(Z) we may check the value of U(p)
to see If p Is really a pole of f(z)., Although It Is not
clear what can be done If U(p) = 0, since p may still be a
pole of lower order. A better method Is to Ignore the fact
that If V(p) = 0, U(p) may also he 0 and pretend that p is
an actual pole of f(Z). This Is valld because a residue at
any removable singular polint will turn out to be 0,

Furthermore, the residue obtained at a pole of order m Is
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not changed If any Integer n > m Is used as the order of p

In calculating the reslidue.

It Is concelvable that V(Z) may have an Infinlte number
of zeros., Not being able to sum Infinlte series, WANDERER
can not evaluate Integrals which requlire such a computation,
Sometimes only a flnlte number of poles are Inside the
closed contour. One such case WANDERER handles s when V(Z)

Isapolynomlal In %E#*Z as described In Sect. 4~5.2.
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2., Obtaining Real and Imaginary Parts

In the course of evaluating a definite integral by com-
plex contour Integratlon, the need to take the real or the
Imaginary part of an expression often arlse. For Instance,
to see whether a pole, p, 1les above or below the real axls
the sign of Im(p), the Imaglinary part of p, Is examined. To
determline If p lles Inslde the unit circle at 2=0, It Is
needed to compute ABS(p) whlch Involves takling the rea) and

Imaginary parts of p.

The algorlthm for obtalnling R1(p) Is presented as a

representative of simllar procedures used.
Algorlthm REALPART(p) :

1) If p Is %l return 0, If p Is a number or any

other atomlc symbol, return p.

2) If p Is a sum, (p =i pj) then return
?:REALPARupj) "

3) If ;'fs a product (p = pl#*p2) then return

REALPART(pl)*REALPART(p2)

IMPART(pl)* IMPART(p2)
4) If p = 4Ex%xpl return
%Ex=REALPART(pl)*COS( IMPART(pl))
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5) If p = plw*p2, convert p to %Ex*(p2+L0G(pl)) then
go to step b,
6) If p = LOG(pl), return LOG(ABS(pl))

7) Otherwise, return the form R1(p),

3. A Heurlstlc Pattern Recognitlion Program

It Is often the case that some pattern recognition Is
needed, at one stage or another durlng the evaluatlon of an
Integral, Although many Integrals can be evaluated wlthout
any pattern recognition, thls capabillity remalns Important
to WANDERER. One speciflc patterr shall be discussed as a
representatlve of such methods In VWAMDERER, Consider the
pattern

N M
P(X) = (B X + A)

where B, N, A and M are free of X (l.e. do not Involve X)
and all except A must be non-zero. Thils pattern should

match, for example, every one of the expressions
X, 2X+1, (X + 31)
P

q
(x -1, and X +2 X+ 1,

The last expresslon Is the expansion of
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2
(x + 1),

Expresslons In expanded form present some trouble for
the recognitlion algorithm., This diffliculty Is overcome by
the use of differentliatlion and rational simplification,

That Is If an expression E(X) Is equlvalent to an expression

matchlng the pattern P(X), we can compute

E'(X) / E(X) = u(x) / v(x),
cancelllng all common factors In the numerator U(X) and
denominator V(X). Then V(X) should match p(X) with M = 1,
As a result of thls match, some values are assigned to the
variables A and B, By use of these values the correct value
of 1 and N can be recovered from U(X), The values for A and
B thus obtalned may differ from the true values by a
constant factor, Thls happens whenever these true values
have common factors., The real values of A and B can be
determlned by comparing A**M to E(0)., Thls procedure was

suggested by Moses.

The full algorlthm used for matchling P(X) will be
described., Let it be called PM, PM uses another routine PN

which recognlzes the pattern

N
P(X) = (B X + A)

As one can see In the following algorithm, the values
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of B, N, A and M wlll be set as the matchlng process
proceeds, |If the pattern Is matched, the values of these
four varlables are found,
Algorithm PM(E(X),X) :
1) If E = X, pattern matched. (B=1,N=1,A=0,M=l)
2) If E Is free of X or Involves any of the func-
tions: SIN, COS, TAN, LOG, EXP, etc., P(X) Is not
matched.
3) If E Is In the form r**s and s Is free of X then
match M to s, otherwlse match M to 1. Then, If
PN(r,X) succeeds In matching, the pattern Is
matched,
4) 1) vrationally simplify E'(X) / E(X) and set r

to the result obtalned.

1) set s to the denominator of r, set r to
the numerator of vr.

1i1) 1If PN(s,X) succeeds In matching, simplify
the expression r / (N B X**(N-1)), set r to the

result thus obtained and go to step 5.

| lv) P(X) Is not matchi d,
t 5) If r Is not free of X, P(X) Is not matched,
6) 1) MatchMtor
11} compute and set r to E(0) / AwwM

tit) 1fr =1, P(X) Is matched, If r#l, flrst
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set

1/m 1/m
AaAr and B = B r,

then P(X) Is matched.

Algorithm PN(E(X),X)

1) If E Is free of X, the pattern not matched,
2) Match A to E(0) and set E to E = A,

3) If E Is of the form r*X**s, the pattern Is
matched (B to r, N to s). Otherwlse there Is no

match,
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k. A Procedure for Change of Variables

Substlitution of a new vartable Y for a subexpression,
say g(X), of the Integrand In a glven Integral! Is a

frequentliy used method In Integratlon. Let the glven Inte-

b
J =[ £(X) dX,
a

then the transformed Integral would be In the form

d
J i/. FQY) dY
c

where F(Y) might be conslderably simpler than f(X). F(Y), ¢

gral be

and d are computed by a procedure which Is called whenever a
change of varlable Is needed. It makes use of two otier

modu®~< of MACSYMA, namely SOLVE and DELIMITER.

