
- t

CONVERSATIONAL PROGRAMMING — LCC

A REFERENCE MANUAL FOR A
LANGUAGE FOR

CONVERSATIONAL COMPUTING

J. MITCHELL
J. NEWCOMER
A. PERLIS
H. VAN ZOEREN
D. WILE

y

/

s

y s

\-

RoDroOuced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springtiold, Va. I115I

..

..

)\

• •

'

CONVERSATIONAL PROGRAMMING -~ LCC

A REFERENCE MANUAL FOR A
LANGUAGE FOR

CONVERSATIONAL COMPUTING

\

J. MITCHELL
J • tJ EWCOM ER
A. PERLIS
H. VAN ZOEREN
D. Wli.E

)

/

I ,.

'> ..

~cproduced hy

NATiONAL TECHNICAL
INFORMATION SERVICE

Spnn9fiulcl. Va 22151

..

!
I

r

CONVERSATIONAL PROGRAMMING — LCC

A REFERENCE MANUAL FOR A
LANGUAGE FOR

CONVERSATIONAL COMPUTING

J. MITCHELL
J, NEWCOMER
A. PERLIS
H. VAN ZOEREN
D. WILE

Carnegie-MelIon University
Department of Computer Science

Pittsburgh, Pa.
June 1971

P D

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(P46620-70-C-0107) and is monitored by the Air Force
Office of Scientific Research. Thic rlncnmanr has haan
JT1 td £*a±TH*>*4^e*l*a** and aale^ lto-4inri Ihntirn ^L •

■ mmmmmmmmmwmmmmimmmmmm

DOCUMENT COHTROL QATA • K «. D
(Srcurlly clmiiltlcnion of mi», body of «turmcl «nd Indening annolnilon wuil be «nl*rtä whfn »i» ov«f«l/ trpotl Is clatsltlcJ)

' OHiCINATINC AC TIVI TV (Corporal« aulftorj

Department of Computer Science
Carnegie-Melion University
Pittsburgh, Pennsylvania 15213

I». REPORT SECURITY C LASSI FIC ATlOr«

UNCLASSIFIED
lb. CROUP

» nrPORT TITLE

CONVERSATIONAL PROGRAMMING -- LCC A RF^RENCE MANUAL FOR A LANGUAGE FOR CONVERSATIONAt
COMPUTING

OESCRIMTIVE NOTES fTVpo ol report mnd Inclutlve dmtf)

Scientific Interim
* ».UTHOfHSi (Flft nam», middle initial, latt nam»)

J. Mitchell, J, Newcomer, A. Perils, H. Van Zoeren, D. Wile.

«• PSPORT OATE

.Tune 1971

7«. TOTAl. NO. OF PASES

85

7b. NO. OF REFS

None
= .. CONTRACT OR GRANT NO.

F44620-70-C-0107
h. PROJECT NO.

A0827-5

6I101D

«a. ORIGINATOR'S REPORT NUMBERIS)

»6. OTHER REPORT NOISI (Any olhor nufflbar« thai may ba aaalgnad
Ulla tapotty

AFOSR-TR- 7 1-2375
!'.-. DISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited.

II. SOPPLEMENTARV NOTES

TECH, OTHER
12. SPONSORING MILITARY ACTIVITY

Air Force Office of Scientific Research
1400 Wilson Boulevard fyjiryv .
Arlington, Virginia 22209

5?. ABSTRACT

This document describes LCC, a Language for Couversational Computing which runs
under TSS on an IBM 360/67. The statement syntax of LCC stems from that of Algol
60 and JOSS, but LCC has been designed to exploit as fully as possible the dynamic
nature of conversational computing. Thus LCC is a fully Interpretive system
with extensive features for conversational control and with capabilities for
afr dynamic block structure, block expressions, and recursion, h) interspersed
editing and execution (use of program text as data and vice versa), cY dynamic
variable attributes, and d) interlaced program execution and creation (program-
directed program preparation). The complete LCC syntax and a sample conversation
are included.

DD .Fr..t473
Sccuhlv CtMSsifioatlun

PßEFAei

füBEÖSf
THE PURPOSE OF THE UC EFFORT WAS TO STUDY AND CREATE A

CONVERSATIONAL LANGUAGE. TIME SHARING IS NOW ACCEPTED AS AN
EXCELLENT WAY TO PROVIDE COMPUTER RESOURCES FOR PROBLEM
SOLVING. YET# WITH FEW EXCEPTIONS, THE LANGUAGES IN WHICH
PROGRAMS MUST BE COUCHED WERE DESIGNED FOR BATCH PROCESSING
ENVIRONMENTS. IF ONE IS TO INPUT PROGRAMS FROM A TERMINAL
AND THE OUTPUT (OR SOME PART OF IT AT LEAST) IS TO RETURN TO
THE TERMINAL, IT IS NATURAL TO CORRECT (EDIT^ PROGRAMS FROM
THE TERMINAL.

WHAT THEN ARE THE CONSEQUENCES OF PROGRAM CREATION AT
THE TERMINAL? CERTAINLY INTERSPERSING EDITING AND EXECUTION
SHOULD BE ENCOURAGED. IF THE PROBLEMS TO BE PROGRAMMED ARE
♦SMALL» — SO RESPONSE WILL BE GOOD — THEN THE PROGRAMS
SHOULD BE RUN INTERPRETIVELY, ESPECIALLY IF FREQUENT
MODIFICATION IS TO BE EXPECTED. THUS THE COMBINATION OF
SMALL PROGRAMS AND FREQUENT MODIFICATION LEADS TO AN
INTERPRETIVE PROCESSOR.

WHAT ARE THE CONSEQUENCES OF INTERPRETATION? THE
REJECTION OF THE COMPILER APPROACH SURELY MUST HAVE SOME
IMPORTANT EFFECTS ON THE LANGUAGE BEING PROCESSED. ONE
EFFECT TO BE DESIRED IS AN INCREASED ABILITY TO INTERLACE
EXECUTION AND CREATION. ALGORITHMS DO NOT SPRING INTACT
FROM THE MIND BUT EVOLVE — BOTH OVER THE SHORT TERM AND THE
LONG TERM. MUCH OF THE DEVELOPMENT OF A PROGRAM SPRINGS
FROM EXPERIENCE — THE ACTUAL BEHAVIOR OF THE PROGRAM UNDER
EXECUTION.

ONE IS STRUCK WITH THE POSSIBILITY OF EXECUTING
INCOMPLETE ALGORITHMS AND LETTING THE FLOW OF COMPUTATION ON
DATA SAMPLES AID IN THE SEQUENCING OF PROGRAM PREPARATION.
IT IS TRUE THAT PROGRAMS ARE DECOMPOSED INTO PARTS OR
MODULES FOR A VARIETY OF REASONS: LOGICAL DECOMPOSITION OF
A TASK INTO ITS SEPARATE PARTS; DECOMPOSITION IMPOSED BY THE
LIMITS OF HUMAN ATTENTION (NOT EVERYTHING CAN BE PROGRAMMED
AT ONCE); DECOMPOSITION IMPOSED BY THE UNEVEN UNDERSTANDING
OF THE MECHANICS OF MODULES EVEN WHEN THEIR LOGICAL FUNCTION
IS UNDERSTOOD (PROGRAMMERS TEND TO DO FIRST WHAT THEY KNOW
HOW TO DO BEST). WHAT IS MORE NATURAL THAN HAVING THE
COMPUTER, THROUGH THE PROCESSOR IN WHOSE LANGUAGE ONE IS
WRITING, ASSIST IN THE SCHEDULING OF THE TASKS?

IT IS NOT ONLY THE PRESENCE OF THE PROGRAMMLR IN THE
LOOP BUT THE WHOLE STYLE OF PROGRAM PREPARATION THAT CAUSES
THIS KIND OF PROGRAMMING TO BE CALLED CONVERSATIONAL. ONE
MUST NOT CLAIM TOO MUCH. THE PROCESSOR IS A WEAK ALLY IN
THE PROCESS OF CREATION AND THE BURDEN OF PROGRAMMING IS
STILL IN THE PROGRAMMERS HANDS. LET US SAY THAT A MORE
WILLING ASSISTANT IS BEING FASHIONED THAN WAS EVER PRESENT
IN THE OLD STYLE COMPILER-DOMINATED ENVIRONMENT.

i

APPgOASU
"THE APPROACH USED FOR THE DESIGN AND CONSTRUCTION OF

THE LANGUAGE FOR CONVERSATIONAL COMPUTING WAS QUITE
SIMPLE. THE COMPUTER ON WHICH LCC WAS TO BE FASHIONED —
THE ifilj 330/67 — HAD AN AMBITIOUS-TIME SHARING SYSTEM UNDER
DEVELOPMENT —TSS— AND IT SEEMED REASONABLE TO UTILIZE THAT
SYSTEM AS THE-QNDERLYING TIME SHARING SYSTEM SUPPORTING OUR
CONVERSATIONAL LANGUAGE AND ITS SYSTEM. THE ONLY AVAILABLE
TOOL FOR CONSTRUCTING THE U£ SYSTEM WAS THE TS§ ASSEMBLER
AND IT WAS IN THAT LANGUAGE THAT THE SYSTEM WAS BUILT. IT
WAS BELIEVED — AND STILL IS — THAT THE USE OF ANY
PROGRAMMING LANGUAGE LEADS TO THE DEVELOPMENT OF A STYLE OF
PROGRAMMING AND THAT EACH LANGUAGE HAS A •CONVERSATIONAL
ANALOGUE*. THE DESIGNERS OF U£ HAD THE GREATEST AFFINITY
FOR THE SYNTAX AND STYLE OF A^Sfifc 60 AND SO IT WAS CHOSEN AS
THE BASE FROM WHICH TO DEVELOP A CONVERSATIONAL ANALOGUE.
MANY OF THE CONSTRUCTIONS WERE BORROWED FROM JOSS, THOUGH
]££ ATTAINS A POWER FAR BEYOND THAT OF jifi§§. INRETROSPECT
IT PROBABLY WOULD HAVE BEEN BETTER TO HAVE CHOSEN IVERSON*S
APL AS THE BASE SINCE THE ARRAY PROCESSING OF A& IS SO MUCH
MORE NATURAL THAN THE /&GOL SCALAR PROCESSING.

A GROUP EFFORT
" "~HIS-REPORT IS THE END PRODUCT OF TWO YEARS WORK BY A
GROUP AT CARNEGIE-MELLON UNIVERSITY'S DEPARTMENT OF COMPUTER
SCIENCE.

THE LANGUAGE AND SYSTEM DESIGN EFFORT WAS DONE BY E.
MCCREIGHT, J. MITCHELL, A. PERLIS, H. VAN ZOEREN AND D.
WILE. H. VAN ZOEREN WAS LARGELY RESPONSIBLE FOR THE
DETAILED SYNTAX SPECIFICATION.

THE SYSTEM ORGANIZATION AND PROGRAMMING EFFORT WAS DONE
MAINLY BY J. MITCHELL, J. NEWCOMER, AND D. WILE. H. WACTLAR
WAS RESPONSIBLE FOR FINAL EDITING AND CORRECTION OF ERRORS
WHEN THE SYSTEM WAS FIRST BEING USED. J. NEWCOMER HAS
PREPARED A DOSSIER OF SYSTEM ROUTINES AND INTERNAL DATA
STRUCTURES NECESSARY FOR ANY REAL UNDERSTANDING OF THE
INTERNAL MECHANICS OF THE SYSTEM.

THE USER'S MANUALS (ISSUED UNDER SEPARATE COVER) WERE
WRITTEN BY A. LANKFORD (VOLUME I AND VOLUME 11) AND W.
MULLINS (VOLUME I). THE EXAMPLES AT THE END OF VOLUME II
WERE WRITTEN BY: J. MITCHELL — «TREE DISPLAY PROGRAM»;
DIANA BUTRICK • «SIMULA/LCC»; A. LANKFORD— «ALGEBRAIC
EQUATION SOLVER»; D. WILE — «AN INFORMATION RETRIEVAL I
SYSTEM». THESE PROGRAMS WERE ALL EDITED BY A. LANKFORD TO
IMPROVE THEIR READABILITY. 1

THE LANGUAGE DEFINITION DOCUMENT WHICH FOLLOWS WAS
PREPARED BY H. VAN ZOEREN.

II

i
i

I

2m£ Qi CQliI£Hl£

Introduction

LCC Statements

ALT^P
APPAY
BEGIN ...
CASE
COMBINE
COPY
DELETE
DISPLAY
EXIT
FOE
GO
GOTO
IF
LINE
LOAD
NEW
NUMBER
OFF
PART
PAUSE
PRINT
RECOVER
RETURN
SAVE
STEPS
TYPE
USE
WRITE
?
?$
{ ... >
!
A

END

Assiqnaents
Procedure calls

3
U
U
n
5
5
&
8

11
12
13
13
13
14
1U
15
16
18
18
19
19
19
20
21
22
23
23
2a
2U
2H
25
25
26
26
28

Hi

LCC Metavariables

expression
extractor
for-clause
group
identifier
logic-literal
number-literal
operand
pointer
primary
procedure
statement
save-object
string-literal
structure
subscript-list
type-object
variable

30

30
3tt
35
35
36
37
38
39
39
40
40
U1

42
44
U4
45
45

! I

LCC Operands

BEGIN ...
CASE
STEPS
?
??
!

END

{ >

46

4f
46
46
47
48
49
49
: 9

Appendices

A. Explanation of Syntax Notation
B. LCC Syntax .
C. Logging On at a 2741 Terminal
D. Typing LCC Text at a 2741
E. Error Messages . ,.*...,.
F. LCC Syntax (SX) Error Descriptions
G. Automatic Reload Pile
H. Standard Functions
I. Built-in Functions and Procedures
j. Example LCC Conversation

51

51
53
59
61
62
63
64
65
66
70

Iv

 Introduction

LCC is a language for conversational computing which operates
within the TSS monitor system on the IBM 360/67 computer at
Carnegie-Mellon University. T.n its fundamental design, LCC began
as an amalgamation of <1) the basic elements and statements of the
algorithmic language ALGOL 60 and (2) the input-output, control,
editing, and filing statements of the conversational language
JOSS, but extensive modifications have been made to exploit as
fully as possible the dynamic nature of conversational computing.
The resulting language, with its underlying processing system,
gives you, the LCC user, a very high degree of power and
flexibility.

The working sentences of the LCC language are statements, a
statement (abbreviated s) being a command which causes LCC to
perform an action (e.g., a modification of data, an Input/output
operation, a modification of control). You may type an arbitrary
number of statemants, separated from one another by semicolons
(;), on a single line. Such a statement list is called a step, and
LCC will execute the statements within it from left to right.

steps in LCC may be used in two different ways, either delayed
or immediate. Delayed steps are translated and saved by LCC, and
thoy may later be recalled and executed under programmer control,
ft delayed step is distinguished by the presence of a preceding
decimal step number which indicates its relationship to other
steps. Ä step number must lie between 0001.0001 and 9999,9999, and
it is separated from the step text by either a colon (s) or a
comma (,). Both its integer portion, from which leading zeros may
be omitted, and its fractional portion, from which trailing zeros
may be omitted, must lie between 0001 and 9^99. Ä step number
serves both as the editing designator for a step and as a control
designator for the first statement in the step. In addition to the
step number, any statement in a delayed step may have one or more
labels associated with it as control designators, a label being an
identifier which immediately precedes the statement and is
separated from it by a colon (:>. If a step has multiple step
numbers, all must precede its first statement or label, and only
the rightmost number will be used; if a statement has multiple
labels, each will be significant. Some examples of delayed steps
are:

3,7, no TO 3,5;

3125,00142: » * B*1; LB06: C - D*E; LBL: F - 0/3

27,85: 27,830, L: M: TYPF Y,Z; BETHBN T

Delayed st^ps will be ordered according to their numbers, and
they may be inserted, modified, or deleted freely while
conversing. They may be typed in any order, and a newly typed step

j

Introduction

will replace any previously saved step with the sane number. For
execution purposes, steps are grouped into parts, with a part
being the orderei set of all steps whose numbers have the same
Integer portion. When executed, a part will be treated as an ALGOL
block, i.e., variables which are declared and labels which are
used in it will have local meanings which are valid only when it
is active (i.e., it is being executed). All such local meanings
will he erased when execution of the part is completed.

An immediate step, which is distinguished by the absence of a
step number, is translated and executed when typed and is then
discarded. Immediate steps are used to perform one-time or *desk
calculator* calculations, to control the execution of the delayed
steps of a program, and to perform various editing and debugging
operations. An explicit transfer of control (GOTO) to an immediate
statement is not allowed, and consequently immediate statements
cannot be labelled.

Syntactically, any LCC statement may be used in either an
immediate or a delayed step. When executed, however, each
statement will be checked for validity in the currently existing
context, and at *:bat time, some statements will be treated as
no-ops (e.g., an immediate *PAnsS', a delayed *G0'), and some will
leao to errors (e.g., a global %GOTO', a global %RHTURN').

