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Chapter I 

INTRODUCTION 

This monograph deals witli con temporary approaches to the problem of 
optimum shock and vibration isolation design. Isolation devices act to reduce the 
unwanted effects of shock and vibration disturbances on critical elements of a 
mechanical system. The problem of optimum design lias to do with the selection 
of isolators that cause an index of the system performance to be optimized; that 
is, to take on a value either less or greater than that associated with other can- 
didate isolators, in addition, the optimum design usually must satisfy constraints 
which are imposed on other aspects of the system response and the parameters 
which describe the isolators. 

The essential elements of the optimum design problem, in addition to a descrip- 
tion of the system kinematics and dynamics, are threefold; namely, 

• The performance index 
• The design constraints 
• The shock or vibration excitation. 
These aspects are consideied in Chapters 2 and 3, followed by a general formu- 

lation of the optimum design problem in Chapter 4. Solution methods depend 
on the nature of the input excitation, i.e., whether deterministic or random and, 
for the former, whether a discrete shock pulse or a periodic vibration. Particular 
solution methods and results for these different excitation forms are covered in 
the remaining four chapters of the monograph. An annotated bibliography is 
included, as well as a glossary and an appendix dealing with a linear program- 
ming formulation for a class of shock isolation systems. 

Though the notion of optimization is implicit in the design process, optimiza- 
tion as a formalized approach to engineerii.^ design is a relatively new concept. 
The engineer's function always has been to produce a final design that is better 
in some way than possible alternatives. However, it is in the selection of a quan- 
titative measure of performance, i.e., an index whose numerical value serves to 
rank otherwise acceptable candidate designs, that an optimum design is dis- 
tinguished from a conventional, or merely acceptable, design. 

It is important to keep in mind that the sense of the optimization is totally 
dependent upon the choice of performance index and that, with respect to this 
index, what is termed the Optimum is simply a system whose performance is better 
(or at least no worse) than that of the candidate designs with which it has been 
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compared. Thus, it cannot be said that some as-yet-unthought-of design is not 
better than the optimum; or that a better measure of optimization cannot be 
found. 

While reliance on a performance index as the basis for the optimization seems 
unavoidable, limitations to the generality of the optimization, as a consequence 
of comparison with a limited class of alternatives, can be surmounted. The op- 
timization techniques of modern control theory, when applied to synthesis in the 
time or frequency domain, make it possible to establish bounds on the perform- 
ance index for all admissible candidate isolator concepts. In the time domain, 
this approach, termed time-optimal synthesis, amounts to describing the way in 
wliich an isolation system would have to respond for the performance index to 
take on the least possible value consistent with the constraints; however, it says 
nothing of what the isolator element ought to be from a device-oriented point of 
view to achieve this optimum performance. Still, this is valuable information to 
the designer; information he almost never otherwise possesses. While the litera- 
ture on optimum control theory is extensive, there is extremely little with 
directed application to mechanical system design. Within these limits, we have 
attempted to be comprehensive in treating this newer approach to design optimi- 
zation. Chapter 5 deals with applications to shock isolation systems. More 
limited results for vibration isolation under harmonic excitation are presented in 
Chapter 7, and for random excitation in Chapter 8. 

After establishing optimum performance bounds, the designer is still faced 
with the problem of selecting specific isolator concepts to achieve the desired 
performance characteristics. We do not address this problem from a hardware 
point of view; that is simply not the focus of this monograph. Rather, it is as- 
sumed that candidate isolator concepts have been selected by some means and 
that there remains the problem of identifying the open design parameters (e.g., 
spring constants, damping rates) so that the resulting system performance is op- 
timum. Here optimum refers to the performance achievable by the particular 
class of isolator elements under consideration. The difference between this opti- 
mum and the above-mentioned optimum performance bound represents the 
margin for improvement in system performance which theoretically can be 
achieved with an isolator concept. It is this ability to evaluate the extent to 
which an optimum design can be improved that the designer seldom, if ever, 
learns from conventional optimization methods, and we give it great emphasis in 
the monograph. 

We term the problem of identifying the optimum set of parameters for an 
otherwise specified isolator concept that of design-parameter synthesis. Cast in 
discrete numerical terms, this is recognized as a problem in mathematical pro- 
gramming for which various methods of solution are available. The applicability 
of these methods generally depends on the analytical form of the system equa- 
tions, performance index, and constraints. The more conventional approach, 
termed direct synthesis, employs numerical search techniques. We establish the 
problem formulation and point out the complications wliich result with increasing 
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dimension of the system, bul do not deal directly with methods of solu- 
tion. For specific solution techniques, the reader is referred to an extensive 
literature. 

Another method, termed indirect synthesis, makes use of the results of the 
ideal isolator response characteristics determined in conjunction with the opti- 
mum performance bounds. This is a newer method, and, while the results re- 
ported so far appear very promising, the extent of its applicability remains to be 
i stablishcd. However, in view of the potential computational advantages of this 
approach over the direct method, we have included it in the monograph. Both 
methods are presented in Chapter 6 for shock isolation systems; application to 
vibration isolation systems under harmonic and random excitation is discussed in 
Chapters 7 and 8, respectively. Chapter 6 also includes material on the sensi- 
tivity of optimum shock isolator designs to uncertainties in ihr input excitations. 

System design Includes system analysis as a subset. For shock and vibration 
isolation systems of any complexity, the analysis involves the solution of sets of 
differential equations, which for practical reasons must be approached by numeri- 
cal means. Thus, our treatment of the design process is very definitely oriented 
toward computational methods requiring large digital computers. The limitations 
of the available literature for the most part necessitate the use of simple examples 
which either possess closed-form analytical solutions or are not particularly de- 
manding on the computational methods. This is unfortunate, since the dimen- 
sion of the computational problem usually determines the practicality of the 
method of solution. Despite the lack of convincing examples, however, we have 
tried to emphasize methods whose applicability extends to the larger, real-world 
systems. 

"I 
■.■,; 



Chapter 2 

OPTIMIZATION CRITERIA 

By optimization criteria we refer to both the performance index, which is tlie 
basis for ranking competing designs, and constraints, which serve to restrict the 
designs from which the optimum is selected. A simple example will il- 
lustrate the significance of these criteria. Figure 2.1 shows a singlc-degree-of- 
freedom (SDF) isolator system consisting of a parallel spring and damper inter- 
posed between the package (rigid mass) and the (massless) base structure. The 
base is subjected to a prescribed shock pulse. Let us assume that the rattlespace 
(i.e., the maximum displacement of the package relative to the base) is to be as 
small as possible, but under no circumstances can the peak acceleration experi- 
enced by the package exceed a certain amount. In this case, we would select 
rattlespace as the performance index and treat the peak transmitted acceleration 
as the response constraint. In comparing isolators with different spring rates and 
damping coefficients, only those that satisfy the acceleration bound would be 
considered acceptable designs, and among those the one requiring the least rattle- 
space would be the optimum. 

Fig.  2.1. 
problem. 

/////////// 

An   optimum   isolator   design 

5 
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Tliis example points up the significance of tlie constraints. Were it not for tlic 
restriction placed on the acceleration of the package, the raltlespace could be re- 
duced to zero by using an extremely stiff spring. Then, however, the package 
would experience the same peak acceleration as contained in the input shock. 
The restricted nature of this sort of optimum design problem also is suggested, 
since finding the best linear spring-dashpot isolator tells the designer nothing 
concerning the further reductions in rattlespace that mighl result from the use 
of a nonlinear spring. Also, the optimum choice of spring and damper might 
be considerably different for another shock input or for another choice of per- 
formance index. 

While the specific choice of the optimization criteria depends on the design 
situation, it is useful to set forth some general functional forms that will be em- 
ployed throughout the monograph. 

2.1   Performance Index 

Our primary assumption is that a single index of system performance c;ui be 
selected as the basis for optimization. However, as will be discussed, this is not 
an overly restrictive assumption. The performance index, which we will denote 
by i//, may be a function of the system response variables (as in the preceding 
example) or of the isolator design variables, or of both. The latter situation 
would be encountered when the performance index is related to such measures 
of system effectiveness as cost, maintainability, or reliability, all of which depend 
in a complicated way on the details of specific isolator concepts and configura- 
tions. Such a performance index poses no particular problems so far as the syn- 
thesis problem is concerned. However, the ability to establish theoretical limits 
to the performance index without prior choice of isolator configuration requires 
thai the index be expressible only in terms of system response quantities. For 
this reason, we will consider only such forms for >//. 

Deterministic Forms 

The optimum design problem for shock isolation systems (Chapters 5 and 6) 
and harmonic vibration isolation systems (Chapter 7) is presented from a deter- 
ministic point of view. Here the performance index is selected as the maximum 
absolute value of some response quantity with respect to time.t The response 
quantity is denoted by /;, and the performance index then is 

i// = maxj/vj. (2.1) 
r 

fThe notation and usage within this section agrees with that of Chapters 5 and 6, unless 
otherwise indicated. Although Chapter 7 also deals with a deterministic problem, time 
does not play the same role and there is an adjustment in the functional form for 41. 
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The quantity /; may be a displacement, velocity,acceleration, stress, or some com- 
bination of these, and is found from the solution of the system equations of 
motion. 

An extended form of Eq. (2.1) results when \p is defined to be the largest of 
several related peak response quantities. For example, it may be desired to 
minimize the largest of the stresses occurring at three locations in the system. If 
we denote stresses at these points by o,, 02, and 03, then we may write the 
performance index as 

^ maxfrnaxloi |, max|a2|, maxlosl  ■ 

Therefore, a more general form of Eq. (2.1) is 

\p - max maxl/jj; x =  1,2,...,S, (2.2) 
s        r 

where we select the largest among 5 response quantities,/J^., for the performance 
index. This form also is applicable when the position of the maximum value of 
/; is unknown in advance. 

Equation (2.2), of course, requires that the quantities )is be of comparable 
type. Reference 1 considers a performance index involving different response 
quantities. With reference to the example system of Fig. 2.1, the index is 

1// = maxjzl + p max|x|- (2.3) 
t t 

Here, z is the acceleration of the package mass,.* the relative displacement,and 
the constant p a weighting factor. For large values of p, the performance index 
favors rattlespace, while for small values of p, the preference is for peak accelera- 
tion. 

Another form of performance index is the integral of a response quantity over 
some time period of interest. Thus, 

r'l 
1// =      H{h)dt, (2.4) 

where // is a known function, c.g.,H(h) = h2. This type of performance index is 
common in control theory applications and is related to the forms considered by 
classical analytical optimization techniques (i.e., calculus of variations). While 
the solution techniques to be presented are equally applicable to the integral 
performance index, we do not specifically deal with this form, as physical moti- 
vation seems lacking for isolation system applications. It might be noted that the 
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integral form reduces t'- the maximum value form in the following limiting situa 
tion [2]: 

'r'2        "11/p 

\h\Pdt ■■jj =   lim 
p-»~ J'i 

(2.5) 

As Ref. 3 shows, even small values of p can yield results close to those found with 
the max|/!(/)l criterion. 

t 

It is possible to introduce a supplementary performance index at a time when 
the primary index has been satisfied, since, subsequently, the response may not 
be unique. For example, in the single degree-of-freedom (SDF) example system, 
the isolator force trajectory which minimizes i// may have any value at sufficiently 
late times for which min \p is not exceeded. To identify a particular isolator 
force trajectory, it may be required to bring the mass to rest in minimum time, 
this latter condition serving as the supplementary performance index. This ap- 
proach is discussed in Ref. 4 and 5. The relative merits of various performance 
indices are studied in Ref. 1. 

Statistical Forms 

Statistical forms of the performance index are considered in Chapter 8 with 
application to random vibration isolation. Each of the deterministic forms has 
its probabilistic counterpart. For example, the response quantity /( can be con- 
sidered as the expected value of an appropriate random response variable or com- 
bination of such variables, and a performance index such as Eq. (2.1) is then 
meaningful. Also, the performance can be based on the probability of not ex- 
ceeding the maximum value of a response function, as in Ref. 6. 

Reference 1 considers a form based on expected mean square values which is 
somewhat analogous to Eq. (2.3). Here 

^ = Elz2|  +pE[A-2l, 

where the E[ ] refer to expected mean square responses for the SDF system of 
Fig. 2.1, the input being a random vibration. As before, p is a constant weighting 
factor. A related form of the performance index is considered in Ref. 7 as 

i// = z0
2 + px*. 

Here, 'z0 and x0 arc values of the random variables z and x such that the proba- 
bility of |z| < ZQ and \x\ < x0 is equal to a prescribed level. 
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2.2 Constraints 

The constraint functions serve to restrict the system response or limit the 
choice of isola.or parameters as required by design considerations. We make a 
distinction between two types of constraints: (a) response constraints, which in- 
volve the system response variables, and (b) parameter constraints, which involve 
the design parameters associated with particular isolator element configurations. 
Both types of constraint functions will be denoted by the symbol Ck, the sub- 
script indicating that there are /c= 1,2,.. .,/C of these. 

Response Constraints 

Response constraints are limitations enforced on such physical response quan- 
tities as stress, displacement, and acceleration. In the SDF example discussed, the 
single constraint was imposed on the peak accelerations of the package. If we 
denote the maximum allowable acceleration by A, then this constraint may be 
written 

max |z| < /I, 
r 

or equivalent'.y, 

A < z < A. 

In all instances, the response constraints that we consider may be written as 
two-sided inequalities, as in this example. Therefore, the general expression for 
the Ki response constraints is 

c^ < q <; qy;        k = 1,2,...,£,. (2.6) 

For deterministic systems, the bounding values Ck , Ck may be constants or 
functions of time. In the preceding example, K^ = 1, C^ = z, and Cf =-A, 
(?[ = A. For random vibration isolation, the response constraints may be in 
terms of expected values for which Eq. (2.6) still applies. Or, the constraints 
could require the probability of some response quantity exceeding a specified 
level to be less than a fixed value. 

Parameter Constraints 

Parameter constraints refer to limitations on the design parameters describing 
a particular isolator concept or configuration. In the linear spring-dashpot isola- 
tor element (Fig. 2.1), we would require both the spring rate k and damping coef- 
ficient c to be positive numbers. This could be expressed as 
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k > 0;     c > 0. 

Strict inequality forms would be used if the possibility of omitting either the 
spring or the damper from consideration were to be avoided. If, in addition, it 
was desired that the isolator element be overdamped, then the constraint 
c > 2\fkm would be added. 

The parameter constraints usually will be expressed as one-sided inequalities of 
the form 

Ck> Q\     k = l,2,...,K2. (2.7) 

However, two-sided inequalities may occur, as, for example, when a spring rate 
is required to lie between prescribed values. Also included is the situation where 
a design parameter must assume only discrete prescribed values. 



Chapter 3 

SHOCK AND VIBRATION ENVIRONMENTS 

Meclianical systems must be designed to function adequately in a wide range 
of dynamic environments. Tiiese environments are normally classified as shock 
or vibration, depending on the duration of the disturbance. Shock is said to occur 
when the system is acted upon by a "sharp," aperiodic disturbance lasting a 
relatively short period of time. Vibration, in contrast, is characterized by an os- 
cillatory disturbance extending over a relatively long period of time. 

The sources of shock and vibration environments are numerous and difficult 
to categorize [8]. We make no attempt to do so here, but rather concern our- 
selves with the mathematical representations of these environments which are 
necessary to formulate the optimum design problem. The assignment of specific 
numerical waveforms or equivalent parametric representations as related to a 
particular service environment is beyond the scope of the monograph. 

Our characterization of shock environment will be entirely deterministic, 
whereas both deterministic and statistical forms are considered for vibration en- 
vironments. These environments, or input disturbances, may be expressed in 
terms of force, displacement, velocity, or acceleration. Even for deterministic 
forms, the design problem is formulated so as to allow uncertainty in the inputs. 

3.1  Shock Environment 

Input Waveform Description 

In the simplest case, it is assumed that the shock pulse, denoted by/(f), is a 
known function of time over a prescribed interval, /0 < / < fy-. This may be de- 
scribed analytically or in discrete digital form. A number of such input wave- 
forms may be specified at different points in the system, in which case their 
relative time phasing is also known. 

A more complicated, but more real-world, situation is where the possibility 
of different waveforms must be considered. We term this a multiple-input speci- 
fication and assume that any one of a finite number of prescribed waveforms 
/ (r) (2 = 1, 2, . . ., L) is equally likely to occur at each input point of the 
system. 

11 
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Figure 3.1a shows a family of three (L = 3) acceleration pulses that might be 
prescribed as shock inputs. Multiple inputs represent the usual situation in de- 
sign, optimum or otherwise, and require that all permutations be considered. 
The problem is not quite so direct, however, in the determination of optimum 
performance bounds, as is discussed in Chapter 5. 

Input Class Description 

Another means of introducing uncertainty into the specification of the shock 
environment while maintaining a deterministic representation is to ('escribe a 
class of inputs that contains an infinite number of waveforms, any of which is 
equally like'y to occur. The class may be described by a time-varying band about 
a nominal acceleration waveform, as suggested in Fig. 3.1b, or bounds unrelated 
to waveform may be prescribed (Fig. 3.1c). An additional requirement may be 
imposed as. for example, that some function of the waveform averaged over 
time be given or bounded (Fig. 3.1c). In fact, a fixed set of rules for describing 
a class need not be stated, and no particular concern need be held for a con- 
venient mathematical description of the class. This is a fairly natural way of 
describing the environment, as it recognizes what is known and what is not. Of 
course, special solution techniques are required if the number of individual wave- 
forms is unlimited. 

Input Shock Spectra 

The shock spectrum, which portrays the maximum response (i.e., displace- 
ment, velocity, and acceleration) of an SDF linear-mass-spring system (usually 
undamped) to the input waveform over a range of frequencies, conventionally is 
utilized as a characterization of tfm shock input. Since this information retains 
nothing of the time details of the input, and it is not possible to infer these from 
the spectral plot, we do not consider this form of input representation. 

3.2 Vibration Environment 

Harmonic Inputs 

Harmonic vibration environments generally are represented as time-varying 
quantities in the form of Fourier series. The solution methods and results pre- 
sented in Chapter 7 are limited to simple harmonic inputs; i.e., waveforms of 
either sine or cosine form, e.g.,/(/) =/„, sin OJ/. It is possible to represent un- 
certainties of harmonic waveforms in terms of frequency and amplitude 
(w vs/„,) bounds (Fig. 3.2) and otherwise parallel the preceding description of 
shock pulses. Reference 9 is suggested for a general discussion of periodic 
waveforms. 
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THREE   POSSIBLE  WAVEFORMS 

TIME, I 

(a) Multiple input 

f(t) MAY BE  ANY SINGLE-VALUED WAVEFORM 
LYING  WITHIN THE  BOUNDS SHOWN 

t—f(t)MAY  BE  ANY  SINGLE-VALUED WAVEFORM 
WITHIN THE BOUNDS SHOWN FOR WHICH 

/' ' f(t) dt "- F; 

F   PRESCRIBED, 

TIME, I 

(c) Input class 

:ig. 3.1.  Descriptions of shock pulses. 
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ADMISSIBLE   HARMONIC   INPUTS 

HAVE   AMPLITUDE   AND   FREQUENCY 
COMBINATIONS   IN   THIS   BAND 

FREQUENCY, ai 

Fig.  3.2.    I-requcncy-amplitudc spectrum for harmonic 
disturbances. 

Random Inputs 

By random inputs wc refer to aperiodic waveforms whose magnitudes are 
random variables. A narrow-band random disturbance resembles a harmonic in- 
put in that it possesses a principal frequency component, but differs in that its 
magnitude varies randomly. In contrast, no dominant frequency component can 
be identified for a wide-band random disturbance. A spectral representation of 
the random input is sufficient for the optimum design of linear isolator 
systems as presented in Chapter 8. Ilcnce, we will review this concept 
briefly. 

We denote the random input by /'(/) and assume that it is a stationary 
random function of lime I. The autocorrelation function R(T) is defined 
to be 

R(T) = E|/(0/(/ + r)], (3.1) 

where Ej   ] denotes expected value, or ensemble average.   For the class of/(/) 
under consideration, R(T) is computed as 

R(T) = lim 2TJj f{l)fit + T)dT. 
T 

(3.2) 

Then the spectral density S is defined as 

i r S(\) =  —     tf(r) exp (-/XT)dT. 
Z7T    j 

(3.3) 
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Tig. 3.3. Spectral densities of various terrains. 
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Observe that S{X) is the Fourier transform of the autocorrelation function. The 
transform parameter X is identified witii the frequency content of the 
disturbance. 

An application of these concepts is considered in Chapter 8 with respect to 
the measured profiles of roadways and track systems which constitute the vibra- 
tion input to ground vehicles. The height of the road c '•-.ck above some datum 
is denoted by /and assumed to be a stationary random function of ^stance x. 
Then the autocorrelation function and spectral density can be evaluate 1 in spatial 
rather than temporal terms in exactly the above manner. In place of the time 
frequency \, there is the spatial frequency fi in units of radians per length. If 
a vehicle moves across the profile with constant speed V, the relationships .v = Vt 
and X = VQ. hold, and 

VSf(ll{\) = Sf(x)iÜ). (3.4) 

Here we have used subscripts to distinguish between the time and space spectral 
densities,   liquation (3.3) is used to compute 5/^(X), and the expression for 
Sffx){n) is 

r00 

Sf(x)(n) =   —     RiOexpi-iSim- (3-5) 
-'' J-oo 

On the basis of measured spectra for highways, runways, test tracks, and even 
a cow pasture [10-13], it is suggested that S(n) can be approximated over a wide 
range of frequencies by 

sf(x)(n) = c,«-^. 

where c^ and C2 are positive constants. Representative measurements are sum- 
marized in Fig. 3.3, from which we observe that Cj * 2. If >Syw(J2) = c'jfi- , 
then the spectral density for the profile slopes f'{x) will be constant, as will 
Sfftj{X) evaluated for the velocities/(r). A random process whose spectral den- 
sity is constant is said to be white noise, which implies a wide-band disturbance. 
To the extent that the design optimization procedure can be carried out for a 
spectral characterization of the profile, this means that the input involves only 
a single independent parameter. Reference 14 deals at length with this model of 
the environment. 



Chapter 4 

OPTIMUM ISOLATOR DESIGN FORMULATION 

By combining the optimization criteria and the shock and vibration environ- 
ment information with the system dynamics, we can develop a general problem 
statement for optimum isolator design. We strive to emphasize the generality of 
the formulation despite the fact that, for the most part, only rather simple sys- 
tems have been solved to date. Two formulations of the general synthesis prob- 
lem are presented. One, optimum design-parameter synthesis, selects the opti- 
mum isolator from among a preselected class of isolators as well as the minimum 
performance index for this class; the other, termed time-optimal synthesis, estab- 
lishes the absolute minimum for the performance index but does not describe 
the optimum isolator in hardware-oriented terms. Finally, we consider a de- 
scription of the optimum performance characteristics applicable to either prob- 
lem formulation. Methods of solution are dealt with in subsequent chapters. 

4.1  Optimum Design-Parameter Synthesis 

General Isolation System 

In hardware terms, an isolator is a device interposed between elements of a 
structural dynamic systemt to reduce to tolerable levels transmitted effects of 
the external shock or vibration environment for designated system elements. 
Among isolators that acceptably achieve this function, the optimum isolator is 
the one that causes an index of the system performance to take on its minimum 
value. By design-parameter synthesis we refer to the selection of the optimum 
isolator from among a preselected class of candidate isolators that differ only in 
the numerical values of certain open parameters. 

The design synthesis process requires that a mathematical model for the physi- 
cal system, including the candidate isolator devices, be postulated. This is the 
starting point for our consideration. In the most general case we assume that 
this model can be described qualitatively as a multiple-isolator, multiple-degree- 
of-frecdom (MDF) system and, quantitatively, by a system of nonlinear ordinary 
or partial differential equations. 

fNo limitation in generality is implied; the dynamic system may be composed of structural, 
mechanical, hydraulic elements, etc., or combinations of these. 

17 
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Such a general dynamical system is shown schematically in. Fig. 4.1. Two 
types of elements are considered; structural elements and isolator elements. 
There may be any number of each; in particular, we admit the possibility that Af 
structural elements .^nd J isolator elements are interconnected in an arbitrary 
fashion. A structural element may represent a discrete mass point, a rigid body 
of distributed mass, or a flexible structure such as a framework or a shell. The 
isolator elements, similarly, can represent either simple mechanisms without mass 
or models of more complicated devices. In general, the structural elements con- 
stitute the prescribed portions of the system (i.e., the base structure and the 
elements to be isolated) and the isolator elements are to be chosen in accordance 
with the design objectives. 

■ TYPICAL 
CLEARANCE 
CONSTRAINT 

Rg. 4.1. Multiple degree-of-freedom system. 

The notation used is as follows: 

Lln: m = 1,2 M are ;he position vectors that define the initial configura- 
tion of the mth structural element in some convenient local coordinate 
system. 

wiiizin, 0'/! = ' - 2, ..., yv are the generalized coordinates, i.e., any kinemati- 
cally acceptable choice of position vectors that define the state of the mth 
structural clement over the entire time range of interest. Usually these will 
define points on each element relative to its initial configuration. 

u;;/= 1,2,...,./ are the forces (moments) in the/th isolator clement. In gen- 
eral, each force (moment) is a three-component vector. The functional 
dependence of the u^ will be considered later. 

f^z,,,, /); K = 1, 2,.. .,L are the input disturbances applied at various positions 
in the system. These may be in the form of distributed or concentrated 
forces (moments) or prescribed motions of the system supports. Later this 
notation will be expanded to distinguish between several input positions 
and the possible occurrence of more than one input     a given position. 

■;^ 



OPTIMUM ISOLATOR DESIGN FORMULATION 19 

The positions of the mass particles composing the wth structural element is 
governed by a set of differential equations of the form 

•Mw„(zm, f)] = G^uy.fg);      n =  1,2,...,N 

9w„ 
9/ -(^.fo) = w«. 

(4.1) 

(4.2) 

Here, £,, represents a second-order differential operator (ordinary or partial) 
and G,, is a function containing only the isolator forces and the input disturb- 
ances. Equation (4.2) represents the initial conditions. An appropriate set of 
boundary conditions also must be prescribed. 

The mathematical description of the isolator forces has an important bearing 
on the problems that can be solved. From the design point of view wc limit our 
considerations to so-called passive isolators; i.e., isolators for which the force ex- 
pression uy depends explicitly on the change in an associated displacement, veloc- 
ity, or both. Assume that the /th isolator connects the m and m-1 structural 
elements, and that the position • ;ctors of the attachment points arc denoted by 
w„(z„,, t) and w„(zm-i, t). We define the relative displacement of the /th 
isolator to be 

XjU) = (/K(zm,/),    w„{im,i,t)]. (43) 

where (/ is the appropriate kinematic function.    A passive isolator is one for 
which the force magnitude can be expressed in the form 

"/(*/, (4.4) 

Design-parameter synthesis involves selecting an appropriate set of parameters 
that describe the isolator element in question. We will consider that there are 
Rj such parameters associated with the /th isolator and denote them by ciy,.. 
Then, a more explicit form of Eq. (4.4) is 

11 j  = ((,(*;, Ay, a,,.); '.,...,yV (4.5) 

The difference in notation is best emphasized by example. If the isolator/= 1 
consists of a linear spring-dashpot element, as shown in Fig. 2.1, the simplest ex- 
pression for the force is i^ = kxl + cxy, where k is the spring rale and c the 
damping coefficient.   If k and c are known values, then wc use Eq. (4.4) with 

/<, = ii{x i, x ( ) = fcc,   + ex!. 

A 
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If, however, our problem is to select optimum values of k and c, these would be 
unknowns in the design problem and we would use Eq. (4.5) with 

/?! = 2;     an  = k   and   0,2 = c. 

The discussion of the performance mdex and constraints in Chaptei 2 did not 
refer to a functional representation for these quantities. We are now in a posi- 
tion to do so. Il is usually convenient to indicate an explicit dependence on the 
force function u.- since, in one form or another, these are the problem unknowns. 
Thus, in general the performance index, Eq. (2.2), is written 

\jj = max max|/),,(r, uy)!;      x = 1,2,...,5, (4.6) 
s      r 

where, it will be recalled, the largest of 5 comparable response quantities,/^, is 
selected to be the index. 