1) Use SOLVE to solve for X In Y = g(X), obtalning
X = h(Y), tke Inverse functlon of g.

1) If h can not he obtalned, return Indicatlon of

fatlure,

1ii1) Compute, using the DELIMITER, ¢ and d as In
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c = LIMIT(g(X), X, a, PLUS),
d= LIMIT(g(X), X, b, MINUS),

Iv) Obtaln f(Y) by assigning It a value computed
from

f(h(Y)) h'(y),

5. Solving Systems of Llnear Algebralc Equations

In sect. 4=5,2 the need to compute a polynomtal Q(X)

from a glven one P(X) satisfylng a glven relation

(1) Q(xX)=Q(xX + 2 %P1 %1) = P(X)

has been mentloned.

The method of undetermined coefflclents Is used to
determine Q(X). Let Q(X) be a polynomial In X with degree
one hlgher than P(X) and unknown coefflclents €0, Cl, ... ,
Cn. That Is

n+l n
Qi) = X +Ch X +,. . ¢Cl X+ CO.
Equatlon (1) will glve n llnear relatlons among these
coeffliclents. Therefore the value of these C's can be

obtalned by solving the system of llnear equatlons they must
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satisfy,

For the purpose of solving systems of llnear algebralc
equatlions, A method known as the "Two-step fractlon-free
Gausslan ellimlination" [1l4] has been Implementad. Thls
method Is an Improvement over a corresponding cne-step
method and features a procedure that keeps the slize of the
Intermediate expresslons In the course of the reduction down
by dlividing them by a common factor which the procedure can
predict. The advantage of this method over a more

efflclent and elaborate scheme [18] Is tts simplliclty.
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6. Convergence of Integrals

There are many methods to determine the convergence or
divergence of a glven Improper Integral. Some are Imlt
tests, others comparison tests etc. Some test for absolute
convergence, others conditlonal or unlform convergence, It
Is a possible area for future work, There Is no real need
to have such elahorate schemes In WANDERER, for after all It

Is the value of the glven Integral that Is deslred,

b
J =J( f(X) dX.
a

If f(X) Is a ratlional function of X, WANDERER comblnes

Conslder

convergence tests with evaluatlion algorithms as explalned In
chapters 4 and 5. IF¥ f Is not ratlional, then It Is not
allowed to become iInfinlte except at a and b, This Is a
conventlon on Inputs used by WANDERER., Thus, J Is a proper
integral If a, b, f(a) and f(b) are finite. If J Is

Improper, WANDERER has a test for absolute dlvergence.

Test for absolute dlvergence:

(1) If a and b are finlte and b > a, then J Is

absolutely divergent If
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LIMIT((b=-X)f(X),X,b,MINUS) # 0,
or
LIMIT((X=-a)f(X),X,a,PLUS) # 0.
(2) If als Infinite, then J Is absolutely dlvergent If

LIMIT(X*f(X),X,a) # 0.

(3) If b ls infinlte, then J Is absolutely divergent |f
LIMIT(X+f(X),X,b) # 0.
If a functlon G(X) exlsts such that G'(X) = f{X), then
the method of antiderivatlve can be used. That Is to com=

pute J by evaluating
LIMIT(G(X),X,b,MINUS) = LIMIT(G(X),X,a,PLUS),

If this value Is finlte, It Is the value of the given

Improper Integral. |If It does not exlist, then J dlverges.
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CHAPTER VI
AN APPLICATION OF MACSYMA
AND WANDERER

0. Introduction

The usefulness of a general purpose algebralc manipula-
tlon system such as MACSYMA In facllitatling the solution of
mathematlcal problems has been demanstrated. Usling his
"Symbollc Mathematlcal Laboratory" [15], Martin demonstrated
solutions to three demandlng problems In applied
mathematics, These examples emphaslize the fact that routline
algebralic computatlon can be done by computer programs not
only without error but much faster than by hand, The value
of such a system ls especlally appreclated when the expres=-
slons Involved are large and compllicated. By employing
such a computer facllity the human problem solver may be
freed from the tedious and uninspiring manipulations to
think more about the profound aspects of his problem. But
thlis 1s not all such a system can do. Moses's SIN [20], a
program for Indeflinite Integration, provides a good example

of successful mechanlzation of a mathematlcal process which
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Is far from routlne or stralght-forward. The Introduction
of SIN brnadened the scope of algebralc manipulation systems

signiflcantly,

The purpose of this chapter Is to show how MACSYMA and
WANDERER can be used to help solve complicated problems that
are of practical Importance. One such problem Is the asymp=
totic evaluatlion of certaln contour integrals arising In
mathematlical physlics. Usually one starts with one or a set
of dIfferentlal equatlons describling a physical problem.
Solving these equatlons by one method or another, most often
by integral transforms, one will arrive at a solutlon In the
form of a definlte Integral which Is often difficult, If not
Impossible, to evaluate exactly., Frequently, one Is not so
Interested in the exact solution but the behavior of the
system when one parameter becomes very large or small. This

Is where asymptotic analysls ls needed,

MACSYMA s used to obtain the asymptotic solution of an
infinlte Integral, Many facllitlies provided In such an
algebralc manipulation system can be [llustrated through
this appllcatlion., It Is also possible to show how the
definite Integratlon capahility provided by WANDERER Is

needed for the successful computation of the results.
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1, An Asymptotlc Analysls Problem and an Outline of the