An LCC statement iray be empty, in which case it contains no
non-blank characters and it. performs no action. The various
non-empty LCC statements are listed alphabetically by their
initial keywords or metavariables and described below. Following
th-* statement descriptions are descriptions of the subsidiary
metavariables (expressions, literal constants, etc.) used in the
language. The abbreviated syntax notation which has been used is
described in Appendix A,
summarized in Appendix n.

and the complete syntax for LCC is

 LCC Statements

statement ;:= (one of the following — pp. 3-29)

ALTRR qroup | : j e_1 ■* e_2 , e 3 - e U , ... , e„(2*N-1) - e_(2*?0
I , I

The expressions e_I should evaluate to characteir strings. LCC
will search the text of the group for substrings which match the
given pattern strings e_1, e_3# ... , e_(2*N-1). Bach substring
which matches an e_(2*J-1) will be repJaccd by the corresponding
e_(2*J)# and the group will be retranslated with its altered text.

LCC will perform the search as in the following psc 'do-LCC
code:

POR (each step in the group (ordered on step numbers)) DO
{ FOR I PROM 1 BY 2 TO 2*N-1 DO

{ START_0F_SEARCH_POI!JTER - 1;
»GAIN: TF (search finds substring e_I) THEN

{ (replace substring oy e_(I+1));
START.OF.SSARCH.POINTER - (position of

1st char after replaced substring);
GO TO AGAIN } >

IF (any replacements were made) THEN (retranslate) };

For the search LCC will treat both text and patlern strings as
sequences of either contiguous letters and/or digits or individual
non-blank, non-alphanumeric characters, with blanks being ignored
except insofar as thoy separate alphanumeric sequences from one
another. As an example, the step

tt.8: X-IF PQR THEN (TEMP+1) ELSE M5. 64 FF';GO TO 4.41;

will be found to contain the substrings (among others)

%X-', MTRHP', *♦', M5', TFF', V,0 T0r,
*11; ', and *.' (twice)

but it will not contain the substrings

*8'r %0'» *.6'» %G0T0', or %TOU'

Examples:
ALTER STEP 1.6 : %X' * »AX* , %Y' * *By'
ALTER PARTS, *P ♦ Q' • R

LCC Statements

ARn»Y H h iient H .,. [I- e < : e > H «l]I j. 1 H ,,•
I .)

LCC will asslqn to each ident in a list the multidimensional
array structure specified by the bounds list which immediately
follows it. Uach itfra in a bounds list gives the limits on one
subscript of an array structure. The number of items is thus the
number of dimensions of the array. An item in a bounds list can be
pith(»r a p?lr of expressions specifying the lower and upper limits
on the subscript for that dimension or a single expression
specifying the upper limit on that subscript (the lower limit will
be Implicitly 1).

Storage »'III not be allocated for an array until the acray is
us?df and even then it will only be allocated for a given row when
an element from that row is first accessed.

Examples:
ÄPRÄY LAfl:», -3:8*K1
ARRAY JXH, nOR[10,15,20Jf DAVEtO:81[Ull-6:-11

HFGIK ♦- s -I .;. END

The keywords %1?RGI!«' and *END' delimit a •block", whose list
of arbitrary LCC statements will be treated as if it were in a
part, i.e., there may be local variables valid only within it, LCC
will perform a block entry, after which it will execute the
statements from the list in sequence. This "block statement* will
normally be terminated by "running off its end*. A RETURN
stitement within it will first terminate the context of the block
stat^aent and then returii from the context in which the block was
enbedded.

Examples:
BEGIN STEP «».8; PART 2S1; S * T END
BEGIN NEW Ä,n; PART 6; PJRT 8 END

CASH e OF (s_1 ; s_2 ; ... ; s_N >

Thf» expression e wi'l be evaluated and rounded to an integer
J. Tf 1 < J < N, LCC will give control to statement s_J, from
which control will normally pass to the successor of the CASE
stacement. It is an error if J is out of the range 1 to N.

i

LCC Statements

Examples:
CASS J+1 OP { X - F(A,B) ♦ C ;

X - SORT(Y) ♦ n
GO TO 6,2 ;

X - STH(Yt2) ;
GO TO 6.2 ;
X - 0 >

CASP e OF { s_1 ; s. 2 ; ... ; s_N ; OTHBBWISR s_(N*1) >

The expression e will be evaluated and rounded to an integer
J. If 1 < J -S H# action is as in the simple CASE statement without
an OTHEBWISR. If J is out of the range 1 to Nf control will be
given to statement s_(N*1).

Examples;
CASE I OF { X-S; OTHERWISE X - „+5 >

COMBINE < STEP;. > num_1 TO num_2 AS e

A single string will be constructed by concatenating, in st«p
number order, the text portions of all steps with numbers between
nuffl_1 and num_2 inclusive. During this concatenation process, a
semicolon (;) character will be appended to any step which does
not already terminate with one. LCC will then retranslate the new
string as step e. Steps num_1 to num_2 will net be deleted and
will be unaffected by the COMB1HE statement (unless num_1 < e <
nura_2). As in a group, it is an error if num_1 > num_2 (unless
num_2 < 1).

Examples:
COMBINE STEPS 6.7 TO 6.83 AS 6.7

COPT qroup AS e

If e evaluates to an integer, the set of steps from the
specified group will be copied and retranslated as a new group,
with Hie integer portion of each step number being replaced by the
value of e (which must not be zero). If e does not evaluate to an
integer, this statement is equivalent to the statement

COPY group AS e BX .01

LCC Statements

Ml stops in the original group must he in the same part. The
source text for the group will not be modified by the COPY, and
the original group «ill not be deleted.

Examples:
COPY PIRT 3 AS U3
COPY STEP 5.61 AS 12.(m

COPY group AS e_1 BY e_2

LCC will copy, renumber, and retranslate the ordered set of
steps from the specified aroup. The renumbering will start with
e_1 (or, if e_1 is an integer, with (e_1 ♦ e_2)) and successive
step numbers will be incremented by e_2 (whose value must lie
between ,0001 and .^«m. The original group of steps will not be
deleted by a COPY statement (though it may be changed if some of
the new steps fall within the group). The source text for a copied
step will not be modified during the COPY, and it is your
responsibility to make sure that the renumbered steps do not
contain spurious references to steps in the original group. To
insure this, you should use labels rather than step numbers to
refer from one statement in the group to another.

Examples:
COPY STEPS U.371 TO 1U,4305 AS 814.001 BY ,002

DELETE FILE MB'
Examples:

DELETE ALL

This statement is effectively equivalent to (but slightly
slower than) the step

EXIT ALL? DELETE STEPS; DELETE VALUES

Your workinq storage will be completely erased, and LCC will be
re-initialized, just as if you had logged off and then logged back
on.

i i

DELETE PILE e j

l

■

The expression e must evaluate to a string, which will be used
as a file name. LCC will delete that file from your file catalog,
and it will take back any storage which that file used. I

LCC Statements

I

DELETE | PftPTS |
| STRPS |

co^es f

DELETE VALUES

,CC -ill erase ft« »orUn, storage both the soarce .»d oblect
a for all steps (only «lues »HI cesain).

"* -"i "tiv ..irot "ro»rn,iaertoiSrts. ru^ntv,
i^TATZ^ fp0to,r:rhthe0t«al!i., -adetlne^.

DST.STE < STEPS > num.l TO num_2

LCC will erase from worKiiu storage all steps nhose numbers
lie between num_1 and nua_2 inclusive. As in a qroup, it is an
error if num_1 > num_2 tunless num_2 < 1).

Examples: DELETE 151.42 TO 151.536

DELETE < STEP > num

äquivalent to

DELETE STEPS num TO num

Examples: ^^ ^ ^^

DELETE PARTS num. 1 TO naiB,2

Equivalent to

DELETE STEPS (num.1 ♦ .0001) TO (num.2 * .99<m

LCC Statements

nELRTR PART nura

Equivalent to

DELFTS PARTS nun TO nun

DELETE | < STEPS > | t- nuiB.I < TO nu«_2 > H .,.
| PARTS I

A DELETE statement may include a group list. LCC will then
delete all steps in each of the specified groups.

Examples;
DELETE PARTS H, 7 TO 10, 153, 48
DELETE 3.71, 3.8"U, A4 TO (AU ♦ P - . *>)

DELETE H varLi -« .,.

I.rc will replace the current incarnation-value for each varid
ir. the list by •undefined*. Tf a varid referred to a string or
array (or any other item for which storage was allocated), the
internal links to that storage will be cut, but the storage will
not be taken back until the block within which it was allocated
has been terminated.

Note that an array element can be deleted. This feature will
be necessary before you can change the meaning of an array element
which is a procedure, a reference pointer, or an array name.

Examples:
DELETE A,B
DELETE cn,J,al

DISPLAY PILE < CATALOG >

LCC will type out a list of the names of all of your LCC
files. The names will be the full TSS names of your files, which
arf- gualifiea oy your user nucher and the internal name LCCFILE.
Thus the file %SAVAL' of user XY217Z13 will have the full name

XYZ m13.LCCFILE,SAVAL

1
LCC Statements

DISPLAY RETORN < STEPS >

LCC will type out a list of the currently active steps, thus
qiving a nap of the present control status. Step desianators will
be typed one per line, and the list will be ordered so that the
innermost (most recent) step will be typed first. For steps inside
parts, LCC will type the step number; for immediate steps LCC will
type the characters *♦♦*»• for a procedure call LCC will type the
procedure name. Thus LCC miqht type the lines

♦ ♦♦
17.3
FUNCT
♦♦♦
U.3
* *

in response to your ^DISPLIY RETHBH' statement.

DISPLAY ALL

Equivalent to

DISPLAY PARTS; DISPLAY VALUES

DISPLAY | PAPTS |
j ST^PS I

Equivalent to

DISPLAY STEPS 1.0C01 TO 9999.9999

DISPLAY VALUES

LCC will type, in alphabetical order, the names and current
meaninqs of all of your defined identifiers (i.e., the meaninqs
atop each of your variable stacks). Appropriate formats will he
usefl for values (numeric, loqic, and strinq) and references
(label, array. 4'ir<», and pointer). Each displayed line will
also incl"' level number which indicates the level of
the block .n Ju- identifier was declared, i,e,, the
outermost jlock level iu " ' current meaning will hold, for
global variables, the level num.,_. zero will be suppressed. An
example of the displayed output is:

—-t—

10 LCC Statements

2 HRRa ARRAY 11:5,

1 LHP IN 3.6
1 LV XOOOOOOFF

1 NAH »ABC
NV -1. 214567,, 15
PROC PROCBDÜPF

2 SV *ST'

11:5,3:10,-2:6]

DISPLAY < STEPS > nUB.l TO nui«_2

LCC will type in order t^e source iaaqes for all steps whose
numbers are between num_i and num_2 inclusive. As in a group, it
is an error if nus.l > num-2 (unless nun.2 < 1). Each step will
beqin on a new line and will include both its number and its text.
Except for possible minor differences in the format of the step
number, a displayed step will look exactly as it did when you
typed it in.

Examples:
DISPLAY aiS.3 TO UIS.T

DISPLAY < STEP > num

Equivalent, to

DISPLAY STEPS nu« TO num

nrSPI.AY PARTS num_1 TO num.?

Equivalent to

DISPLAY STEPS (num.l ♦ -0001) TO (num.2 ♦ .9999)

Examples:
DISPLAY PARTS <» TO 6

DISPLAY PART num

Equivalent to

DISPLAY PARTS num TO nun

LCC Stateaents 11

niSPLAy | < STEPS > | h nui.l < TO nuii_2 >-«.,,
I PAPTS |

A DISPLAY statement nay include a group list. LCC will then
displ.iy all the specified steps or parts, ordering the groups for
typing from left to right in the list.

DISPLAY 3.« TO 3.43, 3.8 TO 4.2, tt.S13, U.t)02
Fxamples:

DISPLAY »- varid -i

LCC will type out the current neaning for each varid in the
list. Fach displayed •meaning" will take up a single line, and it
will include exactly the same information that would be typed for
that variable by a 'DISPLAY VALHES* statement. If no meaning has
been assiuned to a listed varid, the varid will be displayed as
•undefined*.

Fxamples:
DISPLAY A, C, P, XII,?J, XIU,7,31

EXIT

An PXIT statement is used to delete the context of the part or
step group which is currently active and give you control in the
context of the part or step groun which called it. A more precise
description of an EXIT is as follows:

EXIT recognizes only contexts involving explicitly numbered
steps and those involving the user (it regards you as the numbered
step 0.0). An EXIT statement will delete all execution contexts
down to and including that for the first non-rero numbered step on
the context stack. It will then delete all contexts down to but
not including the first numbered step. If that is a step 0.0, it
gives you control; if not it adds a new step 0.0 context, which
also gives you control. Thus an EXIT deletes all execution
contexts down to, but not including, the first nunberei step below
the first non-«ero numbered step, and it then gives you control.

12 LCC Statements

*:xrT ML

LCC will perfotn successive EXITS until the global state is
reached (i.e., there are no teaaining group contexts) and it will
then give control to you.

Fxamples!
IP KRR0B6 THEN EXIT ALL

EXIT < TO > < PART > e

If part e is not currently active, LCC will type an error
messaqe and give control back to you. Otherwise LCC will perform
an EXIT. Tf the resulting context is that of part e, control will
be qiven to you. If not, LCC will perform anothevr EXIT, etc.

Examples:
EXIT TO PAST
EXIT 701

<\ FOR iflent <|PR0>1| e_1 >|> <|BY e_2 < TO e.3 >|> < WHILE e_H > DO s
I 1-11 ITO e_3 < BY e_2 >\
j FPO« e_1 |

The statement s will be ex
expression e^U is true and as Ion
ident is within the specified ran
value of the exolicit (ident) or i
modified as specified by the cont
»FROM e_1' may be omitted if e.l
e_2 = 1, *TO e_3' may be omitted
in some manner other than that of
a final value (i.e., if e_3 is in
omitted If ident does not appear
implicit controlled variable will

ecuted repeatedly as long as the
g as the value of the controlled
ge. With each repetition, the
mpliclt control variable will be
rolling for-clause. The phrase
* 1, *BY e_2' may be omitted if
if the loop is to be terminated

the controlled variable reaching
finite), and *P0R ident' may be
in e_J» or in s (in which case an
be used).

Operation of a complete iteration statement is equivalent to
that of tho LCC block

RESIS NEW BYE *• e_2, TOE - e_3; ident <- e_1y
L: IP IP BYE > 0 THEN ident S TOE ELSE ident > TOE

THEN IP e_tt THEH I s; ident * ident ♦ BYE;
GO TO L > END

where the identifiars L, BYE, and TOE do not occur within any of
the e_T or in s. Note th'it, unlike ALGOL 60, the increment and
terminal expressions e_2 and e_3 are evaluated only once, when

LCC Statements 13

execution of the iteration statement begins, and subsequent
changes to any variables uscfl in e.2 ami e_3 «ill not affect the
control of the iteration.

Examples:
FOR I FPOM 1 BY G TO H*l WHILE N * 3 DO ST
WHILE B < C DO PART 2
TO T DO PART 3U5
DO PART 6Stn
FOR a - K TO P BY -2 DO F(JrK)

GO

LCC will return control to the context from which you wero
called, resuming execution from the point of the call. A GO has
meaning only after you have been called via a statement (PAOSF.) or
action (pressing the ATTN or BPEAK key) which expects you to
eventually return control to the caller.

| GO < TO > | e
| GOTO I

If e is a label, it must be that of a statement in a currently
active group. LCC will then EXIT to that group and transfer
execution control to the labelled statement. If e is not a label,
it must evaluate to a step number in a currently active group. If
th'» step number is in the range of the group currently being
executed, LCC will transfer control to the first statement in the
designated step. If the number is not in ranqe, LCC will EXIT from
the current group context and repeat the above process.

Examples:
GO TO LABL3
GOTO 6. 1
GO 1243.0001 ♦

IF e THEN s

If the expression e evaluates as true, execution control is
transferred to s (from which control will normally pass to the
successor of the 1^ statement). If e evaluates as false, s is
skipped. If e has a logic or arithmetic value, it will be
considered as true if it is non-zero or as false if it is zero;
strings will be converted to their equivalent arithmetic values.

1« LCC Stateapnts

Rxanples:
IF X < U THEN PAUSE

IF e THEN s_1 ELSE s_2

If o evaluates as true, execution control will be transferred
to s_1f from which control will noraally pass around s.2 to the
successor of the IF statement. If e evaluates as false, execution
control will pass around s_1 to s_2, froa which control will pass
to the successor of the IF statement.

Examples:
IP „p v Q THEN Z - 5 ELSE (T * T ♦ 1; TYPE T }

TINE < e >

LCC will upspace your paper (at your terminal) by one line or,
if an expression e is supplied, by e lines.

Examples:
LINE
LINE H-J

LOAD < FILE > e

LCC will open file e and, if the file was created by one or
more SAVE statements, load into working storage whatever was SAVEd
there. This is done by treating the information in the file as a
set of lines of input text, each of which will be read and
translated just as if it had been typed in by you.