The response constraints, Hq.(2.6), are written as 

Ct(t) < Ck{t. Uj) < Cf-      k =  1, 2,.. ., A',. (4.7) 

The possibility of constant bounds to the constraint function, i.e., Ck , Ck  = 
constant, is included as a special case. 

Parameter constraints, Hq. (2.7), can be written as 

Ck(ajr) > 0;      k = \,.. .,K2 (4.8) 

or 

C^ < C,(ay>) < Ck
U-      k =  1,...,AV (4.9) 

The mathematical statement of the optimum isolation design problem can now 
be stated as follows. We are given a dynamical system comprising A/structural 
elements and J isolator elements. Coordinate systems are defined, in terms of 
which all of the isolator force functions, Eq. (4.5), are known. However, the 
numerical values of the design parameters a7r remain to be determined; there are 
R/ of these for each of the J isolators. The input disturbances are known as to 
position of application, waveform, and relative time phasing. Thus, the equations 
of motion (Eq. (4.1)), initial conditions (Eq. (4.2)), and appropriate boundary 
conditions are known.t 

tThis problem statement includes the case of multiple inputs to tlie extent that Eq. (4.1) 
must be solved repetitively for each waveform. 
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Comparable functions of the system response, /(j, are selected as the basis for 
the performance index. These are !o be evaluated from the solution to the equa- 
tions of motion. If the maximum value of/i|, hj,. .., hs over the time range of 
interest is established, then the largest of these maxima is identified as the per- 
formance index t// in accordance with Eq. (4.6). 

A number A'i of constraint functions are prescribed in terms of the response 
quantities, Eq. (4.7), and other constraints involving the unknown design param- 
eters, Eq. (4.8) and (4.9), also are prescribed; there are Kj + K3 of the latter. 

The optimum design synthesis problem requires that we find the design param- 
eters dj,. such that i// is minimized and all constraint functions are satisfied. We 
emphasize again that by referring to this as the problem of design-parameter 
synthesis, we imply a preselection of isolator devices and are seeking to identify 
the best choivC among the admissible design parameters. This formulation is 
expanded in Chapters 5 and 6 to include the situation where the inputs are of a 
class description comprising an infinite number of waveforms. Example 1 
shows how this formulation may be applied. 

4.2 Time-Optimal Synthesis 

General Isolation System 

An alternate formulation of the optimum design problem leads to a lower 
bound value of the performance index for any type of isolator consistent with 
the constraints. This differs from the previous design parameter synthesis formu- 
lation in that no a priori assumption is made regarding the functional form of the 
isolator force in terms of the relative slate variables; i.e.. the form of Eq. (4.4) 
or (4.5) is unknown. Instead, we consider the isolator force to be an explicit 
function of time it/it), which we will synthesize in the time domain (for each 
value of/) so as to minimize the performance index and satisfy the constraints. 
We term this process lime-optimal synthesis. The resulting value of the per- 
formance index is the best that can be accomplished for any isolator regardless 
of the hardware device utilized. The description of the isolator is provided by the 
optimum itj(t). This is not the usual device-oriented description, but rather a 
description of the manner in which the optimum device responds. 

The problem formulation for time-optimal synthesis follows exactly as before 
except that the unknowns, instead of being the design parameters a/r, are now 
the isolator force functions»,(/). Of course, the solution techniques are entirely 
different. 

Quasi-Linear Isolation Systems 

It is plausible to suppose that the solution methods are simplified when the 
governing equations are linear, and indeed that is the case. Linearity requires 
that the equations of motion, Eq. (4.1), be linear in the dependent variables. 
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When viewed as the problem of design-parameter synthesis (Section 4.1) this 
in turn requires that the isolator force functions, Eq. (4.4), depend linearly on the 
relative state variables. This is a severe limitation on the type of isolator device 
that may be considered and, hence, linear systems, when they imply linear isola- 
tors, are of limited practical value. From the standpoint of time-opt'inal syn- 
thesis, however, linearity merely requires that the equations of motion 
involve Uj linearly but does not restrict the form of Eq. (4.4). In other words, 
the isolators need not exhibit linear force (nionient)-displacement or -velocity 
characteristics, although in all other respects the system is linear. Such systems 
are termed quasi-linear. 

In summary, then, a quasi-linear system is one for which, in Eq. (4.1), the 
£„ are linear differential operators and the G,, are linear functions of the Uy 
and fs. The system considered in Example 1 is linear in all respects and, of 
course, is quasi-linear as well. However, if the linear spring-dashpot isola- 
tor were replaced by a nonlinear device, the system would still be quasi- 
linear. 

The condition of quasi-hnearity permits application of superposition to the 
solution to the equations of motion. If, in addition, the response functions 
hs{t, uj) and response constraints Q(r, u,) involve the (/;-linearly, superposition 
may be used to construct these quantities as well. Thus, in general, we may 
write 

/),(/, Uj) = /(,0(r) + 2]       Rsi(t - T) ■ Uji^dt 

and (4.10) 

Ck{t. Uy)   =   Qo(f)   + ]2     )   R*/ ^ - r) ' UWdT- 
/-1   -'o 

Here, R^- and R^- are the appropriate responses to a unit force (momeni, input 
at the attachment points of the y'th isolator element. The vector notation serves 
to emphasize that, generally, a component of R exists for each component of 
Uy, and the R-u notation signifies a dot-product summation over the respective 
components of each vector. The terms liso{t) and Ck0{t) are the responses to 
the L inputs/.(f). These contain the appropriate homogeneous solutions should 
the problem be stated with nonzero initial conditions. In the case of multiple 
inputs, hs0{t) and Cfc0(f) are separate functions for each of the prescribed com- 
binations of waveforms. 

We illustrate time-optimal synthesis in Example 2. The system is the same 
roadway vehicle considered in Example 1, except that here the isolator is of un- 
specified configuration. 
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4.3 Optimum Performance Characteristics 

Single Input Waveform 

Hither design formulation, i.e., design-parameter synthesis or time-optimal 
synthesis, yields essentially two types of information: (a) the description of the 
optimum isolator and (b) the least value of the performance index consistent 
with the constraints. In design-parameter synthesis, the optimum isolators are 
described by the sets of parameters a*r (asterisks are used to indicate optimum 
values), whereas in tlie time-optimal synthesis they arc described by their force 
trajectories u;*(0. In the first instance, i//* is a minimum only with respect to 
the preselected candidate isolators under consideration, and there may be 
other isolators for which \p* is smaller; in the second, i//* is an absolute minimum 
■■md no isolator can be found for which the system performance index takes 
on a lesser value. Thus, cither formulation provides useful information, the 
more so whether a hardware-oriented description of the isolator or a lower 
bound to the performance index is of most interest. Here, we focus on the latter 
consideration. 

liach value of i|/* is associated with a prescribed input disturbance and fixed 
constraints. If the numerical values of the constraints are changed and tlie solu- 
tion is repeated for the same input, another value of i//* is determined. In this 
manner, a relationship (i.e., sequence of values) between i//* and the constraints 
may be established. This relationship is termed the optimum performance 
characteristic of the system under consideration and is symbolically represented 
by ip*(Ck). Generally, for A' constraints, ^*{Ck) is a hypersurface of A' + 1 
dimension; only in the case of one constraint, where i//*(Cfc) is a plane curve, 
can this function be portrayed by simple graphic means. 

Consider an example of an SDF system where the performance index is se- 
lected as the displacement of the mass relative to its base and the absolute 
acceleration of the mass is constrained. This is illustrated in Fig. 4.2 for the 
design-parameter synthesis problem and in Fig. 4.3 for the time-optimal synthesis 
problem. Thus, we seek to minimize 

\p = max|x| 
t 

for 

max|z| < A 
t 

and some prescribed f(t). The curves in Fig. 4.4 suggest the relationship that 
might be found between ü* and A for various levels of the acceleration con- 
straint/!. The two curves are identified as the time-optimal and design-parameter 
solutions; the former provides the smaller values of i//* for the same A. 
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Fig. 4.2.   An SDF system for design-parameter 
synthesis formulation. 

/////// 

Tig. 4.3. An SDP system for time-optimal 
synthesis formulation. 

///////////////////// 

Consider a point on the time-optimal solution, say Point 1 in Fig. 4.4, 
corresponding to the constraint level Ax. For this constiaint level, i//* is the 
smallest value of the rattlespace that can be achieved with any isolator. Also, 
1//2, corresponding to Point 2 on the design-parameter solution, is the smallest 
rattlespace that can be achieved with a linear spring-dashpot isolator. The dif- 
ference 1//2 ~ "/'t represents the improvement in performance over this linear 
isolator which theoretically is possible; of course, this re-rult alone says nothing 
of what the ideal optimum isolator should be. 

Each point along either of the two curves corresponds to a different isolator. 
That is, every point lying on the design-parameter solution corresponds to a dif- 
ferent pair of parameter values (ä:*, C*), whereas every point on the time- 
optimal solution implies a different u*(t).   For example, the intercept of the 
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DESIGN-PARAMETER 
SOLUTION 

TIME-OPTIMAL SOLUTION 
(LIMITING PERFORMANCE 
CHARACTERISTIC) 

ACCELERATION CONSTRAINT, A 

Rg. 4.4. Optimum performance characteristics. 

time-optimal solution corresponds to the limiting cases of no isolatorf (A = 0, 
\p* = max|/V)l), or a rigid isolator {A = max|/(r)|, \p* = 0). 

i i 

Each choice of isolator type leads to a different optimum performance char- 
acteristic, whereas a unique solution exists to the lime-optimal solution. For 
this reason, we term the latter solution the limiting performance characteristic 
to distinguish it from the design-parameter solution. 

A somewhat different application of the optimum performance data is pro- 
vided by the design situation in which we want an isolator that yields a maxi- 
mum acceleration A and requires the rattlespace Z). The combination of values 
(A, D) is termed a design point and can be plotted in relationship to the optimum 
performance characteristics. For example, if the design point corresponds to 
Point 3 in Fig. 4.4, it is immediately recognized that no isolator can be found to 
meet these requirements, since the region below the limiting performance charac- 
teristic is not physically attainable. Without this information, the designer 
would soon discover the inadequacy of a linear spring-dashpot isolator but might 
never appreciate the hopelessness of his search. If the design point were to cor- 
respond to Point 4 in the figure, he knows that the linear isolator is inadequate 
but that conceivably some other isolator can be found to perform as desired. 
Point 5 corresponds to specifications which can be improved upon even by an 
optimum linear isolator. 

There is reciprocity in the optimum performance characteristic relating to an 
interchange between the performance index and a constraint. Thus, the curves 
in Fig. 4.4 were described as the least rattlespace  obtainable  for a given 

f Or a constant-force isolator, u = nig. 
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acceleration constraint. In each instance the same optimum performance charac- 
teristic would result if the problem were posed as that of finding the least possible 
maximum acceleration consistent with a prescnoed rattlespace constraint [15], 
It seems plausible that this should be the case for a multiple-constraint problem 
when the performance index is interchanged with any one of the response 
constraints. 

Multiple Inputs 

If the input disturbance is prescribed as a finite numbered family of wave- 
forms, optimum performance characteristics can be obtained separately for each 
of the inputs (Fig. 4.4). The lower and upper bounds to these curves (for either 
formulation) represent, respectively, the most and least favorable performance 
characteristics associated with the family of inputs. Correspondingly, the partic- 
ular waveforms that produce these bounding curves constitute "best" and "worst" 
disturbances among the prescribed family. The applications of these results 
depend on the circumstances of the problem and, in any event, are similar to the 
applications described for the single-input characteristic. The solution for the 
lime-optimal formulation described in Chapter 6 is somewhat more involved than 
suggested here. 

Input Class 

When the input disturbance is described as a class comprising an infinite 
number of equally probable waveforms, the concept of a best and worst disturb- 
ance still pertains, but these bounds cannot be found by enumeration. The 
solution to this problem is discussed in Chapter 6. Bounds to the optimum per- 
formance characteristics associated with these extreme disturbances are estab- 
lished as for the multiple input case. 

Example I 

GENERAL ISOLATION SYSTEM PROBLEM: 
DESIGN-PARAMETER SYNTHESIS 

Isolation System 

We will consider the isolation system relating to a ground vehicle which encounters a 
discrete bump in an otherwise perfectly smooth roadway. The system involves three struc- 
tural elements, a single isolator clement, and one input. The primary vehicle structure, 
including wheel and axle, is modeled as a rigid housing. The vehicle moves with constant hori- 
zontal velocity V and, upon encountering the bump, follows its profile y exactly. The pack- 
age to be isolated is represented by a rigid mass in and is connected through an isolator 
element i/) to the center of a flexible beam located within the vehicle. The isolator is a 
linear spring-dashpot deviee (see figure) modeled as being massless, i.e., uj = kx\ + cjq. 
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- RIGID  MASS 
(STRUCTURE-i; 

RIGID HOUSING Vr-ISOLATOR, u, 
(STRUCTURE-3)   hi   (-LA 

lKS   LTi)    _BEAM, LENGTH - 2( 

—    IHSKIIIi 

FRONT   VIEW 

V: CONSTANT HORIZONTAL 
VELOCITY 

= d2y/dl2 BASE INPUT 
EXCITATION 

We waul to select the spring rate A and damping coefficient c so that the peak accelera- 
tion experienced by the package is niinimi/ed. We also require that neither the beam nor 
the package deflect so tar as to contact any portion of the surrounding vehicle structure. 
Finally, we limit consideration to values of A' between kL and k1-' and require that the system 
be overdamped. The performance index and constraints are written in die following manner. 

Performance Index 

The performance index is the maximum acceleration of the package mass. Thus, the 
acceleration iV'j is the single response function of interest;/;,. = /; | and 5 = 1. According to 
Eq. (4.6), 

v  = max lu^l. 
r 

Response Constraints 

There are two response constraints (A'| = 2), one, say, C|, which avoids bottoming of 
the beam, and the other, C'j. which avoids bottoming of the package. Thus, C'| is a con- 
dition on it'|, and ("T may be prescribed in terms of the relative displacement of the isolator 
terminals.vi. Thus, with reference to Eq. (4.7), 

with 

and 

with 

C|(0  =  ie|(;.. t) 

C |    - ö,;       t |     = ai 

c2u) = .V|(/) = u'2(n - W^L, i) - no 

where o j and «4 are prescribed dimensions (not shown in the figure). 
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Parameter Constraints 

There arc two parameter constraints, one requiring the spring rate to be within pre- 
scribed values (A'3 = I, Eq. (4.9)) and the other ensuring that the package mass is over- 
daniped (A'j = 1, Eq. (4.8)). These may be written 

C3(k. c) = c - 2 s/kiij > 0 

and 

with 

C4{k) = k. 

Ck = kL; „u 
k 

We must now express the state variables wl and Wj and the acceleration ii^ as explicit 
functions of time and the two design parameters k and c.   In the notation of Eq. (4.5), 

//1 (.v 1, .v 1;  A-. c) = k.\ 1  + ex 1. 

The desired expressions result from the solution of the equations of motion which requires 
that the input/|(f) be specified. This problem is considered further in Example 2. 

Example 2 

GENERAL ISOLATION SYSTEM PROBLEM; TIME-OPTIMAL SYNTHESIS 

We will consider a vehicle traversing a bump in the roadway as shown. 

RIGID HOUSING 
(STRUCTURE-3) 

WBT 

RIGID MASS 
(STRUCTURE-1) 

^ISOLATOR, 1^ 

BEAM, LENGTH = 2L, 
MASS=m2 

^      "T"   /     (STRUCTURE-2) 

FRONT  VIEW 

V = CONSTANT HORIZONTAL 
VELOCITY 

(. = d2y/dl2 BASE  INPUT 
ACCELERATION 

y = yd) DEFINES  THE 
TRACK IRREGULARITY 

WHERE   t   =  d/V 

SIDE VIEW 

This is the same dynamic system as in Example 1, except that we are concerned with 
the details of the isolator but consider K| to be an unknown function of time iiiit). The 
performance index and response constraint arc the same as in Example 1, except that each 
is viewed as a function of u ] as well as /. 
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Performance Index 

\ii  = max|iV'2|. 
t 

Response Constraint 

with 

C|U, i(|) =  vv,^, I) 

C,    - a,;      C |    = «2 

and 

C'2(r. "i) = .V|(/) = \V2(f) - «',(/,, 0 -.i'(/) 

with 

C2    '  "i-       C2    - a4- 

Parameter constraints do not enter into the time-optimal synthesis problem. Beaur.e of 
the relatively more simple form of the equations of motion for this formulation, we will 
carry out some of the detailsfor arbitrary/'i(0 avoided in Example I. 

In establishing the equations of motion, the isolator force //11/1 is treated as an external 
force for the system clement on which it acts. Using conventional thin-beam theory, we 
find the equations of motion to be 

„ _    a4«*',      d2w. 

I 

£2  =   Hi   —r^ = -11,(1). 

subject to the initial conditions 

VI'^ZLO)  =    L   J  =  0 
ot 

u'2(ü) = /(0);     -^ = /(0) 

and the boundary conditions 

32H'I(0,/)        d2w\(2L,t) 
»-,(0,0 = wx{lL,t) =   —r-4    =    f^    = 0. 

In these equations, El is tlie stiffness of the beam, p its mass per unit length, 1112 = 21.p its 
total mass, and in is the package mass. The isolator force U\U), concentrated at midspan, 
is represented in terms of the Dirac delta function 6(Z| — Z,). 

These equations are in the form of liq. (4.1). The system is quasi-linear, since the 
operators X| and £2 are linear in the state variables w\ and »'2 and the functions 6'] and 
6'2 are linear in u, and /|. The response and constraint functions are linear in these variables 
also and will be evaluated in terms of //1 and/| using the superposition forms of Eq. (4.10). 
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We begin by dclermining the response of the beam and the package mass to a unit force 
M/) applied at the isolator attachment points, bsing the notation of liq. (4.10), we can 
verily that Rrj and A\.- are given by 

R | | U - T) =  w'jU - T) 

H'|(/,, / - r); k = I 

where 

A'A.,(/-rl  = 
wjU -T) - u'|(/.. /- r);   k 

sin (n'-ilt) 

/(■M.J.5 

- = '^Hf 
»'2(0   = 

u'2(0
: h(t) 

The responses lo the inpul /| (/),/ijo and QQ in I'i|. (4.10), are found to be 

C'IOO    =    -^ 2_, (-l)l"'l)/2"''V('-)sill/^S2(/-  7)^7 

''O    /i-I.J.odd 

C'20<') "" .''(0)  + .''(0) - C'|0(O - y(t) 

finally, the response and constraint functions are 

C,(/. ;/,) = C1o(0 ie|(/., /- r);(|(-)</r 

I »'2 C2U, "|)  =  C2o(r) + |W2(/-T)-W1(/.. f-T)]l(|{T)c/r. 

'0 



Chapter 5 

LIMITING PERFORMANCE CHARACTERISTICS 
OF SHOCK ISOLATION SYSTEMS 

We consider in this chapter methods for determining the lower bound to the 
minimum performance index of a general shock isolation system without regard 
to any particular type of isolator element. The relationship between the bound 
and the constraint values is termed the limiting performance cliarucleristic of the 
system (Chapter 4). We assume that the overall system is specified except for 
one or more isolator elements and that the input is known either in terms of 
specific waveforms (one or more) or by the description of a class of waveforms. 
Although explicit forms arc provided only for rattlespace and peak acceleration 
criteria, the methods of solution are not limited to these choices. 

5.1  Completely Described Environment 

5.1.1  Single-Degree-of-Freedom Systems 

Peak Acceleration and Rattlespace Criteria 

Problem Formulation "WK simplest SDF system to be studied is shown in 
Fig. 5.1. Regardless of the type of isolator element (e.g., spring or dashpot) 
under consideration, for our purposes we assume that the net force across the 
isolator is an unknown function of time n(0-t The equation of motion for the 
rigid mass is 

niz + u{t) = 0 (5.1) 

with the kinematic condition 

z(r) = x{t) + /(f) (5.2) 

in the interval of interest, f0 < / < tf. Appropriate initial conditions on z and i 
at / = /0 are specified. Unless otherwise indicated, we assume that the mass starts 
from rest aW0 = 0 so that 

fTliis is a nonrestriclivc assumption insofar as the actual type of isolator employed. In par- 
ticular, this formulation retains all interaction effects of the isolator on other portions of 
the system. 

31 
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Fig. 5.1.    Generic SDF system. 

///////////////////7/ 

z(0) = i(0) = 0. (5.3) 

Inasmuch as)/{/) represents the net force on the mass, arrangements more com- 
plicated than those shown in Fig. 5.1 arc included. For example, in Fig. 5.2 
the mass is acted upon by an external force/](/) and supported by two isolators 
in parallel; the force across one being expressed in terms of the relative state 
variables »o(-v' -0 an^ 'n t'16 other by a function of time U\{t). The quantity 
;/(/) in Eq. (5.1) in this case has the form 

u{t) =ux(t) + ii0{x.x) - /,(/), 

as shown in Fig. 5.2. 
Although the dynamic programming solution is unrertricted as to choice of 

performance index and constraint, the other methods considered require that 
these criteria be linear forms of the state variables. For the present, therefore, 
we shall treat linear forms and, in particular, choose the peak acceleration of the 
mass and the rattlespace as performance criteria. That is, either one may be the 
performance index, and the other the constraint. Tiie absolute-value forms of 
tiiese criteria are not, strictly speaking, linear but, for our purposes, we may ac- 
cept them as such. The two optimization problems to be considered are, 
therefore 

Problem 1 

Performance Index: Peak Acceleration 

i// = max|z| min i// = i//* (5.4) 
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f,(t) 

////////// 

Fig. 5.2.    An SDF  system  equivalent  to   the generic 
system. 

Constraint:  Rattlespace 

niax|x| < D;   £) prescribed. (5.5) 

Problem 2 

Performance Index:  Rattlespace 

i// = maxlxl;   min i// = i//* = D 
r 

(5.6) 

Constraint: Peak Acceleration 

max|z| < A; A prescribed. 
r 

(5.7) 

These two problems are reciprocal in the sense that if, in Problem 1, the 
minimum \p for a rattlespace constraint D is found to be the peak acceleration 
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A, then an accclerution constraint of magnilude A in Problem 2 will lead to the 
ininimum rattlespace Z^. (Note that tliis implies a single-valued relationship.) 
Therelore, we need use only one of these two problems to consider methods of 
solution. It is somewhat more convenient to select Problem 2, although on occa- 
sion we will deal with Problem 1. 

A complete statement of Problem 2 is as follows: Given a prescribed base 
motion /(/) and Uqs. (5.1), (5.2), and (5.3), which relate the state variables and 
the isolator force, find the force »(/) such that the inequality (5.7) is satisfied 
and the performance index \}J defined in Hq. (5.6) takes on a minimum value. 
Let 

min i// min max ix | = D. (5.8) 

Then the point (A, D) lies on the ''miting performance characteristic as shown 
in Fig. 5.3. The complete curve is found by repeated solutions for different 
values of A. For each point (A, D), the associated optimum isolator force is de- 
noted by ii*(l).  This information is required in the indirect synthesis method. 

o I 

NORMALIZED PEAK   ACCELERATION, A/A 

I ig. 5.3. Normalized rorin of liiniling performance 
diaractcristic. 

The limiting performance characteristic (Pig. 5.3) is shown in normalized 
form relative to the maximum displacement Dj and maximum acceleration Af of 
the input disturbance. In this form, the intercepts are the points (1, 0)and(0,1) 
which correspond to the extreme situation of a rigid connection and a constant- 
force isolator, respectively. In other words, as the rattlespace constraint ap- 
proaches zero, the optimum isolator will transmit an acceleration approaching 
that of the base motion. Alternatively, as the rattlespace constraint approaches 
the base displacement, the optimum isolator will transmit a vanishingly small 
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acceleration. While we arc interested practically in isolator performance be- 
tween these limits, it may be noted that nonoptimum isolators easily can 
exceed them. For example, a sufficiently stiff, but not rigid, linear spring will 
transmit twice the peak base acceleration, whereas the mass could undergo an 
excursion far in excess of the base displacement if a resonant condition 
develops. 

Analytical Solutions-The optimum isolation problem as we have nosed it 
belongs to the class of variational problems that traditionally is approached 
analytically by the methods of the calculus of variations. The maximum-value 
form of the performance index and constraint is not suited to this classical 
method, however. Indeed, the calculus of variations can tell us nothing more 
than thai the optimum isolator force (/*(/) is of the bang-bang type, i.e., piece- 
wise constant in time |4, 16-181 • It ^m lead neither to a quantitative analytical 
form for ii*(t) nor to the minimum value of the performance index, and thus will 
not be considered further. 

An analytical expression for the limiting performance characteristic can be 
found by direct means for an impulsive loading. The impulse loading also is a 
useful approximation to short-duration impacts, which are encountered fre- 
quently. Here A? is not defined, but the impulse is given by 

lim    |   j:{t)clt =./0 =  V. (5.9) 

This is equivalent to the base undergoing an initial velocity V. Thus, the dis- 
placement increases linearly with time and Dj is unbounded. 

For the statement of Problem 2, energy considerations [l| lead to the 
relationship 

AD =  \v2 (5.10) 

for the limiting performance characteristic. This is a rectangular hyperbola and 
is plotted in Fig. 5.4. Since neither £)y nor/ly is defined, the normalized plot 
cannot be used. The impulse case offers a convenient means of describing a use- 
ful graphical solution technique. We continue with the impulse loading case, 
deriving Eq. (5.10) and describing the character of the optimum isolator force 
»*(/). 

Graphical Solution-Assume for the moment that, on application of the 
impulse, the isolator imparts the maximum allowable force to the mass. For 
unit mass {in = 1), this force is equal in magnitude to the constraint value of ac- 
celeration A and opposite in sign (Eq. (5.1)). The acceleration, velocity, and 
displacement for Doth the mass and base are shown in Fig. 5.5. From Eq. (5.2), 
x* = z* -/, or 
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ACCELERATION CONSTRAINT, A 

Fig. 5.4.   Limiting performance characteristic for impulse 
loading, K 

r {i*-f)dt, 

so tliat the relative displacement of the mass is numerically equal to the area be- 
tween the i* and/curves in Fig. 5.5. The time at which z* =/is denoted by ^. 

We are seeking the minimum rattlespace consistent with the peak acceleration 
constraint. From the geometry of Fig. 5.5, this is equivalent to finding the i* 
curve whose slope does not exceed A in magnitude and for which the area be- 
tween it and the / curve is a minimum. Up to f|, it is clear that \u{t)\ = A 
accomplishes this, since (a) if, anywhere in the time interval 0 < f < f), the 
slope of the i* curve were less than A, a larger area would be enclosed, and (b) if 
a smaller area were enclosed, then the slope of the z* curve would have to exceed 
A somewhere in the time interval. Moreover, beyond t^ the relative displacement 
must decrease and, since we are free to select any u{t) for f > ^, the displace- 
ment at /j becomes the minimum rattlespace requirement D. Thus, 

and 

V = Aty    and   D =  ^ K;, 

AD = jV2, 

which is the result previously obtained in Eq. (S.ICT/. 
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I f (BASE) 

z*(t) = A = -u*(t) (MASS,  m = 1) 

TIME, t 

(a) Acceleration curves 

C')) Velocity curves 

f = vt 

TIME, t 

(c) Displacement curves 

Fig. 5.5. Base and optimum mass motions for impulse loading. 



38 OPTIMUM SHOCK AND VIBRATION ISOLATION 

The graphical construction of Fig. 5.5 clearly suggests the nonunique character 
of the optinium isolator force beyond the time f, at which the base and mass 
reach equal speeds. While this docs not influence the determination of the limit- 
ing performance characteristic, it is of consequence in the indirect synthesis 
method. Here, additional requirements can be imposed to fully define the isolator 
motion, it may be required, for example, that the mass return to its initial 
position relative to the base at some later time. The optimum motion in this 
case is more restrictive, but still not unique. A particular solution of the bang- 
bang type is shown in Fig. 5.6. The same result can be achieved, of course, with a 
continuous acceleration curve. 

The graphical solution can be applied to other inputs. Figure 5.7 illustrates 
the procedure for an arbitrary base velocity /(f). Again the peak acceleration 
cannot exceed A, and the raltlespace D is to be minimized. The stepwise pro- 
cedure is as follows: 

Step 1. Construct a line from the origin with slope equal to the peak accelera- 
tion constraint A. This is the z* trajectory, and its intersection with the/ 
curve at Point I determines /,. The area between the /curve and the line 
01 is equal to the relative displacement x* at /,. Since .Y*(f| ) = i*(/|)- 
./'U|) = 0,.v* has a relative maximum at/,. 