Method of Steepest Descent

Consider the Infinite Integral

P ¢ H(t)
J(C) = 2E dt, cC>0
-0
4
t
where H(t) = = == = %I ¢
4

While Integrating J exactly may be impossible, lits
asymptotlic behavlor as C becomes very large can be
Investigated. To obtaln the asymptotlc expansion of J, the
method of steepest descent [5,7] will be employed.
Basically, the method of steepest descent conslists In
deformling the contour of Integratlion In such a way that the
major contributlion to the Integral arlses from a small por-
tlon of the new path of Integration. The contribution will
become more and rore dominant as the parameter of Interest

grows., Thls parameter here Is C,

The flrst step In this method Is to find the new path
of Integratlion., On a given contour, larger contrlbutlons

comes from portlions where the Integrand iIs larger In
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absolute value and less osclillatory, Hence the requlrements
for a deslrable path are: (a) the absolute value of the
Integrand becomes maximum at a polnt, tl say, on the path,
(b) The argument of the Integrand Is constant on the path
near tl, The first requirement Is obvious. The second ls
essentlial, for If the phase angle changes even slightly near
tl, this change will be magniflied by the very large factor C
resulting In rapld oscillatlons of the Integrand and
therefore negatling any possible contribution from the point
tl, Let U(tl,t2)= RI(H(tl+%1 t2)) and V(tl,t2) = Im(H(t1l+%I

t2)). Let p be a point where

du du dv dv

- asemes 2 mwaw 3 memem I mswmow 3 0.

d tl d t2 d tl d t2

Then p Is certalnly a candidate for tl required In (a) and
(b). Such a point Is called a saddle point. The cholce of
the name saddle polnt will be made clearer later. The
Cauchy=-Rleman conditlions Imply that criterion for such a
point Is H'(t)=0. There may be more than one such point in
the complex t=plane, There are an Infinite number of diffe-
rent curves which pass through a saddle polnt and satlisfy
(a) and (b). Among them the path along which the Integrand
decrease In size most rapldly Is the best, For the Integral

J, this means a curve on whlch U decreases most rapldly.
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Let H'(b) = 0, It can be shown by use of properties of
analytic functlons that U varies most rapldly on curves
Im(H(t))=const., (usually called level curves). |f H''(b)yo0,
two level curves will pass through the point b, Intersecting

at right angle, as shown In fig. 1.

B 2 i S S

On one of these two curves, say curve A, RI(H(t)) Is minimum
at b and Increases as t moves along A away from b. On the
other hand, RI(H(t)) is maximum at t=b on the curve D and
decreases as t moves away from b on D, Curve A Is called
the steepest ascent path and D the steepest descent path,
The point b is usually referred to as a saddle point. If
H''(b)#0, b Is a saddle point of order 1, If H''(b)=0 and
H''"'(b)#0 of order 2, etc. If the original contour can be
deformed onto one or a comblinatlon of such steepest descent
paths, then the asymptotlic expansion of the given Integral

can be obtained by a rather routine procedure which
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Involves: change of variable of Integration, Inversion of
truncated power serles at the s2ddle polnts and term by term

Integratlon.

Let us outline the steps of the solutlon procedure as

follows.

1) Locate and determline the order of saddle polnts
of H(T).
k 2) Compute U(tl,t2) and V(tl,t2) such that

H(tl + %1 t2) = U(tl,t2) + %1 v(tl,t2),
3) Obtain V(tl,t2) = const. curves whlich pass
through the relevant saddle polints.
4) Examlne the V(tl,t2) = const. curves to
determine whether deformatlon of contour can be made

to curves through the saddle polnts.

5) Change the varlable of Integratlion,

6) Express t as a truncated serles In the new
variable about each relevant saddle polint.

7) Determlne the coefficlents In the above serles,
8) Apply Watson's lemma to obtain the first few
terms of the asymptotic expansion by Integrating

term by term,
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2. Solutlon Steps

Presented here are the solution steps of the asymptotic
expanslon of J(C) In the exact sequence as they have heen
carried out using MACSYMA. The llines labelled (Cl) are
Input commands., A command line ends wlith elther a @ sign or
a $ slgn, The @ slgn causes results obtalned by executing
the command llne to be displayed In a subsequent 1ine
labelled (DI), A (Cil) line together with a corresponding (Di)
1lne wlll be referred to as step |. The § as an end of
command 1lne character suppresses display of results for
that llne. Explanatory texts will be Inserted hetween
llnes. To aveld becoming a user's manual for MACSYMA,
explanation for the commands used In the solution will be
made qulite brief, For a more detalled look at MACSYMA the

reader ls referred to [16].,

(Cl) P:8$

P Is a parameter which Is set dependling on the number
of terms desired In the asymptotic expansion. By setting P
to 8, we shall obtaln the flrst 4 terms. The reason will

become evident later.

(C2) H(T):==Texl/L4=3%1TQ
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4

T
(D2) H(T):a = == = %I T

4

definlng the functlon H(T)
(C3) DIFF(H(T),T)=0@
3

(D3) -7 =% =20

creating an equatlion H'(T)=0

(Ch) SOLVE(%,T)@

SOLUTION
SQRT(3) = %!
(EL) T = ecccccancnaaa
2
(ES5) T = 31
-~ SQRT(3) - %I
(EG) T 2 eccccaccnccaa=-
2
(D6) (E4,ES5,L6)

The % slign used In (C4) stands for the last (D3), In
general a % slgn represents the last expresslion labelled
(DI). SOLVE In (C4) Is an Invocatlon of the MACSYMA SOLVE
program (see [10] for Its capabllitles and limitations).
The roots of H'(T)=0 give three flirst order saddle polnts.,
Passing through each of these polnts there will be one
steepest ascent and one steepest descent level curve

(Im (H(t))= const., curves)., The saddle polints In (El) and



145

(E6) are the points B and A respectively shown In fig. 2.
The value of H at these three saddle polnts will now be

computed.