LCC treats all files alilte, regardless of whether they were
created by SAVE or vWITE statements. Thus a file may contain
immediate statements which were written (as strings) by a WBITE
statement. These will be both translated and executed during a
LOAD of that file. Any immediate statement may be written and
LOADed, including another LOAD statement.

Examples:
LOAD FILE ^0013'

LCC Statements 15

KFW RRRAY H H ident -\ .,. (H e < : e > H .| H |. 1 H .,
i . I

Phis statement acts just like an AHRÄY statement except LCC
will construct a new incarnation-value for each ident before
assigning it its specified array structure.

Examples:
NEH ARRAY A3, AUI10, 20, 5:301, A5[5]

NEW I- ident -I .,.

This declaration statement causes a new incarnation-value (IV)
with the meaning ^undefined* to be constructed at the current
nesting level for each ident in the list. In the usual case that
the old IV is on a lower level, this new IV will be linked to the
old one, which it will temporarily supersede. In case the old TV
is on the current level (i.e , the ident is being redeclared in
this block), it will be replaced by the new one.

A declaration holds
which it is executed,
declared in it will be

only within the scope >f the block in
When that block is terminated, all IVs
erased, and the meanings which the

corresponding idents
will be restored.

had before their declarations were executed

Examples;
NEW A,B

NEW t- ident - 1 e | ^
| pointer |
j procedure j
j structure j

This statement acts much like a simple NEW statement, but
instead of giving each newly constructed IV an undefined meaning,
LCC will assign it a specified initial ^value". Declarations and
assignments will be made from left to right in the NEW list, but a
^value' will be constructed before the ident to which it is to be
assigned is declared. Thus, for example, in the statement

NEW A - B ♦ A

the old value of the variable A will be added to 3
initial value of the new A.

to obtain the

If. LCC Statements

Examples:
NE« S * %SS', T «^ U - V, W * -X
NEW ? * »(ArB) PART 9 tNE« P ♦ »0+P»» S ♦ 6>v
NEW A - &R8ÄY{3,0:51, 3, C * 26, D - ARRAYtX:Yl

NU«BSB AS e_l < BY e_2 >

LCC
each i
transla
whateve
start
o„2, b
to be i
for the
value
missinq

will automatically type out for you at the beq
nput line a step number followed by a colon (;).
tion, the supplied number will be appended as a
r step t«»xt you type. The numbering sequence will
at e^l, with successive step numbers being incre
ut if any numbers in the sequence (including e_1)
nteqers, they will be skipped. Thus it is quite a
numbering to cross part boundaries. if e_2 is q

must lie between .0001 and .9999; if the %BY'
e_2 will be assumed to be .01.

inninq of
Before

prefix to
normally

mented by
turn out

cceptable
iven, its
phrase is

LCC's automatic numberinq will continue until you turn it off;
this is done by inputting an empty step, i.e., by pressing the
PRfURN key inunediately after the step number.

Fxamoics:
HIinBER AS 17.3 BY .002

NU?1BfiR qroup AS e_1 BY e_2

LCC will rcnu
from the specified
if e^l is an in
numbers will be I
.0001 and .9999). T
NUMBER statement
as the correspond
qroup). The sour
NtlHBER statement,
the renumbered st
in the original
rather than step n
to another.

mbet and retranslate th« ordered set of steps
qroup. The renumberinq will start with e_1 (or,
teqer, with (e_1 ♦ e_2)) and successive step
ncremented by e_2 (whose value must lie between
he oriqinal qroup of steps will be deleted by a
(otherwise this statement acts exactly the same
inq COPY statement, which does not delete the
ce text for a step will not be modified ly a
and it is your responsibility to make sure that
eps do not contain spurious references to steps
qroup. To insure this, you should use labels
umbers to refer from one statement in the qroup

^xamoles:
NOIBER STEPS 7.7 TO 8.2 AS 25 BY .02

LCC Statements
17

NUMBER group AS (i

If e evaluates to an integer, the set of steps from the
specified group will be renumbered and retranslated as a new
group, with the integer portion of each step number being replaced
by the value of the expression e (which must noc be zero). If e
does not evaluate to an integer, this statement is equivalent to
the statement

NUMBER group AS e BY .01

All steps in the original group must he in the same part. The
source text for the group will not be modified by this NUMBER
statement, but the original group will be deleted (otherwise this
statement is identical to the statement "»COPY group AS e').

Examples:
NUMBER 8.07 AS 1U.253
NUMBER STEPS 6.U TO 6.5 AS 1016

NUMBER group BY e

Sguivalent to

NUMBER group AS X BY e

v «o tho truncated value of the first step number in the
"^n Tils statement ts used mainly to tidy up the fractional
It^p^umblrffofa pa'rt without changing its name (i.e., its part
number).

Examples: ^^ ^^ ^ B/ ^ 0 #0001)

NUMBER group

Equivalent to

NUMBER group BY .01

Examples: ^^ ^^ ^^ T0 ^^

1ft LCC Statements

OFF

LCC will porfocm an 'EXIT ML' and it will then log you off. k
nipssaqe will be written to indicate the elapsed time and the
processor time used during yonr conversational session. Your
aotoaatic reload file will be erased by this OFF statement (see
^ppendix G).

Fxamples:
IF DONE THEN OFF

OFF SAVE

This statement acts lust like f. simple OFF statement except
for its treatment of your automatic reload file, which will not be
erased and thus may be reloaded when you begin your next
conversational session (see Appendix G).

PART num

A new block context will be set up for the sequence of steps
from num*.0001 to num*.9999. Execution will then begin within that
context at the first, step whose number is > num*.0001 and it will
normally continue through successively higher numbered steps.
Control will be returned when the part •runs off its end* or when
it executes a RETURN statement, an EXIT statement, or a GOTO which
transfers out of its range.

A part may be called either as an operand in an expression (in
which case it should return a result) or as a statement. In the
latter case it should not return a result, but if it does, ICC
will typo the valne of the result at your terminal.

Examples:
PART 5
TO PART 17 DO PART ABACAD

nAPT num f s_1 ; s_2 ; ... ? s_N }

A new block context will be set up for the sequence of steps
in part num. Execution control will then be transferred to
statement s_1, from which control will normally pass to s_2, s_l,
... in order up to s_N, from which control will pass to the lowest
numbered step in part num. Thus the statement list within the

LCC Statements 19

i
braces is treated as if it were a step numbered nua*.00009 in a
part context which is expanded to include that step.

Examples:
PART (J ♦ 2) { NEW &*:.BIC]; TYPE D ♦ A; E*16 >
PART J { NEW A - G-H ; NEW D - » R / PART 2 7 >

PAUSE

LCC will type a message giving the step number of the PAOSE
statement, after which it will give control to you.

Examples:
IF X < » THEM PAUSE

PAUSE e

LCC will type out the string supplied by the expression e,
after which it will give control to you.

Examples:
PAUSE %HÜLF DONE'

PRINT < PILE > e

LCC will print (on the line printer in the computer room) the
contents of file e, which must have been generated by an LCC SAVE
or WRITE statement. File e will not be changed by being printed,
but if you PRINT a file during a conversational session, you will
not be allowed to delete it later on in that same session.

Examples:
PRINT FILE *PRNTFIL'

RECOVER < e >

LCC will treat a RECOVER statement as a dummy statement unless
you qive it from a user state which was entered because of an
error in a delayed step. In the latter case, your furnished
expression e, which will only he acceptable if the operation which
caused the error halt should have produced a result, will be used
as that result, and LCC will resume execution from the point of

20 LCC Statements

the Rtror as If the operation had been coapleted. As an example,
ir your program halts with the error message

RPROH OB01 »T U.I DIVISION BY ZEHO

you may resume execution by typing the statement

RECOVER im20

Execution will then continue just as if the divide operation had
been completed normally and had yielded the result 3n20.

In some cases it is possible to resume execution after errors
where no explicit result is involved. In those cases you may use a
simple RECOVER statement which furnishes no result expression. As
an example, if you attempt to call part 3 when part 3 is empty,
LCC will halt execution of your program with an error message such
as

ERROR PC02 AT 5.2 PART 3 DOES HOT EXIST, YOII CANNOT CALL IT

You could then resume execution by typing the lines

3.1: LOAD STUPE
RECOVER

Examples:
RECOVER X ♦ Y

RE^riRK

LCC will delete the current execution context and return
control to its caller, resuming execution from the point of the
call.

RETITRN Q

This statement acts just like a simple RETURN statement except
the value of e is computed before the RETURN is performed, and
that value is the result, of the call.

Examples:
RETURN X - Y ♦ 3

LCC Statements 21

RETURN pointer
|

This statement acts just like a simple RETURN statement except
the specified reference pointer is constructed before the RETURN
is performed and that pointer is the result of the call.

I
Examples:

RETURN s VRLtI+1]
I

RETURN procedure
i

This statement acts like a simple RETURN statement except a
reference to the given procedure is constructed before the PETUKN
is performed and that reference is the result of the call. Thus if
a procedure PR, which is called via the stitement

1
RED - PRtX.Y,?.)

returns with the statement

RETURH V (A,M) PART 66 V

the effect (except for possible side effects) is to perform the
assignment

i i

RED - v U#H) PART 66 9

Examples:
RETURN v STEPS a.8 TO AZ v
PETURN v (BfC) { i'APT 7; PART 25 } v

SA/E save-obiect

LCC will put the save-ohject (a list of steps ani/or values)
into the currently open file. A step will be SAVEd in the same
form that would be used to DISPLAY it, which is, except for
possible minor differences in the format of the step number, the
same form that you used to type it in. The current meaning of a
variable will be SAVEd as an assignment statement which assigns
that meaning to the variable. Thus a SAVEd file c; n be reloaded
merely by executing it; this is done by means of a LuAD statement.
Note that no context information will be kept with a SAVEd
variable, and it will be up to you to recreate the proper context
into which to later load the file. Only variables whose meanings
are values (numeric, logic, or string), pointers, or arrays will
be SAVEd. An array will be saved as a structure assignment
followed by assignment statements for each of its SAVE-able

22 LCC Stateaents

elftiaents,

A SAVE statement does not save nuoeric values to their full
precision (about 17 .Hgits) but only to the precision of the
printing routines (10 digits). Thus a SAVEd and reLOADed program
nay not function exactly the same as if it had been run in a
single session. This will not usually be noticeable, but it will
show up if numbers such as PI and EE (which are initially accurate
to the last hit) are saved or if, for example, X = 1/3 is SAVEd.
In the latter case we would normally get 3 ♦ (1/3) to print as 1
(due to rounding in th*» output routines; 3 ♦ (1/3) = 1 is FALSE,
however), but after saving and reloading X we would get 3 • X to
ylelri .q^'wggg«).

Any number of SAVE statements can be executed to qenerate a
given file; each will append Its lines at the end of those already
in thp file.

Examples:
SAVE STEPS 35.6 TO 35.8
SAVE X, Yd,11, Yll,2], Z

SAVE save-obiect AS < FILE > e

Egulval^nt to

USE FILE e; SAVE save-object

Examples:
SAVE PAHTS 45 TO U93 AS FILE %CAT#

STEPS num_1 TO num_2

This "step call* Is an "execute* statement, which may be used
to perform steps from seme other portion of your program as If
they had been copied In-line In Its place As In a group, num_1
must be < num_2 (unless nura_2 < 1), LCC will set up a new group
context (non-block) for the sequence of steps from num_1 to num_2.
Execution will then b«»gin at step num_1, and it will continue
through successively higher numbered steps. This step call will
normally be terminated either by a RETURN statement without a
value or by "running off the end* of the step group. An EXIT
statement will terminate the step call and return control to you
in the context of its calling group.

Examples:
STEPS 3.R TO 3.<)3

LCC Statements 2^

STEP nun

Equivalent to the statement

STEPS num TO num

TYPE H type-object H .,.
I

For a type-object consisting of an expression e, LCC will type
the value of er left-justified on a line. Ä numeric value will be
rounled to 10 significant decimal diqits and typed as an integer
or a decimal number, with an exponent part being appended if
necessary. A logic value will be typed as TRUE or FALSE or as an
8-digit hexadecimal number (i.e., it will have the form of a
logic-literal). A string value will be typed as is without
surrounding quote marks.

LCC will iqnore an empty type-object in this unformatted TYPE
statement.

A for-clause in <* type-object merely specifies control ovpr
another type-object, but the controlled objects will be typed just
as if the for-clause wer*» outside th*» TYPE statement instead of
inside. As an example, the type-object

(for-clause e_2 , e_3)

will, under control of the for-clause, type values for e_2, e_3,
e_2, e_3, ... , one per line.

Examples:
TYPE A ♦ B, , C
TYPE P, (FOR T TO ^<* DO I, CABlTUl])

USE < FILE > e

The expression e must evaluate to a string whose body will be
used as a file name. T.CC will open that file and use it in any
subsequent SAVE or WRITE statement which does not mention a file
explicitly. Only one such file can be open at any time, so file e
will be closed either by a logoff or by executing ary filing
statement (including another ÖSE) which explicitly mentions a
different file.

A file name must bo an identifier (ident) of length < 8 which

W LCC Statpnents

»loos not contain any lower case letters or underline (_)
characters.

Examples;
USF FILE XQ91C'

HRTT* h t.YP~-object H .».

This statement is just like a TYPE statement except the
type-objects will be written on the currently open file instead of
at your terminal, Any number of WRITE statements can bo executed
to write a given file; each will append its lines at the end of
those already written.

Examples:
WRITE A, B*C
WRITE (FOR T TO 10 DO (FOR J TO 10 DO FISH{I,J]))

WRITE I- type-object -I .,. AS < FILE > e

Equivalent to

DSE FILE e; WRITE h type-object H .,.

? i- < string-literal > varid H .,.

For each varid in the list, the following process will be
performed: LCC will type either a standard identifying message or,
if vou preceded the varid by a string-literal, the string which
you supplied. It will then give control to you. You must type the
t«xt for an exoression and return control to LCC (by pressing the
RETIJRM key). Your expression will then be evaluated and assigned
to varid.

Examples:

? *TYPE RANK' RNK(3], RNKUl

? $ H < string-literal > varid -I .,.

This statement acts like the regular ? statement except LCC
will treat each of your typed expressions as the body of a string

LCC Statements 25

(i.e.f it will surround each expression by quote marks). Thus the
value assigned to each varid will always be a string.

\ slight variation is possible here in the use of single-quote
marks, which need not be doubled to appear in your requested
string body. Thus if you type

AB'C%D

in response to the statement

?$ ST

the effect will be exactly the same as if you had executed the
statement

Examples:

ST - *AB"C**D'

?S S, XT STRING ' T

{ H s -» .;. >

This •compouni statement" will be treated as a single control
unit whose sub-statements will be executed sequentially from left
to right. A compound statement is not a block and it may not have
its own local variables; therefore its main use is within a
controlling statemant such as an IF, CASE, or iteration.

Examnles:
IF -P v Q THEN Z ♦ 5 ELSE { T - T ♦ 1; TYPE T }

The expression e must evaluate to a string, whose contents
will be treated as statement data to the LCC translator. When a !
statement is executed, the string which it supplies will be
processed just as if it wore a step which was lust typed in. If
the string turns out to be an immediate step, it will be executed
as the current statement. If not, it will be stored as usual for a
delayed step and control will pass to the successor of the !
statement. This statement is useful mainly in programs which
generate new program text during execution.

Examples:
! *A •- B ♦ C; A Translate this later'
! S o T
! «STEP 8.144"; v sane as the statement STEP B.UU

26 LCC Statements

A < H character H ... >

No operation will be perforaed. The character sequence will be
treated merely as a comment, with all characters following the
first A in a step being completely ignore:!.

Examples;
A TRIS IS A COHHENT LINE.

var * e

The variable designator var is first elaborated (cycling all
the way 'own its pointer chain if it begins one) to obtain the
^elaborated address* of a value (non-reference) entry. Then the
expression e is evaluated tc yield a numeric, logic, or string
value. That value is assigned to the elaborated address of var,
with no conversions of any sort being performed.

Examples:
K - M A ^FO
Pm «-Ä*(B-3+1)+ H(N)
I - J • K - w

var •»<(»- ident H .,.) > | e | v
1 ♦- s -4 .;. |

var is treated as in an expression-assignment. A reference to
the given procedure will be constructed and assigned to (the
elabocitod address of) var. The procedure body is either the
expression e or the statement list, and the listed idents are
formal identifiers in that bodv. When the procedure is called,
actual parameters must be supplied to replace the formal
identifiers during execution of e or the list of statements s. For
a procedure with no parameters, the formal identifier list is
normally omitted. If so, parentheses cannot be used to surround a
procec'ure-body expression, because they would be treated as
parameter delimiters. To get around this syntactic ambiguity, LCC
allows an empty formal parameter list to precede a procedure-body
expression e (but not a statement list).

Once var has been made a procedure name, any mention of it in
an expression or assignment will cause the procedure to be
evaluated. Thus the meaning of the var cannot be changed unless it
is first redeclared or DELRTEd.