Slep 2. Construct a line from Point 1 with slope -A. This is the continuation of 
die i* trajectory: its intersection with the/curve at Point 2 determines time 
/i. Compute the area between the/curve and the line T2. Call this area A.V2. 
Then. .v*(/2 ) = A'*!?!) ~ A.YT. Since A'*^) = 0, A

-
*^) is a relative minimum. 

Step 3.   If \x*{ti )\ > |A-*(f2)| and if none of the subsequent relative maxima or 
minima of .v* exceeds !**(/,)|, then the minimum rattlcspace isD = |.v*(f|)|. 
If, however, |.v*(/| )| < l.r*^)!, go to Step 4. If a subsequent maximum or 
minimum of .v* exceeds |.v*(f! )|, then go to Step 5. 

Slep 4. A modified;* curve is constructed as the line 145. It has slope -A, and 
the area between the /curve and the line 034, x*{t4), is equal to twice the 
area between the / curve and line 45. This requires a trial-and-error proce- 
dure. The minimum rattlcspace is Z) = l.v*^)! = |A'*(.'5)|, provided no sub- 
sequent maximum or minimum of .v* exceeds this value. If it does, go to 
Step 5. 

Step 5. This step need be followed only in those instances where the input 
disturbance is such that the rattlcspace is determined at relatively late times. 
The general procedure of Step 4 is followed, to modify the appropriate seg- 
ment of the i* curve where the minimum rattlcspace determined up to that 
time is exceeded. The reader who has carried out t'.ie construction is advised 
to construct an input velocity curve having this feature. 

The i curve beyond the time at which the minimum rattlcspace is established 
is, as mentioned earlier, not unique, and additional conditions need to be im- 
posed.   Since this is entirely a kinematic process, the graphical construction may 
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i_   / 

l 
i i 

lo) 

(;i) Acceleration curves 

>   At, 

A 
/A L-X 

/ \ 

/ 
V 

(b) 

(b) Velocity curves 

TIME,) 

•f =V 

TIME, t 

f = vt 

< 

TIME.t 

(c) Displacement curves 

Fig. 5.6. Optimum "bang-bang" restorative isolator for impulse loading. 
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I'ig. 5.7. Graphical solulion tor arbitrary input. 

be applied. The optimum isolator force ii'*(l) is constructed from the derivative 
of z* according to Eq. (5.1). The graphical procedure was used in Ref. 19 to 
compute limiting performance characteristics for several inputs occurring in ship 
design. 

A graphical construction can be carried out for the Problem ! formu- 
lation where the rattlespace is constrained and the peak acceleration is 
minimized [15,17|. The procedure is slightly less convenient, and in 
view of the reciprocal nature of Problems 1 and 2 we will not consider it 
further. 

Numerical Solutions Although the graphical approach is attractively simple 
and provides a certain insight into the nature of the oplimum isolator response, 
it is difficult to systemizc to encompass general disturbances and other optimiza- 
tion criteria. We seek, therefore, a more general solution procedure. In discrete 
form, the optimum isolator problem is recognized as belonging to a broader class 
of mathematical programming problems for which powerful computational tech- 
niques are available. When both the constraints and performance index involve 
linear functions of the state variables, a linear programming (LP) solution is ap- 
propriate. Otherwise, the more general method of dynamic programming must 
be used. 

We will describe the discrete formulation and identity the conditions necessary 
for it to be one of linear programming. The reduction to standard LP form ap- 
plicable to available LP computer codes is described in Appendix B. Where hand 
calculations are to be performed, the reader is adv'sed to consult one of the 
many available references on linear programming [e.g., 21]. 

Let the time interval of interest be divided into / - 1 equal subintervals At. 
Denote the value of the variables t, x, z, and/at the beginning of the ith interval 
by t/, Xj, Zj and/}. Then 
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U = (/-l)Af 

X, = xiti) 

z,- = z(f,) 

/;• = fit,). 

(5.11) 

Assume that the isolator force is constantt during each subinterval of time 
(Fig. 5.8); then, in discrete terms, the equation of motion is 

mil + ui ~ 0' 

subject to the kinematic condition 

and the initial conditions 

■\  - <-\ 0. 

(5.12) 

(5.13) 

(5.14) 

The set of numbers U\, 112 iii-i representing«(?) is unknown. Finding the 
particular set uf for which (Problem 2) 

maxlz'/l < A (5.15) 

and 

\p = max Lx,-1 (5.16) 

At At At 

Fig. 5.8.    Pieccwise constant approximation of the isolator 
force. 

f A pieccwise linear approximation is considered in Appendix B. 
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is a minimum is a problem in linear programming, although not in standard form. 
It may be reduced to standard LP form by rewriting Eq. (5.15) as 

-A < Zj < A;      /= 1,2,...,/ (5.17) 

and observing that Eq. (5.16) is equivalent to requiring the x, to satisfy the in- 
equality constraints 

-\p < .v.- < 4i;      (=1,2,...,/. (5.18) 

The LP problem is now to find the u* that minimizes \p subject to the constraints 
of liqs. (5.17) and (5.18). The .v,-and z,-are related to the «,• by Eqs. (5.12) and 
(5.13). 

Dynamic programming is the name given by its inventor, Richard Bellman [22], 
to a computationally motivated procedure for solving optimization problems 
through a sequence of smaller problems. It is a very general method but becomes 
computationally impractical as the size of the problem increases. At present, the 
practical size limit for general nonlinear isolation systems appears to be two or 
three degrees of freedom. More complex systems will require improved com- 
putational procedures and greater computer hardware capabilities in both storage 
and speed of compulation. However, dynamic programming is eminently prac- 
tical for SDF systems and can accept any sort of nonlinear form for the con- 
straints and the performance index. 

The method will be described first with respect to the Problem 2 formulation 
(i.e., peak acceleration as the constraint and rattlespace as the performance 
index). It will then be generalized for arbitrary criteria functions. Although 
dynamic programming is essentially simple in concept (at least as applied here), 
the notation is a bit unwieldy and lends to complicate a first presentation. The 
calculation described in Example 3 should prove helpful in connection with the 
following description. 

We are seeking the particular set of u,-, say »*, for which max|2,| < A and 

i|/ = max|.v,| is a minimum. Let the state of the system at time f,- be described by 

the values of .v,- and A",-, or more briefly, by the state vector x,-, where 

(5.19) 

Assume that the system is in a particular state at the start of the (th time 
interval, denoted by x/1. At this time an admissible value of w,-, which causes 
the system lo be in state x,'^, at the end of the interval, is selected. The relation 
between x(

p and x^., is, in fact, the solution of Eq. (5.12). Now further assume 
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that the minimum value of i// is known at tl+l for all subsequent times and any 
admissible state p ij) = 1,2 P).  These values ofmin i|/ will be denoted by 
^{x^,) and are given by 

0(x,^|) --= min i^ = minmaxlAvl (5.20) 
"q 

u. 

lor 

c/ = /+ I /-i 

/■  = /+ 1 / 

/; =   1,2 P 

and where the optimization is over all admissible »,■ as determined by the con- 
straint F.q. (5.15). 

Observe that ^(\['+i) is a two-dimensional array of/-" = A'|A,2 entries, where 
yV| and Nj are, respectively, the number of discrete values admitted for the slate 
variables .v and x. The /;th entry in the 0 matrix is the value of the minimum 
rattlespace which would result if the system started at time r, + I from the initial 
state x^!. The size of the 0 matrix is necessary because any of the P admissible 
states at t, may be the optimum state, the precise one remaining unknown until 
the end of the process. The desired value ofmin 0 is given by ^(.v,1), where 
/; = I corresponds to the prescribed initial state at tl. 

For each state /; and admissible value of w,-, two estimates of rattlespace must 
be compared. One is the value of lx(.p|, the selected relative displacement in 
state p, and the other is the appropriate entry in the0(x^.1) matrix.f The mini- 
mum with respect to the ;/,• of the larger of these is the desired entry in the 
0(x/') matrix; i.e., 

(f>(xP) = minniax[Uf|,0(x,p
+1)]. (5.21) 

This constitutes a recursive relationship which proceeds backward in time. 
The process is started at / = / by noting that (p(\j') = xi for all p, since the state of 
the system is known. The computation must be performed at each tj+l for a suf- 
ficient range of/5 so that subsequently at t, the resulting state x(

p , will be close 
enough to some x(

p , in the matrix of known (j)(x.''+l) values to permit accurate 
interpolation. 

tGenerally tlic calculated x'+i will not correspond identically with a row and column of the 
0 matrix, making interpolation necessary (Example 3). 
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We may clarify matters notationally by relating the stage of the (computa- 
tional) process to the state of the system. Up to this point, the state has been 
indicated by the superscript p. 1 his notation may be dropped, since it is under- 
stood that all admissible states are considered at each stage of the process, and 
the stage is indicated by a subscript on ^ consistent with that on the state vari- 
ables. Tlien Eq. (5.21) is written as 

0/-/+i(x,-) = min max [lx,-|,(/);.,-(x,-+1)];   / = /-1,7-2,..., 1     (5.22) 

with 

0i(x/) = x/. 

The constraint condition is satisfied by restricting the minimization in Eq. 
(5.21) to admissible values of the w,-. At the completion of the process 

0/(xi) = <pm = r, 

where X| = 0 corresponds to the specified initial state. At the same time the 
minimum among the values of j/] considered is determined. This is the piecewise 
constant approximation to u*{t) during the first interval 0< f <Af,and is desig- 
nated as u*. Using this value of u*, we compute x* and k* using Eqs. (5.12), 
(5.13), and (5.14) with the index / now going forward in time. Then u^ is t'10 

minimum »2 associated with the prior calculation for 0/_i(x*). This is obtained 
by interpolation from the ^i-x matrix. It is not necessary to retain both i/| and 
0/-i(x*) values, since min MT is quickly redetermined from Eq. (5.22) if the 
0/_i(x2) matrix has been saved. In this manner, the optimum isolator force and 
state variable trajectories are determined stage by stage, proceeding forward in 
time. 

Two important observations are to be made from Eq. (5.22). From a com- 
putational point of view, note that we have replaced the original mathematical 
programming formulation, which required the solution of an /-dimensional 
minimization problem, by a sequence of / one-dimensional minimizations. This 
is the essence of the dynamic programming approach. From a more fundamental 
point of view, Eq. (5.22) implies that, for the solution to be optimum, each stage 
of the process must proceed optimally relative to the state of the system at the 
prior stage. This is a loose translation of Bellman'sPn'nc/p/e of Optimality [22] 
which, in more of the language of dynamic programming, asserts that regardless 
of the decisions made in reaching a particular state, subsequent decisions must 
constitute an optimal solution with respect to this state. Here, "decision" refers 
to the choice of u,-. This principle allows us to generalize Eq. (5.22). 
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The power of dynamic programming lies in the simplicity of the compulation, 
its lack of dependence on the functional form of the constraints or the perform- 
ance index, and the fact that constraints work to one's advantage as they reduce 
the state space that must be searched. Offsetting these desirable features, how- 
ever, is the overpowering effect of the number of compulations increasing fac- 
torially with the addition of each state variable. The literature does not contain 
results for other than SDF systems, for which dynamic programming is quite 
reasonable. It would appear that two- or perhaps three-degrec-of-freedom sys- 
tems (six state variables) could be handled with available techniques and com- 
puters. Beyond that, more sophisticated computational procedures and computer 
capabilities are required. 

Arbitrary Optimization Criteria 

When the performance index, constraints, or both are nonlinear in the state 
variables, only the method of dynamic programming is applicable. Let the con- 
straints and performance index be arbitrary functions of the state variables. In 
particular, the performance index \p ':•-. taken to be the maximum over the time 
of some response function /!(x, u). In discrete form, 

i// = max|'((x,-, i(,)|. 

Then, by virtue of the Principle of Optimality, the relationship between the 
optimum performance index from one stage of the process to the next is 

Oz-i+iOO = min max^/Kx,, K/)1,(/)/./(X, + ,)]- (5.23) 

This is an obvious generalization of Eq. (5.22). 
The process starts with 

<Mx() = max|/((x,»)l;      t>'i (5-24) 

and is carried out recursively for / = / - 1,/ - 2, ..., 1. The resulting 0/(xi) is 
the desired minimum performance index, where X! is the specified initial state. 
The choice of admissible states and the range of iij considered in the evaluation 
of Eq. (5.23) must be consistent with the imposed constraints. The equations 
of motion governing the system dynamics are used to determine a new state at 
the next time step for a particular choice of M,-. A second pass with Eq. (5.23), 
forward in time, is required to establish the optimum isolator force and state- 
variable trajectories, as described previously. Repetitive solutions for different 
constraint levels yield the limiting performance characteristics. 

■•4 
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Representative Results 

Limiting Performance characteristics for peak acceleration and rattlespace 
criteria are detennined in Refs. 3 and 15 for a variety of input waveforms. Rep- 
resentative results are shown in Figs. 5.9 through 5.12. While all inputs are not 
defined quantitatively, (hey are shown to scale in the inserts of the figures. 
Shown for comparison purposes are the optimum performance characteristics 
for a linear spring-dashpot isolator 115). These results were obtained by methods 
discussed in Chapter 6. 

There has been some discussion in the literature of an "early-warning" or 
"preview" type of isolator; i.e., an active device which senses certain details of 
the impending input disturbance. Such an isolator may be thought of as being 
additionally optimized with respect to the initial conditions ,V| and A'!, whose 
range depends on the preview "length" or "warning time." This is equivalent to 
assigning an appropriate lead time to the input waveform and starting the system 
from rest at the earlier lime. The limiting performance characteristics for a pre- 
view isolator are compared with those of a nonpreview isolator in Fig. 5.13. We 
see that a substantial improvement in performance is possible for an isolator 
with preview control. 

0 0 1        0 2        0 3        0.4       0,5       0.6       0.7        0.8        0.9       1.0 

NORMALIZED     RATTLESPACE ,   D/Df 

Fig. 5.9. Optimum linear and limiting performance characteristic for 
an SDI" system. 



LIMITING CHARACTERISTICS 01- SHOCK ISOLATION SYSTEMS 47 

Fig. 5.1Ü. Optimum 
linear and limiting 
performance charac- 
teristic tor an SD1T 

system. 
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5.1.2 Multiple Degree-of-Freedom Systems 

The extension from SDF to MDF systems does not complicate the general 
formulation for the limiting performance characteristic. However, the computa- 
tional effort required for solution becomes impractical with increasing system 
complexity (number of degrees of freedom). The method of dynamic program- 
ming remains generally applicable but probably would not be attempted for 
systems larger than about two or three degrees of freedom because of present 
limitations in high-speed computer storage. We will consider a special class of 
MDF systems, termed quasi-linear systems, for which linear programming solu- 
tions are possible. While relatively complex systems can be handled by presently 
available LP codes, the effort can be substantial and special-purpose programs 
are required to manage the data. Thus, while it is a simple matter to formulate 
the method of approach, it may be that not every reader will be in a position to 
carry out the solutions. 

Quasi-Linear Systems 

A quasi-linear system is defined as one that responds as a linear system when 
the isolator forces are replaced by explicit, albeit unknown, functions of time. 
In addition, it is required that the performance index and all constraints be linear 
functions of the state variables. We will outline the LP formulation for determin- 
ing limiting performance characteristics for a general quasi-linear system with a 
maximum over time performance index. When the system has more than several 
degrees of freedom, it is expected that the automated methods would be used 
rather than proceeding directly from the equations of motion. 

We will consider an isolation system possessing a finite number of degrees of 
freedom and which contains ./ unspecified isolator elements. The force (or 
moment) in the /th isolator is again denoted by Uj and considered to be an ex- 
plicit function of time Uj{t). In addition, L external input waveforms are speci- 
fied, a typical one being denoted by/j(r). If the system has? degrees of freedom, 
there will be IP state variables (displacements and velocities) to consider, of 
which, 2J {J < P) will refer to the state of the unknown isolators relative to their 
attachment points. 

Since the prescribed elements of the system are assumed to be linear, the 
equations of motion can be expressed as a 2P set of first-order, ordinary,t linear, 
differential equations. In matrix notation this may be written 

x = Ax + Bu + F, (5.25) 

where x is the state vector with 2P components, u is a IP-element isolator force 
vector with at most J nonzero elements, F is a 2P-element input vector with at 

ffhe formulation can be extended to continuous system elements represented by partial 
differential equations in an obvious manner. 
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most L nonzero elements, and A and B are both 2/>squar? matrices appropriate 
to tlie system under consideration. A number of constraints/C are imposed on 
the system response. These may be functions of the state variables (e.g., stresses, 
displacements, accelerations) and are denoted by Ck. By virtue of Eq. (5.25), 
these may be considered functions of time and the unknown isolator forces«,-. 
Thus, gencrai constraint functions are written as 

Ct ^q,^.) <C^;      k=\,2,...,K, (5.26) 

where the 2A' constants Q. and Ck  arc prescribed. 
As the performance index we choose the maximum of any one ofS different 

(but comparable) response functions (Chapter 2). While these functions, hs, 
usually involve the state variables, vvc consider them to be explicit functions of 
time and the isolator forces. Then the performance index is written as 

i// = max max|At(/, (/,■)!;      x= 1,2,.. .,S. 
,v        t 

Since we seek to minimize i//. this expression is equivalent to imposing the addi- 
tional constraints 

!/;,(/. uy)l < 0 for all t and ,v = 1, 2, . . ., S. (5.27) 

We now replace the continuous functions by a discrete representation (Eq. 
(5.1 1)). The only change in notation is that the normally subscripted variables 
receive a second subscript to denote time; e.g., iij(tj) is written u,,-. 

The performance index becomes 

^i = max imx\lis(h, M/,)l;      .v = \ ,2,.. .,S 
s      '■ ' /=1,2,...,/. 

(5.28) 

The problem is to find the Wy,- (/' = 1, 2, . . ., /; / = 1, 2, . . ., /) such that i//is 
minimized and the constraints 

!/;,(/,■,H/()I < ^; / = i,2,...,y 
s = \,2,...,S 
/ = 1,2,...,/ (5.29) 

Ct < Ck{ihuii) <Ck
U;      A-=1,2,...,Ä' 

arc satisfied. 
Since the iiji are related linearly to the x,- through the solution of Eq. (5.25) 

and both the performance index and constraints also involve the w.-,- linearly, the 
problem is recognized as one of linear programming.  If the solution is repeated 
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for different levels of the constraint functions, the resulting relationship be- 
tween min \jj and the constraints provides the desired limiting performance 
characteristic. 

From a computational point of view, the size of tlie LP problem depends on 
the number of unknown «,,• and the number of constraint functions. The number 
of degrees of freedom of the system governs the rank of Hqs. (5.25) and is a 
factor only in finding this solution. The coefficient of the i^,- in the constraint 
expressions, of course, depends on this solution, but is constant insofar as tlie LP 
problem is concerned. Thus, Eq. (5.25) has to be solved only one time, which 
means that the size of the LP problem is independent of the number of degrees 
of freedom of the system. Instead, it depends on three factors; (a) the number 
of unknown isolator forces J, (b) the number of constraint functions A.' + S, and 
(c) tlie number of subdivisions of the time interval of interest /. Thus, tlie com- 
putational effort involved in finding the limiting performance characteristic is 
not influenced by the kinematics of the problem. 

The detailed conversion to standard LP form, acceptable lo available LP codes, 
is discussed in Appendix B. Reference 3 describes a linear programming pre- 
processor code which provides various options for lis, Ck. and Uj; hs and Ck being 
rather arbitrary functions which could represent stresses, displacements, veloci- 
ties, forces, or practically any other physical quantity of interest to the system 
that can be expressed as a linear function of the state variables. Constraints can 
be imposed on any of the state variables or on the isolator forces, singly or in 
combination. Those on the isolator forces can be in terms of magnitude or rise 
time. 

To illustrate these general procedures in a specific case, we consider the two- 
degree-of-freedom, two-isolator system shown in Fig. 5.14 and subjected to a base 
displacement /(?). Constraints are placed on the two relative displacements .v, 
and .Y2, and we require that the maximum acceleration transmitted to either 
mass be minimized. In terms of the general notation, the constraint functions 
are 

and we require that 

C,  = .v,;     C2 = x2, 

Dt < x,  < DF 

D2   < x2 < Dj. 
(5.30) 

The upper and lower displacement bounds D\\ D, , D2 , D-i   are prescribed 
constants. 

The response functions that make up tlie performance index are 

//,   = z,;     h2 = z2. 
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Therefore, the performance index is 

Fig.   5.14.     Two-degree-of-freedom,  two- 
isolator system. 

i// = max max|zJ;     5=1,2 

or 

i// = max[max|z1|, maxlz^l]. (5.31) 

It is now necessary to express tlie state variables in terms of the isolator 
forces My. The equations of motion are 

m.z,  + «,(/) - u2{t) = 0 

W2Z2 + «2(0 = o, 

with the kinematic conditions 

(5.32) 

x,  = z,   - / 

x2   ~  z2   ~  z\ 

(5.33) 
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and the initial conditions 

2,(0) = i.CO) = z2(0) = z2(0) = 0. 

Equations (5.32) can be written as a set of four first-order differential equa- 
tions in the matrix form (Eq. (5.25)) 

x = Ax + Bu + F, 

whore 

A'3 

.\-4 
V.      J 

0 0 1 ol 

0 0 0 1 

0 0 0 0 

0 0 0 OJ 

> U   =< 

B = 

0 

0 

0 
V      J 

"2 

0 

0 
V        J 

0 

0 

J_ 
m, 

m\   \    m\      mj 

0 ol 

0 0 

0 0 

0 0 
_l 

and x-x, and A'4 are the velocities X\ and ^2, respectively. The solution to these 
for A'| and A'2 is 

*.W = -/(/) f (r-T)[w, (T)-W2(r)]cfT 

^2(0 = "—   |  (f-r)lu1(T)-U2(T)lc/T --j-      (r-T)M2(r)c?r. 

(5.34) 

Discretization of these expressions depends on the form adopted for Uj{t). For 
a piccewise constant approximation to My, each of the integral terms 

*(0 = ^ | (t-^UjiWr 
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becomes 

(A/)2 

2m 
Y^{2i-2n-\)ilji. (5.35) 

As the complexity of the system increases, the assembly of the A and B mat- 
rices in Lq. (5.25) becomes increasingly cumbersome, and automated methods 
are required. The linear programming preprocessor considered in Ref. 3 develops 
Eq. (5.34) directly by superposing solutions corresponding to unit impulses 
placed sequentially at each of the isolator attachment points. The advantage of 
this approach lies in the fact that existing general-purpose structural dynamic 
codes can be used to generate unit-impulse responses numerically. Viewed in 
this fashion, Eq. (5.34) is recognized as the Duhamel (convolution) integral 
form of the solution to Eq. (5.32). More generally, for any quasi-linear system, 
the response and constraint functions can be written as 

lis{i.iij) =  I'soO +y    |   R.yit-T)Ui{T)dT 
/ t   J'' 

and (5.36) 

Ck{i.Ui) = Ck0U) +^   I /^(/-r^rWr, 
ri   u 

where Rsj and Rki are the appropriate system responses to a unit impulse at the 
attachment point of the /th isolator, and //^(O and Ck0{t) the responses of that 
portion of the system, exclusive of the isolators, acted on by the input/e(/). 
To illustrate various features of the general formulation, we will consider several 
simple problems, Examples 4, 5, and 6. 

5.2 Incompletely Described Environment 

So far in this chapter it has been assumed that the input disturbance was a 
uniquely prescribed function of time. To be realistic, of course, the isolation 
system designer seldom knows the complete time details of the disturbance, and 
this was recognized in the general formulation of Chapter 4. We will restrict 
our consideration of uncertainty in shock inputs to a deterministic framework, 
though random disturbances are included in Chapter 8. We will consider the case 
of a finite number of waveforms (multiple inputs) and a class description con- 
taining an infinite number of input waveforms. Only quasi-linear systems will be 
considered where application to large systems is intended. 
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5.2.1  Multiple Inputs 

A   family   of  shock   input   waveforms   is   prescribed,   denoted   by /c(/); 
ß = 1,2 L.   This notation includes the possibility thai (a) the system is 
equally likely to sustain any particular input separately, (b) two or more of the 
inputs act simultaneously at different (prescribed) points on the system, or 
(c) any combinations of input may or may not occur, with equal likelihood. Note 
that the assumption of simultaneity in (b) is nol rcslriclive, since the lime origin 
of each /{(/) always can be chosen to salisfy this condition while admitting any 
degree of lime phasing. 

For multiple inputs, the limiting performance characteristic refers to the least 
value of the performance index consistent with the constraints, whatever admis- 
sible combination of the L inputs occurs. This implies an upper bound to the 
minimum performance index associated with a "worst" input or set of inputs 
among those prescribed. Since the constraints must not be violated for any com- 
bination of inputs, the solution requires more than just the examination of each 
admissible input set. Otherwise the possibility that one set of inputs will cause 
the constraint to be operative while another leads to a minimum performance 
index might be overlooked. 

Applicable solution techniques are dynamic programming and linear program- 
tiiing, the latter requiring the system to be quasi-linear and the optimization 
criteria to be linear. Since in most instances the dynamic programming solution 
is similar to that for the class description of inputs for which linear programming 
does not apply, only the LP solution is described here. 

The equations of motion for a general quasi-linear system are given by Eq. 
(5.25). The performance index and constraints must be linear functions of the 
state variables and inputs, and arc written to emphasize their dependence on 
fAt). Thus, the problem of finding the limiting performance characteristic 
requires the selection of the ,/ isolator forces itj(t) for which the constraints 

C/' < Ck{t, u,-.^ ) < Ck
u:      (! = 1. 2 /. (5.37) 

A-= 1,2, ...,A' 

are satisfied and the performance index 

\p = max max max|/;i(?, «y./g )|;     6=1,2 L (5.38) 
6      ^       f     ' .v = l,2 S 

is minimized. As before, the problem is reduced to standard LP form by replac- 
ing Eq. (5.38) with the additional constraints 

|/^,W/,/8)| < ^ (5.39) 

for all t, 12, and s. In discrete form, where the time interval of interest is sub- 
divided into / subintervals,  Eq.  (5.39) amounts to introducing 1 x L x S 
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constraint relations.   The expression for the minimum performance index now 
reads 

i//* = min \jj - min max max mäx\hs (5.40) 
u;      8       .s        f 

5.2.2 Input Class 

We consider the input disturbance to be a member of a class which may in- 
clude an infinite number of waveforms. The manner in which an input class is 
defined was discusstd in Chapter 3 (Fig. 3.1); a typical class description is illus- 
trated in Fig. 5.15. Figure 5.15a shows/(r) defined as lying within an amplitude 
band over the time interval of interest; Fig. 5.15b illustrates a class of positive 
inputs characterized by bounds on magnitude, rate of application and duration, 
and magnitude of prescribed impulse. In discrete form, where f(f) is approxi- 
mated by a piecewise constant function, the class description amounts to a set 

in o 

1- cc 

f(t) MAY BE ANY SINGLE- 
"VALUED WAVEFORM LYING 

WITHIN THE BOUNDS SHOWN 

TIME, t 

I  f(t) MUST LIE IN SHADED REGION AND 
U 

m<Y-\\ < t< tf 
/'       2 U JQ f{t)dt = F, WHERE f   , t2 , tf , F 

ARE PRESCRIBED 

TIME, I 

Fig. 5.15. Examples of input class. 
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of constraint relations on /}. For example, the band ol' Fig. 5.15a defines the 
admissible/(f) as any sequence of numbers/j- satisfying 

,//'  </;■ <fiU-      '= !•- A (5.41) 

where /,•'. /,• are the lower and upper ampliludes of the band prescribed at each 
lime slate /■,-. The class indicated in Fig. 5.15b would involve other constraining 
relations among they'-. In particular, the impulse requirement is 

/ 

2]./,A/ = /-',      /•'prescribed. (5.42) 
/-i 

We will consider an example which simplifies notation but does not restrict 
the generality of the problem formulation. Figure 5.16 illustrates a rectilinear 
system consisting of an arbitrary arrangemenl of known elements and a single 
unprescribed isolator element. This will be termed the general flexible-base 
isolator system. An input motion of prescribed class description/(f) is imposed 
on a reference position. No restriction as to linearity of the system is implied. 