(C7) HB:RATSIMP(H(PART(EL,2)))0@
- 3 %1 SQRT(3) -3

W SEe e e e SR

\lhat has been done In step 7 Is the computation and
simplification of H(B). The command RATSIMP causes rational
simplificatlion which Is essentlally putting expresslions to
be simplified Into the form of one numerator,and one
denominator and perform all possible GCD cancellations., The
command PART allows a user to obtain subexpressions of an
expression, PART(E4,2) returns the second part of the
equation Ei which Is Its right-hand side. MNote that

commands can be nested.

(C8) HC:RATSIMP(H(PART(ES,2)))@

(D8) -

(C9) HA:RATSIMP(H(PART(EGE,2)))@

3 %1 SQRT(3) - 3
(0D9)  eseeesecsscecaca-

The polnt T=%! turns out to be lIrrelevant because the
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new path which will be determined does not pass through it,

The next goal Is to obtaln curves passing through the saddle
points (SQRT(3)/2, =1/2) and (=-SQRT(3)/2, -1/2) along which

the Imaginary part of H(T) Is constant and the real part of

H(T) varles most rapldly, l.e. the steepest paths through

the saddle points.

(C10) EXP:EXPAND(H(T1+%1+T2))@Q

4 2 2
T2 3 3Tl T2
(D10) = === 4 %1 Tl T2 ¢ ewecmcne-.
4 2
N
3 Tl
%1 Tl T2 ¢ T2 = === =% T1
4
(C11) Vv(T1,T2):="COEFF(D10,21)@
3 3
(D11) v(T1,72):= T1 T2 -T1 T2 -T1

By steps 10 and 11, the Iimaglnary part of H(T1l+ %I T2)
Is found and glven a function name V(T1,T2). The command
COEFF(exp,var,n) computes the coefflclient of var**n In exp.
Iin this case, the coefficlent of %1 In (D10) Is exactly the

Imaginary part of (D10),

(C12) u(T1,T2):="COEFF(EXP,%!,0)@
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b 2 2 4
T2 3Tl T2 Tl

(D12) WT1,T2)t= = === ¢ ecccca--- # TR = ===
b 2 4

U(T1,T2) Is defined to be the real part of
H(T1 + %1 T2).

(C13)V(T1,72)=V(SQRT(3)/2, -1/2)@

3 3 3 SQRT(3)
(D13) TLIT2 =Tl T2 =Tl = = weacec-a--

Obtalned In (D13) Is the equatlon of a curve,V =
constant, which passes through the saddle point B,

(SQRT(3)/2, =1/2). Thls curve wlll be referred to as CR,

(C1)V(T1,T2)=V(~-SQRT(3)/2, ~1/2)8

3 3 3 SQRT(3)
(D14) T1 T2 =Tl T2 =« Tl = ecccncna-

(D14) Is the equatlion of a curve, V=constant, passing
through the saddle point A, (-SQRT(3)/2, -1/2). Let thls
curve be CL., The curves QL and CR have to be examined
carefully by the human problem solver to determing the new
path of Integratlon., The manner In which they extend to
infinity Is often Important In deforming the contour,

Asymptotes to these curves can be found easfly. For an
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algebralc curve, f(X,Y)=0, the way to find asymptotes Is to
substitute meX+c for Y In f(X,Y)=0 then determlne values of
m and ¢ such that the equatlion has two Infinlte roots (l.e.,
equatling to zero the coefficlent of the hlghest and second
highest powers of X). Asymptotes parallel to X=0 are missed
by this method. f(X,Y)=0 has such an asymptote If It Is
possible to choose h In such a way that the equatlon
f(h,Y)=0 has two Infinlte roots, Asymptotes will be found
for CL and CR In the next two steps.

(C15) SUBSTITUTE((T2=A*T1+B),PART(D14,1))@

3 3
(D15) - Tl (ATl +B) +T1 (ATl +B) ~-T1
(C16) RATSIMP(2)Q
3 4 2 3 2 2 3

(D16)C(A - A) Tl + (3 A =-1)BTl1+3ABT1 +(B =-1)Tl

The asymptotes are clearly T1=0, T2=0, T1l=T2 and Tl= =
T2, \Mlth the ald of MACSYMA to generate points we plotted
the curves as shown In flig. 2. with steepest descent paths
labelled Ca and Cb., This flgure Is not a computer generated

plot,
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It can be seen In flg., 2 that by use of Cauchy's
Integral theorem, the original contour can be deformed to
the contour Ca+Ch, For the purpose of change of path of
Iintegration a new varlable R Is Introduced which will be the

parameter of our steepest descent paths.

(C17) -R»»2=H(T)-H(TO0)Q

4

2 T 1

(D17) =R = %1 TO === =31 T+~
4 4

TO stands for elther of the two saddle polnts A or B,
Indeed if TO=A, R ls real If and only If T Is a polnt on Ca,
for Im(H(T)~H(A))=0 and 0 = (H(T)=-H(A)) only for points on
Ca. The same can be sald about T0=B, T has to be expressed
in terms of R In order to perform the change of variable.
Solving for T as a function of R exactly In (D17) Is not
necessary., \lhat Is needed Is the first few terms of a power
serles expansion of T In terms of R about the polnt T=TO

(the saddle point).

(C18)T=T0+DOSUM(J,1,P,B[J]1*R*=J)Q

8 7 6 5 b
(D18)T=TO + B R + B R +B R +B R +8 R
8 7 6 5 b
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T Is set to a truncated power serles In R, The unknown
coefflcients Bl will be solved for by use of (D17).
(C19) E:SUBSTITUTE(D18, R%»2+PART(D17,2))@

8 7 6 5 b4
(D19) - (T0O+B R +B R +B R +#B R +8B R
8 7 6 5 b

3 2 4 8 7
+B R +B R +B R) /4 -2%1 (TO+B R +B R
3 2 1 8 7

6 5 [ 3 2
+B R +B R +B Kk +B R +B R +«+8B R)
6 S b 3 2 1

2
+ 21 TO + R +

L ool B

The expression (D19) has been given a name E, Before E
Is expanded In order to collect terms, a few simplification
rules are defined so as to discard powers of R higher than 8
In the expansion process. Thls greatly reduces the

Intermedtate expression bulge which would otherwlse occur,

(C20) DECLARE (N,MPRED)S

(C21) MPRED(X):=1F X > P THEN TRUE ELSE FALSES$
(C22) TELLSIMP (R»=N,0)$

?S THE REPLACEMENT

A simpliflication rule has been set up so that any Ra#n

Is replaced by 0 If N > p which Is 8.
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(C23) TELLSIMP(TO=»3,-%1)$

An additlonal simpliflication rule Is defined so that

T0*»3 shall be replaced by =%l automatlically.