LCC Statements 27

Examples:
PBOC * MFfG) P ♦ G ♦ HV
G - V PAST 81 C NEW Z - Z ♦ 1; 0 - Q >
CtI,Jl * v(X) P&RT 371V
P3 * v { PART 4; PART 68; I - I ♦ 1 > V
F - » () IF 7 < U8.3 THEN T*1 ELSE T ▼

var - ARRAY I h e < : e > ^ 1 H 1

LCC will asslqn to var the multidimensional array structute
specified by the given bounds list. The bounds list gives the
number of dimensions of the array structure and the limits on each
of its subscripts. An item in the bounds list can be either a pair
of expressions specifying the lower and upper limits on the
subscript for that dimension or a single expression specifying the
upper limit on that subscript (the lower limit will be implicitly
1).

storage will not be allocated for an array intil that array is
used, and even then it will only be allocated for a given row when
an element from that row is first accessed. LCC keeps identifying
information for each element in an array, and therefore arrays
need not be homogeneous. Thus, for example, in a given row an
array could contain elements which were procedures, pointers,
numeric values, string values, and even arrays-

Note that if the var above is an identifier, this statement
form is exactly equivalent to an ARRAY statement. Thus the two
statements

A «- ARRAY[0:tt,61
ARRAY AtOt^ei

are equivalent. However, if the var is subscripted, we can with
this statement specify that an array element is to be itself an
array, an effect which is not possible with an AB»»AY statement.

Examples:
LA - ARRAYf1:Nf -3 : 8*Kl
Pt2,ai - ARRAYt5,10,241

var •■ pointer

var is treated as in an expression-assignment. The specified
reference pointer will be constructed and assigned to (the
elaborated address of) var.

i

?fi tec Statements

LCC cannot allow a variable to point tc another which is
declared In an inner (higher) nesting level; therefore such an
t.ssiqniBont will lead to an erro": message and will bo rejected. An
assignment which would create - circular pointer chain, as in

A-3B;R*3A

will also be re-jreted.

Examples:
NI) - sAHU.JJ

var < (< H | e | H .,. >) >
I pointer j
j procedure j

The procedure referenced by var is performed, using the items
in the list as actual parameters. This is done by setting up a new
block context, declarinq as NEW all formal idents listed in the
definition of var, assiqning, in order, each actual parameter to
the corresponding formal ident, and then transferring control to
the body of var. Control will be returned when the procedure
executes a RETU3S statement, when it *runs off its end* (which
causes an implicit RHTURN to be executed), when it executes an
RXIT statement, or when it executes a ROTO which transfers out. of
its body. A procedure may be called either as an operand in an
expression (in which case it should return a result) or as a
statement, A procedure statement should not return a result, but
if it does, the value of the result will be typed out. at your

t.*»rmin?l.

As an example, suppose we have executed the procedure

assignment

P - V (A, 3, C) PART 3 V ;

and we execute the step

R (X - S , v (G) G * H / 3 v# 3 W) ? S ;

A new block context will be openen, uCC will perform the

statements

NEH R - X - Z ;
SEW 3 «- v (G) G • H / 3 v •
NEW C - :» W ;

and execution will begin in the new block context at the first
s*ep ii. pact 3. After normal termination of the part, the block
context will be closed and LCC will proceed with the successor to

w

LCC Statements 29

the procedure call, i.e., statement S.

Procedures need not have parameters; thus the actual parameter
list may be omitted. If more actual parameters than formals are
supplied, the leftmost actuals will be used, with the extra ones
beinq stacked for the dura lion of the procedure Incarnation. If in
a subsequent nested procedure call too few actual parameters are
supplied, the extra actual parameters from outer procedure calls
will be used, with those from the innermost calls beinq used
first.

Examples:

P(&,X-Y)
FN(P*1, 3Q, » R ♦ PART 2 v)

28 LCC Statements

LCC cannot allow a variaMe to point to another which is
declared in an inner (higher) nestlnq level; therefore such an
assiqnifiont will lead tc an error message and will bo rejected. An
assignment which would create a circular pointer chain, as in

A«-3B; B*aA

will also be reiected.

Examples:
ND - 3AalI,Jl

var < (< l- | e | H .,. >) >
j pointer j
j procedure j

The procedure referenced by var is performed, using the items
in the list as actual parameters. This is done by setting up a new
Mock context, declaring as NEW all formal idents listed in the
definition of var, assigning, in order, each actual parameter to
the corresponding formal ident, and then transferring control to
the body of var. Control will be returned when the procedure
executes a RETUSN statement, when it mruns off its end* (which
causes an implicit RETURN to be executed), when it executes an
hXIT statement, or when it esecttt.es a GOTO which transfers out of
its body. A procedure may be called either as an operand in an
expression (in which case it should return a result) or as a
statement, A procedure statement should not return a result, but
if it does, the value of the result will be typed out at your
terminal.

As an example, suppose we have executed the procedure
assignment

P - V U, B, C) PART 3 V ;

and we execute the step

R (X - Z , » (G) G ♦ H / 3 v, :» W) ; S ;

A new block context will be opened, LCC will perform the
statements

NEW A - X - Z ;
NEW 3-v(G)G*H/3vj
NEW C - ^ W ;

and execution will begin in the new block context at the first
step in part 3. After normal termination of the part, the block
context will be closed and LCC will proceed with the successor to

i

LCC Statements 29

the procedure call, i.e., statement S.

Procedures need not have parameters; thus the actual parameter
list may be omitted. If more actual parameters than formals are
supplied, the leftmost actuals will be used, with the extra ones
beinq stacked for the duration of the procedure incarnation. If in
a subsequent nested procedur« call too few actual parameters are
supplied, the extra actual parameters from outer procedure calls
will be used, with those from the innermost calls beinq used
first.

Examples:
PTN
?(Ä,X-Y)
FN(P+1, oQ, » R * PART 2 v)

10

 LCC Hetavariabies

binary-operator ::= |-| t |* !/| »I • 1*|-|<|5|=|>|>|*|—-1**1^1 v | =)oj

unary-operator ::= I ♦ I * I ♦ I " I

e ::= | primary |
| unary-operator e j
| e_1 binary-operator e_2 |
| IF e THKN e_1 ELSE e_2 |

An exprassion (e) in LCC is a combination of value entities
(primaries) with operator symbols which acts as a rule for the
computation of a value. Syntactically, an expression may be
deqenerate (i.e,, a single primary), it may be a prefixed
unary-operator acting on a value, it may be the combination of two
values with an infix binary-operator, or it may be conditional,
with a distributed operator (I? ... THEN ... ELSE ...) which
selects one from a given pair of values.

The value of an LCC expression will normally be used as a
constituent in a statement. However, if an expression appears in
place of a statement (or if a syntactically correct LCC statement
turns out to have a value), its computed value will be typed back
to you. This gives LCC its mdesk calculator* feature, whereby you
need merely to type an expression to obtain its immediate
evaluation — thare is no need to write a "program" to do so.
Note, however, that if LCC, when scanning for a statement, rinds
as its first item an IF, ?, or !, it will treat what follows as a
statonent, not an expression. If that is not what you mean, you
may use parentheses around your expression, and LCC will then
treat it correctly.

A conditional (IF) expression act^, rauch like an IF statement.
Tf the expression e evaluates as true, the value of the
conditional expression is e_1; if e evaluates as false, the value
is e_2. Thus, if the variable AVAL = 1, the value of th..
expression

TF AVAL < 5 THEN 325 ELSE 839

is 925.

The unary-operators are *♦', *-', *»'# and *-'. A unary *♦' is
redundant, and +6 = e nc matter whether e is a number, a logic
value, or a string. A unary *-' is a negation operator which
changes the sign of any non-7ero value to which it. is applied (a
roro is always positive). *♦' is a truncation operator whose
result is the inteqer portion of the value to which it is applied.
Thus 12.B = 2, «-^.l = -3, and »31*1 = 3U1. *-' and *♦' are
arithmetic operators which can act only on numeric values; if they

LCC Metavariables 31

are applied to loqic values or to strings, those values will be
converted to numbers before the operations are oerformed. *-' is a
compleinent operator whose result i •> the bit-by-bit logical
conplement of the -12-hit value to which it is applied (i.e., each
binary 1 becomes a zero and each binary 0 becomes a one). Thus

-TRUE = FALSE (= /O) , -^FEDO - .{PFFFO^F

Note that multiple unary-operators may precede a primary; if so
the operations which they represent will be performed from right
to left. Thus

*-3,1 = »(-3.1) = -3 = -»3.1 = -(»3.1)
♦♦-3.1 = -*-*-3.1 =)i 3.1 = *-*«/PFFFFFFC = -3

Like the unary-operators, the binary-operators can act only on
values with the proper data attributes. If one is used with values
having improper attributes, appropriate conversions (with a bias
from string to logic value to number) will be automatically
performed before the operator is executed.

The binary-operators *♦', *♦', */'» *♦', *•'» *♦'# and '-' are
numeric operators; each acts on numeric values to produce a
numeric result. M# denotes exponentiation, with e^l as the base
and e_2 as the exponent. The operators ,+', *-'» and **' have the
conventional meanings of addition, subtraction, and
multiplication. */' is the usual numeric (real) division, with a
real result; *♦' (integer divide) and *•' (modulus, or remainder
divide) cause a real division operation to be performed, but *«'
gives only the integer portion of the real result as its value
(i.e., A * B = MÄ/B)) while *•' gives on'y the remainder (i.e.,
A»B=A-B* (A»B)). Thus

3.2 » 2 = 1, 3.2 • 2 = 1.2
U.7 * -3 = -1, U.7 • -3 = 1.7

*A'f *v'# and *"' are logic operators; each acts
bit-by-corresponcling-bit on logic values to produce a logic value.
They have the conventional meanings of logical AND, OR, and
equivalence.

*o' is a string concatenation operator which causes the body
of string e_2 to be appended to that of e_1.

The operators %-—' and s--' will shift a logic value or a
string left or right. e_2, which will be truncated to an inteqer,
is »-he length of the shift, while e_1 is the value to be shifted.
Shirts will be by bits for logic values and by characters for
strinas. A shift of a (fixed length) logic value will cause any
bits which are shifted out of the value to be lost; vacated
positions at the other end of the value will be filled in with
zeros. A string, however, does not have a fixed length. Characters
shifted moff the end* will be lost, but there will be no "vacated
positions* — the string merely becomes shorter. Thus we will get

32 LCC Hetavariables

the following results:

%ABCDRFR' ** U = *ABC'
MBCOFFG' —-2 = *CDEFG'
*ABCnEFG' «-- 2 *• « - *C'

The relational operators *<r, *<-, *=', *>', *>', and **' can
act on any operands with matching attributes. The meanings of the
relations are obvious for numeric operands. Each produces as its
result a Boolean value (TRUE or FALSE). For logic values, *=' and
*** act bit-by-bit to produce logic values which will be,
respectively, the logical eguivalence and exclusive OR of their
operands (i.e., L = f) is the same as L ^ M, and L * .1 is the same
as ~(L=fO). If the other relations (<, <, >, » are applied to
lo^ic values, those values will first be converted to numbers and
then the usual rules for relations on numbers will be followed.
Relations on strings will he performed character-by-character from
left to riqht, with the shorter string being extended, if
necessary, to the right with blanks. The normal 360 collating
soguence will be used in comparing characters. The result of a
string relation will be a Boolean value (TRUE or FALSE).

The assignment operator *••' in an expression takes as its left
operand a var, i.e., a reference entity which specifies a variable
name. Its right operand can be any expression. The value of an
expression e_1 •• e_2 is the value of e_2, and as a side effect
that value is also assigned to e_1. Note that a *-' in an
expression takes as its left operand only that entity immediately
to its left, while its right operand is the whole expression to
its right. Thus the statement

A[Ü] - AMI <-B*C*D»E*F + G

will be performed as if it had been written

AtOl - (AMI *B* (C-D*(E-F* G)>)

Note also that a *•-* in an assignment, statement is treated
differently from one in an expression in that it does not produce
a result and its right-hand side need not be an expression.

If the seguencing of operations in an expression is not
explicitly specified by the use of parentheses, the operations
will be ordered within it from left to right, but with the
following additional rules of precedence:

LCC Metavariables 33

First: i - ♦(unary) -(unary)
Second; t
Third: ♦ / ♦ •
Fourth: ♦
Fifth: << = >>*
Sixth: •►- ♦♦
Seventh: A
Eighth: v
Ninth: =
Tenth: o
Eleventh: •■ (as exp^ined above)
Twelfth: IF ... THEN ... ELSE .

Thus the statement

X-A-Bf 2/C**D

will be performed as if it had been written

X * ((A - ((B ♦ 2) / O) ♦ UO))

If a conversion of a value to one of different attributes is
necessary, it will automatically be performed by LCC as follows:

number * logic value: LCC will truncate the number and strip
off its sign; the binary representation of the resulting
integer is truncated to 3 2 bits to form the logic value.
Thus

-25,7 becomes ^19

number * string:
logic value ♦ string: LCC will transform the internal

representation of the number or logic value into its
external form (that which would be typed by an output
statement). That external form will be the body of the
resulting string. Thus

-2,>.7 becomes »-25.7'
,^12 becomes ».(OOOOFF^'

logic value - number: LCC will use the logic value as the
low-order 32 bits of the positive integer result. The
other bits of the result will be zeros, and thus its value
will be between 0 and 2t32 - 1. As an example

,{2F becomes U7

string * number:
string •• logic value: LCC will translate and evaluate thp

expression which is the body of the string. This must
yield another value (possibly again a string) which may
need another conversion, etc. Thus If A = *B', n = 3,

"* LCC Metavariables

B3 = 42.1, then

*\ o a' becomes U2.1

extractor ::= |e_1 : <e2>|
I : «_2 |

If an entity has a loqic or string value, it may be followed
by an extractor, which will select a portion of that value for use
as a primary. kn extractor must have one of the forms listed
above, where e_1 and e^2 are expressions which evaluate to
inteaers, and 1 ^ e_1 < e_2 S N (N is the number of bits or
characters in the original entity value). If e_1 is missing, it is
assumed to be 1j if e_2 is missing, its assumed value is N. Note
that an extractor can follow any operand or parenthesized
expression; it is not restricted to variables.

A logic value is a guantity whose 32 constituent bits are
numbered, starting with 1, from left to right. When a subfield is
extracted from a logic value LV, the result is a logic value
consisting of those bits of LV with indices from e_1 to e_2
inclusive, right justified in a field of zeros. Thus if
LV * ^FFOOFFOO, then

LV (5:121 « ((000000F0 (= ^FO)

The constituent characters in a string are also numbered,
starting with 1, from left to right. When a substring is extracted
from a string SV, the result is a string consisting of those
characters of SV with indices from e_1 to e.2 inclusive. Thus if
SV = ^POPCÜPTNR', then

SV [6: 1 « »PINR«

If an extractor follows a subscript, the character pair Ml'
«*"/ be replaced by the single character *,'. A value may not be
extracted from an extracted value, and thus it is an error to
follow one extractor with another.

Kxamples:
YELLOW[3;101 o RED
QH, NN, I:J] - Rl:181
(A ♦ B ♦ C)[SsSl
PU, T+1) 135,141123:1

i |

LCC Metavariables 35

for-clause ::= <jFOR i^ent <|PROf!!e>|> <|BY e <T0 e>|> <«HILE e> DO
| |- | | |T0 e <BY e>j
I FROH e j

See the Iteration (FOB) statement description on paqe 12 for
an explanation of the control exercised by a for-clause.

Examples:
FOR I FROfl 1 BY G TO H WHILE N * 3 DO S
TYPE P,(FOR I TO 10 DO(FOR J TO 5 DO ClI,Jl),Ft II)

group | PART |
| P&RTS j
j STEP |
| STEPS j
num < TO num >

< num < TO num > > |
I
I

A group is a specification of a step or a contiguous se' of
steps. A single step is normally specified by the keyword »STEP*
followed by a num, but if the group scanner finds a num without a
preceding keyword, it will assume the presence of the word *STRP'.
A set of steps is specified as one of

STEP num TO num
STEPS num TO num

or merely as

num TO num

A part or set of parts is similarly specified as

PART num

or as one of

PART num TO num
PARTS num TO num

(the keywords *PART' and ^PARTS' cannot be omitted).