The equations of motion can be written in the form 

\{!)   = G(/, x.u.f] (5.43) 

x(0) = x,. 

Note thai explicit dependence on the isolator force need only be indicated for 
the unknown element u s »(/), since the isolator forces for the known elements 
all involve prescribed relationships among the state variables. The performance 
index is 

i//  = max max|//vU, \, »,/)|, (5.44) 
.V I 

and the response constraints are 

C/- < Ck{!. x, u.J) < Ck
u:     k=\.2 K. (5.45) 

Additional constraints which serve to define the class of/(;) are also imposed. 
All of the functions G(-). (i^q. (5.43)),//,v(-) (Ft|. (5.44)). and Q.(-, (Fq. (5.45)) 
may be nonlinear.  Denote min i// for an admissible input by i/ri:, i.e., 

i//* =  min \p. 
u 
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) DESIGN ELEMENT 

\PRESCRIBED SYSTEM 
ELEMENTS 

fit)    INPUT DISTURBANCE 

':ig. 5.16. General flexible-base isolator system. The pre- 
seribod portion of the system corresponds to any combina- 
tion of masses and interconnecting elements (e.g., springs, 
dashpots). 

Generally, we would be interested in tlie largest value of \jj* for a given class of 
/'(/), the relationship between this \p* and the eonslrainls providing an upper 
bound to the limiting peiTormancc characteristic. In the same manner, a lower 
bound corresponding to the least value of i//H: for /(/) could be found. Since 
the solution procedure is formally identical, except for a minimization replacing 
a maximization, a combined notation will be introduced. 

Let the bounding characteristic be denoted by i//|, where 

i//* = opt i//" opt min \p. 
/     " 

(5.46) 

The notation opl refers to either a minimization (lower bound i///ß) or a maxi- 

mization (upper bound ^UB)-   'n ''^ process of determining 1//J3, an associated 
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member of the class /'(/) is determined. That associated with the lower bound 
will be termed the best disturbance and that associated with the upper bound the 
worst disturbance. Eq. (5.46) admits an LP formulation only for the lower bound, 
even when all of the functions are linear. Generally, therefore, a dynamic program- 
ming solution is required. The complexity of this solution is determined by the 
size of the problem and not the functional forms; the only solutions reported are 
for SDF systems |3]. It is doubtful that one would undertake more than a two- 
degrce-of-freedom system at tiie present time. 

The dynamic programming formulation follows exactly the development for 
an SDF system with fully prescribed input, except that an addilional optimiza- 
tion on /'is involved.   The computational algorithm, analogous to Eq. (S.lli), is 

0/-i+i(x;) = OP1 min maxl/Kx,, »,-, /,■), 0/_/(x,+,)] (5.47) 
/i    "i 

for 

/ = /- l,/-2,.. ., I 

where 

/!(•••) = mii\\lis{-- •)!;     x= 1,2, . ..,S. 
s 

The x, + | arc found in terms of the x,- from the solution of Eq. (5.43). The 
process starts with 

(x/) = max li(x,, ;//, //);      I > t,. 
t 

Upon reaching the /th stage of the process, the desired bounding value is given 
by 

^*B   =   0/(Xl), 

where x, refers lo the prescribed initial state of the system, Eq. (5.43). 
The upper and lower bounds lo the limiting performance characteristics are 

termed the limiting performance bounds. A point on the upper bound repre- 
sents the best performance which can be achieved for the associated constraint 
level should the system experience the worst disturbance within the specified 
class. Nothing is said regarding what sort of isolator must b'j chosen to ensure 
this optimum performance, or even that some other input within the class might 
not be more severe on that particular isolator; it simply states what is theoretically 
possible if an isolator is optimized for the worst disturbance.   Compulations 
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made on the basis of the best disturbance \pLB are interpreted in a similar fashion. 
The limiting performance bounds are shown schematically in Fig. 5.17. When 
additional constraints are involved, the bounds are hypersurfaces. Construction 
of the upper limiting performance bound is illustrated for an SDF system by 
Example 7. 

A WORST   DISTURBANCE, 
UPPER   BOUND 

1        B BEST   DISTURBANCE, 

z \-\                      1 LOWER   BOUND 
o Y   \        | 

2  UJ 
—  _l \\^ 
UJ  LU \-.'.'.-■■■,•. \ 

O  <-> v'-■■■ '-^X 1 

^ \            X 
5 in \     i >> 
CC   V) x1 ■■■'.'-'-*■"■ '.^V 
p < \   »3N 

\3 UJ ^ \ 
a § sM 

UJ 
< ►N 

i-   B 

CONSTRAINT   (RATTLESPACE) 

I'ig. 5.17. Limiting performance bounds 
for system with one constraint. 

Tiie limiting performance bounds have application for evaluating suggested 
design criteria or proposed design elements. With reference to Pig. 5.17, a design 
point lying below the lower bound (Point 1) could not be achieved for any input 
within the class. On the other hand, a design point lying above the upper bound 
(Point 2) could be achieved in principle whatever the input. A point lying be- 
tween the two bounds (Point 3) simply indicates that the desired performance 
can be achieved for some, but not all, members of the input class. 

r 
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Example 3 

DYNAMIC PROGRAMMING SOLUTION FOR THE T1ME- 
01T1MAL SYNTHESIS OF AN SDF SYSTEMf 

We will consider the SDF system shown in Fig. 4.3. The base structure receives an 
impulsive loading equivalent to an initial velocity of-20in./sec. Our problem is to find the 
least possible rattlespaee if the acceleration of the isolated mass is not to exceed 100 in./sec2. 
No restriction on the type of isolator is imposed. A unit mass is assumed. 

Using the notation of Fig. 5.1, we seek 

min i^  = min nia.\|.v| 
K      t 

for which 

niax|r| < 100 in./sec2. 
t 

The response quantities x and z are related through the equations of motion wliieli, for unit 
mass, are 

and through the kinematic conditions 

z + i/(0 = 0 

:(0) = z(0) = 0 

z = x + 20r 

z = .v + 20. 

Wc will follow the motion for 0.2 sec, during which time the unknown isolator force 
will be represented in pieccwise-constant form as shown. For simplicity, only three sub- 
intervals of time arc used, i.e., Ar = 0,2/3. 

ISOLATOR 
FORCE, 

u(tl (LB) 

u2 

0 2 
3 

"3 

O.H 
3 TIME,I (SEC) 

fit Is suggested that this example be studied in conjunction with the general description of 
the dynamic programming method beginning on p. 42. 
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In the general iiolatiüii of I'ig. 5.8. / = 4 and the problem unknowns are 

min ^ 

K,  = iHl^ =  '((()l = constant for 0 < i < 0.2/3 sec 

,72 = mij) = (((0.2/3) = constant for 0.2/3 < ( < 0.4/3 sec 

((, = tiil}) = (/(0.4/3) = constant for 0.4/3 < / < 0.2 sec. 

I'rom the equations of motion, we see that the acceleration constraint is equivalent to 
I»! < 100 in./sec2,   fhus. the admissible range for ((,■ is 

-100 lb < .(, < 100 lb;      / = 1,2, 3. 

I'lie state vector at any time /, is (see I'q. 5.1 9) 

x,  -= 1   ' y.       (-1.2,3,4. 

To begin the solution we will assume that .v,- and .V/ may take on any values in the range 

-3 in. < .v(- ^ I in. 

-30 in./sec < Xj ^ 10 in./sec. 

This choice of range for the state variables comes with some experience, but in any event 
its adequacy is tested during the solution. Again, for simplicity we will select five equally 
spaced values for the state variables within their respective ranges. In terms of the general 
notation (p. 43). A'| = AS = 5 and there will be /' = (5)(5) = 25 possible choices for the 
state   vector at  each   time  step  considered.     These  correspond to all combinations  of 

.v, = -3,-2,-1,0. 1 in. 

.v,- = -30.-20,-10,0, 10 in./sec. 

Rather than use the general recursion relations of Eq. (5.22), we will again derive the 
dynamic programming algorithm in the course of describing a computational solution. The 
solution method requires us to find the minimum rattlcspace at each time step corresponding 
to the system being in any of its admissible states at that time. This information will be 
recorded in a 5 by 5 array, called the 0 array, as shown schematically below for a typical 
time (,-. 

The columns of the array are labeled for the selected vilues of .v,-, and the rows for the 
selected values of .v,-. Thus, the intersection of any row and column corresponds to one of 
the 25 admissible state vectorsat the time /,-. Each entry in this array would be the minimum 
rattlcspace requirement (consistent with the acceleration c onstraint) if the system were to 
start from the associated state. 

l"or example, if the (/; array were known at the stage of the computation corresponding 
to 12 = 0.2/3 sec, then the entry at the intersection of the third row (.V2 - -10) and 
second column (.vj = -2) would be the minimum rattlcspace required by a system with 
initial conditions of-2 in., -10 in./sec.  Clearly, once the 0 array is established for f) = 0, 
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10 

0 

10 

20 

30 

(/)-ARRAY 

then the entry for A: | =0, .V] = -20 (the actual initial conditions) will be the desired rattle- 
space, min \i/. The reason for considering all the other states is that the sequence of states 
corresponding to the motion which produces min ^ is unknown at the outset. 

The solution starts at the terminal time iq = 0.2 sec and proceeds backward in time. 
The first 0 array to be considered conesponds to the admissible states X4 and will be de- 
noted by 01(X4) to distinguish between the state of the system and the stage of the solution. 
Generally, the notation will be ^(x,), where the (' subscript refers to the time step and the 
/ subscript to the solution step, or stage. There will be as many steps in the solution as there 
are time increments, so that / = I when / = / and / = / when / = 1. The general relationship 
between the / and/ subscripts is shown ir. Eq. (5.22). 

For our problem, the 0i(X4) array is filled with zeros, and the computation begins with 
the 02(x3) array. The reason for this will become apparent shortly. 

Let us consider how to find a typical entry in the ^("a) array, say that corresponding 
to the first-row, first-column position, i.e., the statef 

X3 = |-3 in., 10in./sec|. 

At this time (^3 = 0.4/3 sec) the mass can experience any value of the isolator force 1/3 
between +100 lb. A particular value of »3 will cause die system to be in a new state at a 
time A/ later, which can be found from the solution to the equations of motion. The state 
transformation results from the solution to the equations of motion, and for unit mass is 

fThe state vector is written in its transpose form for convenience. 



64 OPTIMUM SHOCK AND VIBRATION ISOLATION 

*,+ ,  = xi + kjAt - -|i(3(Ar)2 

v;+l Xj - u3At. 

For example, if we select M3 = -100 lb, then the state X3 = (-3 in. 10 in./secj is transformed 
to the state X4 = -(-2.11 in. -3.33 m./sec|. We observe from this result that the minimum 
rattlespace is at least 2.11 in. whether or not a larger value for subsequent motion is required, 
as indicated by the entry for the -3.33 in./sec row and -2.11 in. column of the (t>\(\4) array. 
These are not actual column labels, and it is necessary to interpolate in the array. How- 
ever, since the <p j (X4) array is filled entirely with zeros, we conclude that a system starting from 
the state X3 ={ -3 in., 10 in./sec\ and experiencing an isolator force of »3 = -100 lb will re- 
quire a rattlespace of 2.11 in. 

Of course, there are other values of «3 to be considered, and this calculation must be re- 
peated for representative values oft/3 within the range ±100 lb. The minimum value of the 
rattlespace so determined is then entered into the first row, first column of the ^(^i) 
array. The value of 1/3 which causes the minimum rattlespace U3 may be recorded also. It 
should be clear that this computation may be expressed symbolically as 

02(X3) = minmax[|jr4(X3, «3)|,   0i(X4)]. 
"3 

The dependence of the rattlespace on the choice of the state variables at time f 3 is indicated 
explicitly, as is the indication that the computation is to be carried out for each of the ad- 
missible state vectors. It also should be evident that the choice of zeros for 0i(X4) is not a 
limitation, since the largest rattlespace requirement should have been established prior to the 
end of the time interval; otherwise, the interval would not be of sufficient length. 

The results for the (^(xs), ifriixi), and 04(xi) arrays are shown in the example figure. 
Ten values of «3 were selected for the computation. Only the known initial state x = 
JO.G in. -20 in./secj need be considered in the 04(xi) array, and the entry shown is the 
desired solution for minimum rattlespace, 

min \p  = min max|x| = 2 in. 
u     t 

Despite the crudity of this example, the result is exact, as a consequence of the initial 
velocity input and the fact that the optimum isolator force is of the bang-bang type, which 
is correctly represented by the piecewise constant approximation to u(t). 

If desired, a separate calculation, proceeding forward in time, is required to establish the 
optimum isolator force u*(t) and the trajectories of the state variables during the 0.2-sec 
time interval. In the course of computing 04(x 1) for the initial state x 1 = |0 in. -20 in./sec), 
the first increment of force Mj is found to be -100 lb. This causes the system to be in the 
state X2 = {-1.11 in. -13.33 in./secj at ti = 0.2/3 sec. Eitlier a recalculation of min «2 for 

0(X2) or interpolation among the min «2 associated with the calculation of 03(x2), if this 
information was retained, yields «2 = -100 lb. This force increment, in turn, causes the sys- 
tem to be in state X3 = |-1.77 in.,-6.66 in./secj at t^ = 0.4/3 -■ec. Similarly, 0(X3) is found 
to occur for «3 = -100 lb. This last increment of the isolator force causes the system to be 
in the state X4 = |-2.00 in., 0 in./secj, indicating that the system comes to rest at the end of 
the 0.2-sec time interval. These trajectories are plotted in the accompanying figure, along 
with an indication of the path through the 0 arrays. The row and column intersections are 
depicted as points, with the values of 0 indicated, in order to emphasize the interpolation 
requirements. 
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Example 4 

THE PROXIMITY PROBLEM 

We will consider two independently isolated packages m y and /«2> coupled only by virtue 
of the possibility of their contact. The mounting structure undergoes the prescribed 
motion/(f). 

//////////// T7 / /// / / / / 

The equations of motion are 

m\Z\  + »]  = 0 

"'2-2   +  "2   =   0 m|.V|   =  -H,   - / 

W2.V2   =   +"2   " / 2,    =  /+   lA^-.V^O)] 

■1   = f -   U'2--V2(0)l   J 

2,(0) = f|(0) = „'2(0) = -"2(0) = 0. 

While this appears to suggest a completely symmetrical arrangement, recall that the «y may 
involve prescribed elements which differ (Fig. 5.2). 

The performance index is chosen to be the greatest of the peak accelerations experienced 
by either mass. Thus, 

max|max|2||, max^l 
r 1 

As constraints, we require that neither mass approach within a prescribed distance of the 
walls and that neither one contact the other. These conditions arc expressed as 



LIMITING CHARACTERISTICS OF SHOCK ISOLATION SYSTEMS 67 

>«, 

>fl2 

•v2 < b. 

The relationships between x, and u ), and .V2 and "2 are most simply found by integrating 
the equations of motion. 

The optimization solution yields the isolator forces »](;) and iijtt) which, for given 
clearances a^, aj, and b, and initial positions of the masses, minimize the larger of the peak 
accelerations experienced by the two masses. The limiting performance characteristics re- 
sult from repeated solutions for various values of.V|(0),.V2(0),a 1,02. and ö. These charac- 
teristics provide the minimum possible mass accelerations corresponding to given initial mass 
positions and housing clearances. Alternatively, for a desired peak acceleration level the 
minimum clearance between the masses is provided. 

Example 5 

FLEXIBLE-BASE MODEL 

We will consider an improvement to the rigid-base, rigid-package, SDF system. 
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The simple clastic model of the base structure shown reproduces a single, undamped re- 
sponse mode; the package is represented by the rigid mass nij. The peak acceleration of ;)i2 
is selected as the performance index. The rattlespacc required by the package and the de- 
formation of the base are constrained. Thus, we seek the (/(/) which satisfies 

max|.V|| < I) i 

nia.\|.V2| ^ #2 

and minimizes 

max | r T]. 
l 

The response variables required by the LP formulation are easily established by using the 
equations of motion. 

Numerical solutions were computed for a range of base frequencies and an input accelera- 
tion pulse of the form shown below. 

001 
i(sec) 

The rattlespacc bound was set at 30 percent of the base displacement occurring at the 
duration of the pulse; the deformation of the base was unconstrained. The minimum peak 
acceleration, expressed in terms of the rigid-base problem, is plotted against the ratio of the 
pulse duration to the period of the base structure for equal masses (i.'t |/»M = ') 'n ",c figure 
at the top of the next page.  Here, 7"^ is the period of motion of the base structure. 

Minimum v 'or the rigid base is 36 percent of the peak base acceleration. The limiting 
isolator performance becomes effectively that of the rigid-base system for base periods less 
than about 60 percent of the pulse duration. This result depends on the fact that the relative 
displacement was unconstrained, for a range of periods in excess of the pulse duration, 
minimum peak transmitted accelerations exceed optimum condi.ions for a rigid base by as 
much as 20 percent. Since no restrictions were placed on base displacement, the optimum 
transmitted acceleration approaches zero as the base flexibility increases. 

Similar results are shown in the following figure for a base mass twice that of the package 
(/)i|A»2 = 2). The lower of the two curves is to be compared directly with the results of 
the previous figure, for the relatively less massive package, the effectiveness of the optimum 
isolator is further reduced for some base frequencies. Also, there appears to be an enhanced 
tuning effect; i.e., a lesser range of frequencies over which the minimum peak transmitted 
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acceleration significantly exceeds the rigid-base results. The upper curve is also for a mass 
ratio o! 2, but corresponds to a displacement constraint on the base structure of I 10 percent 
of the base displacement in the absence of the package mass {»12 = 0). This is in line with 
the requirement that the addition of the package and its isolator not significantly increase 
the stresses in the support structure. As expected, the inllucncc of the constraint raises the 
minimum transmitted acceleration for all base frequencies, and most noticeably for increas- 
ing base flexibility. 

CONSTRAINED BASE  MOTION 
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Example 6 

FLEXIBLE-PACKAGE MODEL 

A two-mass model of the package structure provides lor a single, undamped response 
mode of a subcomponent; the base is assumed rigid. 

777" 

x2 

777 

fdi 

77 y 

The performance index is taken to be the maximum acceleration of the package; i.e., 

v!/   =  niax|j'2|. 
I 

Constraints are imposed on the isolator force and rattlespaee; i.e., 

max|/((/)| < /■' 
r 

max [.v ,(/•)! < D. 
t 

Numerical results were obtained for the same input pulse as in Example 5, a rattlespaee 
bound equal to 30 percent of the base displacement occurring at the duration of the pulse, 
and a mass ratio m | /in j - 100. The value of F was sufficiently large so as not to be an active 
constraint. The following figure shows the minimum peak acceleration transmitted to;»2, 
normalized to the corresponding SDF case, plotted against the ratio of pulse duration to 
the period of the package mode. For periods less than about twice the pulse duration, the 
limiting performance is essentially that of the rigid-package model. For greater periods (in- 
creasingly flexible package) the minimum peak acceleration approaches zero. 
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125 

Example 7 

LIMITING PERFORMANCE BOUNDS 
FOR AN SDF SYSTEM 

We will illustrate the manner of determining a point on the upper limiting pcrlormance 
bound and the assoeiated worst disturbance for an SD1-' system subject tu the input class 
shown. 

) L 
80 i 

1  WC 

60 
I 
1 

u TR 

40 i - 
20 

f 

—1 

n .i.   , . i u-^in i 

-WORST-DISTURBANCE 
TRAJECTOnY 

•J 33 700 

TIME   {MSECI 

The input acceleration must lie within the shaded region and have a net area of 147.8 ips. 
The input is described as a bounded acceleration pulse of specified terminal velocity Vr. The 
peak transmitted acceleration of tlic mass is taken as the performance index with a constraint 
on relative displacement. Piccewiso constant approximations arc used for both ;;(/) and 
f(t). The terminal constraint on the input class has the effect of increasing by one the 
number of state variables and, hence, the dimension of the dynamic programming solution. 

The solution to the system equations, in a form required by Eq. (5.47), is 

*/+l 

X,+ |   =< = < 

Xi+kiAi - Ufi+'JiUAni 

'/+u+^' 

with x | = .v i = 0 and where /,■ has the units of acceleration. 
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The performance index is i^   = iiia.\iz,> = ma.\|i/(-/m|, and the response constraint is 
-0<.v/<D. ' ' 

The input class is defined by 

o < /■; < if 
i 

(=1 

where/,-   is the time-varying upper bound shown in the figure. 
To handle the terminal velocity constraint, we define an additional state variable r accord- 

ing (o 

'•/+!  = '•z + .//A/. 

At the start of the computational process,/•/ = 0; at its conclusion,/'i = IV. Thus,/•,-records 
the cumulative velocity, and the complete state vector is 

X| 

where the first two components of x,- correspond to those above. 
l-'or the upper bound (worst-disturbance) case, Eq. (5.47) takes the form 

0/-(+i(X|) = max min max 
/;     "i 

^1. 0/-/(x,'+1) 

lor 

/ = /- I./-2,..., I. 

A solutum was obtained for 

in   =  1 lb sec2/in. 

l-y =  148 in./sec 

D    = 0.25 in. 

The upper bound to the minimum transmitted acceleration is found to be 

'/'UB = */(0) =  19,300 in./sec2. 

The associated worst disturbance is shown by the dashed line within the bounded input class. 
If this procedure is carried out for a range of values of the constraint, the upper limiting 

performance bound (associated with the worst disturbance) is constructed. 



Chapter 6 

OPTIMUM DESIGN SYNTHESIS 
OF SHOCK ISOLATION SYSTEMS 

In the general forniulalion of the optimum design-parameter problem con- 
sidered in Chapter 4, the configuration of each of the isolator elements is pre- 
sumed known, but a number of parameters (e.g., spring and damping rates) are 
unspecified as to numerical value. The synthesis problem is to select these design 
parameters so that the performance index is minimized without violating the 
constraints. Any method that seeks to do this by continuously satisfying the 
constraints and progressively minimizing the performance index is termed a 
direct synthesis method. By contrast, an indirect synthesis method is one that 
selects the design parameters on the basis of approximating the isolator response 
trajectories that produce the limiting performance. 

It should be kept in mind that while the result of either method may be termed 
an optimum design, it is optimum only with respect to the type of isolator being 
considered. Whether or not some other type of isolator may yield better per- 
formance cannot be known without repeating the synthesis procedure for that 
isolator. Thus, how oplinntm is optimum only can be found by comparing the 
local optimum with the limiting performance determined by the methods of 
Chapter 5. 

In addition to presenting both methods of synthesis, this chapter includes a 
discussion of the influence of uncertainty of the input details on the optimum 
performance characteristics. The latter material also is applicable to the limiting 
performance characteristics discussed in Chapter 5. 

6.1   Direct Synthesis 

6.1.1   Completely Described Environment 

Analytical Teclmic|iies 

Direct synthesis is a problem of constrained minimization fc; which analytical 
methods are practical only when the number of unknown parameters is small or 
when the performance index is of a particularly convenient form. We will con- 
sider a simple system that illustrates a rather straightforward approach and points 
up the difficulties encountered in extending it to more complicated systems. 

73 
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Figure 6.1 shows a linear spring-dashpot isolator subject to an impulse loading 
of its base equivalent to the initial velocity V. The peak acceleration of the mass 
is selected as the performance index, and the rattlespace is constrained. In addi- 
tion, the spring rate A: is to be nonnegative and the system overdamped. Thus, 
the performance index is 

max|z|. (6.1) 

The constraints arc 

maxU-|  < D 
r 

(6.2) 

and the equations of motion aret 

niz + ex + kx = Ü (6.3) 

with 

x = z - f = z -  Vt 

and 

z(0) = i(0) - 0. 

Our problem is to select the design parameters A' and r so that the constraints 
of Eq. (6.2) arc satisfied and the performance index of Eq. (6.1) minimized. We 
do this by first finding the expression for i// in terms of the design parameters. 
The solution to Eq. (6.3) is 

.v(/) = -|^"-^']. (6.4) 

jDistributed mass elTect in the spring (surging) is neglected, which might not be adequate 
in a practical situation involving impact loads. 
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Fig. 6.1. Linear spring-dashpot isolator. 

where 

Ti + n 
Lm 

2/» 

«   = L _ A. 
4//)2      m 

Note that requiring the dashpot to be overdamped implies thai il will bo real 
The maximum relative displacement has the value 

max W 01 =.v(/,„) =  ^^ 
TI/2S2 

(6.5) 

where 

Ta't 
The maximum aeccleratioii z is 

Vc 
inaxizj = z(0) =  — . 
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Tlic constrained minimization problem now can be written in the following ex- 
plicit form:   Find k and c such that i// = (Vc)/m is a minimum and 

K/72\
7l/2" 

l2\ll 
<  D 

A- > 0 

c > l\fkni 

with 1'. //;. and D prescribed constants. 
We sec that despite the linear form of the system, the minimization problem 

for A' and c is highly nonlinear, as generally will be the case. The min i// is found 
(e.g.. graphically) to occur for the condition of critical damping (£2 = 0), which 
is a singular solution of l:q. (6.3). There results 

1L: 
cD 

c = 2.718 

: i m 

cD 
(6.6) 

k*  = 
'tn 

Am .-W-'- 

where  the optimum values of the design parameters are again designated by 
asterisks. 

This result is compared in Table 6.1 with the limiting performance, Hq. (5.10), 
and the situations in which either the spring or dashpot is absent; 

Table 6.1. Optimum Parameters 

Parameterst 
Limiting 

Performance 
(Eq. 5.10) 

Optimum 
Spring 

Dashpot 
(Eq. 6.6) 

Optimum 
Spring 

Optimum 
Dashpot 

A 1/2 21c 1 1 

A* Me* ! 
— 

c* 2/c — 1           j 

t/l -cool,,   —;    k* -coetA.   -— ; : cool". 
Vjn 
D ' 

Cod'^ , eocl'^*, cuef^.t  ;irc giver, by the/I, k*, c* rows, respectively. 
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The "optimum" spring and daslipoi cases do not really represent a problem of 
optimization, since if k or c is selected so that max|x| = D, max|z| is determined. 

We observe that, for any prescribed input velocity and rattlespace, the best 
spring-dashpot isolator will transmit a peak acceleration about one-third greater 
than the best possible isolator, wherei's eliminating either the spring or dashpot 
doubles the acceleration transmission relative to the limiting performance. An 
appreciation of the sensitivity of the optimum design to the selected configura- 
tion in this instance can be gained by noting how the performance would change 
if the dashpot were eliminated after the spring had been selected on the basis of 
a spring-dashpot isolator. Here we see that, for the same base velocity, the peak 
acceleration would be halved, but the rattlespace would be exceeded almost 
threefold (by the factor e). These results, of course, apply only for the impulse 
loading, but the trends are believed similar for other inputs. 

The control theory literature abounds with methods suitable for direct opti- 
mum synthesis of very simple systems on the basis of an integral type of perform- 
ance index, usually the so-called integral square or quadratic criterion. Problems 
involving this type of performance index can be handled with calculus-of- 
varu.Vons techniques, and solutions have been obtained .'"or SDF shock isolation 
systems, vv'hilc it is conceivable that some equipment car withstand reasonably 
large re:ponscs of short duration so long as the average resj onse is not excessive, 
peak response indices generally are considered more applicable to isolation sys- 
tem design. Applicable techniques include Pontryagin's maximum principle [1,5], 
an analytical version of dynamic programming [23], and the minimization of 
auxiliary effort |24]. Both the optimum system configuration, which as a 
result of the quadratic performance index is linear [I |, and the optimum design 
parameters can be found. However, there is little indication that these methods 
can be applied to realistic models of complex isolation systems or extended to 
encompass performance criteria more appropriate to the shock isolation problem. 

Computational Techniques 

Computational techniques for optimizing a particular isolation system design, 
in most instances, arc the only reasonable approaches for direct synthesis. Since 
many comprehensive reviews of numerical minimization techniques are available 
(25-33), a discussion of the details of the methods and their relative merits is not 
included. Rather, we will review certain common features of those methods and 
cite a few results. As will be shown, the practicality of any of these methods is 
limited by the size of the system and the number of design parameters. 