(C24) RATVARS(R)S
R shall be the maln varlable In subsequent rational

simplificatlions,

(C25) E:PART(RAT(E),1)Q
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(D25)
8 2 2
R((=-128B B -128 B ~-12B B ~-68 ) T0
L 7 2 6 3 5 4
2 2
+(-128 B -26B B B +(-248B B =-128 )8
' 1 &6 1 2 5 1 3 2 4
2 3 2 2 2
-1128 B )T0-4B B =-12B B B =-68 B
2 3 1 5 1 2 4 1 3
2 4
- 128 B B -8 )
1 2 3 2
7 2
+R ((-12B B ~-12B B =128 B ) TO
l1 6 2 5 3 4
2 2 2
+ (-128 8 -248 B B -~-128B B =~ 12 8B B)TO
1 5 1 2 4 13 2 3
3 2 3
-4B B -12B B B -4 B B )
1 & 1 2 3 10 R
6 2 2
+R ((~128B B -128 B -68B ) TO
l 5 2 4 3
2 3
¢+ (~-128 B -268 B B ~-4B ) TO
1 & 1 2 3 g
3 2 2
-4#8 B -68B B )
1 3 1 2
5 2

+R ((~-128 B -128B B) TO
1 4 2 3



154

2 2 3
+(~-128 B ~128 B )70 -4B B)
I B 1 2 1 2
N 2 2 2 4
+R ((~-12B8B B -68B )T0 -128 B T0-B )
1 3 2 1 2 1
3 2 3 2 2 2
+R (~-128B B 70 -4 B T0)+R (L-6B T0)
1 %2 1 1

E Is set to the huge expresslon above which ts the
numerator of a truncated expanslion of E; the denomlinator Is

a constant,

(C26)FOR J:1 STEP 1 UNTIL J > (P=-1)
DO BLOCK (EQ[J):COEFF(E,R,J+1)=0,DISPLAY(EQ([J]))S$

This do loop Is used to generated the coefflclents of
the various powers of R In E and store them In the form of
equations In an array RL, Each EQ[JU] will he displayed

after it Is set.

2 2
4 -6 B TO =0
1
2 3
-128 B 70 -4B T0=20
1 32 1
2 2 2 4

(-128 B ~68 )T0 -128B B TO -8B = 0
1 3 2 1 2 1
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2
(=-128B B -128 B ) TO
1 4 2 13
2 2 3
+(-12B B8 ~-128 B ) T0~-4 B B =0
1 3 1 2 1 2
2 2
(~-128 B -128B B -6B8 ) T0
s Ol 2 L 3
2 3
+(~-128 B -248 B B ~-u4B ) TO
1 & 1 2 3 2
3 2 2
-4B B -6B B =20
1 3 1 2
2
(-128 B -128 B =~-128B B ) TO
l 6 2 5 3 4
2 2 2
+(-128 B -24B B B -12B B =-128 B)
1 5 1 2 &4 1 3 2 3
3 2 3
T0-4B8B B -12B B B -4B B =20
1 4 1 2 3 1 2
2 2
(-128 B -128 B =-128B B -68B ) TO
1 7 2 6 5 5 b
2 &
+(=~-128B B -24B8B B B + (~-24B B =-12B )
1 6 1 2 5 1 3 2
2 3 2

8 -12B B ) T0 -4 8B B -128 B B
b 2 3 1 5 1 2 4
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-68B B =-128 8 B -8 = 0

Being consclous of the lack of storage space left for
subsequent manipulations, we get rid of the computation
history to create some space.

(C27) KILL(HISTORY)@
(C1) SOLVE(EQ[1],8([1])@

SQRT(6)
(E1) B = =e-am--
1 370
SQRT(6) -
(E2) B = = memmmae
1 370
(D2) (E1,E2)

The cholce of the value for Bl here affects only the
sense with which the steepest decent paths are traversed.
Thus If we choose (E1l), R would vary from IMF to MINF on Ca
and from MINF to INF on Cb,

(C3) B[1):PART(E1,2)$

A do loop Is used In (Ch) to solve for the remalning
B's (B2 through B7),
(Ch) FOR J:2 STEP 1 UNTIL J > (P=-1)
DO BLOCK (SOL:EV(SOLVE(EN[J],B[J]),EVAL),
B[J] : PART(SOL,2),DISPLAY(SOL))$

The EV command, wlth EVAL as the thlrd argument, causes
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the answer returned by SOLVE to be evaluated once more,
Since every B} is solved In terms of earller B's which
already have some value, one more level of evaluation will

eliminate the dependencles on previous B's.