In scanning for a group, as well as everywhere else in LCC,
the translator always considers the keyword %STEP' equivalent to
»STEPS' and the keyword *PÄRT' equivalent to »PARTS'. Thus, for
example, you can write

DISPLAY PARTS 6
DELETE STEP tt.7 TO 5.3
IF A < B THEN PARTS 6

— -'-

^6 LCC Metavariables

Whenever the construction *nuB_1 TO num_2' is used in LCC, you
must have nutn.l 5 num_2r unless nuiB_2 < 1, in which case LCC will
increment it by the integer portion of nura_1. Thus, for example,

DISPLAY STEPS 3.6 TO .<»

is equivalent to

DISPLAY STEPS 3.6 TO 3.9

Examples:
ALTER STEP 1.6 : st' * *AX' , %Y' ♦ *BY'
COPY PART 3 AS ^3
•STEPS 4.5 TO H,73m

NUMBER 7.7 TO 8.2 AS 25 BY .02

digit ::= |0|1|2|3|a|5|6|7|8|9|

letter ::= |A|B|C|D|E|?|G|Hj11J|K|L|M|N10|P|0|R|S|T|0|V|W|X|Y|Z|
|a|b|c|d|e|f|g|h|i|j|k|l|«|n|o|p|q|r|s|t|u|v|w|x|y|2|

Ident ::= letter < H | diqit | -I
j letter |

Identifiers (idents) are used to name entities in LCC An
identifier consists of a sequence cf one or more letters, digits,
and/or underline<_) characters, the first of which must bo a
letter. Some identifiers are keywords in LCC and are reserved for
that purpose; you cannot use them as names. Others, such as the
names of the standard functions (see Appendix H) and the other
built-in LCC functions and procedures (see Appendix I) are
privileged identifiers in the sense that they are given meanings
when LCC is initialized. You may use a privileged identifier as a
variable name by declaring it, but if you do, its original meaning
will be superseded and may be lost.

Even though an identifier can be arbitrarily long, LCC will
retain only its first (leftmost) a characters, with all other
charactrrs beina ignored. Thus identifiers must be uniquely
distinguishable Mithin their first eight characters.

Examples:
X
RED
ALGOL_60
RÜMPELSTILTSKIR

LCC Metavariables 37

hex-digit :;

logic-literal

| digit |ä|B|C|D|B|F|

| FALSE
j TRUE
j ,(< | L | > »- hex-digit H ..
I I R I

A
value
hexadec
and the
represe
is rep
logic-1
contigu
letters
right j
•R' wil

logic-litera
or as one of
imal digits
letters A t

nted by the
resented in
iteral can
ousr i.e.,

*L' and
ustification
1 he assumed

1 in LCC is writ
the Boolean values

are specified by the
hrough Fr with the
letters A through P

LCC as a 32 bi
contain up to 8
imbedded blanks arc
%R' in a hexadecima
respectively. If ne
Thus

ten either as a hexadecimal
TROE' or The 16
decimal digits 0 through 9

digits' 10 through 15 Ming
respectively. A logic value
t guantity; therefore a
hex-digits, which must be

not allowed. The optional
1 literal indicate left and
ither letter is preset, an

^LFBi = .{PBIOOOOO

The Boolean values are eguivalent to hexadecimal values as
follows;

FALSE = £0
TRUE = ^FFFFFFFP

(32 binary zeros)
(32 binary ones)

Note, however, that when tested in an IP clause, any non-zero
value will be considered to have the guality 'true*. Thus the
statement

TYPE IP ^123 THEN %T' ELSE %P'

will print *T#, even though ^123 * iRUE.

Examples;
FALSE
^AB?
^LPF

nun I int i~
I ident
j (e)

H int J
I
I

A num is used to specify the number of a step or a part. It
will usually be a decimal number, i.e., a number without an
exponent. However, it may also be an ident whose value is a step
number, or a parenthesized expression which evaluates to a step
number.

78 LCC «etav^ciables

A part or stt»p cannot have a negative nunber; therefore LCC
will take the absolute value of each evaluated nuts before using
it.

Pxaoples:
STRP U20.3S
PART (J ♦ 2)
tmETB STEPS A TO n

iPt I- Siyit H ...

rumber-literal it- J I int < I- . H < int. > > |
| | »- . H Int. |
j . < | ♦ | > int
I I - I

I*| > int > |

A decimal arithmetic constant in LCC is written as a
nunber-liberal. A number-literal is a sequence of digits, possibly
including a decimal point, optionally followed b/ an exponent
part. An cxponen«. part consists of the delimiter character ,,
followed by an optionally signed decimal exponent. As a special
cas^ ■ if th*» base value of a number is to be 1, the number-literal
can ^o written using only an exponent part. Thus

:

.-'IS = l.-V

Blank spaces are not allowed within a number-literal; thus 3.7 „,-5
and S,, m are illegal,

Numeric values will be stored by LCC as long (double word)
floating-point Syst(»m/360 quantities. This allows a precision of
about 17 decimal digits, though for output LCC will usually round
a number to 10 diqits. The maximum absolute value of a number is
a pproxi irately 7,237^75; the minimum non-zero absolute value is
approximately „-7^.

Examples:
1S
7.36

138.

LCC Metavariables 39

operanfl) BEGIN 1- s H .;. END
I CASE e OF (1- e H .,. < r OTHERWISE e >) |
1 PART nun < { »- s H ,; . > > |
| | STFP | nuiii < TO num >
| | STEPS |
j iäent
j loqic-literal
| number-literal
| string-literal
j var < (< 1- | e 1 -•.,.>)> |
| j pointer 1
| | procedure 1
j ? < $ > < string-literal > - C ident > |

| { »- s H .;. >
j • group •

Most of the operands are described individually below
(starting on page •'♦6). For ident and logic-, number-, and
string-literal, see the descriptions of the individual
aetavariables. For the part call and the var call, see the
descriptions of the corresponding statements.

An LCC operand may be characterized most simply as an entity
which returns a result; a statement is an entity which does not
return a result. In many cases, operands and statements look alike
(e.g., a part or step call, a procedure call, a block) and the
distinction between them must be made by context or it may have to
be made dynamically during execution.

nointer varid

A pointer is used to indirectly reference an incarnation o£ a
variable. It is thus an object which acts as an alias for the
ob-ject to which it points. Whenever a variable containing a
pointer is used in an expression or an assignment, the object to
which it eventually points will be accessed or modified, not the
original variable or the pointer, A pointer may point tn another
pointer, and thus we may have pointer chains. A pointer chain must
end at a nor.-pointer (cycles will not be allowed) and i t is that
final element to which any pointer in the chain refers. As an
example, after we execute V.e statements

A - aR; B * aCr C - 17

the value of A + B ♦
assignment statement

will be 35. If we then execute the

A - %FTSH'

«0 I.CC Metavariables

the value of C «ill be chanqei to the string *FISH'.

Pointers nay be assigned, HETURNe<3, or passed as actual
parameters. Their aain usef are to construct list structures or to
refer to particular incarnation-values vhlch sight otherwise be
unavailable in inner blocks of a program, noreover, if a procedure
is to store a result into a variable which is to be passed to it
as a parameter, tha*- parameter must not be the variable name but
rather a pointer to i

Examples:
T[0,61 - =2
NEW PTR - oü, Q <- S
RETORN ^AR3[2rI,-tt)
T>R(5, aX, N)

primary ::= | operand | < I 1 extractor I 1 >
1(e) I

extractor I
subscript- list v' 1

1 *
1
1

extractor > 1
I

\ primary begins with either an operand or an expression
enclosed in parentheses, and it may be optionally followed by a
subscript-iist and/or an extractor, k primary is a value entity
(numeric, logic, string) as distinguished from a reference entity
(label, procedure, array name, pointer), though this distinction
cannot be checked by LCC until the primary is executed.

Examples:
X[C0LOS, SIZE, WT-21
GREEN
YELLOW [133: 10]
QC311NHI:J1
(A ♦ B - C)t5, :101
FN(A,B)IC1

procedure ::= v < (I- ident -i .,.)>|o jv
I »- s H .;. |

The procedure bodv is the expression e or the statement list,,
and the listed idents are formal identiticrs io that body, when
th» procedure is railed, actual parameters must be supplied to
replace the formal identifiers ünring execution of e or the
statement list. For a procedure with no parameters, the formal
identifier list may be omitted (sc^ the description of the
procedure assignment statement on page 2K).

LCC Hetavariables 41

Examples:
PROC - v(F,G) F ♦ G * H7
G - V PART 81 t NEW 7, - u ♦ 1; NEW Q } v

| statement |
| ident : s |

Any statement in a delayed step may be preceded by one or more
label identifiers which name that statement and allow other
statements to branch o
necessary, because step
points for GOTO's, but they are useful for naming statements
within a step or for naminq statements in a part or group which is
to be renumbered.

%G0' to it. Labels are not usually
numbers can also be used as transfer

Labels
there are
incorrect cases

do not always work correctly in LCC, and at present
some situations which must be avoided. The known

(as of October 2U, 1969) are listed below.

1. Labels in steps called via step calls (as in
STEPS 3.7 TO l.S) do rot work correctly and if used will
usually lead to errors later on in your conversation,

2. Labels in a (BSGTH-SND) block statement or expression do
not work correctly and the errors they lead to will not
normally b» caught by LCC.

1. If a step containing labelled statements is added to an
active part, the labels will not be declared during the
current activation of that part. In future activations,
however, they will operate correctly.

U. Labels in the statement list of a procedure or inside the
braces of a part call do not work correctly and will
normally be ignored by LCC.

Sxamoles:
3.7: IV: 3 «- 3
13.(»S2, I ♦ I ♦ Is L:
F: Gs H: K - J ♦ 1

J * J ♦ 1

42 LCC Metavariables

save-ohiect ALL
PARTS
STEPS
VALOFIS
< | PART

| PARTS
j STEP
| STEPS

h varid H

j > h nun < TO nun > H

A s
OTSPLAYe
list of
either
program
your val
missing
assumed,
that id
rather t

Examples:

avo-object,
d, can be
sots of ste
with selec
(VALUES), o
ues (ALL),
before a

Note th
entificr wl
han the fir

which may be either SAVEd, DELETEd, or
a set of contiguous steps (as in a group)» a

ps or parts, a list of the meanings associated
ted variables or with all the variables in your
r a combination of all of your steps and all of

As in a group, if the word ^PART* or *STEP' is
num in a save-object, the word ^STEP' will be

at if a save-object begins with an identifier,
11 be treated as the first such in a varid list
st num in a step list.

DISPLAY VALUES
DISPLAY X, Y, 2[a,Jl
DELETE STEPS U.6, 7.1 TO 10.6, 15.3,
SAVE PARTS 15 TO U93 AS »ILE »CAT'

U.8902

statement

See the descriptions of the individual statements, starting on
page 3.

string-character

strinq-literal

| any-CHU-character-but-a-'juote |
I ** !
I " I

< h string-character -t ... >

A string-literal in LCC is written as a seguence of zero or
more string-characters enclosed within left and right single-quote
characters. The legal string-characters are the R8 characters on
the *C1U Tyne-Ball*

LCC Metavariables 43

!V3$j ♦ • • . o _ ?
123U567890-*

QiERTYUIOP*

- » ' < > I 1 () : *
ASDPGHJKL;-

ZXCVBNH,./

plus the 26 lower case letters and the space (blank) character. In
order to avoid aabigutty, you nust type in two successive left or
right single-quote characters to get one inside your string. Thus
if you execute the step

S - %AB"'#CD%W; TYPE S

LCC will type back the value

ÄB"CD*

which is the body of S. An exception to this rule is the treatment
of a string body which is typed in response to a string read (?$)
request. Single-quotes need not be doubled to appear in such a
strinq.

The lower case 1 otters cannot be typed out at your terminal by
a enn type-ball, although they can be printed by the line printer
in the computer room (via a PRINT statement). A lower case letter
can be typed in from your terminal by preceding the corresponding
upper case letter by a vertical bar (|) which acts as an ^escape
character". Thus the string

%|ABjC|D|EFGH'

will be printed on the printer as

aBcdePlH

Lower case letters will be typed out on your terminal as their
upper case eguivalents. Thus the above string would be typed as

ABCDBPGH

Because of the use of the vertical bar as an escape character,
you must, always type two successive vertical bars to get one into
your string. Thus if you type in

NMMMIMI'
LCC will type back the string body

uu LCC Metavariables

l*|-|H-|

Oth^r than for lower case letters, you will not need to use escape
characters with the regular CiU type-ball. Escape characters will,
however, be necessary if you use some other type ball or if you
use a teletype for your conversation with LCC, but these uses will
not be described here.

Examples!
*BLUE'
*ABC' o
• M «- B

*DEF'
♦ C;

S
w TRANSLATE THIS LATER

structure ::= ARRAY t l-e<:e>-» . | H |. 1
I » I

A structure specifies the dimension and the subscript bounds
which are to he assigned to ■>. given var, thus making that var into
an array. See the var — Al
more complete description.

U statement on page 27 for a

Examples;
LA - ARRAYtliN, -3 : 8«Kl
NEW A * ARRAYt3r0:51# B, C -
AtB,Cl - ARRAY [1:5] [0:61

26, D - AREAY[X:¥l

subscript-list »- e H • I H |

Any array designator (an ar
array) may be followed by a subscr
element from the array. Each expres
be evaluated to a number, rounded
index to obtain a constituent from
the indexing being determined
constituent element may again be
process may then be repeated. Whe
any character pair Mt' may be re
character *,'.

ray name or
ipt-list, wh
sion in the s
to an intege

the array, wi
dynamically

an array, an
n multiple su
placed by the

a reference to an
ich will select an
ubscript-list will
r, and used as an
th the validity of

The selected
d the subscription
bscripts are used,
eguivalent single

Examples;
X[COLOR, SIZE, MT-21 ♦ Y[31
?(A,B*I) nnai - n[i,2im / K

LCC Metavariables «»5

empty :; =

type-ob-)ect :

(i.e., the null string of characters)

I eaipty |
| (for-clause H type-object H .,.) |

See the description of the TYPE statenent (page 23).

Examples:
TYPS CHI, , DBF ♦ 1, *STR'
WRITE (FOR T TO 100 DO All), Bill) AS *FILE6'
TYPE (FOR I TO 10 DO (FOR J TO 10 DO AlIfJ]))

var ::= | operand |
1(e) |

< [subscript-list 1 >

A var begins with either an operand or an expression enclosed
in parentheses, and it nay be optionally followed by a
subscript-list. A var must be a reference entity which specifies a
variable name, though LCC cannot check whether or not the var is a
reference until it is executed.

Examples:
PHI -A+(B*B*1)+ H(H)
I «- J - K >- w

(A ♦ B) tCHDl - 3
(?PH01 • 5
HtJl(1,2)I1,m'5) - 6

varid ident < C subscript-list 1 >

A varid is an identifier optionally followed by a
subscript-list, i.e., a varid is the designator of a variable.
Expressions in the subscript-list may be separated from one
another either by a comma or by the character pair Ml' (i.e., a
subscripted varid is also a varid, which may again be
subscripted).

Examples:
ND * »ÄH[T,J1
AIBHC]
? Al, 32[3, J»13, C, D(K1I91

U6

LCC Operamis

psiRTN H s H F.ND

The keywocls *
of arbitrary LCC
part, i.e., there m
will oerform a b
statements from the
normally be termi
value. Such a RE
returned value wi
statement without
Mock exoression
block is embedded.

Examples:

BEGIS» and %END' delimit a mblock*, whose list
statements will be treated as if it were in a

ay be local variables valid only within it, LCC
lock entry, after which it w^ll execute the
list in sequence. This *block expression' will
nated by a RETURN statement which supplies a
TURN will terminate the block context, and the
11 be used as that of the operand, A RETURN
a value will first terminate the context of the
and then return from the context in which the

X - Y ♦ BEGIM NEW ä; PART 6; RETURN A END - Z

CASE o 0^ (a_1 , e_2 , ... , e_N)

The expression e is evaluated and rounded to an integer K. If
1 < K < N, the value of this CASE expression is the value of e_K.
Tt is an error If K is out of the range 1 to N.

CASE *» OP (e_1 , e_2 , ... , e_N , UTHERWTSE e_(N+1))

This statpaent operates like the ordinary CASE expression
above except if K is out of the range 1 ^ K < N, the value is
e (N+l).

Fxamples;
r, * CASE I-J OF (A, B+1, C-D, OTHERWISE E/6) ♦ H

STEPS nuni_1 TO num_2

As in a qroup, num_1 must be < num_2 (unless num_2 < 1). LCC
will set up a new group context (non-block) for the sequence of
steps from num_1 to num.7. Execution will then begin at step num_1
3n^ it will continue through successively higher numbered steps.
Tho context for this step group operand will normally be
terminated by a RETURN statement, whose result will be the value

LCC Operands 47

of the operand. It is an error for the group to return without a
value. An EXIT statement will terminate the step qroup context and
return control to you in the context of its calling group.

Note that there is a possible syntactic ambiguity when a step
qroup operand is used inside an iteration clause. An example is
the statement

FROM STEPS 3,b TO 3.8 BY 2 DO PAST 8

In anv such ambiguous cases, the Keyword *T0' will always be
associated with the step call rather than with the iteration
clause.

Examples:
B - X - STEPS 5.3 TO 5.46

STEP num

Eguivalent to the operand

STEPS num TO num

Examples:
TEHP - STEP 1420.35 * Z

If LCC encounters a question mark as
a message and give control to you.
expression and return control (by
typed expression will be translated
will be the value of the operand,
may involve your program variables,
used in its evaluation.

an operand, it will type
You must then type an

pressinq the RETURN key). The
and evaluated, and its result
Note that the typed expression
whose current meaninqs will be

Examples:
Y - ?A ♦ ? ♦ ?*LENGTH' LNG * ?$*READ STRING'

? string-literal

This operand performs like a simple ? operand except LCC will
type out the user-supplied messaqe strinq instead of the system
message.