All numerical methods of direct synthesis progress toward the desired minimum 
in an iterative fashion. At any stage in the process, they sehet a trial set of the 
design parameters, solve the equations of motion, and then test to see if the re- 
sponse constraints arc satisfied. If the constraints are satisfied, the performance 
index is evaluated and compared to the minimum value thus far obtained; the 
current minimum and associated design parameters are retained and anothci set 
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of design parameters is selected. If the constraints are not satisfied, this trial 
set of design parameters is rejected and another set selected. The various mini- 
mization techniques differ principally in their manner (a) of deriving the next 
trial set of parameters from the results of preceding trials and (b) of verifying 
the constraints. 

A different approach to the latter aspect distinguishes the so-called penalty 
function methods, which seek to replace the original constrained minimization 
problem by a sequence of unconstrained minimizations. A new performance 
index is constructed that reduces to the original performance index when the 
constraints are satisfied and weights (i.e., penalizes) the index when they are not. 
The Fiacco-McConnick method is one of the most popular and powerful of the 
penalty-function techniques [34]. 

The performance index may be thought of as representing a surface in design- 
parameter space (a hypersurface, if more than two design parameters arc in- 
volved), with the constraint functions serving to restrict the admissible region of 
the space. The optimum design is the minimum altitude of the response hyper- 
surface within the admissible region of the design space. Viewed in this manner, 
direct synthesis amounts to a search procedure for exploring the topology of 
this hypersurface, where the description and positions of the boundaries of the 
hypersurface must be found by solution of the system dynamics. Schmit [20] 
provides an excellent discussion of the problem from a geometric point of view. 

Regardless of the computation algorithms involved, all of the numerical search 
methods possess the following features: 

• The system dynamics (i.e., equations of motion) must be solved for each 
trial set of design parameters. 

• The computational burden increases with the number of degrees of freedom 
of the overall system, th number of design parameters, and the number of 
constraints involving the state variables. 

• Convergence of the search, procedure to the minimum is not always guar- 
anteed. When the procedure does converge, it characteristically does so in 
a relatively great number of steps (hundreds), and it is seldom known 
whether convergence is to a relative or a global minimum. 

• The procedure is not additionally complicated by the functional form of 
the performance index or constraints except as these affect convergence. 

There is considerable activity at present in the development of larger and 
more efficient codes for solving problems of constrained minimization (e.g., Ref. 
30). Of particular interest are the methods presently being investigated to avoid 
repeated solutions of the system dynamics at each iteration of the search 
procedure [35-37]. 

While most current developments involve digital computation, some isolation 
system synthesis has been performed by analog means [5,17]. At one time, of 
course, variation-of-parameters studies were thought to be the exclusive preserve 
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of the analog computers and, indeed, they possess desirable features. However, a 
discussion of analog computer simulation of isolation systems and current de- 
velopments in hybrid computation is beyond the scope of this monograph. 

Reference 38, an extension of the study described in Ref. 39, deals with the 
optimum synthesis of an SDF isolation system consisting of a bilinear spring and 
lime-dependent damping. The problem formulation and representative results 
arc presented in Example 8. Inasmuch as the optimum values of some of the de- 
sign parameters were found to depend on the starting values for the search pro- 
cedure, tiiere is some question as to whether an absolute minimum for <// was 
obtained. This is typical of what one must expect in the solution to a multiple- 
parameter system, where convergence of the search procedure to even a relative 
minimum cannot be guaranteed. 

6.1.2  Incompletely Described Environment 

When the input is described as a finite family of waveforms, each of which may 
occur with equal probability, the system response must be examined for all wave- 
forms for each trial set of design parameters to establish admissible designs. It 
may well be that the input which causes the constraints to become operative 
differs from that which provides the minimum performance index. Optimization 
of the shock isolation system of Example 8 was performed by direct synthesis 
in Ref. 38 for a multiple-input situation. 

The method of direct synthesis is complicated considerably when applied to a 
class of inputs, since a worst-disturbance analysis must first be carried out for 
each trial set of design parameters to ensure that no constraint is violated. The 
worst disturbance is thai member of the input class for which a designated re- 
sponse quantity takes a maximum value; this method of analysis is described in 
Section 6.3. 

Recall that the synthesis problem requires us to find the design parameters 
ajr {R parameters for each of,/ isolatcrs) that minimize the performance index 
while satisfying all of the imposed constraints. The constraints are of two types; 
(a) design-parameter constraints, i.e., conditions on the ay,., and (b) response con- 
straints, i.e., conditions on the state variables. The direct-synthesis method starts 
by selecting a trial set of the dj,. consistent with the constraints on these param- 
eters. It is next determined whether for these a^ the system satisfies the response 
constraints. A worst-disturbance analysisf is carried out for each of the response 
constraint functions to ensure that there is no member of the input class that 
would cause any response constraint to be violated for the particular choice of 
a,-,.. The form of the system dynamics and constraint functions will determine 
whether the dynamic programming or the more efficient IP solution can be used 
for this analysis. 

•f A best-disturbance analysis would be conducted for a constraint which required a response 
function to exceed a given value. 

■.VVv 
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If all of the constraints arc satisfied for the extreme disturbance among the 
class of inputs, then the trial set of design parameters is admissible. If not, a 
new set must be chosen and the process repealed. It may result that the response 
constraints are incompatible with the class of inputs or with the restrictions on 
the design parameters. In such an event, one or the other must be relaxed or else 
other candidate isolators considered. 

Assuming that an admissible set of a,-,, has been found, the next step is to cal- 
culate the performance index i//ß associated with the worst disturbance. This 
is the largest the perfonnai.ee index need be for any input within the prescribed 
class, but it may be reduci d for some other choice of the a^. Therefore, i/^ is 
viewed as the objective function of a mathematical programming problem in 
which a search is made for a new set of the Uj,. providing a lesser value of \pB. If 
a lesser value is found, the new a^,. must be tested for admissibility as before and 
the above procedure repeated in its entirety. The process concludes when no 
further improvement in \p'B is possible for admissible a,,.. In general, the extreme 
disturbances leading to the optimum performance index will differ from the ex- 
treme disturbances that generate extreme values of the response constraint func- 
tions. This procedure is summarized in the flow chart of Fig. 6.2 and applied to 
an SDF isolator system in Example c). This example is taken from Rcf. 3, which 
appears to be the only published sülution of direct synthesis for an input class 
description. 

6.2 Indirect Synthesis 

6.2.1   Completely Described Environment 

The method of indirect synthesis seeks to determine the optimum design 
parameters for a selected isolator configuration on the basis that the isolator 
force-time variation (or some other function of 'he state variables) approximates 
the optimum isolator time characteristics. The basic assumption is that if a 
selected isolator responds sufficiently like the ideal isolator, then the constraints 
will be satisfied and the performance index minimized. The indirect synthesis 
approach requires that the time-optimal response be obtained according to the 
methods of Chapter 5 first; however, solving the constrained minimization prob- 
lem of direct synthesis usually more than makes up for this effort. 

Indirect synthesis is a new method, and it has not been demonstrated that an 
optimum design must necessarily result by approximating the theoretical opti- 
mum response. However, the potential computational advantages offered by the 
method are great and the results reported so far are encouraging. We describe a 
general approach and several methods of approximating the optimum response. 

General Approach 

We consider a shock isolation system comprising J isolator elements, each of 
which is to be designed optimally.   Let the state vector which describes the 
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SELECT CANDIDATE 
ISOLATOR ELEMENTS, 

j = l,2,..., J 

SELECT A SET OF DESIGN 
PARAMETERS (ajr)n WHICH 

SATISFIES EXPLICIT CONSTRAINTS 

SELECT 
NEW DESIGN 
PARAMETERS 

«Vn + I 
NOT 

ADMISSIBLE 

NOT 
DETERMINED 

SELECT NEW 
CANDIDATE 
ISOLATOR 
ELEMENTS 

l7ig. 6.?.. Direct synthesis procedure for an input class description. 
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relative motion of the isolator terminals be denoted by x;- and the net force across 
the isolator by iij (j = 1,2,.. .,/). We assume that the configuration of each of 
the isolators has been selected, so that each iij can be written as an explicit func- 
tion of Xy, the time t, and certain design parameters ay,, (r = 1, 2, . . ., R); i.e., 

Uj = «,(*,■,*,; a,-,.). (6.7) 

The design problem, once again, is to select the ay,, for each isolator so that the 
performance index is minimized and all of the imposed constraints satisfied. In 
the method of indirect synthesis we further assume that the limiting performance 
characteristic has been determined according to the methods of Chapter 5. That 
is to say, the quantities (/*(/),x*(7), andi:*(/) are known. These are referred to 
as the time-optimal response functions. We will attempt to determine the ayr by 
requiring the itj to approximate the ;/■ without directly imposing the response 
constraints or seeking to minimize the performance index. Hence, we call this 
an indirect synthesis method. 

Table 6.2 lists a number of rectilinear isolator-element configurations and their 
associated force functions Wy. We sec that, in general, the Uy of Eq. (6.7) can be 
represented by a nonlinear ordinary differential equation of the form 

Ui^.u';-* uf,   x)',^-1,...,^; ay,.;   t) = 0, (6.8) 

subject to appropriate initial conditions (superscripts denote time derivatives). 
Our approach will be to replace appropriate arguments of Eq. (6.8) by their 

time-optimal values (denoted by asterisks) and then determine the ayr so that the 
equation is approximately satisfied. This is related closely to a more general 
problem known as system identification which is gaining increasing interest in a 
variety of applications. In the present context, system identification deals with 
finding the unknown parameters of a system of differential equations so that a 
particular solution best approximates empirical data. Here, the data are supplied 
by the time-optimal functions. 

Regardless of the system identification approach employed, the more time- 
optimal data available and the smoother these data, the easier it should be to 
identify the optimum design parameters. One method of accomplishing this is 
to select the discretization schemes for the isolator force iij used in the time- 
optimal solution judiciously. Rather than employing simple piecewise constant 
or linear representations, approximations that ensure continuity or even dif- 
ferentiability of üy may be preferable. These latei representations of »y can be 
handled by the mathematical programming formulation, although the value of 
the minimized performance index may well be higher than that obtained through 
the less restrictive piecewise constant or linear discretization. Not only would the 
optimum isolator force w- be smoother, and hence more desirable from a curve- 
fitting standpoint, but with the proper discretization the first and perhaps higher 
derivatives of «■ would be available for use in Eq. (6.8). The isolator force can 
also be smoothed by invoking constraints such as restrictions on rise times. 
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Table 6.2. Representative Isolator Elements 

Name Configuration 
Isolator Force- 

Relative Displacement Relation 

Voigt 
Element it = ciiX + a,.r 

Maxwell 
Element r 

« + —u = -a,x 
0-2 

Nonlinear 
Spring u = K{x) 

Nonlinear, 
Time- 

Depcndenl 
Damper 

u = C{x, I) 

Friction 
Device :\ w = a, sign (x) 

Voigt 
Element 
in Series 
with a 
Spring 

)( + a,« = a2.v + a3.v 

kik~, 

Composite 
Element 

U + a, » = ttj.V + djX + a^x + 

fl5 sign (x) + a6 

Qi - -r1 ' a2 :::f2 + -r , 
' i ax 

■c O' a-, = -7- + KT - K i + — /c,, 1      c,    ' dx 

a4 = -i-i ,    a5 = jLi—1 
c\ <■ 1 

a-, = K-± + C ■ A-, 
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The selection of smooth forms of the isolator force can often be justified on 
physical grounds. The isolator configurations under consideration may be in- 
capable of responding in a fashion similar to the time-optimal functions. This is 
particularly true if the optimal isolator is of the on-off or bang-bang type and the 
candidate isolator configuration is of a simple passive type. 

Two aspects of the system identification problem must be considered. One 
has to do with the measure by which approximate solutions to Eq. (6.8) are to 
be judged, and the other with how those solutions arc obtained. 

Measure of the Approximation 

There is no reason to expect that the isolator configuration selected is capable 
of exactly reproducing the time-optimal response functions. That is to say,»-", 
A"-, kj generally will not be a particular solution of Eq. (6.8). Let u'j denote a 
solution to Eq. (6.8) in which the time-optimal information has been used for 
some set of values a.-,.. Then one measure of the approximation is offered by 
the deviation 

AyU) =  |«;.(/) - u*{t)\. (6.9) 

The desired cij,. can be selected by minimizing a residual function of A,-over the 
time interval of interest for each of the ./ isolators. We will consider both a least- 
squares and a maximum deviation form for the residual function. That is, the 
optimum cty,., say a-, are those for which either 

Hj =   I ■(A/(/)j
:(/(0      is a minimum (6.10) 

' 'o 

Hj =  maxjA^f)!       is a minimum. (6.11) 

The main advantage of expressing the deviation in terms of the isolator forces 
is that the procedure can then be applied to a multiple-isolator problem, one 
isolator at a time. The disadvantages have to do with the fact that the //' usually 
are the least smooth of the time-optimal response functions and, therefore, the 
most difficult to approximate by continuous functions. Also, minimizing this 
form of Ay may not directly affect the satisfaction of a design constraint im- 
posed on one of the state variables. For example, if a constraint were placed on 
the relative displacement Xj, it might be more desirable to choose as the deviation 

A/O = Ix'iil) - x*{t)\. (6.12) 
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The use of Ulis expression lor Aj in cither Eq. (6.10) or (6.1 1) would tend to 
ensure the satislaction of at least one of the response constraints, in addition to 
.v- being a smoother function. This form of deviation can be used in any SDF 
system, since then the .V| and »| are directly related. This will also be the case 
in the general flexible-base situation of Fig. 5.16, since u and x^ are related 
through 

;/(/) = -w.Y| - »;(/' + i). 

The quantity £* can be computed directly from the time-optimal response 
quantities x:,:, (/*. 

Other deviations may be formed as the nature of the application suggests. A 
general, weighted-average form of deviation can be written as 

A, =       piOUjclt. (6.13) 
•'o 

where i/' is the value of Eq. (6.8) with both x* and (/■ data used, and p(/) is 
an arbitrary weighting function. Again, Ay may be minimized according to 
either a least-squares or maximum-value criterion. 

Wc will concern ourselves primarily with the deviation defined in Eq. (6.9), 
since it is most applicable to large, multiple-isolator systems. However, where 
the form for Ay given by Eq. (6.12) can be evaluated conveniently, its use seems 
preferable on intuitive grounds. Comparative results between the two approaches 
obtained so far arc not conclusive [3J. 

The procedure is illustrated in Example 10, where we find the optimum design 
parameters for the SDF linear spring-dashpot isolator under an impulse loading 
of the base. 

System Identification Techniques 

We now consider means for obtaining approximate solutions to the general 
isolator force function, Eq. (6.8). As is evident from Table 6.2, certain types of 
isolator elements lead to algebraic forms for the force function rather than for a 
differential equation. In this case, the system identification procedure reduces to 
a conventional problem of curve matching. Many solution techniques for general, 
nonlinear forms of Eq. (6.8) have been developed and described in the literature 
on system identification. In particular, Ref. 3 considers numerical integration, 
quasi-linearization, so-called method function, and integral equation techniques. 
For the few examples of simple MDF systems reported, it was found that numeri- 
cal integration, coupled with a force deviation, Eq. (6.9), and a least-squares 
residual criterion, Eq. (6.10), offers an acceptable approach. 
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Consider, for example, an isolator consisting of a parallel linear spring-dashpot 
element in series with another linear spring. From Table 6.2, the force equation 
for this type of isolator, Eq. (6.8), is 

U = ii + 0.^1 -ajX  - a3x = 0, (6.14) 

where the a's are related to the spring rates and the damping coefficient. The 
/ subscript has been dropped for convenience, but the equation is intended to 
apply to each isolator element of a multiple-isolator system;.v and x refer to the 
relative displacement and velocity across the terminal of the isolator, and u and ü 
are, respectively, the force and time rate of change of force in the isolator. 

The direct evaluation oft/ requires that ;/* be available from the time-optimal 
solution. This will be the case only when (/ is discrctized to ensure its differ- 
entiability. While this is possible because of the generality of the formulation of 
the time-optimal problem, it is of interest here to assume that it* is not available, 
since higher order and nonlinear forms of Eq. (6.8) for U will necessitate other 
procedures. 

The method of integration is most straightforward, it consists of substituting 
the time-optimal values .v*(/) and x*(t) into Eq. (6.14) (or, more generally, 
Eq. (6.8)) to obtain a differential equation that can be integrated directly for w. 
This is done over a range of admissible ar, the deviations of Eq. (6.9) are eval- 
uated, and the desired ar are selected so as to minimize the residual function, 
either Eq. (6.10) or (6.) 1). The resemblance of this procedure to the direct 
synthesis method is only superficial despite the requirement for a nonlinear 
search code, since only the /th isolator equation, rathe- than the overall system 
equations of motion, is being integrated. Also, only explicit constraints on the 
a,, need be satisfied. Hence, this is essentially a problem of unconstrained 
minimization. 

This procedure was carried out in Ref. 3 for an SDP system with a series- 
parallel isolator described by Eq. (6.14), and separate results were obtained for 
deviations based on force, Eq. (6.9), and relative displacement, Eq. (6.12). These 
are instructive and worth considering in some detail. To complete the settiro of 
the problem, the performance index was based on peak acceleration of the mass, 
the rattlcspace was constrained, and the design parameters «i, a^, and a3 were 
required to be positive. The base input was the acceleration pulse shown in Fig. 
6.3 and the resulting time-optimal response functions x*(/) and w*(/) are shown 
in Fig. 6.4. 

Equation (6.14) was solved numerically for;/ using these, data and trial values 
for the a's. To employ the relative displacement deviation, u and u were elimi- 
nated in Eq. (6.14) through the relation u = -m{x +/), resulting in a third-order 
differential equation for A'. Initial conditions were taken as x(0) =x(0) = u(0) = 0. 
For both forms of the deviation, the least-squares residual criterion, Eq. (6.10), 
was employed using Rosenbrock's Hill Climb algorithm. The following results 
were obtained for the two solutions. 
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TIME ISEC1 

Fig.  6.3.    Base motion for system identification example 
problem. 

For A =  |(/- ForA = \x'   x*\: 

a* = 5000 (sec-1) 

a* = 78,000 (lb/in.) 

a-,  = 73 (lb/in.-sec) 

a* = 445 (sec-') 

a* = 94,800(15/111.) 

at =   142 (lb/in.-sec) 

Before discussing tlic apparently large differences in ilic design parar.ieters 
determined according to the two forms of the deviation, we may consider the 
nature of either solution. Figure 6.5 shows the optimum performance charac- 
teristic for this type of isolator as determined by direct synthesis. Shown for 
comparison purposes is the limiting performance characteristic. The performance 
of the two isolators corresponding to tiiese two sets of design-parameter values is 
identified by points in the figure. The isolator design re jlting from the force 
criterion (solid point) exceeds the constraint on rattlcspace by about 20 percent. 
Note, however, that the performance index is essentially optimum for this higher 
constraint level. The design based on the relative displacement criterion 
(open point) satisfies the design constraint, and is close to the desired 
optimum. 

The apparent greater success achieved in the latter case probably is a conse- 
quence more of the capacity of this type of isolator to approximate A'*(/) than of 
the measure of the approximation. Because of the reciprocal nliture of the time- 
optimal solution, the same optimum performaiv: characteristics would have re- 
sulted had the constraint been imposed on peak acceleration, and rattlespace taken 
as the performance index. Therefore, since the isolator force is proportional to the 
peak acceleration, the force form of the deviation also corresponds to a problem 
constraint. A comparison of the ..:otion and force trajectories for the two isolator 

■■JS\ 



88 OPTIMUM SHOCK AND VIBRATION ISOLATION 

-0.015 

0.005 0.01 0.015 

TIME (SEC) 
CONSTRAINT: I x {1)I< O.OI 

    TIME-OPTIMUM 

 OPTIMUM RESPONSE, FORCE CRITERION 

 OPTIMUM RESPONSE, RELATIVE 
DISPLACEMENT CRITERION 

(a) Relative displacement trajectory 

UJ 
u 
Q: 
o 
u. 
a: 
o 
h- < 

-200 

-I00 

^^ 
V. ^^ 

> ^ 

I,,. I 
0.005 O.OI 00I5 

TIME (SEC) 

0.02 

(b)  Isolator I'orce trajectory 

Fig. 6.4.  Optimum re.ponsc trajectories. 
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• OPTIMUM DESIGN, FORCE CRITERION 

O OPTIMUM DESIGN, RELATIVE DISPLACEMENT 
CRITERION 

OPTIMUM PERFORMANCE FOR 
SPRING-DASHPOT IN SERIES 
WITH SPRING 

Fig. 6.5. Optiimim performance characteristics. 

designs with the time-optimal results is shown in Fig. 6.4. It is clear that regard- 
lessofthc measure of the approximation, this type of isolator cannot match ii*{t) 
very closely, whereas the displacements differ only slightly. 

What is significant is that both approaches yield essentially optimum designs, 
albeit in the one case for some level of constraint other than that prescribed. 
This is a crucial point since the indirect synthesis method has value only If it pro- 
duces a near-optimum design for some constraint level. In this event, the per- 
formance index will be close to the optimum for the type of isolator being con- 
sidcredf and the desired design can be found by interpolation among the results 
of several solutions for judicious choices of the constraint levels. 

Viewed in this way, the relatively great difference in numerical values between 
the two optimum designs indicates an insensitivity of the performance index to 
variations in the parameters. The series spring is indicated to be quite stiff in 
both solutions. In fact, the response changes hardly at all if this spring is taken 
to be rigid (a2 -*■ 00). 

6.2.2 Incompletely Described Environment 

The method of indirect synthesis is applicable to a multiple-input descriptii n, 
since a single time-optimal response is determined in conjunction with finding the 

tOf course, the optimum performance characteristic for the isolator is unknown in practical 
situations where the indirect synthesis method will be employed. 

i 
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limiting performance characteristic. The procedure is exactly as described for a 
single input except that this would now involve the worst-disturbance input. 
However, it would have to be verified that the resulting design satisfies the con- 
straints for all inputs. 

In contrast, indirect synthesis is not applicable to a class input description, 
since there is no guarantee that the time-optimal response associated with the 
worst disturbance of the class will ensure that the constraints are satisfied for 
other admissible inputs. If, for some reason, however, it were desired to design 
an isolator for either the worst or best disturbances once these had been found, 
then the associated time-optimal response could be used in the indirect method 
as described for a single input. 

6.3 Influence of Uncertainty in the Environment 

Environments rarely are known with precision, and an isolation system that 
responds erratically to a disturbance that differs slightly from the one used in 
the design is of little value. Similarly, the material properties of fabricated com- 
ponents of the system only approximate their mathematical descriptions which 
arc employed in the optimization procedure. Thus, there is concern over the 
degree of sensitivity of the system response to variations in the design parameters 
as well. 

Here we limit consideration to the effect of variations in the input parameters 
on the optimum performance characteristics. Three situations are considered: 
(a) variation of waveform shape, (b) similarly shaped (scaled) waveforms, and 
(c) extreme members of a prescribed class of inputs. In each instance, unless 
otherwise indicated, it is assumed that the shock isolation system is fully 
prescribed. 

6.3.1  Variation of Waveforms 

The optimum performance characteristics for an SDF, linear spring-dashpot 
isolator system subject to four markedly different velocity pulses is reported in 
Ref. 15. The results arc shown in the combined plot of Fig. 6.6; the waveforms 
arc shown in Fig. 6.7. The performance index and constraints are normalized to 
the same characteristic values of tiie inputs, so that the results are comparable. 
For each input waveform, the values of/c and c are optimized at each constraint 
level. Thus, Fig. 6.6 indicates the dependence of the optimum performance index 
on overall waveform characteristics for this type of isolator, rather than the 
performance sensitivity  of a given isolator  to variations in  the waveform. 

Consider Point 1 on Curve II of Fig. 6.6. This indicates that it is possible to 
design a linear spring-dashpot isolator to attenuate the maximum acceleration 
of Waveform II by 50 percent when the rattlcspace constraint is prescribed at 
10 percent of the base displacement. Point 2 indicates that, for Waveform I, 
this type of isolator can be designed for only a 32-percent reduction of peak base 
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Fig. 6.6.   Optimum performance curves for an SDF linear isolator. 

'(-a 

Fig. 6.7. Waveforms of Fig. 6.6. 

i 
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acceleration for the same constraint level. But this is a different isolator (i.e., 
different values of A:* and c*) than that of Point 1. In particular, the perform- 
ance of the Point 1 isolator to Waveform IV is not indicated in Fig. 6.6 except 
from the knowledge that it must lie "above" Curve IV. It would, of course, be a 
simple matter to evaluate the response of a particular optimum isolator design to 
different waveforms, but that was not done in Ref. 15 and results are not avail- 
able elsewhere in the literature. While variation-of-parameter studies are straight- 
forward, they are worthwhile only for fairly definite design situations since their 
generality is limited. The waveforms of Fig. 6.7 are both complicated and arbi- 
trary, and would not justify the extensive computations required to systematically 
explore their influence on even the simple linear isolator. 

We may observe from Fig. 6.6 that the greatest variation in performance results 
from Waveform III, which possesses the most marked frequency characteristics. 
In contrast, the limiting performance characteristic for an arbitrary SDF system 
subject to the same waveforms was presented in Figs. 5.9 through 5.12. A 
composite plot is shown in Fig. 6.8 which reveals that, even for Waveform III, 
it is possible to design an isolator (but not a passive linear isolator) to achieve 
essentially the same performance as for the other waveforms. Some encourage- 
ment also may be taken from the close grouping of results for the different 
waveforms, which suggests that the limiting performance characteristics are 
rather insensitive to waveform details. This is of significance in regard to the 
evaluation and improvement potential of shock isolation systems, 

6.3.2 Scaling Relations; Small Perturbations of Waveforms 

Upper and lower bounds on the optimum performance characteristic, relative 
to some nominal situation, can be constructed when the input is scaled in a 
simple manner. The method of construction for an SDF system with rattlespace 
and peak acceleration criteria is described in Ref. 3. It is assumed that the opti- 
mum performance characteristic is known for some nominal input acceleration 
f{t). Upper and lower bounds to the characteristic curve are sought for the 
special class of inputs ^(r) defined by 

gir) = afit) (6.15) 

r = bt, 

where a and b are constants. 
According to Eq. (6.15), accelerations scale as 

g{T) = ab-y\n. (6.16) 

It follows, therefore, that if D = max|x|, A = max|z| is a point on the optimum 
r < 

performance characteristic for the input /(r), then aD,  ab~2A  will be the 
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Fig. 6.8.   Limiting performance characteristics for an SDP system 
(waveforms of Fig. 6.7). 

corresponding point on the optimum ped'ormance characteristic for the scaled 
input g(r). However, the optimum performance characteristic drawn to normal- 
ized coordinates, such as those of Fig. 6.8, require no scaling transformation if 
Eqs. (6.15) are satisfied. 

These results iiave application even where precisely scaled inputs are not 
expressly involved. For example, the effect of varying the magnitude of the 
peak input acceleration by a certain amount can be approached by assuming 
that the modified point lies on a scakd pulse. Figure 6.9 illustrates this approach 
witli regard to determining the influence of a shift in the magnitude and time of 
occurrence of the maximum input acceleration, i.e., from Point A to Point B. 
The assumption must be made that Point 8 is the maximum of the pulse ^(r) 
which is related to /'(/) by Eq. (6.15). Then, since the values of gm and T,„ are 
known (i.e.. Point B is specified), the scaling parameters can be computed from 

b --   ^ 

b2'i Sin (6.17) 
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Therefore, if the rattlespacc constraint is D, the minimum peak acceleration 
caused by the modified pulse 'g{t) is ab'2A. where A is the point on the optimum 
performance curve for/'(/) corresponding to the rattlespacc O/ff. 

SCALED    PULSE   g(r) 

NOMINAL 
ACCELERATION 
PULSE, f'll) 

Fig. 6.9. Scaled inpui    avelunn. 