27 SQRT(6) TO

9 %1 TO + 23
B S eeooeoweoesueosone
b 243 T0
2
- 3% 70 + 28 710 - 108 3|
B 22 S e T e m s S W e
5 972 SQRT(6)
2
225 %1 T0O = 342 TO + 1031 %I
B S ST AT UE NS ES S0 EN DN m e RS
6 2
262hh TO
2 2
521 70 SQRT(6) %! TO 47 SQRT(6) TO
B 28 = ececcciwccew. + mmemcscccccee- 4 mmrmecccccenee
7 1458 SQRT(6) 729 6561
107 ToO 6839 %I 170 SQRT(6) %I
¢ wcaveveceonaen & coacneEsemaees W cococeeToeseoen
2187 SQRT(6) 52488 SQRT(6) 19683

1927 %I
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The unknown coeffliclents Bl have heen determined, The
next goal Is to compute

- 2 dT
EXP(=C R ) == dR
O dR

dT
for TO0=A and T0=B, 0dd terms of R In -- do not contribute.
dR
Therefore only 4 terms need be integrated., These terms are
even In R, thus the range of Integration can be changed to
(0 INF). A functlon FN(X) will be defined for carrylng out

thls term=-by~term Integration at a varlable point T0=X,

(C5) FN(X):=BLOCK(ANS:C, FOR J:1 STEP 2 UNTIL J > (P-1)
DO ANS:ANS+J*RATSIMP(EYV(B|J|,TO=X))*
DEFINT(%Ew*(-C*Rwx2)*Rxx(J=-1),R,0, INF), RETURNCANS))S
(CG) FN(=-3QRT(3)/2-%1/2)8
IS THE EXPRESSION
PES?TIVE, NEGATIVE, OR ZERO
NEGATIVEQ
For the purpose of Integration, WANDERER askes the user

about the sign of C, The contribution from saddle point A

Is glven In the next result.

SQRT(6) SQRT(%PI)
(3 SQRT(3) + 3 %1) SQRT(C)
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3 SQRT(%PI1) (3 SQRT(3) + 23 %1)

3/2
L SQRT(6) (27 %! SQRT(3) + 27) C

5 SQRT(%PI) (25 SQRT(3) + 2u47 2%1)

5/2
5184 SQRT(6) C

- (35 SQRT(%P1) (SQRT(6) (672 SQRT(3) + 1816 %I)
3582 SQRT(3) 13077 %I 12
- mmm———- —m——— e emeeeea- ))/(839808 C )
SQRT(6) SQRT(6)

(C7) FN(SQRT(3)/2-%1/2)@Q
IS THE EXPRESSION
- C
POSITIVE, NEGATIVE, OR ZERO

NEGATIVEQ

SQRT(6) SQRT(2%PI)
(3 SQRT(3) = 3 %1) SQRT(C)
3 SQRT(%P1) (3 SQRT(3) - 23 3%1)

3/2
L SQRT(6) (27 %! SQRT(3) - 27) C

5 SQRT(%PI) (25 SQRT(3) =- 247 %1)
5184 SQRT(6) C

+ (35 SQRT(%PI) (SQRT(6) (672 SQRT(3) - 1816 2%1)

3582 SQRT(3) 13077 %I 7/2
$ mmmmemecccan o meamaea- ))/(839808 C )
SQRT(6) SQRT(6)
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The above Is the contribution from saddle point B, Now
the final result Is obtalned by computing the following
(-3 /3 %1-3)/8 (3 /3 %1-3)/8
2 (%E D7 - 2 %E D6)
where D6 and D7 are as glven above. This expression is, by
Inspection, equlvalent to

(=3 V3 %1-3)/8 (3 /3 %1-3)/8 __
2 (%E D7 + %E D7)

where D7 Is the complex conjugate of D?. Therefore,

(C8) L»RL(%E+»HA*D7)@
3 SQRT(3) 2! -3

(D8) 4 RL(YE il b e by e e
(3 SQRT(3) = 3 %I) SQRT(C)

3 SQRT(%PI) (3 SQRT(3) - 23 %1)

3/2
4L SQRT(6) (27 %I SQRT(3) - 27) C.

5 SQRT(%P1) (25 SQRT(3) - 2u47 %1)
5/2
5184 SQRT(6) C
+ (35 SQRT(%PI) (SQRT(6) (672 SORT(3) - 1816 %I)
3582 SQRT(3) 13077 %I 7/2

PO b ol ))/(839808 C ))
SQRT(6) SQRT(6)
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This Is the flrst four terms of the deslired asymptotic
expanslon, RL Is not a command of MACSYMA., It Is used here

to denote the real part of an expresslon,
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CHAPTER VI
CONCLUS IONS D SUGGESTIOMS FOR FURTHER WORK

The evaluation of definite Integrals Is a classical
problem In mathematlcs. Great Ingenulty Is frequently
required, with many Integrals demanding speclal devices.

The lack of a sufficlently general theory makes evaluation
of deflnlte Integrals very difflcult., It Is doubtful that a
theory, comparable In generallty to the Risch Integratlon
algorithm [26] for Indefinite Integrals, can be developed In
the near future. Vle have shown that the convergence of a
class of Integrals of elementary functions Is recursively
undecldable. The proof Is In appendix E. The WANDERER pro-
gram presented here s a prototype heurlstic computer pro-
gram for the symbollc evaluation of definlite Integrals., It
contains both general methods such as contour Integration,
residue theory and differentiation with respect to a
parameter, In additlion to quite a few special methods for
speciflc types of Integrals. Clues as to which method to
use for a given problem are obtained from the Integration
range and the form of the Integrand. Although many types of

definite Integrals can be evaluated by WANDERER, Iit, as
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almost any other heurlstlc computer program, has its limita=-
tions. Foremost among these Is the fact that It Is a pro-
gram for the evaluation of regl definite Integrals of

elementary functlons.,

It Is hoped that the work reported here may provide a
starting point for new approaches to the evaluation of
definite Integrals from the viewpoint of symbol manipula-
tlon., The advantage of thls approach Is twofold: (1) A com-
puter can use Integratlon methods that are too lengthy or
complicated to be carried out by hand; (2) Such a computer
program contalns a collection of powerful methods that can
Interact with one another and can produce answers to Inte=-
grals not present In any finite table. For thls reason, a
good definite Integration program together with other
facilitles provided In an algebralc manipulation system can

be very useful to applled mathematlclans.