LCC Operands

"xanples;
T - ? ^Tini?'

? < strin^-litpral > varid

This operand is equivalent to one of the expressions

(varid - ?)
(varid «- ? string-literal)

Varid must, he an optionally subscripted variable identifier. You
will be asked for a value as for the simple ? operands described
above. That value «ill be assigned to varid before being used as
the value of the operand.

Fxamples:
X - ?Y - 3 ♦ ?w2

? * < string-literal > < varid >

This operand is the same as an ordinary ? operand except LCC
will treat your typed response as the body of a string (i.e., it
will surround the characters which you typed with quote marks).
Thus the value of a ?S operand will always be a string. As an
example, if you respond with the character sequence

ALPHA ♦ BETA

to LCC's request for th« operand ?$PQ in the statement

T - S o ?$PQ

the effect will be to perform, in order, the assignments

PQ - %ALPHA ♦ BETA';
T - S a * ALPHA ♦ BETA';

A slight variation is possible here in the use of single-quote
•narks, which need not be doubled to appear in your reguested
strina body. Thus if you were to type

3%*'7+

in response to the above request for ?$ PQ, the effect would be to
perform the assiqnment

PQ - »B*%*"7*'

LCC Operands 49

Examples:
G - ?$ MNPUT N' EN o EW

e.

The expression e must evaluate to a string, whose contents
will be treated as expression data to the LCC translator. When a !
operand is executed, the string which it supplies will be
translated and converted to a value. That value will then be used
as the value of the operand. Thus an operand 1ST, where ST has a
string value, has the same effect as the expression

(ST f 0)

which forces the value of ST to be converted from a string to a
number before the addition can be performed.

Examples:
XY - FF(1-SIN(Z), !P) ♦ 3

{ \- s -\

LCC will treat the statement seguence from this ''compound
expression* as a single control unit whose sub-statements will be
executed seguentially from left to right. A compound expression is
not a block and does not have its own local variables. It will
normally be terminated by a RETURN statement, whose value will be
the value of this operand. A PETURN statement without a value will
first terminate the context of the compound expression and then
return from the context in which that expression is embedded.

Examples:
YZ5 - T ♦ { FOB K TO N DO F(K,L,N); RETURN K } / 2

* grour *

The value of this operand is a string consisting of the text
of the specified group. That string will contain only tho source
text tor a step — not its number. If the group includes more than
one step, the strings for the individual steps will be
concatenated in step-number order to form the operand, with no
semicolons, blanks, or any other characters being inserted between
successive text strings.

so LCC Oppran4s

Examples;
S - "STEPS 1.5 TO U.73» o "STEP 6.1'
! "lU.lOl*

Apponuix A 51

 Explanation of Syntax Notation

< >

I I

Optional presence — These delimiters surround a construct
which nay either be present or absent.

Alternatives — These delimiters surround a set of
alternatives, one and only one of which mast be present.
The alternatives are usually listed vertically, but for a
few metavariables, such as "diqit* and "letter*, where
there are many alternatives, they will be listed
horizontally and separated from one another by | |
delimiters.

h -\
Grouping -

only
— These bracketing delimiters are used fo^ grouping

Repetition — The immediately preceding syntax construct,
which will be surrounded by I- -I brackets, may be
optionally repeated a number of times, with the construct
between the dots (a comma, a semicolon, or either a comma
or the character pair %lt') being used to separate the
individual constructs. Thus the notation

He H .,.

could mean any of the following

e , e , e , e
e
e , c

Repetition — The immediately preceding construct may be
optionally repeated a number of times, with no separators
(or spaces) between the individual constructs.

This separator aay be read %is defined to be*. It is used in
the same sense as in Algol 60 syntax notation (BNF) for
defining LCC metavariables.

52 Appendix A

Tn the syntax descriptions, lower-case words or phrases are
used to name metavariables. As used here, a metavariable
is a description-language variable which is used- to
simplify the description of LCC, A metavariable is not
itself an LCC construct, but it is defined (often
recursively) in terms of LCC elements. Whenever a
metavariable is used in the syntax description ot LCC, it
must be replaced by a set of LCC characters satisfying its
definition in order to obtain a valid LCC construct. As an
example, the metavariable %digit* can be any of the atomic
characters 0 or 1 or 2 or 3 or U or S or 6 or 7 or 8 or 9.

The upper case words used in the syntax are primitive LCC
elements which must be used (and spelled) exactly as
written (except for the equivalent LCC words *PART# and
^PARTS', which may be used interchangeably, and *STEP' and
* STEPS', which may also be interchanged). These primitive
^keywords* are reserved identifiers in LCC, and they may
not be used to name variables. The current LCC keywords
are the followinqt

ALL
ALTER
ARRAY
AS
BE'; IN
BY
CASE
COMBINE
COPY
DELETE
DISPLAY
DO
ELSE
END
EXIT
FALSE
FILE
FOR
FORK
FRO?!
GO
GOTO
IF
TN
LINE
LOAD

NEW
NONBEE
OF
OFF
OTHERWISE
PART
PARTS
PAUSE
PRINT
PUNCH
READ
RECOVER
RETÖRH
SAVE
SHARE
STEP
STEPS
THEN
TO
TROE
TYPE
USE
VALUES
WHILE
WITH
WRITE

Appendix B 53

 LCC Syntax

binary-opecaLor ;:= Mt |*|/| *|-| + j-|<|S| = |>|>|*|—-|**|A|V j = |o|

diqit ::=) 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 1 9 |

| primary |
j unary-opera tor e j
I e binary-operator e j
I IP e THEN e LLSE e)

empty (i.e., the null string of characters)

extractor :: = I e : < e > I
| : e |

-

for-clause ;:= <|POR ident <|FBOI!| e>|><|BYe<TOe>|> <HHILB e> DO
| I- | | |TO e < BY e >|
|PROM e j

group ::= | PART | < num < TO num > > |
| PARTS j |
j STEP | |
| STEPS j j
num < ro num > j

hex-d ig it | diqit iA|B)C|D|E)F|

ident letter < K | diqit | H ... >
| letter |
1 K . H I

ir.t h digit -i

letter |A|BlC|D|E|F|G|H|I|J|K|L|n|N|oP(Q}B|S|T|0|V|8|X|y|Z|
|a|b)c|d|e|flg|hji|j|k|l|a(n|o|plqlr|s|t|ulvU|xly|2|

|

. '

sa Appendix 0

logic-liter«! ::= 1
1
1
1

FALSE
T^UP
rf < 1 L | >

1 9 1

1
1

1- hex-dlqit -1 ... | J
1

num ::= I int K
j ident
| (c)

H Int |

number-literal ::■

operand

M int < t- . -< < int > > | <
| | »- . H int)
| . < | ♦ | > int
I I - I

< | ♦ | > int > |
! - I I

I
I

BEGIN I- s H .;. END
CASE e 0? (h e -4 ,,. < # OTHERWISE e >)
PART num < (»- s H .». > >
J STEP) num < TO num >
| STEPS j
ident
loqic-litetal
number«literal
string-literal
vac • < C < M e | H ,#. >) >

j pointer j
| procedure j

? < $ > < string-literal > < ident >
! e
{ l- s -I .». >
m group •

pointer ::* » varid

primary ::= | operand I < C | extractor I 1 >
j (e) j j subscript-list < |](| extractor > |

I I.I 1

procedure » < (I- ident H .#.) > | e | »
j ♦- s H .;. |

| statement |
j ident : s |

Appendix B 55

save-objftct ::= ALL
PARTS
STEPS
VALUES
< | PART | > h nui < TO nu« > H ,,,

| PARTS |
| STEP |
j STEPS |

I- varid H .».

statement (see list of statements starting on next page)

string-character ::» | any-Cflü-character-but-a-quote |

string-literal * < h string-character H ... > »

structure ::= ARRAY C I- e < : e > H •I V I. 1
I « I

subscript-list H e H .j IC |.

type-obiect
I eipty (
| (for-clause I- type-object H .,.) |

unary-operator I ♦ I - I » I - I

var | operand | < t subscript-list I >

varid ident < f subscript-list 1 >

56 Appendix P

statoraent ::= one of the following syntactic forms

ALTEP qroup I : | h e • e H .,.
I , I

< NEW > ABSRT K I- ident ^ .,. I I- e < J e > ^ ,| H |. 1 H .,.

BFGIH »- s H .;. END

CASH e OP C I- s -4 .». < j OTHBRHISB s > >

COHPINE < STEPS > nun TO nun AS e

COPY qroup AS e < BY e >

nELBTE | PILE e |
I Si 'e-object j

DISPLAY | FILE < CATALOG > |
j rETORH < STEPS > |
j s^ve-object j

EXIT < | ALL I >
j < TC > < PART > e |

for-clause s

| GO < TO > | < e >
1 GOTO j

IF e THEN S < ELSE 8 >

LINS < e >

LOAD < FILE > e

Appendix B 57

NKW y- ident < -
j pointer |
| pcocednre |
I structure j

NUMBER | AS e | < BY e >
j qroup < AS e > j

OPF < SAVE >

PART nun < (K s -I .;.) >

PAÖSE < e >

PRINT < PILE > e

RECOVER < e >

RETURN < | e | >
| pointer j
j procedure j

SAVF save-object < AS < PILE > e >

I STEP | num < TO nun >
| STEPS |

TYPE »- type-object H .,,

USE < PILE > e

WRITE H type-object H .,. < AS < PILE > e >

? < J > h < string-literal > varid H .,

{ I- s H .;.)

! O

■SB Appendix B

A < i- character H

var •- | e i
I pointer \
| proceiiure j
I structure j

var < (< h | e] -\
| pointer I
| procedure j

•»• >) >

1

i

Appendix C 59

Procedure for Logging On to the LCC System
at a 2741 Terminal

1. Set the power switch (ut right of keyboard) to ON,

2. Make sure the terminal mode switch (on left side of 2741) is
set to COM. It will be set to COM if and only if the keyboard
is locked, which you can easily test by trying to press the
PETÖRM key.

3. Push the TALK button on your Data-Phone.

U. Lift the phone receiver and dial the computer, which will
answer and then emit a continuous tone. Hhen you hear the
tone (a beep), press the DATA button and replace the
receiver. You are now connected with the TSS monitor system,
which will, after a short delay, type back to you a message
similar to

B001 TSS AT Ctlü TASKID=C031 09/23/69 17:31 8345 SDA=-0053

5. Type your S-character user number and press the RETÜRM key. TSS
will respond with a one or two line greeting message and, on
a new line, an initial underline character (_) followed by a
backspace, leaving the typing element positioned at the first
position c the line.

6. If this is to be your first session with LCC, type the
characters

SHARE USER,LCC,USER

and press RETURN. TSS will respond with another
underline-backspace. This SHARE commard needs to be typed
only once, and on subscguent runs you should omit it.

7. Type the characters

DDEF LCC,VP,USER.LCC,OPTrON=JOBLIB

and press RETURN. TSS will again respond with an
underline-backspace.

^i_

*>0 Appendix C

fl. Type the characters

LCC

and press RETURN. After a short delay, LCC will respond with
a polite qreetinr? such as

LCC: GOOD AFTB8N00N

It will then indent four spaces and give you control. You are
now comaunicatinq directly with the LCC processor, which will
analyze all succeeding lines which you type.

The cosplste logon reccrd for your first LCC run will thus be
similar to the following:

B001 TSS AT CHU TASKID»0031 09/23/69 17j31 83tt5 SDAa0053
XYZ17.Z13
15:22 23SEP 69-TSS UP TILi. 2U:00
SHARE W5ER,LCC,0SER
DOEF LCCeVP,0SEB.LCCtOPTI0H»JO3LIB
LCC
LCCs GOOD AFTERNOON

For subsequent runs, everything will look the sase except for
the oaission of the *SHARB* line.

P

Appendix D 61

 Typing LCC Text at a 27a1

The characters, including blanks, vhich yon type will be sent
to ICC line-by-line i.. the order you type them. However, if you
discover before you finish typing a line that you have made an
error on that line, you nay backspace past the incorrect
characters, thus deleting then from the line being sent to LCC
(though not, obviously, fron your typed page). You nay then
complete the line by typing the correct characters or, if no
correction is needed, merely press the RETURN key. Each tine you
press BÄCKSPACE, you will delete one character fron the line; thus
five BACKSPACES would erase the last five characters (including
blanks) which you typed. After backspacing, you should manually
upspace the paper in your 2741 to avoid any confusion which would
be caused by strikeovers.

If your whole line is wrong, you nay cancel it all by pressing
EETtJEN isaediately after typing either the character *o» or the
character V. LCC will completely iqnore the line, and it will
nerely unlock the keyboard for the next line — it will not indent
the typing elenent after such a line cancellation. Note that a %a'
and a V will act to cancel a line only when they are followed
innedlately by a REBORN. In all other cases they are sent along as
legitinate LCC characters.

When you conplete a line, you aust terninate it by pressing
the RETURN key. This will cause the sequence of characters which
you typed to be sent to the LCC processor for syntactic analysis
and possible action. LCC will scan your line fron left to right in
order to translate it into an internal interpretable code. If your
line is syntactically incorrect, an error nessage will be typed
back to you, indicating (by a *|') the position in the line of the
iten which had just been scanned when the e^ror was encountered
and (by a nunber) the kind of error which was found (see Appendix
E). Tf your line is correct, LCC will deternine whether it is a
conplete step or whether you plan to supply an additional line to
continue it. You nust indicate such continuation by typing a
hyphen or ninus character (*-') just before pressing RETURN. The
next line will then be concatenated with the current line such
that its first character will follow directly after the last
character before the hyphen, and the hyphen will be deleted.

Each line will be analyzed as above until a step is found to
be conplete. LCC will then deternine whether the step is innediate
or delayed by checking its step nunber. If it has a nunber, the
step is delayed, and it will be saved internally so that it nay be
called into execution at some later tine. If it has no nunber, the
actions specified by the step will be perforned innediately. When
all such actions have been completed, LCC will indent one or nore
spaces, unlock the keyboard, and return control to you.

^2 Appendix E

 Error Messages

Translator (syntax) errors — A vertical bar character (|)
will he typed under the position in your step text which
had just been scanned by the translator «hen it discovered
the error, and a message of the form

BBROR SXnn text

will be written. "nn* is a two digit number which
specifies the trv.islator error which has been encountered,
and •text* is an abbreviated description of the error (see
Appendix P for some expanded descriptions of the errors).
The error message will be left-justified on the line
containing the *|' marker unless the marker occurs within
the first 10 characters on the line, in which case the
message will be typed to the right of the marker.

Execution errors — Execution error messages are of the form

ERROR mmmm text

where wmmmm* is a four character internal error designator
and •text" is a string which describes the error which has
been encountered. Examples are

ERROR ON01 V[a5,11 13 UNDEFINED
ERROR G003 STEP 2.15 NOT IN AN ACTIVE CONTEXT
BPROH VE03 SURSCRIPT OOT OP RANGE
ERROR OR01 AT 61.« DIVISION BY ^ERO

A complete listing of all the errors caught by LCC, with
explanations of their causes and descriptions of any
possible recovery options, may be found in the reference
document mLCC Error Messages'.

Appendix F 63

 LCC Syntax (SX) Error Descriptions

1:
2:
3:
U:
5:
6:
7:
8:
9:
10
11
12
13
ia
15
16
17
18
19
20
21
22
2U
25
26
27
28
30
32
34
35
36
38
30
«0
43
au

This should have been a statement, but it isn't one.
This literal constant is malformed.
This must be an operand. It isn't one.
Thir must be an operator or a delimiter. It isn't one.
No M' to match this M'.
An extracted value may not be subscripted.
In the current language context, this is meaningless.
This should be a statement terminator (END, >, ;, ELSE, v).
No M' to match this *)'.

No * BEGIN' to match this *END'.
No *IF' to watch this *THEN'.
No %THEN' to match this %ELSE'.
Your • must meet its match here-,
Tou need a step or part number here.
A controlled variable must be an ident* r.
Your CASE statement needs a *(' here.
Your CASE expression needs a *(' here.
The *OTHERHISE' must be last in a CASE list.
You can't store into an extracted value.
You can't have more than an expression here.
You need *AS' here.

i or ♦) A parameter may only be delimited by
This step is missing an *END'.
This step is missing a *J'.
No M' to match this *)'.
You need to specify some subscript bounds here.
You can only request input to a variable, not an expression.
You need *FR0M' or *IN* or a statement terminator here.
No *v' to match this one.
You need a *)' to end this formal parameter list.
You need a save-object or a group designator here.
You need a group designator here.
This must be an identifier.
This must be a *—'.
You need a *:' or a ' to delimit this ALTER list.
This can't follow an iterated output element.
This should be a step number, but it isn't one.

96; Whoops — the first phase of the translator has just had a
stack indexing error, which should be impossible. Please show
your listing to an LCC implementor.

97: The translator has just run into some sort of a semantic
error. It could be due to something simple, like an unmatched
XEND', but if you can't find a mistake, please ask an LCC
implementor for some help.