This approach also can be used to establish upper and lower bounds on the 
optimum performance characteristic when some feature of the input pulse is 
uncertain, but bounded. Assume, for example, that the peak acceleration is con- 
sidered to lie, with equal probability, in a region about its nominal value. If the 
precise shape of this region and the remaining features of the input arc not 
critical, then each possible value of the peak acceleration can be assumed to lie 
on a pulse scaled according to Eq. (6.15). This is equivalent to imposing upper 
and lower bounds on the scaling parameters a, b\ i.e.. 

aL  < a < au 

bL < b < bu. (6.18) 

The nature of the resulting region defining the equally probable values of the 
(scaled) peak acceleration is suggested in Fig. 6.10. If the upper and lower 
bounds on peak acceleration and the time of its occurrence are specified, then 
the bounding values of the scaling parameters are given by 

bL    = 

■.U   = 

a'-  = (bu)2^ 

au = (pi-fhiL 
Jin 

(6.19) 
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Then, for each value of the rattlespace D, the minimum peak transmitted accel- 
eration A will lie between the limits 

aHbuy2AL < /I < au(bL)-2Al (6.2C) 

where AL is the value of A (i.e., for the nominal pulse/) associated with the 
rattlespace D/fl/-, and/I1-' is the value tor/I for the rattlespace D/a17. 

NOMINAL 
ACCELERATION 
PULSE, f(I) 

Fig. 6.10. Bounds on scaled input waveform. 

An example of this construction is shown in Fig. 6.11, where aL = bL = \ and 
aU = /,(J = i i_ According to Eq. (6.19), this choice of bounds for the 
scaling parameter corresponds to variations of up to +10 percent in the time 
and up to +21 percent, -17 percent in the magnitude of the maximum 
acceleration. 

6.3.3 Extreme Disturbance Bounds 

One means of expressing the implications of uncertainty implicit in a class 
description of the input is to establish upper and lower bounds on the perform- 
ance index, and the corresponding worst and best disturbances. This can be 
viewed as a special case of the dynamic programming solution for bounding the 
limiting performance characteristic (discussed in Section 5.2.2). The develop- 
ment is the same except that minimization with respect to the isolator forces is 
omitted, since these are known functions of the state variables when the system 
is prescribed. 
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Fig. 6.11.    Hounds on optimum performance characteristic for scaled 
waveforms. 

If 's!/ denotes the pcrfomnince index, then the desired bounds ;irc given by 
(sec Eq. 5.46) 

\pB = opt max max|//v(/, x,/) (6.21) 
;    -v 

where the notation opt refers to cither a  minimization (lower bound) or a 
maximizatiüii (upper bound) witii respect to the admissible input/within the 
prescribed class.    Tlic input causing a minimum value is designated the best 
disturbance and tiiat causing the upper bound, the worst disturbance. 

The computational algorithm follows directly from Eq. (5.47) namely, 

0/-,+ i(x,) = opt max|/;(x,-,/i),0/_,(x,+1)] (6,22) 

for 

' =/- l,/-2, 
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who re 

/;(••■) = max|//A.{---)l;      i= I, 2,...,5. 

The x,+ i are round in terms of the x,- from the solution of the system equations 
of motion, Eq. (5.43). The process starts with 

Mx/) = max^x/,//)];     t> t,. (6.23) 
t 

Upon reaching the /tii stage of the process, the desired bound value is given by 

^l = 0/(xl), (6.24) 

where X] refers to the prescribed initial state of the system, if the associated 
best and worst disturbances are desired, another pass forward in time is required 
for each, as described in Chapter 5. 

This solution technique imposes no restrictions on the linearity of the system 
dynamics or on the form of the performance index. However, as with other 
dynamic programming formulations, the computational effort rapidly gets out of 
hand with the increasing size of the system. The determination of extreme dis- 
turbance bounds may be formulated as a problem in linear programming pro- 
vided that the system dynamics of Eq. (5.43), the performance index, and the 
input class definition all involve the unknown/,- linearly. The best-disturbance 
solution is exactly the same as described in Section 5.2.2 except that the opti- 
mization is with respect to the/,- rather than »,-, and no response constraints arc 
involved. 

The worst-disturbance solution is a pure maximization process and, while 
reducible to LP form, requires a different approach in order to avoid i// ->00 as a 
solution. Let the time at which /;,• as. ics its maximum value correspond to 
/ = n. Then /;„ is a known linear functA.n of the /} for all /' < /(, which can be 
maximized as an LF problem. For example, if/; is taken as the relative displace- 
ment x of the linear spring-dashpot isolator of Fig. 6.1, the results for a piece- 
wise constant approximation to/(/)are 

v- ... exp|-M',-'A)l   .   .    ,,     , s 
Xi = -^ A ^ sin Xuiti - tk) 

k=\ 

C A = (l-/m   ß=   f,   cc =2^ = ? k Y 
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For eacli / = «, the determination of the fk which maximize xn is a straight- 
forward LP probltm. If this solution is repeated for a sufficiently large choice 
of/;, the maximum among all the maxl//,,! will be the desired worst-disturbance 
response, and the associated worst-disturbance input is found in the process. Each 
maximization is a substantially smaller computation than in the best-disturbance 
analysis, since the/ constraints on ii are not involved. 

Example 8 

FORMULATION OF DIRECT SYNTHESIS OPTIMIZATION 
OF AN SDF ISOLATION SYSTEM 

The system consists of a single mass supported within a frame, two concentric helical 
springs of unequal length (described by parameters A'|, A'2, and rf), and a time-dependent 
viscous damper with piecewise linear force characteristics (described by parameters 
cl t'6)- 

FORCE-DISPLACEMENT RELATION 
FOR BILINEAR  SPRING 

At   At   At   At   At 

t 
TIME-DEPENDENT PIECEWISE 
LINEAR DAMPING 
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There aie nine design parameters. The peak transmitted acceleration is chosen as the 
performance index, and the rattlespace is constrained. In addition, upper and lower bounds 
are assigned to each of the nine design parameters and to the slope of the damping force- 
vs-time curve. In all, these amount to 11 constraint relations. 

The synthesis problem is to select the nine parameters, ki, A-2, d, c\, . . ., c6, such 
that 

ii  - min |z | is minimized 
r 

ard the constraint functions 

Ct <ck_,<C^.      fc = 5,6....,IU 

c'.\ < C^>lzl   < C,1-';« = 2, 3 6 11 ^, IP 

arc satisfied. The state variables .v and z are related through tlie equations of motion 

mz + c(t).\ + k(x) = 0 

and the kinematic condition 

z = x + /. 

The mass m, the input motion/'((), the time step Af, and the bounds C. , C-  (;'= 1, 2,..., 11) 
are prescribed. The mass is selected to be unity. 

Numerical results obtained by the gradient projection method arc presented in Ref. 38 
for a step pulse input. The following table lists the prescribed values and the optimum 
design parameters as determined according to three different sets of starting values for the 
minimization procedure. Whereas the performance index is aporoximately the same for 
each of the three solutions, the individual design parameter values vary, particularly the 
spring rates. This probably indicates a lack of sensitivity of the performance index to the 
spring rates, but also suggests that only a relative minimum for the performance index may 
have been found. In any event, any of these three designs represents an improvement in 
performance of about 30 percent relative to a constant-rate spring and a constant-rate damper 
design. 
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Constraints and Optimum Design Parameters 

Parametert 
Lower 
Bound, 
ct 

Upper 
Bound, 

cF 

Optimum Parameter Values 

Solution 
1 

Solution 
2 

Solution     | 
3 

m 
i  

l.l 1.1 

*! 4.5 700 368 31 42            j 

k2 A', 700 368 670 202 

j 0 1.1 0.0 0.5 0.5 

c\ 0 100 81.7 84.9 88.2 

c2 0 100 81.7 65.0 68.2 

f3 0 100 41.7 45.3 48.2 

''4 0 100 25.4 33.3 34.2 

t'5 0 100 14.6 21,5 25.6 

''6 0 100 19.8 22.1 35.7 

CII-V>I-\ 

At -1600 1600 

min 1// 635 626 640         1 

t/ = -1000; lf = 0.05; Ar  = 0.125;   all units consistent. 

Example 9 

DIRECT SYNTHESIS OF AN SDF ISOLATOR 
FOR AN INPUT CLASS DESCRIPTION 

This example is taken from Ref. 3, which considers an SDI? linear spring-dashpot isolator 
subject to the bounded class of base-input acceleration pulses shown in the figure on the next 
page. 

The bounds to the input class are represented by crude piecewise constant approxima- 
tions for the purposes of this illustration. The performance index is taken to be the peak 
acceleration of the mass, and the rattlespacc is constrained. In addition, both the spring 
rate k and the damping coefficient c are restricted to a prescribed range of positive values. 
More specifically, the optimum design problem is to select values of k and c from among the 
following range: 

13,000 lb/in. < A-  < 15,000 lb/in. 

40 Ib-sec/in. < f < 60 Ib-sec/in., 

so that 

max |.vl < 0.4 i 
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+600'- 

+ 400 - 

Ü    +200  - 

[V/l ADMISSIBLE  INPUT 

-200 

-400 

and 
0      0 Oil 0.033 0 055 

TIME (SEC) 

v!/ = max|z| is minimized 

for any admissible f(l) among the prescribed class. The isolated mass is taken to be unity. 
The solution is started by selecting an admissible trial set of (k, c), say the lower bound 

values. Whether this set of parameters is actually acceptable depends on the rattlespace 
constraint not being violated for any/(f). This requires a worst-disturbance analysis to find 
the largest rattlespace possible for the loading class; that is, we must find 

D = max max|x|. 
<•'      r 

Since the system is linear, the LP solution to this worst-disturbance analysis described in 
Section 6.3.3 can be used. If we find that D ^ 0.4, then the choice of (k, c) is acceptable 
since the rattlespace constraint will be satisfied whatever input within the class is experi- 
enced by the system. However, if Z) > 0.4, then a new choice of {k. c) must be made until 
this constraint b satisfied. 

Once an acceptable set (k, c) is determined, the value of the performance index 

tyß = max max|z| 
/      ' 

is evaluated. Observe that this requires another worst-disturbance analysis and, in general, 
will lead to a different member of/(0 than that found for the largest rattlespace. Since the 
response function z again is linear, the LP solution can be used. 

For each acceptable set (k, c). the associated \pß constitutes a point on the response 
surface. A mathematical search procedure can then be used to determine that set (k*,c*) 
for which i//fl is a minimum. Rosenbrock's Hill Climb Method [401 was used in Ref. 3. It was 
found that ^ = 581 in./sec2, corresponding to k* = 13,260 lb/in. and c* = 59.4 lb-sec/in. 
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Example 10 

INDIRECT OPTIMUM SYNTHESIS 

OF AN SDP ISOLATOR SYSTEM 

We consider the SDF linear spring-dashpol isolator whose base undergoes an impulsive 
loading characterized by the initial velocity. 

v0 

Z7ZZ2ZZ777777] 

7-7-, 

The performance index is selected to be the peak acceleration of the mass and the rattle- 
space is constrained. The spring rate k and damping coefficient c are both required to be 
positive, and the system is to be overdamped, i.e.,c ^ Isjkm . This problem was solved 
analytically by the method of direct synthesis in Section 6.1.1, where it was found that 

^ =    cD 

V2m 

c*   = 2\/k*ni 
2 I'm 
cD 

in which D is the rattlespace constraint and e = 2.718. 
The indirect synthesis method requires the solution to the time-optimal response quan- 

tities u*{t), .v*(0, and .v*(r). For the impulse loading case, these quantities arc most easily 
found by the graphical method described :' Section 5.1.1. The results are 

ii*(l) = -Am 

x*(t) =   ~At2 -  Vt 

x*(t) = At -  V, 
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where 

A =   ID' 

These functions are applicable only during the time interval 0 < r < V/A. A unique solu- 
tion cannot be found beyond this interval as the problem is stated, but this need not con- 
cern us here. 

The isolator force function is 

»I  = // = ^-.v + ex, 

so that the approximation is 

u' = kx* + ex* = kijAt2- Vt |+ c(At- V). 

The deviation is formed from Eq. (6.9) and the appropriate residual function minimized to 
determine k and e. This can be carried out analytically, although, in general, a numerical 
procedure utilizing a discrete formulation for the residual function would have to be 
employed. 

The values of k* and c* as determined in this manner are compared with the exact 
values in the table below for several forms of the residual function. The integral equation 
method |3| provides the best results but is not applicable to an isolator-by-isolator design ap- 
proach for large systems; hence, it will not be discussed. The least-squares approximation 
of Eq. (6.10) gives quite satisfactory results. 

Comparison of Direct and Indirect Synthesis for an 
Overdamped Linear Spring-Dashpot Isolator 

Percentage Error in 
Residual Eunctiont 

k* c* 

Least Squares, Eq. (6.10) - 5.0 - 2.5 

Min-Max, Eq. (6.11) +26.6 + 12.5 

Average J + 15.6 + 7.5 

Integral Equation Method (31 + 0.07 + 0.04 

tThe first three entries are based on Eq. (6.9) for A. 
tA2 replaced by |A| in Eq. (6.10). 



Chapter 7 

HARMONIC VIBRATION ISOLATION SYSTEMS 

Vibration isolation refers to the mitigation ofdisturbanees that are oscillatory 
in nature and extend over relatively long periods. Conventionally, vibration 
isolation is thought of as the attenuation of a steady-state motion. While the 
excitation is prescribed as a function of time (for deterministic representation), 
the equations of (steady-state) motion are not of the initial value type as for 
shock isolation. Hence, synthesis in the time domain, as was used to determine 
the limiting performance characteristic for shock isolators, is not directly appli- 
cable. Moreover, the vibration isolation designer usually cannot settle foi a 
motion possessing a single frequency, but must investigate system performance 
over a range of frequencies. Thus, within the context of this monograph, the 
optimum design problem for vibration isolation generally belongs to the class of 
unprescribed inputs, for which the synthesis approach is by the direct method 
(Section 6.1). 

Most of the literature deals with systems of relative simplicity for which closed- 
form solutions for the steady-state motions can be obtained. This reduces the 
effort associated with the direct synthesis method and is the basis for the well- 
known examples of the tuned and optimally damped vibration absorber. The 
literature dealing with a more computationally oriented approach to larger and 
more complex systems is meager. 

In this chapter we limit our consideration to harmonically excited systems 
and present some recent work on (a) performance bounds for discrete frequency 
excitations, (b) direct synthesis of a damped linear isolator, and (c) computation- 
ally oriented synthesis of complex MDF systems with inputs possessing a range 
of possible frequencies and amplitudes. Performance criteria are based on peak 
response variables such as acceleration and displacement. 

7.1  Limiting Performance Characteristics 

Reference 41 establishes with the calculus of variations the limiting perform- 
ance characteristic of an SDF isolator for harmonic excitation according to peak 
acceleration and rattlespace criteria. We will now derive these s?me results from 
an argument based on kinematics. 

105 
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The base displacement is denoted by /(f), the absolute displacement of the 
isolated inais by z(f), and the relative displacement of the isolator x{t) is defined 
by 

A-(f) = z(0 -fit). (7.1) 

We choose/(f) to be 

m = fmsmSlt. (7.2) 

For steady-state motion, the mass will respond with the frequency fi so that 

z(f) = xm sinn/ + /„, sinilf, (7.3) 

where xm is the maximum relative displacement of the mass, or the rattlespace. 
A relationship between rattlespace and peak acceleration of the mass z„, is 
found from Eq. (7.3) to be 

-zin sinn; = xmn2 sinft/ + finü.2 sin O/. 

Since/„n2 is the maximum base acceleration, we may denote this by/,,,,and 
the inequality 

/;, 

X, 

In 
> (7.4) 

holds. Equation (7.4) implies that admissible values of rattlespace and peak ac- 
celeration, for any frequency of excitation, may lie anywhere in the first quadrant 
of the (;cm//m,xm//„,) plane with the exception of the triangular region bounded 
by the coordinate axes and the line joining the points (0, 1) and (1, 0). This 
is shown in Fig. 7.1, where the dashed lines pertain to the linear isolator we will 
discuss. 

7.2 Optimum Synthesis of a Damped Linear Isolator 

We consider the linear SDF system shown in Fig. 7.2 and seek the values of 
spring rate A: and damping coefficient c that minimize rattlespace subject to a 
constraint on the peak transmitted acceleration. The base input is assumed to be 
harmonic with frequency n. The equations of motion arc 

mi + ci + fcc = 0 

z = x + /„, sin n/. (7.5) 
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max| z j 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

REGION OF 
/ 

/ / ADMISSIBLE 

/ ISOLATION / 
SYSTEMS                       / 

/ 
fc~ "^ / 

\ 
/ 

/ 
/ 

\           /      INADMISSIBLE 
'      /            SYSTEMS 

ISOLATION 

\ 2 4/ 
max j x | 

I _ xm 

<l'l 

I'ig.  7.1.    Limiting and optimum linear perlorniancc characteristics 
for an SDL system. 

The steady-stale solution is 

•v(0 = /m)7Kl-7?)
2+4^r'/!

Sin(f2/-0), 

where 

i = 

tan 

4kni 

2fr 

(7.6) 

>      (7.7) 

i -17 j 

Normalized forms for (he rattlespace xm and peak acceleration 2m are given by 

(7.8) 

-^   = r?[(l-T?)2+4^]-'/i 
J in 

L 
'f-  = (l+4SrO,/![(l-T))2+4?T?]-

,/!, 

where/,,, -fmü
2. 
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GIVEN. PRESCRIBED BASE  MOTION, f(ll 

PERFORMANCE  INDEX: ii< = max | x| 

CONSTRAINT   max m 5 A,  A PRESCRIBED 
t 

FIND      k   AND c   TO   MINIMIZE  ^ 

ug. 7.2.  Linear spring-dashpot isolator system. 

Equations (7.8) provide a point on ,/■ optimum performance characteristic 
lor each set (??, ^), or equivalently for k and c\ associated with a prescribed exci- 
tation frequency D,. The spring constant A', damping ratio c, and ratio of critical 
damping for any combination of criteria arc 

k X2 + Z2-\ 
2A'2 

W2fi2 
(X+'/. + \){X + Z- \)(X~Z+ IKZ-.Y+l) 

4^4 
(7.9) 

and 

where 

c2     _   AT? 

Akin   '"    4 

J at 
z = 

fir. 

All positive values of A' and r lie in a semi-infinite region of tlie (X, Z) plane 
within the first quadrant, bounded by a quarter circle centered at the origin and 
the two lines emanating from the points (0, 1) and (1, 0) inclined 45° to the 
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coordinate axes. This region is shown by tlie dashed lines in Fig. 7.1. Values of 
X, Z are plotted in Figs. 7.3, 7.4, and 7.5 [15] for constant values of 77, X, and |, 
respectively. The straight-line boundaries correspond to the limiting case 
c -* Q, k> 0; the points on the quarter circle are for the limiting case k -> 0, 
c > 0. 

maxi f I 
t 

Fig. 7.3. Optimum performance characteristics for constant l/r;. 

7.3 Incompletely Described Environment 

Harmonic environments are often incompletely prescribed in that the fre- 
quencies or amplitudes may vary over a range of values. Sometimes harmonic 
disturbances are characterized by a frequency-vs-amplitude spectrum of the sort 
shown in Fig. 3.2, where, for each amplitude level, there L a range of possible 
frequencies and vice versa. From an optimization point of view, the literature 
deals mostly with the problem of optimum damping, wherein the quantity and 
distribution of damping are sought such that the peak response of the system is 
minimized over a range of input frequencies.  The input amplitude is assumed 
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■'ig. 1A. Optimum performance characteristics for constant A. 

constant. In 1928, Ormondroyd and Den Hartog 142] introduced the concept 
of optimum damping in connection with the study of a linear tvvo-degree-of- 
freedom system with viscous damping. They found thai, for a harmonic input of 
variable frequency, there are two frequencies at which the response is independent 
of the damping coefficient. On a plot of maximum displacement as a function of 
frequency, these two frequencies are termed \\\c fixed points. Tiiey define opti- 
mum damping as tJiat value of the clamping coefficient fur which the response 
enme passes through the higher of the two fixed points with zero slope. The sys- 
tem is said tobe optimally damped over that frequency range for which tlie maxi- 
mum displacement docs not exceed the highest fixed-point value. 

Since this early work, many interesting variations of this concept have been 
investigated [43-74]. Generally these have dealt with simple systems possessing 
several dampers and MDF systems with single dampers. Some of these efforts arc 
summarized in the annotated bibliography. 

An MDF, multiple-parameter, optimum damping problem is formulated in 
Ref. 75 for computational solution.   The system is linear, stable, and strictly 
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dissipalivc, and the loading is harmonic with amplitude fixed and frequency vari- 
able; optimum damping is defined as that set of damping rates that minimizes 
the maximum displacement of some point in the system. As in the case of the 
simple systems considered previously, the time variable is eliminated from the 
problem at the outset and the system equations are nondiffercntial relations con- 
taining the input frequency Ü and the damping parameters. The optimum damp- 
ing problem becomes a min-max problem in that an expression for displacement 
is to be maximized with respect to frequency and minimized with respect to the 
damping rates. The solution is obtained by performing a single variable maximiza- 
tion over the range of admissible frequencies at each iteration of a computational 
minimization scheme designed to select the damping parameters. The procedure 
is reasonably straightforward, since no response constraints are imposed. 

Numerical results are presented in Rcfs. 75 and 76 Tor a fivc-degrce-of- 
freedom model of a vehicle subject to a sinusoidal disturbance representing a 
rough roadway. The dynamic system is shown schematically in Fig. 7.6. The 
main vehicle structure is represented by the rigid mass m^ which is permitted 
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two degrees of freedom, the vertical displacement A'2, and angular rotation x3. 
The suspension system is modeled by a linear spring-dashpot arrangement 
[ki, Cj and ^3, 1:3^ connected at either end of the vehicle frame to the wheel- 
axle masses W3 and m4. Tire llexibility is included as the linear springs k4 and k5. 
The driver is modeled by mass/?/, and the spring-dashpot (Ä:,, <;•,). A numerical 
search procedure is employed to determine the damping factors C], Cj, and c3 

that minimize the driver displacement .Vi (expressed as a ratio of the roadway 
amplitude A'o) over a specified frequency interval Afi. 

^dj 

L 

t'! 

m
l 

1 i_Ll    S   1 1 
-ti 

-.Qi 

-MASS CENTER OF  BODY 
k3S   \±}ci 

jfll 

Fig. 7.6. Lumped-parameter model of a vehicle traveling over a sinusoidal road. 

The optimum damping problem can be generalized to encompass a large class 
of harmonic vibration isolation systems which contain design parameters other 
than just damping rates. Assume that the system is subject to a set of inputs, 
each member of which is of the form/(f) =/„, exp(/fiOw'iere amplitude/m and 
frequency Ü. can, with equal probability, be any point in a prescribed region, as 
in Fig. 3.2. Suppose, further, that the design is to be based on the worst occur- 
rence to the system. Then the optimum design-parameter synthesis problem is to 
select the design parameters such that the maximum of a response function is 
minimized while imposed constraints are not violated. This requires a worst- 
disturbance analysis of the system, similar to that discussed in Chapter 6 for 
shock isolation systems, although here the uncertiinties are reflected in the 
(/„,, J2) class definition rather than in terms of the input waveform details. 

Suppose the isolator configurations are prescribed as functions of the desired 
design parameters; i.e.,itj(x, x, ay,.),where/ = \,2,.. .,J and /■ = 1, 2,. . .,R,- are 
known.  The performance index for the worst-disturbance design can be written 
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\p = max max|/;s(i/y)|; s= \,2,. . .,S, (7.10) 

where the overall maximization is with respect to admissible combinations of 
/„, and £1. The problem statement now is to determine the design parameters 
a.],, {r = 1,2,.. .,Rj) such that the performance index is minimized and the con- 
straints satisfied for all potential disturbances. This minimum performance index 
i//* is written 

i//* =   min max maxl/f^Uy)!; s~ \,2,.. .,S. (7.11, 
ajr   fin.n     s 

This is the standard min-max problem. From a mathematical programming view- 
point it can be approached by means of a worst-disturbance analysis at each 
iteration of a minimization scheme. This analysis must be applied both to the 
constraint functions and the response variables that make up the performance 
index.  Thus, at each stage of the minimization procedure, i.e., for each trial set 

max Ck 
I'm, & 

must be computed and compared to the prescribed bounds to ensure that the 
candidate set of ay,, docs not lead to a violation of the constraints for any admis- 
sible input. The value 

max max|//i(;//)| 
fm,n    s 

is also calculated and used as the current value of >//. The logic of the minimiza- 
tion technique is used to select the next trial set ofay,, and the procedure repeated 
until min 0 is achieved.   The admissible values of/,,,, £1 can be considered as 

ay,. 

constraints in the worst-disturbance analysis, whereas the parameters ay,, arc 
usually bounded. 

In general, the system equations which enter the problem through the response 
variables of hs and Ck are differential equations. However, in many important 
cases, such ?.s linear spring-mass-dashpot systems, the system equations reduce to 
algebraic or transcendental relations independent of time. The analysis is con- 
siderably simplified, since differential equations need not be repetitively solved. 
Indeed, powerful synthesis techniques developed for static structural systems can 



1 14 OPTIMUM SHOCK AND VIBRATION ISOLATION 

be brought to bear on this problem. The required worst-disturbance analysis may 
take the form of a nonlinear programming problem in which the maximum of a 
function, i.e., hj. or Ck, is to be found subject to constraints on /„, and fi which 
define the class of disturbances. In general, this would mean that a nonlinear 
maximization programming problem is to be solved at each iteration of a non- 
linear minimization programming problem. Clearly, this v.n become a formidable 
task for large systems. The literature contains no results for such optimization 
problems, but the approach is clear. 



Chapter 8 

RANDOM VIBRATION ISOLATION SYSTEMS 

Random disturbances appear as complicated time-varying functions thai may 
exhibit wide, irregular variations in amplitude and frequency. Both the input 
disturbances and the sysicm response must be given statistical characterizations 
and, as we would expect, this complicates the optimum design problem. No en- 
compassing methodologies are available for optimizing realistic isolation systems 
under general random environments, although related literature from control 
theory on the optimization of stochastic processes is becoming quite extensive. 
While this undoubtedly will form the basis for advancements in isolation system 
optimization, we do not consider it appropriate for inclusion in the monograph. 
Consequently, this chapter is of limited scope. 

Some studies directly applicable to isolation system design have dealt in a 
preliminary way with performance indices based on maximum values of the 
response variables [6, 22], but detailed solutions are available only for expected 
mean-square values and related quadratic optimization criteria associated with 
linear systems dynamics [77]. We will restrict ourselves to such systems and to 
input disturbances that are stationary random functions of time as characterized 
by the power spectra! density (Chapter 3). However, the solution techniques 
generally are applicable to other stationary disturbances. 

The organization of this chapter is similar to that of the previous one in that 
we deal first with the limiting performance characteristic, then proceed to design- 
parameter synthesis for given isolator configurations. 

8.1  Limiting Performance Characteristic 

Limiting performance characteristics of SDF systems arc reported in the 
literature for several inputs a^d are based on either expected mean-square values 
or the probability of exceeding selected response levels. These indices are, re- 
spectively (see Chapter 2), 

ii = E\z2\  + pE[x2] (8.1) 

and 

^ = ^ + pz0
2. (8.2) 
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Here, z is the acceleration of the mass;.* the relative displacement of the isolator 
(Fig. 8.1); E[ ] denotes expected value; and x0 and z0 are values of .Y and z for 
which the probabilities of \x\ < x0 and \z\ < z0 are both equal to a prescribed 
value, 1 -P, over some time interval of interest, T. The quantity p is a weighting 

tor which emphasizes either the relative displacement or acceleration accord- 
i.ig to whether its va'ae is large or small. 

X + f = z 

mz = -u 

Fig. 8.1   SDF isolation system. 

A lower bound on the performance index can be found by the Wiener filter 
method [78], provided that the random input can be characterized by its power 
spectral density and no constraints are imposed on the response variables. A 
relationship between the elements of the performance index can be found which 
defines the limiting performance characteristic for the SDF system. While the 
method (a) is restricted to linear systems, (b) is limited as to input forms, and 
(c) does not appear promising for larger systems, it is still the most advanced solu- 
tion technique available. Thus, we will only sketch the solution method and the 
more significant results; the reader is referred to the several references for details. 
Specific limitations of the applicability of this approach to isolation systems are 
presented in Ref. 24. 

The Wiener filter method makes use of Laplace transform techniques and 
the notion o\ an optimum transfer function. We will denote the trans- 
formed response quantities ".nd inputs by capital letters and the transform 
time variable by s.   Then the expected mean-square value of a response function 
yis 

E|v2] Yf(s)Yf(-S)Sf(s)ds. (8.3) 
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where Yt{s) is the transfer function defined by 

Y(s) = Yfis)F{s) (8.4) 

and Sj{s) is the power spectral density of/.  Reference 78 contains extensive 
tables for the evaluation of Eq. (8.3). 