DELIMITER Is a rather sophisticated program for comput=
ing limits of elementary functions. Such a program has been
shown to be a very useful tool in an algebralc manipulation
system. The method of comparing orders of Infinity used In
DELIMITER Is an Important concept which Is useful In places

other than the computation of 1imits.
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A baslc assumption of DELIMITER Is that the operator
LIMIT Is distributive over the operators +, =, *, and #*,
l.e., rules such as the YImit of a sum Is the sum of the
1imits hold. These rules are valld only If the subproblems
thus generated produce answers which do not lead to an
Iindeterminate form. Of course there Is L'Hospital's rule
which can be applled to some Indeterminate forms, but
generally only those Involving only the operator *» or #»»,
Although many aspects of the Indeterminate form (INF=~INF)
have been conslidered. In chapter 2, the algorlithm for Its
determination Is not complete. A powerful serles expansion
program would be helpful In some cases, Yet, such a pro-
gram can not solve all problems. Consider for Instance, the
1imit problem

2 2
LIMIT(SIN X + COS X,X,INF),

To obtaln such limits, an algebralc manipulation system
must be able to detect all constant ldentities. This is not
possible for the set of all expresslions [22]. |t may be
possible for a proper subset of all expressions. For
example, many trigonometrical ldentlitlies disappear If all
trigonometric functlons are radlically transformed Into sums

of complex exponentlals, This Is a baslc problem of great
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practical and theoretical Interest [§]. Such simplification

capabillities would be of use to many other programs as well,

DELIMITER can be augmented by Increasing the types of
functlons it can handle which may Include functions deflned
by Integrals. Another possible area of research Is the

automatlic determination of superior and Inferlor Yimits.

The fact that WANDERER can evaluate many non-trivial
deflinite Integrals does not mean that It can compete with an
expert human Integrator yet. For one thing, a mathematician
can usually construct a function of a complex varfable and a
suitable contour for evaluating different Integrals,
WANDERER cannot form a contour bhased on analysis of a glven
real Integral. It simply selects from the cases known to
{t. WANDERER would be much more powerful if It could
determine, for a glven Integral, whether the method of con-
tour Integration and residue theory were applicable, and, if
it were, evaluate the Integral by forming a sultable Inte-

gral around a closed contour,

The evaluatlion of contour Integrals by reslidue theory
usually requlres the solution of algebralc or transcendental
equations. WANDERER uses the SOLVE program of MACSYMA for

this purpose. SOLVE has fts limlitatlions and Its Improvement
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Is also a possible area for further work.

Suppose one wants to evaluate a closed contour Integral
by resldue theory. An Interesting general question Is: what
knowledge about the Integrand or the functlions used In form=
ing 1t Is necessary. Ue think the following are essential:
(1) evaluatlion;

(2) differentlablllity and derlvatlives;
(3) singularities;

(4) asymptotlc behaviour,

A natural extension of the work here Is Integration
over arbltrary user=-speciflied contours. This should not be
difficult to do, except for the lack of notation.
Specifically, we must speclfy an arbltrary contour to a com=
puter and devise a general data structure for use In
representing contours. Fonr Instance, consider the

specificatlon of the following Indented contour,
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One obvlious way Is to specify a contour plecewlse.
Each plece of curve has a parametric form and a starting and
ending value for the parameter. There may be other

approaches.

Further work In thls area of symbol manipulation might
Include:
(1) Deslgn of computer algorlthms for testling convergence
and dlvergence of Integrals,
(2) Summatlon of Inflnite serlies by residue computations,
(3) Investligatlion of algorlthms for definite. Integration of
speclal functlons,
(4) Evaluatlion of multiple definlte Integrals.
(5) Application of definlite Integration programs In solution

of differential equatlons.
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APPENDIX A
A FLOWCHART OF DELIMITER

A flowchart Is presented In the next page which detalls
the flow of control of DELIMITER, Llistlngs of the programs,
written in the LISP programming language, may be obtalned

from the author.

The routine LIM, appearing In the flowchart, Is a
program which applies the 'trivial' 1imlt rules, makes use
of subroutines to compute limits of sums, products, powers,
and the functlons SIN, COS, TAN, LOG, SINH, COSH, TANH, It
calls LIMIT recursively and makes use of L'Hospital's rule

and other routines when needed.
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APPENDIX B
A PROOF

Infinite Integrals of

n
%1 k Z m
f(Z) = %E rA

where n > 0, k # 0 real, R1(m) > =1, and n = RI1(m) > 1,
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have been discused in chapter 4-3,2. Some results derlved

there depends on the proof of (1) and (2) below.

The objective here Is to supply the proof of

&->0s

1) llmltJr f(Z) dZ = o0,
Ce
and

2) limlt f(Z) dz = 0.

R =>4+ CR

where CR and C are the clrcular contours glven below.