99: Congratulations: you have just found an error in the LCC
syntax tables. Please tell an LCC implementor about it.

fi* \ppendix G

 Autonatic Reload File

There is a possibility that during a conversational session a
hardware or software failure will kill LCC and/or TSS and break
off your conversation. In that case LCC will lose all of its
temporary records of your interactions, which would normally
include all of your delayed steps and all "values* which had been
assigned to your variables as well as all the stacked information
on the status of your program's execution at the instant of the
system failure. The values and the execution information will be
irretrievably lost, but LCC includes a special feature to save
your delayed steps, thus lessening the catastrophic effects of the
system crash.

This feature is the ^automatic reload file', a file on which
your delayed steps ar» automatically saved while your conversation
progresses. If there are no system failures during your session,
this file will be deleted when you log off (unless you explicitly
retain it with an *OFF SAVE' statement), but if the system fails,
the file will not be deleted and thus will be available for
reloading when you next call LCC. Each time you call LCC, a check
will be made to determine whether your automatic reload file
exists. If it does not, nothing is done, but if it does, you will
be given control after the message

AUTOMATIC RELOAD? Y OR N

You then have the option either to restore your delayed steps by
loading the file (by typing %Y' and pressing the HETÖRM key or by
merely pressing RETURN) or to ignore the file and delete it (by
typinq *N' and pressing RBTTIBH). Steps will be added to the reload
file in sets of 5 in the order you type them; thus you may lose
your last five typed steps after a crash, but no more. Remember
that no values or context information will be automatically kept,
so you may have to perform a lot of initialization to resume
execution from the point of the crash.

Appendix H 65

 Standard Functions

The standard functions which are included in LCC as predefined
procedures are listed below. Each requires as an argument (ARG)
one actual parameter which must evaluate to a number. The
arguments of the trigonometric functions (and the results of the
inverse trigonometric functions) must be in radians.

Name Function Definition

ABS Absolute value] ARG |
ARCCOS Arccosine arccos(ARG)
AHCSTV Arcsine arcsin(ARG)
AFCTAS Arctangent arctan(ARG)
COS Cosine cos(ARG)
COTAN Cotangent cotan(ARG)
RNTISP largest integer <
BXP Exponential e t ARG
LN Natural logarithm In(ARG)
LOG Common logarithm log»(ARG)
SGH Sign IF ARG > 0 THEN 1
SIGN Sign (same as SGN) THEN -1 ELSE
SIN Sine sin(ARG)
SOFT Square root ARG t (1/2)
TAN Tangent tan (ARG)

ARG

ELSE IF ARG < 0

66 Appendix I

 Built-in LCC Functions and Procedur^s ——

Tho special functions and procedures which are included in the
LCC system are described below. To use the name of a standard or
built-in function as a variable, you nust declare it as *NEH'. The
function's original meaning will then be lost for as long as your
declaration is in effect. If you declare one of these identifiers
on level zero, its original meaning will be lost for the duration
of your conversational session unless you reinitialize your LCC
environment by executing a *DELETE ALL* statement.

COLLATE (arg)

Arg must be an ex
value of the functio
leftraoa t character of
returned for each val
ordered accord Ing to t
tho as .'iociated charac
first in the collati
associa ted integer.
below in order of asce
top to bottom).

presslon which evaluates to a string. The
n COLLATE is an Integer associated with the

tne value of arg. A unique integer is
id LCC character, and the integers will be
he System/360 EBCDIC collating sequence for
ters. The space or blank character cones
ng sequence and thus has the smallest
The other valid LCC characters are listed
nding collating sequence (left to right and

♦ Avtt».*3l.<(+| •l}<>HHc5y!

>♦) ; --/«,{, A_>? = m,'% '*: a m * = \

abcdefghiiklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPORSTUVWXYZ

0123U,i678q

Examples: The following steps define a function ALPHA which
returns the value TRUE if the first character in its argument
string is alphabetic (lower or upper case); otherwise it
returns FALSE.

1.S; ALTER 1.6, *Ll'-COLLATE(»|A')# «ni'*COLLATE(*Z');
1.6: ALPHA - v (X) ((X - COLLATS(X)) > LL) A (X < OL) '

1 ;

)*

Appendix I 67

EE

mis parameterless function has as a constant value the base
of the natural loqarithns, i.e., 2.713281828 ... Its value is as
accurate as is possible in a SysteB/360 double-word.

EXTERNAL (arq)

This procedure allows you to temporarily add to your LCC
environaent a non-LCC procedure or function which is to be called
fro» your LCC program. Its argument must be a pointer to the name
of the procedure or function to be added (e.g., » NAM). The effect
of ^XTFBNAL is temporary and lasts only until you log off or
reinitialize with a %DBLETE ALL' statement.

The
the st
appear
stack
double-
FORTRAN
arrays
functio

external
andard TSS

as an entry
members. T
word number

double-pre
satisfy th

ns. Any oth

procedure or function to be added must satisfy
(FORTRAN} linkage conventions and its name must
point in one of your effective TSS "job-library

he value which it returns (if any) must be a
placed in floating-point register zero. All

clsion library functions which do not involve
ese conditions and are acceptable EXTERNAL
er experimentation is at your own risk.

Examples: The following statements indicate to LCC that you wish
to use the FORTRAN procedures 'DSIN' and »DCOS'.

EXTERNAL(
EXTERNAL(

aDSIN
»DCOS

);
);

INTERNAL (arg.l , arg_2)

This procedure should not be called by a normal user. Its name
is included here merely to forestall possible naming conflicts.

LENGTH (arg)

Arg must be an expression
function LENGTH will have as
characters) of that string.

which evaluates to a
its value the length

string. The
(ir number of

ft8 Appendix I

PT

Examples:
The value of LBNGTHt *XYZ') is 3.
The value of LEMGTHCs a 1234), where S * »CHü', is 7.

This pararoetecless function has as a constant value the
aiathematical constant pi, i.e., 3.1U1592653 ... Its value is as
accuratr» as is possible in a systein/360 double-word.

SCÄSK (arg_1 , arg_2 , arq_3)

SCANN is <* procedure which scans a string to obtain its first
atomic element. Its first argument (arg_1) must be an expression
which evaluates to a string, and arg_2 and arg_3 must be pointers
(i.e., »V and »H, where V and W are arbitrary variables). SCANN
will search the string supplied by arg_1 for its first (leftmost)
atom. Tt will store that atom into the variable pointed to by
arg_2 (i.e., V), and it will store into W a string consisting of
everything from arg_1 which is to the right of its first atom.

For scanning purposes, an atom is one of the following:

1. A contiguous string of alphabetic and/or numeric
characters (e.g., MBCD', MUS', •pa2G', ,6UAB2').

2. A single non-alphanumeric character (e.g., *♦', *.', *-',

Blanks which precede an atom will be ignored, and an atom will be
terminated by a blank, another atom, or the end of the string
which contains it.

Examples: The st*»p

SCANN(% AB ♦ARC*DE', »L, ^R); SCANN(R, ^Ll, »33)

will set L *:o MB', R to * ♦ABC*DE', LL to »♦', and RR to
*ABC*DE'.

SPMTT (arg_1 , arg_2 , arg.3 , arg_U)

SPITTT is a function which searches a string (of atoms) for a

Appendix I 69

specified substring. Its value vill be TRUE if the substring can
be found or FALSE if it cannot. Its first two arguments must be
expressions which evaluate to strings, and its last two arguments
must be pointers (i.e., »V and »W, where V and W are arbitrary
variables). SPLITT will treat both strings as sequences of atoms
(see the SCANN procedure above) and, searching from left to right,
it will attempt to find a sequence of atoms in arg_2 which matches
the atomic sequence ^rg.l. If such a sequence is found, SPLITT
will return the value TROE and, as side effects, it will store all
of atg_2 to the left of the match into the variable pointed to by
arg_3 (i.e., V), and it will store everything to the right of the
match into tf. If no matching subseguence is found, V and V will be
left unchanged.

Note that the matching done by SPLITT is atora-by-atom rather
than character-by-character. This means that the character string
arg.l need not be contained exactly in arg.2 to obtain a match,
though it must be except for blanks which may surround atoms
(i.e., the strings *A+B', * A +8', *A ♦ B' are all equivalent
in this atomic sense). Effectively then, all extraneous blanks in
arq_1 are deleted before the match is performed, and arg_2 cannot
be searched for sequences of blanks.

Examples: The operand

SPLTTT(*ÄB#, %ABC:AE*AB+1', ^L, **)

has the value TRUE and it sets L to %ABC;' and R to
*«-AR*1'. The operand

SPLTTT(%3 . U ', *3.U :A ♦ 3', aLL, ^RR)

has the value TRÜB and it sets LL to w (the null string)
and RP to % IA ♦ B'.

_ n' -'—--,-. Bat.

70 Appendix J

.,— Example LCC Conversation ——

& THIS IS THE RECORD OF AN ACTOAL CONVERSATION BETHEEH A USER
A (AT A BRPIOTE 27U1 TYPEWRITER) AND THE LCC SYSTEM.

A THE ?nLLOHI>TG ARE NfJHBRRS (LITERAL NUMERIC CONSTANTS) IN LCC:

15
15

7.36
7. 16

.00065
.00065

12m567890.
123a567890

A WE CAN APPEND AN EXPONENT TO GET LARGER (OR SMALLER) NUMBERS:

6.7.12
.62w*11

:J.7211(,-5
.00003721

6.35.-U2
.635.-U1

12345.2-+65
.123<*52-*70

& AN EXPONENT ALONE IS ALSO A NUMBER.

«-'♦
.0001

.15

A NUMBERS ARE OPERANDS TJHICH CAN BE COMBINED INTO EXPRESSIONS,
A USING THE UNARY PREFIX OPERATORS (WHICH ARE WRITTEN TO THE
A LEFT OP AN OPERAND):
A - NEGATE
A ♦ (HAS NO EFFECT)
A * TRUNCATE (STRIP OFF THE FRACTIONAL PART)

A AND THE BINARY INFIX OPERATORS (WRITTEN BETWEEN TWO OPERANDS):
A + ADD
A - SUBTRACT
A * MULTIPLY
A / DIVIDE
* ♦ RAISE TO A POWER

A I» WE TYPE IN AN EXPRESSION, LCC WILL EVALUATE IT AND TYPE BACK
A THE RESULT. THUS WE CAN USE LCC TO PERFORM %DESK CALCULATOR'
A OPERATIONS.
A LET'S TRY A FEW EXPRESSTONS TO SEE WHAT WILL HAPPEN.

Appendix J 71

4

2H

-5

1U

.3

.2

32

42

E8

2*2

3*8

-5

2345-876
69

1/3
333333333

2/7
857142857

2?5

2*32
^4967296

2345.6789»
ROR SX03 |

A I GOOFKD AGAIN — 1 HIT THE RETOHB KEY PISST INSTEAD OF THE %o'
A KEY, SO LCC TRIED TO TRANSLATE THE LINE. ITS TRANSLATOR FOUND
& THAT I HAD A HISSING OPERAND, WHICH I ALREADY KNEW,
a I'LL TRY IT AGAIN ON THIS LINE — o

LCC IGNORED THAT LINE AND MERELY UNLOCKED THE KEYBOARD TO LET ME

A I GOOFED. TO CANCEL THIS LINE I'LL TYPE a AND RETURN

TYPE ANOTHER ONE. LCC WILL NEVER INDENT AFTER A CANCELLED
LINE. EITHER A %a' OR A V HILL CANCEL A LINE, BUT TO DO
SO IT MUST BE TYPED IMMEDIATELY BEFORE A CARRIER RETURN.
AN EMBEDDED %o' OR V HAS NO SUCH CANCELLATION PROPERTIES.

LCC WILL ALSO IGNORE BLAWK LINES AND ANY LINES (SUCH AS THESE)
WHICH BEGIN WITH A DELTA (A). THUS COMMENT LINES MAY BE
TYPED WITHOOT ANY ANALYSIS FROM THE LCC SYSTEM.

ER
VOTE THAT IF I FORGET THE *ä' ON A COMMENT LINE, LCC WILL OBJECT.

ROR SX04 |
A IT SAYS »THAT' ISN'T AN OPERATOR, WHICH IS CERTAINLY TRUE, AN
A ENGLISH SENTENCE DOESN'T USUALLY TURN OÖT TO BE A VALID
& LCC STATEMENT.

A IF YOU HAKE AN ERROR AND NOTICE IT
A LCC (I.E., BEFORE YOU HIT THE R
A THE ERROR BY BACKSPACING TO THE
A RETYPING IT AND ALL THE CHARACT
A CHARACTERS BACKSPACED OVER (NOT
A BE DELETED FROM THE LINE. I'LL

THE %,' SHOULD BE A *♦'.
A I UPSPACBD MANUALLY TO

12.34,56
♦ 56

68.34
A STRIKEOVERS WON'T BOTHER LCC, BUT
A WHAT I TYPED.

BEFORE YOU SEND THE LINE TO
ETÜRN KEY), YOU CAN CORRECT
LEFTMOST BAD CHARACTER AND

ERS WHICH FOLLOWED IT. ANY
JUST THE LEFTMOST ONE) WILL
SHOW YOU AN EXAMPLE:
I'LL BACKSPACE. AND EETYPti IT,

AVOID STRIKEOVERS.

I WOULDN'T BE ABLE TO READ

2345

345

A NOW LET'S TRY SOME MORE EXPRESSIONS.

♦2345.876

+ 345

72 Appendix 3

2*1* ♦ 12.5
212.1129167

• 54.2 / 6,, "i - 2

& tlNm OPUVATIONS ARE NORMALLY D011T5 BEPORE t*Sf WHICH ARE DOME
A BEFORE * AND /, WHICH TN TURN ARE DONE BEFORE ♦ AND -.
A HOWEVER, WE CAN CHAHGE THIS IMPLICIT HIERARCHY OF OPERATIONS
& RY USING PARENTHESES.

12.7?. * (92.5 / .3U1 - .00058) ♦ (3 ♦ .789)
7228636.11

& THIS WAS DONE AS IP IT HAD BEEN WRITTEN
12.78 ♦ { ((92.5 / .341) - .00058) t (3 * .788))

7229636,11

A BESIDES THE UNARY AND BINARY OPERATORS WE CAN
a STANDARD MATHEMATICAL FUNCTIONS SUCH AS
A SQRT SQUXRE ROOT
A SIN SINE
A COS COSINE
A IN LOGARITHM
A EXP EXPONENTIAL

USE SOME OF THE

(ARGUMENT IN RADIANS)
(ARGUMENT TN RADIANS)
(BASE E)
(EfARGUMENT)

ARCTAN ARCTANGENT (ANGLE IN RADIANS)

A LET'S TRY A FEW OF THEM.

SORT(3)
1.732050808

SQBT(23U)
15.2970585U

SIN(5)
-.95892U27U7

LN{2)
.6931U71906

SXP(1)
2.718281828

A THUS PAR IN THIS CONVERSATION, NO VALUES HAVE BEEN RETAINED BY
A LCC, BUT IP WE WISH TU KEEP A COMPUTED NUMERIC VALUE, WE CAN
A STORE IT INTO A VARIABLE. VARIABLES ARE DESIGNATED BY
A IDENTIFIERS, WHICH YOU CAN CHOOSE FREELY (EXCEPT FOR LCC
A KEYWORDS LIKE %TYPE' AND MF', WHICH HAVE SPECIAL MEANINGS).
A AN IDENTIFIER MUST BEGIN WITH A LETTER AND IT CAN CONTINUE
A WITH LETTERS, DIGITS, OR UNDERLINE (_) CHARACTERS. IDENTIFIERS
A CAN BE AS LONG AS YOU LIKE, BUT LCC HILL IGNORE ANY CHARACTERS
A AFTER THE FIRST 8.
A I'LL PICK SOME IDENTIFIERS AND STORE VALUES INTO THEM. NOTE THAT,
A UNLIKE ALGOL, LCC DOES NOT REQUIRE ME TO DECLARE AN IDENTIFIER
A BEFORE I USE IT.

^ - 5 ; B - H j LCC - 111868 ; FISH ~ 0 ; NOVEMBER - 18 ; A_B_C - 35
A WE CRN CHECK THE VALUES WHICH WERE STORED BY TYPING THEM OUT.

TYnE A,B,LCC,FISH,NOVEMBER,A_B_C

Appendix J 73

4
111868
0
18
35

A NO« WE CAN USE THESE VARIABLES AS OPERANDS IN FURTHER CALCULATIONS

SQHT(B+?ISH)
q

2
LCC / NOVEflBER - (LCC * A_B_C)

-3909165.111

A WE CAN CHANGE THE VALUE OF A VARIABLE WHENEVER WE WISH:
A ♦ -7U2.8 ; B - B-1; FTSH--3U-B; TYPE A, B#FISH

-742.8
3
31

A THE CONSTRUCTION A ♦ 5 IS A STATEHENT, IN PARTICULAR, AN
4 ASSIGNMENT STATEHENT. THE *TYPE' STATEHENT IS ANOTHER KIND OF
Ä STATEHENT WHICH CAUSES EACH OF A LIST OF EXPRESSION VALUES TO
& BE TYPED BACK TO US (ONE VALUw PER LINE). WE CAN PUT HORE THAN
A ONF STATEHENT ON A LINE BY SEPARATING THE SUCCESSIVE STATEMENTS
A BY SEMICOLONS (AS ABOVE). A SEHICOLON AFTER THE LAST STATEMENT
A ON A LINE IS OP ION AL.
A WE CAN HAKE AN ASSIGNMENT INSIDE AN EXPRESSION, OR WE CAN BOTH
A TYPE AND ASSIGN IF WE WISH.