Reference 1 presents results for the performance index of Eq. (8.1) and a 
random input whose power spectral density is 

SfiO = ^-2 , (8.5) 

where/I is a prescribed constant. This is termed a white noise disturbance. Since 

sjis) = ^2" 

The transfer functions relating the relative displacement and acceleration of the 
mass are 

X{s) =  [IV(.s-)- 1]~ 

and (8.6) 

Z{s) = -W(s)A. 

The optimum value of the function W{s) is found in Ref. 1 to be 

w*v = x2+Xw (8-7) 

where ß = p'/4. 
Equation (8.3) evaluated for W*(s) results in 

nt   2 1 ^  A 

E[A-
2
1 

V2 ß 

and (8.8) 

EIPI ■ ^. 
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Eliminating ß  yields  the   desired  expression   for  the limiting performance 
characteristic 

(E[^])3E[P]  =  ^A. (8.9) 

This relationship will appear as a family of parallel straight lines on a log-log plot. 
Similar results are derived in Ref. 7 for the performance index of Eq. (8.2). A 

version of the Wiener filter method is used to minimize \p in which XQ and z'g are 
expressed in terms of expected values. It is shown for small P, large T, and dis- 
turbances with gaussian distributions and zero mean values, that^p of a response 
function^ is given by 

Vo '-Eb'2] log r 
7lPT0 

+ log^E[>2] 
Eb2 (8.10) 

where T0 is an arbitrary time unit. Limiting performance characteristics are 
computed in Ref. 7 for selected values of P, p, T/T0 and are compared with 
those based on the former performance index. The forms of the optimum trans- 
fer functions are compared in Table 8.1 for several input spectral densities. 

Table 8 1. Optimum Transfer Func ions 

Input Spectral Density, 
Sfis) 

Optimum Transfer Function IV*(x)t 

i// = E[x2]  + pE[z2] 4*  = xj  + pz2 

A 
X2 

ß2 
a\ 

s2+V2(3x + /32 i'3 +fl2S2 +03^ + 0, 

A als + a2 a^ + 02            I 
x« -a,^2 +0-2 s2+s/2ßs + ß2 i'3+ Ö3S2 +a4S + fl5 

A 2ßs + ß2 

s2+^ßs + ß2 

a^ + 02            1 

X3 +Ö3S2 +fl1X + Ö2 

A 

s6 

■      s2 + V2 j3x + ß2 

i'2+\/2j35- + |32 

 _    — 

a^s2 + ais + 03 

x3 + axs
2 +a2s + Ö3 

fa,-, ß,-, and (3 are known constants. 
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Systems optimized according to criteria similar to Eqs. (8.1) and (8.2) do not 
necessarily respond optimally on the basis of other criteria. Interesting examina- 
tions of this problem are found in Ref. 1 and 79. 

The limiting performance characteristic can be improved upon if the system 
is permitted to sense the input before it is actually encountered. Reference 80 
treats this concept of preview sensing in the context of a vehicle traversing a road- 
way of spectral density 

A V 
5/="^, (8.11) 

where V is the constant vehicle velocity and ,4 is a property of the roadway. The 
limiting performance characteristic as a function of the preview time T, = LjV 
is shown in Fig. 8,2; the preview distance L is defined in the insert of the figure. 
A substantial improvement in isolation is seen to result from inclusion of a pre- 
view sensor. 

The Wiener optimization procedure is applied in Ref. 10 to the two-degree- 
of-freedom, single-isolator system shown in Fig. 8.3. This is equivalent to the 
flexible-base problem considered in Example 5. The input spectral density is the 
same as Hq. (8.11) and the performance index is of the weighted expected mean- 
square value type shown in Eq.(8.1). Typical results for the limiting performance 
characteristic (without preview) urc shown in Fig. 8.4 for the mass ratio 
mjnij =0.1. 

8.2 Optimum Design-Parameter Synthesis 

Optimum design-parameter synthesis deals with establishing the open design 
parameters associated with preselected candidate isolator elements that satisfy 
the constraints and cause the performance index to be minimized. Two ap- 
proaches are possible: (a) direct synthesis, which proceeds from the equations 
of motion and selects the design parameters in sequential fashion by successively 
reducing the performance index, and (b) indirect synthesis, which utilizes infor- 
mation gained from first establishing the limiting performance characteristic. 
While the available results are minimal and considerably less than for shock 
isolation system design, the solution methods, in some respects, are more 
straightforward as a consequence of not having to deal in (he time domain. We 
consider both methods in brief. 

Direct Synthesis 

An example of the direct synthesis of an isolation system for random disturb- 
ances is considered in Refs. 10 and 77 and relates to the suspension system of a 
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Fig. 8.2.   Limiting performance characteristics for system with pre- 
view sensing. 

vehicle traversing an irregular roadway at constant velocily. The dynamic system 
is the flexible-base model of Fig. 8.3 with a linear spring and a viscous damper 
as the candidate isolation element (Fig. 8.5). The disturbance is represented by 
the power spectral density of Eq. (8.11) and the perlormance index is of the 
form of Eq. (8.1). While constraints are not imposed explicitly, the form of 
Eq. (8.1) has the effect of constraining either the expected mean-square values 
of the acceleration of m2 or its relative displacement, depending on whether p 
is small or large. The motion of mass ml is entirely unconstrained in this 
formulation. 
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7777 
Fig. 8.3. Flexible-base isolation system. 

The transfer functions for the pertinent motions of mass ^2 arc found to be 

 0^(0)  
A'2(0) 

where 

T
2
 h + - + 1 ^ + 2f7(l + y)03 + 

Z2(0) = oJ2(2f70 + T2)X2(0), 

ft2 + 2f70 + 72 

(8.12) 

0          = 
X 

CO 

F(0)   = 
02 

r       = 
mi 

»(2 

w2    = A:, 

T2        = fc,W2 

{"2        = C2Ä:2'"2 
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2 0        10     6        10 20 40    60      100 

RELATIVE DISPLACEMENT r      2TI/2     rsr' 

I-'ig. 8.4.  Limiting performance diagram lor a flexible-base model 

The expected mean-square values are found from Hq. (8.3); the results are 

(1 +/-)73" E(zV)   =   lö^/lKoj-1 
't7 + 4f 

(8.13) 

4f7w 

Those values of f and y that minimize the performance index are readily found. 
In this case, the optimum performance characteristic is given by 

E|z'2
2]E[x2

2]  = TT4co2r(\+r)A2V2
4 (814) 

References 10 and 77 present design charts for the optimum synthesis of this 
system with the addition of a constant force to mass W2. This force is included 
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m2 i 'z2 

x2 K2<       l-ijc Z^V 

- m. 
1 1 '1 

T    ' 
^       , 

f(t) 

//// 

l-'ig. 8.5.   Spring-daslipot isolator 
with flexible base. 

to account for variations in load carried by the suspended body or vehicle (mass 
m1). A computational search routine was used to find the parameters k^ and c 
for which i// of Hq. (8.1) is minimized. 

Indirect Synthesis 

The isolator that achieves the limiting value of the performance index is de- 
scribed by its transfer function H/*(x), e.g., Eq. (8.7). The method of indirect 
synthesis establishes the design parameters of a selected candidate isolator so as 
to best approximate the optimum transfer function. An example of this tech- 
nique is given in Ref. 10, which investigates the active system shown in Fig. 
S.6. Accclerometers measure the response of each mass and combine these to 
form a command signal in an actuator located in parallel with a linear spring and 
dashpot. The net isolator force in the transform stale is 

t/(.s) = k2x2  + f.v.v2 - (K^s1 +Ksvs)z2 + (A',(l,i'
2 +K,n,s)zi. 

The transfer function for the acceleration of mass «^ 's found to be 

Z(0)   _ B^  + Z?20
3  -t- ß302 

Fiep)       B4^ + B5(p3 + ö602 + ß70 + 
(8.15) 

where 
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B    =   u2rKua 
1 y2«?] 

B2  = w2(^   + 
rK, 

7 -y-myu 

Hi = w2 

2U1 + 7 /c. A' 
7 72m2CO       72/«1w 

06  = T'2  +  4^   +  1  + - 

2r .   A-,,, 
Bn  =   —   + '7 1 7 yi/iiiU) 

Tlie otlier quantities are as defined in connection with Eq. (8.12). 
The Wiener filter method provides an optimum transfer function for the sys- 

tem of Fig. 8.3, which is of the same form as Eq. (8.15). Here the coefficients 

ACCELEROMETER 

i 

'2 

/777 

'l 

77 77 

Fig. 8,6. Candidate isolator configuration for flexible-base model. 
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B, arc expressed in terms of OJ, p,A, and V. The design parameters kj, c, Ksa, 
Ksv, Klia, and A'in, can be selected such that Eq. (8.15) duplicates the optimum 
transfer function by equating coefficients in like powers of 0. In fact, tills pro- 
vides an insufficient number of conditions, and some of the parameters may be 
selected on the basis of other considerations. For example, Kuv can be zero 
while 7 and Ksa can be chosen arbitrarily. A chart of optimum design parameters 
is presented in Ref. 77 for Kuv = K^ = 0, r = 0.1. 



Appendix A 

GLOSSARY OF SYMBOLS 

A Acceleration constraint 
Af Characteristic reference acceleration, usually the maximum 
a Amplitude scaling coefficient for input 
b Time scaling coefficient for input 
C\- Constraint functions 
c Viscous damping coefficient 
D Displacement constraint, rattlespace 
Dj- Reference displacement, usually the maximum 
E[   | Expected value of [  j 
./, ./j Input waveforms, disturbances 
/„, Input disturbance amplitude 
g Acceleration due to gravity 
/), lis System response quantity 
/ Number of discrete time intervals 
./ Number of isolator elements 
A' Number of constraints 
k Spring constant 
/, Number of input waveforms 
,C„ Differential operator 
M Number of structural elements 
m Mass 
A' Number of position vectors (generalized coordinates) 
P Number of admissible states in dynamic programming solution 
q Kinematic function 
R, R: Number of isolator design parameters, autocorrelation function 
S Number of response quantities, spectral density 
s Laplace transform variable 
/ Time 
A/ Subintervals of time 
Uj Force function for/th isolator 
iij Force in/tli isolator 
V Velocity 
vv Initial position coordinate 

126 
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.v Relative displacement 
x Relative velocity 
2 Acceleration 
a, ay,. Design parameters 
fi Dirac delta function 
77 Ratio of forcing frequency to natural frequency 
X Transform parameter 
^ Coordinate 
p Weighting factor, or mass per unit length 
ü Stress 
r Scaled time or delay time 
(p Dynamic programming objective function, or phase angle 
^ Performance index 
i/y Bound to performance index 
il Spatial frequency 
co, co,. Natural frequency, temporal frequency 

Superscripts 

* Optimum 
/, Lower 
U Upper 

Subscripts 

/•' Index of final time 
/ Index of discrete time values 
/ Index of isolator element 
k Index of constraints 
V, Index of input waveform 
m Maximum 
n Index of system element 
p Index of admissible states 
;• Index of design parameters 
s Index of response quantities 
0 or 1 Index of initial time 
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LINEAR PROGRAMMING FORMULATION 
FOR THE LIMITING PERFORMANCE CHARACTERISTICS 

OF QUASI-LINEAR SHOCK ISOLATION SYSTEMS 

In Chapter 5 the determination of the limiting performance characteristics 
(i.e., time-optimal synthesis) for quasi-linear systems was shown to be reducible 
to a problem of linear programming (LP). To utilize existing LP codes, however, 
it is necessary to obtain a formulation in standard LP terms. The purpose of this 
appendix is to describe such a formulation. No attempt is made to discuss the 
solution techniques on which the various existing LP codes are based. The most 
popular of these is the simplex method, and the reader is referred to the extensive 
literature on the subject [e.g., 21,81]. 

The standard LP problem involves JV unknown variables j^, v2, ..., yN and 
NM coefficients,«i,,a^ #,.„,. .., aMN\ M coefficients/)!, bj b,  
bM: and yV coefficients, c\, Cj c„ c^r, all of which are known.  It is 
required thatM<N. 

The problem is to find the set of nonnegative yn which minimizes a linear 
function 

N 

L '■„.)'„ (B.l) 

and satisfies the A/ equalities 

N 

]r fl,.„.i'„ = 6,. for   r=\,2....,M<N. (B.2) 
/i=i 

Also, 

v„ > 0 for   /i = 1,2,...,M (B.3) 

Equations (B.l), (B.2), and (B.3) constitute the standard LP problem in what 
is known as the primal formulation. An alternate, or dual, form admits in- 
equalities in (B.2) and does net impose the nonnegative variable restriction of 

128 
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(B.3).     Specifically,   the  dual  formulation   requires  that  we   find the wr 

(/■ = 1,2,.. .,M) unknown variables that maximize 

M 

L brwr, (B.4) 

subject to the conditions 

M 

J] r ,wr < cn, n= 1,2,...,TV. (B.5) 
r- 1 

Whenever the primal t'orm yields a solution for the v„, the wr associated with 
the dual form are also determined. Moreover, the minimum of Eq. (B.l) is 
numerically equal to the maximum of Eq. (B.4). 

Our purpose is to show how the time-optimal synthesis problem for quasi- 
linear systems is converted to the standard LP formulation. The time-optimal 
problem more closely resembles the dual than the primal form because the 
response constraints are inequalities. However, standard LP codes frequently 
require the primal form for the input but provide solutions to both the primal 
and dual problems; i.e., the output includes both v„ and vv,.. Solutions to the dual 
form in such codes are obtained by entering a primal-form input for a dummy 
problem. For example, the discrete version of our synthesis problem usually is 
to find the M'r which minimize Eq. (B.4) such that inequalities (B.5) are satisfied. 
It is clear from the primal and dual formulation statements that this problem can 
be introduced into an LP computer program as the dummy primal problem by 
interchanging the rows and columns of the dual and switching the c,, and br 

coefficients. 
Inequalities that arise in lime-optimal synthesis can be accommodated in the 

primal form through the introduction of so-called slack variables. Thus, for each 
inequality of the form 

N 

l^a^y,, < br, 

we introduce as a slack variable the posiiive quantity .Vyv+i* defined by the 
equality condition 

ll OrnVn   + ^W+l   =  br. (B.6) 
«=1 
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Similarly, for an inequality of the form 

N 

2_] an,}',,  > b,., 
11= \ 

a positive slack variable V^I+I is defined so .hat 

A' 

/_, "n,}',,   - J'yV+l    =  br- (B-7) 

If we wish to admit the possibility of some of the unknown yn being negative, 
i.e., if Eq. (B.3) does not hold for all n, we may represent yn as the difference of 
two nonnegative variables, i.e., 

y,, = y'n -yl,        y'„ > o, y'' > o. (B.8) 

We see, therefore, that the standard primal formulation can be generalized at the 
expense of introducing additional unknown variables. 

It is convenient to represent the LP formulation in matrix notation. Our 
purpose will be to show how these matrices are evaluated in terms of the param- 
eters of the time-optimal synthesis problem using the notation of Chapters 4 and 
5. Equations (B.l), (B.2), and (B.3) arc written as 

4> = c'ry 

Ay = b 

y = o, 

(B.9) 

where i// is the performance index to be minimized; superscript T indicates the 
transpose; y isthe vector of unknown variables/;',,}; A, b, and c are, respectively, 
the matrix [arn] and the vectors {br} and |c'„| of knov/r coefficients; and it is 
understood that the rank of these elements, M, /V, is expanded to include the 
necessary number of slack variables. The condition that M < N \s necessary 
since if M > N there would be M - N redundant equations, which could be 
eliminated, or if/W = N there would be either a unique solution or no solution, 
depending on the consistency of the constraints. The requirement that M <N 
ensures the existence of an Infinite number of solutions to Eq. (B.9) among which 
we seek the one (or ones) that minimizes i//. 

The time-optimal synthesis problem requires us to find the J isolator force 
functions Uj(t) that minimize the performance index (see Eq. (4.6)) 

\p = max max|^(/, w.-)!; s= 1,2,.. .,S, 
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subject lo . .~ K constraints (see Eq. (4.7)) 

C^(t) < Ck(t, uj) < Cfil): k=\,2,.. .,K. 

Note that minimization of \p as a max-max form is equivalent to minimizing \p 
subject to the constraint 

\hs{t. u/)] < i//      for all t and s = 1, 2,. . ., S. 

The function lis is the response quantity of interest and is evaluated from the 
solution to the system dynamics, as are the constraint functions Ck. For sim- 
plicity of notation we will discuss only the case where the performance index 
depends on a single response quantity, i.e., 5= I, and we will drop the subscript s. 
The case of 5>1 introduces additional constiaint relations in an obvious 
manner. 

The continuous functions are replaced by discrete quantities evaluated at the 
times tj as described in Section 5.1.1. Each isolator force function is represented 
by the vector with elements |»y-,-\ for / = I, 2, . . ., /. The discrete version 
of the time-optimal synthesis problem thus is to find the iijj, j = 1,2,...,,/; 
/ = 1,2,. .., / so that \p is minimized and the constraints 

C£. < QU,, Uj,) = Cki < C" 

!/;(/,-, iij,)] = \h,\ < >// 
(13.10) 

or, equivalcntly 

(B.ll) 

Cki - C^ < 0 

Cki - C' > 0 

/;,- - t// < 0 

i// + /;,■ > 0, 

are satisfied foi ^ = 1, 2, . . ., A' and / = 1,2,...,/. 
We consider three forms for the response function and two forms for 

the constraint function as follows. These include most cases of practical 
interest: 
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r *     rt 

Kit) +2^     R^t-^u^di 
/ = 1 

Ck{t.uj) =< 

Wj (f);      ß = 1 or 2 or... or 7 

J     rt 

Qo(0 =2      Rkiit-^Uji^dr 

Qo(0 +]2(iki"iit) 

(a) 

(b) 

(c) 

(an 

y  (B.i2) 

y   (B.i3) 

(b)J 

As explained in Section 5.1.2, /20(f) and Ck0(t) are the system responses of 
interest to initial conditions and input disturbances, whereas Ri(t) andRkl{t) 
are the system responses to a unit impulse applied at the attachment points of 
the/th isolator; qj and qkj are prescribed constants. On occasion the time t in the 
constraint functions (B.13) assumes simply a terminal value; for example, the 
time at which the input has decayed to zero. 

The forms of Eq. (13.12) and (B.13) depend on the discrete approximations 
adopted for uAt). We will consider both piecewise constant and piecewise linear 
approximations as shown in Fig. B.l. Let 

^■(0  =   j   Rjit-T^i^dT. (B.l 4) 

In discrete form,^-,- can be represented as a vector, 

g/   =   Dy • U/, (B.15) 

where the matrix Dy depends on the approximation for iiy. It is easily shown that 
the elements {djicl ] of the Dy matrix are, for the piecewise constant approxima- 
tion with / - 1 components of (/y(/), 

dm  =< 
~2   (Rli-q   - Rji-q+l)       for «/ = I,...,/- 1 

0 for Q-= /,...,/-1 

(B.l 6) 
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V 

ujl-i 

•l        12 
At   [*- 

{i-1) At 

'i 'i + i 

At 

(a) Piecewise constant 

•-I 

(b) Piecewise linear 

Fig. B.I. Discretization of the isolator force. 
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and, for the piecewise linear approximation, 

r 
(/?;,_!   +  IRji) q=H*0 

{Rji.q + 4#/M+1 + Kji.q+2)     q = 2,...,i-\ 

{2Rj{  + Rl2) q = i 

0 q = i+\,.. .,1. 

(B.17) 

The integrals involved in Ck{t, uj) are discretized in a similar fashion using matrix, 
say, D/k. The elements djiq for the response and constraint functions not repre- 
sented with integrals, Eq. (B.12b and c) and Eqs. (B.13b) can be identified by 
observation. 

The time-optimal synthesis problem as formed from Eqs. (B.ll), (B.12), 
(B.13), and (B.15) is to find i|/ and «y,- such that i// is minimized and the 
constraints 

./ 

VD^-U, <-Cfco(f/) + C" 
/ = i 

j 

-Yv,k - u; < QoC) - qL,. 

./ 

l//    +   ^Dy-U;   <  -/l0(r,) 

(B.18) 

are satisfied for all / and k. This is now in the dual LP form with {ö,.} = 
(l, 0, 0, . . ., 0} and vv„, a,.,,, and cn developed from Eq. (B.18) as shown in 
Table B.l. This can be entered into an LP computer program directly, if accept- 
able to the code, or as a dummy primal problem. The matrices of Table B.l are 
intended to be representative of a typical time-optimal synthesis problem. They 
may require minor adjustments to accommodate special problem statements. 

Consider the direct formation of the primal LP problem. The performance 
index i// is necessarily nonnegative. The iijj arc made pobitive in the manner of 
Eq. (B.8), i.e., Uy,- = »),• - wj,-, Wy,- > 0, uji > 0. Relations (B.18) are converted to 
equality constraints using positive quantities h'i, h", C'ki, Cki. Thus, we now 
seek ty,Uji, uj,-, h], h", C^,-, C^,- such that \p is minimized subject to 
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,; 

L D/k-(u;-u;vc;,- =-aoW + c^ 

-2_iD/fc ° (u/"uy') + c'ki = c/co(',) - eh 
/=1 

(B.19) 

\—' 
-^ +) DyCu; -u;) + /i; = -/!o(f,) 

/ = 1 

,/ 

-V/ -^Dr(u;-u;)+ /';■' = /'oW 
/=1 

for all /, A:. Tl'.c vector of unknowns y now appears as 

y7' = {i/zw/'n ,(/',/, H21. •••.")/■'"11,. . .,u"i/,»2i,. ..,(0/; 

/;',, . . .Ji',\li"i,...,h'l;C[i,...X'u,C'u,-- -XKI; 

t-U L 1/'L21 . • • -^KIj- 

Equations (B.19) arc easily placed in tabular form similar to that of Table Bl. 
Reference 3 contains details of this formulation including discussions of reduc- 
tion in matrix sizes possible for special cases. For example, y need not contain 
u'ji W iijj is bounded from below. 

S  ;•; 
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SHOCK ISOLATION SYSTEMS 

1. R. E. Blake, "Near-Optimum Shock Mounts for Protecting Equipment 
from an Acceleration Pulse," Shock and Vibration Brll. No. 35, 133-146 
(Feb. 1966). 

This papei studies the time-optimal response of single isolator systems 
with flexible equipment. An approximate linear elastic representation 
is provided for the equipment and a time-consuming nonlinear program- 
ming technique is used to carry out the optimization. 

2. K. T. Cornelius, "Rational Shock Mount Design. Investigation of Efficiency 
of Damped, Resilient Mount," Naval Ship Research and Development 
Center, Report 2383, July 1967. 

The graphical derivation and characteristics of time-optimal synthesis 
of a single-degree-of-freedom shock isolation system and the possibility 
of modeling these characteristics with a linear spring in parallel with 
various damping devices are studied. Typical environments for a ship 
subject  to underwater explosion attack are used as input motions. 

3. K. T. Cornelius, "A Study of the Performance of an Optimum Shock 
Mount," Shock and Vibration Bull. No. 38, Pt. 3, 213-219 (Nov. 1968). 

A single-degree-of-freedom shock isolator comprising a linear spring in 
parallel with a bilinear damper, which is proportional to velocity at low 
levels and assumes a constant value at higher velocity, is considered. 
Response of this isolator is compared for several input motions to the 
time-optimal characteristics of a single-degree-of-frecdom system. The 
idea for this type of isolator configuration grew from a study of prop- 
erties of the ideal (time-optimal) mount. 

4. T. F. Derby and P. C.Calcaterra, "Response and Optimization of an Isola- 
tion System with Relaxation Type Damping," Shock and Vibration 
Bull., No. 40(1970). 

The authors consider relaxation-type damping to be an isolator element 
composed of either a Voigt vLcoelastic model in aeries with an elastic 
spring, or a standard linear solid viscoelastic model. .Inputs are impulse 
and white noise acceleration of the base. An analytical direct optimal 
synthesis study is performed for a single-degree-of-freedom system on the 
basis of the type of acceleration and rattlespace criteria formulated in 
Chapters 5, 6, and 7 of the monograph. Peak acceleration-vs-rattlespace 

142 



ANNOTATED BIBLIOGRAPHY 143 

tradeoffs for elements with optimum parameters are plotted as dimen- 
sionlessdesign curves and compared with the limiting performance char- 
acteristics. This is a thorough study of the problem posed. 

5. R. A. Hubanks, "Investigation of a Rational Approach to Shock isolator 
Design," Shock and Vibration Bull. No. 34, Ft. 3, 157-168 (Dec. 
1964). 

Techniques possibly suitable for the optimum synthesis of shock isola- 
tion design arc surveyed. A mathematical statement of optimum shock 
isolator design problems is given along with anticipated complications 
in achieving a solution. As documented in this monograph, many of 
these projected difficulties have been overcome in more recent 
work. 

6. 11. E. Gollwitzcr, "Rocket Booster Control," Sec'. 16,/l Miiiimax Control 
for a Plant Subjected to a Known Load Disturhance, Minneapolis- 
Honeywell MPG Report 1541-TR-16, Minneapolis, (Jan. 1964). 

This report includes a very complete description of the min-max con- 
trol problem that is equivalent to the multiple-isolator, multiple-dcgrce- 
of-freedom time-optimal shock isolation problem formulation of Chapter 
5 for prescribed inputs. 

7. V. V. Guretskii, "On the Optimization of Shock Isolators," Tr. Leningrad. 
Politckh. Inst.. 252, 16-23 (1965) (in Russian). 

This paper contains a formulation for the time-optimal synthesis of a 
multiple-isolator, multiple-degree-of-freedom shock isolation system, 
but does not provide complete solutions. Peak relative displacements 
throughout the system are to be minimized, whereas peak accelerations 
are bounded. Problem formulation is similai to that given for the same 
problem in Chapter 5 of the monograph. 

8. V. V. Guretskii, "On a Certain Optimal Control Problem," Izv. Akad. Nauk 
SSSR.Mekh.. 1 (1), 159-162 (Jan.-Feb. 1965) (in Russian). 

The time-optimal problem for a single-degree-of-freedom shock isolation 
system with a bounded peak acceleration and raltlespace as a perform- 
ance index is treated. This is the same problem that is given major 
consideration in the monograph and solution ;s similar to the graphical 
technique described in Chapter 5. Solutions are developed for 
stepped, exponentially decaying, and quarter-circle acceleration dis- 
turbances. 

9. V. V. Guretskii, "Selection of Optimum Design Parameters for Shock 
Isolators,"Mc/c/?. Tverd. Tela., 1, 167-170 (1966) (in Russian). 

This paper attempts to analytically deduce the optimum design param- 
eters for given simple linear configurations of a single-degree-of-freedom 
shock isolator. Parameters that lead to a minimal rattlespace while 
satisfying a bound on peak mass acceleration are sought. The technique 
does not appear suitable for application to more complicated higher 
order systems. 
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10. D. C. Karnopp and A. K. Trikha, "Comparative Study of Optimization 
Techniques for Shock and Vibration Isolation," AFOSR-68-0242, Air 
Force Office of Scientific Research, Arlington, Va. (Jan 1968). 

Several H' lute optimum and near optimum isolation systems are con- 
sidered w.. i respect to min-max, quadratic, and expected mean-square 
value criteria. It is shown that the systems designed on the basis of 
one criterion do not necessarily respond favorably with respect to 
other criteria. The report version contains several important appendixes 
not included in the paper. 

I 1. H. W. Kricbcl, "A Study of the Practicality of Ac "e Shock Isolation," 
unpublished Ph.D. dissertation, Stanford Univ. (May ly06). 

This study is similar to that of item 14, with the additional criterion 
that response variables return to their initial state in minimum time. This 
represents an effort to uniquely specify the isolator force over the 
total lime interval of interest. A comparative study is made using 
an integral of the square of the absolute acceleration as a performance 
index. 

12. T.N.T. Lack and M. Enns, "Optimal Control Trajectories with Minimax 
Objective Functions by Linear Programming," IEEE Trans. Automat. 
Contr, AC-12 (6), 749-752 (1967). 

The formulation and development of a linear programming preprocess- 
ing code that places the type of problem found in the optimization of 
multiple-isolator, multiple-degrce-of-freedom isolation systems wi'b 
linear structural elements in standard linear programming form are de- 
scribed. This code, which is similar to that developed in item 19 and 
discussed in Appendix B of the monograph, accepts a wide variety 
of constraints and a maximum in time response as a performance 
index. 