*S

Ce o
atlan




Let
le
Z=re and
then
IJrf(Z) dZ
¢
m+] LR T e
lr EXP(l kre
o
a+l/ra/an
(i) €r EXP( = k SIN(n
o

For 0 s e € %P1/(2 n) we have

EXP( = k SIN(n o)

n/2n
a+l -be
r e

o

Since a + 1 > 0, thls completes the

Thus

M

A

de

Now from equatlon (1) we have

a+l

B /2
M= o—— EXP( - k
n o

a+l

r J/~nmz
nJo

=

EXP( -
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m=a+ Ib,

+i({m+14)e ) de

n

e) r - b e) de = M

IA

1.

proof of (1).

n b e
SIN(e) r = ~—) de
n
n
2 ker b e
- ) de
%P1 n




|
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5Pl r n %Pl b
s (lL-EXP(-kr -
n 2 n

2 knve + %P1 D

))

The fact that n-a=1 > 0 completes the proof of (2).
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APPENDIX C

PERFORMANCE OF WANDERER
AND DELIMITER

As a measure of the performance of WANDERER and the
1imlt programs, selected problems have been timed. The time
sharlr, system used Is the ITS of the Artificial
Intellligence Laboratory at MIT which uses a PDP=-10 computer
with a memory cycle time of about 2,75 mlcroseconds. Tlime
used for parsing the Input string and display of the
computed result has been excluded In order to obtaln an
approximatlion to the time actually spent Inside WANDERER or
DELIMITER, Garbage collectlon tn the LISP [17] system In
which MACSYMA Is wrlitten may take place during a
computatlion, Although garbage collection Is a slow
procedure, It Is only falr to regard It as part of the
computation process belng carrlied out. Therefore, the time
It required has been Included In the timing experiments,

The results are put in the form of two tables. An * 1s used
in the tables to indicate computation requiring LISP garbage

collectlon.
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TABLE |
PERFORMANCE OF DELIMITER

Limit Problem computed Result Time In
equlvalent to Sec,
X
LIMIT X 1 0.82
X=—=0+
X
LIMIT (1+1/X) %E 1.42
A= +00
X
X LOG(X) + %E
LIMIT =emeemcncecccccccrcaccaccccannas 0 3.00
X->+00 3
N SQRT(X + 1)
LOG(X + X + 1) + %E
¥

2 4
X SQRT(X + 1) X
LIMIT %E - %E INF 13,18
R=>+00
1
LIMIT «ercercrecececececwe- INF 1.15
A== B 2
£ =6X +11 X -6
1 - SIN(X)
LEMIT S=SSaemmas 0 1.52

X-=7/ 2 COS(X)



X SQPT(X + 5) + 1

SQRT(L X + 1) + X

TAN(X)

X==2 LOG(X - 1)

SQRT(4)

MINF

1/2
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1. 93

3.63

3.83



TABLE 1

PERFORMANCE OF WANDERER

Integral computed

4
1
== dX
4 X

Result
equivalent to

0 (princlipal)

LOG(2)

%P1 B + 3 3PI

3 A LOG(3) + (B +.3)%PI

O WD D S M W SO LE GO Gb RO AL AR B WD AL O 00 WD W &5 e W

20 SIN(%PI/20)

176

Time In

Sec.

0.55

2.02

7.42

1.67

1.08



bl dX
, SORT(X) (2 X +

° (4 SQRT(X) + 3)

3/2

dX

D

(2016 %E ) / 78125

sP1/28

2P1/SQRT(2)

DIVERGENT
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0.95

1.39

0.81



* %

SQRT

PLOG(X)

LOG(X)

GLOG(X)

ZP

BETA

GAMMA
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APPENDIX D
NOTATIONS

plus infinlty, MINF minus Infinity,
V-1 TR 4
base of natural logarlithm
nultipllcation operator
exponentlation operator
square root operator
%P1 2 Im(PLOG(X))> -%Pl, the principal branch
when X > 0 for PLOG(X)
2 %P1 > Im(GLOG(X)) 0
the zero parameter (defined in chapter 4)
the beta functlon

the gamma functlion
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APPENDIX E
AN UNDECIDABILITY RESULT

Let S1 = {P(X1,X2,...,Xn)} be a set of polynomials with
integral coefflicients In X1, ... , Xn and S2 a set of

functions F of the form

F(X1, ... , Xn)
2 2 n 2 2
= (n+1) (P (X1, ... , Xn) +§:1(SIN1CXJ)KJ (X1, vo. , Xn))=1,

where Kj Is the domlnating function (6| for

d 2
-— P,

dXj
Richardson has shown |22,6| that

Lemma 1. For F In S2 the predlicate "there exlsts an n-tuple
B of real numbers such that F(B) < 0" Is recurslvely

undecldable.

Lemma 2, |If F(B) ¢ 0 for some n=tuple B real numbers then
there exists an n-tuple A of nonnegatlve Integers such that

P(A)=0 and therefore F(A) = =1,
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Lemma 3. Let

3
h(X) = X SIN(X) and g(X) = X SIN(X )
Then for any real numbers Al, ... , An and any 0 < € < 1
there exlsts b > 0 such that

[h(b)~Al|<€, |h(g(b))=A2|<€E, ... , |h{g(,..g(b),..))=An|<E,
By use of these Lemmas we can show

Corollary., For any G In a set of functions of the form
G(X) = F(h(X)'h(g(X))o e e h(g(...(g(X))...))) + 1/20
the predicate '"there exists a real number t such that G(t) =

0" Is recursively undecldable,

Proof: Suppose the predlicate Is recursively decldable, then
we have

1) If there exlsts a t such that G(t)=0 then there exlst
real numbers Al, ... , An such that F(Al, ... , An) < O;

2) If there exist real numbers Al, ... , An such that

F(Al, ... , An) < 0 then (by lemma 2) there exlst
nonnegative integers Bl, ... , Bn such that

F(B1, ... , Bn)==1, Thus, there ex:sts a real number c such
that G(c) ¢ 0., Since G(X) can be large and positlve and

G(X) Is continuous, this Implies that there exlst a t such
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that G(t)=0,

Thls contradicts lemma 1.

From the definition of the Functlon F, one can see G is
always =1/2 and 6§ ls large and pcslitive except at the

vicinity of a finlte number of points where G Is negatlve,
Theorem: The convergence of a set of Integrals of the form

o dX
/- 2 2

“-2(X +1)G (X)

Is recursively unde<idable.

Proof: Thls Integral Is convergent If and only If G(X) has

no real zero.
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