T-A/(C-B-1)+ 100; TYPE T,C
-271.4
2

TYPE P - LCC ♦ 1
111869

TYPE CAT * DOG - 3;
ERROR UN01 DOG IS UNDEFINED

A THAT DIDN'T WORK BECAUSE I FORGOT TO GIVE A VLAUE TO THE VARIABLE
A DOG. I'LL DO SO AND TRY AGAIN, NOTE THE ERROR MESSAGE FROM
A LCC'S EXECUTOR, WHICH WAS UNABLE TO CONTINUE AFTER FINDING AN
A UNDEFINED VARIABLE.
DOG * „,5
TYPE CAT - DOG - 3

99997
I-J-K-L-H-N-O; A gg CAN ASSIGN A VALUE TO A WHOLE SET OF VARIABLES.
TYPE I+.UK*L*H + N; A THEY WILL ALL BE ZERO,

0

5
IJKLMNOPQRSTUVWXYZ - 5; TYPE IJKLHNOP; A LCC IGNORES THE REST.

A WE CAN TEST THE VALUES OF VARIABLES BY HEANS OF AN %IF' STATEHENT.
A EXAMPLES ARE:

IP A < B THEN TYPE 3 ELSE TYPE 0

IF B*P * LCC THEN TYPE 9999

7U Appendix J

<m9

7

A IF HK WANT TO PERFOBM HOHE THAN ONE ACTION DEPENDING ON A
a CONDITION, HE CAN COMStwR A S?.Z OF STATEMENTS INTO A SINGLE
a COMPOUND STATEMENT VTA THE STATEMENT BRACKETS { AND >.
A THUS WE CAN TYPE:

IF A/B < P THEN T - 3 ; W * U ; TYPE T*W >;

IP T = P THEN IF A * B THEN TYPE 3 ELSE TYPE *» ELSE TYPE 5

& NOTE THAT ANY STATEMENT (EVEN AN IF STATEMENT) CAN FOLLOW A
A 'THEN' (OR AN %ELSE').

& SO MUCH FOR THE BASIC *DESK CALCULATOR' FEATURES OF LCC. SUPPOSE
A WE WISH TO WRITE A PROGRAM AND STORE IT INSIDE LCC. THUS FAR
A IN THIS CONVERSATION, NONE OF OUR STATEMENTS HAVE BEEN KEPT
A AFTER BEING EXECUTED, THOUGH LCC HAS SAVED THE VALUES WHICH WE
A ASSIGNED TO OUR VARIABLES. WE CAN SAVE STATEMENTS WHICH ARE
A TO BE CALLED OUT LATER FOR EXECUTION BY GIVING THEM *STEP
A NUMBERS' WHICH BOTH IDENTIFY THEM FOR OUB FUTURE USE AND ALLOW
A LCC TO ORDER THEM PROPERLY. AS AM EXAMPLE, LET'S WRITE A
A SIMPLE PROGRAM TO COMPUTE FACTORIALS.

3.1: FACT * 1;

A THE STEP NUMBER, 3.1, CAN BE SEPARATED INTO TWO PORTIONS, THE
A INTEGER PORTION, WHICH IS THE *PART NUMBER', AND THE FRACTIONAL
A PORTION. SINCE THE INTEGER PORTION IS 3, THIS STEP IS STORED
A IN PART 3, AND THE FRACTION INDICATES ITS POSITION RELATIVE TO
A OTHER STEPS IN PART 3. PART NUMBERS MUST BE BETWEEN 1 AND 9999,
A AND THE STEP FRACTION MUST BE BETWEEN .0001 AND .9999. LEADING
A 7.BROS IN THE PART NUMBER AND TRAILING ZEROS IN THE FRACTION MAY
A BE OMITTED.
A LET'S GO ON WITH OUR PROGRAM.

3.2000: FACT - FACT ♦ N; A WE'LL COMPUTE N! AND PUT IT INTO FACT.
3. 3: IF N = 1 THEN RETURN ;
3.U0: N • N - 1 ;
3.5: GO TO 3.3; A WE CAN TRANSFER CONTROL 1 A NUMBERED STEP,

A NOW LET'S SEE WHAT PART 3 LOOKS LIKE.
DISPLAY PART 3 ; A THIS WILL TYPE OUT THE STEPS IN PART 3.

3. 1: FACT • 1;
3.2: FACT * FACT * N; A WE'LL COMPUTE N! AND PUT IT INTO FACT.
1.3: IF N = 1 THEN RETURN ;
3.U: N - N - 1 ;
3.5: GO TO 3.3; A WE CAN TRANSFER CONTROL TO A NUMBERED STEP.

A NOW I'LL GIVE A VALUE TO N AND CALL PART 3. EXECUTION WILL BEGIN
A WITH STEP 3.1 AND PROCEED TO SUCCESSIVELY HIGHER NUMBERED STEPS
A UNLESS WE EXPLICITLY TRANSFER CONTROL WITH A *GO TO' STATEMENT.

Appendix J 75

120

N * 5; PAPT 3
TYPS PACT

A HSHM... THAT'S MDT S! T GUESS I HAVE A BUG.
A OH, YES; STEP 3.5 SHOULD GO TO 3.2. I'LL CHANGE IT BY RETYPING
A STEP 3.5. THAT WILL PRASE THE OLD STEr AND BEPLACB IT BY NY
a NE« ONE.

3.5: GO TO 3.2 ;
A NOW TRY AGAIN.
N-5 ; PAST 3
TYPE FACT

A THAT'S BETTER. LET'S FIX STEP 3.3 SO IT «ILL RETURN THE VALUE
A OF PACT.

ALTER STEP 3.3 : ^RETURN' * »RETURN FACT'

a THAT CHANGED THE TEXT OF STEP 3.3 BY SUBSTITUTING ONE STRING FOR
A ANOTHER. THE KEYWORD %STEP' WAS OPTIONAL IN THIS ALTER
A STATEMENT, AND I COULD HAVE USED A *,' IN PLACE OF THE *:'.
DISPLAY STEPS 3.3 TO 3.5; A LET'S CHECK THE TAIL END OF OUR PART.

3.3; IF N = 1 THEN RETDPR FACT ;
I.U: N * N - 1 ;
3.5; GO TO 3.2 ;

A LOOKS O.K. A FURTHER WORD ABOUT THAT DISPLAY STATEMENT — IN
A SPECIFYING A GROUP OF ONE OR HOPE STEPS OR PARTS, THE KFYWOROS
A *STBP' AND »STEPS' ARE EQUIVALENT EVERYHHERE IN LCC, AS ARE
A »PART' AND »PARTS'. BOREOVSR, IN HOST CASES, SUCH AS THIS
A ONE, THE KEYWORD »STEP' HAY EE CHITTED. THUS I COULD JUST
A AS WELL HAVE SAID
A DISPLAY STEP 3.3 TO 3.5
A OR DISPLAY 3.3 TO 3.5
A NOB I'LL TRY PART 3 AGAIN.
N-6;PAPT 3

N<-10;PAPT 3
ROD
N-0;PART 3;

AT 3.2
A TH4T WENT INTO A LOOP, AND I HAD TO HIT THE »ATTN' KEY TO GET
A OUT OF IT. I GUESS THE PROGRAM IS STILL BUGGY.
A I'LL THINK ABOUT IT. * ♦ ♦ • ♦
TYPE FACT,N ; A I WONDER WHAT MY VARIABLES ARE NOW?

720

3628

ATTN

0
-15

A Qi{, I SEE — PART 3 WON'T WORK FOR ANY VALUES LESS THAN 1.
A I'LL FIX IT BY ADDING ANOTHER STATEMENT.
3.15: IF N < 0 THEN RETURN FACT ;
N - 0; PART 3; A TRY AGAIN.

76 Appendix J

A THM'S anCH RETTER. NOTE, HOHSVER, THAT I STILL HAVEN'T GOTTEN
A OÜT OF nt ORIGINAL LOOP (YOO CAN T^LL BY THE INDENTATION - 7
A SPACES INSTEAD OF U). I CAN SAY ^GO', WHICH WILL GO ON FROM
A THE POINT WHERE I HIT %ATTN'# BUT THAT WON'T DO HOCH GOOD.
A I'LL TRY IT ANYWAY TO SHOW YOU.
GO

i

ATTN AT 3.2
A YOU SEE, I'M BACK IN THE LOOP AGAIN. TO GET OUT, I'LL FORCE AS
A END TO PART 3 BY GOING TO STEP 3.15.
GO TO 3.15

0
A FACT STILL HAS THE VALUE OF ZERO BECAUSE IT WAS ERRONEOUSLY
A MULTIPLIED BY THE ZERO VALUE OP N. NOTE ALSO THAT N HAS BEEN
A COUNTED DOWN AGAIN BY THE LOOP.
TYPE N

-5
A WE CAN HAVE PART 3 ASK US FOR A VALUE OP N BY USING A REQUEST
A STATEHENT.
3.05: ?N
PART 3

AT 3.05 N -5; A I'LL SE1- N TO 5.
120

^ WE CAN INCLUDE OUR OWN HESSAGE IN THE 8E0UEST BY PUTTING A STRING
A BETWEEN THE QUESTION HARK AND THE VARIABLE NAHE (N>.
3.05: ? ^TYPE N FOR N!' N
PART 3

TYPE N FOR N! U
2U

A WE CAN USE ANOTHER PART TO CALL PART 3 REPEATEDLY. WE'LL USE
A PART 25. LET'S USE A %NUMBER' STATEHENT TO GENERATE THE STEP
A NUMBERS AUTOMATICALLY.

NUMBER AS 25 BY ,1

25.1: PART 3
25.2: ? * TYPE 1 TO GO ON, 0 TO STOP ' FLAG?
25.3:IF WLAG = 1 THEN GO TO 25.1;
25.a:

A THE AUTOMATIC NUMBERING IS TURNED OFF BY PRESSING THE PETDRN KEY
^ IMMEDIATELY AFTER THE STEP NUMBER IS TYPED TO US.
PAPT 25; A NOW CALL OUR PROGRAM.

TYPE N FOR N! 1
1

TYPE 1 TO GO ON, 0 TO STOP 1
TYPE N FOR N! f>
72 0

TYPE 1 TO GO ON, 0 TO STOP 1
TYPE H FOR N! 0
1

TYPF 1 TO GO ON, 0 TO STOP 1
TYPE N FOR SI 8
U0 320

Appendix J 77

TYPE 1 TO GO OK, 0 TO STOP 1
TYPE H FOR N! 2.U
i ♦

ATTN AT 3. «I
A OH, OH — I'M IN A LOOP AGAIN. I'LL PLANT A »PAUSE' STATEMENT
A INSIDE IT TO SEE WHAT IS HAPPENING.
3.21: PAUSE ; A THIS HILL GIVE HE CGHTBOL AFTER STEP 3.2 IS DONE.
GO; A NOH I'LL GO ON HITH THE LOOP.

PAUSE AT .3.21
TYPE FACT,N; A I'LL TAKE A LOOK AT THE VARIABLES.

1S60a.aPS67
-7.6

GO ; A IF I SAY GO, THE PROGRAM iHL GO THROUGH THE LOOP AGAIN.
PAUSE AT 3.21

TYPE FACT,K
-13U198. 662fl
-8.6

A AS YOU CAN SEE, „JB PBOGHAH DOESN'T HOBK FOR NON-INTEGERS.
A LET'S FIX IT BY TRUNCATING N WHEN HE ENTER PART 3.
3.06, N - *N;
A NOH TO GET RID OF THE PAUSE STATEMENT. I'LL USE A *DELETE'
A STATEMENT, HHICH HILL ERASE IT.
DELETE STEP 3.21
GO? A LET'S GO OS.

ERROR G010 STEP 3.21 CHANGED; GO CANNOT BE USED
A OH,OH — I FORGOT THAT I CAN'T CONTINUE NORMALLY AFTER I DELETE
A AN ACTIVE STEP. THERE ARE A NUMBER OF HAYS TO RECOVER FROM
A THIS SITUATION, BUT THE SIMPLEST IS TO START OVER. TO DO
A THAT HE HAVE TO GET OUT OF THE CURRENT PART CALLS, AND THE
A EASIEST HAY IS TO EXECUTE AN »EXIT ALL' STATEMENT, HHICH
A HILL TAKE US BACK TO THE ORIGINAL USER STATE. REMEMBER THAT
A CURRENTLY HE ARE IN PART 3, HHICH HAS CALLED FROM PART 25,
A HHICH HAS CALLED BY ME, SO OUR CONTROL NESTING DEPTH IS 2
A (I COULD THUS USE THO SIMPLE »EXIT' STATEMENTS INSTEAD OF
A THE »EXIT ALL').
A IF HE AREN'T SURE HHAT OUR CURRENT CONTROL STATE IS, HE CAN
A FIND OUT BY MEANS OF A »DISPLAY RETURN STEPS' STATEMENT,
A HHICH HILL LIST THE STEPS CURRENTLY BEING EXECUTED, LET'S
A SEE HHAT OUR STATUS IS NOH.

DISPLAY RETURN STEPS
♦

•i 21
25.1
»♦♦

A THE »**♦' INDICATES AN IMMEDIATE STEP, HHICH IMPLIES THAT HE,
A RATHER THAN A SAVED PROGRAM STEP, ARE IN THE CONTROL CHAIN.
A NOTE THAT HE »0' **?. LIST THICE; HE ARE IN CONTROL NOH
A (TOP ENTRY) " PART 25, HHICH HOÜLD NORMALLY
A RETURN CON^.oL To u. • ESTRY). THF »EXIT ALL',
A HOHEVER, ISN'T NORMAL; a,. « THE CONTROL CHAIN SO THAT
A CONTROL REVERTS TO THE ORIGln... »T STATE HHERE ONLY A
A SINGLE »♦*♦' HOULD BE DISPLAYED.
A THE AMOUNT OF INDENTATION HHICH IS DONE BEFORE LCC GIVES UP

78 Appendix J

CONTROL TO LET US TYPE A STATEHENT DEPENDS ON THE NUHBEH OF
TIMES WE ARE THEN IN THE CONTROL CHAIN, WHICH IS THE NUMBER
OF »♦«♦' ENTRIES IN THE »DISPLAY RETURN' LIST. INITIALLY WE
ARE ON USER LEVEL 1 (IN THE CHAIN ONCE) AND LCC WILL INDENT
U SPACES. FOR USER LEVEL 2, INDENTATION WILL BE 7, FOR LEVEL
3 IT WILL BE 10, FOR LEVEL 4 IT WRAPS AROUND TO 1. THERE-
AFTER, FOR HIGHER NESTING LEVELS THE INDENTATION WILL FOLLOW
THE SEOnPNCE

«♦, 7, 10, 1, U, 7, 10, 1, ...
LET'S GO ON.

EXIT ALL
DISPLAY PART 3; & LET'S SEE WHAT PART 3 IOOKS LIKE.

3. OS: ? *TYPE N FOR N!' N
3.06: N - »N;
3.1: FACT - 1;
3,15: IF N < 0 THEN RETURN "ACT ;
3.2: FACT - FACT ♦ N; A WE'LL COMPUTE N! AMD PUT IT INTO PACT.
3.3: IP N = 1 THEN RETURN FACT ;
3.tt: N * N - 1 ;
3.5; GO TO 3.2 ;

A LOOKS FINE.
2.a

NOW IT SHOULD WORK FOR AIL REAL VALUES OF N-. PART 25 ;
TYPE N FOR N!
2

TYPE 1 TO GO ON, 0 TO STOP 1
TYPE N FOR N! -3a. 8
1

TYPE 1 TO GO ON, 0 TO STOP 0
A THAT'S ENOUGH OP THAT- WE CAN NOW SAVE PART 3 ON A FILE FOR USE
A DURING SOME FUTURE INTERACTION SESSION. I'M PUT IT OK THE
A FILE *FACT3',
SAVE PART 3 AS FILE *FACT3'
« THAT CREATED A NEW FILE NAMED *F4CT3' AND STORED THE TEXT FROM
A PART 3 ON IT. THE TEXT OF PART 3 WILL BE RESTORED IP WE LOAD
A *PACT3' (USING A %LOÄD' STATEMENT) DUPING A FUTURE CONVERSATION
A WITH l.CC.
OFF; A LET'S LOG OFF AND END THIS SESSION.

ON LCC PROM 16:35:48 TO 17:17:12
CnU TIKE USED: 00:00:06:86