13. Chong Won Lee, "Minimization of the Maximum Value of Cost Func- 
tion," unpublished Master's thesis, Illinois Institute of Technology, June 
1967. 

An analytical study of various aspects of control systems with min-max 
criteria is carried out. The formulation is equivalent to the optimum 
shock isolation problem if initial and terminal conditions and no exter- 
nal excitation are admitted. 

14. T. Liber and E. Sevin, "Optimal Shock Isolation Synthesis," SAocA'««d 
Vibration Bull. No. 35, Pt. 5, 203-215 (Feb. 1966). 

This study of the time-optimal synthesis of a single-degree-of-freedom 
shock isolation system contains linear and dynamic programming for- 
mulations of the problem of minimizing rattlespace for a prescribed level 
of acceleration attenuation. These are precursors to the formulations 
presented in the monograph. 

15. T. Liber, "Optimal Shock Isolation Synthesis," AFWL-TR-6S-82, (July 
1966), Air Force Weapons Laboratory, Albuquerque, N. Mex. 
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This expanded version of tlie Liber-Sevin paper of the same title in- 
cludes optimum performance characteristics (termed trade-off limit 
curves in the report) for linear isolation systems with steady-state 
harmonic disturbances. 

16. G. G. Love and A. Lavi, "Evaluation of Feedback Structures," ?TOC. Joint 
Automat. Contr. Conf. 1968, University of Michigan. 

This paper describes a procedure somewhat akin to indirect synthesis, 
although not computationally oriented, and suggests that rapid evalua- 
tion of control system configurations (i.e., candidate forms of systems 
in terms of state variables) is possible by substituting the trajectories of 
the desired response in place of the real response as a means of finding 
optimum design parameters. The procedure is illustrated with an integral 
form of performance index and avoids repetitive analysis of the system 
equations of motion. Desired response can be selected on the basis of 
available information, including the optimum response characteristics. 
The design parameters found for the best configuration are then used as 
the starting values in a direct synthesis effort to find the parameters for 
improved performance. 

17. J. McMunn and G. Jorgcnsen, "A Review of the Literature on Optimiza- 
tion Techniques and Minimax Structural Response Problems," Univ. of 
Minn., Inst. of Tech., Dept. of Aeronautics and Engineering Mech., 
Report TR 65-5 (Oct. 1966). 

This report performs the task indicated by the title using only a portion 
of the available literature. The min-max structural response problems 
include optimization of damping in mechanical systems and the time- 
optimal and near-optimal design of shock isolation devices. (See listing 
in next section of bibliography.) 

18. lu. 1. Neimark, "Calculating An Optimal Vibration Isolator," Mekli. Tverd. 
Tela.. p. 182 (Sept-Oct. 1966) (in Russian). 

This paper presents an anlaytical study of a single-degree-of-freedom 
shock isolation system subject to a known input. An expression is 
derived to indicate the minimum rattlespace for which an isolator can be 
found that satisfies specified upper and lower bounds over a time 
interval. 

19. W. D. Pilkey, E. H. Fey, J. F. Costello, T. Liber, and A. Kalinowski, "Shock 
Isolation Synthesis Study," SAMSOTR-68-388, Vol. I and 11 (1968), Space 
and Missile Systems Organization, USAF, San Bernardino, Calif. 

This report describes various techniques for what is termed in the mono- 
graph the indirect method of design-parameter synthesis. Listing arid 
documentation are provided for a computer code which performs the 
time-optimal synthesis of single-degree-of-freedom systems with rattle- 
space and peak acceleration criteria. An LP preprocessing code for ar- 
ranging the input in LP form for the multiple-isolator, multiple-degree- 
of-freedom shock isolation system with linear structural elements, and 
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very general forms of criteria, following the method of Appendix B, also 
are included. A study, including a dynamic programming code, is made 
for the extremal disturbance analysis of single-degree-of-freedom sys- 
tems as described in Chapter 5 of the monograph. 

20. D.M. Rogers, G.Urmston, and Ching-U Ip, "A Method for Designing Linear 
and Nonlinear Siiock Isolation Systems for Underground Missile Facilities," 
BDS-TR-67-173, Ballistic Systems Division, USAF, San Bernardino, Calif. 
(June 1967).    , 

This report contains equations of motion for a rectangular package sup- 
ported vertically by springs and isolated horizontally by nonlinear 
devices such as foam. Excitations are prescribed displacements at the 
springs and isolators. A factorial search procedure, including a computer 
code, to select optimum design parameters on the basis of minimum 
peak acceleration and displacement response is described. The algorithm 
amounts to attempting a'l combinations of parameters with a termination 
of the integration of equations as soon as any set of parameters leads to 
a violation of the constraints. 

21. J. E. Ruzicka, "Characteristics of Mechanical Vibration and Shock," 
Sound and Vibration. 1 (4), 14-21 (1967). 

Sources, physical characteristics, and mathematical representations of 
typical shock and vibration environments are thoroughly discussed. 
Both deterministic (shock and harmonic vibration) and probabilistic 
(random vibration) disturbances are considered. 

22. J. E. Ruzicka, "Passive and Active Shock Isolation," paper presented at 
NASA Symp. on Transient Loads and Response of Space Vehicles, 
Langley, Va., Nov. 1967. 

Available active isolation devices are surveyed and contemporary active 
isolation technology is compared with passive shock isolation tech- 
niques. Optimum synthesis and problems encountered in isolation de- 
bign when both shock and vibration disturbances are anticipated are dis- 
cussed briefly. 

23. J. Ruzicka, "Active Vibration and Shock Isolation," SAE Paper 680747 
(1968). 

This is an updated version of "Passive and Active Shock Isolation" 
(Ruzicka) and includes a discussion of contemporary hardware sys- 
tems. 

24. L. A. Schmit and R. L. Fox, "Synthesis of a Simple Shock Isolator," 
NASACR-55(June 1964). 

This report describes a direct optimum synthesis of an SDF system with 
a parallel linear spring and dashpot isolator; performance criteria are 
peak acceleration and rattlespace. The formulation accepts multiple, 
precisely defined disturbances. The optimum design parameters are 
found sucii that the maximum performance index for the class of dis- 
turbances is minimized while the constraints are not violated for any 
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input belonging to the class. This is a worst-disturbance direct optimum 
synthesis problem for multiple inputs as described in Chapter 6 of the 
monograph. 

25. L. A. Schmit and E. F. Rybicki, "Simple Shock Isolator Synthesis with 
BUinear Stiffness and Variable Damping," NASA CR-64710 (June 1965). 

The "Synthesis of a Single Shock Isolator" work (Schmit-Fox) is ex- 
tended to an isolator which has nine design parameters and is composed 
of a bilinear spring and time-dependent dashpot. 

26. E. Sevin and W. D. Pilkey, "Min-Max Response Problems of Dynamic Sys- 
tems and Computational Solution Techniques," Shock and Vibration Bull. 
No. Jo, Ft. 5, 69-76 (Jan. 1967). 

Extremal analysis and optimum synthesis problems for dynamic systems 
are considered. Mathematical programming formulations for time- 
optimal synthesis of shock isolation systems with fully prescribed inputs 
and for the worst disturbance of a given class of disturbances, which are 
considered in the monograph, are included. 

27. E. Sevin and W. Pilkey, "Optimization of Shock Isolation Systems," Society 
of Automotive Engineers, Proceedings of the 1968 Aeronautic and Space 
Engineering and Manufacturing Meeting (1968). 

A mathematical statement of the problem of optimum design of multi- 
isolator, multidegree-of-freedom shock isolation systems is presented, as 
is a general discussion of direct and indirect optimum synthesis includ- 
ing computational implementation. 

28. E. Sevin, W. Pilkey and A. Kalinowski, "Computer-Aided Design of Opti- 
mum Isolation Systems," Shock and Vibration Bull. No. 39, Pt. 4, 1-13 
(1969). 

The same problem as "Optimization of Shock Isolation System" (Sevin- 
Pilkey) is treated, with concentration on the system identification phase 
of the indirect synthesis method. 

29. V. A. Troitskii, "On the Synthesis of Optimal Shock Isolators," J. Appl. 
Math. Mech. (Translation of Prikl. Mat. Mekh.) 31 (4), 649-654 (1967), 
Pergamon Press. 

The min-max SDF optimum isolator problem formulated in this mono- 
graph is posed. Both the optimum isolator configuration and design 
parameters are sought. Solutions arc obtained using classical variational 
approaches after the maximum-deviation performance index is replaced 
by a quadratic form. 

30. J. Wolkovitch, "Techniques for Optimizing the Response of Mechanical 
Shock and Vibration," SAE Paper 680748 (1968). 

This is a control-theory-oriented survey of some available optimization 
techniques for shock and vibration isolation systems. Various optimiza- 
tion criteria, including maximum deviation in time and time-integral 
forms, are discussed and several single-degree-of-freedom problems are 
solved in detail. 
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HARMONIC VIBRATION ISOLATION SYSTEMS 

31. J. McMunn and G. Jorgensen, "A Review of the Literature on Optimiza- 
tion Techniques and Minimax Structural Response Problems," University 
of Minnesota, Institute of Technology, Department of Aeronautics and 
Engineering Mechanics, TR-65-5, October 1966. 

The "minimax" problems considered in this review paper deal mostly 
with the selection of optimum damping rates for unconstrained me- 
chanical systems under harmonic excitation. Some consideration is 
given to the time-optimal and near-optimal design of shock isolation 
systems. The first category of literature dates prior to computer- 
oriented methods and is fairly complete. The following entries marked 
by an asterisk are taken from this review. More recent extensions of 
analytical approaches to optimum damping have not been reviewed in 
connection with the monograph. 

32. *F. R. Arnold, "Steady-State Behavior of Systems Provided with Non- 
Linear Dynamic Vibration Absorbers," ./. of Appl. Mech., 22, 487492 
(1955). 

The response of vibrating systems subjected to sinusoidal excitations 
and to the action of nonlinear dynamic vibration absorbers is determined 
by the Ritz method. One of the most striking characteristics of system 
response is the apparent existence of up to three modes of oscillation 
for a single value of disturbance frequency. 

33. *D. B. Bogy and P. R. Paslay, "Evaluation of Fixed Point Method of Vibra- 
tion Analysis for Particular System with Initial Damping," J. Eng. Ind., 
85(3), 233-236(1963). 

The maximum steady-state response of a linear damped two-degree- 
of-freedom system is minimized by determining the optimum damping 
constant for an additional single damper. This is accomplished by both 
a well-known approximate method (fixed-point method) and an exact 
numerical method. Since the approximate method does not take into 
account the initial damping in the system, attention is directed toward 
determining the influence of initial damping on the optimum value for 
the single damper. 

34. *J. E. Brock, "A Note on the Damped Vibration Absorber,"/. Appl. Mech., 
13, A284(1946). 

Formulas for optimum damping for three cases of the dynamic vibra- 
tion absorber with damping are presented, along with the method 
of derivation of each. The three cases are (a) optimum tuning, 
(b) constant tuning, and (c) Lanchester type damper (viscous damp- 
ing). 

35. *J. E. Brock, "Theory of the Damped Dynamic Vibration Absorber for 
Inertial Disturbances," 7. Appl. Mech., 16, A86 (1949). 

This paper deals with a vibration absorber for a system having the 
driving force proportional to the square of the driving frequency. 



ANNOTATED BIBLIOGRAPHY 149 

The criterion for optimum tuning is determined following an analy- 
sis similar to that given by Den Hartog for the usual dynamic 
absorbers. 

36. *W. J. Carter and F. C. Liu, "Steady-State Behavior of Non-Linear Dynamic 
Vibration Absorber,"/. Appl. Meek, 28 (1), 67-70 (1961). 

The Frahm-type dynamic vibration absorber is analyzed for the case 
where both main spring and absorber spring have nonlinearities of the 
Duffing type. A one-term approximate solution is assumed for the 
motion of the two masses, and the resulting amplitude equation is 
solved using a graphical procedure. An optimum dynamic vibration- 
absorber system for variable-frequency excitations consists of a harden- 
ing main spring with a softening absorber spring. 

37. *E. Halmkamm, "Die Dampfung von Fundamentschwingungen bei Veränder- 
licher Erreger Frequenz,"//Jg. Areh., 4 (1933). 

In this early work, Hannkamm found the changes in the amplitudes of 
each of the two maxima of the unit vibration response of a two-degree- 
of-freedom linear system as the damping coefficient of the single linear 
dashpot is changed. 

38. *A. R. Henney, "Damping of Continuous Systems," ifw^'neer, 215 (5529), 
572-574(1963). 

It is shown that for some simple continuous systems (beams damped at 
one point and harmonically forced at other points), theory and experi- 
ment agree well for the choice of concentrated damping which will 
optimize the response over a given frequency range. The sensitivity of 
maximum response to variation of damping is approximated by con- 
sidering that, as damping tends to large or small values, the maximum re- 
sponse tends to an infinite resonance and behavior of the beam may be 
approximated by a single-degree-of-freedom system vibrating near a 
resonance mode. 

39. *A. Henney and J. P. Raney, "The Optimization of Damping of Four 
Configurations of a Vibrating Beam," J. Eng. Ind.,S5 (3) 259-264 (1963). 

This paper contains a development of approximate analytic expressions 
for optimum damping of a uniform free-free beam connected to the 
support by one or two viscous dampers and excited at different points. 
The configurations investigated are found to be relatively insensitive to 
deviations of the damping form optimum. 

40. *E. M. Kerwin, Jr., "Damping of Flexural Waves by a Constrained Visco- 
elastic Layer," 7. Acoust. Soc. Amer., 31 (7), 952 (1959). 

This paper presents a quantitative analysis of the damping effectiveness 
of a constrained viscoelastic layer. The damping factors determined ex- 
perimentally agree well with those calculated theoretically. The theo- 
retical expressions for the damping effectiveness are based on the 
mechanism of shear energy-loss. 
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41. *F. M. Lewis, "Extended Theory of Viscous Vibration Damper," J. Appl. 
Mech., 22, 377 (1955). 

This paper extends the theory of the viscous vibration damper, either 
tuned or untuned, to multimass torsional systems and shows how an 
optimum damper can be designed for any installation. Tnis extended- 
damper theory is based on the fixed-point theorem. 

42. T. Liber, "Optimum Shock Isolator Synthesis," AFWL-TR-65-82 (July 
1966). 
This report contains an appendix concerned with the optimum perform- 
ance characteristics for linear (spring, dashpot) single-degree-of-freedom 
systems under liarmonic input. The curves, which are presented for 
several ranges of values of material parameters, are appropriate for the 
simple isolator or absorber (fixed base) svstems. 

43. J. C. McMunn, "Multi-Parameter Optimum Damping in Linear Dynamical 
Systems," unpublished doctoral dissertation, University of Minnesota 
1967. 

The problem of determining optimum damping rates of large mechanical 
systems with multiple dampers and harmonic inputs is considered. 
Damping is defined to be optimum if a peak displacement response is 
minimized for an input frequency interval. Detailed consideration is 
given to a multiple-degree-of-freedom linear system for which the op- 
timum damping is found by direct synthesis with a worst-disturbance 
analysis applied at each iteration. No response constraints are involved. 
Two multiple-degree-of-freedom, multiple-damper discrete systems and 
a column with distributed complex modulus damping are studied as ex- 
ample problems. The literature survey by McMunn and Jorgensen in 
item 31 is summarized. 

44. J. C. McMunn and R. Plunkett, "Multi-Parameter Optimum Damping in 
Linear Dynamical Systems," ASME Vibrations Conference Paper 69- 
V1BR-42. 

This paper is a summarization of McMunn's doctoral dissertation of the 
same title, item 43. 

45. *T. J. Mentel, "Visco-Elastic Boundary Damping of Beams and Plates," 
J. Appl. Mech., 31 (1), 61-71 (1964). 

This paper presents experiments on boundary-damped beams that 
identify the effectiveness of axial and transverse motions in producing 
energy dissipation. Experiments that test the damping effectiveness of 
?mall insets of viscoelastic adhesive are described. 
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46. *V. 11. Ncubert,  'Dynamic Absorbers Applied to Bar thai has Solid Damp- 
ing," J. Acoust. Soc. Amer., 36 (4), 673 (1964). 

The theoretical steady-state response of an axially excited bar with solid 
damping is rietermined. The effect of adding one or two dynamic ab- 
sorbers is c jiisidercd, and the optimization of the absorber damping is 
discussed lor constant damping in the bar. 

47. *B. E. O'Connor, "The Viscous Torsional Vibration Damper," SAE Trans. 1, 
87-97 (1947). 

This article points out the drawbacks of the untuned damper with dry 
friction. There is a development of the theory of application of the un- 
tuned damper with viscous damping. 

48. *J. Ormoiidroyd and J. P. Den Hartog, "Theory of the Dynamic Vibration 
Absorber," Trans. ASME, 50 (1928), ATM-50-7. 

In this classical paper, it is first shown that a vibration absorber without 
damping completely annihilates the vibration at its own frequency, but 
creates two critical speeds in the machine system. Therefore, it is suit- 
able only for constant-speed machinery. With damping, the absorber can 
diminish the vibration of a machine of variable speed. The analysis of 
its operation in simple cases is presented. 

49. 1. L. Paul and E. K. Bender, "Active Vibration Isolation and Active Vehicle 
Suspension," MIT Dept. of Mech. Engr. (Nov. 1966) (PB 173,648). 

The limiting performance characteristics for a generic single-degree-of- 
freedom system and the optimum spring-dashpot system subject to 
harmonic inputs are discussed. These curves are based on rattlespacc 
and peak acceleration criteria although they differ somewhat in form 
from those given in the monograph. Most of this report is concerned 
with isolation systems for random disturbances. 

50. *R. Plunkett, "The Calculation of Optimum Concentrated Damping for 
Continuous Systems,"/ Appl. Mech., 25 (2), 219-224 (1958). 

The approach is a generalization of that employed by Lewis, Den Hartog, 
andOrmondroyd. Four specific problems are considered. Some general 
conclusions are that the vibration velocity and vibratory force are not 
necessarily in phase at maximum amplitude for optimum damping and 
that the decay rate at optimum damping is not necessarily related to 
the amplification at resonance. 

51. *R. Plunkett, "Vibration Response of Linear Damped Complex Systems," 
/. Appl. Mech., 30 (1), 70-74 (1963). 

This paper develops two approximate expressions for the change in all 
of the response maxima of a multidegree or continuous system as the 
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coefficient of the single linear damper is changed. One of these ap- 
proximations is derived from a perturbation solution about the min-max 
values, and the other is derived from an expansion in normal modes. 
These expressions arc useful in determining the sensitivity of the maxi- 
mum  response value  to  small  changes in  the damping coefficient. 

52. *R. Plunkett and C. H. Wu, "Attenuation of Plane Waves in Semi-Infinite 
Composite Bar," J. Acoust. Sot: Amer., 37 (1), 28-30 (1965). 

It is shown that the maximum attenuation of the propagating waves oc- 
curs for an optimum value of loss tangent of the shear modulus. Wave 
numbers depend on complex shear modulus, frequency, and dimen- 
sions of the bar. 

53. *R. E. Roberson, "Synthesis of a Non-Linear Dynamic Vibration Absorber," 
J. Franklin Inst., 254, 205-230 (1952). 

A secondary system is attached to a linear undamped vibrating system 
with one degree of freedom by means of a nonlinear spring. It is de- 
sired to find optimum values of the coefficients of this spring such that 
the vibration amplitude of the primary system is kept below unity for 
as large a band of exciting frequencies as possible. The first approxima- 
tion by the Duffing iteration method is used to obtain the response in 
terms of the system parameters. For the synthesis criterion used, the 
nonlinear absorber offers a significant advantage over the corresponding 
linear absorber. 

54. *J. F. Springfield and J. P. Raney, "Experimental Investigation of Optimum 
End Supports for a Vibrating Beam," Exp. Mech.,  2 (12), 366-372 
(1962). 

The problem investigated is the extent to which the near-resonant re- 
sponse of the beam to a concentrated harmonic force could be limited 
in a predictable manner by applying vibration absorbers to the ends of 
the beam. The experimentally determined response amplitude, fre- 
quencies of fixed points, and optimum values of damping agree well 
with theory. 

RANDOM VIBRATION ISOLATION SYSTEMS 

55.    E, K. Bender, "Optimum Linear Preview Control with Application to 
Vehicle Suspension," ASME Paper 67-WA/Aut-l. 

A study of performance limits and direct optimum synthesis of linear 
isolation systems with sensors is summarized. The Wiener filter ap- 
proach is used to establish the optimum transfer function. The result- 
ing system is analyzed for response to a step pulse disturbance. Terrain 
environments are characterized in the same fashion as in "On the 
Optimization of Vehicle Suspensions Using Random Process Theory" 
(Bender, Karnopp, Paul). 
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56. E. K. Bender, "Optimization of tiie Random Vibration Characteristics 
of Vehicle Suspension," MIT Dept. of Mech. Eng., unpublished Sc.D. 
dissertation, June 1967. 

This is the most comprehensive of the documents by the MIT group 
studying optimum suspension systems on the basis of the Wiener filter. 
Many derivations and explanations that are sketchily presented in other 
reports and papers are given full, detailed consideration here. 

57. E. K. Bender and 1. L. Paul, "Analysis of Optimum and Preview Control 
of Active Vehicle Suspension," MIT Dept. of Mech. Eng. Rpt DSR- 
76109-6, U.S. Dept. of Transportation (Sept. 1967) (Clearinghouse No. 
PB 176137). 

This is an interim report on ^he research described in "Optimization of 
the Random Vibration Characteristics of Vehicle Suspension" (Bender). 

58. E. K. Bender, "Optimum Linear Control of Random Vibrations," Proc. 
8th Joint Automat. Contr. Con/, June 28-30, 1967. 

This is a preliminary version of the paper "On the Optimization of 
Vehicle Suspensions Using Random Process Theory" (Bender, Karnopp, 
Paul). 

59. E. K. Bender, D. C. Karnopp, and 1. L. Paul, "On the Optimization of 
Vehicle Suspensions Using Random Process Theory," ASME Paper No. 
67-TRAN-12,Afec/!. Eng., 89, 69 (1967). 

This review of work performed on vehicle suspension systems is the 
most complete open-literature source on the approach pursued in 
Chapter 8 of the monograph: Indeed, much of the material was drawn 
directly from this paper. A design chart useful in selecting optimum 
parameters for a spring-dashpot isolator of a flexible base system 
is given along with a detailed numerical example of an optimum design 
problem. 

60. E. K. Bender, "Some Fundamental Limitations of Active and Passive 
Vehicle-Suspension Systems," SAE Paper 680750 (1968). 

This paper contains a summary of the work presented in "On the Op- 
timization of Vehicle Suspensions Using Random Process Theory" 
(Bender, Karnopp, Paul) and "Optimum Linear Preview Control with 
Application to Vehicle Suspension" (Bender), and also includes a brief 
discussion of suspension system characteristics which a.e desirable in 
reducing lateral acceleration during rolling motion of a ground vehicle. 

61. T. F. Derby and P. C. Calcaterra, "Response and Optimization of an Isola- 
tion System with Relaxation Type Damping," Shock and Vibration Bulle- 
tin No. 40(1970). 

The authors consider relaxation-type damping to be an isolator element 
composed of either a Voigt viscoelastic model in series with an elastic 
spring, or a standard linear solid viscoelastic model. Inputs are impulse 
and white noise acceleration of the base. An analytical direct optimal 
synthesis study is performed of a single-degree-of-freedom system on the 
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basis of the type of acceleration and rattiespace criteria formulated in 
Chapters 5, 6, and 7 of the monograph. Peak acceleration-vs-rattlespace 
tradeoffs for elements with optimum parameters arc plotted as dimen- 
sionless design curves and compared with the limiting performance char- 
acteristics. This is a thorough study of the problem posed. 

62. D. C. Karnopp, "Applications of Random Process Theory to the Design 
and Testing of Ground Vehicles," Tramp. Res., 2,269-278 (1968). 

The initial sections of this paper contain an interesting, fundamental 
discussion of the statistical characterization of ground terrain. This is 
the spectral density characterization used to advantage for the optimum 
isolation system design studies of Chapter 8 of the monograph. 

63. D. C. Karnopp, "Continuum Model Study of Preview Effects in Actively 
Suspended Long Trains," J. Franklin Inst.,  285 (4), 251-260 (1968). 

The paper is an initial effort at showing that in a long train the cars 
themselves can be used as sensors for the type of preview suspension 
system discussed in Bender's "Optimum Linear Preview Control with 
Application to Vehicle Suspension." 

64. D. C. Karnopp and A. K. Triklia, "Comparative Study of Optimization 
Techniques for Shock and Vibration isolation," AFOSR 68-0242 (Jan. 
1968) and./, Eng. Ind.. 91 (4), 1128-1132 (1969). 

Several optimum and near-optimum isolation systems are considered 
with respect to min-max, quadratic, and expected mean-square value 
criteria, it is shown that the systems designed on the basis of one cri- 
terion do not necessarily respond favorably with respect to other cri- 
teria. The report version contains several important appendixes not 
included in the paper, Ref. 1. 

65. G. C. Newton, L. A. Gould, and J. F. Kaiser, Analytical Design of Linear 
Feedback Controls, John Wiley and Sons, New York, 1957. 

Most of the work surveyed in Chapter 8 of this monograph represents 
an isolation-syslcm-oriented version of the material on linear feedback 
controls presented in the book. This includes the concept of initiating 
an optimum design by determining, on the basis of the problem speci- 
fications, certain characteristics of the absolute optimum linear s^'Stem. 
This book can be used as a source of thorough and rigorous dc\ ons 
of certain brief discussions in Chapter 8 of the monograph. 

66. 1. L. Paul and E. K. Bender, "Partial Bibliography on Subjects Related to 
Ac'.ivc Vibration Isolation and Active Vehicle Suspensions," MIT, Dept. 
of Mech. Eng. Projects Laboratory Rpt DSR-76109-2, CleariiK'jiouse No. 
PB 173649 (Nov. 1966). 

This report contains a listing of some of the available literature related to 
vibration isolation including random input characterization and optimum 
design. All entries are classified according to subject; entries are not 
annotated. 
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67. I. L. Paul and E. K.. Bender, "Active Vibration Isolation and Active Vehicle 
Suspension," MIT, Dept. of Mech. Eng. Rpl. DSR-76109-1, Clearinghouse 
No. PB 173648 (Nov. 1966). 

This is a preliminary report of some of the work described in "Optimi- 
zation of the Randüin Vibration Characteristics of Vehicle Suspension" 
(Bender). 

68. A. Seireg and L. Howard, "An Approximate Normal Mode Method 
for Damped Lumped Parameter Systems," J. Eng. Ind., 89 (4), 597-604 
(1967). 

A computational search routine is used to select optimum design param- 
eters (frequency and damping ratios) for a simple damped absorber 
consisting of a mass connected by a linear spring to a rigid base on one 
side and to another mass by a spring and dashpot in parallel in the other 
direction (i.e., the flexible modeis of Examples 5 and 6). The first mass 
is subject to white-noise random excitation. The parameter ratios are 
plotted as functions of the mass ratio and compared to the curves pre- 
sented in Den Hartog's Mechanical Vibrations for sinusoidal loading. 

69. A. R. Trikha and D. C. Karnopp, "A New Criterion for Optimizing Linear 
Vibration Isolator Systems Subject to Random Input,",/. Eng. Ind.,91 (4), 
1005-1010(1969). 

The proposed criterion deals with values of displacement and accelera- 
tion for which the probability of exceeding is less than a desired value. 
The random input must be stationary and gaussian. The problem is 
reduced to a version of the Wiener filter synthesis solution discussed in 
Chapter 8 of the monograph. 

70. J. Wolkovitch, "Techniques for Optimizing the Response of Mechanical 
Systems to Shock and Vibration," SMI Paper 680748 (1968). 

This is an interesting survey of some of the literature and techniques 
available for the optimization of isolation systems subject to shock and 
vibration as seen by a control engineer. Emphasis is placed on analytical 
techniques suitable for simple systems. Discussions on criteria include an 
evaluation of an integral representation of a min-max performance index 
and a warning of possible pitfalls of including a constraint in a perform- 
ance index. 
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